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Solving the obstacle problem:
Finite element simulation with a study on exact solutions

A. J. Jonkheer (Bram)∗

January 29, 2020

Abstract

In this paper, we focus on the elliptic and the parabolic obstacle problem.
We will discuss the elliptic obstacle problem in both one and two dimensions.
On the other hand, we will consider the parabolic obstacle problem in one
dimension only. We use the finite element method and quadratic programming
in Matlab to simulate solutions. We provide the corresponding numerical
implementation and show that there exist some elegant exact solutions to the
elliptic obstacle problem in specific cases. The method we use could be a step
towards finding more exact solutions of obstacle problems.

Keywords: Elliptic Obstacle Problem, Finite Element Method, Elasticity Theory,
Modeling Non-Linear PDEs, Parabolic Obstacle Problem, Free Boundary Problem

1 Introduction

The obstacle problem is a classical problem in elasticity theory, in which a partial differential
equation needs to be solved, while satisfying some given constraints. This problem has
applications in structural engineering (theory of elastic bodies), control theory and other
contact or impact problems. For example, think of an elastic membrane which, under the
application of some force, will adopt a certain shape. If then there is an obstacle close
enough to the membrane, and it is in the direction of the applied force, the membrane will
deform because of the obstacle. This is a typical example of an elliptic problem, which is
independent of time.

Uniqueness of solutions to the obstacle problem was already shown in 1980 by
Kinderlehrer and Stampacchia [8]. Shortly after that, Nachbin wrote ‘Obstacle Problems
in Mathematical Physics’ [11], where many practical examples and applications of the
obstacle problem are discussed. There and in [6], the elliptic obstacle problem is discussed
in detail, and we will investigate the problem in similar way.

The parabolic obstacle problem is mainly used in two ways: either to describe
melting and crystallization processes, or it is applied to financial problems (see for example
[4],[12]).

First of all, in this paper we want to answer the question: "What is the equilibrium
position and contact area of an elastic membrane whose boundary is held fixed, and which
is constrained to lie above a given obstacle?". To answer this question, we must solve
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the elliptic obstacle problem. We will explain how to find exact solutions in 1D and 2D,
and we will use the finite element method (FEM) and quadratic programming to solve the
problem numerically. Our second objective is to solve the parabolic obstacle problem in
one dimension. To achieve this, we will also use the finite element method. Furthermore,
we want to provide availability of code to further study the elliptic and parabolic obstacle
problem.

1.1 Problem sketch

Investigating the obstacle problem, we are looking for the solution to a partial differential
equation. This we will describe as the function u : Ω → R , where Ω ⊂ Rn is the domain
on which the partial differential equation is defined. Now the value of u is constrained
by some obstacle ψ : Ω → R, hence the name of this problem. As stated above, different
partial differential equations will have different meanings in real life, and thus different
kinds of obstacle.

We make the distinction between two sets on Ω. Let the coincidence set, where the
membrane touches the obstacle, be defined as

I := {x ∈ Ω : u(x) = ψ(x)}.

Furthermore, there is the non-coincidence set, which we define as

Λ := {x ∈ Ω : u(x) > ψ(x)}.

2 Modeling

In this section, we will demonstrate the methods used to solve both the elliptic and the
parabolic obstacle problem.

2.1 Elliptic equations

We will start with elliptic equations. These equations are a good starting point for
numerically solving the obstacle problem, because they only have spatial variables. This
makes it relatively easy to check whether we have implemented the finite element method
correctly.

We consider a membrane as a thin plate offering no resistance to bending, only
having tension. Modeling an elliptic obstacle problem usually comes with forces acting on
the membrane. We will describe these forces by some function f : Ω → R. We fix the
membrane at the boundary ∂Ω of the domain, or:

u = g on ∂Ω

for some function g = g(x). It can be shown ([6],[11]) that the potential energy E(u) of
such a membrane is approximately equal to

E(u) =

ˆ
Ω

(λ
2
|∇u|2 − fu

)
dΩ, (2.1)
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with the assumption that |∇u| is small on Ω. Minimization of this potential energy is
found [6] when u satisfies the following equation:

∇ · (λ∇u) + f = 0

For simplicity we will use λ = 1. Therefore, we will look for a solution to −∆u = f , also
known as Poisson’s equation. Here ∆ is the Laplace operator (= ∇2).
Now we can describe the elliptic obstacle problem as the following system of equations.


−∆u = f on Λ

u ≥ ψ on Ω

u = ψ on I
(2.2)

2.1.1 Exact solutions

1D exact

Let us look at how to find exact solutions for the 1D elliptic obstacle problem. Let Ω =
[−1, 1] and let ψ(x) ∈ C1(Ω) be a concave obstacle. If the forces acting on the membrane
are large enough (we will get back to this later on), I 6= ∅. For now, we will focus on
problems where I consists of one interval, such that the domain Ω is split up into three
sections. Let us call the left and right touching point xL and xR, respectively, where
xL ≤ xR. Using the system of equations 2.2, we get:

−∂2u
∂x2

= f on [−1, xL) ∪ (xR, 1]

u ≥ ψ on [−1, 1]

u = ψ on [xL, xR]

(2.3)

Now we have given that Poisson’s equation has to hold on the interval [−1, xL) and on the
interval (xR, 1]. Furthermore, as long as ψ(x) ∈ C1(Ω) and f(x) ∈ C1(Ω), we know that
u ∈ C1(Ω) [6]. We can now set up two systems of equations to find the solution.

uL(−1) = 0

uL(xL) = ψ(xL)
∂uL
∂x (xL) = ∂ψ

∂x (xL)


uR(1) = 0

uR(xR) = ψ(xR)
∂uR
∂x (xR) = ∂ψ

∂x (xR)

From Poisson’s equation we can find the general solutions of uL and uR, which resembles
the real solution up to some linear function with two unknowns. This gives us six equations
with six unknowns, which gives us one unique solution to the obstacle problem 1D.

2D exact

For the 2D situation, things get a little more complicated. Let Ω = [−1, 1]2 and let
ψ ∈ C1(Ω) be a concave obstacle. Consequently, 2.2 becomes

−∂2u
∂x2
− ∂2u

∂y2
= f on Λ

u ≥ ψ on [−1, 1]2

u = ψ on I
(2.4)
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If we try to solve the obstacle problem in the same way we did before, we notice we cannot
integrate twice to get a general solution, because we are dealing with partial derivatives.
In this case, the general solution would be an infinite sum, which would not allow us to
solve this system in the same manner. There are two approaches with which we can solve
this problem.

1. ∂2u
∂y2

= 0

Because of symmetry, it does not matter whether we look at ∂2u
∂x2

= 0 or at ∂2u
∂y2

= 0.
Therefore, let us investigate the latter. Consequently, the only solution is of the form
u(x, y) = ζ(x)(c1y + c2), where ζ(x) is the general solution to Poisson’s equation in 1D.
As a consequence of this, as soon as we define the points on the boundary at y = ±1, we
fix the whole membrane. Therefore, this is only an interesting problem if we do not define
g(x,±1). If g(−1, y) and g(1, y) are constant on ∂Ω, c1 has to be equal to 0. Hence we
arrived back at the 1D problem. Alternatively, if g(−1, y) and g(1, y) are linear in y, we
can get exact solutions for a slightly more difficult problem. However, since these problems
match the one-dimensional problem for the most part, we will not focus on this.

2. ∂2u
∂θ2

= 0

We decided to look only at obstacle problems radially symmetric around (0, 0), where both
the obstacle and the boundary is symmetric. Also, the function f can not depend on θ,
since then the solution would not be symmetric. Now it makes more sense to use the
Poisson’s equation in polar form, because ∂u

∂θ = 0 and therefore ∂2u
∂θ2

= 0 for a symmetric
membrane. This gives:

−∂
2u

∂r2
− 1

r

∂u

∂r
= f(r) on Λ, (2.5)

where we are now looking for a solution u(r). The easiest way to get a completely symmetric
membrane, is to fix u(1, θ) = 0 and let the membrane be suspended above an obstacle
symmetric around (0, 0).

We can now rewrite equation 2.5 to the following equation.

−∂u
∂r

(
r
∂u

∂r

)
= rf(r) on Λ (2.6)

For any function f(r) =
∑∞

n=−∞ cnx
n, where cn is a scalar, this equation gives an analytic

general solution. The easiest force distribution would be f(r) = −1/r, but since constant
forces are more practical, we will focus on that.
Let f(r) := −γ. Integrating twice gives us the general solution for u(r).

u(r) =
γ

4
r2 + c1 ln r + c2 on Λ (2.7)

When I 6= ∅, it means there is a value r∗ at which the membrane touches the obstacle all
around. Again, because ψ(x) ∈ C1(Ω) and f(x) ∈ C1(Ω), we also know u ∈ C1(Ω). We
can thus find the unknown constants with the use of the following system of equations.


u(1) = 0

u(r∗) = ψ(r∗)
∂u
∂r (r∗) = ∂ψ

∂r (r∗)

(2.8)

We now have three equations with three unknowns, which we can solve for certain cases
of ψ.
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2.1.2 The Finite Element Method

The finite element method has proven itself to be a very helpful tool to solve the obstacle
problem. There are two papers in particular which have been very helpful for our research
([1],[9]). We will cover the basis of it here.

First of all, we find the weak formulation of Poisson’s equation. For arbitrary
functions r(x) : Ω→ R, we getˆ

Ω
(∆u+ f) r dΩ = 0 ∀r (2.9)

This can be rewritten, using that ∇ ·
(
∇u r

)
= ∆u r +∇u · ∇r:

ˆ
Ω

(∇u · ∇r)dΩ−
ˆ

Ω
∇ ·
(
∇u r

)
dΩ =

ˆ
Ω
frdΩ ∀r (2.10)

Using Gauss’ theorem, we can rewrite the second integral:ˆ
Ω
∇ ·
(
∇u r

)
dΩ =

˛
∂Ω

(∂u
∂n

r
)
d(∂Ω), (2.11)

where n is the normal direction on ∂Ω. We will only look at membranes with fixed
boundaries. Then r has to be equal to 0 on the boundaries, so this integral will completely
disappear.
Now we will approximate the solution of equation 2.10 by discretizing Ω into a finite amount
of elements. We will call this solution uh(x), where h is the maximal h of all elements. Let
us define N as the number of nodes in the discretization of Ω.

uh(x) =
N∑
i=1

uiφi(x), (2.12)

where ui is the value of the solution at node i, and φi(x) is the basis function for node i.
We will use linear hat functions, which are defined as

φi(xj) = δi,j , δi,j =

{
1 if i = j
0 if i 6= j

(2.13)

Define S as the set of free, unfixed nodes in Ω. For the elliptic problems we will investigate,
with fixed boundaries, this is the same set as the nodes which are not on ∂Ω. Moreover,
we will use the projection of r into the function space spanned by the basis functions on
S,

r(x) =
∑

{j|xj∈S}

cjφj(x) for arbitrary constants cj . (2.14)

This transforms equation 2.10 to the following equation.

N∑
i=1

ui

ˆ
Ω
∇φi · ∇φj dΩ =

ˆ
Ω
fφj dΩ for j ∈ {k |xk ∈ S} (2.15)

Finally, we can write the equation above as a system of |S| equations.∑
{i |xi∈S}

ui

ˆ
Ω
∇φi ·∇φj dΩ =

ˆ
Ω
fφj dΩ −

∑
{l |xl /∈S}

ul

ˆ
Ω
∇φl ·∇φj dΩ for j ∈ {k |xk ∈ S}

(2.16)
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Error analysis

There have been extensive studies on the convergence rates of the finite element approximation
of elliptic partial differential equations. The objective is to say something about the
behaviour of the error between the real solution and the finite element solution, u − uh.
We will not prove the error estimates, but there are many studies the reader can refer to
(for example [2],[9]). To estimate the error, two norms are normally used. We use |...| to
denote the Euclidean norm.

• ||u||2L2(Ω) =
´

Ω u
2dΩ

• ||u||2H1(Ω) = ||∇u||2L2 =
´

Ω |∇u|
2dΩ

For the elliptic problem without an obstacle, we have the following results for the error
between the exact solution u and the approximation uh [2]. These results hold, provided
that the problem is H2-regular, which means that the solution to the problem contains two
generalized derivatives in L2. This assumption is satisfied for convex domains [3].

• ||u− uh||L2(Ω) ≤ Ch2
max||u||H2(Ω)

• ||u− uh||H1(Ω) ≤ Chmax||u||H2(Ω)

Here C is a constant independent of h, hmax is the maximum value of h on the discretized
grid, and ||u||H2(Ω) denotes the H2-norm of the exact solution u, which naturally does not
depend on h. This means we can expect second order convergence for the L2-norm and
first order convergence for the H1-norm. Generally, for smooth obstacles and boundary
values, these results will also hold for elliptic obstacle problems.

1D

In one dimension, there are only two boundary nodes, x1 and xN . Let h be the distance
between two adjacent nodes. The basis functions we are using are

φi(x) =


(x− xi−1)/h if x ∈ [xi−1, xi]
(xi+1 − x)/h if x ∈ [xi, xi+1]
0 otherwise

(2.17)

It can be easily seen this satisfies equation 2.13. At the boundaries, these hat functions
are halved. We can observe right away that hat functions φi and φj only have common
support when |i− j| ≤ 1.
Now, equation 2.16 reduces to

N−1∑
i=2

ui

ˆ
Ω

∂φi
∂x

∂φj
∂x

dx =

ˆ
Ω
fφj dx − u1

ˆ
Ω

∂φ1

∂x

∂φj
∂x

dx−uN
ˆ

Ω

∂φN
∂x

∂φj
∂x

dx

for j = 2, . . . , N − 1.

All that is left to do now is finding the value of the integrals. This is quite straightforward.
For fixed values i, j ∈ {2, . . . , N − 1}:

ˆ
Ω

∂φi
∂x

∂φj
∂x

dx =

ˆ xi+1

xi−1

∂φi
∂x

∂φj
∂x

dx =


−1/h if j = i− 1
2/h if j = i
−1/h if j = i+ 1

(2.18)
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Secondly, the force integral, we can approximate using the values of f at the nodes.
ˆ

Ω
fφj dx =

ˆ xj+1

xj−1

fφj dx ≈ f(xj)(h+ h)/2 = f(xj)h for j ∈ {2, . . . , N − 1} (2.19)

In conclusion, we write down the complete system of equations in matrix form:

1

h



2 −1 0 . . . 0
−1 2 −1

0 −1 2 −1
. . .

...
. . . . . . . . .

...
. . . . . . 2 −1 0

−1 2 −1
0 . . . 0 −1 2




u2

...

uN−1

 =


f(x2)h

...

f(xN−1)h



Figure 1: Two-dimensional piece-wise linear basis function for node j.

2D

We will again rewrite equation 2.16 into a system of equations. In two dimensions,
calculating the integrals is a bit more complicated. This time we have different basis
functions, which will spread over multiple triangles, as can be seen in Figure 1. This
means we have to split up the first integral of equation 2.16 into a sum over the different
triangles that the basis function covers. Let Tk be the domain of triangle k and let Mi,j

be the set of triangle indices where φi and φj have common support. The reader should
remember that S is the set of free nodes in Ω. Let us define the value Ai,j as follows.

Ai,j =

ˆ
Ω
∇φi·∇φj dΩ =

∑
k∈Mi,j

¨
Tk

(
∂φi
∂x

∂φj
∂x

+
∂φi
∂y

∂φj
∂y

)
dxdy for i, j ∈ {p|(xp, yp) ∈ S}

Per triangle, there are three basis functions, one associated to each node of the triangle.
Again, these basis functions should satisfy equation 2.13. We consider piece-wise linear
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functions. Therefore, on a single triangle, the basis function is a linear function of the form

φl(x, y) = αlx+ βly + γl (2.20)

We can easily find the coefficients using equation 2.13.
To make sure we do not have to integrate over each triangle multiple times, we consider
the local matrix Ã which is associated with a single triangle, and then sum up all these
matrices to find Ai,j . The matrix elements Ãlm are now given by

Ãlm = Ãml =

¨
Tk

(
∂φl
∂x

∂φm
∂x

+
∂φl
∂y

∂φm
∂y

)
dxdy

= (αlαm + βlβm)

¨
Tk

dxdy

= (αlαm + βlβm)Area(Tk)

The actual values Ai,j we can now be found by summing all local matrices. Note that we
need to keep track of which nodes are associated to which triangle, and thus to which local
matrix.

For the right-hand side vector b, we will first evaluate the force integral.
ˆ

Ω
fφjdΩ =

∑
k∈Mj,j

¨
Tk

fφj dxdy ≈
∑

k∈Mj,j

f(x̄k, ȳk)
1

3
Area(Tk) for j ∈ {p|(xp, yp) ∈ S},

where (x̄k, ȳk) denotes the coordinates of the midpoint of triangle Tk, which we can easily
find by dividing the sum of the coordinates of the nodes of the triangle by three.
Furthermore, the rest of the right-hand side can easily be found. We can use the values
of matrix A which we have calculated above. Finally, we have arrived at the system of
equations which we will solve.∑
{i | (xi,yi)∈S}

uiAi,j =
1

3

∑
k∈Mj,j

f(x̄k, ȳk)Area(Tk) −
∑

{l | (xl,yl)/∈S}

ulAl,j for j ∈ {p | (xp, yp) ∈ S}

2.2 Parabolic equations

For the parabolic obstacle problem, we were not able to find exact solutions. Moreover, we
were not able to find exact solutions in previous research. Therefore, we will focus only on
the finite element method. However, convergence will be shown for the parabolic problem
without an obstacle.
We will focus on the one-dimensional problem. Elaboration on the two-dimensional FEM
can be found in for example [1] or [10].

We are looking for the function u(x, t) as a solution to the heat equation with
thermal diffusivity equal to 1.

∂u

∂t
− ∂2u

∂x2
= 0 (2.21)
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2.2.1 The Finite Element Method

Similar to the elliptic problem, we first write this into the weak formulation. For arbitrary
functions r(x) : Ω→ R, we get

ˆ
Ω

(
∂u

∂t
− ∂2u

∂x2

)
rdΩ = 0 ∀r. (2.22)

As before, we rewrite the spatial second derivative, followed by applying Gauss’ theorem,
which gives

ˆ
Ω

(
∂u

∂t
+
∂u

∂x

)
r =

[
∂u

∂n
r

]xN
x1

. (2.23)

This time, we define uh(x, t) =
∑N

i=1 ui(t)φi(x), where ui(t) denotes the value of u at node
i at time t. Let r again be spanned by the basis functions φj .
As a result, we have obtained the following system of equations.

N∑
i=1

∂ui
∂t

ˆ
Ω
φiφj dΩ +

N∑
i=1

ui

ˆ
Ω

∂φi
∂x

∂φj
∂x

dΩ =

[
N∑
j=1

∂φi
∂n

φj

]xN
x1

(2.24)

In matrix form this can be described as follows.

M
∂u

∂t
+Au = b (2.25)

We again use the piece-wise linear basis functions as defined in 2.17. This makes it simple
to find the values of the first integral. Note again that φi and φj only overlap whenever
|i − j| ≤ 1. That said, when there is a Neumann boundary condition, the values at the
boundary nodes are not fixed, and we use only half of the basis function. That gives us
the following result.

Mi,j =

ˆ
Ω
φiφj dΩ =


2
3h if i = j on interior nodes
1
3h if i = j on boundary nodes
if 1

6h |i− j| = 1
(2.26)

The entries of matrix A we already calculated before (2.18), with the addition of the values
at the boundary nodes in the case of Neumann boundary conditions, which gives

Ai,j =

ˆ
Ω

∂φi
∂x

∂φj
∂x

dx =


2/h if j = i on interior nodes
1/h if j = i on boundary nodes
−1/h if |i− j| = 1

(2.27)

We have now only discretized in space, and we still have a continuous time derivative in our
system of equations. We will use the backward (or implicit) Euler method to approximate
∂u
∂t . We use the backward Euler method, because this gives unconditional stability of the
finite element solution [10].

∂u

∂t
≈ ut − ut−1

∆t
, (2.28)

where ut is the vector with the values of u at time t. This gives

M
ut − ut−1

∆t
+Aut = b (2.29)

⇒ (M +A∆t)ut = Mut−1 + b∆t (2.30)
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Error analysis

Since now we are working with a time variable and a spatial variable, we cannot use the
L2-norm or the H1-norm to define convergence of the finite element solution towards the
actual solution. Therefore, a typical error measure is introduced, which we will call the
L2H1-norm.

||u||2L2H1(Ω) =

ˆ T

0

ˆ
Ω

∣∣∣∂u
∂x

∣∣∣2dxdt, (2.31)

where T is the time until which we solve the equation, and | . . . | denotes the Euclidean
2-norm. Now, we compute the squared L2H1-norm of the error e := u− uh.

||e||2L2H1(Ω) =

ˆ T

0

ˆ
Ω

∣∣∣ ∂e
∂x

∣∣∣2dxdt =
N∑
j=1

ˆ tj

tj−1

[ˆ
Ω

∣∣∣ ∂e
∂x

(t)
∣∣∣2] dx︸ ︷︷ ︸

:=g(t)

dt

At each time instant tj , we can evaluate g(t), using the discretized solution uh and the
gradient of the exact solution u, for example by using trapezoidal integration approximation.
Furthermore, we can also use the trapezoidal rule to integrate over the time interval
[tj−1, tj ]:

ˆ T

0
g(t)dt =

N∑
j=1

ˆ tj

tj−1

g(t)dt ≈
N∑
j=1

1

2
(tj − tj−1)(g(tj) + g(tj−1))

Because of the use of backward Euler integration in the finite element method, we expect
first order convergence in time [10]. Secondly, because of the first order finite difference
approximation we used for the integration over Ω, we expect first order convergence in
space as well. Furthermore, we assume again the solution to our problem is H2-regular.
This gives us the following error estimate.

||u− uh||L2H1(Ω) ≤ C(∆t+ h) (2.32)

2.3 Quadratic programming

In conclusion, we need a tool to solve the obstacle problem using the finite element method.
Until now, we have only found a system of equations that solves the partial differential
equation. We need to write this as a linear program with some constraints. We can easily
do this:

min
u

1

2
u′Au + b′u

subject to: ui ≥ ψ(xi) ∀i

The minimization is equivalent to solving Au + b = 0. This is exactly the shape of
equation we have found in rewriting the different PDEs to systems of equations using
the finite element method. In this paper, we will not go into detail how the quadratic
programming is done. We will use the Matlab function called quadprog. The variables
used in Matlab are stated below.
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min 0.5*x’*H*x + f’*x subject to: A*x <= b
x

For the obstacle problem, we will therefore use A = -speye(dof), where dof is the number
of free nodes (degrees of freedom) in the discretization. Furthermore, we use b = -psi,
where psi are the values of the obstacle function ψ at the free nodes. The matrix H and
the vector f depend on the partial differential equation that we solve. These can be found
in the sections above.

3 Results

In this section, we will discuss all of our findings regarding the topics discussed in Section
2. First, we will focus on the exact solutions we found for the one-dimensional problem.
Secondly, we will focus on the exact solutions in two dimensions and lastly, the results of
the finite element method are shown regarding the elliptic obstacle problem.

3.1 Exact solutions to the elliptic obstacle problem: 1D

3.1.1 ψ linear

Let us first look at the situation where ψ(x) = αx+ β and f(x) = −γ is constant, where
γ > 0. From −∂2u

∂x2
= f we obtain as a general solution u(x) = 1

2γx
2 + c1x + c2 by

integrating twice. In Figure 2 we can see all different possibilities for a solution to the
problem.

Figure 2: All possible situations for fixed α and varying β.
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First, let us solve the system of equations on [−1, xL]. uL(−1) = 0 gives c2 =
c1 − 0.5γ. u′L(xL) = α gives c1 = α − γxL. Now we obtain the following expression for
xL.

uL(xL) =
1

2
γx2

L + (α− γxL)xL + (α− γxL)− 1

2
γ = αxL + β

⇒ −1

2
γx2

L −
1

2
γ + α− γxL = β

⇒ x2
L + 2xL + 1 + 2

β − α
γ

= 0

⇒ xL = −1 +

√
2
α− β
γ

if β − α < 0

The limitation on α and β make sense, because this problem is not feasible when the height
of the obstacle at the boundary (ψ(−1) = β − α) is greater than 0. c1 and c2 follow from
the equations above. Similarly, we can solve the system of equations on [xR, 1]. This gives
the following results:

uR(x) =
1

2
γx2 + (α− γ · xR)x− 0.5γ − (α− γ · xR) (3.1)

xR = 1−

√
−2

α+ β

γ
if α+ β < 0 (3.2)

Again, the limitation on α and β is identical to saying that the height of the obstacle at
the boundary (ψ(1) = α+β) is below 0, which it should be for the problem to be feasible.

Now it is possible to find the force at which the membrane has one touching point,
that is, where xL = xR. Solving for γ gives us an interesting result, where γmin is the
minimal force from above needed to touch the obstacle.

γmin =
√
β2 − α2 − β = −β

(
1 +

√
1− α2

β2

)
(3.3)

Consequently, we observe that f(x) = 2β gives a single touching point for a horizontal
obstacle. Furthermore, in the limit cases (α = ±b), we get a single touching point for
f(x) = β.

3.1.2 Two concave obstacles

In an article from 1980 [5], research is done on the obstacle problem with one or two peaks
with f = 0. We can apply the same technique as before to find exact solutions to the
obstacle problem with peaks. Suppose there are multiple peaks which are continuously
differentiable in the interval [−1, 1]. The solution would look like Figure 3.
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Figure 3: Obstacle problem with multiple peaks.

We can find a solution for in between the peaks by adding one more equation to
the system of equations. We need one more equation, because now, in each section where
the membrane is not in contact with the obstacle, there are four unknowns. Let us focus
on one of those sections. Zooming in on the green region of Figure 3, we get Figure 4. We
call the obstacle on the left and right ψL and ψR, respectively. We don’t know in advance
where the membrane will stop touching either sides; let us call these points xL and xR.
Furthermore, we have two unknown integration constants from Poisson’s equation, which
again holds in the section in between. The needed system of equations follows naturally.

Figure 4: Section in between two peaks.


u(xL) = ψL(xL)

u(xR) = ψR(xR)
∂u
∂x(xL) = ∂ψL

∂x (xL)
∂u
∂x(xR) = ∂ψR

∂x (xR)

(3.4)

In conclusion, we can find the coincidence sets on all the different peaks and thus finding
a unique, continuous solution u on Ω.
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3.2 Exact solutions to the elliptic obstacle problem: 2D

As explained in Section 2.1.1, we can find the exact solution on Λ for radially symmetric
problems from equations 2.7 and 2.8. But let us first look at the minimum force needed to
touch the obstacle.
Because we are solving for a concave symmetric obstacle, only the value of ψ(r) at 0
matters. If there is no obstacle, the general solution is straightforward to find. From
equation 2.7, we see that c1 = 0, because u ∈ C1(Ω). Furthermore, from u(1) = 0, we find
c2 = −γ/4. This gives

u(r) =
γ

4
r2 − γ

4
. (3.5)

Let ψ(0) = δ, δ ∈ R. If δ > 0, then naturally the membrane will always touch the obstacle,
no matter the value of γ. On the other hand, if δ < 0, the minimum force needed to touch
the obstacle is now found by u(0) = ψ(0), which gives the following results.{

γmin = 4δ for δ ≤ 0

γmin = 0 for δ > 0
(3.6)

3.2.1 ψ(r) is constant

Let us define ψ(r) := −α, where α ∈ R+. First, using ∂u
∂r (r∗) = ∂ψ

∂r (r∗), we find

c1 = −γ
2

(r∗)2. (3.7)

Moreover, we again use the fact that u(1) = 0 to find c2 = −γ/4. Lastly, using u(r∗) =
ψ(r∗), we can find r∗.

γ

4
(r∗)2 − γ

2
(r∗)2 ln r∗ − γ

4
= −α

⇒ (r∗)2(1− 2 ln r∗) = 1− 4
α

γ

r∗ := ep ⇒ e2p(1− 2p) = 1− 4
α

γ

⇒ (2p− 1)e2p−1 =
4αγ − 1

e

⇒ p =
1

2

[
1 +W−1

(
1

e

(
4
α

γ
− 1
))]

Here W−1 stands for the lower branch of the Lambert W function. We need the lower
branch, because r∗ is less than 1 only for p < 0. It is interesting to observe that the
coincidence set only depends on the fraction of the height of the obstacle and the force on
the membrane.
As a result, we have found an exact solution to the obstacle problem for a constant force
and horizontal obstacle:{

u(r) = γ
4 r

2 − γ
2 (r∗)2 ln r − γ

4 for r ≥ r∗

u(r) = −α for r ≤ r∗
(3.8)
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3.2.2 Non-constant ψ(r)

A more challenging and variable obstacle is found in the obstacle defined as ψ(r) = −αr2 +
β, with α ∈ R+ to create a concave obstacle. Then, using ∂u

∂r (r∗) = ∂ψ
∂r (r∗), we find

c1 = −(
γ

2
+ 2α)(r∗)2 (3.9)

And finally, using u(r∗) = ψ(r∗), we can find r∗.

γ

4
(r∗)2 − (

γ

2
+ 2α)(r∗)2 ln r∗ − γ

4
= −α(r∗)2 + β

⇒ (r∗)2(1− 2 ln r∗) =
γ + 4β

γ + 4α

As before, we take r∗ = ep, where r∗ < 1 and therefore p < 0. Then we obtain

p =
1

2

[
1 +W−1

(
− 1

e

γ + 4β

γ + 4α

)]
. (3.10)

We have thus found the exact solution to this problem.

u(r) =

{
γ
4 r

2 − (γ2 + 2α)(r∗)2 ln r − γ
4 for r ≥ r∗

−αr2 + β for r ≤ r∗
(3.11)

Figure 5: The exact solution and FEM solution for a 2D symmetric obstacle,
α = 0.5, β = −0.05, γ = 2.

3.3 The Finite Element Method

In this section, we will show some results found using the finite element method. One
thing we should note up front: for the function quadprog, we have set the property
‘OptimalityTolerance’ to 10−15 using optimoptions. This is because we found that for
a higher value, the error norms did not decrease as expected for small values of hmax, but
when we set ‘OptimalityTolerance’ to this value, it did exactly as it should, also for very
small values of h.
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3.3.1 Exact solutions of the elliptic obstacle problem

Since we have found exact solutions, we can check convergence of the solution found by
the finite element method (in combination with quadprog) towards the exact solution.
Let us look at Poisson’s equation in 2D. For example, let us take a symmetric parabolic
obstacle with ψ(r) = 0.5r2 − 0.05 and a force acting on the membrane f = −2. The exact
solution can be found using equations 3.10 and 3.11. The results are shown in Figures 5
and 6.

As expected, we see that the L2-norm of the error
is O(h2

max); for each factor 10 that hmax decreases,
the L2-norm decreases by a factor 102. Furthermore,
we see that the H1-norm of the error is O(hmax);
for each factor 10 that hmax decreases, the H1-norm
decreases by a factor 10 as well. Figures A.1 and A.2
in the appendix show the results of the 2D case where
∂u
∂y = 0, which is similar to the 1D equation. We
observe the same convergence rates, which means that
this method of combining the finite element method
with the function quadprog works really well, and the
solution converges nicely towards the exact solution.
This gives us confidence that this method also works
with non-symmetric obstacle problems, of which we do
not have exact solutions.

Figure 6: L2-norm and H1-norm
for different values of hmax, showing
convergence of the problem as
shown in Figure 5.

3.3.2 Other solutions of the elliptic obstacle problem

We now have a method for solving the elliptic problem for any given boundary values
g(x, y) on dΩ, any given obstacle ψ(x, y), and any force f(x, y) working on the membrane.
This gives a lot of freedom on what to investigate. We will just show one solution which
can be a start for further research. Figure 7 shows the solution to the elliptic obstacle
problem with a linear obstacle ψ(x, y) = αx+ β (α = 0.3, β = −0.42), with force f = −2.
The black dots are the nodes where the membrane touches the obstacle.

Figure 7: Elliptic obstacle problem with ψ(x, y) = 0.3x− 0.42 and force f = −2.
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For example, we can investigate what happens when one of two things happen:

• The obstacle can move upwards and downwards.

• The force can become stronger and weaker.

In both cases, the shape and size of the touching region will change. The obstacles used
to create Figure 8 have the same slope α = 0.3, but are shifting between β = −0.54 (inner
curve) and β = −0.3 (outer curve). The forces used to create Figure 9 vary between
f = −1.5 (inner curve) and f = −3.5 (outer curve).

Figure 8: Touching region when the
obstacle of Figure 7 moves upwards
and downwards.

Figure 9: Touching region when the
force becomes stronger and weaker in
the situation described in Figure 7.

3.3.3 Exact solution of the heat equation

Subsequently, we will solve the heat equation with the finite element method.We use the
initial distribution u(x, 0) = sin(πx) over the domain Ω = [0, 1] and time period [0,0.5],
with Dirichlet boundary conditions x(0, t) = x(1, t) = 0. We can easily find the exact
solution (see for example [7]), which is

u(x, t) = sin(πx)e−π
2t

The finite element solution is shown in Figure 10. Furthermore, we can see the convergence
of the error in Figure 11. We obtain first order convergence, as we had expected. For every
factor 10 that h decreases, the L2H1-norm also decreases by a factor 10. It is good to see
that it works the way it should, because then we can move on to the parabolic obstacle
problem.
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Figure 10: The finite element solution of the heat
equation with initial state u(x, 0) = sin(πx).

Figure 11: L2H1-norm
for different values of
h, convergence rate of
the problem as shown in
Figure 10.

3.3.4 The parabolic obstacle problem

Last but not least, we will consider the parabolic obstacle problem. Therefore, we will
solve the heat equation, but now, with the help of quadprog, we constrain the solution uh
to lie above a parabolic obstacle ψ(x) = −10(x−0.5)2 +0.5. The result is shown in Figure
12.

Figure 12: The finite element solution of the heat equation with initial state
u(x, 0) = sin(πx), constrained by the obstacle ψ.
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We can see how the distribution nicely settles over the obstacle, going towards an
equilibrium. We observed that the equilibrium position of the solution converges to a C1

solution on Ω, namely the solution we get when we solve the 1D elliptic obstacle problem
with f = 0, for which the exact solution can be found using the methods described before.
Altogether, we have come full circle, which is a nice way to end this section.

4 Discussion

In this paper, we have covered many different subjects. Therefore, we will also split up
this discussion into multiple parts.

4.1 Exact solutions

We have acquired a method to solve elliptic obstacle problems in a relatively simple way,
provided that the membrane has Dirichlet boundary conditions, and the obstacle and the
force acting on the membrane are part of a very specific set of functions. For simple cases,
or very much simplified cases, this method could achieve results really quickly and give
exact results, where one does not need to worry about stability of solutions, or how quickly
a numerical solution converges. That said, it will probably be too restricted for practical
uses, because we simply do not work with ideal environments. A practical example could
be a simplified model of a circular trampoline, if one needs to calculate the minimal depth
of the hole in the ground, when a given weight is allowed on. Moreover, it is not very
complicated to make a one- or two-dimensional finite element method script that solves
the actual problem very accurately. On the other hand, in large-scale problems, the need
for accurate and efficient numerical methods is always there, in particular considering
limited computational power and storage space.

In conclusion, maybe this method will inspire others to look for exact solutions to
obstacle problems, because we do think there is still some ground to be won. One could
for instance investigate exact solutions when the force is a space-dependent function, other
than a constant function. However, the question is whether it is meaningful to investigate
this further, other than a fun mathematical puzzle.

4.2 Finite element method

Regarding the finite element method, we have not achieved any new insights, other than
another paper which explains how it works. We have exhibited that combined with the
Matlab function quadprog, it is a powerful tool to solve the obstacle problem. In addition,
there is plenty to be gained. In general, the adaptive finite element method could be
implemented, to make it possible to make even more accurate approximations. Because
we used elements of equal size, we had relatively large errors for a big amount of elements.
The rest is related to the specific form of partial differential equation.

4.2.1 Elliptic equations

First of all, we believe it is possible to find an exact formula for the minimal force needed
for the membrane to touch a horizontal obstacle, when the membrane boundary is fixed
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at the value 0 on the square domain [−1, 1]2. Because it is not easy (maybe impossible) to
find an exact solution, we can try finding a relationship between the height of the obstacle
and the minimal force needed to create a coincidence set, using Matlab. Plotting these
values for different heights, we can most probably find an (empirical) relationship, for
example through the Matlab function fittype. This, in turn, could be an incentive to
find the exact formula and maybe give new insights on how to solve problems like this in
an analytic way.

Secondly, we could implement the use of Neumann and Robin boundary conditions,
which would allow a much broader range of problems to be solved. However, this is done
in many other papers, so for further research, this should not be a problem.

4.2.2 Parabolic equations

Regarding the parabolic obstacle problem, we have three notes. Firstly, one could investigate
what happens with a moving obstacle and if it is possible to create a self-repeating pattern
over time. This maybe has some practical applications, which can be explored using the
code provided in the appendix.

Secondly, the time integration scheme can be made more accurate by using the
method of Crank-Nicholson, Heun, Simpson, or Runge-Kutta, which give more and more
accurate integration schemes. This means we could get faster convergence, which, in turn,
implies we get closer to the exact solution with the same values of ∆t.

Finally, at the end of Section 3.3.4, we observed that the parabolic obstacle problem
converges towards the C1 solution of an elliptic obstacle problem with the same obstacle.
We expect that most of the combinations of obstacles and initial states will converge
similarly, but we did not have time to investigate this. So this could be another topic of
study.

4.2.3 Hyperbolic equations

Although we have not covered the subject of hyperbolic equations, we do think it is worth
noting that this form of equations can be solved in a similar way. These problems have many
practical applications which the other two do not have, and therefore is very interesting to
study as well. Dynamical contact problems are however much more complicated in terms
of theory and practice than the problems covered in this thesis.

4.3 Conclusion

All in all, we have acquired a well-working algorithm to answer our research question, but
there is still a lot of room for improvement in this research regarding the obstacle problem.
However, during this research, we have learned a lot, and maybe something in this research
paper will inspire others to discover something new in this field.
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A Figures

Figure A.1: Exact solution and FEM solution of the 2D elliptic obstacle problem
with ∂u

∂y = 0, constant f , linear ψ.

Figure A.2: L2-norm and H1-norm for different values of hmax, convergence rates
of the problem as shown in figure A.1.
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B Matlab code

B.1 Elliptic obstacle problem

B.1.1 1D

Main code

options = optimset(’Display’, ’off’); %Needed settings for faster code, no message displayed
f = @(x) -1;

stepsizes = 1+0.5*[1];
alpha = 0.1;
beta = -0.1;
for k = 1:length(stepsizes)

h = 1/1001;
coord = -1:h:1;
u_h = zeros(length(coord),1);
nnodes = length(coord);
dof = [2:nnodes-1];
A = StiffMat1D(length(dof),h);
b = LoadVec1D(coord,f);

% u_h(dof) = A(dof,dof)\b(dof); %solution without obstacle
psi = @(x) alpha*x+ beta;
u_h(dof) = quadprog(A(dof,dof),-b(dof),-speye(length(dof)),-psi,[],[],[],[],[],options);

% plot solution with obstacle
hold on
plot(coord,u_h)
line([-1 1],[obst-a obst+a])

fmin(iter) = 2*(a+2*-0.1-2*sqrt(-0.1*(a-0.1)));
fmin(iter) = obst-sqrt(obst^2-a^2);

end

StiffMat1D.m

function A = StiffMat1D(N,h)
A = zeros(N,N);
for i = 1:N

if i == 1
A(1,1:2)=[2 -1];

elseif i == N
A(N,N-1:N)=[-1 2];

else
A(i,i-1:i+1) = [-1 2 -1];

end
end
A = A/h;

LoadVec1D.m

function b = LoadVec1D(x,f)
n = length(x)-1;
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b = zeros(n+1,1);
for i = 1:n
h = x(i+1) - x(i);
b(i) = b(i) + f(x(i))*h/2;
b(i+1) = b(i+1) + f(x(i+1))*h/2;
end

B.1.2 2D

Main code

options = optimoptions(’quadprog’,’OptimalityTolerance’,1e-15);

%% Different exact solutions
index = 3; %see exactsol.m for specifications of indices
[f, uex, graduex, psi, nonhom] = exactsol(index);

%% Finite element method
[p,e,t] = initmesh(’circleg’,’hmax’,1/4); %define triangular grid and triangle measure
ref = 5; %number of refinements
hmax = zeros(ref,1); h1norm = zeros(ref,1); l2norm = zeros(ref,1); %initialization

for i=1:ref
if i>1

[p,e,t] = refinemesh(’circleg’,p,e,t); %refinement of the grid
end
hmax(i) = 1/2/2^i; % each refinement, ’hmax’ reduces by factor 2
elements = t(1:3,:)’;
coord = p’;
nnodes = length(coord);
nt = size(t,2);

x=zeros(nt,3); y=zeros(nt,3); %init. x and y
for j=1:nt

x(j,:) = coord(elements(j,:),1)’;
y(j,:) = coord(elements(j,:),2)’;

end
areas = 0.5*(x(:,2).*y(:,3)+x(:,3).*y(:,1)+x(:,1).*y(:,2)...

-x(:,2).*y(:,1)-x(:,3).*y(:,2)-x(:,1).*y(:,3)); %areas of all triangles

u_h = zeros(nnodes,1);
boundnodes = unique(e(1:2,:)); %find the nodes which are on the boundary
Freenodes = setdiff(1:nnodes,boundnodes);
if nonhom

u_h(boundnodes) = uex(coord(boundnodes,:)); %homogenous or inhomogenous boundaries
end
A = StiffMat2D(coord, elements, areas);
b = LoadVec2D(coord, elements, f, areas);
b = b - A*u_h;

% u_h(Freenodes) = A(Freenodes,Freenodes)\b(Freenodes); %solution without obstacle
u_h(Freenodes) = quadprog(A(Freenodes,Freenodes),-b(Freenodes),...

-speye(length(Freenodes)),-psi(coord(Freenodes,:)),[],[],[],[],[],options);
l2norm(i,1) = L2norm(u_h,uex,coord,elements,areas);
h1norm(i,1) = H1norm(u_h,graduex,coord,elements,areas);
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show(elements,coord,u_h,uex) %show FEM solution and exact solution side by side
end

%% Display norms
figure
subplot(1,2,1)
loglog(1./hmax,l2norm,’-x’)
title(’L2-norm with obstacle’), xlabel(’Mesh size 1/h_{max}’), ylabel(’L2-norm of the error’)
subplot(1,2,2)
loglog(1./hmax,h1norm,’-x’)
title(’H1-norm with obstacle’), xlabel(’Mesh size 1/h_{max}’), ylabel(’H1-norm of the error’)

L2-norm

function l2norm = L2norm(u,uex,coord,elem,areas)
l2norm2 = 0;
for i = 1:size(elem,1)

nodes = elem(i,:); % local-to-global map
x = coord(nodes,1); % node x-coordinates
y = coord(nodes,2); % node y-coordinates
localcoord = coord(nodes,:);
mid = 1/3*sum(localcoord,1); % mid-point of triangles
umid = 1/3*sum(u(nodes));
l2norm2 = l2norm2 + areas(i)*(norm(uex(mid)-umid))^2;

end
l2norm = sqrt(l2norm2);

H1-norm

function h1norm = H1norm(u,graduex,coord,elem,areas)
h1norm2 = 0;
for i = 1:size(elem,1)

nodes = elem(i,:); % local-to-global map
x = coord(nodes,1); % node x-coordinates
y = coord(nodes,2); % node y-coordinates
localcoord = coord(nodes,:);
mid = 1/3*sum(localcoord,1); % mid-point of triangles
[b,c] = Gradients(x,y,areas(i));
graduh = [0;0];
for j=1:3

graduh = graduh + u(nodes(j)).*[b(j);c(j)];
end
h1norm2 = h1norm2 + areas(i)*(norm(graduex(mid)-graduh))^2;

end
h1norm = sqrt(h1norm2);

A.4



StiffMat2D.m

function A = StiffMat2D(p,t,areas)
np = size(p,1);
nt = size(t,1);

Alocal = zeros(3,3,nt);
I =zeros(9,nt); %row indices
J =zeros(9,nt); % column indices

for K = 1:nt
nodes = t(K,:); % local-to-global map
x = p(nodes,1); % node x-coordinates
y = p(nodes,2); % node y-coordinates
[b,c] = Gradients(x,y,areas(K));

Alocal(:,:,K) = (b*b’+c*c’)*areas(K);
I(:,K) = [nodes,nodes,nodes]’;
J(:,K) = reshape(repmat(nodes,3,1),[],1);
end

A = sparse(I(:),J(:),Alocal(:));

LoadVec2D.m

function b = LoadVec2D(coord,elem,f,areas)
nt = size(elem,1);
b = zeros(size(coord,1),1);
for i=1:nt

localnodes = elem(i,:);
localcoord = coord(localnodes,:);
mid = 1/3*sum(localcoord,1);
b(localnodes)= b(localnodes) + f(mid)/3*areas(i);

end

show.m

function show(elements,coord,u,uex)
figure(’Name’,’Example graph and FEM graph’,’Units’,’inches’,’Position’,[3,3,12,5]);
subplot(1,2,1)
hold on; grid on
trisurf(elements,[coord(:,1)],[coord(:,2)],...

uex(coord)’,’facecolor’,’interp’,’edgecolor’,’none’,’edgealpha’,0,’facealpha’,0.8)
title(’Exact solution’)
view(65,35)

subplot(1,2,2)
hold on; grid on
trimesh(elements,[coord(:,1)],[coord(:,2)],...

u’,’facecolor’,’interp’,’edgecolor’,’k’,’edgealpha’,0.5,’facealpha’,0.8)
title(’FEM solution’)
view(65,35)
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gradients.m

function [b,c] = gradients(x,y,area)
b=[y(2)-y(3); y(3)-y(1); y(1)-y(2)]/2/area;
c=[x(3)-x(2); x(1)-x(3); x(2)-x(1)]/2/area;

exactsol.m

function [f,uex,graduex,psi,nonhom] = exactsol(index)
nonhom = false;

if index == 1
% Simplest checks without obstacle
% (u = 0 on x^2+y^2=1)
f = @(x) -1;
uex = @(x) 1/4*(x(:,1).^2+x(:,2).^2-1);
graduex = @(x) [x(:,1)/2;x(:,2)/2];
psi = @(x) -10*ones(size(x,1),1);

elseif index == 2
% (u = 0 on boundary [-1,1]^2)
f = @(x) -(2*((1-x(:,1).^2)+(1-x(:,2).^2)));
uex=@(x) -(1+x(:,1)).*(1-x(:,1)) .* (1+x(:,2)).*(1-x(:,2));
graduex=@(x) [2*x(:,1).*(1-x(:,2).^2); 2*x(:,2).*(1-x(:,1).^2)];
psi = @(x) -10*ones(size(x,1),1);

elseif index == 3
% constant or parabolic obstacle
nonhom = true;
gamma = 2; %force value
f = @(x) -gamma;
alpha = 0.5; beta = -0.05;
constant = false; %specify whether it is a constant obstacle

if constant
psi = @(x) -alpha*ones(size(x,1),1);
gradpsi = @(x) [0;0];
epwr = 0.5*(1+lambertw(-1,1/exp(1)*(4*alpha/gamma-1)));
rstar = exp(epwr);
c_1 = -rstar^2*gamma/2;

else % parabolic obstacle
psi = @(x) -alpha*(x(:,1).^2+x(:,2).^2)+beta;
gradpsi = @(x) -2*alpha*[x(:,1);x(:,2)];
epwr = 0.5*(1+lambertw(-1,-1/exp(1)*(gamma+4*beta)/(gamma+4*alpha)));
rstar = exp(epwr);
c_1 = -rstar^2*(gamma/2+2*alpha);

end

uex = @(x) (sqrt(x(:,1).^2+x(:,2).^2)>rstar).*(gamma/4.*(x(:,1).^2+x(:,2).^2) ...
+c_1/2*log(x(:,1).^2+x(:,2).^2)-gamma./4) + ...
(sqrt(x(:,1).^2+x(:,2).^2)<=rstar).*psi(x);

graduex = @(x) (sqrt(x(:,1).^2+x(:,2).^2)>rstar).*(gamma/4 ...
+c_1/2/(x(:,1).^2+x(:,2).^2)).*[2*x(:,1);2*x(:,2)] + ...
(sqrt(x(:,1).^2+x(:,2).^2)<=rstar).*gradpsi(x);
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elseif index == 4
% Solution with linear obstacle with du/dy=0 (extraction from 1D problem)
nonhom = true;
gamma = 2; %force value
f = @(x) -gamma;
alpha=0.3; beta=-0.5;
left_touch = -1+sqrt(-2*(alpha-beta)/f(1));
right_touch = 1-sqrt(2*(alpha+beta)/f(1));
c1_1=alpha+f(1)*left_touch;
c1_2=alpha+f(1)*right_touch;
psi = @(x) alpha*x(:,1) + beta;

uex = @(x) (x(:,1)<=left_touch).*(-0.5*f(1)*x(:,1).^2+c1_1*x(:,1)+...
0.5*f(1)+c1_1)+(x(:,1)>left_touch).*(x(:,1)<right_touch).*psi(x)+...
(x(:,1)>=right_touch).*(-0.5*f(1)*x(:,1).^2+c1_2*x(:,1)+0.5*f(1)-c1_2);

graduex = @(x) (x(:,1)<=left_touch).*[-f(1)*x(:,1)+c1_1;0]+...
(x(:,1)>left_touch).*(x(:,1)<right_touch).*[alpha;0]+...
(x(:,1)>=right_touch).*[-f(1)*x(:,1)+c1_2;0];

end

B.2 Parabolic obstacle problem

Main code

stepsizes = 0.1./2.^[4]; % Define different values of h to loop over

for k = 1:length(stepsizes)
f = @(x) 0;
h = stepsizes(k);
x = 0:h:1; % Define Omega
dt = h; % Use dt=h to get same descent of dt as h
T = 0.3;
iter = round(T/dt); % Solve until time T

uex = @(x,t) sin(pi*x)*exp(-pi^2*t*dt);
graduex = @(x,t) pi*cos(pi*x)*exp(-pi^2*t*dt);

nnodes = length(x);
u = zeros(iter,nnodes);
u(:,1)=0; u(:,end)=0;

freenodes = 2:nnodes-1;
dof = length(freenodes);
b = LoadVec1D(x(freenodes),f);
b(1) = 0; % =alpha/h for u(0)=alpha
b(end) = 0; % =beta/h for u(1)=beta
BC = [0 0]; % [0] means Dirichlet, [1] means Neumann BC

u0 = uex(x(freenodes),0)’;
u(1,freenodes) = u0;

A = StiffMat1Ddjdk(dof,h,BC);
M = StiffMat1Djk(dof,h,BC);

%Obstacle
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options = optimset(’Display’, ’off’); %No help message displayed
psi = @(x) -10*(x-0.5).^2+0.5;
for i=1:iter+1

psii(i,1:nnodes) = psi(x); %Define psi for all time for plot
end

for i=1:iter
% u(i+1,freenodes) = (M+A*dt)\(M*u0+b*dt); %Solution without obstacle

u(i+1,freenodes) = quadprog(M+A*dt,-(M*u0+b*dt),-speye(dof),...
-psi(x(freenodes)),[],[],[],[],[],options); %Solution with obstacle
u0 = u(i+1,freenodes)’;

end

l2h1norm(k) = sqrt(spacetimenorm(u,h,dt,iter,graduex));

for i=1:iter+1
plot(x,u(i,:))
xlim([0 1]) %plot solution over time
ylim([0 1])
pause(0.01)

end

figure()
hold on, grid on
surf(x,0:dt:dt*iter,psii,’edgecolor’,’none’,’facealpha’,0.9) %plot obstacle
surf(x,0:dt:dt*iter,u,’facecolor’,’interp’,’facealpha’,0.9) %plot complete solution
zlabel(’u(x,t)’)
xlabel(’x’)
ylabel(’t’)
zlim([0 1])
ylim([0 iter*dt])
view(45,20)

end

%% Error convergence
figure()
loglog(1./stepsizes,l2h1norm,’x-’)
title(’Step size versus spacetimenorm’)
xlabel(’1/h’)
ylabel(’l2h1norm’)

StiffMat1Ddjdk.m

function A = StiffMat1Ddjdk(N,h,BC)
A = zeros(N,N);
for i = 1:N

if i == 1
if BC(1) == 0 %Dirichlet

A(1,1:2)=[2 -1];
else %Neumann

A(1,1:2)=[1 -1];
end

elseif i == N
if BC(2) == 0 %Dirichlet

A(N,N-1:N)=[-1 2];
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else %Neumann
A(N,N-1:N)=[-1 1];

end
else

A(i,i-1:i+1) = [-1 2 -1];
end

end
A = A/h;

StiffMat1Djk.m

function M = StiffMat1Djk(N,h,BC)
M = zeros(N,N);
for i = 1:N

if i == 1
if BC(1) == 0 %Dirichlet

M(1,1:2)=[4 1];
else %Neumann

M(1,1:2)=[2 1];
end

elseif i == N
if BC(2) == 0 %Dirichlet

M(N,N-1:N)=[1 4];
else %Neumann

M(N,N-1:N)=[1 2];
end

else
M(i,i-1:i+1) = [1 4 1];

end
end
M = M*h/6;

spacetimenorm.m

function R = spacetimenorm(u,h,dt,iter,graduex)
errorintegral = zeros(iter,1);
R=0;
errorintegral(1) = 0;
for t = 1:iter

for i = 1:size(u,2)-1
graduh(i) = (-u(t,i)+u(t,i+1))/(h);

end
guex = graduex([0:h:1],t)’;
e_right = guex(2:end) - graduh’; %Trapezoidal rule in space
e_left = guex(1:end-1)- graduh’;
errorintegral(t+1) = h/2*sum(e_right.^2+e_left.^2);

end

for j = 1:iter
R = R + 1/2*dt*(errorintegral(j+1)+errorintegral(j));

end
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