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Abstract

The detection of exoplanets can be accomplished by using the Bump Detection
Method, which uses many statistical hypotheses tests simultaneously in order to de-
termine whether or not a potential exoplanet is present, visible as a bump in a data
set. In order to draw reliable conclusions from the hypotheses tests it is important that
the Type I error is controlled. This can be done by determining a suitable significance
level for the hypothesis tests. Simulation tests have shown that it is best to choose a
significance level between 0.005 and 0.01, such that reliable results follow concerning
the detection of exoplanets. These values have been used for tests with data from the
NASA Kepler mission, which - after comparison with physical results - lead to the
conclusion that it is possible to detect exoplanets using the Bump Detection Method.

Keywords: bump detection, hypothesis testing, Kepler mission, statistical methods,
matched filter

1 Introduction

For a very long time various scientists have put much effort in searching for habitable plan-
ets outside of our Solar System, which are referred to as exoplanets. The task of finding
exoplanets is rather challenging and requires very sensitive and modern equipment. In
1992 the first planets orbiting a pulsar [6] - a certain type of a neutron star - have been
found in our universe by Aleksander Wolszczan and Dale Frail, 1000 light years away from
the Sun in our galaxy [12]. Three years later another exoplanet orbiting a sun-like star was
discovered 50.45 light years away by Michel Mayor and Didier Queloz [10]. In the subse-
quent years the field of exoplanet search gained more and more interest. In 2009 NASA
launched the Kepler space telescope which observed a part of the Milky Way galaxy in
search of exoplanets [10]. This mission has continued for approximately nine years, where
530,506 stars and 2,662 planets have been monitored [11]. From the Kepler mission data
at various stages of preprocessing are publicly available.

There are multiple methods that are used for the detection of exoplanets. Some exo-
planets can be found through direct imaging by telescopes, but the majority must be
detected through indirect methods. The most common ways to detect exoplanets are by
means of the Radial Velocity Method and the Transit Method [2]. The former method is
based on measuring the Doppler velocity of the star that the exoplanet orbits, while the

∗Email: m.o.karlashchuk@student.utwente.nl

1



latter is based on the detection of dips in the brightness of a star. This paper covers the
latter method, therefore only the Transit Method will be elaborated, or - as it will be called
in this paper - the Bump Detection Method, which is used for the statistical analysis of
first simulated data and later on Kepler data.

The scope of this paper is to determine how a transit of an exoplanet can be detected
by means of the Bump Detection Method, given the light curve of its host star. First of
all, a statistical model will be provided, whereafter the Bump Detection Method will be
applied based on statistical significance testing. Second, performance simulations will be
investigated, before applying the Bump Detection Method on the Kepler data. To en-
hance the detection of exoplanets a linear filter will be applied to the data. Finally, the
paper concludes with an analysis of the results retrieved from the application of the Bump
Detection method in the Kepler data and recommendations for further research.

2 Statistical model for the Bump Detection method

The Bump Detection Method (BDM) [5] relies on monitoring the brightness of a star. Dur-
ing the observation it is possible that a planet transits in front of the observed star. The
brightness of the star drops in that case. If this event occurs periodically and the reversed
‘bump’ has a certain size, one could speak of the presence of an exoplanet. Usually the
data that is retrieved from monitoring the brightness is inverted - i.e. multiplied by -1 -,
such that one would see a bump in the data instead of a drop, hence the name of this de-
tection method. Inverting the data is possible due to identical outcomes of statistical tests.

An example of a drop in a light curve can be found in Fig. 1, which is similar to data
detected by the inversed BDM.

Figure 1: Example of a photometric time series of a transit curve; the series is
plotted as a function of time [4].

Before the application of the BDM to the simulated data will be explained, it is necessary
to state formal definitions first.
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2.1 Statistical hypothesis test

To define statistical hypothesis tests properly, the definitions according to Hogg et al. [7]
and Shao [13] are used:

Definition 1. Statistical hypothesis; A statistical hypothesis is an assertion about
the distribution of one or more random variables. If the statistical hypothesis completely
specifies the distribution, it is called a simple statistical hypothesis; if it does not, it is
called a composite statistical hypothesis.

Assume a random variable X has a density function f(x; θ) with θ ∈ Θ, where Θ is a
family of populations. Based on the observed X one tests the hypotheses H0 : θ ∈ Θ0

versus H1 : θ ∈ Θ1, where Θ0 and Θ1 are disjoint sets such that Θ0 ∪ Θ1 = Θ. The
hypotheses are usually referred to as the null-hypothesis H0 and the alternative hypothesis
H1. The formal definition of a statistical hypothesis test is the following.

Definition 2. Statistical test; A test of a statistical hypothesis is a rule which, when
experimental sample values have been obtained, leads to a decision to accept or to reject
the null-hypothesis under consideration.

Whenever a hypothesis test is performed H0 is tested against H1. The outcome of this test
is either accepting or rejecting H0 in favour of H1. One must keep in mind that accepting
H0 does not imply that H0 is true; it simply means that based on the data at hand it is
likely that H0 is not wrong.

While performing a statistical hypothesis test, a certain statistic T = T (X1, . . . , Xn) is
compared to a critical value c Here X1, . . . , Xn are random variables, with n as sample
size.

Definition 3. Critical value; A critical value is a point distribution that is compared to
T to determine whether or not the null-hypothesis can be rejected.

Usually the critical value is determined using the significance level α, which determines the
size of the critical region. Example 1 demonstrates how the critical value can be computed
in a specific example.

Example 1. Assume the random variables X1, . . . , XN are independent and identically
distributed with Xi ∼ N(θ, σ2) where θ > 0 and σ2 > 0 are known. Suppose the following
hypotheses are determined:

H0 : θ = θ0

H1 : θ = θ1

such that θ1 > θ0. Assume the significance level is set at α = 0.05. Then H0 is rejected
if the test statistic T = T (X1, . . . , XN ) = 1√

N

∑N
i=1(Xi − θ0) ≥ c, where c is the critical

value. It is clear that T ∼ N(0, σ2). Then performing the test gives:

P(T ≥ c | H0) = α

P
(T− 0

σ
≥ c− 0

σ

)
= α

P(Z ≥ c̃) = α

1− Φ(c̃) = α
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with c̃ = c
σ and Φ is the cumulative distribution function of the standard normal distribu-

tion. Using the normal distribution table [7] the value of c̃ can be determined, which will
be c̃ = 1.645. This test is also called the Z-test. 4

It is possible that the null-hypothesis is rejected while being true. In that case one is
dealing with a Type I error - also known as a false positive. When H0 is not rejected while
H1 is true, one could speak about a Type II error, or a false negative. The focus of this
paper is mainly on the Type I error, which will be explained in the next subsection.

In general it is preferred to minimize the probability of making an error of Type I or
II given a predefined significance level α. This means that one wants to increase the power
of a hypothesis test while fixing α, such that it is known whether the best rejection re-
gion is chosen. The power of a test can be defined as the correct rejection of H0, thus
β(θ) = P(T ≥ c | θ0). Using the Neyman-Pearson lemma it can be determined whether
a test is the most powerful test at a significance level α. The Neyman-Pearson lemma is
stated as follows.

Theorem 1. Fundamental lemma of Neyman-Pearson; Consider the hypothesis
test H0 : θ ∈ Θ0 = {θ0} versus H1 : θ ∈ Θ1 = {θ1} with critical value c at significance
level α. Define the likelihood-ratio as Λ(X1, . . . , Xn) = L(θ0|x1,...,xn)

L(θ1|x1,...,xn) , where the likelihood
function is L(θ | x1, . . . , xn) = Πn

i=1f(xi, θ) for θ ∈ Θ, if the observations are independent
and identically distributed. The test is the most powerful test at significance level α if
P(Λ(X1, . . . , Xn) ≤ c | H0) = α holds. This test with power β(θ) is a uniformly most
powerful (UMP) test if β(θ) ≥ β∗(θ) for every β∗(θ) that is a power function.

The test in Example 1 is an example of a UMP test.

2.2 Model of detected data

For the data analysis further on in the paper a time series of observed data points will be
used. Therefore the following model for the collected data is assumed:

Yi = µi + εi, with i = 1, . . . , n (1)

where µi is the integrated brightness of a star, such that

µi = S · In =

{
S if In = {P0, . . . , P0 + L− 1}
0 otherwise

for a bump with signal strength S > 0, signal length L on an interval Ii ⊂ {1, . . . , n}
[5], start position of the signal P0 and εi as the noise or observation error, such that
εi ∼ N(0, 1). To determine whether an exoplanet transits the star, each data point Yi is
compared to a set threshold, as an increase in the signal might be visible as an increase in
the value of the data points. Whenever a bump is detected, i.e. a data point Yi is larger
than the threshold and the bump appears periodically above this threshold, one is able to
confirm the presence of an exoplanet.

Suppose the data points Y1, . . . , Yn are defined as in (1) and are independent with a normal
distribution1. The probability density function (pdf) f(yi, θi) of the data points depends

1This assumption is made to simplify any further calculations. Assuming that Yi has a different distri-
bution complicates the statistical tests remarkably, which does not fit in the scope of this paper.
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on a parameter θi ∈ Θ. For the model in (1) it is defined that Θ = {0, k}. Resulting from
this, the following point hypotheses can be formed:

H0 : T (Yi) = Yi ∈ Θ0 = {0} (2)
H1 : T (Yi) = Yi ∈ Θ1 = {k} (3)

In this specific case, consider that 0 is the base line of the signal. Whenever the test rejects
the null-hypothesis it can be concluded that a bump, and thus an exoplanet is detected.
Technically, the hypotheses that are tested against each other are ‘there is no exoplanet’
(null-hypothesis) versus ‘there is an exoplanet’ (alternative hypothesis).

It is a rather difficult task to determine the threshold c in such way that every exoplanet
will be detected faultlessly. It may occur that a bump is detected, while this may only
be due to strong noise. In this case a Type I error (or false-positive error) occurs: an
exoplanet is detected, while not being there. Because it is desirable to make as many true
detections as possible, the probability of a Type I error occurring needs to be reduced. To
reduce this probability, the threshold (critical value) must be changed. The level of the
threshold depends on various parameters that are related to the detected data, e.g. the
length of the bump, the variance of the data or the data size.

One of the aims of this paper is to determine which parameters have the most influence on
the definition of the threshold. Next to this, it is desirable to find a suitable filter for the
data to reduce the noise εi and increase the signal strength such that the probability of a
type I error occurring is low. This way a suitable value of α can be chosen, when the BDM
is applied to the Kepler data, which is analysed later on. On that account simulations will
be run in order to determine which value of α is fit.

3 Variation of significance level in simulated data

During the detection of exoplanets one must find a compromise between reasonable choices
of the critical value c and the significance level α. If it is preferred to choose a low signifi-
cance level: this implies that the critical value - in the context of exoplanet detection, the
threshold - increases. This results in detection of less peaks, meaning the probability that
the wanted signal is detected is low. However, choosing the critical value too high could
result in detection of no peaks at all. Choosing a high significance level could lead to the
detection of peaks in the data that are not the wanted signal, leading to a high probability
of the occurrence of the Type I error. The correlation between α and c can be clearly seen
in the standard normal distribution table [7], namely c = Φ−1(1−α), where Φ−1 is strictly
increasing.

To determine what values of α are suited for practical situations, a simulation study is
performed with produced synthetic data sets according to the model in (1). The code for
these tests can be found in Appendix D. In this study several values for a certain param-
eter have been tested against different values of α to see for which significance level the
most bumps could be detected. To obtain reliable results, multiple simulations have been
performed. For each simulation a new data set has been created. In total 150 simula-
tions2 have been run. The signal was hidden at the same location within the time series.

2This number is based on a small test that has been performed. Running 150 tests on different data
sets appeared to have less false rejections than running 50 tests, e.g. For large numbers the results did not
differ significantly. Therefore this number appears to be the best choice.
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The parameters that were changed were the sample size n, the signal length L, the signal
strength S and the standard deviation σ. For each test run, one of these parameters was
changed while the α was changed as well, the rest was kept fixed. The hypothesis test that
has been performed is the same as described in Section 2.2.

3.1 Results for unfiltered random data set

The obtained results are the average number of (false) rejections for the distinct parameters
per each different value of α. While one parameter is changed, the other are fixed. The
parameters are kept fixed at n = 250, L = 5, S = 2, σ = 1.

α
n 0.0001 0.005 0.01 0.05
50 0 0.2667 0.4133 2.1
100 0.0067 0.4333 0.9067 5.06
150 0.0067 0.6 1.3 7.0467
200 0.02 1.1 1.8133 10.0867
250 0.02 1.3467 2.4 12.38
300 0.0133 1.4133 3.0733 13.9267

(a) Average number of false rejections

α
n 0.0001 0.005 0.01 0.05
50 0.2067 1.6933 2.2333 5.28
100 0.22 1.8267 2.9267 8.1867
150 0.18 2.1067 2.9867 10.1467
200 0.2867 2.3933 3.66 13.28
250 0.1867 2.7533 4.14 15.5733
300 0.2133 3.02 5.0533 17.0933

(b) Average number of rejections

Table 1: Average number of false rejections (a) and all rejections (b) for varying
sample size n of 150 simulations.

Table 1 shows the average number of false rejections and all rejections, respectively. As the
sample size n gets larger, the average number of false rejections also increases. For smaller
values of α this number is low, whereas the average number of false rejection increases to
a great extent for larger values of α. For example, for n = 300 the average number of false
rejections for α = 0.0001 is 0.0133, compared to 13.9267 for α = 0.05, which is almost 1000
times larger. Concurrently, it can be observed that low values of α give much more true
rejections than higher values of α. The true rejections can be determined by substracting
the number of false rejections from the number of all rejections. These two observations
lead to the conclusion that it is better to keep α low in order to prevent the occurrence of
a Type I error, especially if the data set is large.

α
L 0.0001 0.005 0.01 0.05
3 0.0067 1.28 2.7067 11.8267
5 0.0533 1.1067 2.6 12.36
7 0.0067 1.1133 2.5467 12.26
9 0.0133 1 2.2533 11.8867
11 0.0133 1.16 2.6133 11.4467

(a) Average number of false rejections

α
L 0.0001 0.005 0.01 0.05
3 0.12 2.1133 3.8667 13.8667
5 0.24 2.5667 4.4267 15.42
7 0.32 3.2467 5.1333 16.68
9 0.34 3.4267 5.4 17.64
11 0.46 4.26 6.6667 18.4267

(b) Average number of rejections

Table 2: Average number of false rejections (a) and all rejections (b) for varying
signal length L of 150 simulations.

In general it could be said that for an increasing signal length L the average number of
rejections also increases, which can be observed in Table 2b. On the other hand, the
number of false rejections in table 2a does not vary much, the outcomes tend to fluctuate
moderately. Even so, the conclusion that can be drawn is that, with the ascent of the signal
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length, the number of false rejections is declining which results in a smaller probability of
a Type I error occurring. The last remark that can be made is that the number of (false)
rejections in both tables scale proportionally to α, which is consistent with the construction
of the test and the independence of the data points.

α
S 0.0001 0.005 0.01 0.05
1 0.02 1.2133 2.52 12.3867
2 0.0267 1.3067 2.56 12.74
3 0.0133 1.2 2.4533 12.6933
4 0.0267 1.22 2.4533 12.2067
5 0.02 1.18 2.5333 12.1667

(a) Average number of false rejections

α
S 0.0001 0.005 0.01 0.05
1 0.0333 1.42 2.96 13.7
2 0.2667 2.78 4.4867 15.98
3 1.1333 4.5733 6.1333 17.2333
4 3.24 5.84 7.1733 17.1733
5 4.52 6.1333 7.5267 17.1667

(b) Average number of rejections

Table 3: Average number of false rejections (a) and all rejections (b) for varying
signal strength S of 150 simulations.

The results for the average number of (false) rejections for a varying signal strength may
be interpreted almost the same as for the varying signal length. The only pronounced
difference seen in Table 3 is that the average number of rejections increases much more
than for the previous results for a varying signal length. This leads to less false rejections
in total each time the signal strength increases. Similarly, the average number of false
rejections also scales proportionally with the increasing α. With this in mind, one could
decide for small values of α in case of a strong signal, thus a high S.

α
σ 0.0001 0.005 0.01 0.05
1 0.0267 1.1267 2.2933 12.1933
1.25 0.4067 4.72 7.5 23.2333
1.5 1.62 10.4467 14.3467 32.7933
1.75 3.8333 16.9533 22.32 43.0333
2 7.7267 23.3333 30.1933 50.3467

(a) Average number of false rejections

α
σ 0.0001 0.005 0.01 0.05
1 0.1667 2.6067 3.9533 15.2
1.25 0.74 6.24 9.5 26.36
1.5 2.2067 12 16.52 35.9867
1.75 4.7733 18.7667 24.72 46.0133
2 8.8067 25.1467 32.42 53.4

(b) Average number of rejections

Table 4: Average number of false rejections (a) and all rejections (b) for varying
standard deviation σ of 150 simulations.

As for the increasing σ the changes within the values are much more extreme, compared to
the outcomes for the other parameters. With every increment of σ the average number of
(false) rejections almost doubles. What is remarkable is that, in contrast with all previous
outcomes, the number of true rejections is overall larger for larger values of α than for
smaller values, although the numbers of false rejections are fairly high. This should be
kept in mind when choosing a suitable significance level for the data.

For each varied parameter the results can be summarized as follows:

• For an increasing sample size it is better to keep α low

• For any signal length it is best to keep α below 0.01

• For a large signal strength it is best to keep α low as well

• For an increasing standard deviation it is acceptable to choose larger values of α
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To conclude, in general it seems better to keep α as low as possible, which gives better
outcomes for the number of false rejections. However, the outcomes could be improved
such that higher values of α will give a low number of false rejections as well. This is
elaborated on in the next section.

4 Filtering simulated data

As may be concluded from Section 3, the average number of false rejections is fairly high
for some parameters. When certain parameters are increased, the average number of
false rejections becomes very large. To assure that this number decreases, thus ensuring
the correct detection of exoplanets, the signal-to-noise ratio (SNR) of the data must be
maximised [3]. Applying a matched filter to a data set ensures this maximization since
this is the optimal linear filter in presence of additive stochastic noise [9][14].

4.1 Introduction to matched filter

Simply said, the matched filter enhances the signal that is present within the data set. It
is assumed that the shape of the signal is known and the filter equals this specific physical
shape. In case of exoplanet detection it is assumed the filter is a time series containing
a bump, as shown in Figure 2. Because of the shape of the signal, the filter represents
the pure signal without noise. Using the matched filter, it is possible to find a correlation

Figure 2: An example of a matched filter with S = 2 and L = 9.

between the signal in the data set and the filter itself. Consider fi = 1
σ
√
L
I{P0,...,P0+L−1} to

be the matched filter and Yi the unfiltered data as in (1). Then, the result of the filtered
output is the convolution of fi and Yi:

Xi =

∞∑
k=−∞

fk−i · Yk, i ∈ {1, . . . , n− L+ 1} (4)

such that Yk = 0 if k ≤ 0 or k > n. Applying the matched filter to the data will result
in a peak in the filtered data, which appears when the filter encounters the signal. The
maximum of this peak is when the filter is aligned with the data. Figure 3 is an example
of the application of a matched filter to a random data set. The black points represent the
unfiltered data, where the red dots are the filtered data points. The location of the signal
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Figure 3: Unfiltered random data set (black) and random data set where matched
filter is applied (red). n = 150, L = 9, S = 2, σ = 1. The dotted line is the
threshold that is set (c = 1.96). The peak in the filtered data appears to be more
prominent that in the unfiltered data.

in the filtered data easier to detect than in the unfiltered data. To conclude, the filtered
signal is not present at the last L− 1 points. This is evident, because the last part of the
time series where the filter is matched is located precisely there.

4.2 Increasing detection power by filtering data

By applying the matched filter to the simulated data it can be shown using the Neyman-
Pearson lemma that the detection power is increased, which means the probability of
rightfully rejecting H0 is increased. First, it is assumed that the position P0 of the signal
of length L in the simulated data set is known. Then the next hypotheses follow:

H0 : −→µ ≡ 0 (5)
H1 : −→µ = S · In (6)

with −→µ = (µ1, . . . , µn) and In = {P0, . . . , P0 + L − 1}. In this situation - after fil-
tering - it is assumed that Θ = Rn, because vectors are constantly compared with
each other. Hence, this results in the disjoint sets Θ0 = {(0, . . . , 0) ∈ Rn} and Θ1 =
{(0, . . . , 0, S, . . . , S, 0, . . . , 0) ∈ Rn}. Because this is a point hypothesis test, as in Example
1 it is possible to apply the Neyman-Pearson lemma to the test to see whether this is the
most powerful test.

Lemma 1. The statistical test with null-hypothesis (5) and alternative hypothesis (6) is
the most powerful test.

Proof. According to Theorem 1 a statistical test is most powerful at significance level α if
P(Λ(Y1, . . . , Yn) ≤ c | H0) = α holds. Assume that Y1, . . . , Yn are indentically distributed
such that f(yi|θ) = 1√

2πσ2
exp −(yi−θi)

2

2σ is the pdf of Yi.
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Calculating the likelihood ratio results in

Λ(Y1, . . . , Yn) =
L(θ0|y1, . . . , yn)

L(θ1|y1, . . . , yn)

=
Πn
i=1

1√
2πσ2

exp
(
−y2i
2σ

)
Πn
i=1

1√
2πσ2

exp
(
−(yi−θi)2

2σ

)
=

(
1√
2πσ2

)n
exp

(∑n
i=1

−y2i
2σ

)
(

1√
2πσ2

)n
exp

(∑n
i=1

−(yi−θi)2
2σ

)
= exp

(
−

n∑
i=1

y2i
2σ

+
n∑
i=1

(yi − θi)2

2σ

)
[Split the second sum in three different parts]

= exp
(
−

n∑
i=1

y2i
2σ

+

P0−1∑
i=1

y2i
2σ

+

P0+L−1∑
i=P0

(yi − S)2

2σ
+

n∑
i=P0+L

y2i
2σ

)

= exp
( P0+L−1∑

i=P0

−2yiS + S2

2σ

)
.

This results leads to the following probability that must hold for the most powerful test:

P
(

exp
( P0+L−1∑

i=P0

−2yiS + S2

2σ

)
≤ c | H0

)
= α.

Applying the natural logarithm function to both sides of the inequality will result in

P
( P0+L−1∑

i=P0

−2yiS + S2

2σ
≤ ln c | H0

)
= α.

Splitting the sum gives

P
(S2

2σ

P0+L−1∑
i=P0

1− 2S

2σ

P0+L−1∑
i=P0

yi ≤ ln c | H0

)
= α

P
(S2

2σ
(L− 1)− S

σ

P0+L−1∑
i=P0

yi ≤ ln c | H0

)
= α

Now the constant on the left-hand side of the inequality can be moved to the right-hand
side. After this, multiplying both sides of the inequality with − 1

S
√
L
yields

P
( 1

σ
√
L

P0+L−1∑
i=P0

yi ≥
ln c

S
√
L

+
S(L− 1)

2σ
√
L
| H0

)
= α

P
( 1

σ
√
L

P0+L−1∑
i=P0

yi ≥ c̃
)

= α

and this gives indeed a test with the best power, meaning this is a UMP test.
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5 Variation of significance level in filtered simulated data

In this section the experiments of Section 3 have been repeated, only now there will be
dealt with filtered data. The goal is to reduce the average number of false rejections for the
varying parameters, leading to recommendations on choosing a suitable α when dealing
with the Kepler data.

5.1 Results for filtered random data set

α
n 0.0001 0.005 0.01 0.05
50 0 0.28 0.3467 1.633
100 0 0.3867 1.0467 4.4333
150 0.0267 0.5133 1.1133 5.9267
200 0.0133 1.08 2.12 9.3067
250 0.0333 1.06 2.2933 12.06
300 0.0133 1.1467 3.1667 14.4133

(a) Average number of false rejections

α
n 0.0001 0.005 0.01 0.05
50 2.2467 5.4 6.5667 9.2867
100 2.1333 5.52 7.3933 12.1
150 1.9733 5.9533 7 13.6867
200 2.0733 6.42 8.38 17.04
250 2.3133 6.5 8.7533 19.9667
300 2.12 6.34 9.3933 21.9667

(b) Average number of rejections

Table 5: Average number of false rejections (a) and all rejections (b) for varying
sample size n of 150 simulations of filtered data.

First of all, the difference between the average number of false rejections between the
unfiltered and filtered data in Table 5 is not significant. For higher values of α the results
for the filtered data are slightly better, but not significantly. However, if one takes a look
at the average number of rejections it can be established that this number has increased.
Both of these observations imply the increase of the average number of true rejections.
Last but not least, because more rejections are made for the filtered data, the detection
of peaks is more precise - peaks that should have been rejected in the unfiltered data are
now rejected, hence the correct detection of the actual signal is ensured.

α
L 0.0001 0.005 0.01 0.05
3 0.0133 1.0333 2.2267 11.34
5 0.0267 1.18 2.4 11.2533
7 0.0467 0.98 2.0067 11.6867
9 0.0067 1.0533 2.0333 10.8
11 0.04 1 2.6067 11.3267

(a) Average number of false rejections

α
L 0.0001 0.005 0.01 0.05
3 0.34 2.4667 3.5933 14.3467
5 2.1667 6.4733 8.5933 19.12
7 4.8467 8.98 11.0933 22.4067
9 7.12 11.36 13.18 23.4
11 8.8667 12.9067 15.5667 26.1

(b) Average number of rejections

Table 6: Average number of false rejections (a) and all rejections (b) for varying
signal length L of 150 simulations of filtered data.

After filtering, the average number of false rejections for the lowest α is slightly higher
than before filtering for the varying L. For the rest of the outcomes the average number
is slightly higher compared to the results in Table 6a. A prominent change is the increase
of the average number of rejections. It can be seen in table 6b that for L = 3 this number
is somewhat lower than before filtering; when L starts to increase, the average number of
rejections is increasing to a great extent. Just as for n this implies that for a longer signal
the number of true rejections that is made is large. The larger α becomes, the more true
rejections are made.
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α
S 0.0001 0.005 0.01 0.05
1 0 0.9933 2.6533 11.92
2 0.0333 1.1933 2.4467 11.22
3 0.0067 1.0733 2.7 11.7
4 0.0067 0.9 2.22 11.14
5 0.0067 1.4267 2.5067 10.6133

(a) Average number of false rejections

α
S 0.0001 0.005 0.01 0.05
1 0.12 2.1133 4.1867 15.58
2 1.8067 6.5467 8.48 18.66
3 5.8267 8.8267 10.7933 20.4733
4 7.76 9.3867 10.9067 20.4
5 8.2933 10.3267 11.5533 20.02

(b) Average number of rejections

Table 7: Average number of false rejections (a) and all rejections (b) for varying
signal strength S of 150 simulations for filtered data.

The average number of (false) rejections for filtered data, as is shown in Table 7, are slightly
less than for the unfiltered data. The only big difference is for α = 0.0001; the average
number of false rejections is almost 0, where the average number of rejections is almost
twice as high, meaning that a lot of true rejections have been made. In conclusion, if the
S becomes larger, it is better to choose a higher value of α, due to the larger number of
true rejections.

α
σ 0.0001 0.005 0.01 0.05
1 0.0133 1.1733 2.5 12.3333
1.25 0.0467 1.1533 2.1933 12.3533
1.5 0 1.2933 2.4733 11.2467
1.75 0.0133 0.98 2.1867 11.58
2 0.0133 0.92 2.48 11.97633

(a) Average number of false rejections

α
σ 0.0001 0.005 0.01 0.05
1 2.1667 7.0333 8.7333 19.9467
1.25 1.1867 4.48 6.5667 18.5533
1.5 0.2867 3.92 5.5133 16.8733
1.75 0.24 2.2333 4.28 15.7867
2 0.08 2.3533 4.2333 15.2533

(b) Average number of rejections

Table 8: Average number of false rejections (a) and all rejections (b) for varying
standard deviation σ of 150 simulations for filtered data.

Filtering the data set has made the most impact on the results for changing σ. While
comparing Tables 4a and 8a, one can observe that the average number of false rejections
has decreased a lot, especially for larger values of α. The same conclusion can be drawn
for the average number of rejections. As already mentioned in Section 4, due to the higher
SNR the fluctuation of the data points is much less after filtering. The results of the
hypothesis tests are a good illustration of this phenomenon. Though the numbers in Table
4 are lower than in Table 8, the number of true rejections is approximately the same. Even
so, it is better to reduce the number of (false) rejections in general to rectify the detection
of a signal in the given data set.

5.2 Recommendations for the Kepler data set

After performing statistical tests on simulated data sets, it is possible to give recommen-
dations about choices for α for statistical tests that will be performed on actual Kepler
data. All in all, the results above have shown that in any case it is desirable to filter any
given data set using the matched filter. Furthermore, it is important to consider what kind
of data set one is dealing with. Due to the large size of the Kepler data set it is best to
keep the significance level low (α ≤ 0.01). For a longer signal length it is best to let α
be relatively large, namely α ≥ 0.005. These two points lead to the conclusion that it is
best to choose α between 0.005 and 0.01. The fact that the results for the unfiltered and
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filtered data set for varying S and σ are not significantly unalike, justifies the choice for
0.005 ≤ α ≤ 0.01.

6 Kepler data

From the Kepler data three objects (time series data sets) - KIC10910878, KIC4563268 and
KIC11954842 - have been retrieved. The plots of these data sets can be found in Appendix
B. Each of these objects has a certain number of candidates (potential exoplanets) hidden
in the data. For each of these objects a test has been run for α ∈ {0.005, 0.0075, 0.01}
to see how much peaks would be detected. All the parameters that have been tested in
Section 3 and 5 are unknown, except for the sample size - each object consists of 1640
observation points. For each test run the significance level and the signal length have been
varied. The results that are obtained from the tests are the number of rejections. This
does not give information about how many peaks there are present, but just that there is
a possibility that peaks could be present.

6.1 Results for Kepler data after application of the BDM

In Table 9 the number of rejections for filtered and unfiltered data is denoted. The first
thing that must be noted is that for each data set the number of rejections for unfiltered
data increases per increasing α. Though, this number remains the same for varying L,
because only the filtered data depends on this parameter (which is used for the matched
filter).

α
L 0.005 0.0075 0.01
6 24 (22) 27 (27) 30 (31)
10 28 (22) 30 (27) 31 (31)
14 34 (22) 36 (27) 37 (31)
18 38 (22) 39 (27) 41 (31)

(a)

α
L 0.005 0.0075 0.01
6 30 (13) 37 (18) 40 (22)
10 41 (13) 45 (18) 49 (22)
14 31 (13) 41 (18) 48 (22)
18 12 (13) 18 (18) 22 (22)

(b)
α

L 0.005 0.0075 0.01
6 13 (12) 14 (15) 14 (18)
10 18 (12) 18 (15) 22 (18)
14 12 (12) 12 (15) 14 (18)
18 0 (12) 2 (15) 6 (18)

(c)

Table 9: Number of rejections for the Kepler data KIC10910878 (a), KIC4563268
(b) and KIC11954842 (c) with a varying α and L. The number between brackets
denotes the number of rejections for the unfiltered data, the other is for the filtered
data.

For the first object KIC10910878 it can be clearly seen that when L is increasing, this is
also the case for the number of rejections. The shorter the signal, the larger these peaks
are for the filtered data. This is made visible in Figure 4. The large number of rejections
implies that more candidate planets may be present. Figure 4 shows two large peaks,
meaning it is more than likely that at least one candidate is present. If one takes a closer
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look, several periodical peaks appear just above the set threshold. This could imply the
presence of another candidate.

Figure 4: Filtered data points of object KIC10910878 with varying signal length L.
The value of α is set at 0.001.

The outcomes of the hypothesis test on the second object KIC4563268, denoted in Table
9b, appear to be different compared to the outcomes for KIC10910878, which can be viewed
in Table 9a. Here it can be seen that for L = 10 the number of rejections is the highest.
However, in Figure 11 the peaks of a candidate appear to be the highest for L = 6. In
some cases, the peaks are the largest for L = 10. In any case, at least one candidate can
be detected for each value of L. The presence of more candidates remains unclear. Table

Figure 5: Filtered data points of object KIC4563268 with varying signal length L.
The value of α is set at 0.001. The colour code for the varying L is identical to the
colour code as in Figure 4.

9c denotes the results for the last Kepler object KIC11954842. Again, it can be seen that
for L = 10 the most rejections are made. What is interesting is that for smaller numbers
of L the number of rejections is almost the same for each α, here it starts to differ for
L = 18. This may be due to extremely fluctuating data. Looking at Figure 6 one can
deduce that it is very likely that a candidate is present, though the signal length of this
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candidate remains unclear. The figure shows that some peaks are detected best for L = 6,
while other peaks appear above the threshold for L = 10. This could be a peak of another
candidate.

Figure 6: Filtered data points of object KIC11954842 with varying signal length L.
The value of α is set at 0.001. The colour code for the varying L is identical to the
colour code as in Figure 4.

6.2 Reevaluation of the results for Kepler data

Since the objects have already been observed and studied by physicists, it is possible to
compare the results obtained in Section 6.1 with the results from real-life observations.
The page summaries [1] can be found in Appendix C. Each new observation was made
approximately half an hour after the previous observation. Thus the period between two
data points is 0.49 hours.

Figure 7: Raw data of Kepler object KIC10910878 (black transparent dots) with
positions of candidates depicted below the data. The red points are the positions
of Candidate 1 and the blue points are the positions of Candidate 3.

Figure 7 shows that the largest peaks are located at i = 487 and i = 1273. This would
mean that the period between both peaks in days is approximately (1273−487)·0.49

24 ≈ 16.05
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days. Comparing this with the pages summaries leads to the conclusion that the large
peaks indicate the presence of Candidate 1. In Appendix C.1 is can be seen that the veri-
fied period is approximately 16.07 days, which is close to the result of this paper.

The second candidate has more positions that appear in Figure 7. Based on data points
i = 415 and i = 704 it can be calculated that the period of this candidate is (704−415)·0.49

24 ≈
5.90 days. This corresponds with Candidate 3 in Appendix C.3, which has a period of ap-
proximately 6.26 days.

According to the page summaries a third candidate should be present as well, namely
Candidate 2. However, this candidate has a period of approximately 41.20 days. The
analysis of the object of this paper has a period of approximately 34.17 days. This means
that even if Candidate 2 would be detected, this would emerge in a single peak. Hence,
no conclusion can be drawn about the presence of a potential exoplanet, since this peak
could also be noise.

The peaks of the second object could not be identified using the provided script, even
though the peaks are visible in the filtered data. Therefore no conclusion can be drawn
regarding the detected objects. According to the page summaries two candidates should
be present in the object. Figure 11 supports this, due to the clearly visible peaks in the
filtered data.

Figure 8: Raw data of Kepler object KIC11954842 (black transparent dots) with
positions of candidates depicted below the data. The blue points are the positions
of Candidate 1.

In Figure 8 the positions of a potential candidate are depicted. The locations of these
points are i = 403 and i = 1039. Calculating the period of this candidate will result
in a period of (1039−403)·0.49

24 ≈ 12.99 days. According to Appendix C.6 the period of this
candidate is also approximately 12.99 days, which means Candidate 1 in Object 3 is located
successfully.
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7 Conclusion and Discussion

The goal of this paper was to apply statistical hypotheses tests to data sets in order to
determine whether or not it is possible to detect exoplanets. First of all, a model was
defined for the data points of the simulated data. Next to this it has been shown that the
BDM could be applied to this type of data, which contains the most powerful statistical
point hypothesis test. This has been done using the Neyman-Pierson lemma.

Hereafter, hypothesis tests - as formulated in (2) and (3) - have been performed on the
simulated unfiltered data. For these hypotheses n, L, S and σ were varied, after which
the (false) rejections were calculated. These outcomes were compared to each other for
various values of α to observe how this would influence the detection of a wanted signal.
For future research, one could refine on the different values of α to see whether the change
of the number of (false) rejections clearly. Next to this, it would be worthwhile to inspect σ
specifically, since the transitions within the number of (false) rejections for this parameter
were the largest.

Filtering the simulated data sets that have been tested has proven to be beneficial. It
could be clearly seen that the number of false rejections has been reduced, where this was
not necessarily the case for the total number of rejections. This leads to the conclusion
that more correct rejections have been made, hence more precise detections have been
achieved. What could improve the detection of a wanted signal even more is applying
the Holm-Bonferroni method [8] on the simulated data. Briefly explained, this method
is used for multiple-hypothesis testing to control the family-wise error rate - meaning the
probability that one or more errors of Type I will occur. Since this paper was dealing
with multiple-hypothesis testing for simulated data, and further on the Kepler data, this
method could have been useful.

At last the BDM has been applied to three Kepler data sets, or objects, to determine
whether or not potential exoplanets could be detected by means of this method. Due to
the absence of knowledge about the position P0 and the precise length L of the wanted
signal it was not possible to determine the number of false rejections, meaning it was not
possible to determine specifically whether or not a signal could be identified. Nevertheless,
using the results of the total number of rejections and the plots it was possible to deduce
if there could be a potential exoplanet present or not. This was certainly the case for each
of the Kepler data sets.

Revising the outcomes of the application of the BDM to the objects and comparing these
to the physical outcomes has lead to the conclusion that for Object KIC10910878 and
KIC11954842 two and one candidates could be found, respectively. To conclude this re-
search, it can be said that the BDM has been proven a reliable method for exoplanet
detection. For future work one could look more into the detection of the location of peaks.
This has now been done by taking the highest and second highest point of a candidate in
the data and using these for the calculation of the period.
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A Table of symbols

Symbol Description
n Sample size of a data set
L Length of the signal (bump)
S Strength of the signal (bump)
σ Standard deviation of a data point Yi in a data set
α Significance level set to perform a statistical test
c Critical value of a statistical test
Z Standard normal random variable
Φ Cumulative distribution function of the standard normal distribution

Table 10: Table of symbols
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B Plots of unfiltered Kepler objects

Figure 9: Data points of object KIC4563268.

Figure 10: Data points of object KIC4563268.
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Figure 11: Data points of object KIC4563268.
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C Summaries of Kepler data objects

C.1 Object 1 - candidate 1
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C.2 Object 1 - candidate 2
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C.4 Object 2 - candidate 1
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D R code: hypothesis testing on random data set

# Number o f i t e r a t i o n s
k <− 150

#Packages needed :
r e qu i r e ( zoo )

# Function to c a l c u l a t e number o f ( f a l s e ) r e j e c t i o n s :
# va r i a t i o n_alpha (number o f i t e r a t i o n s , sample s i z e , l engths ,
# st rengths , sigmas , s i g n i f i c a n c e l e v e l )
v a r i a t i o n_alpha <− f unc t i on (k , n , L , S , sigma , ct ){
#Create empty vec to r s
udr <− vec to r ( " i n t e g e r " , k )
udfr <− vec to r ( " i n t e g e r " , k )
f d r <− vec to r ( " i n t e g e r " , k )
f d f r <− vec to r ( " i n t e g e r " , k )

#for−loop f o r c a l c u l a t i o n o f mean ( f a l s e l y ) r e j e c t e d data
f o r ( i in 1 : k ){
#Producing data :
mu<−c ( rep (0 ,L) , rep (S ,L) , rep ( 0 , ( n−2∗L) ) )#vecto r o f mean va lues
Y<− mu+rnorm (n , 0 , sigma ) #Observation vec to r ;

#corre spnds to Vectors Vi o f data f i l e s
c<− qnorm(1− ct ) # Determining th r e sho ld
#rnorm command to s imulate random draws from normal d i s t r i b u t i o n ;
#a l s o ava l ab l e f o r other d i s t r i b u t i o n s , e . g . rbinom , run i f , . . . .

#F i l t e r the data :
FY<−1/ ( sq r t (F) ∗ sigma ) ∗ r o l l a pp l y (Y,F , sum) # F i l t e r e d (matched

# f i l t e r ) and normal ized
# data

Fmu<−1/ ( sq r t (F) ∗ sigma ) ∗ r o l l a pp l y (mu,F , sum) # F i l t e r e d mu−vec to r

####Evaluat ion
sum(Y>c )# number o f r e j e c t i o n s , u n f i l t e r e d data
sum(Y[mu==0]>c ) # number o f FALSE REJECTIONS, u n f i l t e r e d data
sum(FY>c )# number o f r e j e c t i o n s , f i l t e r e d data
sum(FY[Fmu==0]>c ) # number o f FALSE REJECTIONS, u n f i l t e r e d data

udr [ i ]<−sum(Y>c )
udfr [ i ]<−sum(Y[mu==0]>c )
fd r [ i ]<−sum(FY>c )
f d f r [ i ]<−sum(FY[Fmu==0]>c )
i <− i+1

}
udr_t o t a l <− sum( udr ) / l ength ( udr )
udfr_t o t a l <− sum( udfr ) / l ength ( udfr )
f d r_t o t a l <− sum( fd r ) / l ength ( fd r )
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f d f r_t o t a l <− sum( f d f r ) / l ength ( f d f r )

p r i n t ( udr_t o t a l )
p r i n t ( udfr_t o t a l )
p r i n t ( f d r_t o t a l )
p r i n t ( f d f r_t o t a l )

}

#Standard s e t t i n g s f o r parameters
n1 <− 250
L1 <− 5
S1 <− 2
sigma1 <− 1
c_ch1 <− 0 .05

# Paramaters that change
n_ch <− c (50 ,100 ,150 ,200 ,250 ,300) #d i f f e r e n t sample s i z e s
L_ch <− c (3 , 5 , 7 , 9 , 11 ) #d i f f e r e n t s i g n a l l eng th s
S_ch <− c ( 1 , 2 , 3 , 4 , 5 ) #d i f f e r e n t s i g n a l s t r eng th s
sigma_ch <− c (1 , 1 . 25 , 1 . 5 , 1 . 75 , 2) #d i f f e r e n t sigmas
c_ch <− c (0 . 0001 , 0 . 005 , 0 . 01 , 0 . 05 ) #d i f f e r e n t s i g n i f i c a n c e l e v e l s

# Disp lay ing r e s u l t s o f the hypothes i s t e s t that i s performed per
# va r i ab l e
f o r ( i in c_ch ){

f o r ( l in n_ch ){
p r i n t ( "#( f a l s e ) r e j e c t i o n s f o r sample s i z e " )
p r i n t ( l )
v a r i a t i o n_alpha (k , l , L1 , S1 , sigma1 , i )

}
}

f o r ( i in c_ch ){
f o r (m in L_ch ){

p r i n t ( "#( f a l s e ) r e j e c t i o n s f o r s i g n a l l ength " )
p r i n t (m)
va r i a t i o n_alpha (k , n1 , m, S1 , sigma1 , i )

}
}

f o r ( i in c_ch ){
f o r ( s in S_ch ){

p r i n t ( "#( f a l s e ) r e j e c t i o n s f o r s i g n a l s t r ength " )
p r i n t ( s )
v a r i a t i o n_alpha (k , n1 , L1 , s , sigma1 , i )

}
}

f o r ( i in c_ch ){
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f o r ( x in sigma_ch ){
p r i n t ( "#( f a l s e ) r e j e c t i o n s f o r sigma" )
p r i n t ( x )
v a r i a t i o n_alpha (k , n1 , L1 , S1 , x , i )

}
}
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E R code: hypothesis testing on Kepler data set

#Packages needed :
r e qu i r e ( zoo )

KeY <− read . del im ( ’ Kepler . txt ’ , header = TRUE, dec = " . " , sep=" " )
#Observation vec to r ; cor re spnds to Vectors Vi o f data f i l e s

# Parameters which you can vary . ( I f you s e t S<−0 you get the
# s i t u a t i o n with no s i g n a l at a l l . ) :
n<−l ength (KeY\$V1) # Sample s i z e : Should be at l e a s t 3∗L
L<−5 # Length o f s i g n a l
F<−L # Length o f window in f i l t e r , here s e t equal to L ,

# but could a l s o be d i f f e r e n t
S<−9 # Strength o f the s i g n a l
sigma<−sd (KeY\$V1) # Standard dev i a t i on o f the normally d i s t r i b u t e d

# random va r i a b l e s
c<− qnorm(1−0.0001) # C r i t i c a l va lue used

#Producing data :
mu<−c ( rep (0 ,L) , rep (S ,L) , rep ( 0 , ( n−2∗L) ) ) #vecto r o f mean va lue s
Yinv <− KeY\$V1
Y <− Yinv ∗ −1

#rnorm command to s imulate random draws from normal d i s t r i b u t i o n ;
#a l s o ava l ab l e f o r other d i s t r i b u t i o n s , e . g . rbinom , run i f , . . . .
#F i l t e r the data :
FY<−1/ ( sq r t (F) ∗ sigma ) ∗ r o l l a pp l y (Y,F , sum) # F i l t e r e d (matched f i l t e r )

# and normal ized data
Fmu<−1/ ( sq r t (F) ∗ sigma ) ∗ r o l l a pp l y (mu,F , sum) # F i l t e r e d mu−vec to r

#Plot s :
p l o t (FY, ylim=c (min ( c (Y,FY) ) , max( c (Y,FY) ) ) , main="" , pch=15,
xlim=c (0 , n ) , c o l=" red " )
po in t s (Y, pch=16)
po in t s ( rep ( c , n ) , type=" l " , l t y =2, lwd=2)

l i n e s (FY, c o l=" red " )
l i n e s (Y)

####Evaluat ion
sum(Y>c )# number o f r e j e c t i o n s , u n f i l t e r e d data
sum(Y[mu==0]>c ) # number o f FALSE REJECTIONS, u n f i l t e r e d data
sum(FY>c )# number o f r e j e c t i o n s , f i l t e r e d data
sum(FY[Fmu==0]>c ) # number o f FALSE REJECTIONS, f i l t e r e d data
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