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Summary

Direction-of-arrival (DOA) estimation is a well-known problem in the field of array sig-
nal processing with applications in, e.g., radar, sonar and mobile communications.
Many conventional DOA estimation algorithms require prior knowledge about the
source number, which is often not available in practical situations. Another common
feature of many DOA estimators is that they aim to derive an inverse of the mapping
between the sources’ positions in space and the array output. However, in general
this mapping is incomplete due to unforeseen effects such as array imperfections.
This degrades the performance of the DOA estimators.

In this work, a machine learning (ML) framework is proposed which estimates
the DOAs of waves impinging an antenna array, without any prior knowledge about
the number of sources. The inverse mapping mentioned above is made up by an
ensemble of single-label classifiers, trained on labeled data by means of supervised
learning. Each classifier in the ensemble analyses a number of segments of the
discretized spatial domain. Their predictions are combined into a spatial spectrum,
after which a peak detection algorithm is applied to estimate the DOAs.

The framework is evaluated in combination with feedforward neural networks,
trained on synthetically generated data. The antenna array is a uniform linear array
of 8 elements with half wavelength element spacing. A framework with a grid resolu-
tion of 2◦, trained on 105 observations of 100 snapshots each, achieved an accuracy
of 93% regarding the source number for signal-to-noise ratios (SNRs) of at least
-5 dB when 2 uncorrelated signals impinge the array. The root-mean-square error
(RMSE) of the estimates of the DOAs of these observations is below 1◦ and equals
0.5◦ for SNRs of 5 dB and higher. It is shown that in the remaining 7%, the DOAs
are spaced 2.4◦ degree on average, making the resolution of the grid too coarse for
resolving these DOAs.

Increasing the resolution of the grid is at the cost of an increased class imbal-
ance, which complicates the classification procedure. Nevertheless, it is shown that
a 100% probability of resolution is obtained for observations of 15 dB SNR with DOA
spacings of at least 3.2◦ for a framework of 0.8◦ resolution, whereas the framework
of 2◦ resolution achieves this for spacings larger than 5.9◦. However, 4 times more
training data is used to realize this.
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VI SUMMARY

A scenario with a variable source number showed that the performance of the
ML framework decreases gradually with an increasing number of sources. When
a single signal with a 15 dB SNR impinges the array, this is estimated correctly in
100.0% of the observations, with an RMSE of 0.4◦. However, when 7 sources exist,
the performance decreases to 3.3% and 1.8◦ respectively. A decreased accuracy of
the source number estimates was expected because of the 2◦ resolution that was
used. However, it is shown that the performance of the neural networks in terms of
their predictions decreases with an increasing source number as well.

The results indicate that the resolution of the framework has a significant im-
pact on its DOA estimates. It is observed that for the considered learning strategy,
additional training data is required to actually benefit from an increased resolution.
Further research is required to determine if alternative learning algorithms and ad-
vanced techniques for handling class imbalance could diminish this need for addi-
tional data. Furthermore, it should be verified if the proposed data-driven approach
indeed adapts better to unforeseen effects compared to model-based algorithms by
evaluating it on real-world data.
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Chapter 1

Introduction

Estimating the direction-of-arrival (DOA), or angle-of-arrival (AOA), of multiple waves
impinging a sensor array is a well-known problem in the field of array signal pro-
cessing. It has a wide range of applications in, for example, radar, sonar and mobile
communications. In practical situations, the number of sources is often unknown to
the estimator, complicating the estimation process.

The DOA estimation problem has been addressed by, e.g., the popular
subspace-based superresolution methods multiple signal classification (MUSIC) [1]
and estimation of signal parameters via rotational invariance techniques (ESPRIT)
[2]. However, both methods require prior knowledge about the source number. With
an increasing amount of computational power being available, sparsity-based ap-
proaches have become popular as well [3]. A common feature of the techniques
mentioned above is that they rely on a model which maps the sources’ positions in
space to the signals received by the sensor array. The DOA estimation is essentially
a matter of finding the inverse of this mapping. However, in practice the forward
mapping will contain imperfections because of, e.g., array imperfections, modelling
errors in the sensors’ transfer functions, mutual coupling between the elements and
the presence of noise. This will affect the inverse mapping as well, and with that
degrade the performance of the DOA estimation algorithms.

As an alternative to computing an inverse mapping based on the (most likely)
incomplete forward mapping, one could derive the inverse mapping directly from
labeled input-output pairs, i.e. from real array outputs of which the corresponding
source positions are known. As a result, factors such as array imperfections and the
sensors’ transfer functions are included implicitly. This approach is called supervised
learning, a well-known branch of machine learning (ML). This technique is the core
of the assigment addressed in this thesis.
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1.1 Goals of the assignment

The main goal of the research presented in this thesis is summarized in the following
statement:

Devise a machine learning framework which is able to estimate the
directions-of-arrival of an unknown number of signals.

The idea behind this assignment is to find out the advantages, if any, of utilizing
ML to solve this well-known DOA estimation problem. The work is not related to
a particular application, meaning that no exact performance criteria are specified.
Furthermore, no requirements regarding the ML algorithm or the antenna array are
given. Ideally, the framework is constructed in a way that it can be employed in
combination with any array configuration, such that it can be applied to both 1D and
2D DOA estimation.

1.2 Related work

Two well-known DOA estimation algorithms, both mentioned above, are MUSIC [1]
and ESPRIT [2]. Whereas MUSIC is based on the noise subspace, ESPRIT employs
the signal subspace. Both methods are by definition limited to estimating the DOAs
of at most N − 1 signals, with N being the number array elements. The number of
signals must be known before being able to estimate the DOAs. If the latter does not
apply, it is to be estimated using, e.g., a subspace order estimator like the minimum
description length (MDL) or Akaike information criterion (AIC) [4].

A. Khan et al. [5] combined the MUSIC algorithm [1] with several ML techniques
for the 2D DOA estimation of a single target. It was shown that the DOA estima-
tion performance in terms of mean absolute error improved aided by ML compared
to using the MUSIC algorithm on its own. However, none of the considered ML
techniques clearly outperformed the others.

In [6], 1D DOA estimation of two equally powered, uncorrelated sources using
a deep neural network (DNN) was investigated. The DNN acts as a classifier with
a 1◦ resolution and uses the estimated sensor covariance matrix of a 5-element
uniform linear array (ULA) as an input. Only integer DOAs were considered. For a
signal-to-noise ratio (SNR) of 30 dB, the estimation error was within 1◦ in 97% of the
observations.

Z. Liu et al. [7] approached the 1D DOA estimation problem using a DNN as
well. The DNN consists of a multitask autoencoder and a number of parallel mul-
tilayer classifiers. In the case of two unequally powered sources (10 and 13 dB
SNR) separated by 16.4◦, the estimation errors for both signals were kept within 1◦,
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whereas the support vector regression (SVR) method proposed in [8] resulted in
errors upto 5◦ for the same scenario. The DNN was trained on a dataset consisting
of 10 dB SNR observations only.

O. Bialer et al. [9] combined classification and regression in a single DNN. The
neurons of the classifying part predict the number of sources, which is assumed to
be between 1 and 4. Based on this prediction, a particular set of regression neurons
containing the DOA estimates is to be read out. For a single snapshot, an SNR
of 40 dB and an ULA of 16 elements, the probability that the number of sources is
estimated correctly equals 90%.

1.3 Thesis organization

In Chapter 2, the problem statement is presented by means of the underlying data
model. Then, in Chapter 3, the ML framework is introduced and the employed learn-
ing algorithm is discussed. In Chapter 4, the simulations that were conducted to
assess the performance of the proposed framework are presented. Finally, the the-
sis is concluded in Chapter 5.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Problem statement

In this chapter, the problem is formulated by means of a model based on well-known
theoretical models presented in, e.g., [5], [7], [10], [11]. The data used for training
and testing the ML framework is created using this model as well, as no real-world
measurements were conducted within this assignment.

2.1 Data model

Consider K complex-valued narrow-band signals impinging an antenna array con-
sisting of N isotropic elements. The sources transmitting these signals are assumed
to be in the far-field of the array and the antenna elements of transmitters and re-
ceiver are co-polarized. With yn(t) being the sample received by the nth element,
i.e. n = 1, . . . , N , at the tth time instance, the data vector y(t) = [y1(t), . . . , yN(t)]T is
modelled as

y(t) = As(t) + n(t), (2.1)

where y(t) ∈ CN , A ∈ CN×K is the array manifold, s(t) ∈ CK is a vector contain-
ing the complex amplitudes of the transmitted signals and n(t) ∈ CN is a vector
containing the additive noise per antenna element.

The array manifold is given by

A =
[
a1 a2 · · · aK

]
, (2.2)

where ak ∈ CN is the steering vector associated with the kth source, i.e. k =

1, . . . , K. The kth steering vector is given by

ak =
[
a1,k a2,k · · · aN,k

]T
, (2.3)

and depends on the positions of the array elements relative to a reference point, the
direction information of the signals, and the wavelength λ. The nth element of the kth

5
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steering vector is defined as
an,k = e−j

2π
λ
rTnwk . (2.4)

The vector rn ∈ R3 contains the Cartesian coordinates of the nth array element Rxn
relative to the reference point

rn =
[
xn yn zn

]T
(2.5)

and wk ∈ R3 is composed of the Cartesian coordinates of the unit-vector pointing
from the reference point towards the kth source Txk. These Cartesian coordinates
are computed from the azimuth angle φk and the elevation angle θk as follows:

wk =

cos θk cosφk

cos θk sinφk

sin θk

 . (2.6)

Without loss of generality, it is assumed that φ1 < · · · < φK and θ1 < · · · < θK . All
geometry related parameters are visualized in Fig. 2.1.

x

z

φk

y

Txk

θk

wk

rn

Rxn

xn

yn

zn

Figure 2.1: Geometry definitions.

When T snapshots are available, i.e. t = 1, . . . , T , equation 2.1 can be written as
the matrix equation

Y = AS + N, (2.7)

with, Y = [y(1), . . . ,y(T )], S = [s(1), . . . , s(T )] and N = [n(1), . . . ,n(T )].
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2.2 Assumptions and conditions

Aided by the model described in section 2.1, the problem can be defined more
specifically. The core of the problem is to estimate the DOAs of the K uncorrelated
narrow-band signals impinging the array, with K being unknown to the estimator.
The 2D DOA of the kth signal is defined by two parameters: the azimuth angle
φk and the elevation angle θk. Each of the parameters mentioned above, i.e. K,
φk and θk (with k = 1, . . . , K), are assumed to be constant over all T snapshots
within a single observation. Furthermore, it is assumed that both s(t) and n(t) are
independent and identically distibuted (i.i.d.) random variables following complex
Gaussian distributions

s(t) ∼ CN (0, σ2IK) (2.8a)

n(t) ∼ CN (0, ν2IN)) (2.8b)

with σ2 being the signal variance, ν2 the noise variance, and IK ,IN identity matrices
of size K and N respectively. In other words, the DOA estimator has no knowledge
about the signals transmitted by the sources. Furthermore, equation 2.8 implies that
all signals within a single observation have the same SNR, i.e. σ2/ν2.

The framework developed to solve this DOA estimation problem is presented in
Chapter 3.
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Chapter 3

Method

Supervised learning algorithms can be roughly divided in two categories: classifica-
tion algorithms and regression algorithms [12]. The core of the problem considered
in this work is the unknown, possibly varying, number of sourcesK. This implies that
the number of target outputs of the framework could differ for various observations.
Solving the problem using regression would therefore require a method similar to
the one presented in [9], where the number of sources is predicted using a classifier
prior to estimating the actual DOAs via regression. However, this implies that the
design of the ML framework imposes a limit on the amount of DOAs that can be
estimated. It was therefore decided to construct a framework which is solely based
on classification and which does not need another algorithm to estimate the number
of sources. This is achieved by discretizing the spatial domain, which comes at the
cost of a finite estimation resolution. It was decided to consider 1D DOA estimation
only, although the data model presented in section 2.1 could be used to generate
2D data as well. The azimuth angles φ1, . . . , φK are to be estimated, whereas the
elevation angles θ1, . . . , θK are fixed at 0 degrees. The principles behind the frame-
work can be easily extended to 2D. The framework is presented in sections 3.1 and
3.2, whereas the employed learning algorithm is discussed in section 3.3.

3.1 DOA estimation via classification

The first step towards estimating DOAs via classification is to define a grid. The spa-
tial domain of interest, [φmin, φmax] with φmax > φmin, is divided in M equal segments.
The width of one segment, ∆φ, follows from

∆φ =
φmax − φmin

M
, (3.1)

for any positive integer M . If the DOA φ of a signal impinging the array is asso-
ciated with the ith segment, i = 1, . . . ,M , its DOA estimate φ̂ is the centre of that

9
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segment, ci. The same procedure is used if K signals impinge the array from angles
φ1, . . . , φK , as visualised in Fig. 3.1. Note that if multiple DOAs correspond to the
same grid segment, they cannot be resolved.
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φ̂1φ1 φ̂K φK

Figure 3.1: DOA estimation via classification.

The approach described above could be implemented using a multi-label multi-
class (or simply multi-label) classifier: M classes exist of which K are true for a
single observation. In other words, K labels should be assigned. Multi-label learn-
ing problems have been investigated thoroughly. An overview of several methods
to deal with this kind of ML problems is presented in [13]. A distinction is made be-
tween problem transformation and algorithm adaptation methods. Algorithms in the
former category transform the task into a more manageable problem such as binary
classification or multi-class (single-label) classification. Techniques in the algorithm
adaptation category are adapted versions of well-known ML algorithms, such that
they can deal with multi-label data without transforming it.

As the problem statement of this thesis does not put any restriction on the ML al-
gorithm to be used, a framework is proposed which can be combined with any single-
label multi-class classification algorithm. In this way, different algorithms could be
compared in a later stage. The framework is based on the ensemble method random
k-labelsets (RAkEL), proposed in [14]. RAkEL aims to achieve a high classification
performance while keeping computational complexity low. Section 3.2 presents how
the RAkEL framework is employed to solve the given DOA estimation problem.

3.2 The framework

RAkEL is a framework which can be used to solve a multi-label classification prob-
lem using an ensemble of single-label classifiers. Before explaining the details of
RAkEL, it is important to understand the concept of a label powerset (LP).
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3.2.1 Label powerset

LP is a technique which can be employed to transform a problem from multi-label
to single-label [13]. It considers all 2M combinations of M possible labels. For
example, for a multi-label classification problem with 2 labels, the LP consists of
22 = 4 classes. These classes are referred to as (00), (01), (10) and (11), where
a 1 indicates that a label is assigned and a 0 denotes the opposite. Each digit
represents one label. In this way, a single-label problem is obtained without losing
information about possible correlations between the labels of the original multi-label
task. The latter does not apply to, e.g., the binary relevance (BR) method, where M
single-label classifiers are trained: one for each of the M labels. A disadvantage of
LP is that the number of classes grows exponentially with M . This complicates the
application of LP for domains with large M as many classes will be represented by
few training examples [15]. The latter problem is addressed by RAkEL, as will be
shown in the next paragraph.

3.2.2 RAkEL

The main principle behind RAkEL [14] is the division of the single-label classification
problem of 2M classes in m smaller problems of 2k classes, i.e. k < M . This is
achieved by splitting the original set of M labels in multiple subsets of k labels.
These subsets, from now on referred to as labelsets, are generated via random
sampling from the original set. Single-label classifiers are trained on the LPs of
those labelsets. Each label might or might not appear in multiple labelsets, referred
to as RAkELo (overlapping) and RAkELd (disjoint) respectively. In other words, the
random sampling can be performed either with or without replacement. For RAkELo,
the final prediction for each label is obtained via a majority voting procedure over the
entire ensemble. An example from [15] with m = 7, M = 6 and k = 3 is presented in
Table 3.1. The labels c1, . . . , c6 can be considered as being the class centres shown
in Fig. 3.1.

In [15], RAkEL is compared to 6 other multi-label learning techniques from both
the transformation as well as the adaptation category. It is shown that, averaged
over 8 different databases, RAkELo with k = 3 and M < m < 2M outperforms the
considered techniques. Furthermore, it outperforms RAkELd for 7 of the 8 consid-
ered databases.

3.2.3 Modification 1 - combining RAkELo and RAkELd

A disadvantage of RAkELo is the imbalance in the amount of labelsets in which the
labels of the original set appear, i.e. the denominators in the ’average votes’ row in
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Table 3.1: RAkELo example [15]
Predictions

Classifier Labelset c1 c2 c3 c4 c5 c6

1 {c1,c2,c6} 1 0 - - - 1
2 {c2,c3,c4} - 1 1 0 - -
3 {c3,c5,c6} - - 0 - 0 1
4 {c2,c4,c5} - 0 - 0 0 -
5 {c1,c4,c5} 1 - - 0 1 -
6 {c1,c2,c3} 1 0 1 - - -
7 {c1,c4,c6} 0 - - 1 - 0

Average votes 3/4 1/4 2/3 1/4 1/3 2/3
Final prediction 1 0 1 0 0 1

Table 3.1. This imbalance is a result of the random sampling and causes variations
in the classification accuracy over the different labels: a label which appears in more
labelsets will be assigned more accurately than labels covered by less classifiers
in general. Furthermore, it could occur that certain labels are not selected at all.
In the given DOA estimation application, this implies that specific sections of the
spatial domain are not taken into account. This is unwanted, as a geometrically
symmetric configuration of the sensors and sources should result in symmetric DOA
estimation performance. It was therefore decided to use L ’layers’ of RAkELd instead
of RAkELo, as is visualized in Fig. 3.2. The labelsets consisting of k labels are
defined for each layer individually, as indicated by the shaded blocks.

klayer 1

layer 2

layer L
...

φmin φmax∆φ

· · ·

· · ·

k

21

· · ·1

21

Figure 3.2: DOA estimation framework consisting of multiple layers of RAkELd.

The total number of classifiers m in the framework follows from the number of
layers L, the amount of labels M and the number of labels in a labelset k according
to

m = L

⌈
M

k

⌉
. (3.2)
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3.2.4 Modification 2 - border perturbations

A disadvantage of the discretization of the spatial domain is that the estimation error
|φ− φ̂| approaches ∆φ/2 when φ approaches the border between two segments. As
an additional result of the modification presented in section 3.2.3, this could be im-
proved by making sure that the borders of different layers appear at different angles.
It was therefore decided to perturb the borders for each RAkEL layer individually.
An example of what the complete classifier framework could look like is shown in
Fig. 3.3.

klayer 1

layer 2

layer L
...

φmin φmax∆φ

· · ·

· · ·

k

21

· · ·1

21

Figure 3.3: DOA estimation framework with perturbed borders.

An artefact of these perturbations is that the DOA estimates can no longer be
obtained via the straightforward majority voting procedure shown in Table 3.1. How-
ever, the majority voting procedure can also be regarded as the comparison of some
spectrum with the value L/2. This spectrum appears when summing the estimates
of all layers in the framework. This procedure can also be applied after perturbing
the borders. The approach described above is illustrated by means of an example
of L = 3 layers, shown in Fig. 3.4.

layer 1

layer 2

layer 3

∆φ ∆φ

φ φφ̂ φ̂

Figure 3.4: DOA estimation without (left) and with (right) border perturbation.
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The arrows labeled with ’φ’ represent a signal impinging the array from an az-
imuth angle φ. Each block in a layer represents a segment of the discretized spatial
domain. A shaded block indicates a positive estimate, i.e. the label of that grid seg-
ment is assigned to the observation. Note that perfect classifiers are assumed in
this example. By summing all estimates over the different layers, a spectrum (indi-
cated by the red lines) appears. It can be seen that the perturbation of the borders
(right) results in a DOA estimate φ̂ (the middle of the peak plateau) which is closer
to the true DOA φ than the estimate that would be obtained without perturbations
(left). A more detailed explanation of how the DOA estimates follow from the spectra
is presented in section 3.2.5.

3.2.5 Modification 3 - peak detection

In section 3.2.4, it was shown how a spectrum is constructed based on the pre-
dictions of the classifier ensemble. The DOA estimates are obtained by applying a
peak detection algorithm to this spectrum. This algorithm computes all local maxima
and compares them to some threshold. Only the peaks higher than the threshold
are returned as being a DOA estimate. A threshold of L/2 can be interpreted as the
majority voting procedure usually applied in RAkELo, see Table 3.1. If a peak has
a flat top as in the example of Fig. 3.4, the argument of the centre of the plateau is
taken as the estimate. The peak detection procedure is visualized in Fig. 3.5.

φ

threshold

φ̂1 φ̂2

Figure 3.5: Peak detection applied to a spatial spectrum.

Instead of using a fixed threshold, it was decided to optimize it using the data
that is available. A set of calibration spectra is obtained by feeding the trained clas-
sifier ensemble with observations it never saw before. These spectra, of which the
associated parameters K and φ1, . . . , φK are known, can be evaluated using various
threshold values. The value which maximizes the amount of observations for which
K̂ = K, with K̂ being the estimate of K, is used as a threshold for new observations.
In this way, the threshold is adapted to the data.
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A downside of this straightforward peak detection procedure is that two signals
associated with two neighbouring segments of the grid cannot be resolved as they
will result in a single peak. This might be taken into account by considering the width
of the peak as well, which is a recommended investigation for the future. For now,
two DOAs can only be resolved if their associated grid segments are separated by
at least one other segment.

3.3 The learning algorithm

Given the framework presented in section 3.2, a base-level single-label learning al-
gorithm is to be chosen. Examples of such algorithms are decision trees, support
vector machines and neural networks. Little literature is available in which the per-
formance of different algorithms in the area of DOA estimation is compared. In [5]
such a comparison is presented, but none of the three considered algorithms clearly
outperforms the others. Furthermore, the scenario considered there is different, as
the algorithms are trained on 2D MUSIC spectra. After all, it was decided to use the
well-known feedforward neural network (FFNN) as a base-level algorithm. FFNNs
come with a lot of design freedom and much literature has been published about
using (deep) FFNNs for DOA estimation in the past few years, e.g. [7], [9], [10]. In
spite of that, one of the recommendations for the future (section 5.2) would be to
compare different algorithms within the framework presented earlier.

The remainder of this section consists of a description of the principles behind
FFNNs. The topology of such a neural network (NN) is discussed first, followed by
an explanation of the training and testing procedure. Finally, it is explained how they
are employed within this assignment.

3.3.1 Topology

An FFNN consists of multiple layers: an input layer, one or more hidden layers and
an output layer. Each of those layers contains one or more neurons. If each neuron
in a layer is connected to all neurons in both the previous and the next layer, this
layer is called fully-connected. Fig. 3.6 shows an example of an FFNN consisting
of fully-connected layers. Note that the term ’feedforward’ in FFNN refers to the
fact that no recurrent connections exist, such that information can travel in only one
direction.

The size of the input and output layer of the NN are determined by the data that is
fed into network, x = [x1, x2, . . . ]

T , and the desired output, y = [y1, y2, . . . ]
T , respec-

tively. The amount of hidden layers and the number of neurons in each hidden layer
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Hidden layers Output layerInput layer

y1

y2

x1

x2

...
...

...
...

...

Figure 3.6: Fully connected feedforward neural network.

can be chosen freely. An approach to do this in a structured manner is presented
in [12].

Each neuron of the network (except those in the input layer) comprises a se-
quence of mathematical operations: all elements of the input vector x′ = [x′1, x

′
2, . . . ]

T

are multiplied with weighting factors w′1, w′2, . . . . The next step is a summation of all
those products and, if desired, a bias term. The output of the summation is the
input to a certain activation function. This function can be regarded as some kind
of threshold, which produces a certain output y′ based on its input. Various com-
mon activation functions exist, but they might as well be user defined. A schematic
overview of a neuron is shown in Fig. 3.7.

y′

x′1

x′2

...

∑

w′1

w′2

bias

f(·)

activation

Figure 3.7: Neuron.

It is important to realise that only the weights and the bias, often referred to as
the parameters of an NN, are adapted during the training stage. All other properties
such as the layout of the network, the activation functions, optimizer settings, etc.
are to be set before training. These are called the hyperparameters.
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3.3.2 Supervised learning

This paragraph contains a brief description of how an NN learns from data. As
supervised learning is employed within this assignment, only this technique is con-
sidered.

Supervised learning is the process of learning a mapping between input and
output variables based on input-output pairs, i.e. input data of which the target output
is known. The randomly initialized network predicts certain outputs based on the
inputs of several input-output pairs. A loss function is used to assess the predictions
by comparing them to the true targets. The more accurate the predictions, the lower
the loss. An optimizer adjusts the parameters of the network based on the gradient
of the loss such that the loss decreases in the next iteration. In order to reduce the
computational load, one could use only subset (formally known as mini-batch) of the
entire training set in each iteration. If the complete training set has been used once,
one epoch has been completed.

In general, the training loss decreases every epoch. However, at some point the
network does no longer improve the generic mapping from input to output, but it
starts to overfit on the training data. This will degrade the performance of the NN for
new observations. A validation set can be used to determine whether this is hap-
pening. The data in the validation set is not used during the parameter optimization
phase, but it is used to assess the performance of the network afterwards. Based
on this assessment, the training process could be terminated. Furthermore, it could
be decided to tune the hyperparameters of the network if the performance of the
NN does not meet the requirements after training for many epochs. This means,
however, that some information of the validation set leaks into the network as well,
although implicitly. A third dataset, the test set, is therefore usually employed to get
a fair assessment of the performance of the final network. The data in this set is
completely new, i.e. none of the observations in this set appear in either the training
or validation set. Before performing this final test, the network is usually trained from
scratch using both the training and validation data.

3.3.3 Neural networks and the DOA-estimation framework

In this final part of the chapter, it is explained how FFNNs are employed within the
framework discussed in section 3.2. The hyperparameters discussed below apply
to all networks in the ensemble, unless mentioned otherwise.
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Input layer

The input to the NNs in the RAkEL framework is a vector of certain elements of the
estimated sensor covariance matrix R̂ ∈ CN×N , similar to e.g. [6]. As the data is
created synthetically, this matrix is computed as

R̂ =
1

T

T∑
t=1

y(t)yH(t)

=
1

T
YYH

(3.3)

with T , y(t) and Y according to the data model presented in section 2.1. As R̂ is a
Hermitian matrix, either the upper or lower triangle can be discarded without losing
information. In other words, with ri,j being the element at row i and column j for
i, j = 1, . . . , N and · being the complex conjugate of an entry, it follows that

R̂ =

r1,1 r1,2 · · · r1,N

r2,1 r2,2 · · · r2,N

...
... . . . ...

rN,1 rN,2 · · · rN,N




, (3.4)

with ri,j = rj,i. The shaded area in equation 3.4 indicates which elements are used
as inputs to the NNs. As only real-valued scalars can be fed into a neuron, each
off-diagonal element is associated with 2 neurons in the input layer: one for the real
part and one for the imaginary part. In total, N diagonal elements and (N2 − N)/2

off-diagonal elements are used, resulting in N + 2(N2 − N)/2 = N2 neurons in the
input layer. The input vector x ∈ RN2 is constructed as follows:

x =
[
r1,1 r2,2 · · · rN,N <(r1,2) <(r1,3) · · · =(r1,2) =(r1,3) · · ·

]T (3.5)

Hidden layers

All hidden layers in the networks are fully-connected. The activation function em-
ployed in these layers is the rectified linear unit (ReLU) activation function. This is
the most popular activation function in hidden layers of NNs nowadays [12]. The
ReLU function fReLU(u) is defined as

fReLU(u) = max(0, u) (3.6)

with u being the output of the summation shown in Fig. 3.7.
The required amount of hidden layers and the number of neurons in those layers

depends on the data and/or the performance that is to be achieved, as will be shown
in Chapter 4.



3.3. THE LEARNING ALGORITHM 19

Output layer

In section 3.2, it is explained that all classifiers in the ensemble have to deal with
a 1-out-of-2k classification task. This explains why the NNs have 2k neurons in the
output layer: one neuron for each class. The activation function used in the output
layer is the softmax funtion. This function is used in many single-label multi-class
classification problems. It is defined in such a way that the outputs of all neurons in
the output layer add up to 1, such that they can be interpreted as a probability. The
predicted class is the one with the highest probability. The output of the ith neuron
in the output layer using the softmax activation function fsm,i(u) with i = 1, . . . , 2k, is
defined as

fsm,i(u) =
eui∑2k

j=1 e
uj
. (3.7)

Here, u = [u1, . . . , u2k ]
T is a vector containing the outputs of all summations in the

output layer.

Training strategy

Instead of training all networks in the ensemble for a fixed amount of epochs, an
early-stopping criterion is employed. If the loss of the validation set, monitored after
every epoch, does not decrease anymore, the training stage is terminated. This
prevents the networks from overfitting on the training data.

The parameters of the networks are optimized using the Adam optimizer [16] in
combination with a weighted categorical cross-entropy loss function. Given a vector
of target outputs v = [v1, . . . , v2k ]

T and a vector v̂ = [v̂1, . . . , v̂2k ]
T containing all prob-

abilities computed by the softmax activation function, the unweighted categorical
cross-entropy loss DCE is defined as

DCE(v, v̂) =
∑
i

vi log(v̂i) (3.8)

where i = 1, . . . , 2k. The definition of the softmax function is such that each prob-
ability in v̂ is nonzero, which means that the logarithm can always be computed.
The target vector contains only zeros except for a single 1 at the entry of the true
class. The true class depends on the DOAs of the training observation as well as on
the grid segments covered by the considered NN. For example, consider a spatial
domain split in M = 4 segments: A,B,C and D. Assume one of the networks in the
ensemble covers k = 3 of those segments, e.g. A,B and D. Furthermore, assume
K = 2 signals impinge the array, associated with classes A and C according to the
procedure discussed in section 3.1. The true class for this observation would be
(ABD)=(100), i.e. class 4 (transforming the binary sequence to a decimal number).



20 CHAPTER 3. METHOD

The DOA associated with segment C does not affect the target output, as this seg-
ment is not covered by the considered network. If multiple DOAs would have been
associated with segment A, the target vector would have been the same.

In the weighted version of the loss function, the loss of each of the 2k classes is
scaled by some factor. The reason for this is explained in the next paragraph.

Class imbalance

Before explaining the effect of assigning weights to the loss for each class individu-
ally, the variable KNN is introduced. It is defined as the number of segments, out of
the k segments considered a by certain NN, in which at least one signal impinges
the array. It holds that 0 ≤ KNN ≤ max(k,K). Considering k = 3 as an example,
it follows that both KNN = 0 and KNN = 3 each represent 1 class: (000) and (111)
respectively. On the other hand, KNN = 1 and KNN = 2 are both associated with
3 classes, being [(001), (010), (100)] and [(011), (101), (110)]. Since the labelsets
are generated randomly, a single observation could correspond to different values
of KNN for different networks.

The spatial domain is divided in M segments (Fig. 3.1). In order to accurately
estimate the DOAs of K signals, it is required that K � M . Assuming K signals
impinge the array from DOAs φ1, . . . , φK which are i.i.d. random variables of the
uniform distribution U(φmin, φmax), it holds that

P (KNN = 0) =

(
M − k
M

)K
(3.9)

with k as defined in section 3.2.2 and P (KNN = 0) being the probability that a certain
observation is associated with KNN = 0. It can be seen that a large M and a small
k and/or K result in a P (KNN = 0) close to 1. This implies that the majority of the
observations will be associated with the single class corresponding to KNN = 0, i.e.
(000). This phenomenon is called class imbalance.

The latter complicates the learning, as minorities are often neglected in classi-
fication problems suffering from class imbalance [17]. One way to counteract this
problem is to assign weights to the loss for erroneous predictions within the training
stage. By making the weights inversely proportional to the support of the classes
in the training set, all classes contribute equally much to the loss and the learning
algorithm is forced to also focus on the minorities. More advanced techniques for
dealing with class imbalance exist, see e.g. [17]. A future investigation could be to
determine if the performance of the ML framework could be improved using such
techniques.

In chapter 4, the performance of the proposed framework is evaluated and com-
pared to a number of benchmarks using various simulation scenarios.



Chapter 4

Simulations and results

Various simulations were conducted to assess the performance of the ML frame-
work described in chapter 3. The framework is compared against a number of
benchmarks by means of performance metrics such as the root-mean-square er-
ror (RMSE) and the probability of resolution. Exact definitions of the performance
metrics and the benchmarks are presented in appendices A and B respectively.

Section 4.1 contains a description of the simulation settings which apply to all
simulations. Then, a scenario is considered in which K is constant over all obser-
vations in section 4.2. This constraint is released in the simulations presented in
section 4.3.

4.1 General simulation settings

Configuration

The antenna array used within all simulations is an ULA consisting of N = 8 isotropic
elements. The spacing d between the elements is λ/2. The array is positioned along
the x-axis, according to the definitions presented in Fig. 2.1. The DOAs of the K

signals impinging the array are referred to as φ1, . . . , φK , with φmin < φ1 < · · · <
φK < φmax. The configuration is visualised in Fig. 4.1.

Rx1 Rx2 Rx3 Rx8

λ/2
x

y

TxK

φ1

φK
Tx1

φminφmax

Figure 4.1: K signals impinge an 8-element ULA.
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Framework

The considered spatial domain [φmin, φmax] is [30◦, 150◦]. It covers 120◦, which is
common in hexagonal cellular networks. The RAkEL parameter k, i.e. the amount
of grid segments covered by each individual NN, is set to k = 3. This is suggested
in [15], as it is considered to be a good trade-off between performance and compu-
tational complexity. The number of layers L (as described in section 3.2.3) equals
5, such that M < m < 2M , with M and m as defined in equations 3.1 and 3.2
respectively. The latter is another suggestion in [15], as they observed that increas-
ing m to a value larger than 2M does not improve classification performance any-
more. The border perturbations are i.i.d. random variables of the uniform distribution
U(−∆φ/4,∆φ/4). The minimum width of a segment therefore equals ∆φ/2.

Data

The data used for training and testing the ensemble of NNs is created using the data
model presented in Chapter 2. The estimated sensor covariance matrices used as
inputs to the NNs are computed from T = 100 snapshots. The DOAs φ1, . . . , φK

of the training observations are i.i.d. random variables of the uniform distribution
U(φmin, φmax), unless stated otherwise. The SNR of the training observations is as-
sumed to be a random variable following a discrete log-uniform distribution. In other
words, the SNR expressed in dB has −20,−19, . . . , 30 dB as possible values, all with
equal probability. The SNR of the test observations is either a log-uniform distributed
random variable as well (with a step size of 5 dB), or a fixed value. This varies over
the different simulations. If multiple signals impinge the array, they are assumed to
have the same power and therefore the same SNR, as already mentioned in sec-
tion 2.2.

Machine learning

The input layer of all NNs consists of N2 = 64 neurons, whereas 2k = 8 neurons are
in the output layer. The layout of the hidden layers, determined empirically using a
method described in [12], differs over the various simulations. The learning rate of
the Adam optimizer is set to 0.001, i.e. the default value as suggested in [16]. The
optimization was performed on mini-batches of 32 observations. Of all observations
in the training set, 5% is set aside as validation data. The validation data is used
for calibrating the threshold of the peak detection algorithm as well. The early stop-
ping criterion employed to counteract overfitting is configured such that training is
terminated if the validation loss did not decrease in the last 3 epochs.
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4.2 Constant, unknown number of sources

In this section, it is assumed that K = 2 for all observations in both the training and
the test set. The latter is unknown to the estimator.

The results presented in sections 4.2.1 and 4.2.2 are obtained using a framework
with a grid resolution of ∆φ = 2◦. The DOAs for the observations in the test set used
in section 4.2.1 are uniformly distributed random variables as well. In section 4.2.2, a
different test set is used in order to investigate closely spaced sources in more detail.
In section 4.2.3, ∆φ is decreased to 0.8◦ to investigate the impact of increasing the
resolution of the framework. Finally, section 4.2.4 contains a discussion of how the
framework could be adapted to the data if the DOAs are not uniformly distributed.

4.2.1 Uniformly distributed random DOAs

The results presented in this section are obtained using a grid resolution of ∆φ =

2◦. Given that φmax − φmin = 120◦, L = 5 and k = 3, this yields an ensemble of
m = 100 NNs (equations 3.1 and 3.2). All NNs in the ensemble have 2 hidden
layers, one of 64 and one of 36 neurons. Based on empirical research presented in
appendix C.1.1, it was observed that training on 105 observations is sufficient for this
specific scenario. The test set consists of 1.5× 104 observations for each evaluated
SNR.

A detailed analysis of the classification performance of the NNs is presented in
appendix C.1.2. The analysis confirms that the classifiers suffer from a significant
class imbalance, as about 90.3% of the observations are associated with KNN = 0.
This was expected based on equation 3.9. Furthermore, it is observed that the
majority of incorrect predictions for observations associated with KNN > 0 implies
that a label is not assigned where it should have been, rather than vice versa. This is
advantageous, as this merely implies that spectrum peaks are lower than they would
have been with perfect classifiers. As the threshold of the peak detection algorithm is
adapted to the spectra, the ML framework could, theoretically, compensate for this.
Whether it does, is evaluated using a metric relevant in the field of DOA estimation,
being the RMSE (appendix A.2). The RMSE is evaluated for both the ML framework
and the MUSIC algorithm (appendix B.3). The resolution of the MUSIC algorithm is
0.1◦.

The definition of the RMSE is such that it can only be computed if K̂ = K, i.e.
if the estimated number of signals equals the true number of signals. This makes
the probability that this is the case, P (K̂ = K), a relevant parameter to consider.
For the ML framework, K̂ is defined as the amount of spectrum peaks higher than
the threshold (section 3.2.5), meaning that it is obtained after computing the spa-
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tial spectrum. However, the MUSIC algorithm (and many other DOA estimation
algorithms) requires an estimate of K before actually being able to start the compu-
tations. The probability P (K̂ = K) is therefore evaluated for both the ML framework
and two subspace order estimators: the MDL and AIC [4] (appendix B.1). For ease
of notation, they will be referred to as, P (K̂MDL = K) and P (K̂AIC = K) respec-
tively, whereas P (K̂ML = K) denotes P (K̂ = K) for the ML framework. The RMSE
and the P (K̂ = K), plotted against the SNR, are shown in Fig. 4.2.
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Figure 4.2: DOA estimation metrics, K = 2, 1.5× 104 observations per SNR.

As can be observed in Fig. 4.2a, P (K̂ML = K) increases with the SNR of the ob-
servations, until it stabilizes at 93% for SNRs of -5 dB and higher. In appendix C.1.3,
it is shown that the average spacing between the DOAs in observations for which
K̂ML 6= 2 equals 2.8◦ or less (2.4◦ on average) for SNRs of -5 dB and higher,
whereas the average spacing between the DOAs of all observations equals 40◦

(appendix D.2). It can therefore be concluded that the remaining 7% is dominated
by closely spaced sources which cannot be resolved because of the finite resolution
of the framework. The ML framework outperforms the AIC estimator for all SNRs,
whereas P (K̂MDL = K) > P (K̂ML = K) for SNRs of at least 5 dB. Averaged over all
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SNRs, the ML framework correctly estimates the number of signals in 81.8% of the
cases, contrary to 69.8% for the MDL. The difference of 12% mainly originates from
SNRs smaller than -5 dB. Looking at the RMSE of the framework for these SNRs,
(Fig. 4.2b), it can be seen that it approaches 40◦. This is the RMSE that would be
obtained when estimating the DOAs using sorted uniformly distributed random vari-
ables (appendix D.1): (φmax − φmin)/

√
3(K + 1) = 120◦/

√
3(2 + 1) = 40◦. In other

words, the DOA estimates at these SNRs hardly contain information.
For SNRs of -5 dB and higher, the RMSE of the DOA estimates of the ML frame-

work is below 1◦. For SNRs of 0 dB and higher, it is below ∆φ/
√

12 ≈ 0.58◦, which
is the RMSE that would be obtained when employing the framework in combination
with ideal classifiers without the border perturbations introduced in section 3.2.4 (ap-
pendix D.3). This suggests that the border perturbations benefit the DOA estimates,
which is confirmed by running another simulation of the same scenario with border
perturbations turned off (appendix C.1.4). The difference between the two frame-
works in terms of the RMSE is between 0.1◦ and 0.2◦ for SNRs of 5 dB and higher,
in favour of the framework with perturbed borders.

Returning to the RMSE presented in Fig. 4.2b, it can be observed that three
graphs are plotted for the MUSIC algorithm. These graphs are obtained by comput-
ing the RMSE for

1. all observations, i.e. assuming some perfect K-estimator exists;

2. all observations for which K̂ML = K = 2;

3. all observations for which K̂AIC = K = 2.

It was decided to use the AIC instead of the MDL as P (K̂AIC = K) > 0 for all SNRs.
When considering graph 3 from the list above, i.e. the red graph in Fig. 4.2b, it
can be seen that the difference between the ML framework and MUSIC, in terms
of the RMSE, is at least a factor 10 for all SNRs of -5 dB and higher (in favour of
the ML framework). Combining this with Fig. 4.2a, it can be concluded that the ML
framework outperforms the combination MUSIC + AIC: neglecting the -20 dB SNR
for which the RMSEs of both algorithms approach the RMSE obtained by random
guessing, it both holds that P (K̂ML = K) > P (K̂AIC = K) as well as that the RMSE
is lower for the ML framework than for MUSIC.

It is important to realise that the observations for which K̂ML = 2 and those for
which K̂AIC = 2 are not the same, as can be concluded from Fig. 4.2a. A more
fair comparison between MUSIC and the ML framework is therefore obtained by
applying MUSIC to those observations for which K̂ML = 2 (graph 2 from the list
above, i.e. the blue graph in Fig. 4.2b), such that the graphs are based on the
exact same data. The RMSE for the estimates of these observations approaches
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the RMSE of the ML framework with an increasing SNR. For an SNR of 30 dB the
difference is only 0.2° , still in favour of the ML framework.

After a closer inspection of these results, it was observed that observations with
closely spaced sources dominate the RMSEs for the MUSIC algorithm presented in
Fig. 4.2b. The latter is explained using a fictitious example, visualised in Fig. 4.3.

φ

ML threshold

φ̂1 φ̂2

φ1 φ2

MUSIC

ML & MUSIC

Figure 4.3: Closely spaced DOAs result in a larger RMSE for MUSIC compared to
the ML framework.

The DOAs in this example, φ1 and φ2, are closely spaced. Due to the noisy
estimate of the sensor covariance matrix employed by both MUSIC and the ML
framework and the finite resolution that comes with both methods, the desired peaks
in the spatial spectrum merge into a single peak such that the DOAs cannot be
resolved. It is assumed that this applies to the spectra computed by both the ML
framework and the MUSIC algorithm.

In this situation, the ML framework will return only a single DOA estimate (φ̂1) as
there is only one peak in the spectrum which is higher than the threshold. However,
the MUSIC algorithm is told by some other algorithm that K = 2 signals impinge
the array. It will therefore select the 2 highest peaks of the spectrum and return their
arguments as the DOA estimates (φ̂1, φ̂2), even if the second peak is much lower and
located at an irrelevant angle. The latter results in large estimation errors dominating
the RMSE.

If, for an experiment with closely spaced DOAs, the ML framework successfully
resolves the 2 signals whereas MUSIC does not, this will affect the RMSE for MUSIC
because of the above. However, when the opposite applies, the experiment is dis-
carded as K̂ML 6= K such that no RMSE can be computed. The latter applies to the
7% of the observations with SNRs of -5 dB and higher for which the average DOA
spacing is 2.8◦ or less.

It can be concluded that the different approaches of MUSIC and the ML frame-
work regarding none-resolvable closely spaced DOAs complicates the comparison
of both algorithms. The next paragraph is therefore devoted to closely spaced
sources specifically.



4.2. CONSTANT, UNKNOWN NUMBER OF SOURCES 27

4.2.2 Closely spaced sources

In this paragraph a symmetric scenario is considered in which φ1 = 90 − δ degree
and φ2 = 90 + δ degree. The spacing between the two signals, φ2 − φ1 = 2δ is
increased gradually. Note that this only applies to the test data. The training data is
as described in section 4.2.1. Besides the metrics RMSE and P (K̂ = K), the prob-
ability of resolution is evaluated as well (appendix A.3). The latter metric combines
the estimation error and P (K̂ = K) into a single number. Two different SNRs are
considered, being -5 dB and 15 dB.

The results are presented in Fig. 4.4. Each data point is the average of 5000
observations. Note that the upper x-axes show the DOA spacing relative to the null-
to-null beamwidth (BWNN) of the antenna array. Conventional methods such as the
beamscan method cannot resolve DOAs with spacings smaller than BWnn/2 [18].
For the array employed in this work, BWnn ≈ 28.96◦ (appendix A.3). The vertical grid,
shown in all images, represents the spatial grid which is inherent to the framework
(neglecting the perturbed borders). In other words, each vertical line indicates that
the spacing between the DOAs has increased by 2∆φ = 4◦. The grid resolution is
important, as two closely spaced sources can only be resolved if they are separated
by at least one grid segment, as explained in section 3.2.4.

In Fig. 4.4a (-5 dB) and Fig. 4.4b (15 dB), P (K̂ = K) is shown for both the ML
framework as well as for the benchmarks MDL and AIC. Comparing both images, it
can be observed that both the MDL and the AIC reach their maximum P (K̂ = K) at
smaller separations for the higher SNR. To a lesser extent, this also applies to the
ML framework: P (K̂ = K) = 1 for spacings larger than 7.4◦ (-5 dB) and 5.9◦ (15
dB). For the 15 dB case, P (K̂ML = K) rises from 0 to 1 as soon as the DOAs are
separated by at least 1 grid segment (in this case 2 segments, due to symmetry).
The fact that the rise of the edge initiates at slightly smaller separations could be
explained by the border perturbations and/or erroneous predictions of the NNs. The
slope of the graph of the -5 dB case is more gradual. For this SNR, P (K̂ML =

K) > 0 for all evaluated separations, even those smaller than 2∆φ. This does not
imply that the ML framework performs better for the -5 dB case though, as it was
already reasoned in section 3.2.4 that resolving DOAs with such small separations
is theoretically impossible if the classifiers are perfect. The RMSE confirms that
false predictions of the classifiers are the cause of the fact that P (K̂ML = K) > 0 for
separations smaller than 2∆φ.

The RMSEs for both considered SNRs are shown in Fig. 4.4c and Fig. 4.4d. The
ML framework is compared to MUSIC and the Cramér-Rao lower bound (CRLB),
which is the minimum variance for unbiased estimators (in fact, the square root
of the CRLB is shown). The MUSIC algorithm was applied to all observations in
the test set, i.e. assuming some perfect K estimator exists. Looking at RMSE
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Figure 4.4: ML framework performance vs. signal separation for SNRs of -5 and 15
dB. (a),(b), P (K̂ = K); (c),(d), RMSE; (e),(f) probability of resolution.
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of the ML framework for the -5 dB case, it can be observed that it is bigger than
1◦ for separations smaller than 2∆φ (i.e. left of the second vertical grid line). As
the resolution of the framework ∆φ = 2◦, the maximum RMSE would be 1◦ for
ideal classifiers. It can therefore be concluded that P (K̂ = K) > 0 for these small
separations results from erroneous predictions of the NNs. Despite these errors, the
ML framework clearly outperforms MUSIC for separations smaller than 0.4BWnn.
For larger separations, the framework seems to be limited by its grid resolution of
2◦. The fact that the RMSE of the ML framework is lower than the CRLB indicates
that the framework is biased. This is inherent to the discrete grid on which the
framework is based, as DOA estimates will either be the centre of a grid segment,
or some angle close to the border between two classes.

For the 15 dB case, MUSIC outperforms the ML framework (in terms of the
RMSE) for nearly all separations. The impact of the finite resolution of the frame-
work can be observed, as the peaks and valleys in its graph align with the segment
borders and segment centres respectively. However, the RMSE is below 1◦ for all
peaks, confirming once more that the border perturbations benefit the DOA esti-
mates. A maximum improvement of 0.4◦ is observed (0.6◦ instead of 1◦ at the 4th

vertical grid line). Finally it can be seen that the RMSE for MUSIC cannot follow the
CRLB for separations larger than approximately 0.3BWnn. This can be explained by
the 0.1◦ resolution of the scanangles at which the MUSIC spectra are evaluated.

The probability of resolution is depicted in Fig. 4.4e and Fig. 4.4f. For the -5 dB
scenario, the ML framework achieves 100% at DOA spacings of at least 7.4◦, con-
trary to 11.6◦ for the MUSIC algorithm. For separations smaller than 0.1BWnn, the
DOAs are never resolved. However, P (K̂ML = K) > 0 for these spacings, implying
that the estimates are not accurate enough. The reader is referred to the definition
of the probability of resolution (appendix A.3) for a formal definition of ’accurate’.
For the 15 dB case, the ML framework resolves both signals in all observations if
the spacing is at least 5.9◦, contrary to 3.5◦ for MUSIC. Note that the probability of
resolution is identical to P (K̂ML = K) (Fig. 4.4b) for this SNR. In other words, if
the source number is estimated correctly, the DOA estimates are accurate as well.
Note that the results shown for MUSIC assume that a perfect K-estimator exists.
In practice, MUSIC can only be applied in combination with, e.g. a subspace order
estimator, meaning that the probability of resolution could be lower than shown here.

It can be concluded that the ML framework outperforms the MUSIC algorithm
regarding closely spaced sources for an SNR of -5 dB, whereas the opposite holds
for 15 dB. For the latter SNR, the resolution of the framework seems to be a limiting
factor, as both P (K̂ML = K) and the probability of resolution rise from 0 to 1 as soon
as the spacing exceeds 2∆φ. Whether increasing the resolution could improve the
performance of the ML framework is presented in the next section.
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4.2.3 Increasing the grid resolution

Based on the results presented in sections 4.2.1 and 4.2.2, it was decided to investi-
gate if increasing the resolution of the framework, i.e. decreasing ∆φ, could increase
its performance. Decreasing ∆φ implies an increased amount of grid segments M
(equation 3.1). Considering uniformly distributed random DOAs with K = 2 (as in
section 4.2.1), it follows that P (KNN = 0) increases as well (equation 3.9). In other
words, increasing the resolution of the framework comes with an increase of the
class imbalance. Less observations will therefore be associated with the minority
classes, i.e. classes of the clusters KNN = 1 and KNN = 2, if the size of the train-
ing set is kept the same. Learning an accurate mapping for these classes therefore
becomes more and more complex with smaller values of ∆φ.

Despite an increase of M , the task of each classifier (in this work NN) in the
ensemble remains the same: picking the correct class out of 2k possible classes.
In other words, if the networks in a framework with increased resolution achieve
similiar behaviour as the networks in the 2◦ resolution framework, the RMSE would
automatically decrease. Furthermore, it would imply that closely spaced DOAs could
be resolved for smaller spacings, i.e. that the graph representing the ML framework
in Fig. 4.4f shifts to the left. Assuming the latter holds, it can be observed that a grid
resolution of ∆φ = 0.8◦ would be sufficient to outperform the MUSIC algorithm in
terms of the probability of resolution at an SNR of 15 dB.

In Fig. 4.5, two frameworks are compared: the framework with a resolution of
∆φ = 2◦ employed in sections 4.2.1 and 4.2.2, and a ’high resolution’ framework
with ∆φ = 0.8◦. Based on empirical research, it was decided to increase the training
set for the latter framework to 4× 105 observations. Furthermore, the network layout
is increased to 3 hidden layers, consisting of 84, 84 and 36 neurons.

Besides the conventional DOA estimation metrics RMSE and P (K̂ = K), the
performance of both frameworks is evaluated by means of the metrics precision and
recall as well (appendix A.1). These are measures for the classifiers’ exactness and
completeness respectively. In other words, they are an indication of the quality of the
predictions performed by the NNs, before they are converted to DOA estimates. By
definition, both metrics are computed for each of the 2k classes individually. Classes
within a cluster of a certain KNN share that one or more signals impinge the array
from DOAs associated with KNN of the k segments. However, the position of these
segments in the spatial domain is random. It was therefore decided to average the
metrics for all classes within a cluster by means of a macro average (appendix A.1).
As these metrics are computed for each network individually, another average is
applied such that a single number is obtained for a certain KNN at a certain SNR.
Both metrics are only shown for the clusters KNN = 0 and KNN = 1, as 99.8% of
the observations corresponds to one of those clusters if ∆φ = 2◦ and even more for
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Figure 4.5: Performance metrics for frameworks of ∆φ = 2◦ and ∆φ = 0.8◦.

the higher resolution (appendix D.4). The precision and recall are shown in Fig. 4.5a
and Fig. 4.5b respectively.

It can be observed that both the precision and the recall for observations corre-
sponding to KNN = 0 are at least 97% for SNRs of -5 dB and higher, for both res-
olutions. A high performance was to be expected, as classifiers are biased towards
the majority class in problems with a significant class imbalance [17]. It implies that
the framework is good at estimating at which angles signals do not impinge the ar-
ray. However, the classes of the cluster KNN = 1 are most important to decide from
which angles signals do impinge the array, as correct predictions for observations
corresponding to these classes will result in peaks in the spectra at the correct an-
gles. For classes of this cluster, the precision of the 0.8◦ resolution framework is
above 78.4% for SNRs of 10 dB or higher, with a maximum of 80.7% for an SNR of
30 dB. The NNs in the low resolution framework achieved a precision above 86.2%
for SNRs of at least 10 dB. A similar trend is observed for the recall, although the
differences are bigger. For SNRs of at least 5 dB, the recall was above 82.5% for the
low resolution framework, whereas it is between 63.2% and 68.7% after increasing
the resolution.

To determine if the decreased precision and recall have an impact on the qual-
ity of the DOA estimates, the RMSE and P (K̂ = K) are evaluated. In Fig. 4.5c, it
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can be observed that increasing the resolution has reduced the RMSE, with a dif-
ference of about 0.25◦ for SNRs of 10 dB and higher. However, the minimum RMSE
achieved (0.25◦) is not below the RMSE for perfect classifiers without perturbations,
∆φ/
√

12 = 0.8◦/
√

12 ≈ 0.23◦. The low resolution framework did achieve this limit
(0.50◦ vs. 0.58◦, appendix D.3). The probability that K̂ = 2 (Fig. 4.5d) improved as
well, as it increased by about 3% for SNRs of 0 dB and larger. The fact that it de-
creased for the lowest SNRs does not matter, as the RMSE indicates that the DOA
estimates at these SNRs do not contain information anyway. Note that for SNRs
of 0 dB and higher, K̂ = 2 for more than 95% of the observations with and RMSE
below 0.5◦, while for the same SNRs, the precision is between 65.1% and 80.7%
and the recall between 53.9% and 68.7%. Since each grid segment is covered by
L = 5 classifiers and the threshold of the peak detection algorithm is adapted to the
data, the framework successfully compensates for the relatively low performance of
the classifiers.

The origin of the increase in P (K̂ = K) can be explained by investigating the
probability of resolution for closely spaced sources once more. It is evaluated for the
frameworks of both resolutions, as well as for the MUSIC algorithm. The results are
shown in Fig. 4.6.
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Figure 4.6: Probability of resolution for various ∆φ, SNR = 15 dB.

The two vertical grid lines represent a DOA spacing of 2∆φ. It can be observed
that, similar to the low resolution framework, the probability of resolution for the
high resolution framework rises from 0 to 1 as soon as the DOA separation has
increased beyond 2∆φ. The high resolution framework achieves a 100% probability
of resolution for spacings larger than 3.2◦, contrary to 5.9◦ for the low resolution
framework. The high resolution framework outperforms the MUSIC algorithm as
well (100% probability of resolution for spacing larger than 3.5◦), whereas this only
applied to the lower SNR (-5 dB) for the 2◦ framework (section 4.2.2). The biggest
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difference between MUSIC and the high resolution ML framework is obtained at a
DOA spacing of 2◦, where the ML framework achieves a probability of resolution of
63%, contrary to 11% for MUSIC.

It can be concluded that the performance of the ML framework can be increased
by increasing its resolution, although this is at the expense of more training data
being required, at least for the data, learning algorithm, training strategy, etc. con-
sidered here. A recommendation for the future would be to investigate if the need
for extra training data could be diminished by advanced class imbalance techniques
such as oversampling or synthetic data generation [17]. Furthermore, it would be
useful to find a relation between the performance of the classifiers, e.g. in terms of
the classification metrics presented in appendix A.1, and the DOA estimation perfor-
mance metrics RMSE and P (K̂ = K). The results presented in this section (Fig. 4.5
specifically) indicate correlation between the two, but further research is required to
determine the impact of, e.g., the number of layers L in the framework. If such
a relation is known, one could use the validation set to determine (already during
training stage) if satisfactory DOA estimation performance will be achieved for the
considered settings (grid resolution, training strategy, etc).

4.2.4 Laplace distributed random DOAs

In this final paragraph of the current section, the DOAs of the signals are no longer
assumed to be uniformly distributed over the spatial domain. Instead, it is assumed
that they are Laplacian distributed, as this is the most common model for the angular
dispersion at a base station [19]. In [20], it is stated that the root-mean-square (rms)
angular spread σ for line-of-sight (LOS) situations in a microcell is typically between
5◦ and 20◦. With the distribution being centred around the mean µ, the pdf f(x) of
the Laplace distribution is defined as

f(x) =
1√
2σ

exp

(
−
√

2|x− µ|
σ

)
(4.1)

with support x ∈ R. Its cdf F (x) is defined as

F (x) =


1
2

exp
(√

2(x−µ)
σ

)
if x ≤ µ

1− 1
2

exp
(
−
√

2(x−µ)
σ

)
if x > µ

(4.2)

The cdf has the same support as the pdf, i.e. all real numbers. However, in the given
application, only values in the domain [φmin, φmax] will be used. The pdf and cdf are
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therefore to be truncated, which is done according to

ftr(x) =
f(x)

F (φmax)− F (φmin)
(4.3a)

Ftr(x) =
F (x)− F (φmin)

F (φmax)− F (φmin)
(4.3b)

with ftr(x) and Ftr(x) being the truncated pdf and cdf respectively.
The Laplace distribution implies that signals are more likely to impinge the array

closer to the mean µ = (φmin + φmax)/2 of the distribution. For example, for an rms
angular spread of σ = 20◦, with φmin = 30◦, φmax = 150◦ and µ = 90◦, it can be
computed using equations 4.1-4.3 that 50% of the DOAs are within the inner 19.2◦

of the spatial domain, and 90% is within the inner 61.7◦. For smaller rms angular
spreads, this effect is even stronger. If multiple signals impinge the array, they will be
closer to each other on average. For the same angular domain, the average spacing
between 2 signals equals 19.7◦ for the Laplace distribution (σ = 20◦), contrary to 40◦

for the uniform distribution.
It is suggested to adapt the framework to the distribution of the DOAs. By defining

an equally spaced grid of M pieces between 0 and 1, and relating each point of this
grid to a certain angle within the spatial domain via the inverse truncated cdf, an
irregular spatial segmentation is obtained. This procedure is visualised in Fig. 4.7.
The irregular segmentation has a number of advantages compared to a uniform
segmentation. First of all, the class imbalance is minimized, as the probability that
the DOA of a signal is associated to a certain segment is equal for all segments, i.e.
1/M . Furthermore, for a certain number of segments M , the width of the segments
will be smaller (compared to a uniformly segmented framework using the sameM ) at
angles where most of the signals impinge the array. This could, at least theoretically,
result in more accurate DOA estimates for the majority of the signals. In addition,
it could increase the probability of resolution for closely spaced sources, which will
appear more frequent.

For example, the framework employed in sections 4.2.1 and 4.2.2 had a resolu-
tion of ∆φ = 2◦, which results in M = 120◦/2◦ = 60 segments. Consider another
framework of 60 segments, adapted to Laplace distributed data with a 20◦ rms an-
gular spread. It can be computed that for angles 69.4◦ < φ < 110.6◦, the segments
will have a width less than 2◦. As a result, the DOAs could could theoretically be
estimated with smaller estimation errors for 78% of the observations if a single sig-
nal impinges the array. The opposite applies to the remaining 22%. Note that latter
percentage decreases if the angular spread of the Laplace distribution decreases.

The latter example was simulated to verify the idea presented above. Two signals
with Laplacian distributed random DOAs (σ = 20◦,µ = 90◦) are assumed to impinge
the array. The framework is constructed with M = 60, such that it can be compared
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Figure 4.7: Spatial segmentation based on the CDF of the Laplace distribution.

to the framework presented in sections 4.2.1 and 4.2.2. For both frameworks, it
holds that k = 3 and L = 5, which implies that the number of networks equals
m = 100. The NNs in the Laplace-based framework consist of 3 hidden layers
(84,84,36 neurons). The probability of resolution for both frameworks, as well as for
the MUSIC algorithm, is presented in Fig. 4.8. Again, the vertical grid lines indicate
where the spacing has increased beyond 2 grid segments.
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Figure 4.8: Probability of resolution for ML frameworks with M = 60 segments,
adapted to the DOA distributions, SNR = 15 dB.

It can be observed that the Laplace based framework outperforms both the
MUSIC algorithm and the uniformly segmented framework in terms of its capability
to resolve closely spaced sources. The Laplace based framework resolves both sig-
nals successfully for all observations with spacings of 0.09BWnn ≈ 2.6◦ and larger.
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MUSIC achieves a 100% resolution probability at 0.13BWnn ≈ 3.8◦. The uniform
framework with a resolution of ∆φ = 2◦ resolves all signals as soon as the spacing
is larger than 5.9◦ (Fig. 4.6).

A number of important remarks are to be made. Firstly, the Laplace-based frame-
work was trained on 2× 105 observations, contrary to 1× 105 for the uniform frame-
work. It could be that a uniform framework with a smaller ∆φ could be employed
when increasing the training set to 2 × 105 observations. However, the 0.8◦ resolu-
tion framework presented in section 4.2.3, trained on 4× 105 observations, does not
outperform the Laplace based framework in terms of the probability of resolution for
closely spaced sources either. Furthermore, the increased performance near the
centre of the domain is at the expense of the estimation accuracy for DOAs close to
its edges. Segment 1 and 60, according to the definition in Fig. 3.1, have a width
of 16.8◦ and will therefore result in large estimation errors. In practice, a certain re-
quired maximum error (in degrees) for a certain part of the spatial domain, together
with the rms angular spread, will determine the required number of grid segments
M . Whether the framework actually achieves satisfactory performance for this re-
quired M depends on the training strategy and the amount of available data, where
the need for additional data might be diminished by improving the strategy.

The results presented in Fig. 4.8 indicate that adapting the framework to the
data has a significant effect on its performance for the given dataset. The MUSIC
algorithm does not have this freedom, such that its DOA estimates for a certain ob-
servation are independent of all other observations. For the current training strategy
(section 3.3.3), the amount of required training data seems to increase with an in-
creased class imbalance (section 4.2.3). Adapting the segmentation to the distribu-
tion of the DOAs is therefore recommended if a limited amount of data is available.
Whether this also benefits the DOA estimates depends on the requirements of a
certain application.

4.3 Variable, unknown number of sources

The number of signals K impinging the array was constant for all observations in
section 4.2. In this final section, this constraint is released. Instead, K ∼ U(1, N−1),
i.e. K = 1, . . . , N−1. The antenna array is the same as in the previous section, such
that N = 8. The DOAs of the signals are again i.i.d. random variables of the uniform
distribution U(φmin, φmax). This applies to observations in both the train and test set.
The networks in the ensemble are trained on 106 observations. They consist of 4
hidden layers of 84, 84, 84 and 50 neurons respectively. As before, all signals within
an observation have the same SNR. The SNR is a random variable as well, with the
same distribution as in section 4.2.
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4.3.1 Uniformly distributed random DOAs

Similar to the 2 signal scenario presented in section 4.2, the RMSE is evaluated in
combination with P (K̂ = K). The test set has been increased to 5×104 observations
for each SNR. The results are visualised in Fig. 4.9.
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Figure 4.9: DOA estimation metrics, K ∼ U(1, 7), 5× 104 observations per SNR.

The RMSE presented in Fig. 4.9b shows many similarities with the Fig. 4.2b:
again the RMSE for the ML framework is at least a factor 10 smaller for SNRs of 0
dB and larger, compared to the MUSIC algorithm employed in combination with the
AIC or some idealK-estimator. Furthermore, MUSIC approaches the ML framework
when applying it only to observations for which K̂ML = K. An explanation of this
behaviour was presented in section 4.2.1. Contrary to the 2-signal case, the RMSE
of the ML framework does not get below ∆φ/

√
12 ≈ 0.58◦, although the differences

are within 0.2◦ for SNRs of 0 dB and larger. The latter will be analysed in more detail
later in this section.
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Looking at the plot of P (K̂ = K) vs. SNR (Fig. 4.9a), it can be seen that this
metric increases with the SNR, until it stabilizes at 55% for SNRs of 0 dB and higher.
A similar trend was observed in the 2 signal case, although the framework achieved
a P (K̂ = K) of 93% for SNRs of -5 dB and higher. The reader is reminded of the
fact that the observations for which K̂ 6= 2 were observations with closely spaced
sources, i.e. 2.4◦ on average for an SNR of -5 dB and higher. With an increased
amount of signals impinging the array, the average spacing between them decreases
(appendix D.2). The latter complicates the estimation as the resolution of the frame-
work, ∆φ = 2◦, is finite. A lower P (K̂ML = K) for this scenario, relative to the
2-signal scenario (Fig. 4.2a), was therefore to be expected. The subspace order
estimators compute K̂ from the eigenvalues of estimated sensor covariance matrix
and therefore they do not suffer from a finite resolution. As a result, both algorithms
outperform the ML framework for SNRs higher than 0 dB. In fact, the MDL achieves
90% accuracy for an SNR of 30 dB.

In the remainder of this section, the relation between the performance of the ML
framework and the number of signals K is investigated. This is done using a test set
of 1.5 × 105 observations of a 15 dB SNR. At this specific SNR, P (K̂ = K) equals
55.6% for the ML framework, contrary to 70.8% for the AIC and 77.7% for the MDL
(Fig. 4.9a). To investigate if this is indeed solely caused by the finite resolution of the
framework, the distribution of K̂ for different values of K is evaluated. This is done
by means of a heatmap, which is computed for both the ML framework as well as
for the MDL. They are shown in Fig. 4.10. The heatmaps are normalized row-wise,
such that each row adds up to 100%.
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Figure 4.10: K vs. K̂, SNR = 15 dB.
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The diagonal of the heatmaps can be interpreted as the metric P (K̂ = K)×100%.
This number decreases with an increasing value of K for both methods. Both
achieve a 100% accuracy when only one signal impinges the array. However, the
ML framework correctly estimates the number of signals in only 3.3% of the cases if
K = 7, contrary to 34.5% for the MDL. Furthermore, it can be observed that ifK = 2,
this is correctly estimated by the ML framework in 93.3% of the observations. In the
2 signal scenario, this was the case in only 92.8% of the observations (Fig. 4.2a). It
is expected that this is caused by the increased training set (106 instead of 105 ob-
servations) in combination with the increased network layout (4 instead of 2 hidden
layers).

It was already mentioned that the average spacing between neighbouring DOAs
decreases if K increases. A certain spacing between all DOAs is required (also the-
oretically) because of the finite resolution of the framework. The probability that the
smallest spacing (denoted as ψmin to prevent confusion with φmin) between neigh-
bouring uniformly distributed random DOAs is bigger than this required spacing ψ

can be computed as

P (ψmin ≥ ψ) =

(
1− (K − 1)ψ

(φmax − φmin)

)K
. (4.4)

In section 4.2.2 it was shown that if K = 2 and ∆φ = 2◦, P (K̂ = K) = 1 for
spacings larger than 0.21BWnn ≈ 5.9◦ (Fig. 4.4b). Assuming that this also applies
if K = 7, it would hold that P (ψmin ≥ 5.9◦) × 100% ≈ 8%. In other words, even if
the ensemble of NNs would achieve the same performance (in terms of P (K̂ = K)

versus DOA spacing) as the ensemble discussed in the previous section despite
the added complexity (i.e. a varying K), K̂ would be correct in only 8% of the
observations with K = 7, just because of the construction of the framework itself.

However, instead of 8%, K̂ equals K in only 3.3% of the cases. Furthermore, it
was already observed in Fig. 4.9b that the lower bound for perfect classifiers without
border perturbations ∆φ/

√
12 was not achieved for any SNR, contrary to the 2-

signal scenario. Both phenomena could be explained by erroneous predictions of
the classifier ensemble. To investigate if this is indeed the case and how this relates
to the number of signals K, the precision and recall are evaluated again. Both
metrics are plotted against K in Fig. 4.11. The confusion matrix from which these
metrics are derived is shown in appendix C.2.1. This matrix shows that only 38 of
the 1.5 × 105 observations, averaged over all NNs in the ensemble, are associated
to KNN = 3. It was therefore decided to only show the metrics for KNN = 0, . . . , 2.

It was already shown for the 2 signal scenario that the support of training (and
test) observations associated with a certain KNN decreases with an increasing KNN

(appendix C.1.2). This also applies to the simulation considered here, and it is there-
fore expected that class imbalance is again the cause of the decreasing precision
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Figure 4.11: Classifier performance vs. K for various KNN , SNR = 15 dB.

and recall with increasing KNN , Fig. 4.11a and Fig. 4.11b respectively. However,
the fact that both metrics decrease with K as well cannot be related to an imbal-
anced amount of observations being associated with each K, as K is a uniformly
distributed random variable. Below, a qualitative reasoning is presented which ex-
plains the relation between the precision/recall and the DOA estimates. Further
research is required to determine the minimum required precision and recall for cer-
tain DOA estimation performance, and their relation to e.g. the number of layers in
the framework.

Aided by the confusion matrix presented in appendix C.2.1, it can be concluded
that a recall below 100% for KNN = 1 and KNN = 2 merely implies a decreased
height of the spectrum peaks. This is, to some extent, accounted for by the fact
that the threshold of the peak detection algorithm is adapted to the data. However,
a recall below 100% for observations associated with KNN = 0 implies that spec-
trum peaks appear at unwanted angles, i.e. angles more than ∆φ/2 away from the
true DOAs. For the precision, the opposite reasoning applies: a precision lower
than 100% for KNN = 0 could be compensated for to some extent, whereas a low
precision for KNN = 1 and KNN = 2 results in unwanted peaks. As long as the
unwanted peaks are below the threshold and the wanted peaks are above, this is
not a problem. However, as both the recall for KNN = 0 as well as the precision for
KNN = 1 and KNN = 2 decrease with an increasing K, the probability that such an
unwanted peak gets above the threshold increases with K. In other words, a high
P (K̂ = K) does not necessarily imply a good DOA estimator, as it could be that
peaks at correct angles are discarded whereas peaks at unwanted angles are not.
Whether the latter applies to the simulation considered here, could be investigated
by means of the RMSE: if for a certain observation K̂ = K, but (part of) the K̂ DOA
estimates originate from spectrum peaks at angles which are not within ∆φ/2 of the
true DOAs, this results in relatively large estimation errors. As a result, the RMSE
will increase. In Fig. 4.12, it can be seen that this is indeed the case.
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Figure 4.12: RMSE vs. K, SNR = 15 dB.

It is observed that the RMSE increases monotonically with the number of signals
K, from 0.4◦ for K = 1 to 1.8◦ for K = 7. If K ≤ 3, the RMSE is below ∆φ/

√
12 ≈

0.58◦, i.e. the lower bound for perfect estimators in a framework without border
perturbations. The graph (φmax − φmin)/

√
3(K + 1) indicates the RMSE that would

be obtained when the K DOAs were estimated by K uniformly distributed random
variables (appendix D.1), meaning that it can be interpreted as an upper bound. it
can be seen that the RMSE of the DOA estimates performed by the ML framework
is at least one order of magnitude smaller than this upper limit.

Combining all information from this section it can be concluded that the perfor-
mance of the framework, in terms of all considered metrics, decreases with K for
observations of a 15 dB SNR. For the metric P (K̂ = K) this was expected because
of the finite resolution that comes with the framework. However, it is shown that for
those observations for which K̂ = K, the RMSE increases with K as well, whereas
it would be constant over the various values of K if the finite resolution would be
the only cause of a decreasing P (K̂ = K). Nevertheless, the RMSE is below the
minimum RMSE for perfect classifiers in a framework without border perturbations
if K ≤ 3. As P (K̂ = K) equals 100% if K = 1, it is once more confirmed that the
border perturbations benefit the estimates.

Despite the uniform distribution of K over all observations in the training set,
the performance of the classifier ensemble in terms of both precision and recall de-
creases with K. A possible explanation for this phenomenon could be the following.
The number of grid segments is defined as M and the number of signals impinging
the array is called K. Assuming each of the K signals is associated with a differ-
ent grid segment, the number of different combinations of K of those M segments
is
(
M
K

)
. When M = 60 and K = 2, this yields 1770 different combinations. For a

training set of 105 observations as was used in section 4.2.1, this implies that each
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combination of segments appears, on average, 56.5 times. As a result, the NNs
can learn features for each segment combination as a whole. When K = 7 though,
3.86 × 108 different segment combinations exist, such that learning the features for
each combination becomes infeasible. Instead, the NNs must learn features for
each individual grid segment and extract those features even if they are combined
in a single observation. The theory above could be validated by, e.g., repeating the
K = 2 scenario using a training set containing only a subset of the 1770 different
combinations and a test set containing all combinations.



Chapter 5

Conclusions and recommendations

5.1 Conclusions

The main goal of this work was to devise a machine learning framework which is
able to estimate the directions-of-arrival of an unknown number of signals. The
framework proposed in Chapter 3 can be employed in combination with any learning
algorithm capable of single-label multi-class classification. Furthermore, it does not
require any knowledge about the number of signals impinging the antenna array
prior to the estimation.

The framework was employed in combination with feedforward neural networks.
It was shown that the source number is estimated correctly in 93% of the obser-
vations with SNRs of at least -5 dB, if 2 signals impinge the antenna array. In the
remaining 7%, the DOAs were closely spaced compared to the the resolution of the
framework, such that they could not be resolved. Furthermore, it was shown that the
performance of the framework gradually decreases with an increasing source num-
ber: a 100% accuracy regarding the estimated number of sources, together with
an 0.4◦ RMSE, is achieved if one signal impinges the array, whereas the accuracy
decreases to 3.3% and the RMSE increases to 1.8◦ if 7 signals impinge the array. A
significant part of this decrease in performance can be explained by the 2◦ resolution
of the framework. However, it is shown that the predictions of the networks become
less precise with an increasing source number as well. Further research is required
to determine the cause of this phenomenon and to find out if it can be counteracted.

The underlying thought of the assignment was to investigate the advantages
of approaching the well-known DOA estimation problem by means of machine-
learning, compared to conventional approaches such as the MUSIC algorithm. For
the learning strategy and the synthetic data considered here, it is observed that this
depends on the resolution of the framework and the SNR of the observations. The
ML framework with a 2◦ resolution outperforms MUSIC in terms of the probability of
resolution of closely spaced sources at an SNR of -5 dB (100% resolution probability
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at spacings of at least 7.4◦ vs. 11.6◦ for MUSIC), whereas the opposite applies for a
15 dB SNR (5.9◦ vs. 3.5◦). After increasing the resolution of the framework to 0.8◦,
the MUSIC algorithm was outperformed at a 15 dB SNR as well (3.2◦). However,
the training set was increased by a factor 4 to achieve this. In other words, it seems
that the amount of available data determines the maximum resolution that can be
achieved for a certain learning strategy. Further research is required to establish the
exact relation between them.

5.2 Recommendations

The peak detection algorithm which is applied to the spatial spectra could have been
improved by taking the width of the peaks into account as well. In its current form, it
cannot resolve DOAs of multiple signals when they are associated with neighbouring
grid segments. Alternatively, the peak detector could be replaced by a machine
learning technique such as a convolutional neural network. However, additional
training data would be required to do this.

The simulations conducted in this work showed that class imbalance is inherent
to the approach, and that this imbalance increases with the resolution of the frame-
work. As a result, a larger training set is required such that the minority classes are
represented by a sufficient amount of observations. It is recommended to investi-
gate if the need for additional data can be diminished by using a different learning
algorithm, or by applying advanced techniques for handling class imbalance such
as oversampling or synthetic data generation [17].

The underlying thought of the assignment was to investigate if DOA estima-
tion could benefit from utilizing machine learning, compared to conventional model-
based methods. The data used to compare the ML framework and the MUSIC algo-
rithm is created synthetically according to a well-known data model. However, this
model is identical to the model on which the MUSIC algorithm is based. Comparing
both methods using real-world data could give more insight in the advantages of a
data-driven approach. Alternatively, effects such as array imperfections and mutual
coupling could be included in the data-model.

Another future investigation could be to devise a DOA estimation evaluation met-
ric which combines both the source number as well as the angular estimation errors.
The probability of resolution is an example of such a metric. However it is only de-
fined for two sources, and it equals 0 as soon as the estimated number of sources
does not equal two. Furthermore, it relates the DOA estimates to the Rayleigh res-
olution limit, a limit which is overcome by both the ML framework as well as the
MUSIC algorithm.
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Appendix A

Performance metrics

A.1 Classification performance

Evaluating the performance of a classifier can be done in many different ways. A
well-known metric is the accuracy, which is defined as the number of correct pre-
dictions divided by the total number of predictions. It can therefore be computed for
both binary as well as multi-class classification problems. For a binary problem, it
can be expressed in terms of true positives (tp), true negatives (tn), false positives
(fp) and false negatives (fn) as follows

accuracy =
tp+ tn

tp+ tn+ fp+ fn
. (A.1)

When dealing with a classification problem with a significant class imbalance, a high
accuracy can be obtained by assigning the label of the majority to each new obser-
vation. However, such an estimator would have no statistical power. In such a case,
more insight can be gained by evaluating the classifier for each class individually.
This could be done by means of, e.g., the metrics precision, recall and Fβ-score.

The precision is a measure for the classifiers exactness and tells how many of
the positive estimates are actually correct. It is defined as

precision =
tp

tp+ fp
. (A.2)

The recall is a measure for the classifiers completeness, and describes how
many of the observations that should have been predicted positive, are actually
predicted as such. It is defined as

recall =
tp

tp+ fn
. (A.3)

In practice, improving one of the above is at the expense of the other. For example,
a recall of 1 can easily be obtained by assigning the ’True’-label to each observation.
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However, this will increase the number of false positives and therefore decrease the
precision.

The Fβ-score is the harmonic mean of precision and recall. The relative weight-
ing of the two can be modified via the parameter β, where β = 1 implies that both
are taken into account equally much. The Fβ-score is defined as

Fβ = (1 + β2)
precision · recall

(β2 · precision) + recall

=
(1 + β2)tp

(1 + β2)tp+ β2fn+ fp
.

(A.4)

To express the performance of a multi-class classifier in a single number, an
average over the different classes is to be performed. Two well-known methods that
can be used to compute this average are the micro and the macro average. For
some binary performance evaluation function B(tp, tn, fp, fn), e.g. precision, recall
or Fβ-score, the micro average of that function, Bmicro, is computed as:

Bmicro = B

(
1

C

C∑
i=1

tpi,
1

C

C∑
i=1

tni,
1

C

C∑
i=1

fpi,
1

C

C∑
i=1

fni

)
, (A.5)

where C is the number of classes in the multi-class problem. The macro average is
computed as

Bmacro =
1

C

C∑
i=1

B(tpi, tni, fpi, fni). (A.6)

It can be seen that the support of the different classes is implicitly taken into
account by the micro average, whereas all classes contribute equally much to the
macro average, independent of their support.
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A.2 RMSE

Consider Q observations for which a certain number of directions-of-arrival (DOAs)
is to be estimated. This number, Kq with q = 1, . . . , Q, could vary over the observa-
tions. The root-mean-square error (RMSE) is computed by taking the square root of
the average of the mean-square error (MSE) of all separate observations:

RMSE =

√√√√ 1

Q

Q∑
q=1

[
1

Kq

Kq∑
k=1

(φk,q − φ̂k,q)2

]
. (A.7)

Here, φk,q is the kth DOA of test q and φ̂k,q is the kth DOA estimate of test q, with
φ1,q < · · · < φKq ,q and φ̂1,q < · · · < φ̂Kq ,q. The RMSE can only be computed if
K̂q = Kq, i.e. if the number of estimated DOAs equals the true number of DOAs.
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A.3 Probability of resolution

The probability of resolution evaluates the quality of the direction-of-arrival (DOA)
estimates by comparing them to both the true DOAs and the Rayleigh resolution
limit. This limit is defined as BWnn/2, with BWnn being the null-to-null beamwidth of
the array. For an N -element ULA of spacing d and wavelength λ, BWnn is defined
as [18]

BWnn = 2 sin−1
( λ

Nd

)
. (A.8)

The Rayleigh resolution limit is a measure for the capability of an array to resolve two
signals [18]. Conventional non-parametric methods such as the beamscan method
can only resolve signals for which the DOA is spacing is larger than BWnn/2.

The probability of resolution [18] is defined in u-space. A certain DOA φk and its
estimate φ̂k can be expressed in u-space as

uk = cos
(
φk
)

(A.9a)

ûk = cos
(
φ̂k
)
. (A.9b)

If two signals, i.e. k ∈ {1, 2}, impinge an ULA ofN elements with element spacing
d, they are considered to be resolved if the following conditions hold:

|û1 − u1| ≤ min

(
u2 − u1

2
,
λ

Nd

)
(A.10a)

|û2 − u2| ≤ min

(
u2 − u1

2
,
λ

Nd

)
. (A.10b)



Appendix B

Benchmarks

B.1 MDL and AIC

The number of signals impinging a sensor array can be estimated using, e.g., a
subspace order estimator. Two examples are the minimum description length (MDL)
and Akaike’s information criterion (AIC). [4]. Both are based on the eigenvalues
of the estimated sensor covariance matrix, λ1, . . . , λN , with λ1 > · · · > λN . By
definition, both methods are limited to estimating at most N − 1 signals, with N

being the number of elements in the array. The estimated number of signals K̂ is
computed as

K̂MDL = arg min
k

MDL(k) (B.1a)

K̂AIC = arg min
k

AIC(k) (B.1b)

where the subscribt of K̂ indicates the method used for the estimation and k =

0, 1, . . . , N − 1. The functions MDL(k) and AIC(k) are given by

MDL(k) = f(k) + k(2N − k)
1

2
ln(T ) (B.2a)

AIC(k) = f(k) + k(2N − k), (B.2b)

respectively, where N denotes the number of antenna elements, T is the number of
snapshots and

f(k) = −T (N − k) ln

([∏N
n=k+1 λn

] 1
N−k

1
N−k

∑N
n=k+1 λn

)
. (B.3)
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B.2 Cramér-Rao lower bound

The Cramér-Rao lower bound (CRLB) is the minimum variance of an unbiased es-
timator. When applied to the 1D DOA estimation of K signals, it is a square matrix
CRLB ∈ RK×K , of which the kth diagonal element represents the minimum variance
of the estimate of the kth signal impinging the array. In this work the stochastic CRLB
is considered, as it is assumed that both signals and noise are random Gaussian
processes. The CRLB is computed as [18]

CRLB =
ν2

2T

[
<
{

(DHΠ⊥AD)� (PAHR−1AP)T
}]−1

, (B.4)

where <{·} denotes the real part(s) of a complex-valued entry and � is the Hada-
mard product. Furthermore, ν2 is the noise variance, T is the number of available
snapshots and A ∈ CN×K is the array manifold matrix consisting of steering vectors
a1, . . . , aK , with N being the number of antenna elements in the array. D ∈ CN×K is
the derivative of the array manifold matrix with respect to the K DOAs:

D =

[
da1

dφ1

da2

dφ2

· · · daK
dφK

]
. (B.5)

Furthermore, P ∈ CK×K is the signal covariance matrix and R ∈ CN×N is the sensor
covariance matrix which is computed as

R = APAH + ν2IN (B.6)

with IN being the N × N identity matrix. The projection matrix onto the noise sub-
space Π⊥A is given by

Π⊥A = IN −A(AHA)−1AH . (B.7)

The square root of the CRLB can be compared to the RMSE (appendix A.2) of
the DOA estimates.
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B.3 MUSIC

The multiple signal classification (MUSIC) algorithm [1] is a subspace-based super-
resolution method which is based on the eigendecomposition of the estimated sen-
sor covariance matrix R̂. Before being able to compute the MUSIC spectrum, the
number of signals K impinging the N -element array should be known. The eigen-
vectors associated with the N−K smallest eigenvalues together form the estimated
noise subspace En ∈ CN×(N−K). The MUSIC spectrum PMUSIC is evaluated at
scanangle φ according to

PMUSIC(φ) =
1

aH(φ)EnEH
n a(φ)

, (B.8)

where a(φ) is the steering vector for direction φ.
Due to orthogonality of the noise and signal subspace, the denominator in Eq.

(B.8) theoretically equals 0 when φ = φk, with φk being the direction-of-arrival (DOA)
of the kth signal for k = 1, . . . , K. This results in peaks in the spectrum at those
specific angles. In practice, the sensor covariance matrix R and the number of
incident signals K are estimated from noisy measurement data, meaning that the
En will be less accurate for lower signal-to-noise ratios.

Note that the estimated DOAs are part of a discrete set of scan-angles at which
the MUSIC spectrum is evaluated, meaning that the estimator has a finite resolution.
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Appendix C

Additional results

C.1 Results for two sources

The results in this section were obtained using a resolution of ∆φ = 2◦, with a border
perturbation of at most 0.5◦. Two signals of which the directions-of-arrival (DOAs)
are drawn from U(30◦, 150◦) impinge the array, which is uniform linear array of 8
elements with half wavelength spacing.

C.1.1 Size of the training set

In this appendix, the impact of the amount of training observations, from now on
referred to as Qtrain, on the performance of the ML framework is investigated. The
performance of the framework will be both expressed in terms of classification eval-
uation metrics as well as in relevant metrics in the field of DOA estimation. Four
simulations were conducted in which Qtrain was varied between 2.5×104 and 2×105

observations. The test set consists of Qtest = 2.2 × 104 test experiments in total:
2× 103 observations per SNR, with the SNRs being −20,−15, . . . , 30 dB.

A significant class imbalance is inherent to the framework: given the settings of
the considered scenario, i.e. M = 120◦/2◦ = 60, k = 3 and K = 2, it is expected
that (57/60)2 × 100% = 90.25% of the observations in both train and test set is asso-
ciated with KNN = 0 (appendix D.4), with KNN being the number of positive labels
associated with a certain class. Because of the class imbalance, evaluating the per-
formance of the classifier ensemble is preferably done for each class individually.
As the well-known accuracy is ill-defined for a single class of a multi-class problem,
it was decided to evaluate the classification performance using the metrics preci-
sion, recall and F1-score. In order to express the classifier performance in a single
number, some way to average over the different classes is required. The micro and
macro average are two different approaches to do this. The definitions of these
metrics and averages can be found in appendix A.1.
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Table C.1 shows the micro and macro average of all metrics mentioned above
for the 4 different values of Qtrain. Note that the numbers shown in the table are
averaged over all NNs in the classifier ensemble.

Table C.1: Classification metrics vs. training set size, averaged over all NNs

Qtrain precision (%) recall (%) F1-score (%)

(×105) micro macro micro macro micro macro

0.25 93.1± 0.6 53.3± 11.2 93.1± 0.6 42.9± 9.4 93.1± 0.6 45.5± 9.0
0.5 94.0± 0.6 67.3± 10.3 94.0± 0.6 49.9± 9.0 94.0± 0.6 57.0± 8.6

1 94.8± 0.4 73.6± 7.9 94.8± 0.4 60.5± 7.6 94.8± 0.4 64.6± 6.7
2 95.2± 0.4 76.7± 6.4 95.2± 0.4 64.0± 6.2 95.2± 0.4 68.3± 5.5

From the data presented in Table C.1, it can be concluded that the performance
of the classifier ensemble increases with the amount of observations in the training
set. For example, the macro F1 increases by about 23% when using the largest
training set instead of the smallest one. The micro F1 is 93% for the smallest data
set and increases up to 95% for Qtrain = 2 × 105. The difference of at least 27%
between micro and macro F1 is a result of the class imbalance, as the support of the
different classes is taken into account only by the micro average.

Due to the adaptive threshold in the framework in combination with the fact that
each segment of the grid is covered by multiple classifiers, a higher classification
performance does not necessarily imply an improved RMSE and/or P (K̂ = K).
Both metrics are shown in Fig. C.1.
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Figure C.1: ML framework DOA estimation performance for various Qtrain, 2 × 103

test observations per SNR.

In Fig. C.1a, it can be observed that the RMSE decreases with an increasing
SNR for all values of Qtrain. For SNRs larger than 5 dB, the RMSE stabilizes.
Increasing Qtrain from 2.5 × 104 to 2 × 105 decreases the RMSE by at most 0.3◦

for SNRs larger than -5 dB. For the same SNRs and the same increase in Qtrain,
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P (K̂ = K) increases from 88% to 93% (Fig. C.1b). The difference in P (K̂ = K)

for Qtrain = 1 × 105 and Qtrain = 2 × 105 is less than 1% for all SNRs except -15
dB (1.6%). For this specific scenario, training on 105 observations is therefore con-
sidered sufficient. Note that this might change as soon as parameters such as the
resolution ∆φ, the layout of the NNs, the number of signals K etc. change.

C.1.2 Classifier performance

The results presented in this paragraph were obtained using a NNs ensemble trained
on Qtrain = 105 observations. The test set consists of 1.5×104 observations for each
SNR ∈ {−20,−15, . . . , 30} dB, resulting in Qtest = 1.65×105 test experiments in total.

The DOA estimation performance of the ML framework depends on the classifi-
cation performance of the NNs in the ensemble, i.e. their ability to correctly choose
1 out of 2k = 23 = 8 classes for each observation. The latter can be evaluated by
means of, e.g. a confusion matrix, which is shown in Fig. C.2. The numbers in the
matrix represent the amount of observations corresponding to each target-estimate
pair. Note that numbers between 0 and 1 are possible, as the matrix is averaged
over all NNs in the ensemble. The colors represent the same information. The grid
is added such that clusters of KNN , i.e. the amount of positive labels, are clarified.
As the number of sources K = 2, the class (111) never occurs.

Two conclusions are drawn from this confusion matrix. One is about the use-
fulness of the adaptive threshold in the peak detection algorithm, and the other is
about the metrics which can be used to assess the performance of the classifiers in
a more compact way.
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Figure C.2: Confusion matrix of true and estimated classes
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Reduced height of spectrum peaks

Looking at the confusion matrix in Fig. C.2, it can be seen that for true classes
corresponding to KNN = 1, i.e. (001), (010) and (100), the ML framework either
predicts the correct class or it predicts the class (000). Other classes are estimated
at least 2 orders of magnitude less frequent.

For true classes associated with KNN = 2, i.e. (011), (101) and (110), it predicts
the correct class for roughly half of the observations. Class (011) is evaluated as an
example:

4.24

4.24 + 2.43 + 1.18 + 1.47
≈ 0.45, (C.1)

i.e. of all observations associated with true class (011), 45% is estimated as such. In
other words, the classifier ensemble is 45% complete for class (011). The remaining
55 % is either predicted as class (000), or as a class associated with KNN = 1. The
latter only applies to those classes for which the label that is predicted as being true,
is one of the two labels which are actually true. For example, when rounding 9.00e−2

to an integer amount of observations, i.e. 0, it can be seen that observations of class
(011) are never predicted as (100).

From the numbers in the confusion matrix, it can be concluded that for the given
scenario of 2 impinging signals, the DOA estimation relies heavily on classes asso-
ciated with KNN = 1. Most incorrect predictions for observations from these classes
imply that a label is not assigned whereas it should have been, rather than the oppo-
site. Whereas the former only results in spectrum peaks which are lower than they
would have been with perfect classifiers, the latter would result in peaks at unwanted
angles. Due to the adaptive threshold in the peak detection algorithm, the reduced
peak height is taken into account.

Performance evaluation metrics

The confusion matrix presented in Fig. C.2 shows a significant class imbalance.
When adding the numbers in the matrix row-wise, it can be seen that roughly 90%
(about 1.49 × 105 observations) of all 1.65 × 105 observations correspond to class
(000). As 1.46 × 105 of the 1.49 × 105 observations of class (000) are estimated as
such, the accuracy of the classifier ensemble will be at least 1.46/1.65 × 100% =

88.5%. Only considering the accuracy of the classifier ensemble is misleading, as it
will be dominated by class (000). The performance of the classier network should
therefore be evaluated for each class individually. The accuracy for a single class
of a multi-class problem is ill-defined (should you evaluate the matrix row-wise or
column-wise?), meaning that different metrics are to be used.

Examples of other metrics which give a more compact representation of the clas-
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sifier performance are precision, recall and F1-score (appendix A.1). These metrics,
averaged over all NNs in the ensemble, are presented Table C.2. The relative sup-
port, defined as the absolute support divided by Qtest, is given as well. The classes
are clustered based on KNN , i.e. the number of true labels (note that each class
represents k = 3 labels, i.e. grid segments). If multiple classes are associated
with a certain KNN , a macro average is computed for those classes for each NN
individually. Afterwards, a single mean and standard deviation is computed over all
macro averages. Note that, as the number of signals impinging the array K = 2, the
support of KNN = 3 equals 0, such that no metrics can be computed.

Table C.2: Classification metrics per class, averaged over all NNs, Qtrain = 105,
Qtest = 1.65× 105, ∆φ = 2◦

KNN class precision (%) recall (%) F1-score (%) support (%)

0 (000) 96.2± 0.4 98.2± 0.4 97.2± 0.2 90.3± 1.2

1
(001)

78.3± 5.9 62.5± 8.5 69.1± 6.2 3.2± 0.7(010)
(100)

2
(011)

65.2± 19.7 45.5± 18.8 51.3± 17.4 (6.0± 1.8)e−2(101)
(110)

3 (111) - - - 0

The relative support shown in Table C.2 indicates a significant class imbalance,
as 90.3% of the observations is associated to class (000). It can be seen that the
support decreases with increasing KNN . Note that the relative support is the same
for the train and the test set for the simulation scenario considered here. In other
words, the bigger KNN , the fewer examples present in the training set from which
the NNs could learn. This explains why the precision, recall and F1-score decrease
with increasing KNN .
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C.1.3 Average DOA spacing

In Fig.C.3, the average direction-of-arrival (DOA) spacing of all observations for
which the estimated number of sources is incorrect is plotted against the signal-
to-noise ratio (SNR). For SNRs of -20 dB and -15 dB, the average spacing equals
39.8◦ and 38.8◦ respectively, which is close to the expected average spacing be-
tween two random, uniformly distributed, DOAs in the domain of [30◦, 150◦], i.e. 40◦

(appendix D.2). However, for SNRs of -5 dB and higher, the average spacing is at
most 2.8◦.
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Figure C.3: Average DOA spacing of observations for which K̂ML 6= 2

C.1.4 Border perturbations

Perturbing the borders of the grid by at most 0.5◦ benefits the root-mean-square
error (RMSE) of the direction-of-arrival estimates performed by the machine-learning
framework. The value ∆φ/

√
(12) is the theoretical lower bound for perfect classifiers

in a framework without perturbations (appendix D.3).
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Figure C.4: RMSE vs. SNR, with and without border perturbations.
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C.2 Results for varying number of sources

The results in this section were obtained using a resolution of ∆φ = 2◦, with a border
perturbation of at most 0.5◦. K = 1, . . . , 7 signals of which the directions-of-arrival
(DOAs) are drawn from U(30◦, 150◦) impinge the array, which is uniform linear array
of 8 elements with half wavelength spacing.

C.2.1 Confusion matrix

The confusion matrix presented in Fig. C.5 corresponds to a signal-to-noise ratio
(SNR) of 15 dB.
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9.94e+01 1.65e+00 1.22e+02 1.07e+02 1.41e+00 1.91e+00 2.33e+02 2.43e+00

7.50e+01 1.24e+02 1.31e+00 1.18e+02 2.67e+00 2.58e+02 1.97e+00 2.69e+00

1.02e+02 1.13e+02 1.35e+02 1.70e+00 2.35e+02 2.27e+00 1.69e+00 2.80e+00
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Figure C.5: Confusion matrix of true and estimated classes



Appendix D

Mathematical derivations

D.1 RMSE for random DOA estimates

Consider Q observations in which K signals impinge an antenna array. The K

directions-of-arrival (DOAs) are uniformly distributed random variables in the do-
main [φmin, φmax]. Assume the DOAs are estimated by drawing K times (for each
observation) from that same uniform distribution. The RMSE of these estimates,
computed as in appendix A.2, will converge to a constant when Q approaches infin-
ity. This constant can be computed using order statistics.

The sorted DOAs, i.e. φ1 < · · · < φK , and their estimates, φ̂1 < · · · < φ̂K , are
Beta-distributed random variables. The pdf of the Beta distribution fBeta is given by

fBeta(x;α, β) =
xα−1(1− x)β−1

B(α, β)
. (D.1)

Here, B(α, β) given by

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
(D.2)

and Γ(·) is the Gamma function.
The squared error between a DOA φ and its estimate φ̂ is written as a function

g(φ, φ̂), which is defined as
g(φ, φ̂) = (φ− φ̂)2. (D.3)

Furhtermore, the width φmax − φmin of the considered domain is called Φ. The MSE
of the estimate of the kth signal, MSEk that would be obtained when averaging over
infinite observations is computed as

MSEk =
1

Φ2

∫ Φ

0

∫ Φ

0

g(φk, φ̂k)fBeta

(φk
Φ

;αk, βk

)
fBeta

( φ̂k
Φ

;αk, βk

)
dφkdφ̂k (D.4)

with αk = k and βk = K + 1− k. Finally, the RMSE is computed as

RMSE =

√√√√ 1

K

K∑
k=1

MSEk (D.5)
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Using the symbolic toolbox of MATLAB, it was found that this equals

RMSE =
Φ√

3(K + 1)
(D.6)

D.2 Average spacing between neighbouring random
DOAs

ConsiderQ observations in whichK signals impinge an antenna array. The directions-
of-arrival (DOAs) are uniformly distributed random variables in the domain [φmin, φmax].
The average spacing davg between two neighbouring DOAs will converge to a con-
stant when Q approaches infinity. This constant can be computed in a way similar
to the derivation presented in appendix D.1. By defining the function g(·) as

g(φ1, φ2) = φ2 − φ1 (D.7)

with φ2 > φ1 and Φ = φmax − φmin, it follows that

davg =
1

Φ2

∫ Φ

0

∫ Φ

0

g(φk, φk+1)fBeta

(φk
Φ

;αk, βk

)
fBeta

(φk+1

Φ
;αk+1, βk+1

)
dφkdφk+1.

(D.8)
Here, k = 1, . . . , K−1, αi = i, βi = K+ 1− i and fBeta is as defined in appendix D.1.
Using the symbolic toolbox of MATLAB, it was found that

davg =
Φ

K + 1
. (D.9)

Note that davg is independent of k.

D.3 RMSE for ideal classifiers without border pertur-
bations

Assume a signal impinges a sensor array from direction-of-arrival (DOA) φ, which is
a random variable of the uniform distribution. A perfect classifier with a resolution of
∆φ, applied to the observation described above, will result in an estimation error

φ̃ = |φ− φ̂| ∼ U(0,∆φ/2) (D.10)

with φ̂ being the DOA estimate.
The root-mean-square error (RMSE), defined as in appendix A.2, for an infinite

amount of observations, converges to a constant. This constant is computed via the
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mean-square-error according to

MSE =

∫ ∆φ/2

0

φ̃2 1

∆φ/2
dφ̃ (D.11a)

=
1

3∆φ/2
φ̃3

∣∣∣∣∆φ/2
0

(D.11b)

=
∆φ2

12
(D.11c)

The RMSE thus equals

RMSE =
√
MSE (D.12a)

=
∆φ√

12
(D.12b)

This applies to any number of signals K, as long as their DOAs are independent
and identically distributed random varibles of the uniform distribution.

D.4 Expected relative support

Assume a framework consisting of M grid segments of equal width. Each classifier
in the framework covers k = 3 of those segments. Furthermore, assume K = 2

signals impinge the antenna array, with random, uniformly distributed, directions-of-
arrival (DOAs).

The 2k = 8 classes of the label powerset can be clustered in k + 1 = 4 classes,
according to the total number of segments in which at least one signal impinges the
array kNN = 0, . . . , k. The probability that an observation corresponds to a certain
KNN is computed as

P (KNN = 0) =

(
M − 3

M

)2

(D.13a)

P (KNN = 1) = 2

(
3

M

)(
M − 3

M

)
+

1

M2
(D.13b)

P (KNN = 2) =

(
3

M

)(
2

M

)
(D.13c)

P (KNN = 3) = 0. (D.13d)
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