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Abstract

Field Programmable Gate Arrays (FPGAs) are used more and more
in security-critical applications. With this development comes increased
attention from both benevolent and malevolent actors, interested in tam-
pering with the security of these cryptographic implementations. These
actors take interest in the possibilities of cracking the security of these
applications. When an encryption algorithm is implemented in hardware,
there is a possibility of a Fault Injection Attack (FIA). Through these at-
tacks, faulty ciphertexts that contain information on the cryptosystem’s
secret key can be obtained. Through Differential Fault Analysis (DFA),
the secret key can be derived. This work aims to develop a platform
to help designers of cryptographic implementations on FPGAs test their
design against FIAs. By reconfiguring an FPGA with a modified configu-
ration file, a FIA can be emulated. The configuration file (bitstream) has
to be altered to make this possible. The EDA toolkit DAVOS, originally
aimed at reliability analysis of FPGA implementations, is re-purposed for
this particular purpose, as it has the FPGA re-programming functionality
required for this purpose. Successful FIA emulations, with extraction of
the cryptosystem’s secret key, are demonstrated. DAVOS still needs to
be optimized to be used effectively as an FIA emulator, thus suggestions
are made to improve its use for this purpose.
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1 Introduction

In recent times the demand for both flexible, fast and cheap hardware solutions
is ever increasing. FPGAs offer a good middle ground regarding these crite-
ria. They are flexible due to their reprogrammability, offer better computation
speeds than software solutions and don’t require the massive upfront investment
ASICs do. This has led to more and more systems making use of these repro-
grammable hardware devices. Such systems often make use of cryptographic
implementations, e.g. AES, to securely transmit information. With the in-
creased use of FPGAs in security-critical applications, there is now an increased
emphasis on securing these devices from tampering. One way to tamper with
cryptographic implementations is a Fault Injection Attack (FIA). In such an at-
tack, an adversary attempts to induce faults, e.g. single-bit flips. The adversary
then compares the faulty outputs of the cryptographic implementation to the
correct output, and attempts to retrieve the secret key using Differential Fault
Analysis (DFA). FPGA developers aware of the potential security risks from
FIAs will want to test the robustness of their design against these attacks. In
this research, the EDA toolkit DAVOS, traditionally used for reliability analysis,
will be used to emulate FIAs on cryptographic implementations on an FPGA.
This could allow a user to execute a FIA against their design, or check how their
countermeasures against these attacks hold up. In this thesis, focus is placed on
the Advanced Encryption Standard, but DAVOS can in principle induce single-
bit faults in any FPGA design, and thus in any cryptographic implementation.
At the best of our knowledge, this is the first example of FIA emulation on a
cryptographic system running on an FPGA.

The thesis is structured as follows:

• Chapter 2: The Advanced Encryption Standard (AES)

• Chapter 3: Differential Fault Analysis (DFA) on AES

• Chapter 4: Fault Injection Attacks (FIAs) on FPGAs

• Chapter 5: Countermeasures against FIAs

• Chapter 6: Bitstream-based FIA Emulation using DAVOS

• Chapter 7: Evaluation

• Chapter 8: Conclusions and Recommendations
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2 The Advanced Encryption Standard (AES)

2.1 AES

This research will focus on successfully emulating FIAs on implementations of
the Advanced Encryption Standard (AES). Published in 1998, this fixed block
length implementation of the Rijndael cipher [1] was chosen by NIST to become
the successor of the Data Encryption Standard (DES). The symmetric key en-
cryption algorithm is famed for its simplicity, while still providing virtually
uncrackable encryption.

In his 1945 work ‘A mathematical theory of Cryptography’ [2] for Bell labs,
Shannon identified two important aspects of a strong cryptographic algorithm:
Confusion and diffusion. Confusion makes the relationship between the key and
the ciphertext as complex as possible. Diffusion, on the other hand, makes rela-
tionship between the plaintext and the ciphertext complex. Thus, an encryption
algorithm with good diffusion and confusion should have its output completely
changed, even if only one bit of the input or the key is flipped.

AES, like many other encryption algorithms, has good confusion and diffu-
sion because it is a so-called substition-permuation network. These networks
work by chaining together multiple rounds of substitution and permutation op-
erations, and in each round the (expanded) key is added through a bitwise
XOR-operation

Figure 2.1: The AES State Matrix

AES has three different versions: AES-128, AES-192 and AES-256. All
encrypt blocks of data with a length of 128 bits. In Figure 2.1 above, a 128-
bit AES data-block is visualized through bytes b0, b1, . . . , b15. Note that,
rather counterintuitively, the state matrix is filled column-by-column, top-to
bottom, instead of row-by-row, left-to-right. The difference between the ver-
sions is in the key length: 128 bits for AES-128, 192 for AES-192 and 256 for
AES-256. Another difference is the amount of encryption rounds. AES-128
has 10 rounds of encryption, AES-192 has 12 rounds, and AES-256 14. Each
of these rounds consists of four consecutive operations: SubBytes, ShiftRows,
MixColumns and AddRoundKey. Before starting the first round of encryption,
the key is added to the plaintext using a bitwise XOR operation. For all key
lengths, the MixColumns operation is omitted in the last round. In the sections
below, SubBytes, ShiftRows, MixColumns and AddRoundKey are described in
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more detail. A block diagram of AES-128 can be seen in Figure 2.2. From now
on, when referring to AES, AES-128 is intended.

Figure 2.2: A Block Diagram of AES-128

2.2 SubBytes

SubBytes is responsible for providing confusion in the AES algorithm. It works
by mapping each the 16 bytes of the 128-bit input to another, fixed byte. This
so-called S-box is designed to be as non-linear as possible, to ensure maximal
resistance against cryptanalysis. Furthermore, the designers of Rijndael argue
that the rest of the algorithm is strong enough to provide secure encryption, even
when the S-box is replaced by a less ideal (more linear) one. In Figure 2.3 below,
a visual representation of SubBytes is presented, and in Figure 2.4 the contents
of the S-box can be seen. When, for example, the input of SubBytes is 0x
00112233 44556677 8899AABB CCDDEEFF, the output becomes 0x 638293C3
1BFC33F5 C4EEACEA 4BC12816. The confusion property of the S-box is can
be clearly observed here.

Figure 2.3: AES SubBytes [3]
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Figure 2.4: The Contents of the AES S-box

2.3 ShiftRows

ShiftRows is the first of two steps in AES providing diffusion. It works by
performing a cyclical left-shift on each of the rows of the state matrix. Each row
gets shifted n times to the left, with n being the row index. ShiftRows ensures
that MixColumns doesn’t operate on each column independently, which would
effectively render AES a 32-bit encryption algorithm, thus providing greater
diffusion. Figure 2.5 visually depics the ShiftRows operation. Using the same
example as in Chapter 2.2: 0x00112233 44556677 8899AABB CCDDEEFF at
the input of ShiftRows yields 0x0055AAFF 4499EE33 88DD2277 CC1166BB.

Figure 2.5: AES ShiftRows [3]
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2.4 MixColumns

MixColumns is the second step in providing diffusion. After ShiftRows, Mix-
Columns performs a linear transformation on the columns of the state matrix
by performing a matrix multiplication on them. However, this matrix multi-
plication is different from typical matrix multiplication, as the multiplication is
done in the Galois Field, GF(28). This means the additions become XOR oper-
ations, and multiplications become a complex operation, with the column being
treated as a 7th grade polynomial. In Figure 2.6 a visualisation of MixColumns
can be seen. As an input-output example, consider the output of the exam-
ple used in Chapter 2.3: 0x0055AAFF 4499EE33 88DD2277 CC1166BB, which
yields 0xAAB0001A E5774FDD 22388892 6DFFC755. Through ShiftRows and
MixColumns, the information in the exemplatory input is neatly diffused.

Figure 2.6: AES MixColumns [3]

2.5 AddRoundKey

In the last step of the round, the secret key is added. AES uses a unique key
for each round, which is derived from the main 128-bit key through the AES
keyschedule. In Equation 2.1 below, a mathematical representation for the
computation of the round keys is shown. K0, K1, K2, K3 denote the 4 32-bit
words of the original 128-bit key. W0, W1, . . . , W43 represent the 44 words of
the expanded key. rci represents a round constant. The values for rci can be
found in Table 2.1. SubWord is the AES S-box applied to each of the 4 bytes
of a word; RotWord a one-byte left cyclical shift, similar to ShiftRows.

Wi =


Ki if i < 4

Wi−4 ⊕ SubWord(RotWord(Wi−1))⊕ rci/4 if i ≥ 4 and i mod 4 = 0

Wi−4 ⊕Wi− 1 otherwise

(2.1)
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i 1 2 3 4 5 6 7 8 9 10
rci 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80 0x1B 0x36

Table 2.1: Round constants for the AES-128 key schedule

The round keys derived using the keyschedule are added to the output of
MixColumns by a bitwise XOR operation, making decryption impossible with-
out the key. The output of AddRoundKey is used as the input of the next
round, due to the cyclical nature of the algorithm. The algorithm can then be
repeated the desired number of rounds. AddRoundKey can be seen in Figure
2.7.

Figure 2.7: AES AddRoundKey [3]
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3 Differential Fault Analysis (DFA)

Differential Fault Analysis (DFA) is a technique used to reveal information about
the internals of a black-box cryptographic implementation. An attacker induces
a fault somewhere in the cryptosystem, and observes the output. This is re-
peated multiple times, until enough faulty ciphertexts (and the correct one) are
collected. The attacker then uses publicly available knowledge of the algorithm
to determine the secret key of the cryptosystem. Biham and Shamir [4] laid the
foundation for this in their 1997 paper. Based on their work, numerous attacks
based on DFA have been published. In this chapter, two examples of DFA are
presented: the Giraud attack, and a more generalized model. These two exam-
ples will later be used to demonstrate DAVOS’ ability to emulate these attacks
on an FPGA-based implementation of AES. Two step-by-step plans for an at-
tacker to perform a FIA and DFA are presented, along with several terminal
programs to automate these steps.

3.1 The Giraud Attack

In 2004 Giraud published his paper ‘DFA on AES’ [5]. In this work he presents
a method of performing DFA by targeting the 9th round of AES. When flipping
a bit between the 9th round MixColumns and the 10th round SubBytes, the
output will show a one-byte mismatch with the correct cipher. In Figure 3.1
the propagation of this bit flip is visualised. Giraud proved that in 97 % of cases,
three unique bits in each byte of the intermediate ciphertext must be flipped
to uniquely identify the corresponding byte of the tenth round key. Thus, a
Giraud attack can uniquely identify the entire secret AES key using 48 faulty
ciphertexts, i.e. 3 faulty ciphers with a one-byte mismatch in each of the sixteen
bytes of the ciphertext. Since it is known that at the input of the 10th round
SubBytes a one-bit mismatch is present, the amount of possible values for the
correct (non-faulty) input of the 10th round SubBytes is reduced significantly,
allowing the attacker to retrieve the secret key via brute-force.

Figure 3.1: Propagation of a single-bit fault induced at the input of the 10th

round of AES

Giraud described a correct execution of the 10th round with Equation 3.1,
and a faulty execution with Equation 3.2:

CShiftRow(i) = SubBytes(Mi)⊕K10
ShiftRow(i) (3.1)
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DShiftRow(i) = SubBytes(Mi ⊕ ei)⊕K10
ShiftRow(i) (3.2)

All subscripts are byte indices. Furthermore, i denotes the byte index at the
start of the 10th encryption round, Mi is the correct intermediate ciphertext at
the start of the 10th round, K10 the tenth round key and ei is the induced fault
at the start of the tenth round. Since the Giraud attack flips one bit at the
start of the tenth round, ei must have a Hamming weight of 1, i.e. ei = 0x01,
0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80. Thus, an attacker attempting to find
a byte K10

i of the 10th round key can follow the steps below:

• Find the correct ciphertext C

• Find three unique faulty ciphertexts with a one-byte fault in the same
byte D1, D2, D3

• For all 256 candidates for K10
i , perform the inverse of the final round on

Ci to find the potential correct inputs of the 10th round MiShiftRow(i) us-
ing Equation 3.3: (iShiftRow denotes inverse ShiftRow, iSubBytes inverse
SubBytes)

MiShiftRow(i) = iSubBytes(Ci ⊕K10
i ) (3.3)

• For all 256 candidates for K10
i , perform the inverse of the final round on

D1
i to find potential faulty inputs of the 10th round, which must satisfy

Equation 3.4:

MiShiftRow(i) ⊕ eiShiftRow(i) = iSubBytes(Di ⊕K10
i ) (3.4)

• Reduce the set of candidates for K10
i by only keeping those candidates for

K10
i which satisfy Equation 3.4 above.

• Repeat the previous two steps for D2 and D3 with the remaining candi-
dates for K10

i . As proven by Giraud, there is a significant chance only one
candidate remains. If this is not the case, another faulty ciphertext D4

can be used.

A terminal program that automates the steps described above can be
found in Appendix A.1.

An attacker can repeat these steps for all 16 bytes of the key K10
i , after

which the inverted key schedule can be applied to obtain the key K, using
the code in Appendix A.3. All of the above steps will be demonstrated in
Chapter 6.5.
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3.2 Generalized attacks on AES

Differential Fault Analysis on AES can also be reduced into a more general for-
mat. Moradi, Shalmani and Salmasizadeh have done just that. In their paper ‘A
Generalized Method of Differential Fault Attack Against AES Cryptosystems’
[6], they present a model for deriving the secret key from an AES implemen-
tation, by analyzing the possible ways a fault manifests itself at the input of
the 10th round SubBytes. With the fault model, the correct ciphertext and a
sufficient amount of faulty ciphertexts the tenth round key K10

i can then be
derived through elimination.

Figure 3.2: Propagation of a single-bit fault induced at the input of the ninth
round of AES

This model can be used in, for example, an attack occuring between the out-
put of the 8th round MixColumns and the input of the 9th round MixColumns.
In Figure 3.2 it can be seen that such a fault would manifest itself in the ci-
phertext as a 4-byte mismatch. By analyzing the propagation of such a fault,
an attacker is able to reduce the search space for key candidates significantly.
For such an attack, the model in Equation 3.5 below can be used.

SubBytes



I1

I2

I3

I4


⊕ SubBytes




I1 ⊕ e

′

1

I2 ⊕ e
′

2

I3 ⊕ e
′

3

I4 ⊕ e
′

4



 =


e”1

e”2

e”3

e”4

 (3.5)

Here, the set I = I1 & I2 & I3 & I4 contains all possible candidates for the
input of the 10th round SubBytes. I is a word; I1 through I4 are bytes. The
same applies to e’ and e”. e’ contains all possible ways a fault covered by the
fault model can manifest itself at the input of the 10th round SubBytes. e”
is the fault observed at the output of SubBytes, and thus also at the output,
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after ShiftRows is accounted for. By gathering faulty ciphertexts showing 4-
byte mismatches, the attacker can use the model previously presented to reduce
the amount of entries in the set I. To accomplish this, the full range of possible
effects of an injected fault must be identified in the set e’, and enough faulty
ciphertexts must be gathered to reduce the set I to only one candidate.

For an attack that flips a bit between the output of the 8th round Mix-
Columns and the input of the 9th round MixColumns, the 4 bytes that show
a mismatch at the output are always the same, as the 10th round ShiftRows
always affects the propagation of the fault in the same way. This can easily
be seen in Figure 3.2. In Table 3.1 the affected output bytes for the targeted
column of the AES state matrix are shown.

Affected column at
9th round MixColumns input

Affected bytes before
10th round ShiftRows

Affected bytes after
10th round ShiftRows

1 0, 1, 2, 3 0, 13, 10, 7
2 4, 5, 6, 7 4, 1, 14, 11
3 8, 9, 10, 11 8, 5, 2, 15
4 12, 13, 14, 15 12, 9, 6, 3

Table 3.1: Propagation of affected bytes for a fault in the 9th round MixColumns
input

To determine all elements of the set e’, AES can simply be applied to all
possible faults. Since the targeted column can be easily determined, this is
reduced to 32 possibilities, assuming a single bit is flipped. Assuming the output
of 8th round MixColumns is targeted (faults injected after 9th round SubBytes
are a subset of this model), the output of 9th round SubBytes shows a 1-byte
mismatch. Due to the non-linearity of SubBytes, its value is unknown, however,
only one byte is faulty. ShiftRows can be ignored, as in Table 3.1 it is shown that
the affected column is easily determined from the faulty output. AddRoundKey
is ignored due to the fact that faults propagate through an XOR operation.
Thus, all faults under this model are covered by Equation 3.6:

e
′

= MixColumns(e) (3.6)

The set e contains all possible errors in the 9th Round SubBytes; i.e. e =
0x00000001, 0x00000002, 0x00000003, . . . , 0x000000FF, 0x00000100, . . . ,
0x0000FF00, . . . , 0xFF000000.

In order to find four bytes of K10 using this fault model, an attacker would
carry out the following steps:

• Find the correct ciphertext C

• Gather enough faulty ciphertexts D with 4-byte mismatches to uniquely
determine the input of the 10th Round SubBytes

• Find e” = C ⊕D.
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• Byte-by-byte, check all 232 candidates in I. Discard entries that do not
satisfy the model.

• Repeat the previous two steps with the remaining candidates in I until
only one candidate is left.

• Determine K100,13,10,7 = I ⊕ C0,13,10,7. Use Table 3.1 for correct indices
for other bytes, or perform inverse ShiftRows.

A terminal program that automates the first five steps above can be found
in Appendix A.2. The attacker can repeat these steps for columns 2, 3, and 4.
Once all bytes of K10 are known, the inverse key schedule can be applied to
extract the original key. This strategy will be used in Chapter 6.6.

Given enough computational prowess, this strategy can be expanded to an
even more inaccurate attack. In that case the attacker knows nothing about
e’: 2128 entries. Moradi, Shalmani and Salmasizadeh have demonstrated in [6]
that it is possible to obtain the key using these fault models, thus allowing the
attacker to obtain the secret key of a cryptosystem with an extremely inaccurate
attack method.
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4 Fault Injection Attacks (FIAs) on FPGAs

4.1 FPGA Architecture

In order to effectively carry out a FIA through DFA on an FPGA-based im-
plementation of a cryptographic algorithm, intricate knowledge of the inner
workings of an FPGA is required. FPGAs are made up of a variety of Pro-
grammable Logic Blocks, e.g. Configurable Logic Blocks (CLBs), DSP Blocks
and RAM blocks. FPGAs have thousands of these; the xc7z020 has around
85.000. [7] Every one of these cells contains multiple Basic Elements of Logic
(BELs), which makes them capable of performing different kinds of logic func-
tions. Examples of BELs include Flip-Flops, Look-Up Tables (LUTs), RAM
blocks or DSP blocks.

BELs are arranged in groups of related blocks, known as slices. Slices are
identifyable by their coordinates on the device. A group of related slices forms a
tile, which is capable of implementing one of the FPGA’s Programmable Logic
Block functions. Tiles are arranged in columns, forming a Clock Row. A 2D
array of tiles driven from the same clock source is called a Clock Region.

The FPGA’s logic can be connected through interconnects, allowing the user
to program the FPGA with a hardware description, often written in a HDL such
as VHDL or Verilog. After the user generates a bitstream to program their
target device with in a design suite, e.g. Vivado, this bitstream can be loaded
into the FPGA’s configuration memory, to program the device with.

4.2 Practical Feasibility

In order to carry out an FIA in practice, an adversary would most certainly
require physical access to the device. Once physical access is secured, the attack
can be performed. FIAs can be performed in multiple ways, each bringing their
own balance between precision and complexity. For example, an attacker could
use a highly precise laser to flip a bit at the desired location and time [8], allowing
him to carry out the Giraud attack described in Chapter 3.2. However, such a
laser attack setup is highly complex and expensive, meaning only a technically
advanced adversary could carry out such an attack. Examples of simpler ways of
tampering with the internals of an FPGA-based encryption algorithm are clock
and power glitches [9]. These attacks are less complex to perform, yet lack the
precision of a laser-based method. The attacker would thus have to use a more
general fault model, as described in Chapter 3.3. Another way of performing
FIAs is through the FPGA’s configuration file, the bitstream. An attacker
with inside knowledge of the design could reverse-engineer the bitstream and
re-program the device with a compromised bitstream, allowing him to retrieve
information about the key.
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5 Countermeasures against FIAs

The increased attention for attacking FPGA-based designs has not gone un-
noticed. The industry itself has taken measures. Xilinx’ 7-series FPGAs, for
example, make use of bitstream encryption and authentication when program-
ming the device. [10] However, as is often the case, this is a cat-and-mouse
game. For example, Yi [11] has shown how to circumvent the encryption of the
bitstream. Aside from the industry, developers can also take action themselves,
by making their designs more robust against aforementioned attacks. Some
possibilities that designers have are discussed in this chapter. Furthermore, a
countermeasure is implemented, which can be used to demonstrate DAVOS’ use
in emulation of FIA attacks.

5.1 Redundancy

The most trivial solution to protect FPGA-based cryptographic implementa-
tions from (single) bit-flip FIAs is to use redundancy. Redundancy can be done
either in area or time, depending on the design constraints. In all redundancy-
based protection measures, the encryption algorithm is executed multiple times,
either in parallel (area redundancy) or in series (time redundancy). The results
from multiple executions of the algorithm are passed on to a voter, which de-
cides the output. When it comes to FIA protection using redundancy, the voter
could also set an error flag, to alert the owner the device is potentially being
tampered with. While a countermeasure that makes use of redundancy provides
100% fault coverage when targeting a single element of the design, it is obvi-
ous that the main drawback of redundancy is the increased resource overhead,
either in time or in area. These resources may not always be available, due to
constraints set by the required output bitrate or limited CLBs on the FPGA.
An example of a FIA countermeasure based on redundancy in time is the Built-
in Self-Test by Redonet Klip [11]. In this research an area-based Triple Mode
Redundancy countermeasure is presented, which can be used as an example of
DAVOS’s ability to emulate FIAs against a user-developed countermeasure. In
Figure 5.1 below, the designed TMR implementation is presented as a block di-
agram. The design of the voter is in Figure 5.2. The AES Core is a round-based
implementation of AES-128. VHDL code for the top-level TMR entity and the
voter are in Appendices B.1 and B.2, respectively.
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Figure 5.1: Vivado elaborated design of top-level entity AES TMR

Figure 5.2: Vivado elaborated design of entity AES Voter

The developed voter differs slightly from a typical TMR system. Usually
the voter is a majority voter. The developed voter switches the output to zero
if the three outputs of the AES instances do not match perfectly. Thus, the
output is switched to zero if a fault is injected in any location in any of the
three AES cores. This allows a successful to be easily spotted; the output
is all-zeroes, instead of the correct cipher if a majority voter had been used.
The control signal DATA READY is generated asynchronously from the three
READY outputs of the AES cores. They are passed through a triple and-gate:
only if all three signals are high, the output DATA READY is set high.
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5.2 Advanced Solutions

More advanced solutions to protect cryptographic systems from Fault Injec-
tion attacks also exist. These typically make use of concurrent error detection
(CED), to detect faulty operation of the algorithm, and alerting the owner. A
notable example of such a solution is ParTI [13], an excellent countermeasure
achieving fault coverage of over 90% at a mere 12% increased area overhead.

Another interesting solution that is not further explored in this research,
but is worth mentioning, is replacing the S-box. As mentioned in Chapter
2, the authors of Rijndael argue that AES is strong enough to provide resilient
encryption, even when the S-box is less than ideal. This means one could replace
the S-box with a custom one. The combination of an unknown S-box and an
unknown secret key would create a greater challenge for an adversary to crack
the system with DFA. The methods described in Chapter 3 would be rendered
useless, as these assume the S-box to be known and constant.
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6 Bitstream-based FIA emulation using DAVOS

This work aims to develop a platform used in aiding FPGA developers test their
designs against FIAs. The reliability assessment kit DAVOS [14] has been mod-
ified to work as an emulator for FIAs through the bitstream, re-programming
the device as if it were affected by a successful FIA.

6.1 Bitstream manipulation and reverse engineering

In order to effectively emulate FIAs, the bitstream of the target device must
first be thoroughly understood. With an in-depth understanding of the bit-
stream, the user can target and invert single bits in their design. If the modified
bitstream is then used to program the device, a single-bit FIA is effectively em-
ulated. This process can then be repeated as many times as desired, to perform
a FIA or to test the robustness of a design against FIAs. In this research, the
ZedBoard [15] is used, which has an xc7z020 device onboard. The bitstream of
the 7-series devices has been thoroughly explored in [16].

6.2 Existing FIA emulation

Research has been done into bitstream fault injection (BiFi), as well as into
automating the testing of robustness of cryptographic implementations. Yi [11]
has demonstrated a succesful BiFi, though Yi’s work only targets LUTs. How-
ever, this does show that emulation of FIAs through the bitstream is possible.
Recently a tool for testing the robustness of cryptographic implementations has
been published: VerFi [17]. VerFi aims to automatically evaluate the robustness
of cryptographic implementations, giving developers insight into the behavior
of their design in the face of FIA attacks. VerFi determines the Fault Coverage
Rates for countermeasures against FIA, giving developers quick insight into how
effective their countermeasures are. VerFI, however, only has simulation-level
functionality; no physical target device is programmed.

6.3 DAVOS as an FIA emulation tool

The works mentioned in the previous section could be combined into one power-
ful tool. This is where DAVOS comes in: Like Yi’s work, it has the ability to up-
load modified bitstreams to a device, effectively emulating FIAs. Furthermore,
it is not only limited to LUTs. Therefore, combining VerFi’s automated robust-
ness verification with DAVOS’ hardware-based FIA emulation possibilities could
allow users to obtain fault coverage rates for their design, running on the target
device. DAVOS is an EDA toolkit aimed at reliability assessment. Similarly
to FIAs, the injection of faults is an important aspect of reliability analysis.
DAVOS aims to make reliability analysis easier by providing functionality that
allows designers to target any aspect of their design, at any moment, both in
simulation and in hardware. DAVOS does this by re-programming the device
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using a modified bitstream during runtime. This capability makes DAVOS in-
teresting for emulating FIAs on FPGA-based cryptographic implementations as
well. DAVOS can perform FIAs in both simulation, using software like Ques-
taSim, and hardware, by physically programming an FPGA like the xc7z020. In
this research the emphasis is on DAVOS’ ability to emulate FIAs in hardware,
as this is a novelty. DAVOS’ simulation capabilities can prove useful as well,
though, for example when attempting to find out the specific injection time
for the desired fault. DAVOS has the ability to automatically perform the bit-
stream manipulation described in Chapter 6.1. It can do so for a large number
of targets. The modified bitstreams are uploaded sequentially to the device, and
the output is observed. Through its configuration file the user can specify the
design to be targeted, the type of logic to be targeted, the timing of the injection
and the amount of injections to be performed. Through its configuration file
the user can specify in detail what aspects of the design should be targeted. For
FIAs, there are three important aspects that DAVOS can control. Firstly, the
user can specify the type of logic to be targeted, i.e. flip flops, LUTs, BRAM,
etc. Secondly, as DAVOS is able to pause the clock and re-program the device
at any moment during execution, the user can control exactly when the fault is
injected. Finally, the user can specify the exact scope within the design to be
targeted, allowing for a wide range of scenarios to be executed. For example,
the user can emulate an attack on ‘the flip flops at the input of the 10th round
SubBytes’, i.e. a Giraud attack. All the user has to know is the timing (‘When
does the 10th round start?’), and the scope of the input of SubBytes. DAVOS
observes the output using a finished-flag, which is set high whenever the output
should be read. The user can then analyse the output provided by the Report
Builder, and check if any faulty ciphertexts have propagated to the output,
which would allow an adversary to perform DFA and crack the key of the cryp-
tosystem. Having all aforementioned capabilities, DAVOS shows potential as
an FIA emulator.

Critical in emulating FIA attacks with DAVOS are the configuration param-
eters. The target scope and type of logic can be easily determined using Vivado’s
elaborated design. However, the injection time proves to be more complicated.
ZedBoard operates using an AXI interconnect to connect the processing system
(PS), in this case DAVOS, and the programmable logic (PL), in this case the
AES instance performing the encryption. The behaviour regarding timing of
this system is unknown. However, DAVOS has the ability to stop the system
clock, allowing the control signal DATA AVAIL to be set high asynchronously,
after which the clock is resumed. This allows DAVOS to reconfigure the PL
after a user-specified time period after setting DATA AVAIL high. After this,
the required delay for executing e.g. a Giraud attack can be experimentally
determined.
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6.4 Methods

In the next sections a proof-of-concept demonstration of DAVOS’ usability as a
FIA emulation tool is presented. The strategy used to emulate the FIA attacks
on the xc7z020 was as follows:

• Determine the required parameters to emulate the desired attack (target
logic, injection time, target scope)

• Configure DAVOS via the configuration file

• Run DAVOS and build the report

• Analyse the output data

• If enough faults have propagated to the output, derive the secret key using
DFA on the gathered faulty ciphertext

6.5 Emulating a Giraud attack

DAVOS was used to target the flip flops at the input of the 10th round in a
round-based AES implementation. Enough faulty ciphertexts were gathered
to successfully perform a Giraud attack, i.e. three faulty ciphertexts per byte,
totalling 48. The code in Appendix A.1 was used to derive the corresponding key
bytes K10. Once the full tenth round key was derived, the inverse key schedule
was applied to derive the original key. In Table 6.1 the full result can be seen.
The notations are the same as in Chapter 3.2. C is the correct ciphertext. For
compactness, the 48 faulty ciphertexts have been compressed into three rows,
D1, D1 and D1. K10 is the tenth round key. Key is the secret key, which can
be found by applying the inverse key schedule to K10. The terminal program
used to find the key from K10 is in Appendix A.3.

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
C 3A D7 8E 72 6C 1E C0 2B 7E BF E9 2B 23 D9 EC 34
D1 90 7D 71 AD 54 2D 82 BD B4 03 1E 63 A0 47 A0 FE
D2 F6 1C 5D D4 17 75 BD 35 B6 21 2F EB 90 9D 74 6F
D3 2C EA 93 C4 05 C3 72 89 F4 93 A5 - 8C E3 35 43
K10 B4 EF 5B CB 3E 92 E2 11 23 E9 51 CF 6F 8F 18 8E
Key 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Table 6.1: An emulated Giraud attack.

In Table 6.1 it can be seen that the key used in the experiment was all-
zeroes. Note that only two faulty ciphertexts were used to determine the 11th

byte of K10. Due to the random nature of DAVOS’ fault injections, only two
faulty ciphertexts were obtained for this byte. However, these were enough
to uniquely determine the 11th byte of K10. By decrypting the ciphertext C
with the key of all-zeroes, the input plaintext can also be found: 0x 80000000
00000000 00000000 00000000.
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6.6 Attacking the input of the 9th round

DAVOS was used to gather the required faulty ciphertexts as described in Chap-
ter 3.3, to perform an attack on the input of the 9th round of the same AES
implementation used in Chapter 6.5, using the same settings as in the previous
section, but injecting the faults one round earlier. The code in Appendix A.2
was used to reduce the amount of key candidates, and it turned out that two
four-byte mismatching ciphers were enough to result in a single unique candi-
date for the relevant four bytes of the tenth round key K10. Thus, using 8 faulty
ciphertexts the key could be found. In Table 6.2 the result of the emulated at-
tack is presented. I represents the input of the K10 round SubBytes. The 8
faulty ciphertexts have been reduced into D1 and D2 for compactness. Related
bytes (Table 3.1) are indicated by using boldface (fault occured in column 1),
italic (fault in column 2), underlined (column 3) and normal text (column 4).

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
C 3A D7 8E 72 6C 1E C0 2B 7E BF E9 2B 23 D9 EC 34
D1 10 C7 EA 51 E3 4A 5E 66 4E 33 D1 DA 2F 17 12 A8
D2 D6 C4 85 71 7A A8 91 FF 61 9A 63 6B 3E 05 19 90
I E6 B9 9A A2 48 76 BA AE 8D F0 B5 C0 5D B9 94 DB
K10 B4 EF 5B CB 3E 92 E2 11 23 E9 51 CF 6F 8F 18 8E
Key 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Table 6.2: An emulated attack on the input of round 9

After determining the input of the 10th round SubBytes (in row I), K10

was determined using the theory in Chapter 3.3, after which the inverse key
schedule was applied. Because the input cipher and the key were not modified
in the software, the key and the correct ciphertext are the same as in the previous
section, as expected.

6.7 Attacking a TMR implementation with DAVOS

Attempts to attack the TMR implementation in Figure 5.1 using DAVOS.
However, at the moment of writing this thesis, this has not yet been done
succesfully. Problems arose with the packaged vivado IP and the control sig-
nals DATA AVAIL and DATA READY. DAVOS uses DATA READY as the
finished-flag to read the output data. It is suspected that this flag is not being
set properly, causing the output not to be logged.
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7 Evaluation

In the previous section DAVOS has been used as an FIA emulator. As intended,
DAVOS can insert both transient and permanent faults in any location of the
design. It should be noted that, for emulation of permanent faults, adequate
modifcation of the DATA READY signal should be done. Currently, difficulties
arise when attempting to emulate faults in a design different from the default
design. Faults can be emulated as intended on the default design (Chapter 6.4
and 6.5), but difficulties arise when testing a different design. Fixing this is key
to using DAVOS as an FIA emulator in practice.

Furthermore, if the FIA emulation on a TMR implementation had succeed-
eded, no faults would likely have propagated to the output, as TMR provides
a 100% Fault Coverage Rate when only one bit is flipped, at the cost of 200%
area overhead. However, if the functionality of DAVOS is expanded so that
multiple bits in a design can be targeted, TMR can be compromised. Assuming
a technically advanced adversary with access to multiple highly accurate lasers
and intricate knowledge of the TMR design in place, such a scenario would be
plausible.

Yi VerFi DAVOS
Simulation FIA No Yes Yes
Hardware FIA LUT-only No Yes
Fault Coverage Analysis No Yes No

Table 7.1: Comparison between Yi’s FIA, VerFi and DAVOS

When comparing DAVOS to previous work on bitstream-based FIA attacks
and FIA emulators, DAVOS shows great potential. In Table 7.1 a comparison is
made between the work of Yi[11], VerFi[17] and DAVOS. With the right modifi-
cations, DAVOS can combine VerFi’s analysis capabilities with the ability to do
emulations in hardware, creating a complete FIA emulation environment for de-
velopers looking to test the robustness of their cryptographic implementations.
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8 Conclusions and Recommendations

In this thesis DAVOS was used to emulate highly precise FIAs on FPGA-based
cryptographic implementations. DAVOS’ ability to perform single bit-flip at-
tacks on user-designed cryptographic is shown. Since DAVOS can be used to
target any bit in any design at any time, it is a suitable tool for developers of
cryptosystems to test their system in the face of an actual FIA. DAVOS was
used to extract the key from a simple round-based AES implementation using
two different target scopes. Both of these attacks were executed succesfully,
using fault models derived in Chapter 3. This shows that DAVOS is indeed
usable as an FIA emulation tool. Furthermore, an attempt was made to attack
an implementation of AES was attacked with an ideal countermeasure was in
place. Despite not succeeding in the latter attack, the other results provide
a good proof-of-concept of DAVOS’ usability in FIA emulation, escaping the
simulation-only environment of current state of the art tooling such as VerFi.

DAVOS shows great potential to be used to emulate FIAs. Currently, the
main drawbacks are in usability. This could be expected, as DAVOS is not
used for its main purpose. In this research the analysis of the output data was
done by hand from the output report provided by DAVOS, with the assistance
of terminal programs. Furthermore, the user-friendliness of the environment is
limited, as proven by the ongoing struggles to attack TMR. Also, only a single
bit can be flipped at a time. Thus, future research could focus on improving
this. For this, VerFi [17] could be used as inspiration. If the capabilities of
DAVOS are expanded in such a way that any cryptographic implementation
can be easily attacked in multiple locations, and Fault Coverage Rates for FIA
countermeasures are provided, a potent FIA emulation environment would be
created.
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A Key extraction and expansion

In this appendix the C code used for extracting the secret key in Chapter 6 is
presented. It’s not the most elegant solution, but it gets the job done.

A.1 Byte-wise key extraction used in the Giraud attack

The C code below extracts one candidate byte of the key when faulty ciphertexts
matching the fault model for the Giraud attack is obtained. Compile it, run it,
then enter C, D1, D2 and D3, and the relevant byte of K10 is displayed on the
terminal. For example: Entering 3A, 90, F6, 2C will yield B4: byte 1 of Table
6.1.

#inc lude <s t d i o . h>
#inc lude <s t d i n t . h>

//The i n v e r s e AES S−box
s t a t i c const u i n t 8 t invsbox [ 2 5 6 ] = {

0x52 , 0 x09 , 0 x6a , 0 xd5 , 0 x30 , 0 x36 , 0 xa5 , 0 x38 , 0 xbf , 0 x40 , 0 xa3 , 0 x9e , 0 x81 , 0 xf3 , 0 xd7 , 0 xfb ,
0x7c , 0 xe3 , 0 x39 , 0 x82 , 0 x9b , 0 x2f , 0 x f f , 0 x87 , 0 x34 , 0 x8e , 0 x43 , 0 x44 , 0 xc4 , 0 xde , 0 xe9 , 0 xcb ,
0x54 , 0 x7b , 0 x94 , 0 x32 , 0 xa6 , 0 xc2 , 0 x23 , 0 x3d , 0 xee , 0 x4c , 0 x95 , 0 x0b , 0 x42 , 0 xfa , 0 xc3 , 0 x4e ,
0x08 , 0 x2e , 0 xa1 , 0 x66 , 0 x28 , 0 xd9 , 0 x24 , 0 xb2 , 0 x76 , 0 x5b , 0 xa2 , 0 x49 , 0 x6d , 0 x8b , 0 xd1 , 0 x25 ,
0x72 , 0 xf8 , 0 xf6 , 0 x64 , 0 x86 , 0 x68 , 0 x98 , 0 x16 , 0 xd4 , 0 xa4 , 0 x5c , 0 xcc , 0 x5d , 0 x65 , 0 xb6 , 0 x92 ,
0x6c , 0 x70 , 0 x48 , 0 x50 , 0 xfd , 0 xed , 0 xb9 , 0 xda , 0 x5e , 0 x15 , 0 x46 , 0 x57 , 0 xa7 , 0 x8d , 0 x9d , 0 x84 ,
0x90 , 0 xd8 , 0 xab , 0 x00 , 0 x8c , 0 xbc , 0 xd3 , 0 x0a , 0 xf7 , 0 xe4 , 0 x58 , 0 x05 , 0 xb8 , 0 xb3 , 0 x45 , 0 x06 ,
0xd0 , 0 x2c , 0 x1e , 0 x8f , 0 xca , 0 x3f , 0 x0f , 0 x02 , 0 xc1 , 0 xaf , 0 xbd , 0 x03 , 0 x01 , 0 x13 , 0 x8a , 0 x6b ,
0x3a , 0 x91 , 0 x11 , 0 x41 , 0 x4f , 0 x67 , 0 xdc , 0 xea , 0 x97 , 0 xf2 , 0 xcf , 0 xce , 0 xf0 , 0 xb4 , 0 xe6 , 0 x73 ,
0x96 , 0 xac , 0 x74 , 0 x22 , 0 xe7 , 0 xad , 0 x35 , 0 x85 , 0 xe2 , 0 xf9 , 0 x37 , 0 xe8 , 0 x1c , 0 x75 , 0 xdf , 0 x6e ,
0x47 , 0 xf1 , 0 x1a , 0 x71 , 0 x1d , 0 x29 , 0 xc5 , 0 x89 , 0 x6f , 0 xb7 , 0 x62 , 0 x0e , 0 xaa , 0 x18 , 0 xbe , 0 x1b ,
0 xfc , 0 x56 , 0 x3e , 0 x4b , 0 xc6 , 0 xd2 , 0 x79 , 0 x20 , 0 x9a , 0 xdb , 0 xc0 , 0 xfe , 0 x78 , 0 xcd , 0 x5a , 0 xf4 ,
0 x1f , 0 xdd , 0 xa8 , 0 x33 , 0 x88 , 0 x07 , 0 xc7 , 0 x31 , 0 xb1 , 0 x12 , 0 x10 , 0 x59 , 0 x27 , 0 x80 , 0 xec , 0 x5f ,
0x60 , 0 x51 , 0 x7f , 0 xa9 , 0 x19 , 0 xb5 , 0 x4a , 0 x0d , 0 x2d , 0 xe5 , 0 x7a , 0 x9f , 0 x93 , 0 xc9 , 0 x9c , 0 xef ,
0xa0 , 0 xe0 , 0 x3b , 0 x4d , 0 xae , 0 x2a , 0 xf5 , 0 xb0 , 0 xc8 , 0 xeb , 0 xbb , 0 x3c , 0 x83 , 0 x53 , 0 x99 , 0 x61 ,
0x17 , 0 x2b , 0 x04 , 0 x7e , 0 xba , 0 x77 , 0 xd6 , 0 x26 , 0 xe1 , 0 x69 , 0 x14 , 0 x63 , 0 x55 , 0 x21 , 0 x0c , 0 x7d } ;

//Onecount f i n d s the hamming weight o f the func t i on argument
unsigned i n t onecount ( unsigned i n t n)

{
unsigned i n t count = 0 ;
whi l e (n) {

count += n & 1 ;
n >>= 1 ;

}
re turn count ;

}

26



i n t main ( ) {

// Var iab le d e c l a r a t i o n
unsigned i n t C = 0x00 , D1 = 0x00 , D2 = 0x00 , D3 = 0x00 ;
unsigned i n t C9 = 0x00 , D91 = 0x00 , D92 = 0x00 , D93 = 0x00 ;
i n t i = 0 ;
i n t a = 0 ;

//IO f u n c t i o n s
p r i n t f (” Enter c o r r e c t c ipherbyte in hex , then ENTER \n ” ) ;
s can f (”%x ” , &C) ;

p r i n t f (” Enter three f a u l t y c iphe rbyt e s in hex , separated by ENTER. \n ” ) ;
s can f (”%x ” , &D1 ) ;
s can f (”%x ” , &D2 ) ;
s can f (”%x ” , &D3 ) ;

p r i n t f (” Finding key cand idate s f o r C = %x , D1 = %x , D2 = %x , D3 = %x : \n” , C, D1 , D2 , D3 ) ;

//Find Key Candidates
f o r ( i = 0 ; i <256; i ++){

C9 = invsbox [Cˆ i ] ; /∗compute invSubBytes (M10 XOR K10 ) , i . e . M9 f o r K10 = 0 x i ∗/
D91 = invsbox [ D1ˆ i ] ;
D92 = invsbox [ D2ˆ i ] ;
D93 = invsbox [ D3ˆ i ] ;

i f ( onecount (D91ˆC9) == 1 & onecount (D92ˆC9) == 1 & onecount (D93ˆC9) == 1){
p r i n t f (”%x\n” , i ) ; /∗ pr in t i f a l l f a u l t y inputs o f R10 have d i s t ance 1∗/

}

}

re turn 0 ;
}
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A.2 Byte-by-byte key extraction used for attacking the 9th

round input

The C code below extracts four candidate bytes of the input of the 10th round
SubBytes when faulty ciphertexts matching the fault model for the attack on
the input of the 9th round are obtained. Compile it, run it, and enter the correct
and faulty ciphertexts. For example, entering:
C = 3A-D9-E9-2B
D1 = 10-17-D1-66
D2 = D6-05-63-FF
will yield E6-B9-9A-A2, the first four bytes of I in Table 6.2. It should be noted
that the order of input MUST be the third column of Table 3.1, or it will NOT
work.

#inc lude <s t d i o . h>
#inc lude <s t d i n t . h>
#inc lude <s t r i n g . h>
#inc lude <s t d l i b . h>

//AES S−BOX
s t a t i c const u i n t 8 t sbox [ 2 5 6 ] = {

0x63 , 0 x7c , 0 x77 , 0 x7b , 0 xf2 , 0 x6b , 0 x6f , 0 xc5 , 0 x30 , 0 x01 , 0 x67 , 0 x2b , 0 xfe , 0 xd7 , 0 xab , 0 x76 ,
0xca , 0 x82 , 0 xc9 , 0 x7d , 0 xfa , 0 x59 , 0 x47 , 0 xf0 , 0 xad , 0 xd4 , 0 xa2 , 0 xaf , 0 x9c , 0 xa4 , 0 x72 , 0 xc0 ,
0xb7 , 0 xfd , 0 x93 , 0 x26 , 0 x36 , 0 x3f , 0 xf7 , 0 xcc , 0 x34 , 0 xa5 , 0 xe5 , 0 xf1 , 0 x71 , 0 xd8 , 0 x31 , 0 x15 ,
0x04 , 0 xc7 , 0 x23 , 0 xc3 , 0 x18 , 0 x96 , 0 x05 , 0 x9a , 0 x07 , 0 x12 , 0 x80 , 0 xe2 , 0 xeb , 0 x27 , 0 xb2 , 0 x75 ,
0x09 , 0 x83 , 0 x2c , 0 x1a , 0 x1b , 0 x6e , 0 x5a , 0 xa0 , 0 x52 , 0 x3b , 0 xd6 , 0 xb3 , 0 x29 , 0 xe3 , 0 x2f , 0 x84 ,
0x53 , 0 xd1 , 0 x00 , 0 xed , 0 x20 , 0 xfc , 0 xb1 , 0 x5b , 0 x6a , 0 xcb , 0 xbe , 0 x39 , 0 x4a , 0 x4c , 0 x58 , 0 xcf ,
0xd0 , 0 xef , 0 xaa , 0 xfb , 0 x43 , 0 x4d , 0 x33 , 0 x85 , 0 x45 , 0 xf9 , 0 x02 , 0 x7f , 0 x50 , 0 x3c , 0 x9f , 0 xa8 ,
0x51 , 0 xa3 , 0 x40 , 0 x8f , 0 x92 , 0 x9d , 0 x38 , 0 xf5 , 0 xbc , 0 xb6 , 0 xda , 0 x21 , 0 x10 , 0 x f f , 0 xf3 , 0 xd2 ,
0xcd , 0 x0c , 0 x13 , 0 xec , 0 x5f , 0 x97 , 0 x44 , 0 x17 , 0 xc4 , 0 xa7 , 0 x7e , 0 x3d , 0 x64 , 0 x5d , 0 x19 , 0 x73 ,
0x60 , 0 x81 , 0 x4f , 0 xdc , 0 x22 , 0 x2a , 0 x90 , 0 x88 , 0 x46 , 0 xee , 0 xb8 , 0 x14 , 0 xde , 0 x5e , 0 x0b , 0 xdb ,
0xe0 , 0 x32 , 0 x3a , 0 x0a , 0 x49 , 0 x06 , 0 x24 , 0 x5c , 0 xc2 , 0 xd3 , 0 xac , 0 x62 , 0 x91 , 0 x95 , 0 xe4 , 0 x79 ,
0xe7 , 0 xc8 , 0 x37 , 0 x6d , 0 x8d , 0 xd5 , 0 x4e , 0 xa9 , 0 x6c , 0 x56 , 0 xf4 , 0 xea , 0 x65 , 0 x7a , 0 xae , 0 x08 ,
0xba , 0 x78 , 0 x25 , 0 x2e , 0 x1c , 0 xa6 , 0 xb4 , 0 xc6 , 0 xe8 , 0 xdd , 0 x74 , 0 x1f , 0 x4b , 0 xbd , 0 x8b , 0 x8a ,
0x70 , 0 x3e , 0 xb5 , 0 x66 , 0 x48 , 0 x03 , 0 xf6 , 0 x0e , 0 x61 , 0 x35 , 0 x57 , 0 xb9 , 0 x86 , 0 xc1 , 0 x1d , 0 x9e ,
0xe1 , 0 xf8 , 0 x98 , 0 x11 , 0 x69 , 0 xd9 , 0 x8e , 0 x94 , 0 x9b , 0 x1e , 0 x87 , 0 xe9 , 0 xce , 0 x55 , 0 x28 , 0 xdf ,
0x8c , 0 xa1 , 0 x89 , 0 x0d , 0 xbf , 0 xe6 , 0 x42 , 0 x68 , 0 x41 , 0 x99 , 0 x2d , 0 x0f , 0 xb0 , 0 x54 , 0 xbb , 0 x16 } ;

//GALOIS2 LUT
s t a t i c const u i n t 8 t g a l o i s 2 [ 2 5 6 ] = {

0x00 , 0 x02 , 0 x04 , 0 x06 , 0 x08 , 0 x0a , 0 x0c , 0 x0e , 0 x10 , 0 x12 , 0 x14 , 0 x16 , 0 x18 , 0 x1a , 0 x1c , 0 x1e ,
0x20 , 0 x22 , 0 x24 , 0 x26 , 0 x28 , 0 x2a , 0 x2c , 0 x2e , 0 x30 , 0 x32 , 0 x34 , 0 x36 , 0 x38 , 0 x3a , 0 x3c , 0 x3e ,
0x40 , 0 x42 , 0 x44 , 0 x46 , 0 x48 , 0 x4a , 0 x4c , 0 x4e , 0 x50 , 0 x52 , 0 x54 , 0 x56 , 0 x58 , 0 x5a , 0 x5c , 0 x5e ,
0x60 , 0 x62 , 0 x64 , 0 x66 , 0 x68 , 0 x6a , 0 x6c , 0 x6e , 0 x70 , 0 x72 , 0 x74 , 0 x76 , 0 x78 , 0 x7a , 0 x7c , 0 x7e ,
0x80 , 0 x82 , 0 x84 , 0 x86 , 0 x88 , 0 x8a , 0 x8c , 0 x8e , 0 x90 , 0 x92 , 0 x94 , 0 x96 , 0 x98 , 0 x9a , 0 x9c , 0 x9e ,
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0xa0 , 0 xa2 , 0 xa4 , 0 xa6 , 0 xa8 , 0 xaa , 0 xac , 0 xae , 0 xb0 , 0 xb2 , 0 xb4 , 0 xb6 , 0 xb8 , 0 xba , 0 xbc , 0 xbe ,
0xc0 , 0 xc2 , 0 xc4 , 0 xc6 , 0 xc8 , 0 xca , 0 xcc , 0 xce , 0 xd0 , 0 xd2 , 0 xd4 , 0 xd6 , 0 xd8 , 0 xda , 0 xdc , 0 xde ,
0xe0 , 0 xe2 , 0 xe4 , 0 xe6 , 0 xe8 , 0 xea , 0 xec , 0 xee , 0 xf0 , 0 xf2 , 0 xf4 , 0 xf6 , 0 xf8 , 0 xfa , 0 xfc , 0 xfe ,
0x1b , 0 x19 , 0 x1f , 0 x1d , 0 x13 , 0 x11 , 0 x17 , 0 x15 , 0 x0b , 0 x09 , 0 x0f , 0 x0d , 0 x03 , 0 x01 , 0 x07 , 0 x05 ,
0x3b , 0 x39 , 0 x3f , 0 x3d , 0 x33 , 0 x31 , 0 x37 , 0 x35 , 0 x2b , 0 x29 , 0 x2f , 0 x2d , 0 x23 , 0 x21 , 0 x27 , 0 x25 ,
0x5b , 0 x59 , 0 x5f , 0 x5d , 0 x53 , 0 x51 , 0 x57 , 0 x55 , 0 x4b , 0 x49 , 0 x4f , 0 x4d , 0 x43 , 0 x41 , 0 x47 , 0 x45 ,
0x7b , 0 x79 , 0 x7f , 0 x7d , 0 x73 , 0 x71 , 0 x77 , 0 x75 , 0 x6b , 0 x69 , 0 x6f , 0 x6d , 0 x63 , 0 x61 , 0 x67 , 0 x65 ,
0x9b , 0 x99 , 0 x9f , 0 x9d , 0 x93 , 0 x91 , 0 x97 , 0 x95 , 0 x8b , 0 x89 , 0 x8f , 0 x8d , 0 x83 , 0 x81 , 0 x87 , 0 x85 ,
0xbb , 0 xb9 , 0 xbf , 0 xbd , 0 xb3 , 0 xb1 , 0 xb7 , 0 xb5 , 0 xab , 0 xa9 , 0 xaf , 0 xad , 0 xa3 , 0 xa1 , 0 xa7 , 0 xa5 ,
0xdb , 0 xd9 , 0 xdf , 0 xdd , 0 xd3 , 0 xd1 , 0 xd7 , 0 xd5 , 0 xcb , 0 xc9 , 0 xcf , 0 xcd , 0 xc3 , 0 xc1 , 0 xc7 , 0 xc5 ,
0xfb , 0 xf9 , 0 x f f , 0 xfd , 0 xf3 , 0 xf1 , 0 xf7 , 0 xf5 , 0 xeb , 0 xe9 , 0 xef , 0 xed , 0 xe3 , 0 xe1 , 0 xe7 , 0 xe5 } ;

//GALOIS3 LUT
s t a t i c const u i n t 8 t g a l o i s 3 [ 2 5 6 ] = {

0x00 , 0 x03 , 0 x06 , 0 x05 , 0 x0c , 0 x0f , 0 x0a , 0 x09 , 0 x18 , 0 x1b , 0 x1e , 0 x1d , 0 x14 , 0 x17 , 0 x12 , 0 x11 ,
0x30 , 0 x33 , 0 x36 , 0 x35 , 0 x3c , 0 x3f , 0 x3a , 0 x39 , 0 x28 , 0 x2b , 0 x2e , 0 x2d , 0 x24 , 0 x27 , 0 x22 , 0 x21 ,
0x60 , 0 x63 , 0 x66 , 0 x65 , 0 x6c , 0 x6f , 0 x6a , 0 x69 , 0 x78 , 0 x7b , 0 x7e , 0 x7d , 0 x74 , 0 x77 , 0 x72 , 0 x71 ,
0x50 , 0 x53 , 0 x56 , 0 x55 , 0 x5c , 0 x5f , 0 x5a , 0 x59 , 0 x48 , 0 x4b , 0 x4e , 0 x4d , 0 x44 , 0 x47 , 0 x42 , 0 x41 ,
0xc0 , 0 xc3 , 0 xc6 , 0 xc5 , 0 xcc , 0 xcf , 0 xca , 0 xc9 , 0 xd8 , 0 xdb , 0 xde , 0 xdd , 0 xd4 , 0 xd7 , 0 xd2 , 0 xd1 ,
0 xf0 , 0 xf3 , 0 xf6 , 0 xf5 , 0 xfc , 0 x f f , 0 xfa , 0 xf9 , 0 xe8 , 0 xeb , 0 xee , 0 xed , 0 xe4 , 0 xe7 , 0 xe2 , 0 xe1 ,
0xa0 , 0 xa3 , 0 xa6 , 0 xa5 , 0 xac , 0 xaf , 0 xaa , 0 xa9 , 0 xb8 , 0 xbb , 0 xbe , 0 xbd , 0 xb4 , 0 xb7 , 0 xb2 , 0 xb1 ,
0x90 , 0 x93 , 0 x96 , 0 x95 , 0 x9c , 0 x9f , 0 x9a , 0 x99 , 0 x88 , 0 x8b , 0 x8e , 0 x8d , 0 x84 , 0 x87 , 0 x82 , 0 x81 ,
0x9b , 0 x98 , 0 x9d , 0 x9e , 0 x97 , 0 x94 , 0 x91 , 0 x92 , 0 x83 , 0 x80 , 0 x85 , 0 x86 , 0 x8f , 0 x8c , 0 x89 , 0 x8a ,
0xab , 0 xa8 , 0 xad , 0 xae , 0 xa7 , 0 xa4 , 0 xa1 , 0 xa2 , 0 xb3 , 0 xb0 , 0 xb5 , 0 xb6 , 0 xbf , 0 xbc , 0 xb9 , 0 xba ,
0xfb , 0 xf8 , 0 xfd , 0 xfe , 0 xf7 , 0 xf4 , 0 xf1 , 0 xf2 , 0 xe3 , 0 xe0 , 0 xe5 , 0 xe6 , 0 xef , 0 xec , 0 xe9 , 0 xea ,
0xcb , 0 xc8 , 0 xcd , 0 xce , 0 xc7 , 0 xc4 , 0 xc1 , 0 xc2 , 0 xd3 , 0 xd0 , 0 xd5 , 0 xd6 , 0 xdf , 0 xdc , 0 xd9 , 0 xda ,
0x5b , 0 x58 , 0 x5d , 0 x5e , 0 x57 , 0 x54 , 0 x51 , 0 x52 , 0 x43 , 0 x40 , 0 x45 , 0 x46 , 0 x4f , 0 x4c , 0 x49 , 0 x4a ,
0x6b , 0 x68 , 0 x6d , 0 x6e , 0 x67 , 0 x64 , 0 x61 , 0 x62 , 0 x73 , 0 x70 , 0 x75 , 0 x76 , 0 x7f , 0 x7c , 0 x79 , 0 x7a ,
0x3b , 0 x38 , 0 x3d , 0 x3e , 0 x37 , 0 x34 , 0 x31 , 0 x32 , 0 x23 , 0 x20 , 0 x25 , 0 x26 , 0 x2f , 0 x2c , 0 x29 , 0 x2a ,
0x0b , 0 x08 , 0 x0d , 0 x0e , 0 x07 , 0 x04 , 0 x01 , 0 x02 , 0 x13 , 0 x10 , 0 x15 , 0 x16 , 0 x1f , 0 x1c , 0 x19 , 0 x1a } ;

// This func t i on does MixColumns on a s i n g l e column
i n t mixColumn ( i n t word ){

i n t j = 0 ;
i n t temp ;
u i n t 8 t bytes [ 4 ] ;
u i n t 8 t mixedBytes [ 4 ] ;

f o r ( j = 0 ; j < 4 ; j++){
bytes [3− j ] = ( ( word>>(8∗ j ))&0xFF ) ;

}
mixedBytes [ 0 ] = g a l o i s 2 [ bytes [ 0 ] ] ˆ g a l o i s 3 [ bytes [ 1 ] ] ˆ bytes [ 2 ] ˆ bytes [ 3 ] ;
mixedBytes [ 1 ] = bytes [ 0 ] ˆ g a l o i s 2 [ bytes [ 1 ] ] ˆ g a l o i s 3 [ bytes [ 2 ] ] ˆ bytes [ 3 ] ;
mixedBytes [ 2 ] = bytes [ 0 ] ˆ bytes [ 1 ] ˆ g a l o i s 2 [ bytes [ 2 ] ] ˆ g a l o i s 3 [ bytes [ 3 ] ] ;
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mixedBytes [ 3 ] = g a l o i s 3 [ bytes [ 0 ] ] ˆ bytes [ 1 ] ˆ bytes [ 2 ] ˆ g a l o i s 2 [ bytes [ 3 ] ] ;

temp = mixedBytes [ 0 ] << 24 |mixedBytes [ 1 ] << 16 |mixedBytes [ 2 ] << 8 |mixedBytes [ 3 ] ;
r e turn temp ;

}

i n t main ( ){

// Var iab le d e c l a r a t i o n
u i n t 3 2 t x1 , x2 , x3 , x4 ;
u i n t 3 2 t fx1 , fx2 , fx3 , fx4 ;
u i n t 3 2 t A1 , A2 , A3 , A4 ;
i n t i , j , k , l , S , R;
i n t temp ;
i n t eprime2 [ 4 0 9 6 ] ;
i n t ∗ptr ;
i n t ∗ p o i n t e r s [ 2 ] ; // s i z e must be changed to use more than 2 f a u l t y c i p h e r s
i n t cnt = 0 ;
i n t counts [ 2 ] ;
i n t s i z e = 0 ;

// Determine a l l contents o f e ’ : e ’ = MixColumns ( e ) − Equation 3 .6

f o r ( i = 0 ; i <4; i ++){
f o r ( j = 0 ; j <256; j++){

temp = mixColumn ( ( j<<8∗ i ) ) ;
eprime2 [1024∗ i + 4∗ j ] = ( temp>>24)&0xFF ;
eprime2 [1024∗ i + 4∗ j + 1 ] = ( temp>>16)&0xFF ;
eprime2 [1024∗ i + 4∗ j + 2 ] = ( temp>>8)&0xFF ;
eprime2 [1024∗ i + 4∗ j + 3 ] = temp&0xFF ;

}
}

//IO f u n c t i o n s
p r i n t f (” Enter the 4 c o r r e c t bytes o f the c i p h e r t e x t in hex , separated by ENTER\n ” ) ;
s can f (”%x ” , &x1 ) ;
s can f (”%x ” , &x2 ) ;
s can f (”%x ” , &x3 ) ;
s can f (”%x ” , &x4 ) ;

f o r (R = 0 ; R<( s i z e o f ( p o i n t e r s ) / 4 ) ; R++){
cnt = 0 ;
ptr = ( i n t ∗) mal loc (1024∗ s i z e o f ( i n t ) ) ;
s i z e = 1024 ;
p r i n t f (” Enter 4 f a u l t y bytes o f the c i p h e r t e x t in hex , separated by ENTER\n ” ) ;
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s can f (”%x ” , &fx1 ) ;
s can f (”%x ” , &fx2 ) ;
s can f (”%x ” , &fx3 ) ;
s can f (”%x ” , &fx4 ) ;

A1 = x1ˆ fx1 ;
A2 = x2ˆ fx2 ;
A3 = x3ˆ fx3 ;
A4 = x4ˆ fx4 ;

//Byte−f o r−byte , check i f Equation 3 .6 i s s a t i s f i e d f o r a l l cand idate s f o r I ,
//and i f so , keep the candidate

f o r (S = 0 ; S<1024; S++){
f o r ( i =0; i <256; i ++){

temp = sbox [ i ] ˆ sbox [ i ˆ eprime2 [4∗S ] ] ;
i f ( temp == A1){

f o r ( j =0; j <256; j++){
temp = sbox [ j ] ˆ sbox [ j ˆ eprime2 [4∗S + 1 ] ] ;
i f ( temp == A2){

f o r ( k=0;k<256;k++){
temp = sbox [ k ] ˆ sbox [ kˆ eprime2 [4∗S + 2 ] ] ;
i f ( temp == A3){

f o r ( l =0; l <256; l ++){
temp = sbox [ l ] ˆ sbox [ l ˆ eprime2 [4∗S + 3 ] ] ;
i f ( temp == A4){

// p r i n t f (”%02x%02x%02x%02x ” , i , j , k , l ) ;
cnt=cnt +1;
// p r i n t f (”%d\n” , cnt ) ;
i f ( cnt>=s i z e ){

s i z e = s i z e ∗2 ;
ptr = ( i n t ∗) r e a l l o c ( ptr , s i z e ∗ s i z e o f ( i n t ) ) ;
i f ( ptr == NULL){

p r i n t f (” Error ! memory not a l l o c a t e d . ” ) ;
e x i t ( 0 ) ;

}
}
∗( ptr + cnt ) = ( ( i <<24) | ( j <<16) | (k<<8) | l ) ;

}
}

}
}

}
}

}
}
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}
p o i n t e r s [R] = ptr ;
counts [R] = cnt ;

}

// I f D1 and D2 g ive an over lapp ing candidate , p r i n t . This part must be modi f i ed i f
//you want to use more f a u l t y c i p h e r s

f o r ( i = 0 ; i<counts [ 0 ] ; i ++){
f o r ( j = 0 ; j<counts [ 1 ] ; j ++){

i f (∗ ( p o i n t e r s [0 ]+ i +1)==∗( p o i n t e r s [1 ]+ j +1)){
p r i n t f (”%08x\n” , ∗( p o i n t e r s [0 ]+ i +1)) ;

}
}

}

re turn 0 ;
}

32



A.3 Inverse key expansion

The C code below performs the AES Key Schedule in inverse, allowing for the
retrieval of the secret key if K10 is known. Compile it, run it, and enter K10.
For example, entering B4EF5BCB-3E92E211-23E951CF-6F8F188E will yield
the key of all-zeroes used in Chapter 6.

#inc lude <s t d i o . h>
#inc lude <s t d i n t . h>
#inc lude <s t r i n g . h>

//Round Constants
s t a t i c const u i n t 3 2 t rcon [ 1 0 ] = {

0x01000000 , 0x02000000 , 0x04000000 , 0x08000000 , 0x10000000 ,
0x20000000 , 0x40000000 , 0x80000000 , 0x1b000000 , 0x36000000 } ;

//The AES S−box
s t a t i c const u i n t 8 t sbox [ 2 5 6 ] = {

0x63 , 0 x7c , 0 x77 , 0 x7b , 0 xf2 , 0 x6b , 0 x6f , 0 xc5 , 0 x30 , 0 x01 , 0 x67 , 0 x2b , 0 xfe , 0 xd7 , 0 xab , 0 x76 ,
0xca , 0 x82 , 0 xc9 , 0 x7d , 0 xfa , 0 x59 , 0 x47 , 0 xf0 , 0 xad , 0 xd4 , 0 xa2 , 0 xaf , 0 x9c , 0 xa4 , 0 x72 , 0 xc0 ,
0xb7 , 0 xfd , 0 x93 , 0 x26 , 0 x36 , 0 x3f , 0 xf7 , 0 xcc , 0 x34 , 0 xa5 , 0 xe5 , 0 xf1 , 0 x71 , 0 xd8 , 0 x31 , 0 x15 ,
0x04 , 0 xc7 , 0 x23 , 0 xc3 , 0 x18 , 0 x96 , 0 x05 , 0 x9a , 0 x07 , 0 x12 , 0 x80 , 0 xe2 , 0 xeb , 0 x27 , 0 xb2 , 0 x75 ,
0x09 , 0 x83 , 0 x2c , 0 x1a , 0 x1b , 0 x6e , 0 x5a , 0 xa0 , 0 x52 , 0 x3b , 0 xd6 , 0 xb3 , 0 x29 , 0 xe3 , 0 x2f , 0 x84 ,
0x53 , 0 xd1 , 0 x00 , 0 xed , 0 x20 , 0 xfc , 0 xb1 , 0 x5b , 0 x6a , 0 xcb , 0 xbe , 0 x39 , 0 x4a , 0 x4c , 0 x58 , 0 xcf ,
0xd0 , 0 xef , 0 xaa , 0 xfb , 0 x43 , 0 x4d , 0 x33 , 0 x85 , 0 x45 , 0 xf9 , 0 x02 , 0 x7f , 0 x50 , 0 x3c , 0 x9f , 0 xa8 ,
0x51 , 0 xa3 , 0 x40 , 0 x8f , 0 x92 , 0 x9d , 0 x38 , 0 xf5 , 0 xbc , 0 xb6 , 0 xda , 0 x21 , 0 x10 , 0 x f f , 0 xf3 , 0 xd2 ,
0xcd , 0 x0c , 0 x13 , 0 xec , 0 x5f , 0 x97 , 0 x44 , 0 x17 , 0 xc4 , 0 xa7 , 0 x7e , 0 x3d , 0 x64 , 0 x5d , 0 x19 , 0 x73 ,
0x60 , 0 x81 , 0 x4f , 0 xdc , 0 x22 , 0 x2a , 0 x90 , 0 x88 , 0 x46 , 0 xee , 0 xb8 , 0 x14 , 0 xde , 0 x5e , 0 x0b , 0 xdb ,
0xe0 , 0 x32 , 0 x3a , 0 x0a , 0 x49 , 0 x06 , 0 x24 , 0 x5c , 0 xc2 , 0 xd3 , 0 xac , 0 x62 , 0 x91 , 0 x95 , 0 xe4 , 0 x79 ,
0xe7 , 0 xc8 , 0 x37 , 0 x6d , 0 x8d , 0 xd5 , 0 x4e , 0 xa9 , 0 x6c , 0 x56 , 0 xf4 , 0 xea , 0 x65 , 0 x7a , 0 xae , 0 x08 ,
0xba , 0 x78 , 0 x25 , 0 x2e , 0 x1c , 0 xa6 , 0 xb4 , 0 xc6 , 0 xe8 , 0 xdd , 0 x74 , 0 x1f , 0 x4b , 0 xbd , 0 x8b , 0 x8a ,
0x70 , 0 x3e , 0 xb5 , 0 x66 , 0 x48 , 0 x03 , 0 xf6 , 0 x0e , 0 x61 , 0 x35 , 0 x57 , 0 xb9 , 0 x86 , 0 xc1 , 0 x1d , 0 x9e ,
0xe1 , 0 xf8 , 0 x98 , 0 x11 , 0 x69 , 0 xd9 , 0 x8e , 0 x94 , 0 x9b , 0 x1e , 0 x87 , 0 xe9 , 0 xce , 0 x55 , 0 x28 , 0 xdf ,
0x8c , 0 xa1 , 0 x89 , 0 x0d , 0 xbf , 0 xe6 , 0 x42 , 0 x68 , 0 x41 , 0 x99 , 0 x2d , 0 x0f , 0 xb0 , 0 x54 , 0 xbb , 0 x16 } ;

//IO func t i on
void keyInput ( i n t ∗keys ){

p r i n t f (” Enter the 4 words o f K10 in hex , separated by ENTER \n ” ) ;
s can f (”%x ” , ( keys + 4 0 ) ) ;
s can f (”%x ” , ( keys + 4 1 ) ) ;
s can f (”%x ” , ( keys + 4 2 ) ) ;
s can f (”%x ” , ( keys + 4 3 ) ) ;

}

// eShiftRow performs a 1−byte l e f t −s h i f t on a word , s i m i l a r to shi f tRows
u i n t 3 2 t eShiftRow ( u i n t 3 2 t row ){ //FOR USE IN KEY EXPANSION
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u i n t 8 t a , b , c , d ;
u i n t 3 2 t temp ;

a=(row&0xFF ) ; // e x t r a c t f i r s t byte
b=((row>>8)&0xFF ) ; // e x t r a c t second byte
c =((row>>16)&0xFF ) ; // e x t r a c t th i r d byte
d=((row>>24)&0xFF ) ; // e x t r a c t four th byte

temp = c << 24 |b << 16 | a << 8 | d ;
re turn temp ;

}

//SubWord a p p l i e s the S−box to a l l 4 bytes o f i t s input argument
u i n t 3 2 t subWord( u i n t 3 2 t word ){

u i n t 8 t a , b , c , d ;
u i n t 3 2 t temp ;

a = ( word&0xFF ) ; // e x t r a c t f i r s t byte
b = ( ( word>>8)&0xFF ) ; // e x t r a c t second byte
c = ( ( word>>16)&0xFF ) ; // e x t r a c t th i r d byte
d = ( ( word>>24)&0xFF ) ; // e x t r a c t four th byte

a = sbox [ a ] ;
b = sbox [ b ] ;
c = sbox [ c ] ;
d = sbox [ d ] ;

temp = d << 24 | c << 16 |b << 8 | a ;
re turn temp ;

}

i n t main ( ){

// v a r i a b l e dec l a ra t i on , i n c l u d i n g an array to s t o r e the round keys
u i n t 3 2 t keys [ 1 1 ] [ 4 ] = {
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , //KEY
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , // K1
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , // K2
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , // K3
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , // K4
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , // K5
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , // K6
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , // K7
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , // K8
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0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 , // K9
0x00000000 , 0x00000000 , 0x00000000 , 0x00000000 } ; // K10

i n t i = 0 , j = 0 ;

//IO Function
keyInput(&keys [ 0 ] [ 0 ] ) ;

// Perform the i n v e r s e key schedu le
f o r ( i = 9 ; i > −1; i−−){

f o r ( j = 3 ; j > −1; j−−){
i f ( j == 0){

keys [ i ] [ j ] = keys [ i +1] [ j ] ˆ subWord( eShiftRow ( keys [ i ] [ j +3]))ˆ rcon [ i ] ;
}
e l s e {

// p r i n t f (”%08x %08x \n” , keys [ i +1] , keys [ ] )
keys [ i ] [ j ] = keys [ i +1] [ j ] ˆ keys [ i +1] [ j −1] ;

}
}

}
// Pr int the Key

p r i n t f (”%08x %08x %08x %08x \n” , keys [ 9 ] [ 0 ] , keys [ 9 ] [ 1 ] , keys [ 9 ] [ 2 ] , keys [ 9 ] [ 3 ] ) ;
p r i n t f (”The o r i g i n a l key i s :\n ” ) ;
p r i n t f (”%08x %08x %08x %08x ” , keys [ 0 ] [ 0 ] , keys [ 0 ] [ 1 ] , keys [ 0 ] [ 2 ] , keys [ 0 ] [ 3 ] ) ;
r e turn 0 ;

}
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B VHDL TMR Implementation

In this appendix the code for the TMR implementation from Chapter 5 is pre-
sented.

B.1 Top-level TMR description

The VHDL description below is for the top-level of the TMR implementation
presented in Figure 5.1.

LIBRARY IEEE ;
USE IEEE . STD LOGIC 1164 .ALL;

ENTITY AES TMR IS
PORT (CLK : IN STD LOGIC;

RESET : IN STD LOGIC;
−− CONTROL PORTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

DATA AVAIL : IN STD LOGIC;
DATA READY : OUT STD LOGIC;

−− DATA PORTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
KEY : IN STD LOGIC VECTOR (127 DOWNTO 0 ) ;
DATA IN : IN STD LOGIC VECTOR (127 DOWNTO 0 ) ;
DATA OUT : OUT STD LOGIC VECTOR (127 DOWNTO 0)
) ;

END AES TMR;

ARCHITECTURE S t r u c t u r a l OF AES TMR IS

SIGNAL DATA 1, DATA 2, DATA 3 : STD LOGIC VECTOR ( 127 DOWNTO 0 ) ;
SIGNAL READY 1, READY 2, READY 3 : STD LOGIC;

BEGIN
AES 1 : ENTITY work . AES Core
PORT MAP (CLK => CLK, RESET => RESET, DATA AVAIL => DATA AVAIL, KEY => KEY,
DATA IN => DATA IN, DATA OUT => DATA 1, DATA READY => READY 1) ;

AES 2 : ENTITY work . AES Core
PORT MAP (CLK => CLK, RESET => RESET, DATA AVAIL => DATA AVAIL, KEY => KEY,
DATA IN => DATA IN, DATA OUT => DATA 2, DATA READY => READY 2) ;

AES 3 : ENTITY work . AES Core
PORT MAP (CLK => CLK, RESET => RESET, DATA AVAIL => DATA AVAIL, KEY => KEY,
DATA IN => DATA IN, DATA OUT => DATA 3, DATA READY => READY 3) ;

Voter : ENTITY work . AES Voter
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PORT MAP (DATA 1 => DATA 1, DATA 2 => DATA 2, DATA 3 => DATA 3,
READY 1 => READY 1, READY 2 => READY 2, READY 3 => READY 3,
DATA OUT => DATA OUT, READY OUT => DATA READY) ;

END S t r u c t u r a l ;

B.2 Voter

The VHDL description below is for the voter presented in Figure 5.2.

LIBRARY IEEE ;
USE IEEE . STD LOGIC 1164 .ALL;

ENTITY AES Voter IS
PORT (

−− DATA PORTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
DATA 1 : IN STD LOGIC VECTOR ( 127 DOWNTO 0 ) ;
DATA 2 : IN STD LOGIC VECTOR ( 127 DOWNTO 0 ) ;
DATA 3 : IN STD LOGIC VECTOR ( 127 DOWNTO 0 ) ;

−− CONTROL PORTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
READY 1 : IN STD LOGIC;
READY 2 : IN STD LOGIC;
READY 3 : IN STD LOGIC;

−− OUTPUT PORTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
DATA OUT : OUT STD LOGIC VECTOR ( 127 DOWNTO 0 ) ;
READY OUT : OUT STD LOGIC

) ;

END AES Voter ;

ARCHITECTURE Behaviora l OF AES Voter IS

BEGIN

READY OUT <= READY 1 AND READY 2 AND READY 3;

DATA OUT <= DATA 1 when DATA 1 = DATA 2 AND DATA 2 = DATA 3 e l s e ( o the r s => ’ 0 ’ ) ;

END Behaviora l ;
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