
Sparse Artificial Neural Networks:
Adaptive Performance-based Connectivity inspired by

Human-Brain processes
Viktoriia Lapshyna
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

v.lapshyna@student.utwente.nl

ABSTRACT
Artificial Neural Networks are powerful machine learning
systems. However, a high number of weights close to zero
make networks unnecessary large and heavy. Sparse models
remove redundant weights, aiming to decrease the number
of parameters with minimal loss in accuracy. Sparse Evolu-
tionary Training procedure adaptively evolves weights of the
Artificial Neural Network topology. This technique proves to
remove a vast number of weights and achieve higher accuracy
than its non-evolutionary or densely connected counterparts,
although the connection addition and removal follows a
relatively simple algorithm. Inspired by the synaptic pruning
in the human brain, we propose an advanced approach for
weight evolution in the Sparse Evolutionary Training algo-
rithm. We suggest gradually removing connections during
the training phase as the accuracy increases. We show that
the number of parameters can be significantly reduced with
almost no loss in accuracy and negligible additional compu-
tational complexity. We demonstrate the performance of the
algorithm on the Multilayer Perceptron trained on benchmark
image and tabular datasets. This research contributes to the
understanding of Sparse Artificial Neural Networks and makes
a step towards more efficient models.

Keywords
Artificial Neural Network, Sparse Neural Network, Sparse
Evolutionary Training, Weight Optimisation, Multilayer Per-
ceptron, Adaptive training.

1. INTRODUCTION
Inspired by the human brain, Deep Learning has found appli-
cations in various tasks such as speech recognition, computer
vision, autonomous vehicles, natural language processing,
robotics and many others. Although ANNs have proven to
be notably successful and have the potential for advancing
further, they still encounter many limitations.
According to Herculano-Houzel et al. [13], in the human brain,
the number of connections between neurons decreases as the
grey matter gains neurons. Yet, most of the Artificial Neural
Networks have fully-connected neuron layers. Consequently,
the number of connections grows quadratically with the in-
crease in the number of neurons. However, a high redundancy
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in those connections has been observed [5, 16], as, after the
training, a large number of weights are close to 0 [8]. In other
words, models contain many connections that do not have
a significant influence on ANN accuracy but dramatically
increase the computational complexity.
This problem has been addressed by introducing sparse neural
networks, where some of the parameters are set to 0. Sparse
ANNs have shown to improve generalisation, reduce the
memory footprint, and increase the training speed in com-
parison with the dense networks [11, 9, 16]. Some research
done in this field is based on the predefined sparsity [18, 17].
Contrary, biological neural networks evolve sparsity over time;
for instance, up to 40% of neuron synapses in the human brain
are replaced with new ones every day [12]. Therefore, to make
Artificial Neural Networks more similar to the biological ones,
it is crucial to incorporate evolutionary neuron connectivity
optimisation.
Mocanu et al. have suggested the Sparse Evolutionary Training
(SET) to address this problem [20]. This method is simple and
efficient: after each training epoch a fixed number of smallest
weights are removed, and the same number of new connec-
tions are grown randomly. Researchers have observed a high
decrease in the number of parameters with no loss in accuracy.
During the training, SET keeps the number of connections
constant. Contrary, in the biological brain, overproduction of
synapses is followed by the gradual reduction.

Within this research, we propose a novel approach to neuron
connectivity evolution in the SET procedure, Accuracy based
Sparse Evolutionary Training (AccSET). Taking inspiration
from the synaptic pruning, we suggest gradually cutting down
a number of connections as accuracy increases during the
training procedure. This method reduces the risk of overfit-
ting, increases generalisation and requires negligible extra
computational cost compared to SET. We test our algorithm
on CIFAR10[15], FashionMNIST[26] and HIGGS[1] datasets
based on the Multilayer Perceptron (MLP).
AccSET allows ANNs having a much higher number of neu-
rons. At the same time, because of small number of non-zero
weights, trained ANN model takes less memory than its
fully-connected counterpart, which may allow saving trained
models even on smartphones. Additionally, this research
contributes to the understanding of the sparsity of Artificial
Neural Networks.

The Background section of this paper introduces concepts
on which this research is based. Next, the Related Work talks
about researches provided in the similar direction. In the Pro-
posed Method, the details of implementation of the AccSET
is presented. Results section illustrate how the experiments
were performed. Finally, the Discussion and Future Work
summarises the paper and suggest the direction of the future
work.
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2. BACKGROUND
2.1 Artificial Neural Networks
Artificial Neural Network (ANN) is a mathematical model
inspired by the animal brain. Like its biological counterpart,
ANN consists of neurons and neuron connections. The signal
transmission by synapses in the biological brain is modelled
as weights of the ANN. Initially, the goal of the ANNs was to
perform similarly to a human brain. However, currently, they
are mostly used for classification, prediction clustering and
association.
There are plenty types of the ANNs, but, for the purpose of this
research we discuss only Multilayer Perceptron(MLP). MLP is
the classical neural network, that consists of the input layer,
one or more hidden layers and the output layer of neurons.
MLP is trained using two steps: forward propagation and
backward propagation. Forward propagation sequentially cal-
culates and stores intermediate variables within the compute
graph defined by the neural network. It proceeds from the
input to the output layer. Backpropagation sequentially cal-
culates and stores the gradients of intermediate variables and
parameters within the neural network in the reversed order.
When training deep learning models, forward propagation
and backpropagation are interdependent.
ANNs have a risk of overfitting, which is often prevented by
the use of dropout, randomly eliminating neurons from the
network during training. The loss function is used to calculate
the loss of the training, the difference between the expected
and actual output. Parameters of the model are updated by the
optimiser, most commonly gradient descent, in the direction
that lowers the loss. The step taken along the gradient is
determined by the learning rate, a number between 0 and
1. The activation function is a mathematical equation which
defines whether the neuron should be activated or not.
Training requires significant memory and storage. The reason
behind this is that most of the ANNs have fully connected
(FC) layers, meaning that each neuron from layer n is con-
nected to each neuron from the subsequent layer n + 1. The
layer is called sparsely connected (SP) if at least one of the
connections is missing.

2.2 Synaptic pruning in the human-brain
According to E.Santos and C.A.Noggle, synaptic pruning is a
process which eliminates the synaptic connections in order to
increase the efficiency of neural transmissions [25]. At birth,
the human brain generates considerably more synapses than
functionally needed. Synaptic pruning refines the neural cir-
cuit and increases the efficiency by pruning away unnecessary
synapses: the least used connections are removed and more
frequently used connections are strengthened. Until approxi-
mately 10 years of age, about 50% of synapses that were present
at the age of 2 are eliminated. However, that process also con-
tinues during the later years. This way, the brain reaches opti-
mal learning performance.
The synaptic pruning primarily inspires the AccSET method
proposed in this research.

3. RELATED WORK
The topic of the sparsity of artificial neural networks has re-
cently gotten serious attention. Some researchers suggest first
training fully connected neural network, afterwards pruning
unimportant connections and retraining the network again
to tune the weights of the remaining connections [10, 16, 11]
Another approach is to prune connections prior to the train-
ing[18, 7]. These works have shown that pruning can remove
a large number of parameters with a little cost in accuracy.
The main disadvantage of these methods is that the sparsity
is fixed and not adapted through the training. Contrary, the
human brain continually removes and grows new synapses.

Figure 1: An illustration of difference between the SET and Acc-
SET procedure. For each sparsely connected layer SC (a), the
fraction of connections is removed (b). SET grows the same
number of connections (c.1), while AccSET calcultates the num-
ber of connections to grow based on the Equation 1 (c.2). The
process continues for the finite number of training epochs. If ac-
curacy after a training epoch e +1 is lower than accuracy after
the training epoch e, AccSET will grow more connection after
e +1 (f.2). SET keeps number of connection constant during the
training.

3.1 Evolutionary Sparsity
Addressing this problem, in 2017 Dai et. al [4] have introduced
a Neural Network Synthesis Tool (NeST). The method starts
with randomly initialising sparse Deep Neural Network (DNN)
architecture. During the training, neuron connections are
grown based on the gradient information, and finally, insignif-
icant connections are pruned away based on their magnitude.
Narang et al. have proposed gradually pruning connections
using a monotonically increasing threshold [23].
Another approach, Deep Rewiring (DeepR) suggests updating
both weights and the connectivity graph during training [2].
Advancing previous techniques, in 2019, the dynamic real-
location of weights was suggested[21]. This method uses
weight magnitude for pruning connections and dynamically
reallocates weights between layers at the end of each training
epoch. A similar approach, Sparse Momentum [6] redis-
tributes pruned weights across layers according to the mean
momentum magnitude of each layer.
Mocanu et al. have introduced Sparse Evolutionary Training
(SET). First, the fully-connected (FC) layers of ANN are re-
placed with the sparsely connected (SP) layers. Then, after
each training epoch, for each SC layer, fraction of weights
closest to 0 is removed and the same number of connections
is added randomly. The addition step is omitted in the last
training epoch. This algorithms has outperformed its fully
connected counterparts and quadratically reduced the num-
ber of parameters of neural networks layers. The illustration of
this method can be found in Figure 1 and Algorithm 1 1.
It has been shown that, compared to SET, Sparse momen-
tum[6] has a higher accuracy with a Wide Resnet model
WRN-28- 2 on the CIFAR10 dataset, nevertheless the improve-
ment is not significant. According to other researches, SET
has significantly higher accuracy compared to the DeepR and
performs slightly worse than the Dynamic Sparse[6, 21] and
Sparse Momentum [6].
Recently, a more sophisticated variation of SET which uses the
cosine similarity for growing new connections was introduced
[24].The approach was tested on 8 dataset and proved to
be significantly more effective for Madelon dataset (13.17%
more accurate than SET- MLP). Overall, the most efficient way
for connection evolution was to use the cosine similarity for

1For more details see Section 4.
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Table 1: Definition of parameters

Parameter Definition Parameter Definition

ε sparsity level λl
e

number of connections at layer l after training epoch e
after removing zeta smallest connections

ζ fraction of connections to add after each training epoch e γl number of connections at layer l before the training
acce accuracy after the training epoch e θl

e fraction of connections to add at layer l after training epoch e

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

accur ac y

θ

k=-0.8
k=0.8
k=0.4
k=-0.4

k=0

Figure 2: Graph of the function θ= 1− (acce −acce ×k)

k −|acce |×2×k +1
for

different k

both removal and addition of weights. Nevertheless, the pure
SET-MLP worked better on the COIL-100 dataset.
This research is mainly based on the SET. We propose a novel
approach for growing new connections in the ANN model.

4. ACCURACY BASED SPARSE EVOLU-
TIONARY TRAINING

Within this research, we introduce Accuracy based Sparse Evo-
lutionary Training (AccSET) method inspired by SET and the
synaptic pruning of the biological brain. The general idea is
to start with an already sparse ANN and update the connec-
tivity graph during the training, reducing the number of con-
nections. Note that contrary to synaptic pruning, within the

Algorithm 1 Accuracy SET pseudocode

set ε and ζ
initialise ANN model
for each fully-connected (FC) layer of the ANN do

replace FC with a Sparse Connected (SC) layer
end for

for each training epoch e do
perform standard training procedure
for each layer do

remove ζ weights closest to zero
λl

e := current number of connections
∆l

e ←γl
e −λl

e
if e is not the last training epoch then

θl
e ← 1− (acc l −acc l ×k)

k −|acc l |×2×k +1
add θl

e ×∆l
e new random connections

end if
end for

end for
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(b) CIFAR10

Figure 3: The relation between the Sparsity and Accuracy of the
MLP. Overall, higher sparsity is associated with lower accuracy.

AccSET, we start with the high number of connections, instead
of producing them gradually at the beginning of the training.
Such an approach is motivated by memory efficiency and the
speed of the training. After each training epoch, the number of
connections is reduced based the on accuracy. The main rule
is with the increase in accuracy, connections are removed, but
if accuracy drops, more connections are added. This way, the
ANN learns the optimal number of connections.
We start with initialising the SC ANN model with the sparsity
level ε, as it is done in SET. Then, after each training epoch, for
each layer, the fraction ζ weights closest to zero are set to 0. Af-
terwards, the number of weights to be added is calculated as
follows

(γl −λl
e )× (1− (acce −acce ×k)

k −|acce |×2×k +1
) (1)

where γl corresponds to the initial number of connections be-
fore training at the l th layer, λl

e is the number of connections at
the e th epoch and l th layer; and acce is the corresponding ac-
curacy, k is tunable parameter. Finally, θl

e ×λl
e connections are

added randomly to the layer l of the ANN. This step is omitted
at the last training epoch.

Figure 2 illustrates the graph of the function based on which
the number of connections to be added after each training
epoch is calculated. Note that if k = 0 the function becomes
linear θl

e = (γl − λl
e ) × acce . This function was chosen in

an attempt to mimic the gradual reduction of synapses in
the human brain. Moreover, with changing parameter k, a
different degree of sparsity can be achieved, which can be
relevant for performing different tasks.
The pseudocode can be found in the Algorithm 1. 2. Note that
if k = 1, AccSET transforms to SET, as number of connections
that will be added after the training epoch e for layer l is θ×λ.
All parameters and their definitions used in this paper can be
found in Table 1.
The essence of AccSET lays in the modified number of con-
nections added after each training epoch. While SET keeps the
number of connections constant during the entire training,
AccSET gradually removes connections as accuracy increases.
The difference is illustrated in Figure1.

2For more implementation details, e.g. how the SET model is
initialised, please refer to the original paper [20]
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Table 2: Dataset statistics

Dataset Domain Data Type Classes Train samples Test samples

FashionMNIST Image Grayscale 10 60 000 10 000
CIFAR10 Image RGB colors 10 50 000 10 000
HIGGS Particle physics Real values 2 10 500 000 500 000

(a) FashionMNIST (b) CIFAR10

Figure 4: Examples of datasets images

Table 3: Summarisation of all experiments on image datasets

FashionMNIST CIFAR10
Model k Accuracy[%] Loss Connections[#] Accuracy[%] Loss Connections[#]

AccSET-MLP

-0,8 82,00 0,51382 2668 60,58 1,12056 86942
-0,6 84,35 0,45237 4151 63,09 1,04248 119122
-0,4 85,12 0,42821 5714 64,81 0,99992 145436

-0,27 85,40 0,41268 6802 65,26 0,99251 162595
-0,2 85,42 0,41164 7568 65,28 0,98274 170728
-0,1 85,81 0,40097 8337 65,36 0,98311 182433

0 85,98 0,39284 9290 66,45 0,95943 192994
0,2 86,25 0,38742 11417 66,49 0,95341 212103
0,4 86,67 0,37544 13760 66,96 0,9413 230939
0,6 86,94 0,36764 16560 67,3 0,92904 247406
0,8 87,17 0,36019 19991 67,62 0,92915 263786

SET-MLP 87,29 0,34977 24052 67,84 0,91545 278264
MLP 88,22 0,46067 247272 65,78 0,9971 20328000

5. RESULTS
5.1 Implementations details
The method was implemented with Keras, using the weight
mask to set weights to 0 in order to obtain the sparse structure.
Hyperparameters used in the training can be found in Table 4.
Perhaps the most used activation functions nowadays are Rec-
tified linear unit (ReLU) [22], and their variations. We have
used LeakyReLU [19], while Mocanu et al. have chosen SReLU
[14] in their research [20]. We believe that this is the reason
why SET results slightly differ between our experiments and
the ones performed by Mocanu et al.

5.2 Dataset characteristics
Benchmark datasets, FashionMNIST[26], CIFAR10[15], and
HIGGS[1], are helping us to asses the AccSET performance on
the multi-class classification problem. Characteristics of all

Table 4: Hyperparameters used in training of MLP

Hyper-
parameter

Value
Hyper-
parameter

Value

Learning rate 0.01 ζ 0.3
Optimiser SGD Batch size 100
Momentum 0.9 ε 20
Activation
Function

LeakyReLU
Loss
Function

Categorical
Cross-entropy

Dropout rate 0.3

three datasets can be found in Table 2.
Figure 4 illustrates sample images of image datasets. Both
FashionMNIST and CIFAR10 datasets classify images into
10 categories. CIFAR10 is a more challenging dataset, as it
consists of 3 colour channel images, while FashionMNIST
images are grayscale with a lower resolution. Additionally,
contrary to CIFAR10, FashionMNIST images don’t contain
any background or noises, making it easier to achieve better
performance.
In 2019, Bourgin et al. [3] showed, by analyzing three datasets,
that SET can be a very good solution for tabular data. Thus,
our third dataset was specially chosen to asses the AccSET
capabilities on an even larger tabular dataset, HIGGS. This
dataset is from particle physics and contains 2 labels "s" and
"b," that stand for "signal" and "background" event of Higgs
Boson decay.

5.3 AccSET: the optimal trade-off between
Sparsity and Accuracy

We have compared AccSET-MLP, SET-MLP and standard fully-
connected MLP on all three datasets.

5.3.1 Image datasets
For both image datasets, all models were trained for 1000
epochs.
First, we have compared the performance of AccSET-MLP
with different values of k as specified in Equation 1 to find the
optimal value of k for a given dataset. Table 3 summarises
all training results for image datasets and Figure 3 shows the
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Table 5: Summarisation of the best experiments with MLP variants. For each dataset we report the best validation accuracy for MLP,
SET-MLP and AccSET-MLP. For the AccSET-MLP one best value of k was chosen achieving the best accuracy sparsity trade-off.

Dataset
Training

epochs [#]
Architecture

MLP SET-MLP AccSET-MLP

Accuracy [%] Connections [#] Accuracy [%] Connections [#] Accuracy [%] Connections [#] k

FashionMNIST 1000 784-256-128-100-10 88.22 247 272 87.29 24 052 85.81 8 337 -0.1
CIFAR10 1000 3072-4000-1000-4000-10 65.78 20 328 000 67.84 278 264 65.26 162 595 -0.27
HIGGS 100 28-1000-1000-1000-2 75.87 2 030 000 75.05 72 308 74.43 29 936 -0.27
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Figure 5: Experiments on MLP using FashionMNIST (a) (b) (c) and CIFAR10 (d) (e) (f) datasets. Figures (a) and (d) depict accuracy over
training; figures (b) and (e)illustrate the number of connection during the training except for the last epoch for AccSET-MLP. Number of
connections for SET-MLP and MLP remains constant during the training. Figures (c) (f) and illustrate the final number of connections
at the end of the training.

relation between sparsity and accuracy based on k. Note
that the sparsity in Figure 3 is compared to SET-MLP, not
to dense MLP. More precisely, the sparsity is calculated as
1 − nAccSET /nSET where nAccSET and nSET represent the
number of connections in AccSET-MLP and SET-MLP respec-
tively. The main reason behind this is the visibility of numbers,
as the sparsity of AccSET-MLP compared to the dense MLP
reaches at least 98% for most values of k on CIFAR10 and 90%
on FashionMNIST.

Figure 3 illustrates that the higher sparsity is generally as-
sociated with lower accuracy and vice versa when training
AccSET-MLP. As depicted in Table 3, the lowest accuracy is
observed on models with k = −0.8 for both datasets, cor-
responding to the highest sparsity. On the FashionMNIST
dataset, the lowest accuracy for AccSET-MLP is 82%, which
is 5% lower than the accuracy of SET-MLP and 6% lower
than MLP. However, this AccSET-MLP model is 88.9% more
sparse than SET-MLP and 98.9% than MLP. On CIFAR10, a
similar performance is observed. The lowest accuracy for
AccSET-MLP is about 7% lower than SET-MLP and 5% lower
than MLP, while AccSET-MLP sparsity is about 68.8% and
99.6% compared to SET-MLP and MLP respectively. For both

datasets, accuracy is comparatively low for k < −0.4, but as
k Ê −0.4, accuracy loss becomes not significant. The more k
grows, the higher becomes accuracy, and the more drops the
sparsity. The highest accuracy on FashionMNIST is observed
with the value of k = 1, which is the same as SET-MLP. The
best trade-off between sparsity and accuracy is reached with
approximately k = −0.1 and k = −0.27 for FashionMNIST and
CIFAR10 respectively as illustrated in Figure 3.

Table 5 and Figure 5 depict training results for the best val-
ues of k for AccSET-MLP as well as SET-MLP and MLP on
FashionMNIST and CIFAR10 datasets. We observe a higher
accuracy on AccSET-MLP and SET-MLP than MLP on the
CIFAR10 dataset. It is often difficult to identify the optimal
number of neurons for the MLP model. As in the case of the
CIFAR10 dataset, a high number of parameters cause overfit-
ting of standard dense MLP. On the other hand, as discussed
earlier, the FashionMNIST dataset is simpler than CIFAR10,
consequently, FashionMNIST requires a smaller number of
parameters. Hence, we have chosen a different architecture
for training models on FashionMNIST than on CIFAR10. We
see that a more suitable architecture on FashionMNIST results
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Figure 6: Experiments on MLP using HIGGS dataset. Figure 6a illustrates accuracy for dense MLP, SET-MLP and AccSET-MLP during
100 epochs. Figure 6b illustrate the evolution of connections of AccSET-MLP for 100 epochs. Note that MLP and SET-MLP keep number
of connections constant. Figure 6c show the number of connections during training for 100 epochs for dense MLP, SET-MLP and
AccSET-MLP.

in higher accuracy for standard dense MLP compared to both
AccSET-MLP and SET-MLP. Nevertheless, with the AccSET
method, we have managed to increase the sparsity by 99.6%
compared to dense MLP resulting in only 2.5% lower accuracy.
At the same time, AccSET-MLP reaches approximately the
same accuracy as dense MLP while having up to 99.2% fewer
connections on CIFAR10 dataset.
In general, AccSET-MLP reaches about 2% lower accuracy
than SET-MLP, while having about twice fewer connections on
CIFAR10 and 70% fewer connections on FashionMNIST.
Figures 5a and 5d compare accuracy during the training for
AccSET-MLP, SET-MLP and standard dense MLP on Fashion-
MNIST and CIFAR10 datasets respectively. Figures 5b and 5e
illustrate the connection evolution in AccSET-MLP, excluding
the final cutting of the connection after the training. As in
the synaptic pruning in the human brain, the number of
connections is significantly reduced at the beginning of the
training, followed by the gradual reduction until the end of
the training. Finally, figures 5c and 5f visually compare the
number of connections after the training in AccSET-MLP,
SET-MLP and standard dense MLP.

5.3.2 Particle Physics Dataset
Similar experiments were conducted on the HIGGS dataset;
all models were trained for 100 training epochs to find the
best value of k. From our experiments we have concluded
that HIGGS dataset doesn’t require a high number of training
epochs to illustrate the performance of AccSET algorithm.
Interestingly, for the HIGGS dataset, the optimal trade-off
between sparsity and accuracy was achieved for k = −0.27,
the same value as for CIFAR10. The training results for dense
MLP, SET-MLP and AccSET-MLP with k = −0.27 can be found
in Table 5 and the illustration of those results is presented in
Figure 6. Similarly to FashionMNIST, on the HIGGS dataset,
we observe a higher accuracy for dense MLP than SET-MLP
and AccSET-MLP. However, the difference in the accuracy is
even smaller. AccSET-MLP achieves 1.5% lower accuracy than
MLP, while having only 15% of MLP connections. At the same
time, AccSET performs only 0.6% worse than the SET method,
while having more than twice fewer connections.

Overall, AccSET method offers a flexible trade-off between
sparsity and accuracy, which can be adjusted according to the
needs.

6. CONCLUSION AND FUTURE WORK
This research proposes a novel method for sparsifying Artificial
Neural Networks, Accuracy based Sparse Evolutionary Train-
ing (AccSET), taking the inspiration from synaptic pruning in
the human brain. This method starts with already sparse ANN
and gradually removes more connections during the training
as the accuracy increases. On the example of MLP, we show
that the number of connections can be reduced up to 99.2%
with no trade-off in accuracy, compared to the densely con-
nected MLP. AccSET models were trained on FashionMNIST,
CIFAR10, and HIGGS and performed comparatively well on
all three datasets. At this stage, these successful results can
be considered as a proof-of-concept. Still, more experiments
should be performed in order to prove the robustness of the
AccSET training method over various types of data, such as
video, audio or multi-modal data.
AccSET has shown exemplary performance on MLP; nonethe-
less, it will also be valuable to conduct experiments on
different types of ANN models, such as, for instance, convolu-
tional and recurrent neural networks.
AccSET approach does not add significant computational
complexity and performs as fast as SET.
AccSET follows a relatively simple logic for growing new
connections. Future research might look into more complex
functions for calculating the fraction of connections to be
added during the training. Random allocation of weights can
also be replaced with a more sophisticated method. Another
future research direction could be combining AccSET with
neural pruning methods. AccSET training results in more
lightweight ANNs than its fully-connected counterparts, be-
cause of the significantly lower number of connections. This
allows including more neurons in the ANN, possibly reaching
billion-scale models, consequently solving more significant
real-world tasks. Additionally, such lightweight models have
the potential to be stored on laptops or mobile devices.
Overall, the AccSET model has reached an exceptionally
low number of connections while having a negligible lower
accuracy compared to its densely connected counterparts.

7. ACKNOWLEDGMENTS
I would like to express my sincere gratitude to my supervisor
Elena Mocanu for her valuable feedback and personal motiva-
tion during this research.

6



8. REFERENCES
[1] P. Baldi, P. Sadowski, and D. Whiteson. Searching for

exotic particles in high-energy physics with deep
learning. Nature Communications, 5(1), Jul 2014.

[2] G. Bellec, D. Kappel, W. Maass, and R. A. Legenstein.
Deep rewiring: Training very sparse deep networks.
CoRR, abs/1711.05136, 2017.

[3] D. D. Bourgin, J. C. Peterson, D. Reichman, S. J. Russell,
and T. L. Griffiths. Cognitive model priors for predicting
human decisions. In K. Chaudhuri and R. Salakhutdinov,
editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 5133–5141, Long
Beach, California, USA, 09–15 Jun 2019. PMLR.

[4] X. Dai, H. Yin, and N. K. Jha. Nest: A neural network
synthesis tool based on a grow-and-prune paradigm.
CoRR, abs/1711.02017, 2017.

[5] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and
N. de Freitas. Predicting parameters in deep learning.
CoRR, abs/1306.0543, 2013.

[6] T. Dettmers and L. Zettlemoyer. Sparse networks from
scratch: Faster training without losing performance.
CoRR, abs/1907.04840, 2019.

[7] S. Dey, Y. Shao, K. M. Chugg, and P. A. Beerel. Accelerating
training of deep neural networks via sparse edge
processing. CoRR, abs/1711.01343, 2017.

[8] S. Dieleman and B. Schrauwen. Accelerating sparse
restricted boltzmann machine training using
non-gaussianity measures. In Y. Bengio, J. Bergstra, and
Q. Le, editors, Deep Learning and Unsupervised Feature
Learning, Proceedings, page 9, 2012.

[9] S. Han, H. Mao, and W. J. Dally. Deep compression:
Compressing deep neural networks with pruning,
trained quantization and huffman coding, 2015.

[10] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both
weights and connections for efficient neural networks.
CoRR, abs/1506.02626, 2015.

[11] B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain
surgeon and general network pruning. In IEEE
International Conference on Neural Networks, pages
293–299 vol.1, March 1993.

[12] J. Hawkins. Special report : Can we copy the brain? - what
intelligent machines need to learn from the neocortex.
IEEE Spectrum, 54(6):34–71, June 2017.

[13] S. Herculano-Houzel, B. Mota, P. Wong, and J. H. Kaas.

Connectivity-driven white matter scaling and folding in
primate cerebral cortex. Proceedings of the National
Academy of Sciences, 107(44):19008–19013, 2010.

[14] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan. Deep
learning with s-shaped rectified linear activation units,
2015.

[15] A. Krizhevsky. Learning multiple layers of features from
tiny images. University of Toronto, 05 2012.

[16] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain
damage. In D. S. Touretzky, editor, Advances in Neural
Information Processing Systems 2, pages 598–605.
Morgan-Kaufmann, 1990.

[17] N. Lee, T. Ajanthan, S. Gould, and P. H. S. Torr. A signal
propagation perspective for pruning neural networks at
initialization, 2019.

[18] N. Lee, T. Ajanthan, and P. H. S. Torr. SNIP: single-shot
network pruning based on connection sensitivity. CoRR,
abs/1810.02340, 2018.

[19] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier
nonlinearities improve neural network acoustic models.
In in ICML Workshop on Deep Learning for Audio, Speech
and Language Processing, 2013.

[20] D. Mocanu, E. Mocanu, P. Stone, P. Nguyen, M. Gibescu,
and A. Liotta. Scalable training of artificial neural
networks with adaptive sparse connectivity inspired by
network science. Nature Communications, 9, 12 2018.

[21] H. Mostafa and X. Wang. Parameter efficient training of
deep convolutional neural networks by dynamic sparse
reparameterization. CoRR, abs/1902.05967, 2019.

[22] V. Nair and G. E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the
27th International Conference on International
Conference on Machine Learning, ICML’10, page 807–814,
Madison, WI, USA, 2010. Omnipress.

[23] S. Narang, G. F. Diamos, S. Sengupta, and E. Elsen.
Exploring sparsity in recurrent neural networks. CoRR,
abs/1704.05119, 2017.

[24] J. Pieterse and D. C. Mocanu. Evolving and
understanding sparse deep neural networks using cosine
similarity. CoRR, abs/1903.07138, 2019.

[25] E. Santos and C. A. Noggle. Synaptic Pruning, pages
1464–1465. Springer US, Boston, MA, 2011.

[26] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel
image dataset for benchmarking machine learning
algorithms, 2017.

7


