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ABSTRACT
With the increasing amount of data and the requirement
to derive insights from this data, it is important to have
the ability to update the models that are used with new
data in real-time. This paper provides an analysis of exist-
ing solutions for real-time online machine learning using
neural networks. Six different machine learning frame-
works are examined. Quantitative analysis is performed
on the following metrics: samples per second, predictions
per second, the time between new data and inclusion in
the model. Performance evaluation is carried out using a
benchmarking framework that is created for this purpose
and released as open-source software. In the qualitative
comparison the following aspects are evaluated: prepro-
cessing, normalization, hardware support, drift counter-
measures, ensemble learning support and license.
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1. INTRODUCTION
Large data streams are generated by users, sensors and
an increasing amount of connected devices, according to
a prediction from the International Data Corporation it
will grow to 175 trillion gigabytes by 2025 [12]. Neural
networks can be used to make predictions based on this
data to generate recommendations, predict when a device
will fail, etc.. Currently training these models used for
these purposes happens mostly offline with over 60% of
companies questioned by Forrester Research stating that
they want to implement machine learning for their real-
time streaming data [9].

There are two approaches to training a model in machine
learning, there is offline learning in which a model is trained
using the complete dataset at once and there is online
learning where a model can be incrementally trained when
a new data-point arrives. Between offline and online learn-
ing there is a middle ground in which mini-batches are
used, here incremental updates of the model are made by
training on multiple data-points at the same time. Be-
cause of the incremental nature of learning using mini-
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batches they are considered to be online learning for this
paper.

Training a model offline is possible if the dataset fits in
memory completely and is advantageous for performance
reasons. In contexts in which there is no new data con-
tinuously arriving to update the model with or if there is
little value in having an updated model at all times, offline
learning is the preferred choice.

Real-time online machine learning can be employed to
improve predictions quickly which can help reduce costs
and increase the value gained from these predictions. In
financial networks such as the ones run by large credit
card companies the value of early fraud detection is read-
ily apparent. With online learning, the model used for
fraud detection can be updated in real-time when a fraud-
ulent transaction is confirmed to improve the model to flag
possible similar fraudulent transactions. At thousands of
transactions per second, the prediction performance of the
model is also relevant as it needs to keep up with the influx
of transactions.

For computer vision applications however, a dataset can
quickly exceed the memory of the computer the model is
trained on. With the uprise of self-driving cars, the need
arises to train computer vision models on vast amounts
of data for recognizing and identifying roads, road signs,
cars, cyclists, people, and other objects. For this purpose,
the real-time aspect of online learning is not interesting
but rather the decreased memory requirements of it.

In the existing literature, as outlined in 3.2, there is no
comprehensive qualitative and quantitative analysis of open-
source machine learning frameworks that can be used to
select the right tool for the purpose of training neural net-
works in an online manner. Therefore in this paper, the
current usability, performance, and features of open-source
frameworks are analyzed and presented to serve as decision
support for companies, researchers and developers looking
to incorporate (real-time) online learning with neural net-
works.

Six machine learning frameworks are analyzed, these se-
lection criteria for these frameworks are as follows:

1. Popularity, typically the more popular software is
the more related online resources are available which
makes it easier to use.

2. Open-source, this allows the software to be used in
almost any context at no cost.

3. Supporting neural networks with various hidden layer
configurations

4. Ease of integration in the benchmark suite
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In an experiment devised to rank deep learning frame-
works according to their popularity performed at the end
of 2018 1 it was found that the following frameworks are
popular (in order or descending popularity): Tensorflow,
Keras, PyTorch, Caffe, Theano, MXNET, CNTK, etc..
These are all open-source frameworks and they support
neural networks with different hidden layer configurations.
Keras is not itself a framework to execute machine learn-
ing, it is merely a way to program machine learning mod-
els for execution on different backends. Keras supports
the following backends: Tensorflow, Theano, MXNET,
and CNTK. For ease of integration into the benchmarking
suite, programming the model once in Keras and execut-
ing it on all supported backends saves time and should
ensure model consistency between the different backends.
For these reasons all possible Keras backends are selected.
PyTorch being the third most popular on the aforemen-
tioned list is selected as well as scikit-learn which as of Jan-
uary 2020 has more ”stars” (similar to ”likes”) on GitHub
than PyTorch, arguing for its popularity. The selected
frameworks that can be found in table 1 on page 3.

2. RESEARCH QUESTIONS
In RQ1 we want to evaluate the supported software fea-
tures in the selected open-source frameworks to train neu-
ral networks in an online and/or real-time fashion. This
answer gives an overview of the currently available solu-
tions and helps the reader narrow down the framework or
frameworks they might use for their purposes.

To this end of interest is the general pre-processing and
algorithm support to show versatility and range of sup-
ported features of the framework. Possible input formats
and external system support will be investigated such that
an informed decision for a framework can be made based
on existing software and data it needs to integrate with.
For the online learning specific behavior, the support of
drift counter-measures and ensemble learning will be added
to the table answering RQ1.

RQ1 What software features are supported and what char-
acteristics do these frameworks have?

RQ1.1 What preprocessing, normalization features,
concept drift detection algorithms, and ensemble learn-

ing methods
do the selected frameworks support?

RQ1.2 How extensible are the selected frameworks?
Can the features that are mentioned in RQ1.1 be added
to a framework if currently lacks support.

If a framework lacks support for features mentioned in
RQ1.1a, how extensible are the selected frameworks for
adding missing features?

The second research question aims to give the reader a
clear indication of training, prediction and real-time per-
formance of the selected frameworks in a real life setup.

RQ2 How do the selected frameworks perform on the
following metrics: model training time on the selected
datasets, model prediction performance and latency in a
system testing approach?

3. RELATED WORK
There is extensive existing research in the domain of online
learning in which approaches, problems, possible draw-
backs, and countermeasures are discussed. Additionally,
1https://www.kaggle.com/discdiver/
deep-learning-framework-power-scores-2018

benchmarks of frameworks for machine learning have been
performed in the past, an overview of existing benchmarks
is given. The possible countermeasures are used to inform
the analysis of the features of the frameworks while the
existing benchmarks are used to show what differentiates
the benchmarks in this paper.

3.1 Online learning theory
Online learning is machine learning without training on
the complete dataset at once, an online learning algorithm
can train on a single datapoint, update its internal param-
eters and then discard the datapoint ready to process the
next one. There exist surveys explaining the basic con-
cepts and algorithms of online learning dating back to at
least 1998 [7] [13].

A recent survey [11] specifically about online learning com-
bined with artificial neural networks describes the prob-
lems associated with online learning and discusses possi-
ble solutions. The main problem with online learning is
the phenomenon called concept drift, which happens when
training on a dataset in which the patterns and relations
shift over time. This can mean that the model becomes
obsolete and strategies need to be used to deal with this
problem. The survey mentions three main strategies: us-
ing sliding windows for selecting the data points on which
to train the model, weighting the data points such that old
data points are still influencing the model but not as much
as newer data points and using ensembles of classifiers to
make the final prediction.

The availability of features to detect concept drift and
counteract its effects by means of ensemble learning are
therefore evaluated in this paper.

3.2 Neural network frameworks comparisons
and benchmarks

Benchmarks of artificial neural network frameworks have
not been found in surveys or papers in the last 2 years as
of 2019. However, papers discussing or introducing spe-
cific algorithms or frameworks with some benchmarks have
been encountered.

Multiple benchmarking projects do exist on GitHub which
are either outdated, non-comprehensive and/or do not eval-
uate online learning performance. In table 2 an overview
is given. Another problem with most of these projects is
reproducibility if the specific versions of the software are
mentioned it might still be difficult to set up the environ-
ment in a consistent way to reproduce the results.

In this table outdated means that the benchmark is over
3 years old, a framework can improve to realize huge per-
formance improvments in this time. Not comprehensive
means that less than 5 popular frameworks were evalu-
ated.

On Wikipedia a page with a comparison table of deep
learning software exists, while it is quite extensive it does
not contain information about features concerning prepro-
cessing, normalization, online learning, extensibility and
performance [1]. Therefore an enhanced version of that
table is given which includes more practical information
to help in picking a framework.

4. METHOD
To answer RQ1 the websites, documentation, and code of
the selected frameworks are examined and basic examples
are set up in each framework to evaluate and judge the
ease of use and extensibility.

For answering RQ2 a neural network benchmarking frame-
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Table 1. Evaluated machine learning frameworks
Name License Version Rel. date Written in Language bindings
scikit-learn BSD 0.22.1 2020-01-02 Python Python
PyTorch BSD 1.4.0 2020-01-15 Python, C++ Python, C++, Java
TensorFlow Apache 2.0 2.1.0 2020-01-08 Python, C++ Python, C, C++, Java, Go, JS, R, Julia, Swift
CNTK MIT 2.7 2019-04-19 C++ Python, C++
MXNet Apache 2.0 1.5.1 2019-10-01 C++, Python C++, Python, Julia, Matlab, JS, Go, R, Scala,

Perl, Clojure
Theano BSD 1.0.4 2019-01-15 Python Python

Table 2. Existing benchmarks
Name ref comparison

between
comment

Benchmark
analysis of
representative
deep neu-
ral network
architectures

[8] NN architec-
tures

no compari-
son between
frameworks

guolinke
deep-learning-
benchmarks

[2] NN frame-
works

outdated
(2017)

mlpack bench-
marks

[3] ML frame-
works

not compre-
hensive, not
online

sdpython
benchmarks

[4] ML/NN im-
plementations

not compre-
hensive (1
framework)

szilard
benchm-ml

[5] ML frame-
works

outdated
(2016)

u39kun deep-
learning-
benchmark

[6] NN frame-
works

not compre-
hensive (3
frameworks)

work is made. A benchmarking wrapper class abstracts
the details of each specific framework exposing an initial-
ization, train and predict method which can be called to
initialize the model, update the model by training on a
subset of data and predicting the class of a sample using
the current model. In the wrapper a model of a deep neu-
ral network is implemented containing 1 hidden layer of
100 artificial neurons. Rectified linear unit (ReLU) acti-
vation is used for the artificial neurons and the Adam op-
timization algorithm is selected as the optimizer. In the
output layer of the model, softmax activation is configured
to make the model output its prediction. Keras is used to
program the model for TensorFlow, Theano, MXNet and
CNTK and the models for PyTorch and scikit are config-
ured their respective APIs.

The dataset that is selected for benchmarking is the MNIST
dataset [10], which is a very well known dataset consisting
of 60000 handwritten digits to be used for training and
10000 images for testing the model. This is not a very
large or challenging dataset, nonetheless it can be used
to show the training speed of the different frameworks as
training on this data is not trivial.

Three benchmarks are performed for speed evaluation:

1. Training speed: 1 data-point per model update bench-
mark, 1 epoch (iteration of the complete dataset)

2. Training speed: 8, 16, 32, 64, 128, 256, 512,1024,
2048, 4096, 8192 samples per model update, 3 epochs
each. The internal (mini)-batch size of the model

itself was kept the same at 200.

3. Prediction speed: Training the model for 3 epochs
with 128 data-points per model update, then pre-
dicting the 10000 test images one-by-one. Training
time is not measured.

In benchmark 1 we measure the training speed of a frame-
work for the purpose of real-time online learning, the model
update function is called for 1 data-point at a time. For
use cases where the model needs to adapt to new data
as soon as possible this should show the framework with
low overhead on updating the model with new data. The
framework that is the fastest on this benchmark will be
the one that can deal with new data the quickest.

The outcome of benchmark 2 should yield the framework
to be used for online learning when a dataset is too large
to hold in memory, as it is assumed that by training on
multiple data-points at a time the training speed will be
higher than in benchmark 1.

Finally, benchmark 3 provides a value for the prediction
speed of a framework for a setup in which the model can
still be trained. There are ways of optimizing prediction
speed of a static trained model, however for the purpose
of real-time online learning this is irrelevant as the model
must stay available to be updated with new data at any
time.

To evaluate the real-time behavior of the frameworks the
training on a sample or batch of samples is measured by
timing before and after calling the model update function
on a subset of the training data. This is training latency
from which we derive the total training time. From the
total training time, batch size and the number of epochs
the throughput is derived in samples per second. The pre-
diction speed in predictions per second is calculated in
a similar way. The benchmarking setup uses Docker2 to
execute all the different components, this combined with
strict version pinning allows reproducibility of the experi-
ment.

For the purposes of the benchmarks, a virtual private
server was rented at DigitalOcean of the following type:
”CPU-Optimized / 8 GB / 4 vCPUs”. The server is ex-
plicitly created for this purpose and the benchmarks are
therefore performed without interference from other pro-
cesses.

5. RESULTS
5.1 Framework feature support
An overview of the framework feature support can be
found in 3 on page 4.

It can be seen that most frameworks do not support han-
dling problems relating to online learning out of the box.

2https://www.docker.com/
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In general, you need to use different libraries to address
the concept drift problem in conjunction with the machine
learning framework in use. Because detecting concept drift
and applying ensemble learning can happen independently
of actually training the model(s) its easy to integrate a so-
lution external to the machine learning framework.

A common solution to lacking preprocessing and normal-
ization support is using the functionality that scikit pro-
vides for these purposes and after those steps feed the data
to the framework you want to use to train your model with.
For ensemble learning and drift detection, TensorFlow has
indirect support through the use of TensorFlow Extended.
For the other frameworks other external libraries can be
used, e.g. scikit-multiflow 3 and alibi-detect 4.

Table 3. Machine learning framework feature com-
parison

Name P
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m
b
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le
a
rn

in
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D
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d
et

ec
ti

o
n

G
P

U
su

p
p

o
rt

scikit-learn ++ ++ Y N N
PyTorch - + N N Y

TensorFlow o + N N Y
CNTK o + N N Y
MXNet + ++ N N Y
Theano - + N N Y

++ extensive support (3+ prebuilt options)
+ basic support (1-3 prebuilt options)
o building blocks provided
- abstract classes
– the concept does not exist
Y Yes
N No

5.2 Benchmarks
5.2.1 Training

The results of the first benchmark shown in figure 1 on
page 4 for which the data was supplied to the model one
data point at a time have two clear winners on both la-
tency and training speed which is expected as the through-
put is has a direct inverse linear relationship with the
latency in this case. The winners are MXNet and Ten-
sorFlow. MXNet processed 278 samples/second with an
average latency of just under 3.6ms. Scikit does not deal
with this workload well at 47 samples per second and a
latency of 21ms.

Figure 3 on page 4 shows the data of training runs at dif-
ferent batch sizes. It can be seen that increasing the batch
size can massively improve the training speed. Tensor-
flow outperforms all other frameworks in this benchmark
on raw throughput and latency across all batch sizes, the
highest throughput it achieved was with a batch size of
8192 samples per model update. Theano seems to perform
worse in this benchmark when given more data points at
a time, at about 4600 samples/second and a batch size of
128 it hits a wall were the throughput just barely increases
with increased batch sizes.

3https://scikit-multiflow.github.io
4https://github.com/SeldonIO/alibi-detect
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Figure 1. Training latency vs throughput, single
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Figure 2. Training latency vs throughput, various
batch sizes
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Figure 3. Throughput vs batch size (# samples)

Interestingly, the accuracy of the Keras defined model
shows varies depending on the backend that executes the
model. PyTorch and scikit consistently perform above 0.9
accuracy (accuracy being the proportion of predictions
the model predicted correctly). One of the Keras back-
ends, Tensorflow, also scored above 0.9 on every run, while
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the other Keras backends (MXNET, CNTK, Theano) per-
formed much worse with accuracies between 0.1 and 0.74.
In figure 4 on page 5 the accuracies achieved at differ-
ent batch sizes can be seen. Training the frameworks that
achieve low accuracy with more epochs of the same data
did improve the accuracy of the models, yet these frame-
works do not seem significantly fast enough in training to
achieve similar model accuracy by training more epochs
in the same time to PyTorch, scikit or Tensorflow. No ex-
planation has been found for the large variation between
the Keras backends.
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Figure 4. Accuracy vs batch size (# samples)

5.2.2 Prediction
A quick overview of the prediction performance in table
4 on page 5 in which the prediction speed, average la-
tency and total time is displayed, shows that scikit per-
forms particularly well here while Tensorflow, MXNet and
especially CNTK are on the slow side. Batching the pre-
dictions could improve the throughput but in production
systems the latency and performance on single predictions
are important.

Table 4. Prediction performance
Name Speed (pre-

dictions/s)
Latency
(ms)

Total time
(s)

scikit 2853 0.35 3.51
PyTorch 2494 0.40 4.00
TensorFlow 1295 0.77 7.72
CNTK 1013 0.99 9.87
MXNet 1345 0.74 7.44
Theano 2265 0.44 4.42

6. CONTRIBUTIONS
There are three contributions in this paper, firstly a table
outlining the features and hardware support of the online
neural network frameworks under investigation. This ta-
ble can serve as decision support for companies, researchers
and developers looking to incorporate real-time online learn-
ing using neural networks.

Secondly, to evaluate the performance of existing neural
network libraries for online learning a benchmarking suite
was developed and released as open-source software. Con-
figuration to launch the benchmarks as a docker image
which includes all necessary dependencies are provided.
This allows the results to be verifiable as well as getting

benchmark results for specific use cases and hardware. In-
cluded is a README file with instructions on how to run
the benchmarks yourself or implement your specific use
case to evaluate the performance of the different frame-
works. New datasets, for example the ones found on the
OpenML website 5 can be integrated into benchmarking
suite with little work by adding the code to download
and load the data. The benchmarking can be found on
GitHub. 6

Lastly the results of running the benchmark suite on vari-
ous neural network frameworks as graphs accompanied by
an analysis of the results.

7. LIMITATIONS
The main limitations to consider are related to the bench-
marks performed. Ideally, the feature comparison part of
the research could have had more time devoted to it to
provide a more in-depth analysis of the frameworks.

7.1 CPU vs GPU
For deep learning purposes, GPU’s can vastly outperform
CPU’s, this benchmarking study is performed on CPU’s
only. It is not the case that these workloads only are
executed on GPU’s in real life, however, real-time use cases
or the higher expense for GPU’s might mean that CPU’s
are used for these workloads. The benchmarking code does
not prohibit running on GPU’s however so if GPUs are the
intended hardware for your model to be executed upon
then it is advisable to adapt the benchmark to run on
GPUs to get representative results.

7.2 Model diversity
In this benchmark, only one type of Artificial Neural Net
was evaluated, specifically a feed-forward artificial neural
network. However quick tests do show that the trends in
the results generalize to running the model with different
configurations of the hyperparameters and the configura-
tion of the hidden layer(s). To improve diversity, bench-
mark models could be implemented for convolutional neu-
ral nets and recurrent neural nets.

7.3 Dataset diversity
In these benchmarks only one dataset is considered which
consists of image data. Different types of data (audio or
text for instance) should be considered to evaluate pe-
formance of the frameworks when training models with
different input dimensions.

7.4 Keras and model equivalency
Four out of the six investigated frameworks have their
models implemented using Keras as the frontend, this the-
oretically ensures that the model is similar for each of
them, only this can impact performance as compared to
programming the models directly in the API of the respec-
tive frameworks. The similarity of the models, in general,
is a problem as it turned out to be difficult to program
the same model and achieve similar model performance
for each of the six frameworks.

8. CONCLUSION
There are good open-source options for picking a machine
learning framework for training neural networks using an
online learning approach. TensorFlow performed the best
in the training benchmarks in throughput and accuracy

5https://www.openml.org/
6https://github.com/mauritsvdvijgh/
neural-net-benchmark
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while scikit performed the best in the prediction bench-
mark. Scikit has the best overall feature support but might
not be optimal for use-cases where training performance
is critical as it lacks GPU support. CNTK, Theano and
MXNet were shown not to perform well in terms of accu-
racy out of the box. These benchmarks serve as an indi-
cation but more representative results can be obtained by
benchmarking a specific use case using the benchmarking
framework introduced in this paper. Future work could in-
clude making the benchmarking suite more comprehensive
in model diversity and frameworks support.
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