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Abstract

In the field of data integration, the final result often contains uncertainties regard-
ing the resulting data. A way to deal with these uncertainties is to use a probabilistic
database (PDB) that stores not only just the static values but allows multiple data
possibilities by assigning probabilities to each possibility. In this process of probabilis-
tic data integration, an important step is to improve the data quality of the data in
the PDB once it has been merged into the PDB [21]. Doing such normally requires
external experts to manually account for this. However, based on the notion that the
probabilistic data DPDB (in the form of uncertainty/probability parameters) from the
PDB indirectly contains evidence from its underlying ground truth data generating dis-
tribution P (DGT ), we develop a model that both captures and uses this evidence to
achieve data quality improvement in a PDB storing categorical nominal data.

In order to do so, we first model the problem of data quality improvement in a PDB
and state that ’improving data quality’ is about decreasing the distance between the
probabilistic data DPDB and its associated underlying ground truth DGT . We then ap-
proach the problem by modeling P (DGT ) by means of a Bayesian Network (BN) and
develop a Probabilistic Inference Bayesian Network (PIBN) model that approaches
data quality improvement by combining the notions of probabilistic inference [5] and
the propagation of virtual evidence [17] in such a BN. In the development of this model,
we see that data quality improvement can be achieved by for each record xi ∈ DPDB

combining the information from xi itself together with the prior information defined
by P (DGT ).

As this latter model is only applicable given P (DGT ) is known, we use this knowl-
edge to develop a new model that is applicable in an unsupervised setting by learn-
ing P (DGT ) indirectly from DPDB . We do this by means of a denoising autoencoder
(DAE) [14] that is directly trained on the uncertainty parameters DPDB and is learned
to capture evidence from P (DGT ) by using the denoising autoencoder principles as
regularization technique.

After having developed several quality measures, it turns out that this DAE model
is well able to achieve data quality improvement when we test it on several synthetic
data sets. We also compare its performance with the performance of the supervised
PIBN model to conclude that the performance of the unsupervised DAE model on
these data sets is only slightly less good and advice to do future research on hyper-
parameter tuning of the DAE model.
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1 Introduction

In the field of data-integration, i.e. combining several data sources into a single and unified
view, the result often contains uncertainties regarding the extracted and merged data. A
way to incorporate these uncertainties is to store the data in a probabilistic database (PDB),
a database that does not just store static values but allows storing multiple possibilities
called a possible world, each with an associated probability, representing the uncertainty.
This process is called probabilistic data integration (PDI) and is depicted in Fig. 1.

Figure 1: Probabilistic Data
Integration [21]

The PDI process consists of two main phases:

1. Phase I - Initial data integration:
The integration of different data sources into
a single and unified view in a PDB.

2. Phase II - Continuous improvement:
Improving the quality of the data by reducing
the uncertainty in the data based on evidence.

In the last phase, the ’Gather evidence’ step usu-
ally means that human experts manually inspect the
integrated data view and based on their knowledge
give feedback or ’provide evidence’ so that the uncer-
tainty regarding specific possible worlds is increased
or decreased.

In practice the attributes in a database table are
almost always correlated with each other. As an ex-
ample, when having an attribute [City] representing
the names of cities from all over the world and at-
tribute [Temperature] representing the correspond-
ing measured average temperature in that city, it is obvious that these two attributes are
not independent. Mathematically speaking, when all samples in data set D are i.i.d., D
can be seen as a set of samples drawn from one and the same underlying data generating
probability distribution P (D), a process which is called the data generating process. Since
each record in a database is a tuple of multiple attribute values, P (D) should be regarded
as a multivariate joint probability distribution over the attributes Aj , j = 1, 2, . . . ,M of
the database.

When having such dependencies between the attributes of a database table, a consequence
is that after Phase I of the PDI process (Fig. 1), the remaining uncertainties are in essence
correlated with each other as well. As a continuation of the above example, say a record
[’Amsterdam’, ’11.2’] has to be extracted and merged into a PDB and for simplicity, as-
sume ’Amsterdam’ and ’Rome’ are the only two cities in the world. Say that during the
data integration process, uncertainty has arisen yielding a probability of 0.5 that the corre-
sponding city is ’Amsterdam’ and a probability of 0.5 that the corresponding city is ’Rome’.
Since we know that the average temperature in Rome is much higher than ’11.2’ (encoded
by P (D)), we will say that the probability of the city being ’Rome’ should be decreased
and the probability of the city being ’Amsterdam’ should be increased. Moreover, given
that we were not entirely sure about the measured average temperature, we expect that the
uncertainty regarding the measured temperature changes as well, as there is a possibility
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that that corresponding city was indeed ’Rome’, having a higher average temperature. In
other words, the uncertainty regarding the extracted [City] attribute and the uncertainty
regarding the extracted Temperature attribute have influence on each other, given that
they both arose independently.

The above example illustrates that Phase II of the PDI process is about massaging the
probability parameters such that the dependencies defined by P (D) are incorporated into
these resulting probabilities with the aim of obtaining an end result that is closer to the
ground truth. This is a very costly and time-consuming process, especially when experts
from outside the system have to manually account for it. However, since information from
the data generating distribution P (D) is indirectly present in the PDB, we propose to
design a model that captures this information automatically so that the data quality may
be improved.

In order to do so, we first formally define what it means to ’improve data quality’ and
define a measure that indicates whether the data quality has improved. We do so by in-
troducing the notion of ground truth and use this notion in combination with the notion
of a data generating distribution to develop a probabilistic model - named ’Probabilistic
Inference Bayesian Network ’ (PIBN) - that can improve the data quality given that we
know P (D). This latter model is built around a Bayesian Network (BN) and the notions
of virtual evidence and probabilistic inference in such a BN. This model helps us to un-
derstand the fundamental concepts in data quality improvement in a PDB. A problem
that comes with this model, however, is that it is unclear how to use it in case we do not
know the underlying data generating distribution. Based on the things we learned from
the development of the PIBN model, we therefore propose to use a Denoising Autoencoder
[13] (DAE) that takes the probability parameters as input and exploit its denoising fea-
tures to improve the quality of the data residing in the PDB by changing these probability
parameters. As it is not straightforward how to use an autoencoder in combination with
probabilistic data, we extensively describe our approach and the construction of this DAE
model.

It turns out that both the PIBN and DAE model are well able to improve the data quality
when we test their performance on synthetic data sets. What’s more, the comparison of
both models leads us to some interesting insights that will form the basis of future research.

Summarized, we have contributed to the problem of data quality improvement in a PDB
by

• ... describing the underlying problem of data quality improvement in a PDB by
reformulating it as a process of incorporating the indirectly present data dependencies
from the underlying ground truth data generating distribution into it, Sec. 2.2 and
Sec. 2.3.

• ... describing how data quality can be quantified by means of a proper distance
metric between the data and the corresponding ground truth, Sec. 2.3.

• ... constructing a probabilistic model (PIBN) that uses these notions to improve data
quality in case the ground truth data generating distribution is known, Sec. 3.

• ... constructing an autoencoder model (DAE) that can improve the data quality
in an unsupervised setting. What’s more, we connect this model to the previously
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constructed PIBN model, Sec. 4.

• ... defining a proper testing scheme for the performance of such a DAE model,
modeling the noise present in the data, and by defining good quality measures, Sec.
5.1 and Sec. 5.2.

• ... comparing the performance of the DAE model to the performance of the PIBN
model for better model insights, Sec. 5.3.

• ... describing the future work that originates from this thesis, Sec. 6.

2 Problem statement and problem modeling

The goal of this research is to improve the data quality in the PDB by replacing the manual
’Gather evidence’ step in the PDI process by an automated process. This automated
process should capture the data-dependencies in the data and incorporate them into each
of the records xi, i = 1, 2, . . . , N from the data in the probabilistic database, DPDB. In
order to better describe this process and to come up with a mathematical approach to this
problem, we will first define a model for a PDB and specify the notation that will be used
and the assumptions that will be made in the rest of this paper. We then describe how
DPDB can be seen as a corrupted version of a set of ground truth data DGT drawn from a
data-generating distribution P (DGT ). We continue on this by relating this notion to the
notion of a decreasing divergence between DGT and DPDB, so that data quality can be
quantified. Finally, we use all of the above to formally describe what it means to improve
data quality and how this can be quantified.

2.1 PDB modeling and assumptions

It is important to specify the structure of the PDB, the nature of the data it contains
and the type of uncertainty it carries as well as the assumptions we made regarding all of
the above. Since each of these different types require a different approach, it is necessary
to limit this research to a particular type of data containing a particular type of uncertainty.

The probabilistic database that this research will be applied to has a following structure:

• A database in general consists of multiple tables. However, without loss of gener-
ality, we assume that the database we are working with comprises of just one table
R, having M columns - column j representing attribute Aj - and N rows - row i
representing instance xi - which will be called a tuple/record from now on.

• Each attribute Aj contains categorical, nominal data. That is, each attribute Aj
containsKj categories {Cj,1, Cj,2, . . . , Cj,Kj}. This is a strong assumption since many
other possible data types could have been chosen. These other data types however,
are beyond the scope of this thesis.

• Each record xi is a set of attribute values ai,j , j = 1, 2, . . . ,M . That is, xi =
{ai,1, ai,2, . . . , ai,M}.

• The uncertainty residing in a PDB can come in many types and intensities. In this
thesis, the focus will be on attribute uncertainty, meaning that we may be unsure
about the value that an attribute of a tuple may take. It is for this reason that
each attribute value ai,j is a tuple of probability parameters [pi(Cj,1), . . . , pi(Cj,Kj )],
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where each element pi(Cj,k) represents the marginal probability (certainty/belief)
that attribute Aj takes value Cj,k in record xi. As a consequence, we have that

Kj∑
k=1

pi(Cj,k) = 1, ∀ (i, j). (1)

This thus means that when we mention, ’data in the PDB’ (DPDB), we mean those
probability parameters.

• A missing value (’no information’) for an attribute value ai,j is chosen to be modelled
as each category having the same associated marginal probability, that is: pi(Cj,1) =
. . . = pi(Cj,Kj ) = 1

Kj
. One should note that many more solutions exist [11], such as

using a different, non-uniform prior. We could also have chosen to use an approach
such as mean replacement, EM imputation, etc., but we chose to use this simple
approach as this is not in the scope of this thesis.

By means of an example, a simplified database that satisfies the above specified properties
can be found in Fig. 2.

Figure 2: Example PDB

In this database:

• x1 = {0.7, 0.3, 1.0, 0.0}

• a1,1 = x1.Eye colour = [0.7, 0.3]

• p2(C1,1) = p2(Eye colour = Blue) = 0.8

2.2 Ground truth

We model the data DPDB residing in a PDB as a corrupted/noisy version of the underlying
ground truth data DGT , where ’corrupted’/’noisy’ means that uncertainty (noise) is added
to the ground truth data, as a result of the integration process. In other words, each record
xi ∈ DPDB is derived from an underlying ground truth record xGTi ∈ DGT that for each
attribute Aj carries a 100% certainty for which category is observed (such that xGTi can
be seen as a concatenation of one-hot encodings). By means of an example, this might be
visualized as follows:

Figure 3: From DGT to DPDB

4



As the assumption is made that all of the records xGTi are i.i.d., this data set DGT should
be regarded as a set of samples drawn from one and the same underlying data-generating
distribution P

(
DGT

)
. This P

(
DGT

)
can be seen as a multivariate joint probability distri-

bution over the discrete random variables A1, A2, . . . , AM resembling the attributes of the
PDB.

2.3 Improving data quality

Based on this notion of ground truth, we can define what it means to improve the data
quality of data residing in the PDB.

The notion of a ground truth allows us to say that ’improving data quality’ in essence
means that given a corrupted record xi ∈ DPDB, we incorporate evidence into it - where
the evidence is the collection of data dependencies defined by P (DGT ), being indirectly
present in DPDB - so that its corresponding updated record xni is closer to its corresponding
ground truth record xGTi . Ideally, we want to reverse the corruption process as depicted in
Fig. 3. In order to quantify the ’closeness’ as mentioned above, we need to find a proper
distance metric, which will be explained in Sec. 2.3.2.

2.3.1 Data quality improvement and corruption requirement

Before we do so, we should make an important remark first. By using this notion of ’data
quality improvement’, we get that by incorporating the dependencies defined by P (DGT )
in a record xi ∈ DPDB, we may sometimes end up with a new record that has lower data
quality, as it has diverged from its corresponding ground truth record xGTi due to particular
noise in the data. To illustrate this, say we have two ground truth records xGT1 = [1, 0, 1, 0]
and xGT2 = [0, 1, 1, 0], such that PGT (x1)� PGT (x2). Now say that xGT2 is corrupted such
that xGT2 → x2 ∈ DPDB = [0.5, 0.5, 1, 0]. If we were to update this record - x2 → xn2 -
based on what we know from P (DGT ), we would increase p2(C1,1), which results in the
distance d(xGT2 ,xn2 ) > d(xGT2 ,x2), meaning that the data quality has decreased.

In other words, this notion of data quality improvement poses a corruption requirement by
implying that data quality of a record xi can only be improved given that the corruption is
not such that based on P (DGT ), a different ground truth record xGTj is more likely based
on xi.

2.3.2 Distance metric

Before we can define a proper distance metric to quantify the distance between xni and xGTi ,
we first need to understand that both xni and xGTi can be seen as ensembles of parameters
from categorical (multinoulli) distributions. The categorical probability distribution is a
discrete probability distribution over random variable X whose sample space is the set ofK
individually identified categories. When having K categories {1, 2, . . . ,K}, the probability
that X belongs to category i is defined by the probability mass function f

(
X = i

∣∣p) = pi,
with p = (p1, p2, . . . , pK) and

∑K
i=1 pi = 1, each pi being the probability that observation

i is made. We can thus regard each element ai,j as a set of pi’s corresponding to random
variable Aj , resembling attribute Aj in the PDB.

Because xni and xGTi can be seen as ensembles of parameters from categorical distribu-
tions, we should have that the distance metric d is a distance measure between probability
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distributions. This implies that d should satisfy that the absolute difference between two
categorical probability parameters is penalized more as the certainty of these parameters
increases. As an example:

Input Output
A1 A2 A1 A2

x1 0.9 0.1 0.8 0.2
x2 0.8 0.2 0.7 0.3
x3 0.8 0.2 0.9 0.1
x4 0.7 0.3 0.8 0.2

Table 1: From input to output

The first tuple x1 in the table above should receive a higher penalty than the second tuple
x2 and x3 should receive a higher penalty than x4, even though the eucledian distances
are the same for both tuple pairs.

A distance metric that satisfies these properties is the Kullback-Leibler (KL) divergence
[1]. This KL divergence is a measure of how one probability distribution is different from
another probability distribution. For discrete probability distributions P and Q defined
on the same probability space, the KL divergence is defined as follows:

DKL

(
P ||Q

)
=
∑
x∈Ω

P (x) log
(P (x)

Q(x)

)
, (2)

with Ω being the sample space. When applying this KL divergence to two discrete categor-
ical distributions P and Q defined on the same probability space, both with n parameters,
the KL divergence is evaluated as follows:

DKL

(
P ||Q

)
=

n∑
i=1

pi log
(pi
qi

)
, (3)

with pi and qi being the i-th parameters of the probability distributions from P and Q
respectively. A worked out example of Eq. (3) on table 1 can be found in the appendix,
Sec. A.1.1. In order to quantify the distance between e.g. xi and xGTi , we can thus
evaluate the KL divergence on each pair of attribute values [ai,j , a

GT
i,j ], j = 1, 2, . . . ,M and

add them all up together:

DKL(xi||xGTi ) =
M∑
j=1

DKL(ai,j ||aGTi,j ) =
M∑
j=1

Kj∑
k=1

pi(Cj,k) · log
{ pi(Cj,k)

pGTi (Cj,k)

}
. (4)

A disadvantage of using the KL divergence, however, is that DKL(P ||Q) is only defined
when Q(x) = 0 implies that P (x) = 0, which means that P has to be absolutely continuous
with respect toQ [7]. This can cause problems as we don’t have a guarantee that the records
we apply the KL divergence on, are absolutely continuous with respect to each other.
Furthermore, the KL divergence is asymmetric, as in general DKL(P ||Q) 6= DKL(Q||P ).
A way to solve this problem is to use another (KL-based) divergence, the Jensen-Shannon
Divergence (JSD) [4]. This divergence measure is a measure based on the Shannon Entropy
H and is defined as

JSDπ

(
P ||Q

)
= H(π1P + π2Q)− π1H(P )− π2H(Q), (5)
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where π is a set of weights [π1, π2]. When π = [1
2 ,

1
2 ], this is equivalent to

JSD 1
2

(
P ||Q

)
=

1

2
DKL

(
P ||M

)
+

1

2
DKL

(
Q||M

)
, (6)

with M = 1
2(P + Q). A proof for this can be found in the appendix, Sec. A.1.2. We use

the JSD 1
2
divergence as defined in Eq. (6) and call it just ’JSD’ from now on. What’s

more, when evaluating e.g. JSD(xi||xGTi ), this is calculated via attribute-wise summing,
just as in Eq. 4:

JSD(xi||xGTi ) =

M∑
j=1

JSD(ai,j ||aGTi,j ) (7)

=
1

2

M∑
j=1

Kj∑
k=1

pi(Cj,k) · log
{ pi(Cj,k)
mi(Cj,k)

}
+ pGTi (Cj,k) · log

{pGTi (Cj,k)

mi(Cj,k)

}
,

with mi(Cj,k) = 1
2

{
pi(Cj,k) + pGTi (Cj,k)

}
.

This means that the JSD divergence is just a smoothed version of the KL divergence. This
divergence measure satisfies the properties mentioned earlier and moreover is symmetric
and is numerically stable since it does not require P and Q to be absolutely continuous
with respect to each other.

2.3.3 Data quality improvement and distance minimization

Based on the notion of data quality improvement and the distance metric above, improving
data quality thus means that for a given update of xi ∈ DPDB : xi → xni , we want that
d
(
xni ,x

GT
i

)
< d

(
xi,x

GT
i

)
=⇒ JSD

(
xni ||xGTi

)
< JSD

(
xi||xGTi

)
. When we are talking

about ’improving the data quality of data residing in a PDB’, we thus mean that the
quality has improved once the average JSD distance over DPDB has improved, that is

1

N

N∑
i=1

JSD
(
xni ||xGTi

)
<

1

N

N∑
i=1

JSD
(
xi||xGTi

)
. (8)

3 Probabilistic model

As mentioned in Sec. 2.2, we can regard DPDB as a corrupted version of data sampled from
an underlying data generating distribution P (DGT ). In this section, we describe how we
can exploit this notion to construct a probabilistic model - hereafter called ’Probabilistic
Inference Bayesian Network ’ (PIBN) model - that can be used to achieve data quality
improvement via a probabilistic modelling approach in a supervised setting (P (DGT ) is
known). As this model is built around the notions of probabilistic inference in a BN based
on virtual evidence, we will first explain those concepts after which we explain how these
concepts can be used to achieve data quality improvement. We will then end this section
by concluding that this model is useful for insight in data quality improvement and useful
for comparison, but cannot be used in an unsupervised setting. Based on this conclusion,
we will then propose to develop a different model which can be used in an unsupervised
setting and uses knowledge from the PIBN model.
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3.1 Bayesian Network

As mentioned in Sec. 2.2, P (DGT ) is a multivariate joint probability distribution over the
discrete random variables A1, A2, . . . , AM , resembling the attributes of the PDB. By re-
peatedly using the product rule of probability (called factorization), we obtain the following
expression for this joint probability distribution:

P
(
DGT

)
= P (A1, A2, . . . , AM ) = (9)

P (AM |A1, . . . , AM−1) · P (AM−1|A1, . . . , AM−2) · . . . · P (A2|A1)P (A1).

Such a data-generating distribution P
(
DGT

)
can be well described by a Bayesian Network

(BN), also called a Belief Network. A Bayesian Network is a couple (G,Ω), where G =
(V ,E) a directed acyclic graph (DAG) with each node V ∈ V representing a random
variable and each edge E ∈ E representing the conditional dependence between its head
and tail, defined by component Ω. By using such a graphical model and the factorization of
the joint distribution in Eq. (9), we can express the joint distribution P (DGT ) as follows:

P (DGT ) =

M∏
k=1

P (Ak|pAk), (10)

where pAk denotes the set of parents of node Ak. In other words, the value for the joint
probability is just the product of each of the individual posterior probabilities defined by
the BN.

An example of a Bayesian Network with discrete variables is depicted in Fig. 4.

Figure 4: Simple Bayesian Network example

In this example, P (R,S,G) can be modelled as

P (R,S,G) =

3∏
k=1

P (Ak|pAk) = P (G|S,R) · P (S|R) · P (R).

The probability that the sprinkler is on whilst it does not rain and the grass is wet, can
then be calculated as follows:

P (S = T,R = F,G = T )

= P (G = T |S = T,R = F ) · P (S = T |R = F ) · P (R = F )

= 0.9 · 0.4 · 0.8 = 0.288.
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3.2 Probabilistic inference in Bayesian Networks with virtual evidence

Since the Bayesian Network is a network that fully describes the variables and their rela-
tionships, it can be used well to answer probabilistic queries about them. This is called
probabilistic inference. Probabilistic inference on a BN is the process of computing the
conditional probability P (X = x|E = e). This means that we want to determine the
probability of r.v. X being in state x, given our observations (evidence) e for the set of
r.v.’s E [5]. Probabilistic inference on graphical models is called belief propagation and
was first proposed by J. Pearl [2], who formulated his algorithm as an exact inference al-
gorithm on trees. Algorithms based on this that apply probabilistic inference in a discrete
BN, do so by by first computing a secondary structure called the join tree (JT). This JT
is used for propagating the evidence, which is called join tree propagation (JTP). Several
of these exact algorithms exist for performing JTP, algorithms such as the Shafer-Shenoy
algorithm [12], the Lauritzen-Spiegelhalter algorithm [3], the Hugin algorithm [6] and Lazy
Propagation [8].

The aforementioned evidence on some variable X can come in many forms and shapes.
In this paper, we distinguish regular evidence and uncertain evidence:

1. Regular evidence:
Regular evidence on a variable X can be subdivided into multiple types [5]. A
so-called observation is the knowledge that X definitely has a particular value. An
observation comes with an evidence vector containing all 0’s and one 1 corresponding
to the state X is observed to be in. A finding is evidence that tells us that that X
is definitely not in some state(s). The evidence vector contains 0’s for the states we
are sure X is not in, and 1’s for the other states. This thus means that this evidence
contains some uncertainty, as it does not specify in which state X must be, only in
which it will not be.

2. Uncertain evidence:
Uncertain evidence can be subdivided into virtual evidence/likelihood evidence (VE)
[17] and soft evidence (SE) [9].

• VE can be interpreted as evidence with uncertainty and a VE on variable A is
represented by a likelihood ratio L(A) =

(
P (obs|a1) : . . . : P (obs|an)

)
where

P (obs|ai) denotes the probability of the observed event given A is in state ai.
Note that by definition, the elements of L(A) thus not need to sum to 1.

• SE can be interpreted as evidence of uncertainty and is represented as a prob-
ability distribution of one or more variables [16].

As this paper focuses on virtual evidence only (explained in Sec. 3.3 ), this notion is further
explained by means of an example as can be found in the work of Mrad et al. [18]:

Example of virtual evidence, OCR system :
A Bayesian network includes a variable X representing a letter of the alphabet that the
writer wanted to draw. The state space of X is the set of letters of the alphabet. A piece
of uncertain information on X is received from a system of Optimal Character Recognition
(OCR). The input of this system is an image of a character and the output is a vector
of similarity between the image of the character and each letter of the alphabet. Let o
represent the observed image. Consider a case where, due to lack of clarity, o can be rec-
ognized as either the letter ’v’, ’u’ or ’n’. The OCR technology provides the indices such
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that P (Obs = o|X = v) = 0.8, P (Obs = o|X = u) = 0.4, P (Obs = o|X = n) = 0.1 and
P (Obs = o|X = x) = 0 for any letter x other than ’u’, ’v’ or ’n’. This means that there is
twice as much chance of observing o if the writer had wanted to draw the letter ’v’ than
if she had wanted to draw the letter ’u’. Such a finding on X is a VE on X, specified by
L(X) = (0 : ... : 0 : 0.1 : 0 : ...0 : 0.4 : 0.8 : 0 : 0 : 0 : 0).

This example illustrates that the prior probability distribution P (X|pX) as defined by
the BN includes the knowledge about the distribution of letters in the language of the
text from which the character comes, whereas the OCR technology does not integrate that
knowledge. In other words, it provides information about X without prior knowledge. In
order to update the belief in the value of the character, the information provided by the
OCR (being the likelihood vector) has to be combined with the prior knowledge of the
frequency of letters.

3.3 Probabilistic inference and improving data quality

The question remains how the theory explained above is connected to the goal of this re-
search. In other words, how is probabilistic inference in a BN connected to incorporating
the data-dependencies from DGT into each observation xi ∈ DPDB such that the data
quality is improved (Sec. 2.3)?

In fact, because of the specific kind of probabilistic nature of our data, each observa-
tion xi ∈ DPDB exactly is a set of virtual evidences. Each attribute value ai,j provides
a VE on attribute Aj and thus represents the likelihood vector on attribute Aj such that
each pi(Cj,k) ∈ ai,j is the likelihood that in the i-th observation, category Cj,k is observed
given that attribute Aj is in category Ck. Now, just as in the OCR example in Sec. 3.2,
the beliefs in the values of the observed attributes in observation xi can be updated by
combining the likelihood vectors with the prior information defined by the BN, being the
data-generating distribution where xi is indirectly derived from.

For each parameter pi(Cj,k) we thus update its value to the probability of that attribute
Aj being in state Cj,k given the evidence of the rest of the observation xi, that is

pi(Cj,k)→ p̂i(Cj,k) = P (Aj = Cj,k|L(A1, . . . , AM ) = xi︸ ︷︷ ︸
evidence︸ ︷︷ ︸

defined by P (DGT )

), (11)

where L(A1, . . . , AM ) denotes the concatenation of the likelihood vectors for A1, . . . , AM .

In other words, when the data-generating distribution P (DGT ) is known, it can be de-
scribed by a BN such that observation xi ∈ DPDB can be updated by using a JTP algo-
rithm to propagate the evidence into the BN, yielding - given the corruption requirement
as mentioned in Sec. 2.3.1 - xnewi that is closer to its corresponding clean value xGTi . This
process is repeated for each observation xi, where the evidence from the previous updates
is erased from the BN. For each observation xi, we thus update its parameter values by
propagating itself as evidence through the BN after which we extract the posterior distri-
butions given the evidence. Pseudo-code for this can be found in Algorithm 1.
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Algorithm 1: Record updating in the PDB via the PIBN model
Input: DPDB
Output: updated data DnPDB

1 for every record xi in DPDB do
2 Propagate the evidence defined by xi through the BN;
3 for every marginal probability pi(Cj,k) in xi do
4 update pi(Cj,k)→ P (Aj = Cj,k|evidence) via probabilistic inference on the BN

in which the evidence is propagated;
5 end
6 Erase evidence defined by xi from the BN;
7 end

PDB probabilistic inference example :
As an example of the application of the PIBN model, let’s say that the data-generating
distribution P (DGT ) is described as follows:

P (A) =
[
0.5, 0.5

]
, P (B|A) =

[
0.9 0.1
0.2 0.8

]
, P (C|A) =

[
0.9 0.1
0.1 0.9

]
.

Now say that we have an observation xGT = [1, 0, 1, 0, 1, 0], meaning that (A,B,C) =
(0, 0, 0) is observed. This observation is then extracted via a fuzzy extraction system such
that we are not certain anymore whether its value for C was either 0 or 1, e.g., xGT →
x = [1, 0, 1, 0, 0.5, 0.5]. By using an exact inference algorithm such as Lazy Propagation
[8] to propagate this evidence1, we obtain xnew = [1, 0, 1, 0, 0.9, 0.1]. In this example, this
solution can be computed and understood easily, as for example

P
(
C = 0

∣∣∣L(A) = {1, 0}, L(B) = {1, 0}, C = {0.5, 0.5}
)

=

P
(
C = 0

∣∣∣L(A) = {1, 0}, L(B) = {1, 0}
)

=

P
(
C = 0

∣∣∣A = 0, B = 0) = P (C = 0|A = 0
)

= 0.9,

where the first equality follows as the likelihood for C doesn’t favourize any state and
the second to last inequality follows as C is conditionally independent of B given A,
(C ⊥⊥ B) | A. For an indication, in Table 2 one can find several other update scenario’s
with the same data-generating distribution as above, together with the corresponding
Jensen-Shannon divergence before and after the update.

GT Corrupted New JSD before JSD after
[1, 0, 1, 0, 1, 0] [1.0, 0.0, 0.2, 0.8, 1.0, 0.0] [1.0, 0.0, 0.69, 0.31, 1.0, 0.0] 0.4228 0.1207
[0, 1, 1, 0, 1, 0] [0.5, 0.5, 1.0, 0.0, 1.0, 0.0] [0.98, 0.02, 1.0, 0.0, 1.0, 0.0] 0.2158 0.6361
[1, 0, 1, 0, 1, 0] [1.0, 0.0, 0.7, 0.3, 0.8, 0.2] [1.0, 0.0, 0.95, 0.05, 0.97, 0.03] 0.1922 0.0255
[0, 1, 0, 1, 0, 1] [0.0, 1.0, 0.5, 0.5, 0.5, 0.5] [0.0, 1.0, 0.2, 0.8, 0.1, 0.9] 0.4315 0.1109
[1, 0, 1, 0, 0, 1] [0.5, 0.5, 0.5, 0.5, 0.5, 0.5] [0.5, 0.5, 0.55, 0.45, 0.5, 0.5] 0.6473 0.6206

Table 2: Record updates via the PIBN model

Note that in most cases, the end-result is closer to the ground-truth than it was before. An
exception is the second record, where we see that the average JSD has increased. As the
probability of observing (A = 0, B = 0, C = 0) = 0.405 is much larger than the probability
of observing (A = 1, B = 0, C = 0) = 0.01 (Sec. 2.3.1).

1We used aGrUM/pyAgrum [19] for Lazy Propagation inference
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3.4 Data quality improvement in an unsupervised setting

Now we have theoretically defined what it means to improve the data quality in a PDB and
built a probabilistic model that can be used for data quality improvement given that we
know its underlying data-generating distribution P (DGT ), we wish to apply this knowledge
to the real-life, unsupervised case where we do not know this P (DGT ).

Because in such a case we only posses DPDB, we cannot directly apply the probabilis-
tic inference as defined by Eq. (11). Given that the corruption of DPDB is small compared
to its corresponding GT data DGT , we can try to estimate P (DGT ) from DPDB, but for
the PIBN approach this requires us first to transform the probabilistic data DPDB to
non-probabilistic data. Besides being unclear how this latter step can be performed (if
it even makes sense), we encounter the problem that when using Bayesian inference, es-
timating a BN from data quickly becomes computationally intractable as the number of
latent variables and their dimensionalities increase. This is also the main disadvantage of
the proposed PIBN model, as in the unsupervised case we need to estimate P (DGT ) by
constructing a BN from DPDB (structure learning), which can become computationally
intractable (in fact it is NP-hard [10]), let alone exact/approximate inference in a BN [20].

In order to overcome this difficulty and to find a proper approach to the problem in
case DPDB is very complex, a solution might be to use approximate inference techniques
such as variational inference or Markov chain Monte Carlo (MCMC) sampling, however
we then run again into the problem that it is not straightforward how to do so when our
data has a probabilistic nature.

It is for this reason that we propose a different approach, a model that can use proba-
bilistic data as input and that does not assume to know P (DGT ). This model is built
around an autoencoder and will be explained in Sec. 4.

4 Autoencoder model

Because of the problematic requirements of the PIBN model in an unsupervised setting,
we need to develop a model that can use the probabilistic data DPDB directly without
assuming to know P (DGT ). We propose to do this by means of an autoencoder that uses
the probabilistic dataDPDB as input and indirectly learns to capture the data dependencies
from P (DGT ) via DPDB.

4.1 Traditional autoencoder model

The autoencoder (AE) dealt with in this paper is a feedforward, non-recurrent neural net-
work having an input layer, a number of hidden layers and an output layer with the same
number of nodes as the input layer. The purpose of such an autoencoder is to reconstruct
its input by means of learning the outputs to be the same as the inputs. This makes this
autoencoder to be an unsupervised learning model since no prior knowledge about the data
(i.e. in terms of targets) is required.

The autoencoder consists of an encoder g(·) : RK → RL parameterized by φ and a decoder
f(·) : RL → RK parameterized by θ, where φ and θ represent the weights and biases of the
neural network. The encoder gφ(·) is a deterministic mapping between the input x ∈ RK
and a hidden or ’latent’ representation z ∈ RL, whereas the decoder fθ(·) deterministi-
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cally maps the hidden representation z ∈ RL back to the autoencoder’s output x′ ∈ RK ,
visualized in Fig. 5.

Figure 5: Basic autoencoder architecture

The autoencoder is trained by minimizing the reconstruction error/loss L with respect to
the parameters W = [φ, θ] over the training data set:

W = arg min
φ,θ

∑
x∈X
L(x,x′) = arg min

φ,θ

∑
x∈X
L
{
x, (fθ ◦ gφ)x

}
, (12)

with X ∈ RN×K being the training data set containing N observations. This optimization
problem is solved by using the backpropagation of the loss (e.g. via gradient descent), just
as in a regular neural network optimization problem.

4.2 Autoencoder and feature extraction

When no further restrictions are placed on the capacity of the AE, the AE will tend to
learn the identity mapping from its input x to its output x′. This means that the AE is
just overfitting on the training data, making it a useless network as it is not generalizing.
In order to make sure that the AE has a good reconstruction error on unseen data, we
need the AE to learn a mapping x→ z such that z is a good representation being robust
to noise in x.

For a representation to be good, we need this representation to at least retain a signif-
icant amount of information about the input. In information-theoretic terms, this means
that the mutual information I(X,Z) between input random variable X and its correspond-
ing constructed hidden representation Z is maximized. As shown by Vincent et al. [14],
an AE is exactly doing that when being trained to minimize the reconstruction error, since
it is maximizing a lower bound on this mutual information. In other words, when an AE is
trained to minimize the reconstruction error of input X, it has learned to retain as much
of the information of X as possible.

Only this criterion however, is not enough for the mapping to be able to separate noisy
details from the useful information, or in other words, distinguish the important data-
dependencies from the noise in the data. As mentioned above, the mutual information I
can simply be maximized by learning the identity mapping. We also need the mapping
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to be robust to noise, meaning that the representations z1 and z2 for inputs x1 and x2

respectively yield a similar reconstruction when x2 is a slightly corrupted version of x1.
This robustness can be incorporated in several ways, of which the most popular methods
are as follows:

• Undercomplete AE: by making the dimension L of the middle hidden layer (’bottle-
neck ’) smaller than the input dimension K, z becomes a compressed representation
of input x, such that not all information can be retained, meaning that a good recon-
struction requires z to capture the most important information. This is the standard
method and is depicted in Fig. 5.

• Sparse AE [13]: also called the overcomplete autoencoder, this AE has a hidden
layer with a dimensionality at least the input dimensionality K, but adds a sparsity
constraint to the reconstruction loss L: Loss = L(x,x′) + Ω(z), where Ω is an
increasing function of the average activity of the nodes in z, encouraging less nodes
to be active.

However, another very interesting approach, is the so-called Denoising AE (DAE) pro-
posed by Vincent et al. [14]. In this set-up, each input observation x is corrupted2 into
x̃ via stochastic mapping x̃ ∼ q(x̃|x), which is specified in Sec. 4.6. The model is then
trained to minimize the difference between the output x′ corresponding to input x̃ and
the corresponding clean version x. That is:

W = arg min
φ,θ

∑
x∈X
L
{
x, (fθ ◦ gφ)x̃

}
. (13)

In this set-up, the hidden representation z is thus a result of the deterministic mapping
gφ(x̃) rather than gφ(x). By doing such, the DAE learns to clean partially corrupted input,
which results in a better hidden representation z that can be used for denoising, a property
that can be used to improve the data quality of our input data DPDB. In this set-up, the
definition of a good representation can be reformulated as: a good representation is one
that can be obtained robustly from a corrupted input and that will be useful for recovering
the corresponding clean input [14]. The two ideas that are implicit in this approach are:

• A higher level representation should be rather stable and robust under corruptions
of the input.

• It is expected that by performing a denoising task, the hidden layer should extract
features that capture the useful structure of the data generating distribution of the
input data.

Note that the given definition above fits exactly our purpose of improving the data quality
in the PDB. It is for this reason that we chose to use the DAE structure as a method for
feature extraction.

4.3 DAE and data quality improvement in a PDB

The central goal of this research is to increase the quality of the data residing in a PDB,
which requires to capture the dependencies in P (DGT ). As mentioned in Sec. 4.2, the
DAE can be used to capture the data dependencies of its input data. This means that
when the corruption in DPDB is relatively low, using DPDB as input to the DAE, the DAE

2One should note that this is not the same as the corruption of a record with respect to its corresponding
ground truth version as mentioned in Sec. 2.2
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indirectly learns the data dependencies in P (DGT ). In other words, by training the DAE
on DPDB, the DAE should be able to learn a good hidden representation z for each input
x that works denoising and can be used to bring the marginal probabilities pi(Cj,k) closer
to their corresponding ground truth values. As taking probability parameters as input to
the AE with an output being of the same nature is not straightforward, we further explain
this in Sec. 4.4.1.

4.4 Model input and output

An important part of model construction is thinking about the nature of the model’s input
and output. Since this paper deals with an autoencoder model, the nature of the input and
output are the same, which means that the choice of the nature of the input data is fully
depending on the desired output from the model, which at its turn should fit the purpose
of the model’s construction.

4.4.1 Probabilistic input and output

As explained in Sec. 4.3, the DAE can be used to bring the marginal probabilities pi(Cj,k)
closer to their corresponding ground truth value by making use of its denoising property.
This thus requires that instead of static data as input and output, we will use the prob-
ability parameters themselves as input. In case of DPDB, this thus means that we take
xi ∈ DPDB as input.

Using this kind of probabilistic input, the autoencoder model outputs for each observation
xi a tensor x′

i with the same number of elements representing the marginal probabilities,
however with these probabilities being massaged, differently distributed, which is a direct
consequence of the dependencies and patterns in the entire data set DPDB, as well as a
consequence of the corresponding input observation xi. Note that in fact this is similar to
combining the prior information as defined by the underlying P (DGT ) together with the
information provided by the record itself, as was mentioned in Sec. 3.2.

4.4.2 Input implementation in the autoencoder model

Implementation-wise, the above means that the data from the probabilistic database needs
to be compatible with a neural-network type of model. Such a model has an input layer
consisting of D nodes where each node corresponds to a feature from a D-dimensional
observation [x1, x2, . . . , xD].

Based on the description in Sec. 4.4.1, this means that each category Cj,k of attribute
Aj should have a corresponding node in the input layer. In other words, the input is an
ensemble of the parameters from categorical distributions (Sec. 2.3.2). This means that
for each attribute Aj with Kj number of different categories, the model has Kj number of
corresponding input nodes. In total, the model then has

∑M
j=1Kj number of input nodes.

This idea is visualized in Fig. 6 by means of a simple example.
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Figure 6: Probabilistic data input

4.4.3 Output implementation in the autoencoder model

As stated in Sec. 4.4.1, given an input xi, the output x′
i from the DAE should be of the

same nature as its input, being an ensemble of parameters from categorical distributions.
The nature of such an output requires that for each element p′i(Cj,k) ∈ x′

i its value is
between 0 and 1 and that the sum of the outputted probability parameters corresponding
to attribute j equals 1, as motivated in Eq. (1). This constraint can be implemented into
the autoencoder model by applying the Softmax function σ : RK → RK to each set of
output nodes corresponding to one and the same attribute. This function is element wise
defined as follows

σ(x)i =
exi∑K
j=1 e

xj
. (14)

It is easy to verify that the Softmax function takes a K-dimensional input and returns a
K-dimensional input where each element σ(x)i is squeezed into an interval [0, 1] and the
sum of the elements equals 1. It is for this reason that the Softmax function can be used
to make the output to represent the parameters a categorical distribution.

Applying these Softmax functions to the output of the autoencoder is visualized in Fig. 7
by means of an example.

Figure 7: Example of a Softmax function on an AE output
as continuation on Fig. 6.

Each Softmax output ∈ RKj for attribute Aj is used as input parameter for a loss function
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Lj that is a then combined with other losses to obtain one total loss which can then be
used for training the model, as further explained in Sec. 4.5.

4.5 Loss function

In order to obtain a solid model performance, the model should be trained with a proper
training criterion. Since the autoencoder is trained by minimizing a reconstruction error
(Eq. 12), this means choosing a suitable loss function L. As explained in Sec. 2.3.2, a
proper distance metric for this would be the JSD, because of the nature of the output from
the autoencoder model.

4.6 Data corruption

As mentioned in Sec. 4.2, the reconstruction loss of the DAE, L, is a function of x̃, where
x̃ is a corrupted version of x according to a stochastic mapping q: x̃ ∼ q(x̃|x). Popular
corruption processes are:

• Gaussian Noise: x̃|x ∼ N (x, σ2I)

• Salt and Pepper Noise: a fraction v of the elements of x is set to their minimal
(salt) or maximal (pepper) values, being 0 and 1 in our case.

• Masking Noise: a fraction v of the elements of x is set to 0.

These noise processes do not make much sense for our type of data, however, as for each
observation xi in DPDB, the condition should hold that for each attribute ai,j the sum of
the probability parameters is 1, Eq. (1). It would make more sense to randomly select
one or multiple attribute values ai,j from xi and set all of its corresponding probability
parameters to 1/Kj , making ai,j a missing value, as explained earlier in Sec. 2.1. By
doing such, the DAE has to learn to ’fill in the blanks’ based on the values of the other
attributes, or in other words, the DAE has to learn to predict the category-distribution for
that particular attribute, based on the category-distributions of the other attributes.

This noise process can be parameterized by parameter v, denoting the fraction of at-
tribute values in the data set that is corrupted. Hence a v = 0.20 means that 20% of all
the attribute values are corrupted, i.e. set to a uniform distribution as explained above.

5 Evaluating and testing

In order to test the general performance of the DAE model, we need to evaluate its per-
formance on unseen test-data. Since we defined ’improving data quality’ as decreasing the
distance between DPDB and DGT (Sec. 2.3), this means that we need to know the ground
truth of the data in order to do so.

Evaluating the performance of the model is in particular important since we need to ac-
count for the values of the hyper-parameters of the model. In the case of the DAE model,
this mostly applies to finding a good value for the corruption level v (Sec. 4.6) and the
complexity of the DAE, that is, the number of hidden nodes in the hidden layer. What’s
more, the DAE is trained by minimizing the reconstruction loss L, Eq.(13). This, however,
gives us no guarantee that the learned mapping x → z → x′ is indeed a mapping that
satisfies the properties as specified in Sec. 4.2. The model may for instance be overfitting
on training data (as a consequence of a too high complexity of the autoencoder) or on the
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contrary may be underfitting (as a consequence of a too low complexity of the autoencoder).

As already explained in Sec. 3.4, in a real world application, we do not posses the ground
truth DGT for DPDB and have to unsupervisedly develop the model and account for a
choice of architecture and the tuning of hyper-parameters of the model. This is done how-
ever, based on results from supervised model construction in a similar case in an earlier
stage. By creating synthetic data sets, the DAE model can be tested on data sets of which
the nature of the data dependencies is known.

It is for this reason that we first develop a way to evaluate the performance of the DAE in
a supervised setting. Thereafter we evaluate the performance of the DAE model on several
synthetic data sets. What’s more, we compare its performance with the performance of
the PIBN model that assumes to know P (DGT ).

5.1 Evaluation structure

In order to be able to evaluate the performance of the DAE model and to select the best
possible hyper-parameters in such a supervised setting, the following evaluation structure
as depicted in Fig. 8 is used:

Figure 8: Evaluation Process

1. Step I, GT data set:
Data set DGT is generated according to sampling from the data generating distribu-
tion P (DGT ), as explained in Sec. 2.2. This P (DGT ) is explicitly defined via a BN,
which is modeled by using the PyAgrum [22] library in Python. An example of this
implementation (both the BN construction and the sampling process) can be found
in the appendix, Sec. A.2.

2. Step II, train and test set + corruption:
The DGT is partitioned into a training and test set, Dtrain and Dtest respectively.
Those two data sets are then both corrupted with the same type (structure and
intensity) of noise, leading to two corrupted data sets D̃train and D̃test. This noise
represents the uncertainty as residing in a PDB. More about this proces and the type
of noise can be found in Sec. 5.2.
Note: this is not the same as the deliberate corruption in the DAE training process!

3. Step III, model training:
The DAE model is trained based on D̃train. It does so by minimizing the reconstruc-
tion loss L, Eq. (13), meaning the autoencoder gets D̃train as input which it tries
to reconstruct. When the amount of noise in D̃train relative to its corresponding
ground truth Dtrain data set is relatively low, the idea is that by training in this way,
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the autoencoder will not be influenced much by this noise and will thus indirectly
capture the data dependencies as residing in Dtrain (and thus DGT , given that Dtrain
is large enough).

4. Step IV, test set mapping:
The DAE model is applied to the corrupted test data D̃test yielding a new data set
D̃ntest.

5. Step V, distance measures:
In this step, the quality measures Q2 = Q

(
Dtest, D̃ntest

)
is evaluated on D̃ntest with

ground truth Dtest as reference point. Furthermore, this quality measure is compared
with Q1 = Q

(
Dtest, D̃test

)
to see if the quality of the data has improved. This step is

crucial in evaluating the model performance. We use the following types of quality
measures:

(a) The average distance measured by the JSD, as given by Eq. (8). This average
distance is calculated both on the entire data sets as well as only on the cor-
rupted records in that data set, denoted with ’JSD ’ and ’JSD cr ’ respectively.

(b) Another interesting quality measureQ is a measure that measures the fraction of
cases in which the output x̃ni ∈ D̃ntest from the autoencoder on input x̃i ∈ D̃test
has diverged from the ground truth xi ∈ Dtest:

Q =
1

|I|
∑
i∈I

[JSD(xi||x̃ni ) > JSD(xi||x̃i)], (15)

where [·] represent the Iverson brackets. What’s more, we would like to know
the average divergence for those ’false updates’. These two properties are both
calculated for the entire data set as well as for only the corrupted records,
denoted with ’Faul ’ and ’Faul cr ’ respectively.

(c) Finally, a measure that can be used in an unsupervised setting as well, is a
measure for the total uncertainty in the data set. For this we can perfectly
use the Shannon Entropy H. Since in our type of data, Aj can be seen as a
categorical random variable, the uncertainty of each observation xi in our data
sets can be measured by summing the entropy of its attributes ai,j :

H(xi) =

M∑
j=1

H(ai,j) = −
M∑
j=1

Kj∑
k=1

pi(Cj,k) logb

(
pi(Cj,k)

)
. (16)

We do this for every record xi in the data set and sum to obtain the total
uncertainty residing in the data set.

5.2 Uncertainty parameterization

Within the domain of attribute uncertainty (Sec. 2.1), there is still a lot of freedom in
which uncertainty can be distributed among the (synthetic) data. This is why we specify
the ’corruption process’ as mentioned in Sec. 2.2 by means of the following parameters:

• How many records of the PDB contain uncertainty?

– 0 ≤ λ ≤ 1: the fraction of records that contains uncertainty.

• Is the uncertainty in such a record only with respect to one or multiple attributes?
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– 0 ≤ na ≤M : the number of attributes that contain uncertainty.

• Are these attributes the same for all the uncertain records or is this fully random?

– R ∈ {True, False}: governing whether the attribute(s) containing uncertainty
is the same for each uncertain record (R = False) or is pure random (R=False).

• How much noise is added per attribute value ai,j?

– 0 ≤ ε ≤ 1: the amount of noise distributed over the other categories of ai,j =
[pi,j(Cj,1), pi,j(Cj,2), . . . , pi,j(Cj,Kj )].

• How is the uncertainty in a record distributed among the attribute(s), that is, are
the parameters of ai,j nearly all uniformly distributed or is this distribution more
skewed, and how much? This can be implemented by using the Dirichlet distribution
[15] which in fact is the conjugate prior of the categorical distribution:

1

B(α)

K∏
i=1

xαi−1
i . (17)

This distribution is used to get a tuple of observations x = [x1, x2, . . . , xK ] summing
to 1. This tuple is then multiplied with ε to obtain how the noise is spread over the
other K categories. The vector α = [α1, α2, . . . , αK ] is used to define how skewed the
distribution over x is. If all elements of α are equal, this means that the distribution
is symmetric and α can be written as α = α · [1, 1, . . .] and the Dirichlet distribution
is then fully parameterized by the scalar α. What’s more, a small value of α < 1
yields a sparse (skewed) distribution over x whereas a large value of α > 1 yields
dense (more uniform) distribution over x.

– 0 < α < ∞: governing the skewness of the distribution of noise over the other
categories.

5.3 Performance on synthetic data sets

In this section we will test the performance of the DAE model on several synthetic data
sets. We compare its performance with the performance of the PIBN model assuming that
it knows P (DGT ). As mentioned in Sec. 5.1, the synthetic data sets are sampled from a
data generating distribution P (DGT ) defined by a BN. Therefore, for each of the data-sets
below, the structure of the corresponding P (DGT ) can be found in the appendix, Sec. A.3.
What’s more, in each case:

1. |DGT | = 10, 000, |Dtrain| = 9, 000, |Dtest| = 1, 000.

2. Settings for the DAE model:
The implementation is done in Python with the Functional API from Keras. The
used hyper-parameters for the DAE model are as follows:
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Parameter Parameter value
Optimizer Stochastic Gradient Descent
Learning rate 5e− 3
Decay 1e− 6
Momentum 0.9
Nesterov True
Batch-size 20
Epochs 100
Activation hidden layer RELU
DAE corruption v 0.30

Table 3: DAE (training) hyper-parameter values

In this paper, we test the performance of the DAE and PIBN model on 5 synthetic data
sets that are all corrupted according to the same corruption structure. Information on the
type of corruption and the statistical properties of test data sets before application of the
models can be found in Table 4.

Corruption settings: λ = 0.20, na = 2, R = True, ε = 0.5, α = 5

Data set JSD JSD cr Entropy
D1 0.03819 0.21576 0.23750
D2 0.04315 0.21576 0.30299
D4 0.04272 0.21576 0.30870
D3 0.04143 0.21576 0.27553
D5 0.04294 0.21576 0.32648

Table 4: Corruption settings & statistical properties of the used synthetic data
sets

After applying the DAE and PIBN model, we obtain the results3 as can be found in Table
5 and Table 6, respectively. For the JSD quality measure, we used e as base of the log
function. For the Entropy measure, we used 2 as base.

DAE model
JSD JSD cr Entropy Faul Faul cr

D1 0.00569 0.03164 0.03558 3.8% - 0.10759 6.2% - 0.36401
D2 0.00903 0.04378 0.06515 6.5% - 0.12498 6.5% - 0.56834
D3 0.00923 0.04524 0.09169 14.9% - 0.04072 3.0% - 0.78620
D4 0.01028 0.04712 0.08016 14.6% - 0.07718 8.9% - 0.53040
D5 0.01468 0.06266 0.07641 16.6% - 0.20968 9.6% - 1.59828

Table 5: Quality measures of updated data sets after application of the DAE
model

3Because the DAE model contains randomness in the training process, the results might slightly vary
each time the model is trained. Because of lack of time, we could not include a confidence interval for
those results. This is an action point for future work.
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PIBN model
JSD JSD cr Entropy Faul Faul cr

D1 0.00673 0.03802 0.04029 0.6% - 0.33316 3.4% - 0.33316
D2 0.00997 0.04987 0.06904 0.9% - 0.55640 4.5% - 0.55640
D3 0.01370 0.06919 0.12581 2.6% - 0.16462 13.1% - 0.16462
D4 0.01188 0.06186 0.08531 1.1% - 0.94218 5.7% - 0.94218
D5 0.01217 0.06115 0.06554 2.1% - 0.8273 10.6% - 0.82730

Table 6: Quality measures of updated data sets after application of the PIBN
model

In Table 5 and Table 6, we can see multiple interesting things:

1. First of all, we note that for each of the data sets it is true that, after update via
the DAE or PIBN model, it has become closer to its corresponding ground truth,
meaning that the data quality has been improved. In addition to this, we see that
the uncertainty (measured by the entropy H) has been decreased for each of the
data sets, which is as expected because of our observation of a decreased difference
between the data sets and their ground truth counterparts.

2. Secondly, we see that as the data sets get more complex (Sec. A.3), the DAE model
has a higher ’faul ’ and ’faul cr ’ ratio, which is true till a lesser extent for the PIBN
model. This is as expected, as the denoising autoencoder has to learn a more com-
plicated dependency structure with relatively more occurrences of observations with
a low probability of occurrence. What’s more, with a more complicated dependency
structure comes an increasing probability of updating a record ’into the wrong direc-
tion’ (Sec. 2.3.1).

3. Thirdly, we see that the DAE model slightly outperforms the PIBN model on data
sets 1− 4, whereas the performance of the PIBN model is better on data set 5. We
suspect that this is a consequence of the DAE model being slightly overfitting on the
data, as for these data sets with a relatively simple underlying generating probability
distribution, the data in the test set is quite similar4 to the data on which the model
is trained, yielding a very good result for the test set when the data is overfitting on
the train set. Because data set 5 is of a more complex structure, overfitting on the
train set will give a worse performance on the test set. To prevent this overfitting
even more, better values should be picked for the hyper-parameters, which is an
action point for future research.

4. Finally, we observe that both the ’faul ’ and ’faul ocr ’ rates for the DAE model are
higher than those of the PIBN model. However, if we look at the average JSD of those
’false updates’, we see that this is much lower for the DAE model. This is because
the DAE model may slightly increase the uncertainty in ’certain records’ (records
that are not corrupted in the corruption process and are thus identical to the ground
truth), such that this update is counted as a faul, even though the divergence is not
much (low average JSD for these records). The PIBN model will not do this and
thus has much lower faul rates.

4Every record in the test set is also present in the train set
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6 Conclusion and future work

As the results show, in this thesis we successfully developed a model that can achieve
data quality improvement in a PDB. This model, the DAE model, does so by learning to
capture the most important data dependencies from the underlying ground truth data gen-
erating probability distribution P (DGT ) that are indirectly present in DPDB. The latter
is achieved by a regularization type in the form of deliberately adding noise to the data on
which the AE is trained. Before we could develop such a model, we first described what it
means to improve data quality and how this can be quantified. Once this was established,
we developed a probabilistic model, the PIBN model, that manages to achieve data quality
improvement given that we know P (DGT ). In the development process of this model, we
saw that data quality improvement for a single record xi can be achieved by combining the
evidence provided by that record together with the prior information defined by P (DGT ).
This notion helped us to establish the DAE model, which does a similar thing, but learns
P (DGT ) indirectly via DPDB.

We are aware that our results and efforts are just the tip of the iceberg, a first step in
the process of data quality improvement in a PDB. To substantiate this, we end this paper
by mentioning the most important action points for future work that follows from this
thesis:

1. Statistical data type assumption:
In this thesis, we focused on categorical nominal data only. This has a huge impact
on the approach to data quality improvement. Using other statistical data types
- say, numerical data - totally changes how a PDB is modeled; in such a case, we
cannot regard a record xi ∈ DPDB as an ensemble of parameters from categorical
distributions. This has as an effect that we can not use those parameters as input
to an AE. In such a case it is required to come up with a totally different approach.
As the data in probabilistic data integration is often not categorical nominal but
categorical ordinal or numeric (or both), it might be interesting to do research on
how one would approach data quality improvement given such conditions.

2. AE Regularization and hyper-parameter tuning:
When testing the performance of the DAE model on the synthetic data sets, we used
a specific setting for the hyper-parameters of the AE and its training process, as
shown in Table 3. We did not thoroughly test for the best parameter values because
this is not in the scope of this thesis, although this is very important for improvement
of the developed models. As an example, evaluating the model performances as the
corruption fraction v (Sec. 4.6) changes (and how this is dependent on the particular
data set), may give very useful insights in how the DAE model learns to capture the
most important dependency structures and how this influences whether the model is
overfitting or not.

3. Data quality improvement and data set properties:
Last but not least, a very interesting action point is to do research on the connection
between the statistical properties of data sets and the performance of the proposed
PIBN and DAE model on those data sets. As can be seen in Table 5 and Table 6,
the performance seems to decrease as the data sets get more complex dependency
structures (Sec. A.3). However, till now, this is merely an observation a a result of
a small test-case, rather than a general truth. What’s more, it is not clear how this
’complexity’ can be quantified and qualified (e.g. in information theory terms). In
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order to use the DAE model, it may be very useful to be able to know more about
this connection so that better claims can be made about the model’s performance.
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A Appendix

A.1 Model training and validation

A.1.1 Loss function

When using e as base for the logarithm, we obtain:

DKL(x1) = 0.9 log
(0.9

0.8

)
+ 0.1 log

(0.1

0.2

)
≈ 0.0367 (18)

DKL(x2) = 0.8 log
(0.8

0.7

)
+ 0.2 log

(0.2

0.3

)
≈ 0.0257

DKL(x3) = 0.8 log
(0.8

0.9

)
+ 0.2 log

(0.2

0.1

)
≈ 0.0444

DKL(x4) = 0.7 log
(0.7

0.8

)
+ 0.3 log

(0.3

0.2

)
≈ 0.0282

When having the following inputs and outputs:

Figure 9: From input to output

, the KL divergence is computed as follows (using e as base):

DKL(xin||xout) =
M∑
j=1

DKL(ainj ||aoutj ) (19)

=
M∑
j=1

Kj∑
k=1

pin(Cj,k) · log
{ pin(Cj,k)

pout(Cj,k)

}
= 1.0 · log

(1.0

0.9

)
+ 0.0 · log

(0.0

0.1

)
+ 0.8 · log

(0.8

0.9

)
+ 0.2 · log

(0.2

0.1

)
≈ 0.1498

A.1.2 Jensen Shannon Divergence

Theorem:
When using equal weights [1

2 ,
1
2 ], we have that

JSD 1
2
(P ||Q) =

1

2
DKL(P ||M) +

1

2
DKL(Q||M)

with M = 1
2(P +Q)
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Proof.

JSD 1
2

(
P ||Q

)
= H

(1

2
P +

1

2
Q
)
− 1

2
H(P )− 1

2
H(Q)

= −
∑
i

1

2
(pi + qi) log

(1

2
(pi + qi)

)
+

1

2

∑
i

pi log(pi) +
1

2

∑
i

qi log(qi)

= −1

2

∑
i

pi log(mi) + qi log(mi) +
1

2

∑
i

pi log(pi) +
1

2

∑
i

qi log(qi)

=
1

2

∑
i

pi log(pi)−
1

2

∑
i

pi log(mi) +
1

2

∑
i

qi log(qi)−
1

2

∑
i

qi log(mi)

=
1

2

∑
i

pi log
( pi
mi

)
+

1

2

∑
i

qi log
( qi
mi

)
=

1

2
DKL(P ||M) +

1

2
DKL(Q||M)

A.2 Synthetic data construction

Both the construction of the Bayesian Network and sampling from it is done in Python by
using the PyAgrum library [22].

A Bayesian Network is constructed by means of the following steps:

1. Create an instance bn of the BayesNet() class.

2. Add nodes to bn by means of a the bn.add() method and the LabelizedVariable()
class.

3. Add edges between the nodes by means of the addArc() method.

4. Define conditional probability tables for each node using the bn.cpt() method.

5. Create an instance dbg of the BNDatabaseGenerator() class.

The samples are taken by the following single step:

1. Sample from dbg by means of the dbg.drawSamples() and store it in a .csv file by
means of the dbg.toCSV() method.

As an example, the Bayesian Network from Fig. 4 is implemented and is sampled from as
follows:

1 import pyAgrum as gum
2

3 # I n i t i a l i z e the Bayesian Network
4 bn = gum. BayesNet ( ’MyNetwork ’ )
5 # Add nodes
6 R = bn . add (gum. Labe l i z edVar i ab l e ( ’R ’ , ’ Rain ’ , 2) )
7 S = bn . add (gum. Labe l i z edVar i ab l e ( ’S ’ , ’ Sp r i nk l e r ’ , 2) )
8 G = bn . add (gum. Labe l i z edVar i ab l e ( ’G’ , ’ Grass wet ’ , 2) )
9 # Add edges

10 f o r l i n k in [ (R, S) , (R, G) , (S , G) ] :
11 bn . addArc (∗ l i n k )
12 # Def ine c ond i t i o na l p r obab i l i t y t ab l e s
13 bn . cpt (R) [ : ] = [ 0 . 2 , 0 . 8 ]
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14 bn . cpt (S) [ 0 , : ] = [ 0 . 4 , 0 . 6 ]
15 bn . cpt (S) [ 1 , : ] = [ 0 . 0 1 , 0 . 9 9 ]
16 bn . cpt (G) [ ’R ’ : 0 , ’ S ’ : 0 ] = [ 0 . 0 , 1 . 0 ]
17 bn . cpt (G) [ ’R ’ : 0 , ’ S ’ : 1 ] = [ 0 . 8 , 0 . 2 ]
18 bn . cpt (G) [ ’R ’ : 1 , ’ S ’ : 0 ] = [ 0 . 9 , 0 . 1 ]
19 bn . cpt (G) [ ’R ’ : 1 , ’ S ’ : 1 ] = [ 0 . 9 9 , 0 . 0 1 ]
20 # Create in s t ance o f the BNDatabaseGenerator
21 dbg = gum. BNDatabaseGenerator (bn)
22 # Sample from i t
23 dbg . drawSamples (1000)
24 # Store the samples
25 dbg . toCSV( ’ F i l e . csv ’ )

Listing 1: Bayesian Networks via PyAgrum

A.3 Synthetic data sets

In this section, we briefly describe the data generating distributions that were used to
sample data from in order to create synthetic data sets. We do this by specifying the
graphical structure of the network, by mentioning the cardinality of the state space for
each random variable and most importantly by giving the conditional probability tables.
BN graphical structure:

(a) Data set I (b) Data set II (c) Data set III

(d) Data set IV (e) Data set V

Figure 10: Structure for the Bayesian Networks resembling the data generating
distributions of the synthetic data sets

State space cardinality per random variable:
The items in the lists below correspond to the random variables A,B, . . . in that order.

• Data set I: [3, 3, 3, 3, 2, 2].

• Data set II: [3, 6, 3, 3, 3, 2].

• Data set III: [10, 2, 2, 3, 4].

• Data set IV: [4, 5, 3, 3, 2, 3, 2].
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• Data set V: [3, 3, 3, 6, 2, 3, 5, 5].

Conditional probability tables:

Data set I:

P (A) =
[
0.33 0.33 0.33

]
, P (B|A) =

 0 1 0
0.5 0.5 0.5
0.1 0 0.9

 , P (C|A,B) =



1 0 0
0.5 0.5 0
0 1 0
1 0 0
1 0 0
0 0 1
0 0 1
1 0 0
0 0 1



P (D|C) =

1 0 0
0 1 0
0 0 1

 , P (E|B) =

 1 0
0.5 0.5
0 1

 , P (F |D,E) =


1 0
1 0

0.5 0.5
0.5 0.5
0.5 0.5
0.8 0.2


Data set II: conditional probability tables for P (A), P (B|A), P (C|A), P (D|B,C), P (E|B,C,D),
P (F |C,E), respectively.

[
0.33 0.17 0.5

]
,

0.33 0.33 0.33 0 0 0
0 0.17 0.33 0.33 0.17 0
0 0 0 0.33 0.33 0.33

 ,
0.1 0.4 0.5

0.3 0.5 0.2
0.9 0.1 0





0.9 0.05 0.05
0.8 0.15 0.05
0.7 0.15 0.15
0.9 0.05 0.05
0.8 0.15 0.05
0.7 0.15 0.15
0.8 0 0.2
0.75 0.05 0.2
0.7 0.1 0.2
0.8 0 0.2
0.75 0.05 0.2
0.7 0.1 0.2
0.7 0 0.3
0.65 0.1 0.25
0.6 0.15 0.15
0.7 0 0.3
0.65 0.1 0.25
0.6 0.15 0.15



,



1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
1 0 0
1 0 0
1 0 0
1 0 0



,



1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 0 1
0 0 1
0 0 1
1 0 0
1 0 0
1 0 0





0.9 0.1
1 0

0.5 0.5
0.8 0.2
0.9 0
0.5 0.5
0.7 0.3
0.8 0.2
0.5 0.5


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Data set III:

P (A) =
[
0.1 0.1 . . . 0.1

]
, P (B|A) =


0 1

0.1 0.9
0.2 0.8
. . . . . .
0.9 0.1

 , P (C|A) =


0 1

0.1 0.9
0.2 0.8
. . . . . .
0.9 0.1



P (D|C) =

[
0.8 0.2 0
0.3 0.3 0.4

]
, P (E|C,B,D) =



1 0 0 0
0.5 0 0.5 0
0 1 0 0
0 0 0 1
0 1 0 0

0.6 0 0.4 0
0 1 0 0
0 0 0 1
1 0 0 0


Data set IV:

P (A) =
[
0.25 . . . 0.25

]
, P (B) =

[
0.2 . . . 0.2

]
, P (C|A) =


0.2 0.3 0.5
0.1 0.8 0.1
0.1 0.9 0.1
0 0.1 0.9



P (D|B) =


0.9 0.05 0.05
0.8 0.15 0.05
0.2 0 0.8
0 0.5 0.5

0.05 0.05 0.9

 , P (E|A) =


0.05 0.95

1 0
0.9 0.1
0.95 0.05

 , P (F |C,E) =


0.93 0.02 0.05

0 0.99 0.01
0.9 0.05 0.05
0.1 0.02 0.88
0.01 0.99 0
0.7 0.1 0.2



P (G|F,D) =



1 0
0.9 0.1
0.1 0.9
1 0
1 0
0 1
0 1

0.5 0.5
1 0


Data set V: conditional probability tables for P (A), P (B), P (C), P (D|A,B), P (E|A,B,C),
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P (F |C), P (G|D,E, F ) & P (H|A,B,C), respectively.

P (A) = P (B) = P (C) =
[
0.33 0.33 0.33

]
,



0.7 0.3 0 0 0 0
0 0 0.9 0.1 0 0
0 0.2 0 0 0 0.8

0.3 0.7 0 0 0 0
0 0.8 0 0 0.1 0.1

0.1 0 0 0 0 0.9
0 0 0.7 0.3 0 0
0 0 0 0 1 0
0 0 0 1 0 0





0.99 0.01
0.2 0.8
0.99 0.01
0.9 0.1
0.3 0.7
0.8 0.2
0.8 0.2
0.1 0.9
0.8 0.2
0.9 0.1
0.15 0.85
0.8 0.2
0.7 0.3
0.1 0.9
0.7 0.3
0.7 0.3
0.1 0.9
0.8 0.2
0.88 0.12
0.2 0.8
0.7 0.3
0.6 0.4
0.1 0.9
0.9 0.1
0.5 0.5
0.11 0.89
0.8 0.2



,



0.99 0.01 0 0 0
0 0.2 0.8 0 0
0 0 0 0.85 0.15

0.8 0.1 0.1 0 0
0 0.3 0.7 0 0
0 0 0 0.85 0.15

0.85 0.1 0.05 0 0
0 0.1 0.9 0 0
0 0 0 0.8 0.2

0.8 0.1 0.1 0 0
0 0.15 0.85 0 0
0 0 0.05 0.9 0.05

0.8 0.1 0.1 0 0
0 0.1 0.9 0 0
0 0 0 0.9 0.1

0.75 0.15 0.1 0 0
0 0.1 0.9 0 0
0 0 0 0.8 0.2

0.8 0.08 0.12 0 0
0 0.2 0.8 0 0
0 0 0 0.9 0.1

0.82 0.1 0.08 0 0
0 0.1 0.9 0 0
0 0 0 0.92 0.08

0.7 0.2 0.1 0 0
0 0.11 0.89 0 0
0 0 0 0.8 0.2



,



0.88 0.1 0.01 0.01 0
0 0.1 0.8 0.1 0
0 0.05 0.1 0.85 0
0 0 0.01 0.99 0
0 0 0 0.1 0.9

0.2 0 0.2 0 0.6
0.85 0.15 0 0 0

0 0.15 0.85 0 0
0 0 0.1 0.85 0.05
0 0 0 0.95 0.05
0 0 0.05 0.05 0.9

0.1 0 0.05 0.05 0.8
0.9 0.1 0 0 0
0 0.2 0.8 0 0
0 0 0.1 0.9 0
0 0 0.02 0.98 0
0 0 0.05 0.05 0.9

0.2 0 0.1 0 0.7
0.8 0.2 0 0 0
0 0.15 0.8 0.05 0
0 0 0.15 0.85 0
0 0 0.05 0.85 0.1
0 0 0 0.15 0.85

0.05 0 0 0.15 0.8
0.99 0.01 0 0 0

0 0.21 0.79 0 0
0 0 0.1 0.9 0
0 0 0.05 0.95 0
0 0 0 0.05 0.95

0.1 0 0 0 0.9
0.7 0.3 0 0 0
0 0.1 0.9 0 0
0 0 0.05 0.9 0.05
0 0 0 0.95 0.05
0 0 0 0.1 0.9

0.1 0 0 0.1 0.8


0.9 0.1 0

0.1 0.9 0
0 0.1 0.9


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