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Abstract

Liver intervention can become a challenging task due to the respiration induced motion. The latter causes mis-

alignment between the interventional mapping obtaining pre-treatment and the changed anatomical parameters

during application phase (liver biopsy or radiotherapy) leading to increased damaged of healthy tissue as well as

inaccurate targeting of hepatic tumors. In the presented work, Respiratory Motion Estimation is exploited where

using external signals (surrogates), it is possible to estimate the liver actual motion. The proposed work has

been evaluated in several breathing patterns in comparison with previous studies making usage of ultrasound

(US) sensor as surrogate, placed on the human’s abdominal region. Next, three regression models (simple linear

regression, polynomial fitting, single layer perceptron) were utilized to correlate the liver motion with the US

signal and consequent trained to estimate the superior-inferior (SI) motion of the liver upper border available

in 2D Magnetic Resonance Imaging (MRI) sagittal images. Additionally, extending the conventional framework

and taking advantage of Deep Learning and more specifically Long Short-Term Memory (LSTM) networks, it is

feasible to predict the liver motion in a short future state combined with a classifier that can detect the performed

respiration type. The proposed DL approach has been validated in MRI on ten healthy human subjects when

the findings revealing an estimation of the liver motion in SI direction with a Root Mean Square Error (RMSE)

accuracy below 1.2±0.2 mm (95% CI) and a capability of liver motion prediction for 6 sec ahead enabling a safer

examination decreasing the likelihood for potential risk during an image-guided intervention.
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1. Introduction

1.1 Liver Cancer

Liver cancer is defined as a substantial and costly healthcare

issue from the World Health Organization. In 2018, it was

included 1st in the list of most common cause of cancer death

counting almost 780000 deaths worldwide [1]. Research and

study over the last decades, open the way up for improved

diagnosis, treatment planning and prevention. Advanced

imaging techniques have been exploited utilising Machine

Learning, image processing and signal analysis methods to en-

hance the physicians’ vision and subsequently leading to bet-

ter healthcare services. Although the continuous development

in that field, abdominal and thoracic region-based interven-

tions remain still a drawback for the healthcare stakeholders

as problems showing off during image acquisition such as one

used for hepatic lesions scanning and image-guided interven-

tions like biopsy, tumor’s ablation and radiotherapy [2, 3, 4].

To step into the studied problem, it is important firstly to

address the effects of an inaccurate clinical evaluation of a

liver-diseased patient. Starting with the image acquisition,

Magnetic Resonance(MR), Ultrasound (US), Computed To-

mography (CT) or X-ray are the most common imaging tech-

niques used in such cases while organ’s induced motion may

hide blurring or ghosting artefacts in the generated images

[5, 6].

While some of the available imaging techniques provide

high temporal resolution which is translated to high frame

rate and capturing better the motion and properties of an or-

gan, others have higher spatial resolution that is connected

with a higher image quality. The needs of physicians, for

an enhanced diagnosis, are high image quality and real-time

acquisition frame rate but unfortunately, those two require-

ments cannot be present simultaneously within one imaging

technique yet. For instance, MRI is preferred due to high visi-

bility advantage of soft tissue based on high spatial resolution

while US is commonly used for its high temporal resolution

[7, 8, 9].

Additionally, inadequately targeting for image-guided in-

terventions has an adverse risk as it may create misalignment

and discontinuities between the fixed guidance information

and the anatomical adaptations of the target organ when a

lot of approaches use the assumption of following the same

respiratory motion at every breathing cycle [10, 11]. For in-

stance, during a radiotherapy beams are hitting the human

body to treat the cancerous cells of a tumor but on the other

hand due to the anatomical changes the beam gets misaligned

at each step causing increased damage of healthy tissue. In

some cases, the physicians circumscribed a larger area around

the actual tumor to ensure that the target will be covered at

each treatment session independent the anatomical adapta-

tions. This can create risk for increased radiation dose or

insufficient targeting. When there are no clear guidelines re-

garding the doctors’ requirements for a sufficient liver biopsy

or an accurate radiotherapy, in the presented work the fol-

lowing parameters have been taken into account: real-time

respiratory liver motion prediction, minimization of the error

rate independent of the breathing pattern [11, 12].

In most cases, a liver biopsy takes approximately five

minutes when the doctor prefer an imaging machine to guide

the needle with high update rate that ideally can decrease the

number of penetrations and the duration for collecting the

tumour sample. Minimizing the procedure duration and the

potential error of the doctor due to liver respiratory motion

will guarantee less likelihood for internal bleeding or haemor-

rhage which are mentioned as one of the most common causes

for morbidity after a percutaneous liver biopsy. In previous

studies, the error was varying from 0.7mm till 2.5mm de-

pending on the direction and evaluated only in free-breathing

patterns on healthy subjects and on liver phantoms. In the pre-

sented work, the proposed approach shows promising results

assuming a minimization of the error about 15-20% based on

several breathing patterns. [10, 13]. In the following sections

of the introduction part, the fundamental parameters that lead

to decreased accuracy diagnosis will be explained from the

theoretical perspective along with the current solutions and

limitations.

1.2 Problem Statement

Starting with the simplest method to minimize the organ

motion because of respiration, breath-holding can be useful

whereas its disadvantage is the limited application time, re-

stricted to no more than 30 sec that has been proved to be an in-

sufficient time interval for real-time examinations/interventions.

Moreover, this technique gives an uncomfortable feeling in

many situations resulting in an inadequate solution. Secondly,

gating has been utilised to deal with that issue. This method

involves image acquisition using a fixed window, capturing

the end-inhalation (EI) or the end-exhalation (EE), relying

on external signals. Although gating seems to be appropri-

ate enough to solve the problem, it introduces a higher time

acquisition duration in order to capture complete breathing

patterns based on different respiration phases. Motion track-

ing is an alternative proposed technique that uses markers to

cope with the respiratory motion. It can be either invasive

or non-invasive based on the nature of the markers (fiducial

markers or externally placed onto the targeted area). After

markers placement, the motion is tracked using an imaging

device compatible with US, CT or X-ray. Except of the in-

vasiveness nature of the method, motion information can be

only available for the restricted region of markers rather than

the region of interest (ROI) [10, 14, 15].

An inaccurate target detection will subsequently cause

increased damage of the healthy cells and tissues, insufficient

treatment planning and possibly higher likelihood of recur-

rences [16, 17]. To dive deeper into the problem, as stated

previously, most organs in the human body are susceptible to

changes in their structure as well as alterations in the motion

based on the breathing pattern that is performed at each time

period. This is caused because of two physiological human

body’s functions. Firstly, the diaphragmatic muscle located
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in the thorax gets contracted on the inhalation phase and the

rib cage muscles start moving which secondly create an in-

crease in thoracic volume inhaling air into the lungs [18]. Of

course, variations are possible depending on the following

parameters:

• subject’s posture

• performed breathing pattern

• variations between individuals

• motion of other organs

• changes in the relative contributions and magnitudes

Taking into account those adjustments, a brief description for

the variations regarding the respiratory pattern is given in the

following section. Starting with the intra-cycle variations or

better explained as variations of motion within a single breath-

ing cycle, this refers to the different motion’s paths that are

followed during inspiration and expiration. Similarly, there

are also inter-cycle variations and are related to variations of

motion between different respiratory cycles where the mo-

tion’s paths varies between one breathing cycle and another

cycle [19, 20, 21, 22, 23, 24, 25]. Respiratory motion affects

mainly the thoracic and abdominal areas’ organs and based

on previous work, can have on average a displacement of 16.5

mm in one direction following a shallow breathing pattern

[4, 26, 27]. An example can be found in Figure1 where the

liver motion in the vertical direction is presented as displace-

ment of the upper liver surface indicated with the blue grid.

This difference in position has been created based on the liver

motion between inhalation and exhalation. Moreover, further

studies findings indicate a liver Superior-Inferior (SI) motion

to vary between 10.0-21.3 mm and based on the outcome us-

ing a robotic phantom simulation, the respiratory liver motion

has been measured for a displacement of 10-40 mm in SI

direction, 1-12 mm in Anterior-Posterior (AP) direction and

1-5 mm in Medial-Lateral direction [4, 10, 26, 28, 29].

Figure 1. Liver motion representation due to different phases

of breathing. Liver upper surface during inhalation is

presented with blue grid while the corresponding position

during exhalation is shown with white color [30].

1.3 Respiratory Motion Estimation (RME)

Due to the aforementioned limitations and downsides, the

healthcare stakeholders investigate further techniques to com-

pensate with the RME. This can be done by modeling the

relationship between the motion of interest (e.g organ actual

motion over time) with a surrogate signal (e.g displacement of

a marker over time). The correlation between the two data will

generate a model that can estimate the internal organ motion

using only the surrogate signal.

Deepen to the problem, the correlation between the two

signals is determined by a set of parameters generated on the

training section where the internal motion and surrogate sig-

nals are fed simultaneously to a fitting method. This training

will be performed offline while on the test phase or during the

intervention as better described, an estimation of the internal

motion data will be performed based only on the surrogate

signal as depicted in Figure 2. The corresponding figure splits

into two sections, the training and prediction phases. In train-

ing phase which is performed offline, the liver motion data

are acquired simultaneously with the surrogate data presented

as A-mode-US wave [31] measurements and fed to the re-

gression models. In the training phase the regression will

learn some parameters that represent the correlation between

the two signals and the regressors will create the so-called

motion model which simulates the correlation of the two sig-

nals. During the prediction phase, the trained motion model

will be loaded and fed only with the surrogate signal. This

will attempt to estimate the internal liver motion based on the

learned parameters of the training phase.

As shown in Figure 2, every RME approach consists of

four sub-processes:

1. Internal motion selection: the targeted internal motion,

commonly with a high spatial resolution but also in-

cluding low temporal resolution [32].

2. Choice of surrogate(s): external signal having a strong

correlation with the internal motion data but it is not pos-

sible to directly be measured. Usually, the surrogates

have high temporal resolution, thus is an advantage for

their choice in those applications.

3. Motion model: it is often called correspondence model

and it is a mathematical formula that can describe the

correlation between the internal motion data and the sur-

rogates through some parameters. A further explanation

is given in 1.4.

4. Fitting method: this is related to the method that the

correspondence model utilizes to optimize the fitting

process of surrogate to the training data.

When all the aforementioned are filled out, the motion es-

timates can be calculated and the prediction of the internal

motion can be performed based solely on the surrogate data

and the learning parameters of the motion model found in the

training phase.

1.4 Correspondence model

To do this, a correspondence model needs to be generated that

represents mathematically a strong relationship between the
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Figure 2. Overview of the RME process. In training phase the liver actual data are acquired simultaneously with the surrogate

data (A-mode US waves) and fed to the fitting algorithm/regression model. The algorithm will calculate some parameters

standing for the correlation of the two signal and will create the so-called motion model. Next, in the prediction phase, the

optimal parameters found in previous step will be used combined only with the surrogate signal this time to estimate the liver

motion.

internal motion data or the target location and the surrogate

data. This relationship can be approximated either ’directly’

(see Figure 3) or ’indirectly’ [11]. Since the direct model is

utilised in the presented work and due to limitation space, the

indirect model will no be depicted but it will be explained

briefly in the following lines. As shown in Figure 3, using the

direct correspondence model, the learning parameters of the

motion model will have a direct linear or non-linear behavior

regarding the two signals. Briefly, for a direct correspon-

dence model, the relation between the internal motion and the

surrogate can be formed as:

M(t) = φ (s(t)) (1)

where s(t) is the surrogate signal, φ stands for the direct

correspondence model and M(t) is the estimate of the motion

(a vector of the target position at a specific timestamp). Note

that the amount of degrees of freedom (DoF) corresponds to

the model is subjected to the amount and type of the surrogate

signal(s) and that in direct correspondence, the values of the

surrogate data directly schematize the target motion estimation

parameters [33].

Except of direct correspondence, there is also the indirect

correspondence models that schematizes the target motion

based on a number of internal parameters determining the

DoF of the motion model [34]. In this case, there is no di-

rect measurement of the internal variables during the motion

model adjustment to approximate the internal motion but the

surrogate is a subgroup of the motion estimates done by the

motion model and in order to figure out the best approxi-

mation between the measured surrogate(s) and the estimates

of the surrogate(s), the internal parameters are optimized by

the motion model. For indirect correspondence model, the

formula that describe this function can be written as:

M(x(t̂)) = φ(s(x(t̂))) (2)

where x(t̂) is the vector of internal variables, such as posi-

tion in respiratory phase, φ(x) is a vector of motion variables

determined by the internal variables. The idea behind it is

the generation of a reference image followed a transformation

based on the motion variables and subsequently a function

handles the output to reproduce the surrogate(s) [35, 36, 37].

1.5 Previous work

As previously stated, most of the studies focused on the chang-

ing respiration breathing patterns within one breathing cycle

(intra-cycle variations) but also between different respiratory

phases (inter-cycle variations) when to a greater extend, some

researchers emphasize on the alteration of the breathing pat-

terns between patients as well [11]. To tackle the respiratory
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Figure 3. Direct correspondence model function. This model estimates the internal motion directly using the surrogate signal

resulting in a linear or non-linear relation between the two signals.

motion problem, several solutions have been proposed. A

summary of the related studies about the motion data, the

surrogate data and the validation experiments conducted, is

presented in Table 1.

To start with the most recent work, Berijanian et al. used

a robotic phantom to simulate the liver motion in SI and AP

direction using actuators. As a surrogate data, the authors

exploited optical tracking via a camera detecting skin markers

and additionally an inertial motor unit (IMU) placed on the

needle hub inserted to the liver phantom. In the correspond-

ing work, linear fitting methods have been used and more

specifically linear regression as well quadratic polynomials.

On the downsides, the model validations have been applied

to a liver phantom showing discontinuities from inhalation

to exhalation and vice versa. To continue with Abayazid et

al. study where the authors developed a motion model using

data from an Electromagnetic (EM) tracker as internal motion,

IMU sensor for acquiring the surrogates and the Random k-

Labelset as fitting method. For model evaluation, a motion

phantom has been used and the limitations of this work are

related to the needle bending that used integrating the IMU

sensor. The needle bending can affect the relation between

the measured external motion of the needle hub and the actual

motion of the tip, leading to misalignment.

Fahmi et al. in the same year, exploited MRI data as actual

motion combined with camera-tracked external markers data.

After validation on human subjects, the authors estimated the

liver motion with a Mean Absolute Error (MAE) of 2 mm

but this approach may fail with real data as the dataset for

training/testing was consisted only of 3 subjects resulting in

an non-generalizable and robust motion model to unseen data.

Additionally, Chen et al. presented two motion models ap-

plying linear and ridge regressions feeding accelerometers

with bellow data as surrogates and MRI images as the actual

motion. Moreover, Shin et al. research follows testing a cor-

respondence model of CT-scans and digital protractors with

calipers on a motion phantom when Preiswerk et al. took

advantage of the same data type for internal and surrogate

motion as in the presented work. For the former’s and lat-

ter’s work, the main limitation was that the breathing patterns

adaptations which have not been taken into account, thus in-

cluding only one motion model for all the different breathing

patterns proved to be insufficient for accurate liver motion

estimation. A study on animal subjects conducted by Lei et

al. in 2012 expanded further the research in the correspond-

ing field while the findings cannot be considered adequately

enough to perform interventions on human subjects due to

respiration discontinuities and other factors. Concluding with

the work of Buerger et al. in the same year, the researchers

used MRI as the internal motion representation and also as the

surrogate data while the general framework has been tested

on human subjects [9, 10, 26, 13, 38, 39, 40, 41, 42].

1.6 Objectives and Research Question

This study attempts to continue the work for the liver motion

estimation using surrogate signals based on a machine learn-

ing model on that basis. [10, 26]. The findings will contribute

into further improvement in image-guided interventions by

minimizing the damage of healthy tissues as the model frame-

work can be adaptive to different breathing patterns. In addi-

tion, the framework of the corresponding work has also the

capability of liver estimation on a future state and not only on

the present leading to a better treatment planning and open

the way for further research regarding the independent MRI

compatibility intervention as the patient’s liver motion state

can be estimated for a short time interval after his/her removal

from the MRI-room. Furthermore, the model will be evalu-

ated on patients data and not in phantoms or animal subjects

that presented in previous research. This will give an intrinsic

evaluation of this method. The objectives of this work are to

investigate if an ultrasound transducer signal can be used as

surrogate data that has a strong correspondence with the actual

liver motion. In the same context, three different regression

models are evaluated on experimental data of healthy subjects

along with Deep Learning approach for surrogate prediction

and finally a classifier to test for its capability on detection of

different breathing patterns.

As a result, the main research question is the following:

”What is the performance of a Deep Learning approach in liver

motion estimation for different types of respiratory motion?”.



Estimation of liver respiratory motion using a surrogate signal based on a Deep Learning approach — 6/33

Table 1. Table of related work on liver Respiratory Motion Estimation (RME) presenting the internal motion and surrogate data

representation along with the validation applications.

Reference Internal Motion Data Surrogate Data Validation on

Berijanian et al., 2019 IMU Optical Tracking & IMU Motion Phantom

Abayazid et. al., 2018 EM tracker IMU1 Motion Phantom

Fahmi et. al., 2018 MRI External Markers Human Subjects

Chen et al., 2017 MRI Accelerometers & Bellows Motion Phantom & Human Subjects

Shin et al., 2017 CT-scan Digital Protractor & Calipers Motion Phantom

Preiswerk et al., 2017 MRI US Human Subjects

Durichen et al., 2013 Ultrasound Multi-modal sensors Human Subjects

Lei et al., 2012 CT-scan EM tracker Animal Subjects

Buerger et al., 2012 MRI MRI Human Subjects

There are also some sub-questions that were arisen:

i) ”Does an ultrasound sensor signal have strong correlation

with the liver internal motion data? If yes, can its data describe

sufficiently enough the liver internal motion due to respira-

tion?”

ii) ”To what extent the performed breathing pattern can affect

the surrogate signal prediction performance in terms of accu-

racy?”

iii) ”What is the performance of a classifier in breathing pat-

tern detection?”

At the end of Chapter 1, the respiratory motion problem has

been analyzed along with the conventional approaches, de-

tailing the suggested framework of the corresponding work.

Moreover, the goals of the corresponding work have been

analyzed along with the contribution and objectives of this

thesis. The outline of the rest work is organized into five main

chapters. In Chapter 2, all the necessary information for the

suggested surrogate data and prediction sections are provided.

Moreover, in the same chapter, an brief explanation for the

classification step, placed into the activity recognition systems

field, is given along with all the previous steps that are needed.

Next, in Chapter 3, the design of the suggested research ap-

proach, the data acquisition and the workflow are presented.

In the same section, all the applied processing techniques are

shown followed by the temporal synchronization methods and

an explanation about the evaluation metrics used in the mo-

tion model for the correlation of surrogate and internal motion

data. The second part focuses on the classification work that

has been done, presenting all the intermediate steps and the

evaluation framework that has been followed. In Chapter 4,

quantitative results, interpretations and analysis of the two

model’s outputs are provided followed by the final main sec-

tions, Chapter 5 including the recommendations for future

work and Chapter 6 including the final findings. At the end,

in the Appendices, a summary of the measurement protocol,

with the description of the MRI and ultrasound devices, is

given. Additional information regarding the equipment and

the designed protocol can be found in G.Veenstra study [43].

2. Theoretical Background

In this Chapter, the available surrogate data will be explained

and the choice of the selected surrogate signal will be justi-

fied. Moreover, the theoretical background for the surrogate

prediction compartments will be provided followed by an in

depth model explanation.

2.1 Surrogate Data
It is important to emphasize that although the organ actual

motion can be acquired with a low frame rate (low temporal

resolution), the surrogate can be proved helpful because of its

high temporal resolution. This can be significantly beneficial

in many applications where the physicians cannot acquire

the organ’s actual motion using an acceptable high tempo-

ral resolution. For instance, imagine that a patient can be

removed from the MRI-bore and using only prediction for

the surrogates, the doctors are able to estimate the internal

motion of the targeted region [16]. The following criteria have

been taken into account for selecting the appropriate surrogate

signal in the presented work: imaging modality independent,

non-discomfort causes to the participants and drift-free signal

[44].

2.1.1 Available Surrogates

Starting with the available surrogate data, there are either

scalar surrogate data or higher dimensional data. Since the

focus of this research is based on one surrogate signal, there

will be no analysis for higher dimensional surrogates.

In most cases where MRI data represent the actual motion,

the physicians need a MRI-compatible device to measure the

surrogate. All non-invasive methods that have inference of

the target position relying on the respiratory surrogate(s) data

belong to this category, Thus, it is common to utilise either

MR echos or respiratory bellows. MR echo makes use of

the human body property containing water and a relatively

small area is magnetised in order to measure the position of

the targeted region over time [45]. Regarding the respiratory

bellow, it measures the inhaled and exhaled air flow using an

air filled bag placed between subject’s abdomen and a rigid

surface that circumscribes subject’s body [46].

Furthermore, in the same philosophy, spirometers are used

but mostly to correct the motion applied in radiotherapy field
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[47, 48]. Optical tracking technology, such as infrared camera

usage or laser based tracking tracking systems are alternatives

for surrogate’s acquisition, providing the option to acquire

more than one points on the abdominal or thoracic regions

[49, 50, 51, 52, 53, 54] . In addition, accelerometers are

alternatives surrogates used during percutaneous interventions

and MRI-compatible, making them a sufficient candidate for

surrogate signal [9, 39, 55].

Opposed to the previous methods, fiducial markers are

used implanted (invasive) in the target area or close to that

providing a more robust vision when the target cannot be

visualized using imaging techniques while previous studies

on phantom robot showed the potentiality of electromagnetic

(EM) tracking systems using electrical signals. In this case,

the author of the corresponding work used a phantom robot

simulating the liver and integrated a 5 DoF EM sensor into

the needle’s hub to measure the displacement between the ref-

erence needle tip and the target as well as the needle insertion

angle [13].

2.1.2 Surrogate Selection

All the aforementioned surrogates raised problems and created

drawbacks, either related to MRI-compatibility or for their

low correlation to respiration motion while some patients have

stated discomforts during the examination and in many cases,

the approach’s nature and its materials are cost-effective for

the healthcare system. In addition, some of them although

they have been designed for respiratory gating of MR image

acquisition, their application was restricted after extensive

studies proving technical issues related to lack of information

about breathing amplitude [32, 39, 42, 49, 56, 57, 58, 59, 60].

As a result, in the presented work, an US sensor has been

chosen to be studied and used. The reasons are clear as this

approach offers high frame rate, it is relatively cheap, MRI-

compatible and non-invasive. Moreover, as the goal was to

find a surrogate signal that can also predict the liver motion in

a state future, US sensor has an ability of real-time outcome

that can potentially allow image-guided procedures outside of

the MRI-bore.

2.1.3 Artificial Neural Networks

In the corresponding thesis, neural networks have been utilised

for the surrogate prediction and while for the the surrogate

classification and fitting methods between the liver motion

and surrogate signal machine learning algorithms have been

exploited. The former that are analyzed in this section belong

to the category of Artificial Intelligence and specifically to

Artificial Neural Networks.

A neural network consists of connected units which called

artificial neurons or perceptrons and are likened to the brain’s

neurons. These neurons are grouped in layers and are the

main computational blocks. Every neuron is composed of an

axon which produces the output of the neuron, the dendrites

which transfer the input signals to the neuron and the synapses

which is located between the axon of the previous neuron and

the dendrites of the next one and it is responsible for the

communication between the neurons. For an artificial neural

network, the synapses can be translated to weights that change

during training to approach the best solution for the given

problem, the axon is represented by the bias which can decide

whether to activate the neuron or not and the dendrites can be

seen as the connections between the inputs and the weights

that will be forwarded to the main body of the neuron. Then

all the processed input data are added together and the value is

passed through the decision procedure of the axon. If the sum

which can be shown in Figure 4 is above a specific threshold

value the neuron or perceptron is activated, otherwise it not.

Figure 4. Schematic representation of a perceptron. A series

of inputs (X1, ...,Xn) are multiplied with the corresponding

weights (W1, ...,Wn) and are summed up after the bias

(B1, ...,Bn) parameter addition. This sum (∑) will be fed to

the activation function (σ ) of that neuron and then it will be

determined if the output neuron y will be fired or not based

on a threshold value.

In the same content, a neural network is an application of

ML field which focuses on deployment of models that have

the capability of automatic learning via self training based on

a given dataset without user-intervention or programming it

explicitly [61]. ML focuses on deployment of models that

learn by themselves through feeding them data. In compar-

ison with the rules-based systems, such as one system that

requires human intervention to code the knowledge into it,

ML algorithms learn how to take decisions based on the given

data. ML can be categorized in four algorithm groups: su-

pervised learning, unsupervised learning, semi-supervised

learning and reinforcement learning. In the present work, the

supervised ML algorithm is used which means that during

training the correct answer is also provide to the computer. In

addition, in ML lot of different NN architectures are available,

such as convolutional neural networks [62, 63], deep belief

networks, fully convolutional networks [64] or a Recurrent

Neural Network which is used in the presented work.

2.1.4 Recurrent Neural Network

These models are called Recurrent Neural Networks (RNN)

and take up to maximize relevant information of the input data

to the output while this happens based on previous states in-

formation. A famous type of RNN which performs better than
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the conventional model is called Long Short-Term Memory

(LSTM) and its advantage over the other is the memory cells

inside the LSTM units which allow longer time lags memo-

rization [65]. In order to store long memory time stamps, a

stack of LSTMs is used as shown in Figure 5.

Figure 5. Stack of Recurrent Neural Network, folded and

unfolded. The inputs x, stands for a type of sequential data

while the outputs o at each section of the network is the

prediction of the next state based on the previous one. The

main blocks, called h and contain the weights and the

activation functions of the RNN model while the black

arrows between them represents the communication among

them, from one step to the next one. Notice that although the

unfolded stack of RNNs shows many different blocks, the h

block is the same and returns its output back to its input [66].

2.1.5 Network’s Layers

A neural network consists of different types of layers and

compartments. For instance, the presented model has LSTM

units, dropout layers and also in the last part a fully connected

or dense layer with a linear activation function.

• Input layer: the input layer is the first connecting point

of the dataset with the network. In the presented work,

the dataset of the surrogate is consisted of one dimen-

sional vectors containing floating positive values.

• Normalization layer: this part belongs to data prepa-

ration framework and cannot be skipped since it nor-

malizes the data to follow a uniform distribution with

mean value of one and zero standard deviation. The

goal behind this idea is to scale all values so the com-

plete dataset will lie down on a common scale without

high variations in the ranges of the values.

• LSTM layer: every LSTM unit has three gate blocks.

The first one or the “input gate” controls if the input

of the new information can be memorized. The second

one is called “forget gate” and determines how long

certain values can be held in memory. Final the “output

gate” controls how much the value stored in memory

affects the output activation of the block. A graphical

representation is given in Figure 6 and focusing on

the black arrows outside of the LSTM unit, it is easily

observable that there are four input signals and one

output, all corresponding to the special compartments

of the LSTM and the previous/next part of the complete

network.

• Dropout layer: is a process which selects randomly

neurons from the network and deactivates them dur-

Figure 6. Schematic representation of an LSTM unit, called

h-block in Figure 5. Every LSTM block has four inputs:

previous state output, signal for controlling the input and

output, plus the forget gate control signal. The input gate is

used to store the new information, the output gate is used as a

controller for the affection of stored value to the output

activation. Additionally, the forget gate decides how

important is a new information stored on the block determing

its removal or not at each step.

ing training to provide a more robust approach. For

example, applying a 50% dropout in a specific hidden

layer will cause a 50% probability of deactivation to

all neurons of that layer as shown in Figure 2.11. The

two main reasons for applying dropout after the LSTMs

units are related to overfitting probability reduction,

plus that it helps to build a more robust model as it

creates a more stable relation between the neurons re-

moving any correlation that might be created between

the neuron in one layer [67].

• Dense layer: in the last layer of the model, there are

connections between the nodes of that layer with all

activation functions of the previous layer.

• Activation layer: this layer composes an essential part

of the network as it contains functions that determine

whether a neuron will generate an output or not. In

simpler words, the activation functions are linear/non-

linear mathematical functions that regulate the output

of a neural network. There are several available while

the most commonly used are the Sigmoid, the Rectified

Linear Unit or ReLU. In the presented work, a linear

activation function has been used for the mapping re-

quirements of the project and it can be derived from the

following formula.

A = c ·X (3)

where X stands for the input, c is a constant that the

function multiply with the input and A is the output.

Using a linear function (Figure 7), the last part of the

network or the dense layer will be fed with the output

of the dropout layer and it will multiply the inputs with
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some weights for each neuron resulting in an output

signal proportional to the input. The advantage of the

utilized activation function against another linear is the

wider range of available values that can be generated.

For instance, in case of applying the step function, the

output will be restricted to Yes or No.

Figure 7. Behavior of linear activation function. In y-axis,

the output values are presented while the input is depicted in

horizontal axis values.

2.1.6 Loss Function

A loss function is a metric to evaluate the network perfor-

mance and stands as a metric for the dissimilarity of the

ground truth and the prediction of the model. The loss is

computed when the weights and biases are set while in the

presented thesis, the Mean Square Error (MSE) has been uti-

lized to evaluate the accuracy of the model during training

and test phases. This is a well-known loss function and can

be calculated using the following equation:

MSE =
1

N
·

N

∑
i=1

(Yi − Ŷi)
2 (4)

where N is the number of data points, Yi is variables for

the actual values or observed valued when Ŷi holds for the pre-

dicted/estimated values. MSE is an estimator which measures

the average of the squares of the errors or the average square

of the difference between the predicted and the actual values

of the surrogate and can take values ranging from −∞ to +∞

depending on the difference between the calculated units.

2.1.7 Optimizer

Adam has been chosen as optimizer for the prediction model

of the surrogate signal and its main function is to improve

the weights and biases in terms of quickest to solution adjust-

ments. The aim is to enhance the network prediction resulting

in the possible lowest value of the loss function. In 2015,

Adam optimizer has been introduced in the Machine Learning

community while it started quickly to overcome other pro-

posed optimizers like stochastic gradient descent (SDG) due

to its fast learning response combined with less computational

load.

In Figure 8, a comparison between Adam and different

optimizers is presented indicating the lower training load of

Adam based on the literature researcher conducted in 2016.

Moreover, the behavior of the optimizer depends on the learn-

ing rate which can be translated to a value that determines how

big will be the changes in the network parameters from one

step to the next on in the training phase. For example, a larger

learning rate is connected with larger updates from epoch to

epoch on each batch leading to higher impact changes at the

model’s performance [68, 69].

2.1.8 Model’s Hyper-parameters

Tuning a neural network can be difficult due to higher or

lower impact on performance. Accuracy values that have

been generated on the training and external validation are

used in order to get an insight on the behavior of the network

hyper-parameters. The latter can be either the number of

epochs or the number of layers while the ultimate goal is to

achieve a high external validation accuracy along with a high

training accuracy. Of course, the accuracy of the training, in

most cases, overcome the testing phase corresponding values

but when then the model is optimally tuned, the output will

be the highest possible accuracy combined with the optimal

generalization ability on unseen data.

Figure 8. Comparison between the Adam and other

optimization algorithms, training a multi-layer perceptron on

the MNIST dataset using dropout optimization function [69].

As shown, in y-axis the training cost of each optimizer is

presented along with the corresponding number of iterations

that needs to make a complete scan of the dataset. Adam has

the lowest workload cost during training compared to the rest.

But what is accuracy? Accuracy is a metric for the model

performance and stands for the ratio of correctly classified

instances divided by the total number of instances. Further-

more, it should be highlighted that the training accuracy is an

indication about the learning capability of the network while

the internal validation accuracy is used to find the optimal

network parameters. In the test phase, the validation accuracy

gives an insight of the model’s performance on untrained data

by classifying them correctly or not.

As it previously mentioned, there are hyper-parameters

affecting the response of the neural network. The study in

this field is quite broad but since it is not the main focus of

the thesis, specific parameters will be analyzed due to space

limitations.

• Epochs: is the time step when when all the batches of

data are loaded and trained for at least once. In some
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case, it is useful to randomize the data at every training

epoch, but in the case of time-related prediction, this

could be destructive for the learning process, thus is

was chosen not to have randomization process.

• Batch size: is an additional factor that decides the num-

ber of fed data of the complete dataset that will be fed to

the LSTM model at every epoch. The larger the batch

size, the more features are available for the model, con-

sequently the higher chance of generalization of the

network. Secondly, a larger batch size offers a higher

learning rate management resulting on faster learning

response for the chosen optimizer. In the opposite side,

difficulties in the learning response can be created ap-

plying a large batch size as the larger the batch is, the

higher variations will be included in each batch, and the

model should perform many changes to fit to all data.

• LSTM units and neurons per unit: stacking addi-

tional hidden layers or neurons per hidden layer, it in-

creases the dimensionality. This fact can be essentially

helpful to approximate higher complexity problems.

In contrary, increasing the number of layers and neu-

rons, result in a deeper network with higher chance of

overfitting due to its higher capability on storing param-

eters, such as the weights and the biases which creates

the question why to generate a deeper model. The an-

swer related to the bias values. In case the model is

highly biased, it is wise to increase the complexity and

the number of parameters and can be observed when

a model has relative low accuracy compared to some

achievable baseline. On the other hand, this may lead to

high variance but a solution would be to acquire more

data and increasing the training set or regulating this

with dropout or batch normalization operations.

2.2 Classifier
During the surrogate prediction phase, a classifier is needed

to select the appropriate trained LSTM model based on the

different breathing pattern presented mostly on the dataset.

Thus except of the model training, a classifier training is

an important requirement factor for a successful complete

application. To reach the final step for the surrogate prediction

which is the classification, it is mandatory to pass by some

data processing steps before which include noise removal,

signal segmentation and feature extraction methods. The

complete framework can be called activity recognition system

and a schematic representation is given in Figure 9. Further

explanation about the detailed processes involved into the

classification problem will be provided in Chapter 3 with the

different evaluation metrics utilised for that part.

3. Methods and Materials

In Chapters 1 and 2, all the necessary information about the

the general approach of the presented work has been presented

while in this Chapter, the reader will dive into the methodology

in more technical terms with a detail analysis of each step. As

previously stated in Chapter 1.3, the corresponding work has

two compartments running in parallel, the liver-surrogate data

motion model creation and the surrogate prediction model.

Thus, the framework till reaching the split part will be pre-

sented first followed by the different methods for each of the

two compartments that have been applied. At the end of each

part the evaluation methods will be presented to be clear and

distinct which steps at every process were followed.

3.1 Overview

Firstly, the available types of surrogates are analyzed in Chap-

ter 2.1 and the US sensor is chosen out for the independent

imaging modality nature and the strong correlation with the

liver actual motion. Secondly, the motion representation has

two compartments, the internal motion which is represented

by the upper border liver displacement in the SI-direction

using MRI saggital images while the surrogate motion is rep-

resented by the magnitude of the received signal of the deepest

to the liver measurement of the emitted US field. At this point,

two different paths are followed, one for the liver-surrogate

motion model and one for the surrogate prediction model.

Regarding the former model, next, the relation between the

surrogate and internal motion is depicted as the correspon-

dence motion model that has been chosen to be linear based

on the literature review, since the complexity has been kept

low and the performance was acceptably enough. Finally, the

last factor that needs to be regulated is the fitting methods. For

the presented case, linear regression methods (simple linear

regression, polynomial fitting, single layer perceptron) have

been utilized based on the literature review that has been done

where researchers assessed the consequences of different fac-

tors to the correlation between the surrogate signal and the

internal motion [49, 50, 71]. As far as concerned the sur-

rogate prediction model, firstly the type of neural network

called LSTM and presented in Chapter 2 is utilised along with

a k-NN classification algorithm [72]. Note that intermediate

steps are taken place between the last two aforementioned

steps which will be explained in the following sections.

3.2 Workflow

A schematic representation of the workflow is given in Figure

10. The workflow can be split into two phases, the training

and the prediction steps. Focusing first on the training step,

the process starts with the simultaneous acquisition of sagittal

MRI liver images and the received emitted pulses from the

US sensor as surrogate signal. Both signals are acquired for

a specific period. Afterwards, pre-processing steps follow

which are diffrent for each data type. For the MRI data,

the liver upper border displacement in mm in SI-direction

is segmented at each frame while for the US data, a Hilbert

transform function is applied on the raw data followed by

data selection for choosing only the deepest to the liver wave

presenting the magnitude of the wave in mm over time.

Next, a process for dataset split and signal segmentation

is taking place. Data split is performed for selecting the data
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Figure 9. Steps involved in activity recognition system. Starting with the corresponding sensor which generate the raw data

followed by some pre-processing steps. Signal segmentation is the needed to cut into smaller segments the complete dataset for

the feature extraction process which follows afterwards. All the extracted features will be used at the end to predict the different

N classes[70].

that will be used for training of the motion model and the

surrogate prediction, data that will be used for the models’

optimization and finally the dataset that will be used for the

models’ evaluation in test phase. The amount of data, the split-

ting process and further details are provided in the following

section. After having excluding the test data, a signal segmen-

tation process comes next where the dataset which will be

used for the liver motion-surrogate data motion model are the

complete experiments(called per experiment data) of the MRI

when the data that will be used for the surrogate prediction

model are segmented per activity (per activity data) to be fed

later on the LSTM model and the classifier. At this point, two

different pathways will be followed for the rest of the work

since one corresponds to the motion model framework utilised

on the estimation of the liver using the surrogate while the

other is related to the surrogate prediction that can be used to

estimate the liver motion in short future states.

Regarding the motion model, the per experiment data,

are filtered for noise cancellation, temporal synchronized and

aligned. Afterwards the data are fitted to the regression models

and the learning parameters are created leading to the creation

of the motion model. Using the trained motion model in the

test phase, it is possible to obtain the liver motion based solely

on the surrogate data.

As far as concerned the surrogate prediction model the

US data per activity are utilised followed by filtering method

to remove the unwanted noise. Next, the surrogate model

has two leafs: one for the surrogate prediction and one for

the classification of the surrogate data into classes of known

breathing types. The left leaf is used to find out the learning

parameters for the surrogate data and later on, in test phase

to predict it when the right leaf with the classification step

will be used to train a model for classifying segments of the

surrogate and based on that, selects the most suitable LSTM

trained model to make the surrogate prediction.

For the LSTM models training the internal processes and

functions have been analyzed in Chapter 2 while for the clas-

sification training will be analyzed in the following section.

Briefly, the US data is processed and after feature extraction

and dimensionality reduction algorithms, the transformed data

are fed into the classifier. At the end of the training framework,

five LSTM models and one classifier trained on five different

breathing types are available along with the motion model

parameters for the liver motion and the surrogate signal.

Next, in the prediction phase acquiring only the surrogate

data are acquired followed by Hilbert transformation process-

ing and selection of the deepest to the liver measurement.

The two leafs again exist as in the training process but the

difference between them is related whether or not is desired

to predict the surrogate signal and consequently make predic-

tions on the estimation of the liver or just to estimate the liver

based on the available surrogate data.

3.3 Experimental setup

In the previous sections so far, a complete overview of the

conventional approaches has been provided to mitigate the

problem of the respiratory liver motion. Additional to that, all

the requirements for the different parts of the motion model

and its parameters has been given while in this section, the

data acquisition with the experiments protocol and the sug-

gested fitting methods will be analyzed and validated on hu-

man subjects. A schematic representation of all the processes

taken place in Figure 10 is presented but from a distinct point

in Figure 11. In the given experimental setup overview, at the

training part, note that the patient’s data are acquired from the

MRI bore applying a regular MRI coil around the participant

thorax and the surrogate by sending pulses and receiving the

corresponding echoes. Both signals are acquired simultane-

ously, but with different acquisition rates. At the prediction

phase, the participant can leave the MRI-bore and depend-

ing only on the surrogate acquisition, the motion data are

estimated.

3.4 Data acquisition and Dataset Split

The data collection has been performed using a limited inter-

subject variability while the general characteristic of every
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Figure 10. Workflow of suggested approach. At the training phase the motion model and the surrogate prediction model are

taking place with different frameworks while in the test phase a common framework is followed using only the surrogate signal

to estimate the liver actual motion and make prediction for a future state.
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Figure 11. Overview of the experimental setup in training

and prediction phase. While in the training phase, the model

exploits MRI and surrogate data, in prediction phase only the

surrogate signals are used to predict te motion estimate.

subject is given in table 2. The participants have been placed

either in the MRI table or in a table of the RaM lab with the

surrogate sensor attached to his/her skin close to the liver area

and the experiments were handled by an instructor in order to

reassure that the subjects will perform the desired breathing

patterns listed below:

• 2 minutes of regular breathing

• 2 minutes of intermittent breath holding

• 30 seconds of regular breathing for recovery

• 2 minutes of short and shallow breathing

• 30 seconds of regular breathing for recovery

• 2 minutes of deep and heavy breathing

• 30 seconds of regular breathing for recovery

• 30 seconds minute of intermittent coughing

The chosen duration was either due to feasibility issues (couch-

ing, shallow, breath-holding for longer periods could be ex-

hausted and feel discomfort) or due to requirements for the

MRI acquisition (e.g at least 50 images of 10 breathing cycles

including different breathing patterns). Note that the small re-

covery sections have been used to recover every subject back

on the regular breathing state after the performed exercise.

Table 2. Participants Table including the characteristics of

age, details, BMI and which examinations have been through.

ID AGE GENDER BMI MRI/US

A 33 M 27.4 Y/Y

B 26 F 20 Y/Y

C 26 M 22.1 Y/Y

D 33 M 24.4 Y/Y

E 25 F 21.1 Y/Y

F 26 M 26.9 N/Y

G 26 M 23.3 N/Y

H 24 M 21.7 N/Y

I 27 M 27.2 N/Y

J 27 M 19.7 N/Y

The final goal of this thesis is to predict the internal mo-

tion of the liver in a future state given a training data acquired

only by the surrogate signal. At this point, it is important

to have an indication about the performance of the model

in new unseen data or the so called external validation (test)

phase. Consequently, it is important to have an overview of

the created algorithm using both training and testing error

values. Note the difference between the training phase and

the test phase datasets: the training set is used for learning the

model’s parameters while the test set is utilized to estimate the

performance of the best model into new unseen data. More-

over, in the training part, there is also the internal validation

set which is used in model selection (tuning, hyper-parameter

choice etc). In case this step will be skipped, the model may

be selected to perform well in a particular training set, the

so-called overfitting and the performance of a model in a test

set that has been used in model selection will be an optimistic

approximation of the real-life performance. Since in this case,

the available surrogate was only one, this results in uni-variate

feature and no need for shrinkage method as suggested for

multiple features. Based on the aforementioned steps, the

acquired dataset needs to be splitted into three parts: training -

data to fit the models, internal validation - data to find optimal

parameters and external validation compartments - data to

evaluate the model accuracy. As there no close formula for

the ration among these dataset, 80% has been used for training

phase (70% training/30% internal validation) and the rest 20%

for the test phase. For the evaluation of the models, 10-fold

cross-validation and leave-one out validation have been used

[73].

3.5 Surrogate Prediciton - Classifier

3.5.1 Signal segmentation

For the surrogate classification, as in every classification prob-

lem, it is substantial to divide the data into smaller segments

than the initial one in order to extract valuable information

from every segment of the acquired data. This presented ap-

proach is based on a fixed window of 300 samples that slides

over the raw US data and segment it into multiple samples

using a 50% overlapping as shown in Figure 12. The window

size has been chosen to be 300 samples or 6 secs in order to

include at least two complete breathing cycles at each seg-

ment (inter- & intra-variability). This finding came up after

literature research. The breathes of an average adult person

varies from 12 till 18 per minutes if he/she belongs to the age

group under 65 y.o. Moreover, according to literature, many

researchers commonly use a 50% overlapping fixed window

when working with activity recognition systems. On the other

hand, variations on those two parameters may lead to faster

detection with low computational cost but with a trade-off in

accuracy since sometimes based on the available data, it is not

possible to include a complete cycle at each segment. In the

drawbacks, a relative small window size, can potentially lead

to higher accuracy rates but on the other hand, it will be high

computationally cost effective and it is not recommended or
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Figure 12. Signal segmentation based on a fixed size window

with overlap [74].

by increasing a lot the window size, it may lead to detection

of more complex activities increasing again the computational

cost.

3.5.2 Feature Extraction

This step will play a major role on the model performance

later on since feature extraction is the process of transform-

ing large input data into a reduced set of weighted features.

The goal of this step is to extract the most valuable infor-

mation (features) of a window segment (output of the pre-

vious step) representing on the other hand adequately the

data characteristics (generalizable features). Most commonly

used types of feature extraction involve either time domain

or frequency domain features. On the other hand, time do-

main features such as mean, median or variance are simple in

calculations in comparison with frequency domain features

including Fourier Transformation calculations increasing the

computational complexity. Thus, it has been decided that

the features to be tested should belong to time domain field

and more specifically the chosen one are mean, median and

difference between the peaks and troughs of the data.

After trial and error, it has been found that mean values

as new feature were not as valuable as median, thus the fi-

nal choice included only median values and the difference

between peaks and troughs of the data at every different breath-

ing pattern. The comparison for the two features can be seen

in Figures 13, 14. The distinction between the classes is better

using the median values but not enough using the 2D space,

thus inserting the class feature as well and projecting the data

into 3D space, Figure 15, the outcome is much more clear.

3.5.3 Dimensionality Reduction

Principal Component Analysis or PCA has been exploited

for dimensionality reduction from 2D space (median values,

peaks-troughs values) to one feature. PCA technique com-

bines the inputs in a specific way to remove unwanted/least

important information (input) while still retain the most valu-

ables parts of all the variables. The dimensionality reduction

Figure 13. Scatterplot of mean values along with the

difference between peaks and troughs features for the five

classes.

Figure 14. Scatterplot of median values along with the

difference between peaks and troughs features for the five

classes.

idea is based on simple linear projection. An amount of inde-

pendent vectors is chosen and the data is projected on those.

This can happen by projecting a vector (datapoint) on another

vector (projection direction) using the inner product of the

two vectors and the output is a scalar. When having available

several datapoints and project them on many linearly indepen-

dent vectors as the dimensionality of the original datapoint,

it is feasible to reconstruct the datapoints by using the ob-

tained scalars and the chosen projection directions. In order

to find the vector that maximizes the variance of the projected

data (feature that describes the most the data), eigenvector-

eigenvalue decomposition of the covariance matrix of the

original data should be performed. The outcome after per-

forming PCA on the selecting two features can be shown via

a scatterplot of the new feature (principal component) and the

class feature shown in Figure 16.
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Figure 15. 3D scatterplot construction using the features of

Figure 14, plus the label features of the class that belongs to.

Figure 16. Scatterplot of the output of PCA, first principal

component and the class feature. Using the new feature

providing the ability to distinguish the five classes in 2D

space.

3.5.4 Classification

After the data processing methods, namely: signal segmen-

tation, feature extraction and dimensionality reduction, the

data is divided into training, internal validation and external

validation set or test set. Supervised machine learning mod-

els are utilised to learn parameters of the training set and

detect the breathing activities on unseen data. Different meth-

ods have been tested, among them Random Forest Classifier

(decision-tree based approach), Multilayer Percetron and k-

NN algorithm (distance-based approach). The latter gave the

best performance in terms of computational time, accuracy

and misclassified samples, thus it has been chosen as the most

appropriate one. k-NN or called k-nearest neighbors algo-

rithm main assumption is that the dataset can be classified

into different groups, based on their similarities and geometric

properties. The algorithm’s approach to measure the similarity

of each datapoint is related to measuring the distance from a

new instance to the instances that has been trained to fit. The

Figure 17. Accuracy and number of misclassified points for

different k-nearest neighbors values evaluated on the test set.

new instance will be assigned to the class with the closest k

neighboring instances.

As the data have been processed utilizing programming

language Python 3.x / MATLAB and taking advantage of the

package ’Scikit-learn’, a classification model of the k-NN

with the default hyperparameters has been created. However,

this can not guarantee that the hyperparameters used as inputs

to the classifier will generate the optimal outcome. Thus, To

find the optimal parameter for the number of the closest k-

neighbors, several models have been deployed and evaluated

in terms of accuracy and misclassified points as well, as it

can be seen in Figure 17. The highest accuracy and the least

amount of misclassified points have been given from model

using 6 nearest neighbors, thus this was the choice of the final

model hyper-parameter.

The final model hyperparameters are defined as follow:

model = KNeighborsClassifier(nneighbors = 6, weights=’uniform’,

algorithm=’auto’, lea fsize = 30, p=2, metric=’minkowski’)

3.5.5 Evaluation Metrics

At this step, for measuring the performance of the classifier,

different metrics have been exploited. As the most commonly

used in activity recognition system, classification accuracy,

precision and recall, F-score as well the confusion matrix have

been used in this section. Moreover the ROC curves have been

calculated along with the AUC for each of the five classes

(breath-holding, coughing, deep breathing, regular breathing,

shallow breathing).

Starting with the explanation of the used metrics and more

specifically with the confusion matrix which is a summary of

the correct classified and misclassified predictions for each

class compared to the actual labels. As shown in Figure 18,

in the vertical axis, the actual labels of the values for each

class are lying down while in the horizontal axis, the pre-

dicted values for each class are assigned. The elements along

the main diagonal represent the correct classifications when

the elements outside of it stand for the misclassified points.

Furthermore, looking at the confusion matrix, information
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Figure 18. Example of confusion matrix [75].

such as true positive (TP) values (correct classification for

positive instances), true negative (TN) values (correct classi-

fication for negative instances), as well as false positive (FP)

and false negative (FN) which represent the incorrect classifi-

cations of negative examples to positive class and vice versa,

respectively, are visible.

Moving to classification accuracy metric is the most straight-

forward way to measure the performance and is defined as

the number of correctly classified data points over the total

number of datapoints (complete dataset).

Accuracy =
#correctclassi f ications

#datapoints
(5)

or

Accuracy =
T P+T N

T P+T N +FP+FN
(6)

Regarding the precision and recall values can also be

obtained from the confusion matrix and can be defined as:

Precision =
T P

T P+FP
(7)

Recall =
T P

T P+FN
(8)

Similarly, the F1-score is also added as a metric for the

accuracy and is defined as:

F1-score =
2 · (precision∗ recall)

(precision+ recall)
(9)

and is a metric for precision and recall of the classification

system. A value of 1 for that score can be translated to per-

fect precision and recall while in the worst case scenario of

a system that misclassifies all the samples, a value of zero is

the possible value. In addition, the ROC curve which stands

for Receiver Operating Characteristic, has been used to have

a more informative aspect of the classifier behaviour. The

ROC curve shows the relationship between the number of true

positive and false positive classifications and is an intrinsic

image of the classification performance since the accuracy

metric does not provide information such as which misclas-

sifications are worst than others. In contrary, this is visible

from the ROC curve. For example, consider a problem where

a machine learning classifier needs to perform blood analysis

determining if the subject belong to cancer-diseased patients

or non. The impact of misclassified samples as false positive

is much less compared to an incorrect prediction of false neg-

ative which means that a diseased patient cannot be detected

correctly. Finally, the area under the curve or AUC in the

ROC curve is also a valuable information to obtain as the

larger this area is, the better the classifier performs under dif-

ferent threshold values for the true positive and false positive

samples.

As stated previously, in Chapter 1.4, in order to find the

correlations between the two imaging modalities, the choice

of the surrogate, the internal and the surrogate motion repre-

sentation, as well as the motion correspondence model along

with the fitting method need to be taken into account.

3.6 Processing methods

Starting with the acquired surrogate signal, there were several

available measurements from the different penetration depth

(0.7 to 7cm) of the US echo, but after careful research, it

has been found that the most outer or the closest to the skin

measurements involve noise or disturbance of the detection

of the desired signal to measure [76]. Thus, the closest to

the liver penetration depth has been used and it has been

preprocessed, using the Hilbert transformation that maps the

x(t) to x(t)+ i · x̃(t), resulting in an output U which has been

produced by the following formula:

U = log(abs(Hilbert(Uraw))) (10)

The goal was to enhance the deepest to the liver measurements

which were the most valuable information as they will not get

involved with other factors such as noise.

2D MRI DICOM series was the raw version of the liver

motion representation which consequently analyzed using

MicroDICOM viewer to extract the frame images per time

step based on the predefined frame acquisition of the machine.

The generated images were processed using Python 3.x in-

cluding image enhancement methods, such as contrast and

brightness enhancement to increase the pixel ins tensity and

make it easier for the further steps. Afterwards, masks along

with thresholding have been applied to reduce the region of

interest for segmenting the contour. The corresponding masks

have oval shape and include in all images the outer area of

liver. This is a tricky part because the liver borders interfere

with other organs or walls (lung-diaphragm) and edge detec-

tion algorithm cannot find real distinct edges in the image.
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Moreover, morphological operations have been applied such

as erosion and dilation using different kernels depending on

the liver representation and its scale within the image to ob-

tain the outer contour of the liver. Additionally, a mask have

been applied to select only the upper border of this contour

and track the highest pixel position in y-axis standing for the

internal motion representation. A schematic representation of

the corresponding operations can be found in Figure 19

Figure 19. Signal processing operations to obtain the liver

upper border segmentation at each frame.

Now, both signals are available with different lengths

and magnitude scales. Next step includes signal smoothing

and noise cancellation for both the surrogate and the internal

motion data as in some cases the noise distortion was high

resulting in motion detection by the fitting methods. Two

methods have been tested for that reason, Low Pass Filtering

(LPF) and Savitsky-Golay (SG) filtering which has a similar

implementation as the LPF (see Figure 20).

Figure 20. Signal smoothing on surrogate data using

Savitsky-Golay and low pass filtering. Comparison of the

results using ground truth data.

The SG filter belongs to the finite impulse response (FIR)

filter family using least squares idea whose impulse response

has finite duration. The least squares tries to find the opti-

mal (minima) distance between the actual and fitted data by

Figure 21. Savitsky-Golay filter function [77].
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The vector of ε stands for the errors, while the vector U

represented the actual data points and the c1n and c2n are the

linear regression coefficients and the vector W is the weights.

A schematic representation can be found in Figure 21 where

it is easily visible the approximation of SG filter to the data.

Un is the input or actual data and Yn presented with red lines

is the fitting method. The idea is to approximate around each

signal instance Un locally by a polynomial. Note that the local

time frame is normally symmetric

3.6.1 Temporal Synchronization and Alignment

Subsequently, the signals have been resampled using FFT

space and linear interpolation in order to obtain similar sam-

ple rate. The method performs upsampling to a real-valued

signal x of length N by transforming to the frequency domain

and adding N/2 zeros at the end and then transforming it back

to the time-domain. All the functions for the temporal syn-

chronization have been utilized by the Scientific Kit-learn

package of Python for signal processing. The upsampling

factor has been determined each time taking into account the

available number of surrogate data divided by the number

of the available MRI data using an adaptive method. Subse-

quently after resampling, the two sequences gained the same

length by cropping the larger one using two different methods

and applying temporal synchronization through temporal time

stamps. Before conducting the latter step, it was important to

normalize the two signals and to scale them obtaining simi-

lar value for their magnitudes. The internal motion has been

converted firstly from pixel-based to mm-based scaling using

the information for pixel size generated by the MRI machine

and secondly at the surrogate by summing the mean of the

internal motion and multiplying with the standard deviation

of the same signal, the goal was achieved. The final step for

both signal was now temporal synchronization and since they

have the same starting point, two methods have been used for

that reason (see Figure 22, 23).

The first operation works as following:
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Figure 22. Signal alignment using time lag shift. Green data

are the de-noised surrogate data, orange colored data stand

for the internal the resampled liver data and the dashed blue

line corresponds to the aligned data after time-lag shift.

• calculate length difference in sequences (N)

• crop (N) sample at end point of the larger signal

• find time lag (k) through cross-correlation analysis

• shift the desired signal by k-times (offset minimization)

while the second process seemed to be better

• calculate length difference in sequences (N)

• crop (N) sample at end point of the larger signal

• find time lag (k) through cross-correlation analysis

• minimize the offset between the two signals using χ2

value metric.

Since both methods worked sufficiently fine, 2nd method has

been chosen to work with due to faster computational time

and because of keep fixed the initial point for both signals.

3.7 Linear Fitting Methods

Since the input is a scalar variable, it means that there are two-

dimensional sample points corresponding to the surrogate

data and the internal motion which stands for the dependent

variable.

Conventionally, the correlation between the internal motion

and the surrogate signal can be performed using linear fitting

algorithms such as ordinary multivariate linear regression,

lasso/ridge regression regularization analysis or quadratic

polynomial regression but these algorithms have some draw-

backs. For instance, the low complexity models are more

biased while the high complexity model cannot be utilised in

real-time applications. Thus, a fully automatic method using

Machine Learning (ML) algorithms would be significantly

beneficial in the corresponding problem. Since, the predic-

tion of the surrogate data is a sequence pattern problem, this

can be translated to sequence to sequence prediction using

Figure 23. Signal alignment using χ2 minimization. Green

data are the de-noised surrogate data, orange colored data

stand for the internal the resampled liver data and the dashed

blue line corresponds to the aligned data after chi-squared

minimization process.

a supervised learning approach which looks for long term

dependencies.

3.7.1 Simple Linear Regression

Conventionally, the algorithms creates a linear line which tries

to predict optimally the dependent variable as a linear function

of the independent one. The method functionality is based on

the ordinary least squares (OLS) behavior where the accuracy

of the predicted values is measures by calculating the squared

residual error. The latter is the vertical distance between the

point of the given dataset and the fitted line. The goal is to

minimize that distance and the slope of the calculated fitted

line is determined by the correlation between the dependent

and independent variables, and the corresponding standard

deviations. The fitted line can be described in:

y = f (xi) = α +β · x (12)

where x are the inputs, f is the output, β is the correspond-

ing slope between input and output and a is the point on y-axis

where x=0. Output is depicted as the internal motion data, α
as a bias, β represents the parameters of the motion model

and x is the vector of the model features of the surrogate

3.7.2 Polynomial Regression

The polynomial regression can be imagined as a more com-

plicated version of the linear regression. The main difference

with the linear regression has to do with the transformation of

the original features to higher order terms. In most cases, the

polynomials are quadratic fit, means that the features will be
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Figure 24. Single layer perceptron representation. The input

is processed through a layer based on the ReLU activation

function and its output is used as input to the last layer where

a linear function is applyed

transformed to 2nd order terms remaining as a linear model

as the parameters are associated with the features x and x2 are

still linear. For example, the linear regression formula will

become

y = f (xi) = αNxN +αN−1xN −1+ ...+α1x+α0 (13)

3.7.3 Single layer perceptron

For this fitting method, again a regressor was utilized but in

that case a simple neural network has been created as depicted

in Figure 24. The network architecture is simple, the input

is 1D data of the surrogate and in the hidden layer there is

only one neuron where batches of data of input are fed and

multiplied with the Rectified Linear Unit (ReLU) followed

by the output with a linear function. In the presented case,

the ReLU is a linear function thus the output will be a linear

representation of the input. The choice of this activation

function has to do with the promising results as it has been

used for the first time in the AlexNet architecture and it turned

out that can accelerate the gradient convergence 6 times faster

compare to the Sigmoid function while the second advantage

is the limited output from 0 till the maximum value of the

input x and the low computational cost [64, 78]. The formula

of ReLU can be analyzed as:

f(x) = max(0,x) (14)

3.8 Performance Metrics
Two evaluation metrics have been used for the test phase on

unseen data and those are composed of Root Mean Square

Error or RMSE and Mean Square Error (MSE). Since the

latter has been analyzed in Chapter 2.2.5, its functionality will

not be emphasized at this section. Regarding the RMSE is the

standard deviation of the residuals and it is commonly applied

as a metric in regression analysis to verify the outcome. The

residuals can be seen as the red points distant from the fitted

line, in Figure 25.

The residuals is a measurement for the distance between

the regression line and the actual data points while RMSE is

a valuable metric that shows the variance of these residuals

or in simpler words it gives an indication about the variance

of the actual data around the fitted line [79]. The black fitted

Figure 25. Residuals and linear regression line [77]. the

black line represents the actual data while the dots stand for

the motion model data. The red lines connecting the dots

with the actual data are the errors or the so called residuals

used to calculate RMSE.

line represents the regression function or x∗n(t) := c1n+c2n ·t.

Regarding the surrogate prediction, two metrics have been

utilized the cosine similarity which in an indication about the

signals’ divergence (actual & ground truth). Secondly, the

Euclidean distance has been exploited for the calculation of

the difference in terms of amplitude. The cosine similarity

is a metric of similarity between two vectors and measures

the cosine angle between them and is unitless. It is clearly a

metric indication for the magnitude difference and two vectors

with the same orientation have a cosine similarity of 0 while

two vectors with an angle of 90◦(perpendicular) among them

have a similarity of 0 indicating 50% de-correlation. Note

that this value is independent of the their magnitude and the

formula that describes this metric can be found below:

similarity = cos(θ) =
A ·B

||A|| · ||B||
=

∑
N
i=1(Ai ·Bi)

√

∑
N
i=1(A

2
i ) ·∑

N
i=1(B

2
i )

(15)

The second metric that has been exploited to measure

the similarity between the ground truth and prediction of the

surrogate is called Euclidean Distance and is the distance of a

straight line that connect two points in the Euclidean space.

Using this metric, the distance between a fixed vector (ground

truth) and an additional one is measured point-by-point and

the sum of the length of all points stands for the Euclidean

distance between the two vectors [80].

4. Experimental Results and Discussion

As stated previously in Chapter 3, in order to give an answer

to the research question, the problem has been splitted into

two parts: the first one has to do with the experimental part of

the surrogate prediction while the second one with the correla-

tion between the internal motion and surrogate signal. In this

chapter, the outcome for the evaluation of the proposed respi-

ratory motion estimation is presented and more specifically

the evaluation of the surrogate prediction model comes first.



Estimation of liver respiratory motion using a surrogate signal based on a Deep Learning approach — 20/33

4.1 Surrogate Prediction

The predictive performance of the model has been tested

using most of the available data to find out the optimal input

parameters such as the choice of the appropriate depth. This

is highly important as those measurements should have the

highest possible correlation with the liver motion that can

be translated to the most valuable information. Additionally,

some received echoes contain different levels of noise or in

other cases motion of adjacent organs and tissues. To explore

the optimal depth values, the processed (traces) measurements

of the the closest to the skin waves and the deepest to the

liver penetration depth waves have been analyzed as the two

extreme ends of the data after were considered more valuable

to work with [26]. Starting with a visualization part of the

processed data generated by the closest to the skin, from now

on called depth-1 and the deepest to the liver penetration depth,

from now on called depth-2668, is presented in Figure 26.

In the relative Figure, on the first row a small part of breath-

holding respiration pattern is exploited to show the artefacts

and other motions presented while in the second row is the

same breathing pattern using exactly the same time interval.

In the vertical axis, the magnitude of the received pulse echoes

is denoted and in the horizontal axis, the number of samples

or the relative time stamp has been chosen to be shown. Note

the differences in magnitude between the two depths with

a continuous positive shift difference for all time steps in

depth-1 compared to depth-2668. Moreover, in most cases

the magnitude changes are diametrically opposed indicating

on one graph the inhalation and on the other, the exhalation

phase [10, 26].

Figure 26. Different depth penetration measurements. First

row, processed US wave signal of the closest to the skin layer

while below it the US wave from the deepest to the liver

measurement is presented.

After some data analysis, a 2nd step of verification for the

aforementioned statement has been examined to ensure the

findings that the depth-2668 was more robust and proving the

assumption about containing the actual liver motion informa-

tion. Assuming that there might be a correlation between the

patterns of the two depths, the goal was to prove that a trained

model on depth-2668 values and tested on depth-1 dataset

could work better because depth-2668 contained the actual

liver motion values and thus the model could handle better

the small variations and the presented features. As a result, a

test has been performed using different depth for training and

prediction to validate the assumption. For limitation space rea-

sons, the outcome after finding the average Euclidean distance

and cosine similarity of all breathing pattern is presented in

Table 3. As a result, this is an overall score including five

respiration types.

Table 3. Different depth models exploring the correlation and

differences.

Train Test Cos. Similarity Euclidean Dist.

depth (µ ±σ ) (µ ±σ )(mm)

2668 1 0.95 ±0.22 0.04 ±0.02

1 2668 0.47 ±0.34 0.17 ±0.07

Looking on the result of the trained model on depth-2668,

both metrics have a better behavior on the dataset of depth-1

compared to the reversed experiment. Note that a perfect

value for Cosine similarity is 1 and for the Euclidean distance

is 0. This outcome comes in accordance with the findings

of a data analysis experimental on subject A where using

the values of the complete US experiment, it has been found

that the magnitude measurements of depth-1 were ranged

between [-1.72 , 5.64] with µ ± σ : 4.84± 0.20 while the

corresponding values for depth-2668 have a range of [4.85

, 5.20] and µ ±σ : 4.87±0.05. Checking the sigma values,

the higher variations are obvious and more specifically the

variations of the closest to the skin values are 4 times higher

than those of the deepest to the liver measurement. The impact

of those parameters is substantially crucial for the correct

model prediction and consequently, depth-2668 measurements

have been only included in the usable data. The models that

have been developed for this step have been trained/tested

on the same pattern while in the upcoming paragraphs, some

models have trained and tested on different breathing patterns

to find out potential correlations.

Now, as the problem of the usable data has been solved,

it is time to step into the first main problem which is the pre-

diction of the surrogate. Different models have been built and

trained while all of them are sharing some common param-

eters. Namely, training has been done for 1 epoch using a

batch size of 32, 3 layers of LSTM with 100 hidden neurons

per layer, Adam optimizer with the default learning rate and

α and β parameters while the length of time lags of the input

and to be predicted signals were equal to 300 samples. Before

starting with the results of the prediction models for the res-

piration patterns, take a look on the schematic representation

of the surrogate signal presented in Figure 27. This depicts a

small segment of 2500 samples of the complete experiment

of subject A presenting the regular breathing pattern to have a

better understanding on how the surrogate ground truth looks

like.

Now, the reader should have a clear aspect of the visual-

ization part of a surrogate and can have a further look on the

corresponding visual results in Figure 28 where the five main
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Figure 27. Surrogate signal magnitude of the deepest to the

liver measurement acquired by subject A.

respiration patterns are depicted. In all figures, the vertical

axis represents the magnitude of the signals and the x-axis

stands for the number of samples or the relative time step.

The ground truth in each graph is denoted as blue while the

corresponding prediction is set to orange and plotted on top

of the ground truth to be easier to see the similarities and

differences at each time step.

The best fit was given on the deep and coughing breathing

types regarding the lowest Euclidean distance which have a

value of 0.41± 0.95 mm and 0.55± 0.52 mm while on the

other hand the highest values for Cosine similarity indicating

a good fit for the regular and deep breathing patterns. Next

breath-holding and shallow breathing share a similar value

for the Euclidean distance with an increased σ value which

can be translated extreme values due to the type of breathing

resulting to high variations in the data. As far as concerned

the σ , overall in the Cosine similarity values have a tendency

not to observe high values resulting in a correctly aligned

prediction in most cases. In contrary, an important aspect of

those findings is that the prediction model in all cases can

predict correctly the signal, but there are inconsistencies and

misalignment on the peaks and valleys of the signal, coming

in accordance with the previous studies where in that cases

misalignment has been found between the actual and the esti-

mated liver motion [10, 13, 11]. However, the discontinuities

have a lower presence rate compared to previous findings due

to the adaptivity of the model.

Next, in order to explore the correlation and the revealed

features at each respiration pattern, five additional models

have been trained in one specific respiration motion and tested

on the rest breathing patterns. The results are summarized in

Table 4 including the findings of the prediction using the same

breathing pattern for train/test as well as the results for the

models trained and tested in different respiration patterns. To

begin with the 2nd group of models trained on breath-holding

and shallow breathing data have achieved the two lowest Co-

sine similarity values. It is highly importance that the model of

Table 4. Summary of prediction models using different

respiration data.

Pattern Euclidean dist. Cos. similarity

train test (µ ±σ )(mm) (µ ±σ )(radians)

regular 0.70 ±1.38 0.92 ±0.04

regular others 0.01 ±0.001 0.87 ±0.01

deep 0.41 ±0.45 0.82 ±0.05

deep others 0.01 ±0.001 0.77 ±0.10

cough 0.55 ±0.52 0.64 ±0.34

cough others 0.01 ±0.001 0.87 ±0.01

breath-hold 0.68 ±1.28 0.68 ±0.35

breath-hold others 0.01 ±0.001 0.43 ±0.18

shallow 0.68 ±1.42 0.77 ±0.31

shallow others 0.01 ±0.001 0.57 ±0.11

regular and coughing have performed remarkably prediction

of the rest of the breathing patterns revealing that those two

patterns’ features are also contained in the rest of the patterns.

For instance, those features can be a combination of a specific

amplitude using a similar frequency rate. Secondly, some

features as inhalation peaks may be repeated after a specific

sequence in all signals. However, there was a difference on

the amount of the available trained data for some respiration

segments due to the acquisition method that has followed and

also due to physical limitations mentioned in Chapter 3.1 and

3.2.

Finally, it should be highlighted that leave one out cross-

validation (LOOCV) method has been utilized for the sur-

rogate prediction findings. At the beginning, 10-fold cross-

validation has been exploited but after research and discussion

with signal processing experts from University of Twente, it

has been chosen to replace that operation with the LOOCV

method. The essential reason for that decision is related to

reduction of overfitting on a specific dataset using neural net-

works. It is a common issue that observed when training a

neural network, specifically using small number of training

data as in the presented case. The issue arises because simi-

lar pattern of features are included into the train and test set

coming from the same subject. As a result, in that case the al-

gorithm will have a more ”optimistic” performance on the test

set than in real-life. Thus, having available 10 subjects data,

it was considered wise to exclude 2 patients each time for the

test phase and train the rest available data. No randomization

process has been used on this validation step resulting to user

dependent selection of the appropriate sets for the models

construction.

Before moving to the 2nd main task which is the correla-

tion of the two signals in the next section, a remark should

be done. After careful data analysis on the surrogate signal

and based on the visualization part in Figure 29 focusing on

subject B, it has been found that the values did not come in ac-

cordance with the rest of the subjects. In the aforementioned

graph, all the surrogates have been plotted together to obtain

a more intrinsic aspect of the data distribution and as it can
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Figure 28. Visual outcome of the five different breathing patterns. Comparison of the ground truth and the prediction of the

surrogate signal segmented per respiration type regarding the magnitude over time.

be seen when most subjects follow a range of values where

their signal can lie down, data of subject B, indicated with

dashed orange line, has an unusual pattern with high peaks

and valleys diverging from the general data tendency. As a

result, it was considered wise to exclude subject B from the

rest of the experiments. An assumption to give an answer

to that issue, it could be that subject B due to the low BMI

according to Table 2, the liver motion has not been measured.

On the other hand, the pulse due to high penetration ability

might ”hit” a bone rather than the desired organ and this can

result to such high values. A further assumption has been

made for the object where the US transducer send the pulses

and that could be a large bone such as the spinal cord. Another

assumption could be a wrong positioning of the probe in the

conducted experiment leading to measurement errors.

4.2 Classification Performance

Starting with the results of classification performance and

the Table 5. As it is visible the ability of the classifier to

distinguish the five class is 99% achieving classification of

7429 out of 7470 samples correctly. Specifically for the dif-

ferent classes: breath-holding, regular and shallow breathing

samples can be classified correctly, as indicated from the pre-

cision, recall and F1-score values equal to one. Moreover,

the deep breathing has slightly worst results than the afore-

mentioned and this is mainly because of the samples of this

class share some properties with the class of regular and shal-

low breathing at some segments. Thus, an assumption could

be that some samples have been classified incorrectly due

to that reason while this can be solved using additional data,

adjusting the number of the searching nearest neighbors or

Figure 29. Unusual pattern for the magnitude of the

surrogate signal of subject B compared to the rest subject

data.

using a smaller window segment. In addition, due to its lower

number of available data coughing achieved the lowest score

in classification performance for all different metrics but the

findings are nothing else than positive since the precision and

recall have a value of 0.98 and 0.97 which indicate a high

classification performance as well. The overall accuracy of

the activity recognition system can be depicted from the Table

5 where the area under the curve diverges slightly from the

value of one for each class. Looking at this table, the inter-

pretation is that the True positive rates are almost 1 for every

class while the misclassified points or FPR is 0.

Similarly, as shown in Figure 30, four out of five class

ROC’s curves follow the same scheme while for the coughing
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Table 5. Summary Table for the proposed activity recognition system including the precision, recall, F1-score, area under curve

(AUC) and the number of instances per respiration type.

Class Precision Recall F1-score AUC # instances

breath-hold 1 .00 1.00 1.00 0.998 2230

cough 0.98 0.97 0.98 0.986 441

deep 0.99 0.99 0.99 0.996 1465

regular 1.00 1.00 1.00 0.998 1917

shallow 1.00 1.00 1.00 0.998 1388

ACCURACY 0.99 7470

Figure 30. ROC curve schematic representation for breath

holding.

pattern with 4 times less available data, the ROC curve has

a small divergence from the overall performance shown in

Figure 31. An interesting point is that there is no imbalanced

classes except of the coughing part of course and thus the clas-

sification algorithm does not need further metric explanatory.

The previous findings come in accordance with the con-

fusion matrix of the proposed classifier shown in Figure 32.

Starting with the dummy variable explanation, this is a class

used when splitting the data into segments in order to cre-

ate a fixed window length and iterate through the complete

data. The process contained zero padding at the first seg-

ment in order to be feasible to create segments of the same

size. Thus it shouldn’t be considered as a class, although the

7 misclassified samples. Now focusing on the rest classes

as it is visible, due to some common characteristics which

are included at segments of different classes, the classifier

cannot give an accuracy of 100%. Looking at the horizontal

line which indicates the actual labels for the different classes,

it is easily observed that the highest misclassifications per-

formed at the breath-holding and coughing classes with 6

and 5 false positive samples, respectively but considering the

amount of available test data, this findings are more than good

enough. Similarly, the highest values for false negative ob-

served between the classes cough-breath holding, deep-cough,

shallow-regular and regular-deep with 26 samples in total mis-

classified. A possible solution to that problem can be either

Figure 31. ROC curve schematic representation for

coughing.

the additional data acquisition and retraining of the classifier

or the usage of smaller window segments to avoid features of

two classes be presented into one segments. On the other hand,

this fact may decrease the intra-variability learning of the algo-

rithm since with shorter segments, less breathing cycles will

be included at each window. As a result, this result should

be considered acceptable based on the application nature and

requirements. The barplot next to the graph shows also the

number of samples being classified at each class. Note that

the complete data consisted of 7470 samples and a train/test

split of 85%/15% has been performed for each class.

4.3 Internal motion and surrogate correlation

In this section, the aforementioned steps for the results of

the post-processing methods, temporal synchronization and

alignment, along with the fitting methods will be analyzed

using the stated validation metrics. Afterwards, a discussion

part will follow with interpretation of the results, explaining

some assumptions.

4.3.1 Internal Motion and surrogate data analysis

Firstly, a schematic representation of the internal motion of

subject is given in Figure 33 to obtain a clear aspect of how

the data looks like. The presented graphs has pre-processed

data after noise removal and signal smoothing. The depicted

data are constructed after a complete MRI experiment of

subject A and the motion has been generated based on the
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Figure 32. Confusion matrix for the different classes along

with a barplot indicating the number od instances per class.

The diagonal shows the correct classified samples.

Figure 33. Liver displacement in SI direction over a time

period.

SI-direction of the liver upper border’s highest point over time.

The vertical axis stands for the SI-displacement in mm while

the x-axis gives the number of samples or the relative time

step. In contrast with the surrogate motion’s magnitude, the

initial number of samples in this case are much lower since the

acquisition rate of the surrogate was approximately 40 times

higher than the one used for the MRI data. Furthermore, it

has been noticed that the scale of observed magnitude of MRI

scan was about 40 times higher compared to the magnitude of

the surrogate and the motion was more periodic in some seg-

ments. Additionally, further data analysis has been performed

revealing valuable information for the processed data. For that

reason, the mean and standard deviation of the corresponding

measurements for the surrogates and internal motion signals

have been calculated and summarized in Tables 6, 7, 8, 9, 10.

Starting with the similarities of the liver motion data, the

observed mean values showed a slightly convergences to the

negative sign which comes in accordance with the assumption

of larger or many more displacements in the lower area with

Table 6. Data analysis Table of the surrogate signal.

Subject Surrogate magnitude

(µ ±σ ) mm

A 4.86 ±0.01

C 4.85 ±0.01

D 4.85 ±0.01

E 4.85 ±0.01

the reference value the origin of the liver at the first frame. Of

course this is subjected to the performed respiration type as

regular breathing and coughing, most subjects have increased

instances of negatively large displacements while the rest

breathing patterns showed in most cases a longer motion of

the liver in the superior direction. Add to that the subjects

A and E had more or larger scale troughs than peaks for

most upwards or downwards motion over time. This can be

linked to the respiratory phase and the amount of inhaled

and exhaled air varying from subject to subject and from

fraction to fraction including all the variances in the proposed

model. It is high importance to notice the high σ values for all

subjects raising the need for further data analysis such as box

plot to find out potential outliers or experimental errors. Thus,

a small section will be dedicated to further analysis in the

coming subsection. Regarding the surrogate measurements,

all subjects have similar mean and low σ values leading to

follow the same pattern. Of course, this is expected since

the dataset is small and there is less inter-subject variability.

When looking at the surrogate data and excluding subject B

(as stated previously, experimental measurement error for this

subject), the data contain lots of outliers diverging, although

that the min,max values for all participants are close to the

median. For all subjects (excluding B), the variance was

really low about 0.01 mm, with magnitude values ranging

between 4.85 and 4.90mm for a corresponding approximately

22.0-25.0 mm liver SI-displacement.

4.3.2 Power Spectral Density & Boxplot

As stated previously, further data analysis need to be per-

formed to investigate the data distribution, the extreme values

and how they affect the final outcome in the data. To start with

Figure 34, the normalized power spectral density (PSD) func-

tions of the surrogate and the liver motion data are presented

for the different subjects. The PSD shows how strong is the

variance at each frequency or simpler, reveals information for

which frequencies have the most and the least variations. The

PSD can be described in units of energy per frequency and can

be directly calculated using the Fast Fourier Transformation.

Looking at the same rows, it gives an indication about the

intrafractional variances between the subjects which in that

case, are really small or obscure translated into a non-patient

specific model which can be easily generalizable. Similarly,

this means that the model will include most variations and

does not necessarily need to be updated at each session. Addi-

tionally, the clearness of the signal shows no noise in the data

after applying the Savitsky-Golay filter and the pre-processing
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Table 7. Data analysis of the internal motion using the regular breathing data.

Subject A C D E

[min, max] mm [-15.52, 7.95] [-12.69, 7.96] [-3.14, 17.46] [-15.75, 6.26]

Superior displacement (S) (µ ±σ ) mm -1.67 ±4.64 -0.33 ±2.86 6.29 ±5.83 -7.90 ±4.35

Inferior displacement (I) (µ ±σ ) mm -12.94 ±2.15 -11.23 ±0.95 -1.05 ±0.89 -13.69 ±0.86

S - I displacement (µ ±σ ) mm 11.27 ±5.12 10.91 ±3.01 7.34 ±5.90 5.79 ±4.43

Table 8. Data analysis of the internal motion using the breath-holding pattern data.

Subject A C D E

[min, max] mm [-19.28, 9.37] [-10.92, 17.24] [-4.76, 25.87] [-15.90, 19.42]

Superior displacement (S) (µ ±σ ) mm -9.48 ±8.46 10.04 ±4.19 5.09 ±6.75 7.99 ±6.71

Inferior displacement (I) (µ ±σ ) mm -16.49 ±1.30 3.89 ±8.22 -0.63 ±2.07 2.05 ±11.07

S - I displacement (µ ±σ ) mm 7.01 ±8.56 6.14 ±9.23 5.73 ±7.06 5.95 ±12.94

Table 9. Data analysis of the internal motion using the shallow breathing data.

Subject A C D E

[min, max] mm [-18.49, 7.91] [-9.70, 15.08] [-4.93, 30.54] [-14.71, 18.18]

Superior displacement (S) (µ ±σ ) mm 1.70 ±3.39 8.78 ±3.20 4.74 ±6.10 3.44 ±5.50

Inferior displacement (I) (µ ±σ ) mm -4.28 ±5.14 3.58 ±4.69 -0.33 ±3.37 -1.34 ±6.65

S - I displacement (µ ±σ ) mm 5.97 ±6.16 5.20 ±5.68 5.07 ±6.97 4.77 ±8.63

Table 10. Data analysis of the internal motion using the deep breathing data.

Subject A C D E

[min, max] mm [-18.32, 39.93] [-13.81, 19.73] [-17.36, 43.95] [-19.13, 28.22]

Superior displacement (S) (µ ±σ ) mm 9.75 ±17.46 7.31 ±11.59 22.96 ±11.40 2.32 ±14.40

Inferior displacement (I) (µ ±σ ) mm -10.62 ±8.71 -4.84 ±10.63 0.90 ±7.57 -10.35 ±8.54

S - I displacement (µ ±σ ) mm 20.37 ±19.51 12.15 ±15.73 22.05 ±13.69 12.67 ±16.75

Table 11. Data analysis of the internal motion using the coughing pattern data.

Subject A C D E

[min, max] mm [-14.55, 5.99] [-14.76, 3.83] [-11.81, 32.01] [-14.01, -0.44]

Superior displacement (S) (µ ±σ ) mm -1.35 ±3.23 -7.57 ±4.99 18.04 ±7.96 -13.02 ±0.05

Inferior displacement (I) (µ ±σ ) mm -12.44 ±1.24 -12.12 ±1.63 3.76 ±7.49 -13.28 ±0.21

S - I displacement (µ ±σ ) mm 11.09 ±3.46 4.55 ±5.25 14.27 ±10.93 0.27 ±0.22

steps for both signals. At the end, it is important to mention

that the signals have not been distorted by any other organ

motion such the heart beats. For the liver motion data, this

can be surely avoided due to the choice of the temporal reso-

lution that cannot ”see” such high frequencies. On the other

hand, regarding the surrogate signal, the clear obtained results,

highly depends on the choice of the deepest to the liver mea-

surement. The penetration depth was chosen to be the deepest

available, about 7cm that resulted in the shown outcome, plus

the fact that the US transducer was placed away from the

heart, avoiding undesired signal detection generated by the

heart frequency [81]. For a better understanding, boxplots for

the liver SI-displacement data and for the US magnitude data

were plotted together, shown in Figure 35. A boxplot can

describe the data distribution using five parameters, namely:

minimum, Q1, median, Q3 and maximum. It explains also the

potential outliers along with their values and gives a further

understanding for the data, such as about symmetry, skewness

or how the data are grouped. Looking at the left part of Fig-

ure 35, where the liver motion PSD is shown, it is visible

that the median (middle value at this dataset) of subject A

and C is similar when this is also true for the subject B and

D. Subject B has the largest range of motion followed by

participants A, C and D range of motion. Furthermore, the

stated groups of participants shares also similar minimum and

maximum values but there are some extreme values located

for participant C and many more and larger for participant E.

This can be related to some high peaks and valleys for most

respiration patterns that have been observed for this specific

participant but due to limitations space are not presented here.

These extreme values are fully connected with the breathing

type and/or combined with this specific subject. The visual

information for this subject showed a shifted signal compared

to rest of the subjects (A, C) shared common properties(e.g

median etc). General the liver motion range followed a range

as expected from the previous work [27].

4.3.3 Polynomial Order Analysis

Reaching the second main core of the presented work which is

the fitting methods, it has been found that for the polynomial
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Figure 34. Normalized power spectral density (PSD)

functions for subjects A,C,D and E. The liver SI-motion is

shown with orange for every subject and a corresponding

surrogate signal’s PSD is presented along with blue color.

The signals store most of the energy in the frequency range of

[0.05, 0.1Hz].

Figure 35. Boxplots of the liver motion and surrogate signal

depicted per subject data.

fitting further analysis was needed to determine the optimal

parameters for this and the single layer perceptron model, in

contrast with the simple linear regression without any regular-

ization method that seemed to be easy in construction.

Starting with the polynomial fit, to find the optimal degree

for the polynomial different models have been developed. The

final goal for this method was to evaluate the train and test

error in order to find out the best fit on the data depending

solely on the polynomial degree. For that reason, a wide range

of different degree values has been tested and its summary can

be found in Figure 36. In this Figure, the vertical axis contains

the error in terms of RMSE while the evaluated polynomial

orders range between 1 and 20. The train error (blue line) is

noticed to be higher than the test set error(red line), this is

probably due to the selected small test set. This means that

the model has optimal values for this (overfitting). On the

other hand, if there is a reduction in the order such as going

back on 2nd or 3rd order the error will get increased. As a

Figure 36. Selecting the polynomial degree using train and

test set.

result, it has been decided to kept in the minima error value of

test set although be aware for the aforementioned information

and choosing the final polynomial to have an order of nine.

4.4 Estimation Accuracy
In this subsection, firstly a full description on the followed

validation methods will be given, namely k-fold cross valida-

tion. Next, the findings of the three different motion models

will be presented along with the selection of the best one and

comparison with the previous research work will follow in the

next Chapter.

The first evaluation method is called K-fold cross valida-

tion and the number of suitable folds has either to do with

the amount of available data or with the level of confidence

interval and how ”optimistic” wants to be the result. For the

selected work, 10 folds have been chosen as proposed from

the most studies related to sequence analysis. Using a 10-fold

cross validation, the dataset is split into 10 parts and subse-

quently the training of the model starts using k-1 as training

set and the k-th split for the test. Note that there is no in-

teraction between train and test set to avoid representation

of the same data into the two sets. Although it is possible

due to randomization process before the splitting process to

have patterns of the same patient into train and test set but

statistically the validation method is correct.

To start with the MSE metric, the findings are summarized

in Table 12. In the second column, simple linear regression’s

(SLR) results are presented and focusing on the differences be-

tween the subjects, the best fit has been performed using data

of subject D achieving a MSE of 0.70±0.12 mm. Note that

the σ value is also on of the lowest among the others. Moving

to the 9-th order polynomial fit, the results are similar with

the SLR and in all cases achieved a similar or higher value for

the MSE. On the other hand, the number of parameters used

for the construction of that fitting models is higher compared

to the one of simple linear regression model and by taking

into account the computational load, it does not add a really

high value to the results. Now, looking on the data of the sin-
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Table 12. Table with the normalized MSE values for the

three different models. All the values are given in mm.

Subject SLR Polynomial Perceptron

(MSE ±σ ) (MSE ±σ ) (MSE ±σ )

A 0.94 ±0.07 0.86 ±0.12 0.76 ±0.64

C 0.92 ±0.11 0.97 ±0.08 0.85 ±0.52

D 0.70 ±0.12 0.83 ±0.06 0.50 ±0.86

E 0.88 ±0.12 0.97 ±0.08 0.90 ±0.49

Table 13. Table with the normalized RMSE values for the

three different models. All the values are given in mm.

Subject SLR Polynomial Perceptron

(RMSE ±σ ) (RMSE ±σ ) (RMSE ±σ )

A 1.15 ±0.13 1.15 ±0.14 0.73 ±0.68

C 1.16 ±0.14 1.15 ±0.14 0.88 ±0.48

D 1.16 ±0.12 1.16 ±0.14 0.76 ±0.64

E 1.15 ±0.14 1.16 ±0.15 0.89 ±0.48

gle layer perceptron trained for 100 epochs with a batch size

of 100, the mean values have significantly decreased about

20-25% while the σ value got increased, introducing higher

variance on that model. All the results have been calculated

with a 95% confidence interval and the values are presented

normalized in mm. The average model performance for the

MSE was 0.88±0.09 taking into account all different fitting

models.

Moving on the RMSE metric-Table13, three additional

models have been developed to find out the behavior and

measure the accuracy using the second evaluation metric. To

begin with the SLR, the values were higher, about 0.20-0.30

mm than the corresponding ones using MSE. In this case, all

subjects using the SLR fitting method had the same mean

value with slightly higher standard deviation values. In the

same manner, the polynomial fitting generated similar to the

SLR and slightly decreased. On the other hand, the perceptron

network performed much better also utilizing that metric, as

previously done with the MSE as well, decreasing the overall

error. The error values in that case were approximately 30-

35% lower, resulting in a much more accurate estimated signal.

Of course, again the sigma values were higher, about 5 times

which can introduce some uncertainties in the final result. At

the end, it should be highlighted that using the RMSE, subject

D did not differ from the rest participants results excluding

the perceptron performance and the overall mean error value

for the RMSE is 1.15±0.002.

5. Limitations and Future Work

For the presented study, a 3T field MRI machine with a tempo-

ral resolution of 0.8s and a spatial resolution of (1.875,1.875)

mm has been used to acquire the motion data. The spatial res-

olution was good enough overall for detecting the liver motion

in most directions while on the other hand, the machine could

provide higher frame rate resulting in longer scanning ses-

sions. As a result, a machine with higher temporal resolution

could increase the model performance providing additional

images which can capture inhalation and exhalation varia-

tions. Secondly, the experiments have been conducted using

ten healthy subjects without having any lesion or tumor com-

pared to previous studies. [32, 49] Finding the most relevant

clinically region of interest was crucial and challenging. Dif-

ferent segments of the liver have been explored to find the

optimal region of interest. Firstly, anatomical features like

the vessels have been exploited in combination with a con-

volutional neural network called U-net. The idea behind it

was an automated segmentation of a point which could not

provide intrinsic information about the liver motion and lo-

cated relatively in the middle of the liver. It was based on

image enhancements methods, morphological operations and

image region-based segmentation method using global thresh-

olding [82, 83]. As shown later, inconsistencies of the vessels

from frame to frame combined with the relatively low spa-

tial resolution leading to blurring in the image pixels, thus it

has been decided to exclude this method from the presented

approach. In addition vessel selection was needed in case of

multiple detection when the performance of this model was

highly dependent on the image contrast and brightness levels

and consequently to the MRI machine settings. A schematic

representation is shown in Figure 37. In the first row an

annotated image of the liver with a vessel is presented and

the masked image used as a label-ground truth for the neural

network presented below.

Next to that a method using Canny edge detection algo-

rithm have been exploited to find the complete contour of the

liver and the select the central point on that but unfortunately,

the method proved to be insufficient due to incorrect liver

contour segmentation [84]. For both cases, higher spatial res-

olution was needed in order to enhance the distinctive regions

of the liver and its walls around it. Based on the previous

findings, further improvements includes an increased number

of subjects for an enhanced inter- and intra-cycle variations as

well as intrafractional variations. Furthermore, experiments

with patients who have a real tumor should be conducted since

the anatomical features will be present in the images and there

is no need for detection of other region of interests. On the

other hand, using solely the vessels can be helpful as stated

and a recommendation for future work would be to create first

a dataset of ground truth with the position of the vessels in

the image using the aforementioned method but taking into

account a higher temporal and spatial resolution as well as

delineation of the vessels from a medical expert and then train-

ing a neural network to perform automatically the process of

the vessel detection and consequently generating the liver mo-

tion. Additionally, in the presented study, only the SI motion

has been used since it has the largest amount of displacement

but for a more accurate and higher model performance, the

AP motion should also be explored. After having available

both motions, PCA can be applied to create 1D weights that

can be fed to the linear fitting methods later on. Another im-

provement would be to use different models for modelling the
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Figure 37. Vessel segmentation method. Upper: 2D MRI

liver image rescaled and highlighted in the location of a

vessel. Lower: Mask image or label corresponding to the

upper image. In this case the pixel belonging to the vessel

have value of 1 while the pixels of background get a value of

0. A set of those images has been fed to the automated

segmentation algorithm.

relation of the surrogate and the liver motion in inhalation and

exhalation phases. Of course this would probably cost in the

computational time of the final model since a classifier should

be utilised to assign to the two different classes the new data

at each session.

Moreover, it is also important to provide an in-box tem-

poral alignment for the two signals making use of a shared

clock or signal triggering box for generating enhanced results

in terms of error estimation. This could also remove some

workload from the author since some post-processing methods

would not be needed. Looking at Tables 12, 13, the outcome

between the first two models (simple linear regression and

polynomial fitting) and polynomial fitting are similar while

there is a significant decrease of the error using the single

layer perceptron model. Note that it is possible to obtain a

lower estimation error using a more complex regression model

combined with an increased subject data and multiple surro-

gate signals [32, 85, 39]. At the end, it would be interested to

mention that the presented model outperformed the previous

studies findings in terms of error minimization and available

data [10, 86]. On the other hand, evaluation of the model

should be performed on a real clinical problem and additional

test using metrics such R square should be done. Similarly,

the duration of 6sec prediction for the surrogate signal and

consequent for the liver motion, it is a promising result but

taking into account the high probabilities for overfitting due

to the small amount of available trained data, further research

should be done. Compared to the recent study of Lin et al.

where the available dataset includes more than 1000 subjects,

it is feasible to predict correctly the liver motion only within

300ms when the available data for the presented thesis were

10 participants. As a result, the findings of this work arises

further analysis to validate the final outcome.

6. Conclusions

In the presented study, the author utilised an RME approach

for the liver SI-motion estimation and consequently the frame-

work has been evaluated. The framework consists of two parts,

the motion model between the liver motion and the surrogate

data and secondly the surrogate prediction combined with its

classifier. Surrogate signals presented as the deepest to the

liver emitted wave from an ultrasound sensor have been used

as the data that has strong correlation with the liver actual

motion and due to its MRI compatibility, non-imaging depen-

dent and because of its high temporal and spatial resolution.

On the next phase, both data, surrogate and liver are fed into

the regression models and the model learns the parameters

in order to create the so-called motion model. Afterwards,

it is possible to estimate the motion data depending only on

surrogate data. By training the surrogate model to make pre-

dictions for the upcoming state, it is also feasible to estimate

liver motion in a future state.

Three different regression models have been exploited and

evaluated on its performance comparing the motion estimated

with the actual liver values. Data generated by healthy subjects

have been used acquired using MRI modality simultaneously

with the US data. Firstly, the data have been segmented on the

liver upper border in SI-direction while secondly have been

processed and aligned with the US signal and consequently

split for model training and evaluation. The regression models

have been trained using the training set, optimally tuning of

their parameters performed using the internal validation set

and evaluated on the test data. As a second step, the surrogate

data have been fed to a neural network in order to obtain a

model that can predict its motion on a future state and through

its high correlation with the liver motion, the latter can be pre-

dicted also in the future providing an advantage to the clinical

world. The offered advantage has application to radiotherapy

or liver biopsy predicting th liver motion resulting in a mini-

mized damage of healthy tissue during a potential procedure.

The training phase contain training of five different models for

the five breathing patterns (regular, deep, shallow, coughing

and breath-holding) while in the prediction phase, there is

a classifier sliding over the data with a fixed window length

and selecting one of the several trained models based the per-

formed respiration pattern. Summarizing, the objective of

this thesis was to choose suitable surrogate signals along with

regression methods for the liver motion estimation and predic-

tion on a future state. The final outcome showed that using

an US sensor as surrogate signal can give an estimation error
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less than 1.2±0.1 mm using RMSE metric and the surrogate

signal can be predicted 6 seconds ahead with an accuracy of

2.5mm using Euclidean Distance using a classifier for activity

recognition of 99.5%. Compared to previous findings, the re-

sults are promising and further studies are needed for building

more complex models combined with higher dimensionality

data and increased liver motion data. [10]
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Appendices

Appendix A - Measurement protocol and breathing

types

In this part, it is important to describe the measurement pro-

tocol to have a spherical knowledge of the experiment and

the data acquisition process where the collection of the two

signals have been performed.

Starting with the measurement protocol, two rounds of

measurements have been performed. The first one where five

healthy subjects (two females and three males) above 18 y.o

have taken part in the human subject experiments conducted

in the University hospital of Münster (Münster , Germany)

and the second one in University of Twente Robotics and

Mechatronics (RaM) lab (Enschede, The Netherlands). Each

subject was informed about the presented study, receiving a

description of the project, the goals and the procedure of the

experiment and after the ethical committee of University of

Twente approved the proposal. The principal investigators

have taken the responsibility to be sure about the MRI safety

regulations and informed the participants as well. More in

depths, the experiments conducted in Germany included si-

multaneous acquisition of MRI and US data used in the fitting

methods dataset and in the surrogate prediction as well when

the acquired data from the Netherlands have been used solely

for the surrogate prediction model.

The participants have been asked to follow a sequence of

different breathing patterns including regular, normal calm

breathing, breath-holding, intermittent holds at the end of

exhalation, shallow, short in- and exhalations, deep, large in-

and exhalations and coughing. The idea behind the chosen

breathing pattern was to include a variety of all possible respi-

ration types while the main limitation of the study was that the

participants had to be continuously apply the given instruc-

tions for breathing. The aforementioned breathing types have

been chosen since they meet some requirements that they are

applied in real-time application such interventions or biopsies.

Furthermore, the participants were free to breathe using either

the lungs or the abdominal breathing resulting in as natural as

possible breathing. Some of the included breathing patterns

properties that used are developed in the list below to explain

why they have been chosen:

• reduce the respiratory motion during image acquisition

• introduce rapid short motion and simulates the hyper-

ventilation

• introduce slow but larger motion

• introduce artefacts in MRI scans

Appendix B - Description of the MRI and Ultrasound

devices

For the experiments, a Philips 3T Intera MRI has been used

from the Radiology Department of University hospital of

Münster combined with a 3.5MHz A-mode ultrasound sen-

sor(Optel Opbox V2.1 Mini Ultrasonic Box with Integrated

Pulser and Receiver provided by the Optel Ultrasound Tech-

nology, Poland, Wrocław) mounted to the skin at the right
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area of the abdomen near the liver. The MRI machine was set

according to the following settings:

• 3T field strength

• Sagittal imaging plane

• Fast Field echo pulse sequence

• Cartesian trajectory

• Temporal resolution: 0.79s

• Spatial resolution: (1.875,1.875) mm

• Slice thickness: 2mm

• Echo time: 2.63ms

• Repetition time: 5.27ms

• Image output: (160,160) pixels

while the setting for the US sensor are consisted in the list

below:

• Pulse voltage: 240V (level 10)

• Pulse width: 2.8ms

• Sampling frequency: 33.3MHz

• Gain: 24 (pre-amplifier) + 15 (constant) dB

• Delay: 10ms

• Trigger: timer PRF with frequency of 50Hz
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