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Abstract

The Iterative Closest Point (ICP) algorithm is a commonly used algorithm to
align two point clouds. Worst-case analysis gives an exponential upper bound on
the running time, but the algorithm is observed to work more efficiently in practice.
To reconcile this gap, Arthur and Vassilvitskii perform a smoothed analysis of the
ICP by perturbing the inputs according to a Gaussian distribution. Their polynomial
smoothed complexity implies that the ICP algorithm should perform well in practice.
This paper generalizes their findings, by proving a polynomial smoothed complexity
for two more general perturbation models. In both models, the points are drawn
according to arbitrary probability density functions upper bounded by a perturbation
parameter. In the first model, the functions’ support is bounded to the unit hypercube.
In the second model, their support is unbounded, but the probability distribution has
exponentially decreasing tails.

Keywords: ICP algorithm, smoothed analysis, one-step model, perturbation model

1 Introduction

How to transform one set of points to optimally align it with a second point cloud? For
example, this problem occurs regularly during rigid registrations in image analysis such as
calibration of multiple cameras or the registration of 3D reconstructions [9]. The Iterative
Closest Point (ICP) algorithm is commonly used to resolve this problem, as it is observed to
be fast and to produce suitable results. However, despite its observed efficiency, theoretical
analyses of its running time so far only arrived at a poor, exponential upper bound on the
number of iterations [8].

To reconcile this gap between the practical and theoretical performance of an algorithm,
Spielman and Teng developed ‘smoothed analysis’ [13]. Smoothed analysis is based on the
idea that the worst-case instances of such algorithms come from a few specific instances
that only occur rarely in practice. Therefore, the traditional worst-case analysis is too
pessimistic and a different theoretical analysis is needed to back up the observations that
the algorithm works well in everyday use cases. Therefore, instead of determining the worst-
case running time over all instances, they first perturb the inputs by adding some Gaussian
noise. Then, they determine the expected upper bound on the algorithm’s number of
iterations on these perturbed inputs. According to Spielman and Teng, algorithms with
such a favorable smoothed complexity are expected to work well in practice. A reason for
this is that practical inputs are often subjected to a certain degree of noise.
∗Email: c.schmit@student.utwente.nl
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Figure 1: The ICP algorithm aims to find the translation x that matches the
source set to the reference set.

Generalizing this method, Beier and Vöcking proposed a different perturbation model,
called the one-step model [2]. Instead of simply perturbing the input by Gaussian distri-
butions, they perturb it according to arbitrary probability distributions. Their one-step
model is “allowing the adversary to not just choose the mean of each input parameter, but
even its distribution”, as explained by T. Brunsch et al. [5].

Following the proof of the traditional smoothed analysis of the ICP algorithm [1], a
smoothed analysis of the ICP algorithm for arbitrary probability distributions is performed
using two different perturbation models. First, Section 2 provides a more detailed intro-
duction to the ICP algorithm and into smoothed analysis which is needed for the following
sections. In Section 3, a smoothed analysis is performed when the inputs are contained in
the unit hypercube. To relax this condition, in Section 4, the perturbation model is based
on arbitrary probability density functions with unbounded support so the points can be
situated anywhere in the space. However, it should be noted that the latter scenario comes
with an additional restriction. To be specific, the probability that points are far away from
the origin decreases exponentially.

2 Preliminaries

Appendix A offers an overview of commonly used notations.

2.1 Iterative Closest Point algorithm (ICP)

Introduction. Algorithms such as the ICP algorithms were developed to solve the fol-
lowing optimization problem: How does a first set, the ‘source set’, need to be
transformed to match a reference set, minimizing the distances between them. Besl
and Mcay introduced the ICP algorithm matching the point clouds using translation
and rotation [3]. Even though the ICP algorithm is mainly used in rigid registrations
(so using translation or rotation), nowadays there are also variants to solve non-rigid
registration problems in which the distance between the points could alter. For ex-
ample, Du et al. proposed ‘SICP’, an ICP algorithm that includes scaling [7]. In
addition to varying transformations, studies have also examined the efficiency of the
ICP algorithm under different distance metrics [11].

Analysed variant of the ICP algorithm. The ICP algorithm analysed in this paper
only allows translation and minimizes the least-squares measure according to the
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Euclidean distance metric (see Figure 1). We refer to this objective function as
‘potential function’. This variant is equal to the algorithm analysed by Arthur and
Vassilvitskii [3]. Formally, we employ the following notation:

Let d ∈ N. Given two finite point sets A and B in Rd, the ICP algorithm seeks a
translation x ∈ R and a nearest neighbour function NB : A −→ B, such that the
potential Φ =

∑
a∈A ‖a+ x−NB(a)‖2 is minimized. We refer to d as dimension,

A as source set and B as reference set. Note that NB(a) is the closest neighbour of
the transformed a, so after being transformed by the current translation x.

How does the algorithm work? To minimize the potential, the algorithm employs two
different strategies. Either the translation is fixed and the potential is minimized by
updating the function NB or the nearest neighbouring function NB is fixed and the
translation x is optimized. In the first case, this means that the translated points
in A are reassigned to their closest neighbour in B. Note that multiple points in
A can be assigned to the same point in B. Secondly, having a fixed nearest neigh-
bour assignment from all points in A to points in B, the potential is minimized by
adapting the translation x. The following proposition shows that that the potential
is minimized when choosing x = 1

|A|
∑

a∈A (NB(a)− a). The proposition is proved
in Appendix A under Proposition B.2.

Proposition 1. For a fixed NB : A −→ B, the potential Φ is minimized by choosing
the translation

x =
1

|A|
∑
a∈A

(NB(a)− a).

Proposition 1 and the previous considerations explain the pseudo-code of the ICP
algorithm, shown in Algorithm 1. We consider an iteration to be the consecutive
execution of steps 3 up to 6.

Previous theoretical results An important tool in analysing the efficiency of an algo-
rithm is the worst-case analysis. This has first been studied in detail by Ezra, Sharir
and Efrat establishing the following upper bound on the number of iterations [8,
Corollary 2.2].

Theorem 2. In the worst case instance, the ICP algorithm needs at most c(|A||B|d)d

iterations to terminate for some constant c ∈ R.

Arthur and Vassilvitskii prove the lower bound on the worst-case running time to
be less than Ω(nd )d+1 [1]. To achieve this bound, they had to precisely construct a
working example. However, the practice has shown that the algorithms generally
work better than these bounds suggest [8, 12]. An explanation could be that these
worst-case instances come from a few constructed instances that probably only rarely
occur in practice.

2.2 Smoothed analysis

Introduction To study the efficiency of an algorithm, generally, a worst-case analysis is
carried out first. However, in some cases, this worst-case analysis is too pessimistic.
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Algorithm 1 ICP algorithm
Input: A ⊆ Rd: source point set, B ⊆ Rd: reference point set
Output: Translation x and nearest neighbour function NB minimizing the potential Φ.

1: choose an initial translation x
2: while at least x or NB (or both) is updated do
3: for each a ∈ A do
4: NB(a) = argmin

b∈B
‖a+ x− b‖

5: end for
6: x = 1

|A|
∑

a∈A(NB(a)− a)
7: end while

For example, the ICP algorithm has an exponential worst-case complexity (Theo-
rem 2), but it is observed to converge fast in practice and thus well-used [8]. To back
up these observations, Spielman and Teng developed ‘smoothed analysis’ [13]. Spiel-
man and Teng introduced smoothed analysis while studying the Simplex method:
an algorithm with exponential worst-case complexity that often runs quicker than
many other algorithms with polynomial worst-case complexity. Their convictions are
that, probably, such worst-case instances rarely appear in practice and even a slight
perturbation of the instance already results in shorter running time.

Smoothed analysis using the two-step model Assume the adversary in this train of
thought to aim for the worst possible running time. Instead of considering every
possible input, Spielman and Teng first let their adversary choose an instance and
the perturbation parameter σ [14]. Subsequently, this instance is perturbed by adding
random noise according to a Gaussian distribution with standard deviation σ. Only
then, the running time of the perturbed instance is examined. In short, the smoothed
complexity is the maximal running time of all perturbed instances with respect to
the perturbation parameter σ. With this in mind, it is clear why this perturbation
model is called “two-step” model: the perturbation happens in two steps, first the
instance, then the additional noise.

Smoothed analysis is a hybrid between worst-case analysis and average-case analysis.
In case the perturbation is small, more specific instances can be pinpointed and
consequently the analysis converges towards the worst-case analysis. On the other
hand, if the perturbation parameter is large, the random noise is so significant that
it becomes an average-case analysis with random inputs.

Smoothed analysis using the one-step model Generalizing the “traditional” smoothed
analysis, Beier and Vöcking grant more power to the adversary [2]. In the one-step
model, the adversary chooses the probability distribution according to which every
input is drawn. This is not possible in the two-step model, in which the adversary can
only control the standard deviation of the Gaussian noise added to his picked input.
The smoothed complexity using the one-step model is in term of the perturbation
parameter φ. This parameter is the only restriction to the probability distribution
chosen by the adversary: the probability density function must be bounded from
above by φ. This is why, during a smoothed analysis with the one-step model, no
property inherited by certain probability distributions can be assumed.

The one-step model generalizes the two-step model because adding Gaussian noise
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to a specific input is a feasible distribution if the perturbation parameter φ is larger
than the maximum of the Gaussian distribution.

Similarly to the two-step model, the adversary’s power lies in the perturbation pa-
rameter φ. If φ =∞, it is possible to choose a distribution that only allows a specific
instance (using the Dirac-Delta function). Consequently, the analysis becomes the
worst-case analysis. Contrarily, for lower φ, the inputs are more randomly distributed
which is similar to an average-case analysis.

In Section 3, the smoothed analysis of the ICP algorithm is proved, using the one-step
model as described by Curticapean and Künnemann [6]. They limit the domain of the
probability density functions to the unit hypercube. For this reason, we have the following
arbitrary probability density functions according to which the elements of A and B are
drawn:

f : [0, 1]d −→ [1, φ]

To clarify what a feasible probability density function is, consider f : [0, 1]d −→ [1, φ], when
φ = 1. Then, the uniform distribution is the only continuous distribution that satisfies∫∞
−∞ f(x) dx = 1 and f(x) ≤ φ, for all x ∈ [0, 1]d. The larger φ, the more specific cases
can be chosen (Figure 3). Another example of acceptable probability density functions is
shown in Figure 2 when φ = 3.

In Section 4, the perturbation model of the smoothed analysis does not restrict the
domain of the probability density function.

Figure 2: These figures show possible probability density functions f : [0, 1]2 −→
[0, φ], where φ = 3. To qualify, the functions must satisfy that 0 ≤ f(x) ≤ 3, for all
x ∈ [0, 1]d, and a =

∫ 1
0 f(x) dx = 1.

3 Generalized smoothed analysis of the ICP algorithm with
bounded support

This section is dedicated to the performance of the smoothed analysis of the ICP algorithm,
assuming that all points in A and B reside in the unit hypercube. The proof structure
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Figure 3: If φ = 1, one of the few possible distribution is the uniform distribution,
so the analysis is equivalent to the average-case analysis. In contrast, when φ is
large, an adversary can pinpoint specific instances better.

follows the proof by Arthur and Vassilvjtskii who proved a polynomial upper bound for
the ICP algorithm when the inputs are perturbed according to Gaussian distributions [1].
Some of their lemmas, revisit their proofs and adapt other lemmas to prove Theorem 3.

The following notation is used for all lemmas and propositions in the remainder of the
section, except if specified otherwise. Some of the notation is also reused in Section 4. Let
d ∈ N. Let A ⊆ Rd and B ⊆ Rd be the source and the reference set, respectively. Let φ ∈
[1,∞) be the perturbation parameter. Define n = |A| and m = |B|. Let fi : [0, 1]d −→ [1, φ]
for all i = 1, 2, ..., n and gj : [0, 1]d −→ [1, φ] for all j = 1, 2, ...,m be probability density
functions. Define the functions f and g by f = (f1, f2, ..., fn) and g = (g1,2 , ..., gn),
respectively. Let the elements of A and B be drawn according to these probability density
functions. So A = {a1, a2, ..., an} and B = {b1, b2, ..., bm} with ai ∼ fi for i ∈ 1, 2, ..., n
and bj ∼ gj for j ∈ 1, 2, . . . ,m. Furthermore, aik, refers to the kth coordinate of the ith
element in A.

The ICP algorithm is performed on A and B to determine a translation x and a
nearest neighbouring function NB : A −→ B that (locally) minimizes the potential Φ =∑

a∈A ‖a+ x−NB(a)‖2 =
∑n

i=1 ‖ai + x−NB(ai)‖2.

Theorem 3 (Generalized smoothed complexity for the ICP algorithm, bounded support).
Let the elements of A and B be defined as described above. Then, the expected number of
iterations of the ICP algorithm is bounded from above by a polynomial depending on n, m,
d and φ.

To find an upper bound for the expected amount of iterations, the following approach is
applied:

1. First, we prove that the potential Φ has a polynomial upper bound, denoted by Φ0,
depending only on n, m, φ and d.

2. Let ∆ be the decrease of the potential during an iteration after the first iteration.
We prove that with high probability the decrease of the potential Φ per iteration is
larger or equal to a strictly positive number, called ∆0.
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3. Let W denote the worst-case upper bound on the number of iterations (Theorem 2).
Define the number of iterations by the random variable T . Then, the expectation of
T is bounded by above as follows:

E(T ) = E(T | ∆ < ∆0) · P (∆ < ∆0) + E(T | ∆ ≥ ∆0) · P (∆ ≥ ∆0)

≤W · P (∆ < ∆0) + E(T | ∆ ≥ ∆0)

≤W · P (∆ < ∆0) +
Φ0

∆0
.

The last line follows from the fact that the potential Φ cannot be negative. This
implies that the algorithm needs to terminate after at most Φ0

∆0
iterations. Otherwise,

after an additional iteration, Φ−
(

Φ0
∆0

+ 1
)

∆0 ≤ Φ0 −
(

Φ0
∆0

+ 1
)

∆0 = −∆0 < 0.

We are going to show that P (∆ < ∆0) is small enough such that W · P (∆ < ∆0) is
polynomial. In addition to this, it is proven that Φ0

∆0
is polynomial. Consequently, it is

shown that the expected number of iterations is bounded from above by a polynomial (in
n, m, d, and φ).

3.1 Upper bound of the potential

To find an upper bound on the potential, the first iteration of the algorithm is ignored, as
there is no information about the initial translation. First, the domain of the translation x
after one iteration is identified. Subsequently, this allows an upper bound on the squared
distance of two points a ∈ A and b ∈ B to be identified. Finally, this result is used to
determine an upper bound for the potential.

Lemma 4. Let A ⊆ [0, 1]d and B ⊆ [0, 1]d. After every iteration of the ICP algorithm,
the translation x is in [−1, 1]d.

Proof. After every iteration, the nearest neighbour function NB assigns every element in
A ⊆ [0, 1]d to some element in B ⊆ [0, 1]d. Let ai be the ith element in A and denote
NB(ai) by bi, so bi ∈ B. Then, the one-dimensional components aik ∈ [0, 1] and bik ∈ [0, 1],
for all k ∈ {1, . . . , d}. Furthermore, based on the currentNB, we obtain the new translation
x = 1

n

∑n
i=1(bi − ai). Then for all k ∈ {1, . . . d},

|xk| =

∣∣∣∣∣ 1n
n∑
i=1

(bik − aik)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|bik − aik| ≤
1

n

n∑
i=1

1 =
n

n
= 1.

Thus, xk ∈ [−1, 1]. Hence, x ∈ [−1, 1]d.

Lemma 5. Let ai ∈ A be fixed. Let NB be the nearest neighbour function and x be the
translation x after the first iteration of the ICP algorithm. Then,

‖ai + x−NB(ai)‖2 ≤ 4d,

for all i ∈ {1, 2, . . . , n}.

Proof. All elements of A and B are chosen from probability density functions fi : [0, 1]d −→
[0, φ] and gj : [0, 1]d −→ [0, φ], i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, respectively. We know
that A ⊆ [0, 1]d and B ⊆ [0, 1]d. According to Lemma 4, the translation x ∈ [−1, 1]d after
the first iteration of the ICP algorithm. For all ai ∈ A, this implies that ai + x ∈ [−1, 2]d,
since aik + xk ≤ 1 + 1 = 2 and aik + xk ≥ 0− 1 = −1 for k ∈ {1, 2, . . . , d}.
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After the first iteration, NB assigns each element in A to an element in B. So we know that,
NB(ai) ∈ [0, 1]d and ai + x ∈ [−1, 2]d, for all ai ∈ A. This implies that ai + x−NB(ai) ∈
[−2, 2]d. Therefore,

‖ai + x−NB(ai)‖2 ≤ 22 + 22 + · · ·+ 22 = 4d,

for all i ∈ {1, 2, . . . , n}.

Using Lemma 5 the upper bound of the potential Φ can be determined.

Proposition 6 (Upper bound on the potential). Let NB be the nearest neighbour function
and x be the translation x after the first iteration of the ICP algorithm. Then,

Φ =
n∑
i=1

‖ai + x−NB(ai)‖2 ≤ 4nd.

Proof. Lemma 5 states that ‖ai + x−NB(ai)‖2 ≤ 4d for every ai ∈ A, so

Φ =
n∑
i=1

‖ai + x−NB(ai)‖2 ≤
n∑
i=1

4d = 4dn.

The upper bound for the potential Φ is denoted by Φ0 = 4dn.
After establishing an upper bound for the potential, we study the prospective drop of

the potential after every iteration.

3.2 Decrease of the potential function per iteration

In this section, the decrease of the potential function during an arbitrary iteration of the
ICP algorithm (after the first iteration) is studied. In general z(1) is considered to be the
expression of the variable z before this iteration, while z(2) is the value after this iteration.
To find the decrease of the potential, two cases are considered depending on whether more
or less than k points of A are reassigned to new points in B during this iteration. The
exact expression of k is to be determined later. An important result to remember from
Subsection 2.1 is that a decrease in the potential Φ is either due to reassignments (so a
change of NB) or due to a new translation x. We first explain the proof outline for both
cases and then proceed with the details.

• There are at most k reassignments. This means that there are at most k distinct
points in A for which the nearest neighbour function NB changes. As there is a low
amount of reassignments, a substantial decrease in the potential due to changes inNB

might be unlikely, so we concentrate on the drop resulting from a new translation x.
We prove with a high probability that the points in B are sparse, so scattered and not
condensed in a single area. This property ensures a significant drop of the potential
during one iteration.

• There are at least k reassignments. We prove that if a point a ∈ A is not
approximately equidistant to the former closest point b(1) ∈ B and the new closest
point b(2) ∈ B, then many reassignments results in a significant drop of the potential.
Furthermore, this condition is proven to hold with high probability.
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3.2.1 At most k reassignments

In this section, the drop resulting from the change in translation and the fact that the
points in B are ‘sparse’ is analysed. Therefore, the next lemma is useful.

Lemma 7. Let x(1) and x(2) be the translation before and after an iteration of the ICP
algorithm, respectively. Then, the potential Φ decreases by at least n ·

∥∥x(1) − x(2)

∥∥2 during
this iteration.

Proof. According to Proposition 1, the potential is minimized by choosing the center of
mass as translation, x = 1

|A|
∑

a∈A (NB(a)− a). Let S = {NB(a) − a | a ∈ A}. Further-
more, as derived in Lemma B.1, the potential can be written as

Φ =
∑
a∈A
‖a+ x−N(a)‖2 =

∑
s∈S
‖x− s‖2 =

∑
s∈S
‖s− c(S)‖2 + |S| · ‖c(S)− x‖2 .

Now, the potential is examined at two different points during the iteration.
After updating NB and before changing the translation from x(1) to x(2) (between steps 5
and 6 in Algorithm 1), the potential Φ1 is as follows,

Φ1 =
∑
s∈S
‖s− c(S)‖2 + |S| ·

∥∥c(S)− x(1)

∥∥2
. (1)

After updating the translation (executing line 6 in Algorithm1), the translation changes
to x(2) = c(S). Then, the potential changes to

Φ2 =
∑
s∈S
‖s− c(S)‖2 + |S| ·

∥∥c(S)− x(2)

∥∥2
=
∑
s∈S
‖s− c(S)‖2 . (2)

Combining Equations (1) and (2), the following drop of the potential is experienced during
an iteration. Note that |S| = |A| = n:

Φ1 − Φ2 =
∑
s∈S
‖s− c(S)‖2 + |S| ·

∥∥c(S)− x(1)

∥∥2 −
∑
s∈S
‖s− c(S)‖2

= |S| ·
∥∥c(S)− x(1)

∥∥2
= n

∥∥x(2) − x(1)

∥∥2
.

Before continuing, we clarify what is meant with ‘the elements in B are sparse’.

Definition 8 ((k, δ)-sparse). A set B is (k, δ)-sparse if no pair of distinct size-k multi-
sets1 B1, B2 ⊂ B satisfies

∥∥∑
b1∈B1

b1 −
∑

b2∈B2
b2
∥∥ ≤ δ (cf. Arthur and Vassilvitskii [1,

Definition 4.2]).

To get an intuitive understanding of what this means, consider the definition when k = 1.
Then, the definition states that B is (1, δ)-sparse if no pair of distinct elements b1, b2 ∈ B
satisfies ‖b1 − b2‖ ≤ δ. This means that all elements are separated by at least a distance δ
from every other element (Figure 4a). A different illustration of the definition is given in
Figure 4b.
Combining the previous lemma and definition, a significant drop of the potential per iter-
ation can be determined.

1See Appendix A.3
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(a) d = 2, k = 1, δ = 1.5 (b) d = 2, k = 2, δ = 1.2

Figure 4: Let ‘DminE’ denote the point calculated by D − E and ‘BCminBD’
the point calculated by B + C − (B +D).
On the left: the set {B,C,D,E,H,G} is not (k = 1, δ = 1.5)-sparse, as the differ-
ence between E and D is less than 1.5. This can be seen by the fact that ‘DminE’
lies within the circle of radius 1.5.
On the right: the set {B,C,D,E} is not (k = 2, δ = 1.2)-sparse, as the difference
between B + C and B +D is less than 1.2.

Proposition 9. Let A,B ⊆ Rd and let B be (k, δ)-sparse. Suppose that during an iteration
of the ICP algorithm, after the first iteration, there are at most k reassignments. Then,
the potential Φ decreases by at least δ2

n or the ICP algorithm terminates (cf. Arthur and
Vassilvitskii [1, Proposition 4.3]).

Proof. Let x(1) and x(2) be the translation before and after an iteration. Similarly, define
NB(1) and NB(2). Let j ∈ {1, 2}. Then,

x(j) =
1

n

∑
a∈A

(NB(j)(a)− a) =
1

n

(∑
a∈A

NB(j)(a)−
∑
a∈A

a

)
.

Consequently,

∥∥x(1) − x(2)

∥∥ =

∥∥∥∥∥ 1

n

(∑
a∈A

NB(1)(a)−
∑
a∈A

a

)
− 1

n

(∑
a∈A

NB(2)(a)−
∑
a∈A

a

)∥∥∥∥∥ (3)

=
1

n

∥∥∥∥∥∑
a∈A

NB(1)(a)−
∑
a∈A

a−
∑
a∈A

NB(2)(a) +
∑
a∈A

a

∥∥∥∥∥ (4)

=
1

n

∥∥∥∥∥∑
a∈A

(
NB(1)(a)−NB(2)(a)

)∥∥∥∥∥ . (5)

As there are at most k reassignments, let the multiset 1 Bj = {NB(j)(a) | ∀a ∈ A :
NB(1)(a) 6= NB(2)(a)} ⊂ B be the set of all images according to NB(j) of these (at most)

1See Appendix A.3
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k points in A. For all other points a∗ ∈ A, it holds that NB(1)(a
∗) = NB(2)(a

∗), so they
cancel each other out in Equation (5). Thus,

∥∥x(1) − x(2)

∥∥ =
1

n

∥∥∥∥∥∥
∑
b1∈B1

b1 −
∑
b2∈B2

b2

∥∥∥∥∥∥ . (6)

If B1 and B2 are identical, the potential is not reduced due to the reassignment and the
translation remains unchanged, so the algorithm terminates.
If B1 and B2 are not identical, by definition |B1| = |B2| ≤ k. Adding s = k − |B1| times
the same element b∗ ∈ B to each set creates new multisets B∗1 and B∗2 of size k. Since B
is (k, δ)-sparse, this implies that

δ <

∥∥∥∥∥∥
∑
b1∈B∗1

b1 −
∑
b2∈B∗2

b2

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
b1∈B1

b1 −
∑
b2∈B2

b2 + s · (b∗ − b∗)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
b1∈B1

b1 −
∑
b2∈B2

b2

∥∥∥∥∥∥ .
Combining this with Equation (6),

∥∥x(1) − x(2)

∥∥ =
1

n

∥∥∥∥∥∥
∑
b1∈B1

b1 −
∑
b2∈B2

b2

∥∥∥∥∥∥ > δ

n
.

By Lemma 7, the potential decreases at least by n
(
δ
n

)2
= δ2

n .

What remains is to prove that B is (k, δ)-sparse with high probability. For this, an auxiliary
lemma is proven first, before stating the final proposition.

Lemma 10. Let S ⊆ Rd and let h be a probability density function of the form, h : S −→
[0, φ]. Let z be chosen according to h. Then the probability that z is in a fixed ball of radius
r is at most φ(2r)d (cf. Curticapean and Künnemann [6, Chapter 2]).

Proof. In every dimension, a d-dimensional ball B of radius r is inscribed in a d-dimensional
hypercube C with side length 2r. This implies that the volume of the hyperball is smaller
than the volume of this hypercube which equals (2r)d. Furthermore, the upper bound of
the probability density function equals φ. This gives

P (z ∈ B) =

∫
B
h(x) dx <

∫
B
φdx ≤

∫
C
φdx = volume(C)φ = φ(2r)d.

Proposition 11. The probability that B is not (k, δ)-sparse is at most m2kφ(2δ)d (cf.
Arthur and Vassilvitskii [1, Proposition 4.4]).

Proof. Remember that B is not (k, δ)-sparse, if and only if, there exists a pair of two
distinct size-k multisets1 B1, B2 ⊂ B, such that

∥∥∑
b1∈B1

b1 −
∑

b2∈B2
b2
∥∥ ≤ δ. First, the

probability is determined that any two distinct size-k multisets of B, named C1 and C2,
satisfy

∥∥∑
c1∈C1

c1 −
∑

c2∈C2
c2

∥∥ ≤ δ. Afterwards the proposition is proven using the union
bound (Lemma B.1) and the fact that there are only |B|k = mk possible k-sized multisets
of B.

1See Appendix A.3
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Let C1 and C2 be two size-k multisets such that C1, C2 ⊂ B and C1 6= C2. As
C1 6= C2, there exists an element c∗ such that its multiplicity in C1 is strictly larger than
its multiplicity in C2. Let all other elements in C1 and C2 be fixed arbitrarily, while c∗

is drawn according to the distribution defined for the elements of B. Let ` ≥ 1 be the
multiplicity of c∗ in C1 − C2. Then

∥∥∑
c1∈C1

c1 −
∑

c2∈C2
c2

∥∥ can be written as ‖c± `c∗‖,
where c is the constant resulting from the sum and difference of all other fixed elements in
C1 and C2. Then,∥∥∥∥∥∥

∑
c1∈C1

c1 −
∑
c2∈C2

c2

∥∥∥∥∥∥ = ‖c± `c∗‖ ≤ δ ⇐⇒
∥∥∥c
`
± c∗

∥∥∥ ≤ δ

`

The event that
∥∥ c
` ± c

∗∥∥ ≤ δ
` is equal to the event that c∗ lies in a ball of radius δ

` (centered
at ∓ c

` ). By Lemma 10 this event happens with a probability of at most φ(2 δ` )
d ≤ φ(2δ)d.

As there are mk choices for C1 and (less than) mk choices for C2, there are less than
m2k choices for a combination of C1 and C2. By the union bound,

P (B is not (k, δ)-sparse)

= P

∃B1, B2 ⊂ B with B1 6= B2 s.t.

∥∥∥∥∥∥
∑
b1∈B1

b1 −
∑
b2∈B2

b2

∥∥∥∥∥∥ ≤ δ


≤
m2k∑
i=1

P

∥∥∥∥∥∥
∑
c1∈C1

c1 −
∑
c2∈C2

c2

∥∥∥∥∥∥ ≤ δ
 ≤ m2kφ(2δ)d.

The event that B is not (k, δ)-sparse (Proposition 11) is called ‘Failure 1’ and denoted by
F1.

This completes the analysis of the decrease in potential during an iteration when at
most k elements are reassigned: with probability at least 1−P (F1), the potential decreases
at least by δ2

n .

3.2.2 At least k reassignments

In this section, the drop resulting when there are at least k reassignments is analysed.
First, some definitions are introduced.

Definition 12 (ε-centered). Let a, b, b′ ∈ Rd. The element a is said to be ε-centered
between b and b′ if a is within a distance ε

2 of the hyperplane2 bisecting b and b′ (cf.
Arthur and Vassilvitskii [1, Definition 4.5]).

Definition 13 ((k, ε)-centerable). Let A,B ⊆ Rd. (A,B) is said to be (k, ε)-centerable if
there exist distinct a1, a2, . . . , ak ∈ A, not necessarily distinct b1, b2, . . . , bk, b′1, b′2, . . . , b′k ∈
B and a translation x ∈ Rd such that ai + x is ε-centered between bi and b′i for all
i = 1, 2, . . . , k (cf. Arthur and Vassilvitskii [1, Definition 4.7]).

See Figure 5 for a better understanding of the above definitions.

Proposition 14. Let A,B ⊆ Rd be finite point sets such that (A,B) is not (k, ε)-centerable.
Consider an iteration of the ICP algorithm after the first one. If the nearest neighbour
function NB changes its value for at least k points during this iteration, it decreases the
potential Φ by at least n ε

2

4 (cf. Arthur and Vassilvitskii [1, Proposition 4.8]).
2See Appendix A.4
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(a) d = 2, which points are ε-centered? (b) d = 2, is (A1, B1) (k, ε)-centerable?

Figure 5: On the left: the points a1 and a4 are ε-centered between b1 and b′1 while
a2 and a3 are not.
On the right: A1 = {a1, a2, a3, a4, a5} and B1 = {b, b′, b′′}. (A1, B1) is (4, ε)-
centerable, as there exist A = {a1, a2, a3, a4} from A1, B = {b, b, b, b′} from B1,
B′ = {b′, b′′, b′, b′′1} from B1 and x = 0, such that ai + x is ε-centered between bi
and b′i for all i = 1, 2, 3, 4. However, (A1, B1) is not (5, ε)-centerable, as there is no
translation that allows all points of A to be ε-centered between elements of B. An
example translation x is shown with the translated points of A.

Proof. Let a1, a2, . . . , ak be k different points in A for which NB changes. The previous
assignment is denoted by bi = NB(1)(ai) ∈ B and the new assignment is written as b′i =
NB(2)(ai) ∈ B for all i = 1, 2, . . . , k. Furthermore, x(1) is the translation before this
iteration while x(2) is the new translation.

Since (A,B) is not (k, ε)- centerable, there exists an i ∈ {1, . . . , k} such that ai + x(2)

is not ε-centered between bi and b′i. This means ai + x(2) is not within a distance at most
ε
2 of the hyperplane bisecting bi and b′i. Denote this hyperplane by H.

A hyperplane splits Rd into two different half-spaces3 in which “any line segment joining
two points from different half-spaces must cut the hyperplane” [4]. As H bisects bi and b′i,
the space Rd is split into all points closer to bi in one half-space and all points closer to b′i
in the other half-space. Furthermore, ai +x(1) is closer to bi than to b′i, otherwise ai would
not have been assigned to the element bi in B. Similarly, ai + x(2) is closer to b′i than to
bi. This implies that ai + x(2) and ai + x(1) are not in the same half-space and the line
segment between them has to go through the hyperplane.

Combining this with the fact that ai + x(2) is not within a distance of at most ε
2 of H,

we can draw the following conclusion about the distance between ai + x(1) and ai + x(2):

∥∥x(1) − x(2)

∥∥ =
∥∥ai + x(1) − (ai + x(2))

∥∥ > ε

2
.

Thus,
∥∥x(1) − x(2)

∥∥ > ε
2 and by Lemma 7 the potential decreases by n

(
ε
2

)2.
3See Appendix A.5
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An illustration for Proposition 14 when d = 2 is explained in Figure 6.

(a) ai + x(1) closer to bi than
b′i and ai+x(2) closer to b′i than
bi. The domains of x(2) and x(1)
divide the plane.

(b) ai + x(2) is not ε-centered
between bi and b′i. This means
x(2) must be outside the slab of
width ε in the direction of vj
centered at bmid.

(c) Combining the conditions
of figures 6a and 6b, it is
clear that wherever x(1) and
x(2) are defined in their domain,∥∥x(1) − x(2)∥∥ > ε

2 .

Figure 6: This figure illustrates that
∥∥x(1) − x(2)

∥∥ > ε
2 . Here, ai = 0.

To complete this section, it must still be proven that (A,B) is not (k, ε)-centerable with
a high probability. To prove this proposition, two more lemmas are needed. The first
technical lemma is proven by Arthur and Vassilvitskii [1, Lemma 4.9].

Lemma 15. Let V denote a point set in Rd. Then, there exists V0 ⊂ V with |V0| = d
such that any v ∈ V can be expressed as

∑
u∈V0 cuu for scalars cu ∈ [−1, 1] (cf. Arthur

and Vassilvitskii [1, Lemma 4.9]).

Lemma 16. Let z = (z1, z2, . . . , zd) be an element of A. Let v = (v1, v2, . . . , vd) ∈ Rd be a
unit vector. Let I ⊂ R be an interval of length ε. Then, the probability that the dot product
z · v lies in I is at most εφ

√
d,

P (z · v ∈ I) ≤ εφ
√
d.

Proof. Let I = [c, e], with c, e ∈ R and e − c = ε. Let vi be the component of v with
the largest absolute value, so vi = argmaxv∗∈v|v∗|. By Lemma B.3, |vi| ≥ 1√

d
, implying

that 1
|vi| ≤

√
d. Furthermore, if we fix all components of x and v except xi and vi, then

z · v = z1v1 + z2v2 + · · ·+ zdvd = zivi + C, with some C ∈ R. Furthermore,

z · v ∈ I ⇐⇒ c ≤ z · v ≤ e ⇐⇒ c ≤ zivi + C ≤ e ⇐⇒ zivi ∈ [c− C, e− C].

Then, z · v ∈ I is equivalent to zivi ∈ [c∗, e∗], with c∗ = c − C and e∗ = e − C. In other
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words, that zivi lies in an interval of length e∗ − c∗ = e− c = ε. So,

P (z · v ∈ I) ≤
∫ 1

0

∫ 1

0
. . .

∫ 1

0

∫ 1
vi
e∗

1
vi
c∗

f(z1 = x1, z2 = x2 . . . , zd = xd) dxi dx1 . . . dxd

≤
∫ 1

0

∫ 1

0
. . .

∫ 1

0

∫ 1
vi
e∗

1
vi
c∗

φdxi dx1 . . . dxd

=

∫ 1

0

∫ 1

0
. . .

∫ 1

0

1

vi
[e∗ − c∗]φdx1 dx2 . . . dxd

=

∫ 1

0

∫ 1

0
. . .

∫ 1

0

1

vi
εφ dx1 dx2 . . . dxd

=1d−1 1

vi
εφ ≤

√
dεφ.

Proposition 17. Let k ≥ d. Then (A,B) is (k, ε)-centerable with probability at most

(nm2)k
(

(d+ 1)ε
√
dφ
)k−d

(cf. Arthur and Vassilvitskii [1, Corollary 4.11]). In other
terms,

P ((A,B) is (k, ε)-centerable) < (nm2)k
(

(d+ 1)ε
√
dφ
)k−d

.

Proof. Let a1, a2, . . . , ad, . . . , ak be k arbitrary, distinct points in A for which NB changes.
The previous assignment of a1 is denoted by b1 = NB(1)(a1) ∈ B and the new assignment is
written as b′1 = NB(2)(a1) ∈ B. The same notation is used for all other k−1 points. We only
use the randomness in a1, a2, . . . , ad, . . . , ak, so all b1, b2, . . . , bd, . . . , bk and b′1, b′2, . . . , b′d, b

′
k

are fixed arbitrarily, not necessarily distinctly.
Define a slab by its center and height h in the direction of a vector v. A slab is a d-

orthotope (generalized rectangle) with unbounded length in d−1 dimensions and bounded
height in the direction of v. In addition to this, different index notations are used to
distinguish between all k points (index `), the first d points (index k) and some point
within the last k − d points (index j).

For all ` ∈ {1, 2, . . . , d, . . . , k}, let v` =
b′`−b`
‖b′`−b`‖

be the unit vector in b′` − b` direction.
Let V = {v1, v2, . . . , vd, . . . vk}. Let U = {v1, v2, . . . , vd} satisfy the properties of V0 of
Lemma 15 for V . This means that every element v ∈ V can be written as v =

∑
u∈U cu,vu

with coefficients cu,v ∈ [−1, 1]. Let X be the set of all translations x ∈ R that satisfy that
ai + x is ε-centered between bi and b′i for all i ∈ {1, 2, . . . , d}.

Let j ∈ {d + 1, . . . , k}. First, the domain for X with respect to the unit vector vj
is determined (namely X is contained in a slab Sj of height at most dε in vj direction).
Secondly, we prove a necessary condition for any translation x, such that aj + x is ε-
centered between bj and b′j (namely x ∈ Tj , a slab of height ε centered at a specific point
in the vj-direction). Combining both conditions, the probability that both slabs intersect
to finalize the proof.

Let b∗l =
b`+b

′
`

2 be the midpoint between b` and b′`. Note that a` + x is ε-centered
between b` and b′` if (a` + x) · v` ∈

[
b∗l · v` −

ε
2 , b
∗
l · v` + ε

2

]
which is equivalent to

(x+ a` − b∗l ) · v` ∈
[
− ε

2
,
ε

2

]
. (7)
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Let x, x′ ∈ X, so both ai + x and ai + x′ are ε-centered between bi and b′i. Then, by
Equation (7) and the triangle inequality:

|(x− x′) · vi| ≤ |(x+ ai − b∗i )vi|+ |(x′ + ai − b∗i )vi| ≤
ε

2
+
ε

2
= ε. (8)

Now, let’s shift our attention to aj , one of the last k − d points. By Lemma 15, it holds
that vj =

∑d
i=1 ci,j · vi with |ci,j | ≤ 1. Combining this with Equation (8) and the triangle

inequality,

|(x−x′)·vj | = |(x−x′)·

(
d∑
i=1

ci,j · vi

)
| ≤

d∑
i=1

|(x−x′)vi||ci,j | ≤
d∑
i=1

|(x−x′)vi| ≤
d∑
i=1

ε = dε.

This implies that X is contained in a slab Sj of height at most dε in vj direction, centered
somewhere. The position of Sj is independent of ad+1, . . . , ak, as the condition for x to be
in X only depends on the first d points and vj , which consists of bj and b′j .

Additionally, any translation x ∈ Rd satisfies that aj + x is ε-centered between bj and
b′j , if and only if (x + aj − b∗j ) · vj ∈

[
− ε

2 ,
ε
2

]
by Equation (7). This is equivalent with x

belonging to a slab Tj of height ε centered at b∗j − aj .
By combining the previous results, any translation x ∈ Rd satisfying that ai + x is

ε-centered between bi and b′i for all i ∈ {1, . . . , d} and aj + x is ε-centered between bj
and b′j must satisfy two results: first, x ∈ X and therefore x ∈ Sj , and secondly, x ∈ Tj .
Consequently, x ∈ Sj ∩ Tj . As j was fixed arbitrarily, it follows that a translation x ∈ Rd
satisfying that a` + x is ε-centered between b` and b′` for all ` ∈ {1, . . . , d, . . . , k} must
satisfy that x ∈ Sj ∩ Tj for all j ∈ {d + 1, . . . , k}. Notice that a necessary condition for
this event is that Sj ∩ Tj 6= ∅ for all j.

With these results, we can establish the probability P that the subsets {a1, a2, . . . , ak},
and {b1, b2, . . . bk, b′1, b′2, . . . , b′k} are (k, ε)-centerable:

P = P
((
{a1, a2, . . . , ak}, {b1, b2, . . . bk, b′1, b′2, . . . , b′k}

)
is (k, ε)-centerable

)
= P (∃x ∈ Rd : a` + x is ε-centered between b` and b′` for all ` ∈ {1, 2, . . . , k})
≤ P (∀j ∈ {d+ 1, d+ 2, . . . , k} : Sj ∩ Tj 6= ∅)

=
k∏

j=d+1

P (Sj ∩ Tj 6= ∅).

The last line follows because Sj∩Tj only uses the randomness of the aj ’s, j ∈ {d+1, . . . , k},
which are k − d independent events.
Recall that Sj and Tj are parallel slabs as their respective width is defined with respect to
vj . As Sj ’s position is fixed independently from aj , Sj ∩ Tj 6= ∅ depends on the position
of Tj which is centered at b∗j − aj . As shown in Figure 7, the slab Tj can be translated
by a vector (d+ 1)εvj to ensure an intersection with Sj . Since, the position of Tj uses the
randomness of its center b∗j − aj , the product aj · vj determines the position of the slab in
the vj direction. Thus, the probability that Sj ∩ Tj 6= ∅ is equivalent with the probability
that aj · vj is in an interval of length (d+ 1)ε. Consequently,

P (Sj ∩ Tj 6= ∅) = P (aj · vj lies in an interval of length (d+ 1)ε) ≤ (d+ 1)ε
√
dφ,

by Lemma 16. Thus,

P ≤
(

(d+ 1)ε
√
dφ
)k−d
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Using the union bound (Lemma B.1), and the fact that there are nkmkmk choices for a
combination of a1, a2, . . . , ak, b1, b2, . . . bk and b′1, b′2, . . . b′k, the final proof follows.

P ((A,B) is ε-centerable)

=P (∃ distinct a1, a2, . . . , ak ∈ A, b1, b2, . . . , bk, b′1, b′2, . . . , b′k ∈ B, x ∈ Rd such that
ai + x is ε-centered between bi and b′i,∀i ∈ {1, 2, . . . , k})

≤
nkm2k∑
i=1

P ≤ nkm2k
(

(d+ 1)ε
√
dφ
)k−d

.

(a) Begin of the inter-
section between Sj and
TJ .

(b) Translate Tj by εvj .
There is still intersec-
tion.

(c) Translate Tj by
dεvj . Last line of Sj in-
tersecting Tj

(d) Translating Sj by
(d+ 1)εvj keeps Sj and
Tj intersecting.

Figure 7: Sj is a slab fixed somewhere, but the position of Tj depends on the
randomness of aj . Sj can be translated by (d + 1)ε for Sj and Tj to still intersect
(Figures 7a, 7b, 7c and 7d). Thus, the slab centered at b∗j−aj must be defined in an
interval (d+1)ε in the vj direction. This is equivalent with the center being defined
in a certain interval in the vj direction. As the center depends on aj ’s randomness,
Sj ∩ Tj 6= ∅ if aj is in an interval of length (d+ 1)ε.

The event that (A,B) is (k, ε)-centerable (Proposition 17) is called ‘Failure 2’ and denoted
by F2. This completes the analysis of the decrease in potential during an iteration when at
least k elements are reassigned: with probability at least 1−P (F2), the potential decreases
by at least δ2

n .

3.3 Proof for the generalized smoothed complexity for the ICP algo-
rithm (Theorem 3)

Combining all the results from the previous subsections, we can prove Theorem 3 using the
approach stated at the beginning of this section. The goal is to prove a smoothed upper
bound depending on n,m, d and φ. In previous results we declared additional numbers
k, δ, ε, which we define now:
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Proof of Theorem 3. Define the numbers p, k, δ and ε as follows:

p =
1

W
=

1

c(nmd)d
(Theorem 2),

k = 2d,

δ =
1

2φ
1
dm4

p
1
d , and

ε =
1

(d+ 1)n2m4
√
dφ
p

1
d .

Following the strategy described in the beginning of Section 3:

1. Proposition 6 states that the potential Φ is upper bounded by Φ0 = 4nd.

2. There are two failure events:

• ‘Failure 1’, when B is not (k, δ)-sparse. By Proposition 11,

P (F1) ≤ m2kφ(2δ)d = m4dφ

(
2

1

2φ
1
dm4

p
1
d

)d
=
m4dφ2dp

2dφm4d
= p.

• ‘Failure 2’, when (A,B) is (k, ε)-centerable. By Proposition 17,

P (F2) ≤ (nm2)k((d+ 1)ε
√
dφ)k−d

= n2dm4d(d+ 1)d(
√
d)dφd

(
1

(d+ 1)n2m4
√
dφ
p

1
d

)d
= p.

This means that the failure event F can be written as ’Failure 1 or Failure 2’. Fur-
thermore, its probability can be upper bounded by the union bound (Lemma B.1),

P (F ) ≤ P (Failure 1) + P (Failure 2) ≤ 2p.

When there is no failure event, we have that B is (k, δ)-sparse and (A,B) is not
(k, ε)-centerable. Then the the potential decreases per iteration as follows:

If there are at most k reassignments (Proposition 9), then

∆ ≥ δ2

n
=

1

n

(
1

2φ
1
dm4

p
1
d

)2

=
1

n4φ
2
dm8

(
1

c(nmd)d

) 2
d

=
1

n4φ
2
dm8c

2
dn2m2d2

=
1

4c
2
dn3m10φ

2
dd2
≥ 1

4c2d2n3m10φ2
=

1

q1(n,m, d, φ)
.

If there are at least k reassignments (Proposition 14), then

∆ ≥ nε
2

4
=
n

4

(
1

(d+ 1)n2m4
√
dφ
p

1
d

)2

=
n

4d(d+ 1)2n4m8φ2

(
1

c(nmd)d

) 2
d

=
1

4c
2
dd3(d+ 1)2n5m10φ2d2

≥ 1

4c2d3(d+ 1)2n5m10φ2
=

1

q2(n,m, d, φ).

Thus, if there is no failure event, the decrease of the potential per iteration ∆ is
at least ∆0 = min

(
1

q1(n,m,d,φ) ,
1

q2(n,m,d,φ)

)
= 1

q2(n,m,d,φ) . Moreover, we have that
1
∆ ≤

1
∆0

= q2(n,m, d, φ).
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3. Finally we can determine an upper bound for the expected number of iterations E[T ]:

E(T ) ≤W · P (F ) +
Φ0

∆0
≤W · 2p+ 4nd · q2 = 2W

1

W
+ q = q + 2,

where q(n,m, d, φ) = 42c2d4(d+1)2n6m10φ2, a polynomial in n, m, d, and φ. Hence,
the expected number of iterations is upper bounded by a polynomial.

4 Generalized smoothed analysis of the ICP algorithm with
unbounded support

As seen in Section 3, we can find a polynomial upper bound when the probability density
function of all points in A and B has bounded support. In this section, we consider
probability density functions with unbounded support. We prove that the expected number
of iterations of the ICP algorithm can be bounded from above by a polynomial if we add
the assumption that the probability distribution has exponentially decreasing tails.

We adopt the notations defined at the beginning of Section 3, except for the following
changes.

Let fi : Rd −→ [0, φ] for all i = 1, 2, ..., n and gj : Rd −→ [0, φ] for all j = 1, 2, ...,m
be probability density functions. Define the functions f and g by f = (f1, f2, ..., fn) and
g = (g1, g2, ..., gn), respectively. Let the elements of A and B be drawn according to these
probability density functions. Furthermore, let α, β ∈ R+, with β 6= 0 and α ≥ 1

W (W
being the maximal number of iterations as defined in Theorem 2). Then, we assume that,
for all z ∈ A ∪B, we have P (‖z‖ ≥ t) ≤ α exp (−β(2t)d−1), for all t ∈ R+.

Additional assumptions or deviant notations are specified in a lemma or proposition if
needed.

Theorem 18 (Generalized smoothed complexity for the ICP algorithm). Let the elements
of A and B be defined as described above. Then, the expected number of iterations of the
ICP algorithm is bounded from above by a polynomial in n, m, d, 1

α , β and φ.

To prove this theorem, some of the lemmas and propositions of Section 3 can be reused.
However, Proposition 6, Lemma 16 and Proposition 17 need to be adapted.

Proposition 19 (Adaptation of Proposition 6). Let t ∈ R, and assume that the norm of
all points in A and B is less than t. Then, we have an upper bound for the potential Φ,

Φ =
∑
a∈A
‖a+ x−NB(a)‖2 ≤ 16nt2.

Proof. In the ICP algorithm, the translation is obtained as follows, x = 1
|A|
∑

a∈A (NB(a)− a).
For all a ∈ A, we have ‖a‖ < t and NB(a) ∈ B, so ‖NB(a)‖ < t. Thus,

‖x‖ =

∥∥∥∥∥ 1

|A|
∑
a∈A

(NB(a)− a)

∥∥∥∥∥ ≤ 1

n

∑
a∈A
‖NB(a)− a‖ ≤ 1

n

∑
a∈A

(‖NB(a)‖+ ‖a‖) < t+t = 2t.

Then, we have that

Φ =
∑
a∈A
‖a+ x−NB(a)‖2 ≤

∑
a∈A

(‖a‖+ ‖x‖+ ‖NB(a)‖)2 = n(4t)2 = 16nt2.
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Lemma 20 (Adaptation of Lemma 16). Let t ∈ R and let z = (z1, z2, . . . , zd) be a point in
A with ‖z‖ < t. Let v = (v1, v2, . . . , vd) ∈ Rd be a unit vector. Let I ⊂ R be an interval of
length ε. Then, the probability that the dot product z · v lies in I is at most

√
dεφ(2t)d−1,

P (z · v ∈ I) ≤
√
dεφ(2t)d−1.

Proof. Let vi be the component of v with the largest absolute value. By the proof of Lemma
16, we know that 1

|vi| ≤
√
d and P (z · v ∈ I) = P

(
zi ∈

[
1
vi
c∗, 1

vi
e∗
])

, with e∗ − c∗ = ε.
Since ‖z‖ < t, this means that the absolute value of every component of z is less than t.
Thus, every component lies in the range [−t, t]. Recall that z is drawn according to some
probability density function f of the form Rd −→ [0, φ]. Then,

P (z · v ∈ I) ≤
∫ t

−t

∫ t

−t
. . .

∫ t

−t

∫ 1
vi
e∗

1
vi
c∗

f(z1 = x1, z2 = x2 . . . , zd = xd) dxi dx1 . . . dxd

≤
∫ t

−t

∫ t

−t
. . .

∫ t

−t

1

vi
εφ dx1 . . . dxd

= (2t)d−1 1

vi
εφ ≤

√
dεφ(2t)d−1.

Proposition 21 (Adaptation of Proposition 17). Let t ∈ R, and assume that the norm of
all points in A and B is less than t. Then, (A,B) is (k, ε)-centerable with probability

P ((A,B) is (k, ε)-centerable) < (nm2)k
(

(d+ 1)ε
√
dφ(2t)d−1

)k−d
.

Proof. The proof for this theorem is equivalent to the proof of Proposition 17, except that
not the result of Lemma 16 is used but the result of Lemma 20. Then,

P (aj · vj lies in an interval of length (d+ 1)ε) ≤ (d+ 1)ε
√
dφ(2t)d−1.

Thus, we have

P ≤
(

(d+ 1)ε
√
dφ(2t)d−1

)k−d
.

Using the union bound (Lemma B.1), and the fact that there are nkmkmk choices for a
combination of a1, a2, . . . , ak, b1, b2, . . . bk and b′1, b′2, . . . b′k, the final proof follows.

P ((A,B) is ε-centerable)

=P (∃ distinct a1, a2, . . . , ak ∈ A, b1, b2, . . . , bk, b′1, b′2, . . . , b′k ∈ B, x ∈ Rd such that
ai + x is ε-centered between bi and b′i,∀i ∈ {1, 2, . . . , k})

≤
nkm2k∑
i=1

P ≤ nkm2k
(

(d+ 1)ε
√
dφ(2t)d−1

)k−d
.
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By ‘Failure 2’ (F2), we now denote the event that, given the norm of all points in A and B
is less than some t ∈ R, (A,B) is (k, ε)-centerable (Proposition 21). After having revisited
the propositions that use the bounded support of the points in A and B in Section 3,
we can state the proof of Theorem 18. All propositions used from Section 3 are to be
understood with the new definitions of the sets A and B.

Proof of Theorem 18. Define the numbers p, k, δ, ε and t as follows:

p =
1

W
=

1

c(nmd)d
(Theorem 2),

k = 2d,

t =
1

2
d−1

√
−1

β
ln

p

(m+ n)α
=

1

2
d−1

√
1

β
(d lnnmd) + ln (cα(m+ n)),

δ =
1

2φ
1
dm4

p
1
d , and

ε =
1

(d+ 1)n2m4
√
dφ(2t)d−1

p
1
d .

We denote three failure events:

• A point z of A or B has a norm greater than t. This happens with probability

P (‖z‖ ≥ t) ≤ α exp
(
−β(2t)d−1

)
= α exp

−β(2
1

2
d−1

√
−1

β
ln

p

(m+ n)α

)d−1


=
p

m+ n
.

We denote by ‘Failure 0’ (F0), if any point of A or B has a norm greater than t. By
the union bound,

P (F0) ≤ (m+ n)
p

m+ n
= p

• ‘Failure 1’, that the set B is not (k, δ)-sparse. By Proposition 11,

P (F1) ≤ m2kφ(2δ)d = m4dφ

(
2

1

2φ
1
dm4

p
1
d

)d
=
m4dφ2dp

2dφm4d
= p.

• ‘Failure 2’, namely given that all points of A and B have a norm less than t, then
(A,B) is (k, ε)-centerable. By Proposition 21,

P (F2) ≤ (nm2)k((d+ 1)ε
√
dφ(2t)d−1)k−d

= n2dm4d(d+ 1)d(
√
d)dφd

(
(2t)d−1

)d( 1

(d+ 1)n2m4
√
dφ(2t)d−1

p
1
d

)d
= p.
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The probability of the failure event F that none of these failures occur can be upper
bounded by P (F ) ≤ P (F0) + P (F1) + P (F2) ≤ 3p. So with probability 1 − 3p, we have
that all points in A and B have a norm less than t, that B is (k, δ)-sparse and (A,B) is
not (k, ε)-centerable. Given these conditions, the following decrease of the potential per
iteration can be established:

• If there are at most k reassignments (Proposition 9):

∆ ≥ δ2

n
=

1

n

(
1

2φ
1
dm4

p
1
d

)2

≥ 1

4c2d2n3m10φ2
=

1

q1(n,m, d, φ)
.

• If there are at least k reassignments, we first define

(2t)d−1 =

(
2

1

2
d−1

√
−1

β
ln

p

(m+ n)α

)d−1

=
−1

β
ln

1

(m+ n)αc(nmd)d

=
1

β
(d ln (nmd) + ln (c(m+ n)α)) ≤ 1

β

(
d2nm+ c(m+ n)α

)
.

Then, we can establish a lower bound on the drop of the potential ∆ (Proposition
14):

∆ ≥ nε
2

4
=
n

4

(
1

(d+ 1)n2m4
√
dφ(2t)d−1

p
1
d

)2

≥ 1

4c2d3(d+ 1)2n5m10φ2

(
1

(2t)d−1

)2

≥ 1

4c2d3(d+ 1)2n5m10φ2

(
1

1
β (d2nm+ c(m+ n)α)

)2

=
1

q2

(
n,m, d, φ, α, 1

β

)
.

Thus, if there is no failure event, the decrease of the potential per iteration ∆ is at least

∆0 = min

(
1

q1(n,m,d,φ) ,
1

q2
(
n,m,d,φ,α, 1

β

)
)
. Define the polynomial

q∗

(
n,m, d, φ, α,

1

β

)
= 4c2d3(d+1)2n5m10φ2

(
1

β2

(
d2nm+ c(m+ n)α

)2
+ 1

)
≥ max(q1, q2).

Then, we have that

1

∆
≤ 1

∆0
= max (q1, q2) ≤ q∗

(
n,m, d, φ, α,

1

β

)
.

Furthermore, if the norm of all points in A and B is bounded by t, then the initial potential
Φ can be upper bounded by Φ0 = 16nt2 (Proposition 19).
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Finally we can determine an upper bound for the expected number of iterations E[T ]:

E(T ) ≤W · P (F ) +
Φ0

∆0
≤W · 3p+ 16nt2q∗

= 3W
1

W
+ 16n

1

4

(
1

β
(d ln (nmd) + ln (c(m+ n)α))

) 2
d−1

q∗

≤ 3 + 4n
1

β2

(
d2nmd+ c(m+ n)α

)2
q∗

= q

(
n,m, d, φ, α,

1

β

)
+ 3,

where q
(
n,m, d, φ, α, 1

β

)
= 4n 1

β2

(
d2nmd+ cα

)2
q∗ is a polynomial in n, m, d, φ, α and

1
β .

Hence, the expected number of iterations is upper bounded by a polynomial.

5 Discussion and Recommendations

To generalize the smoothed analysis by Arthur and Vassilvitskii, two different perturbation
models are introduced. In Section 3, the analysis is generalized by drawing the points of the
source and reference set not from a Gaussian distribution but according to arbitrary density
functions bounded by the perturbation parameter. However, to facilitate calculations, the
restriction was added that all elements are situated inside the unit hypercube. To remove
this limitation, in Section 4, all elements are drawn from arbitrary probability distributions
with unbounded support. However, to achieve a polynomial upper bound a new restriction
on the tails of the distribution was required.

A future goal would be to make further generalisations on the smoothed analysis, es-
pecially when the probability density functions have unbounded support. In Section 4, the
bottleneck of the analysis is Lemma 20 which introduces a term having the dimension as
exponent. Consequently, the condition on the tails of the probability distribution must be
rather strict. Furthermore, Lemma 20 only makes use of the upper bound on the probabil-
ity density function so far and not also of the exponential tails in the distribution. For this
reason, we believe that the result could potentially be improved by replacing the condition
on the norm of the points in A and B by a condition on the probability density function.

Both smoothed upper bounds on the expected number of iterations, as well as the bound
established by Arthur and Vassilvitskii are polynomial. This supports the observations
that in practice the ICP algorithm is efficient and well-used. However, note that even
though the bounds on the expected number of iterations are polynomial, their degrees
are very large. Even though polynomial bounds are a first step to reconcile theory and
practice, we expect that this gap could still be narrowed. To achieve such a substantial
improvement, either new techniques need to be found to acquire better results on this type
of proof structure, or an entirely new proof concept would have to be developed.

When studying the lower bound on the worst-case running time of the ICP algorithm,
established by Arthur and Vassilvitskii [1], an unsuccessful attempt was made to get ex-
perimental results on the number of iterations of their constructed worst-case instance.
The implementation of a worst-case would have allowed us to examine the practical sig-
nificance of small perturbations in the data set (i.e. how significant is the decrease in the

23



number of iterations of the ICP algorithm). Nonetheless, we think that such experiments
could lead to useful insights into the functioning of the ICP algorithm and strengthen the
reasoning to use smoothed analysis.

6 Conclusion

After the worst-case upper bound of the ICP algorithm’s running time determined by Ezra
et al. [8], and the smoothed analysis by Arthur and Vassilvitskii [1], this paper provides
additional results on the theoretical analysis of this local search algorithm. In Section 3,
a proof is given for a polynomial upper bound when the elements of the source set A
and the reference set B are drawn according to probability density functions of the form
[0, 1]d −→ [0, φ]. To investigate the behaviour of the algorithm when the probability den-
sity functions have unbounded support, Section 4 shows the generalized smoothed analysis
when the probability density functions are of the form Rd −→ [0, φ]. To achieve a polyno-
mial upper bound on the expected number of iterations, it is required that the probability
distribution has exponentially decreasing tails.

As the ICP algorithm has a polynomial smoothed complexity, it is expected to work well
in practice. This means that theoretical advances are one step closer to explain the ob-
servations about the algorithm’s efficiency. Nonetheless, more research into different per-
turbation models and into reducing the polynomial’s large degrees could lead to an even
more profound understanding of the ICP algorithm.

All in all, the obtained results of the smoothed analysis support the observations that the
ICP algorithm performs well in practice and help theoretical advances to get a step closer
of backing this up.
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A Notations, definitions and additional lemmas

A.1 Table of symbols

Table 1: Table of symbols

Symbol Notes

d ∈ N Dimension
A ⊆ Rd Source set of the ICP algorithm: points from A should be matched to another

pattern minimizing the potential.
B ⊆ Rd Reference set of the ICP algorithm: Points in A need to be matched to the set B

minimizing the potential. Multiple elements of A can be assigned to the same
element in B.

n Number of elements in A, n = |A|
m Number of elements in B, m = |B|
W Maximum number of iterations: The ICP algorithm terminates in at most

c(|A|, |B|, d)d iterations (Theorem 2).
x ∈ Rd Translation (ICP algorithm), x = 1

|A|
∑

a∈A (NB(a)− a) in step 6 (Algorithm 1).
NB Nearest neighbour function: NB : A −→ B minimizing the potential during the ICP

algorithm (Steps 3-5 in Algorithm 1).
Φ Potential of the ICP algorithm, Φ =

∑
a∈A ‖a+ x−NB(a)‖

c(S) Center of mass of a set S , c(S) = 1
|S|
∑

s∈S s

φ Perturbation parameter: upper bound of the generalized probability density
function. functions used in Theorem 3.

Φ0 Upper bound on the potential with high probability, Φ0 = 4|A|d. on A, B, d and φ.
∆ Decrease of the potential Φ per iteration.
∆0 > 0 Lower bound of ∆ with high probability,
k ∈ N In the proof of Theorem 3, we first analyse an iteration when there are at most k

changes in NB and when there are at least k such changes.
δ ∈ R Variable introduced by the proof of Theorem 3 to define the distance measure in

Definition 8.
t ∈ R+ In Section 4, the norm of all points in A and B is assumed to be less than t,

otherwise we have a failure.
α ≥ p Perturbation parameter in Section 4.
β ∈ R+ Perturbation parameter in Section 4.
ε ∈ R Variable introduced by the proof of Theorem 3 to define the distance measure in

Definition 12.
F1 The event ‘Failure 1’ that B is not (k, δ)-sparse.
F2 The event ‘Failure 2’ in Section 3: (A,B) is (k, ε)-centerable. In Section 4: given

that the norm of all points in A and B is less than some t ∈ R, (A,B) is
(k, ε)-centerable.

p Failure probability
T Number of iterations of the ICP algorithm.
f f = (f1, f2, . . . , fn) with fi a probability density function for all i = 1, 2, . . . , n. The

points in A are drawn according to these functions.
g g = (g1, g2, . . . , gm) with gj , a probability density function for all j = 1, 2, ...,m.

The points in B are drawn according to these functions.
‖v‖ Euclidean norm of a vector v ∈ Rd with d ≥ 2. If v is a d-dimensional point of A

and B, ‖v‖ denotes the distance between the origin and the point.
|v − v′| Euclidean distance between two points v, v′ ∈ R.
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A.2 Definitions and notations

Definition A.1 (Center of mass). The center of mass of a set S is defined as c(S) =
1
|S|
∑

s∈S s.

Definition A.2 (Iteration). In this paper, an iteration is defined to be the execution of
steps 3-6 in algorithm 1.

Definition A.3 (Multiset). “A set-like object in which order is ignored, but multiplicity
is explicitly significant. Therefore, multisets {1, 2, 3} and {2, 1, 3} are equivalent, but
{1, 1, 2, 3} and {1, 2, 3} differ” [16].

Definition A.4 (Hyperplane bisecting two points in Rd). In Rd , a hyperplane is a sub-
space whose dimension equals d−1. For example, in a 3-dimensional space, hyperplanes are
the 2-dimensional planes. The hyperplane bisecting two points a, b ∈ Rd is the hyperplane
that contains the middle point a+b

2 and is orthogonal to to the vector b− a.

Definition A.5 (Half-Space). “A half-space is that portion of an d-dimensional space
obtained by removing that part lying on one side of an (d−1)-dimensional hyperplane” [15].

B Lemmas and Theorems

Lemma B.1. Let S ⊆ Rd be finite and let x ∈ Rd. Define c(S) to be the center of mass
of S. Then,∑

s∈S
‖x− s‖2 =

∑
s∈S
‖s− c(S)‖2 + |S| ‖c(S)− x‖2 .

Proof. Imitating the proof of Kanungo et al. [10, Lemma 2.1] and using that an element’s
squared norm is equal to the inner product with itself, we obtain∑

s∈S
‖x− s‖2 =

∑
s∈S

(s− x)(s− x)

=
∑
s∈S

(
(s− c(S)) + (c(S)− x)

)(
(s− c(S)) + (c(S)− x)

)
=
∑
s∈S

(
(s− c(S))(s− c(S)) + 2(s− c(S))(c(S)− x) + (c(S)− x)(c(S)− x)

)
=
∑
s∈S
‖s− c(S)‖2 +

∑
s∈S

2(s− c(S))(c(S)− x) +
∑
s∈S
‖c(S)− x‖2

=
∑
s∈S
‖s− c(S)‖2 + 2(c(S)− x)

∑
s∈S

(s− c(S)) + |S| ‖c(S)− x‖2 .

Since c(S) = 1
|S|
∑

s∈S s, we have that
∑

s∈S(s− c(S)) =
(∑

s∈S s
)
− |S|c(S) =

∑
s∈S s−

|S| 1
|S|
∑

s∈S s = 0, so the final equation becomes∑
s∈S
‖x− s‖2 =

∑
s∈S
‖s− c(S)‖2 + |S| ‖c(S)− x‖2 .
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Lemma B.2. Let A,B ⊆ Rd. Let NB : A −→ B be the nearest neighbour function for the
ICP algorithm. For a fixed NB, the potential Φ is minimized by choosing the translation

x =
1

|A|
∑
a∈A

(NB(a)− a).

Proof. Let S be the multiset {N(a) − a | a ∈ A} and c(S) be the center of mass of S.
Then, we can write∑

a∈A
‖a+ x−N(a)‖2 =

∑
s∈S
‖x− s‖2 =

∑
s∈S
‖s− c(S)‖2 + |S| ‖c(S)− x‖2 ,

by Lemma B.1. Then, the first term
∑

s∈S ‖s− c(S)‖2 is independent of x. Thus, Φ is
minimized if and only if |S|·‖c(S)− x‖2 is minimized. Hence, the translation x to minimize
Φ is equal to c(S) = 1

|A|
∑

a∈A(N(a)− a),

x = c(S) =
1

|S|
∑
s∈S

s =
1

|A|
∑
a∈A

(N(a)− a).

Lemma B.3. Let v ∈ Rd be a unit vector. Let vi be the component of v with the largest
absolute value, vi = argmaxv∈V |v|. Then |vi|≥ 1√

d
.

Proof. We have

1 = ‖v‖ =
√
v2

1 + v2
2 · · ·+ v2

d ≤
√
v2
i + v2

i + · · ·+ v2
i =

√
dv2
i

⇐⇒ 12 ≤
√
d|vi|

⇐⇒ |vi|≥
1√
d

Here a collection of commonly known results that are used in this paper:

Theorem B.1 (Union bound, Boole’s inequality). Let E1, ...., En be any events. Then

P (E1 ∨ E2 ∨ ... ∨ En) = P (∃i ∈ 1, ..., n : Ei) ≤
n∑
i=1

P (Ei)

Lemma B.4. For all x > 0, we know that lnx < x.
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