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ABSTRACT
Setting hyperparameters is a complex and hard task when
training a neural network. Neural networks performing
badly can be the effect of a sub-optimal hyperparameters
setup before training. This study aims to examine the
effects of hyperparameters on the training of a residual
network, while using a small dataset. This network is a
SE-ResNet-50 that is being used to recognize emotions
from facial expressions. Different methods, both constant
values as well as schedules, are compared based on the
validation loss and validation accuracy.
For interesting outcomes, an examination is done to see
whether these methods transfer well to a similar dataset
in the same context of emotion recognition in facial ex-
pressions.
The study shows that low batch sizes contribute to a good
performance, but tend to result in an unstable network. A
balance must be found between a high accuracy and a sta-
ble training. Learning rate schedules that use small step
sizes outperform those which make larger adjustments.
Momentum is a valuable addition, but too high of a mo-
mentum shows signs of overfitting in the loss graph. A
cyclical momentum causes the training to become unsta-
ble, this can be reduced by using higher batch sizes.
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1. INTRODUCTION
Within the field of machine learning, the aim is to get a
high accuracy and having a network that is able to gen-
eralize well. Tuning hyperparameters can be difficult and
requires a lot of trial and error, since there are a lot of
different techniques and theories. The aim of this report
is to provide insights in finding optimal hyperparameters
for a residual network with a small dataset, and use them
to get a balance between overfitting and underfitting.

This study makes use of a residual network with Squeeze
and Excitation (SE) blocks which aims to recognize emo-
tions from images and videos of faces. This network is used
in a broader application of multimodal learning, where the
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results of the analysis of video, speech and text are com-
bined to make a prediction on the corresponding emotion.
This field of emotion recognition is an emerging research
field, combining artificial intelligence and psychology. It
marks the context in which this research is applied.

Recognizing emotion from faces is a fundamental human
trait. Both facial expressions as well as verbal expressions
play a part in this. This ability is developed as a child and
its accuracy increases with age [3]. Facial emotion recog-
nition matures around the age of 11 and vocal emotion
recognition develops further during childhood [4].

For computers, recognizing emotions is a difficult task be-
cause humans can show emotion on different levels and
even express compound emotions. Emotional facial ex-
pressions can differ between cultures and individuals. Paul
Ekman showed that that there are universal facial expres-
sions for basic emotions [5]. These basic facial expressions
are used in the datasets of this study.

Whereas the previous studies have been done on large
datasets, this study makes use of two relatively small
datasets. The aim is to evaluate existing methods
and study if they can be used on a smaller crowd-
sourced dataset, what characterizes an optimal method
and whether these characteristics transfer to a different
dataset for the same application. This application is the
field of emotion recognition from facial expressions.

2. BACKGROUND
2.1 Residual Network
A convolutional network (CNN) is a deep neural network,
often used for recognizing images. A regular neural net-
work consists of layers composed of a set of fully connected
neurons, whereas a convolutional neural network makes
use of convolutional layers. Such a layer is organized in
three dimensions. The first two dimensions are often the
width and height of an image. The third dimension is the
amount of these images stacked on top of each other, for
example the color channels. The convolutional layers are
used for feature extraction. A CNN also has a classifi-
cation part at the end, used as a classifier to predict a
corresponding class to the input image.

Residual networks were proposed by He et al. [7]. They use
a skip connection identity mapping, that adds the output
from the previous layer to the layer ahead. This results in
the ability to train deeper networks than was previously
possible.

This study makes use of a Residual Squeeze and Ex-
citation architecture. This is a residual network that
makes use of so called SE blocks. Normally in a CNN,
each channel is weighed equally when creating feature
maps. An SE block is a content aware mechanism that
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Figure 1: A residual layer with a SE block

weighs each channel adaptively. This way it can decide
how relevant each channel is. By stacking these blocks
a so-called SENet can be formed, which generalizes
effectively across datasets [9]. These blocks can also be
used in existing state-of-the-art, like a residual network,
where it improves performance. Figure 1 shows how a SE
block is fitted into a residual block.

When training neural networks, the goal is to get
the highest accuracy while reducing the training time.
Training involves tuning the set of inner parameters,
or weights, to fit a desired outcome. The weights are
learned during the training process and not manually set.
This training process is iterative, which means that it
progresses in a step-wise fashion.
Optimization algorithms tune these weights. A popular
algorithm is called Gradient Descent. It tunes the weights
by travelling down the slope of the estimated error in
steps until it reaches a minimum. The step size that is
taken is calculated by multiplying the gradient with the
learning rate. This error function is also called the loss
function.
The dataset is often split in a training set and a validation
set. The network trains and adjusts it weights based
on the performance on the training data, and validates
it on the validation data, which does not affect the
weight updates. The performance on the validation data
represents how the network responds to unseen data, also
called generalization.
A network can be really accurate on a training set, but its
performance on unseen data is what eventually matters.
This training accuracy and validation accuracy comes
with two important terms in evaluating the performance
of a network:
Overfitting is what happens when a network is really
accurate on the training data, but inaccurate on the test
data. This means that the model fits the training data
too well, and thus increases the generalization error.

Underfitting is when a model fails to be accurate on both
the training and the test set.
These terms are illustrated in Figure 2.

2.2 Hyperparameters
Hyperparameters are a different type of parameter than
weights. A hyperparameter is a parameter that can be
configured before the training process. The difference be-
tween other parameters and hyperparameters is that a
hyperparameter is used in the parameter updating func-
tion and thereby specifies how the network parameters are
learnt, whereas the values of other parameters are derived
in training.
The amount of epochs is a hyperparameter that corre-
sponds to the number of times the whole training set is
shown to the network.

Figure 2: Illustrative explanation of the trade off between
overfitting and underfitting. Model complexity refers to
the power of the network. Image from Smith [12].

The hyperparameters that are being investigated in this
work are:
Learning rate depicts how much the weights are changed
during the training of the model.
A learning rate too large may result in a sub-optimal
weight set, not letting the model get narrower and missing
local optima. When the learning rate is too low, it makes
the training process very slow and can result in overfitting.
During the training process, the learning rate itself can be
adjusted using a learning rate schedule.

Momentum is a value between 0 and 1 that adds a frac-
tion m of the previous weight update to the new update
to make sure a consistent heading through the space is
made. It smoothens out small fluctuations. Compared to
a ball rolling down a hill, a small bump won’t change the
rolling direction for this tiny moment, the physical mo-
mentum keeps the ball rolling. It is closely related to the
learning rate. The optimal learning rate is dependent on
the momentum and vice versa [12].

Batch size refers to the size of the training samples pro-
cessed before the model is being updated. This means the
batch size impacts the amount of parameter updates dur-
ing training, and affects the training time. A large batch
size can lead to poor generalization. This difference in
performance between training and testing data is called
the generalization gap. In section 4 a study from Hoffer
et al. [8] is discussed, which tells that the generalization
gap is more related to the small number of updates rather
than the size of a batch.

Weight decay, also known as L2 Regularization is used to
prevent models from getting overly complex. In the loss
function the sum of squares of all weights is multiplied
with the weight decay and that result is added to the loss
function.

2.3 Datasets
In this study, two datasets are used. RAF-DB and FER+.
The Real-world Affective Faces Database (RAF-DB) [10]
is a data set which contains around 30000 images of faces
from thousands of individuals that have been labeled 40
times. The labels are based on the seven basic emotions
from Paul Ekman [6], namely: anger, disgust, fear, happi-
ness, sadness, surprise and neutral. The database consists
of two subsets, one single-label subset with the aforemen-
tioned labels, and one compound label subset consisting
of 12 labels. This study only makes use of the single-
label subset, which contains 15339 images divided over a
training and testing set with 12271 and 3068 images re-
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(a) Image from the RAF
dataset portraying hap-
piness

(b) Image from the
FER+ dataset portray-
ing anger

Figure 3: Example images from the datasets used

spectively. All images are coloured and 100x100 pixels in
size. An example can be found in Figure 3a.

The FER+ dataset [1] is a dataset of around 35000 grey-
scale images of faces labeled with an emotion, based upon
the original FER dataset that has been prepared by Pierre
Luc Carrier and Aaron Courville. Carrier and Courville
used web crawling to get face images with related emotion
keywords, which were filtered by human labelers. The ac-
curacy was not very high. The FER+ dataset makes use
of these images, but they have been re-tagged with the
use of crowd sourcing. This dataset uses 8 emotion labels
based on the basic emotions from Paul Ekman: neutral,
happiness, surprise, sadness, anger, disgust, fear and con-
tempt. All images are 50x50 pixels in size. An example
can be found in Figure 3b.

3. AIM OF THIS RESEARCH
The aim of this paper is to evaluate the behaviour of dif-
ferent hyperparameters on two datasets and in relation to
each other. The focus is to optimize these hyperparame-
ters and study whether existing methods can be used on
a smaller crowd-sourced dataset. Validation is used to see
whether these behaviours are dataset depended, or apply
to a different dataset in the same context.
The following research questions are addressed in order to
reach the aim of this research:

RQ1 How can hyperparameters be optimized to increase
learning robustness of a neural network.

RQ1.1 How can momentum be optimized for the
learning process?

RQ1.2 How can batch size be optimized for the
learning process?

RQ1.3 How can learning rate scheduling be opti-
mized for the learning process?

RQ1.4 How can weight decay be optimized for the
learning process?

RQ2 Will these optimal techniques apply to a similar
dataset in the same context?

4. RELATED WORK
The research field of optimization is broad, with both hy-
perparameters being investigated as well as structures of
neural networks. Different optimization methods are dis-
cussed in this section.

4.1 CNN Optimization
The scaling of convolutional neural networks is studied in
a research by Tan and Le [15]. Scaling a network is often

used for models to increase accuracy. However, scaling
is not well understood and there exist multiple methods
to do it. A popular method is by increasing the depth,
other common methods scale by one dimension as well.
They propose a scaling method that scales all dimensions
of depth/width/resolution using a compound coefficient.
This results in much better accuracy and efficiency than
achieved with previous convolutional neural networks.

4.2 Multiple hyperparameter optimization
Grid search is a widely used strategy to optimize hyper-
parameters. This is a sweep through a manually specified
subset of the hyperparameters space, trying all combina-
tions. It is an extensive trial and error method. An advan-
tage is that it can be easily parallelized, but it is inefficient
and computationally expensive. Bergstra and Bengio [2]
suggest using a random search to tune hyperparameters.
A random search samples this hyperparameter space ran-
domly, and is able to find models that are as good or better
than those found with a grid search. They suggest that
not all hyperparameters are equally important to tune,
and this importance differs per model and dataset. Grid
search would then allocate too much time on exploring
dimensions of irrelevant hyperparameters.

Another common technique is Bayesian Optimization.
The idea is to build a probabilistic model of the objec-
tive function, and using this to find the most promising
hyperparameters. By using past results, hyperparameters
are mapped to a probability. The most commonly used
model for this type of optimization is the Gaussian Pro-
cess (GP). A drawback of GP is that it scales cubically.
Snoek et al. [14] explore the use of neural networks in-
stead of GPs to model distributions over functions. They
call this deep networks for global optimization, or DNGO.
Their solution scales linearly with the number of data, and
allows parallelism. They show this technique is well suited
for large scale hyperparameter optimization.

4.3 Batch size
Hoffer et al. [8] researched the influence of a large batch
size on the generalization gap. A problem often encoun-
tered is when the batch size increases, the performance in
generalization goes down. This is a phenomenon called the
generalization gap. They showed that the generalization
gap is not related to the batch size, but comes from the
relatively small amount of updates. To close the general-
ization gap between small and large batch strategies, they
propose to:

• Use Stochastic Gradient Descent with momentum,
gradient clipping and a decreasing learning rate
schedule

• Adapt learning rate to the batch size

• Use a sufficient number of high learning rate itera-
tions

They used a momentum SGD with a fixed learning rate
that decreases exponentially every few epochs.

4.4 Learning rate
Smith et al. [13] examine the possibility to, instead of de-
caying the learning rate according to a schedule, increase
the batch size according to the same schedule. So when
the learning rate drops by a factor α instead increase the
batch size by a factor α. They show that while both op-
tions reach the same test accuracy, increasing the batch
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size significantly reduces the amount of required parame-
ter updates. With B as the batch size, ε as the learning
rate and m as the momentum, increasing the batch size
with the B ∝ ε/(1−m) relation turned out to require the
least amount of updates while maintaining a high valida-
tion accuracy.

Smith [12] discusses early signs of overfitting or underfit-
ting visible in the test loss. A test loss curve that keeps
decreasing at the end of training is a sign of underfitting,
which can be reduced by increasing the learning rate. A
loss curve that increases at the end of training is a sign of
overfitting.
Because momentum and learning rate are closely con-
nected, Smith argues that an increasing cyclic learning
rate and a decreasing cyclic momentum is an optimal
training procedure. In this case, both cycle only once.
This is called 1cycle. A decreasing cyclical momentum
shows the same result in terms of accuracy as a con-
stant momentum, but stabilizes the training to allow larger
learning rates. When a constant learning rate is used, a
constant momentum in the range of 0.9 - 0.99 is advised.
In addition, he discusses how adjustments to hyperparam-
eters affect overfitting and underfitting. He suggests using
the Learning rate range test on different weight decays to
find good range for the learning rate and a good value for
the weight decay.

This range of learning rates can then be used for a cycli-
cal learning rate scheduler, which cycles the learning rate
between two bounds.

4.4.1 Learning rate schedules
Step decay is a learning rate schedule that decreases the
learning rate step-wise over the duration of the training.
The starting learning rate is specified and decreased every
few epochs by a factor. This factor and the number of
epochs for the drop can be specified before the training.

A cyclical learning rate cycles the learning rate between
a lower bound and an upper bound. A cycle consists of
the increase from the base learning rate to the maximum
learning rate, and back to the base learning rate again.
This method has been proposed by Leslie Smith [11].
These bounds can be found using the learning rate
range test. For this test the model runs for a few epochs
while the learning rate increases to a maximum set value.
When the loss increases extremely rapidly, the test is
stopped early. The accuracy will be plotted against the
learning rate. The optimal range is the range where the
accuracy is rising or stable until it starts decreasing.

The 1cycle policy is a variation of the cyclical learning
rate. Here, only one cycle is made for the duration of the
training. For the final few epochs, the learning rate drops
to a lower value very quickly. An example is shown in
Figure 4.

5. PROPOSED FRAMEWORK
The experiments conducted examine different hyperpa-
rameters, and their relations to each other. Constant val-
ues and scheduled values are compared.
Most of the research is performed on the RAF-DB dataset.
Optimal methods and settings that have been found are
used on the FER+ dataset, and an examination is done
whether this yields similar results. This way it becomes
clear whether these techniques are dataset dependent, or
apply to similar datasets in the same context.

The first experiments conducted are the learning rate
range tests with different weight decays. The tests in-

Figure 4: Illustration of the 1cycle policy, where
the learning rate cycles once between two bounds
and decreases at the end. Image from: S. Gug-
ger, ”The 1cycle policy”, Another data science stu-
dent’s blog, 2018. https://sgugger.github.io/the-1cycle-
policy.htmlthe-1cycle-policy

crease the learning rate from 0.001 until 1.0. This test
can be seen as a learning rate scan which shows informa-
tion about how the network behaves on different learning
rates. The accuracy is plotted as a function to the learning
rate. A good range is defined by an increasing or stable
accuracy until the accuracy drops. For a constant value,
the learning rate with the highest accuracy in this range
is selected.
The weight decay corresponding to test with the best
range is selected as a constant weight decay value for the
remaining experiments.

The optimal range for the learning rate resulting from the
previous experiments is selected to perform cyclic learn-
ing rate tests. Constant and scheduled learning rates are
tested against constant momentum values of 0.99, 0.97,
0.95, 0.9.
The best outcome of these constant values serve as the
upper bound for a momentum schedule called cyclical mo-
mentum. This follows the principle of the 1cycle policy,
but in an opposite fashion. When the learning rate in-
creases, the momentum decreases and vice versa. The
cyclical momentum has got a lower bound of 0.8.
The batch size remains constant.

The learning rate schedules that have been tested are:

• Constant learning rate

• Cyclic learning rate

• 1Cycle policy

• Step decay

Apart from the learning rate tests, experiments on vary-
ing constant batch sizes have been conducted. Tests are
performed whether lower or higher batch sizes perform
better.

The validation loss and validation accuracy are examined
to compare the performance of the different hyperparam-
eter settings.

6. RESULTS
This section presents the results of the experiments pro-
posed in section 5. The results of the experiments are split
per hyperparameter, starting with the learning rate range
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Figure 5: Learning rate range test. The accuracy of multi-
ple learning rate range tests is plotted against the learning
rate. The tests vary in weight decay.

test. For the remaining tests, training and test accuracy
are presented alongside the validation loss for the experi-
ments. The research is conducted on a SENet50, using a
stochastic gradient descent optimization algorithm.

6.1 Learning rate range test
A learning rate range test has been performed on differ-
ent weight decays. The test ran for 22 epochs, where the
learning rate increases exponentially from 0.001 to 1.0.
The results can be seen in Figure 5, where the accuracy is
plotted against the learning rate.
Concluding from this test, a learning rate of 0.006 with a
weight decay of 1x10-6 is the best option. For a cyclical
learning rate schedule, a range from 0.001 - 0.006 would
be optimal.

6.2 Learning rate schedules
Different learning rate schedules are tested under the same
conditions. All were tested with a weight decay of 1E-6,
momentum of 0, batch size of 64 and all for 64 epochs.
See Table 1 for the results highlighted in this section. The
full test results can be found in Appendix A.

We can see that a learning rate schedule that varies with
small steps performs better than a schedule with big vari-
ations in the learning rate. The step decay with a drop
factor of 0.5 has the biggest variations in the learning rate,
and the worst performer. A constant learning rate shows
a validation accuracy. Since the 1cycle policy changes the
learning rate with very small steps, it performs better than
the other schedules.
A cyclical learning rate which cycles multiple times results
in an unstable training, which can be seen in Figure 6 of
training loss. The 1cycle policy however, results in a sta-
ble training but takes longer to converge than the other
schedules.

6.3 Momentum
Several experiments have been done that tested multi-
ple learning rate schedules against different momenta, of
which the complete results can be found in Appendix A.
The results presented here in Table 2 are focused on the
learning rate policy which gave the highest accuracy: the

Figure 6: Loss graph of experiments on different learning
rate schedules. The training loss is plotted against the
epochs. The instability of the cyclical learning rate can
be seen by the pulsing behaviour in the graph. The 1cy-
cle policy converges slower, as can be seen by the slower
decline.

Table 1: Results achieved with different learning rate
schedules. Weight decay = 1E-6, Momentum = 0, Batch
size = 64. For 220 Epochs

Schedule Training
Accuracy
(%)

Validation
Accuracy
(%)

Validation
loss

Constant: 0.01 93.75 75.15 0.8272
Cyclical: 0.001-0.01 91.75 73.28 0.8533
1cycle: 0.001-0.01 92.65 75.34 0.8097
Step decay: 0.01 : 0.9 : 40 93.41 74.49 0.8411
Step decay: 0.01 : 0.75 : 40 92.94 73.61 0.8186
Step decay: 0.01 : 0.5 : 40 89.62 74.10 0.8261

1cycle policy.

The addition of momentum makes a significant improve-
ment in the performance of the network. It makes sure
the network converges faster, increases the accuracy and
decreases the loss. This is validated with the other exper-
iments on three different learning rate policies.
When the momentum is too large for the learning rate,
the loss function starts to increase after hitting a minimum
and thus the run ends with a high loss value. This is a sign
of overfitting. The higher the momentum, the steeper this
increase. This means a balance should be found between
high validation accuracy and a low validation loss.

6.4 Batch size
Tests have been done on both increasing as well as lowering
the batch size. This can be seen in Table 3. The full test
results are in Appendix B.

Lowering the batch size results in a slightly higher vali-
dation accuracy. This is because when the sample size is
lower, more noise of the dataset is being included in the

Table 2: Results achieved by testing the 1cycle learning
rate policy against different momenta. Weight decay =
1E-6, Batch size = 64. For 220 epochs

Momentum Training
Accuracy
(%)

Validation
Accuracy
(%)

Validation
loss

0 92.65 75.34 0.8097
0.9 97.57 80.42 0.751
0.95 97.99 80.62 0.7736
0.97 98.48 82.65 0.7753
0.99 98.79 83.95 0.8119
Cyclic: 0.9-0.8 96.75 79.93 0.7614

5



Table 3: Results achieved by batch size tests for a constant
and a varying learning rate. The tests ran for 220 epochs

LR Batch
size

Momentum Validation
Accuracy
(%)

Validation
loss

0.01 32 0.9 82.97 0.8063
0.01 64 0.9 80.09 0.8008
0.01 128 0.9 80.78 0.7862
0.01 256 0.9 74.1 0.7768

0.001-0.01 (1cycle) 16 0.9-0.8 82.62 0.7373
0.001-0.01 (1cycle) 32 0.9-0.8 81.96 0.7373
0.001-0.01 (1cycle) 64 0.9-0.8 79.93 0.7614
0.001-0.01 (1cycle) 128 0.9-0.8 76.8 0.8065

Figure 7: Loss graphs of three batch size experiments. The
instability caused by a low batch size can be observed by
looking at the multiple minima.

training of the network.
However, too low of a batch size results in an unstable
network, which can be seen in the loss graph of Figure 7.
This way it starts fitting too much to the training data. A
cyclical momentum increases this instability. This means
that a cyclical momentum needs a higher batch size for
the network to be stable.
So, a balance must be found between the network stabil-
ity and accuracy. In this context a cyclical momentum
with batch sizes of 32 and 16 are unstable. 64 is a good
value, maintaining a good stability and a decent validation
accuracy and validation loss.

6.5 Validation on FER+
Interesting outcomes of the experiments on the RAF
dataset have been tested on the FER+ dataset for means
of validating these results. The validation is done on the
momentum and batch size experiments. So whether the
addition of momentum results in a significant performance
improvement and whether lower batch sizes increase accu-
racy and causes instability.

6.5.1 Momentum validation
The momentum tests are validated on a 1cycle policy that
cycles between 0.001 and 0.01 with a batch size of 64,
weight decay of 1E-6 and is trained for 220 epochs. This
policy has been chosen because of the good results in the
previous tests on the RAF dataset. The results can be
found in Table 4.

We can see that momentum is a valuable addition in terms
of accuracy. With the increase in momentum, the accuracy
increases and the network converges faster. For higher mo-
mentum values, the loss function starts to increase again
after hitting a minimum. The validation loss of the exper-
iment without momentum is lower than the experiments
with a momentum above 0.8, this can be explained by the
aforementioned phenomena. When using cyclical momen-
tum, the training became unstable.

Table 4: Results of validation on FER+: Testing different
momenta for 220 epochs. 1cycle policy (0.001-0.01); Batch
size = 64; Weight decay = 1E-6

Momentum Training
Accuracy
(%)

Validation
Accuracy
(%)

Validation
loss

0 91.65 80.81 0.7086
0.8 93.63 83.46 0.6835
0.9 94.73 83.95 0.7118
0.95 95.62 84.53 0.7758
0.97 95.84 85.52 0.792
0.99 96.12 86.02 0.8277
Cyclic: 0.9-0.8 92.78 83.26 0.7003

Table 5: Results of validation on FER+: Testing differ-
ent batch sizes for 220 epochs; 1cycle policy (0.001-0.01);
Cyclical momentum (0.9-0.8); Weight decay = 1E-6

Batch size Training
Accuracy
(%)

Validation
Accuracy
(%)

Validation
loss

32 93.23 83.63 0.7037
64 92.78 83.26 0.7003
128 92.15 81.29 0.6728
256 91.21 79.94 0.7628

6.5.2 Batch size validation
Different constant batch sizes are tested for 220 epochs
with a 1cycle policy that cycles between 0.001 and 0.01,
with a cyclical momentum (0.8-0.9) and a weight decay of
1E-6. The results are shown in Table 5

Increasing the batch size results in a decrease of the ac-
curacy, just like on the RAF dataset. However, for batch
size 32 and 64 the loss and accuracy graphs show instabil-
ities in the training. When the batch size is too low the
network fits too much to the training data. Increasing the
batch size results in a more stable network. This explains
why a batch size of 128 has the best validation loss and a
stable training.

7. DISCUSSION
After testing both on the RAF dataset and the FER+
dataset, some similarities can be noticed.

In both cases a lower batch size contributes to a
higher accuracy than higher batch sizes, while a lower
batch size also caused instabilities in the training. In the
context of the cyclical momentum, RAF-DB had an ideal
batch size of 64, FER+ had an ideal batch size of 128 for
a 1cycle policy. If we compare the ideal batch size and
the number of iterations with one another, the following
constant can be deducted:

RAF: 12211 samples, BS=64, 191 iterations/epoch
FER: 26353 samples, BS=128, 206 iterations/epoch

So we can see that a batch size that results in ap-
proximately 200 iterations per epoch is the optimal
balance between a stable training and a good accuracy
for the 1cycle policy with cyclical momentum.

There were some limitations to this research.
For the learning rate range test, I first looked at the
loss graph for my interpretations. But you can not
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compare the absolute loss values since the weight decay
is an addition to the loss function. Based on this initial
interpretation I chose the constant learning rate 0.01 and
the range 0.001 - 0.01. When looking at the accuracy, I
see that I could have used a smaller range for the cyclical
schedules, namely the range of 0.001 - 0.006. Using
this range could have resulted in higher accuracy during
training.
In the FER+ validation tests on momentum, the batch
size used resulted in a small instability in the training.
A higher batch size would have resulted in a more
stable network to compare these momentum values to.
Nevertheless, using this batch size proved the way that
cyclical momentum increases the network instability.
The final limitation is the difference in datasets. The
FER+ dataset used 8 labels instead of 7, like RAF-DB
does. The comparison would be better if both datasets
used 7 labels.

8. CONCLUSION AND FUTURE WORK
The results presented in this study show that learning rate
schedules that vary little each step perform better than
learning rate schedules that make big adjustments to the
learning rate. A small step-size is preferred.

Furthermore, the results show that no momentum always
performs worse than a training where momentum is added.
When the momentum becomes too close to 1, the loss
graph will show signs of overfitting. A momentum of 0.97
shows a good balance. Cyclical momentum increases the
instability in the training, so it requires a higher batch size
to acquire stability than a constant momentum.

This paper shows that a training with a smaller batch
size outperforms using a large batch size in terms of accu-
racy, but results in unstable training when the batch size
is too low. For combining 1cycle with a cyclical momen-
tum, aiming at approximately 200 iterations per epoch is a
good balance between high accuracy and a stable training.

In future research, validation can be done on other net-
work architectures to confirm whether these findings are
characteristic for this SE-ResNet-50, or whether it is a
more general phenomenon.
More learning rate schedules can be tested, to investigate
the behaviour of these small-step schedules.
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APPENDIX
A. RESULTS ON THE LEARNING RATE AND MOMENTUM EXPERIMENTS

Table 6

Schedule Learning rate Momentum Weight Decay Training
Accuracy
(%)

Validation
Accuracy
(%)

Validation
loss (0.6
smoothing)

Constant 0.01 0 0.000001 93.75 75.15 0.8272
Constant 0.01 0.9 0.000001 97.85 80.09 0.8008

Cyclical –
22 cycles 0.001 – 0.01 0 0.000001 91.75 73.28 0.8533
Cyclical –
22 cycles 0.001 – 0.01 0.9 0.000001 97.47 82.06 0.7594
Cyclical –
22 cycles 0.001 – 0.01 0.95 0.000001 97.72 81.73 0.7849

(overfit)
Cyclical –
22 cycles 0.001 – 0.01 0.97 0.000001 98.20 83.63 0.7591

(overfit)
Cyclical –
22 cycles 0.001 – 0.01 0.99 0.000001 98.25 82.65 0.7856

(overfit)

Cyclical – 1cycle 0.001 – 0.01 0 0.000001 92.65 75.34 0.8097
Cyclical – 1cycle 0.001 – 0.01 0.9 0.000001 97.57 80.42 0.751
Cyclical – 1cycle 0.001 – 0.01 0.95 0.000001 97.99 80.62 0.7736
Cyclical – 1cycle 0.001 – 0.01 0.97 0.000001 98.48 82.65 0.7753

(small
overfit)

Cyclical – 1cycle 0.001 – 0.01 0.99 0.000001 98.79 83.95 0.8119
(overfit)

Cyclical – 1cycle 0.01-0.1 0.9-0.8 0.000001 98.7 83.4 0.779 (small
overfit)

Cyclical – 1cycle 0.001-0.01 0.9-0.8 0.000001 96.75 79.93 0.7614

Step decay 0.01 : 0.75 : 40 0 0.0000001 92.54 75.77 0.8078
Step decay 0.01 : 0.5 : 40 0 0.0000001 89.49 74.82 0.7921
Step decay 0.01 : 0.25 : 40 0 0.0000001 83.46 72.72 0.8104
Step decay 0.01 : 0.9 : 40 0 0.000001 93.41 74.49 0.8411
Step decay 0.01 : 0.75 : 40 0 0.000001 92.94 73.61 0.8186
Step decay 0.01 : 0.5 : 40 0 0.000001 89.62 74.10 0.8261
Step decay 0.01 : 0.75 : 40 0.9 0.000001 97.65 82.12 0.768 (small

overfit)
Step decay 0.01 : 0.75 : 40 0.95 0.000001 97.81 82.55 0.7546

(small
overfit)

Step decay 0.01 : 0.75 : 40 0.97 0.000001 97.47 79.31 0.8161
(small
overfit)
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B. RESULTS ON THE BATCH SIZE EXPERIMENTS
Table 7

LR Batch size Momentum Training
Accuracy
(%)

Validation
Accuracy
(%)

Validation loss (0.6
smoothing)

0.01 32 0.9 97.85 82.97 0.8063
0.01 64 0.9 97.85 80.09 0.8008
0.01 128 0.9 97.12 80.78 0.7862
0.01 256 0.9 94.92 74.1 0.7768

0.01-0.1 (1cycle) 16 0.9-0.8 98.55 84.05 0.7929
0.01-0.1 (1cycle) 32 0.9-0.8 98.71 84.54 0.778
0.01-0.1 (1cycle) 64 0.9-0.8 98.7 83.4 0.779 (small overfit)
0.01-0.1 (1cycle) 128 0.9-0.8 97.89 82.2 0.7717
0.01-0.1 (1cycle) 256 0.9-0.8 96.4 76.93 0.8927

0.001-0.01 (1cycle) 16 0.9-0.8 97.83 82.62 0.7373
0.001-0.01 (1cycle) 32 0.9-0.8 97.31 81.96 0.7373
0.001-0.01 (1cycle) 64 0.9-0.8 96.75 79.93 0.7614
0.001-0.01 (1cycle) 128 0.9-0.8 94.51 76.8 0.8065

0.001-0.01 (1cycle) 16 0.99 98.58 83.93 0.8486
0.001-0.01 (1cycle) 32 0.99 98.81 84.02 0.8238
0.001–0.01 (1cycle) 64 0.99 98.79 83.95 0.8119 (overfit)

0.001-0.01 (1cycle) 16 0.97 98.71 84.62 0.7604
0.001-0.01 (cylic) 32 0.97 98.02 83.2 0.7438
0.01–0.001 (cyclic) 64 0.97 98.20 83.63 0.7591 (overfit)

9


