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ABSTRACT

The extent and magnitude of information spread through
an online social network is of great interest to marketing
strategists and social scientists. The spread of information
within a network has a strong correlation with the network
statistics of the participating nodes. While the effects of
individual node centralities on the influence spread has
been researched by many, the predictive power of these
centralities (or combinations thereof) have not.

In this paper we show how well individual and combina-
tions of those network statistics can predict the total esti-
mated information spread (influence spread). We look at
all non-isomorphic graphs of size N < 9 nodes and small-
to-medium graphs of N € {50, 100,200,400} nodes, ran-
domly generated using the Barabasi-Albert random graph
generation model. Next, the Independent Cascade (IC)
and Weighted Cascade (WC) spread models are used on
each individual seed node in each graph to simulate the
spread of information. Finally, the Machine Learning tech-
niques Random Forest Regression and k-Nearest Neigh-
bors regression are used to predict the total information
spread.

We find that the WC spread model results in higher R>
scores than the IC model. The combination of the centrali-
ties degree and PageRank and betweenness are particularly
predictive of the influence spread, both for IC and WC.
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1. INTRODUCTION

The rise of Twitter, Facebook and other social media has
caused a paradigm shift in the way we spread news, fake
news and memes. Equally important, these Online So-
cial Networks (OSN) have become a platform for excessive
marketing |17]. The promotion of services, products and
ideas is mainstream. Behind the scenes are the market-
ing strategists. While being on a budget, their task is to
reach as many potential clients as possible by injecting an
advert or piece of information into the network. The total
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spread of the advert or information (influence spread) are
thought to correlate with the network statistics of the seed
nodes. Marketing strategists use Influence Maximization
techniques to determine the most influential nodes within
a network for the purpose of maximizing the total influ-
ence spread.

In this research, we aim to find the combination of network
statistics that best predicts the estimated total informa-
tion spread. The results and parts of the method can be
applied to Influence Maximization, the field in which nodes
are ranked based on their predicted influence spread.

In the context of epidemiology, Bucur et al. applied Ma-
chine Learning techniques to calculate the expected epi-
demic outbreak size, albeit on small networks, given any
seed node. They find that certain combinations of two or
more statistics are much more predictive of outbreak sizes
than others [6]. Oo et al. verify that PageRank can detect
influential spreaders more than other centralities |15].

Research aim and scope.

In this research we expand on the findings of Bucur et al.
Our aim is to similarly predict the total influence spread
(see Section . However, we improve upon their work
by considering not only small, but small-to-medium net-
works. Moreover, we shift the context from epidemiology
to Online Social Networks. This entails that we employ
different spread models: where Bucur et al. applied the
Susceptible-Infectious- Recovered spread model, we will ap-
ply both the IC and WC spread models and compare the
results. These spread models are chosen because they are
the most simplistic models and sufficiently approximate
the way information spreads in Online Social Networks
(11].

We retrieve all non-isomorphic graphs of size N < 9 and
generate sufficiently many graphs of some small-to-medium
graphs (N € {50,100, 200, 400}) using the Barabdsi-Albert
random graph generation model [1]. The Barabési-Albert
model is an algorithm that generates graphs approximat-
ing certain natural and artificial systems, such as social
networks and the world wide web [1]. The algorithm em-
ploys a preferential attachment mechanism which simu-
lates a network that follows a scale-free power-law distri-
bution. An example of such a network can be found in
Figure[l]

The different network statistics that we cover are men-
tioned and briefly explained in Section Two super-
vised statistical learning techniques will be used after ap-
plying the spread models: Random Forest regression and
k-Nearest Neighbors regression.



Figure 1. A network generated using the Barabasi-
Albert random graph generation model, with N =
50,m = 5.

Limitations.

For the purpose of this research we must make some as-
sumptions about the networks and methods used. Firstly,
Online Social Networks are changing every second; we will
assume the networks that we retrieve and generate to be
static. Secondly, certain Online Social Networks are rep-
resented by directed graphs (Twitter), whereas others are
undirected (Facebook [7]). To make this project feasible,
we will solely work with undirected graphs. Finally, we ad-
mit that no graph generation model will generate graphs
that perfectly resemble a real OSN. Therefore, using the
acclaimed Barabési-Albert model will suffice for the pur-
pose of this research.

2. BACKGROUND

This section will contain brief descriptions of certain con-
cepts, tools, and terminology.

2.1 Models of information spread in networks
The two spread models, IC and WC will be used on each
seed node to calculate the respective total spread of infor-
mation.

The Independent Cascade (IC) model attaches to
each neighbour-pair (u,v) in a graph a chosen propagation
probability p. If either one of the nodes of the neighbour-
pair is informed, it has p chance of propagating the in-
formation to the neighbour. However, if the node fails to
inform its neighbour node, it will no longer try to inform
said neighbour in future iterations of the algorithm. The
process terminates once no more nodes are informed [11].
The pseudocode can be found in Algorithm [I]

Algorithm 1 The IC algorithm

1: procedure INDEPENDENT CASCADE(G, seed, p)
2: active < ()

3 target < [seed]

4 while length of target > 0 do

5: node <— pop last element of target
6: add node to active
7.
8
9

for each neighbor n of node do
if n not in active then
append n to target with probability p

10: return the length of active

The algorithm is illustrated in Figure [2l Each iteration
is one iteration in the while loop.

The Weighted Cascade (WC) model counters a prop-
erty of the IC model, which is the following. In IC, a node
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Figure 2. A simulation of information spread
through a network visualized. In this example IC
spread probability p = %

that has a high degree not only has an increased chance
to influence other nodes, but is also more likely to be in-
fluenced at some point by one of those neighbour nodes
[11]. This property of IC is or is not desirable depending
on the application.

Using WC, a node u has propagation probability 1/d, to-
wards node v, where d, is the in-degree of node v. In other
words, the chance of propagating information over an edge
depends on the degree of the node on the other side of the
edge [11].

To obtain the pseudocode of WC, substitute 1/d, for p in
line 9 of Algorithm

2.2 Node centralities

The node centralities (previously referred to as network
statistics) are network characteristics of each individual
node, like the number of incoming and outgoing edges.
The centralities used in this research are listed and briefly
explained below. We chose these centralities because they
are either frequently used or easy to interpret and not hard
to implement.

e Degree The number of edges of a node.

e Closeness The average distance to all other nodes
|16].
o Betweenness The number of times a node acts as

a bridge along the shortest path between all other
nodes [9].

e Eigenvector Each node starts with a relative score,
after which the scores iteratively increase depending
on how high-scoring a node’s neighbours are [4].

e Katz Variant of Eigenvector, incorporating an at-
tenuation factor [10].

e PageRank Variant of Eigenvector, incorporating a
damping factor [5].



2.3 Machine Learning

For the prediction of total influence spread, we will be
using two regression algorithms: Random Forest and k-
Nearest Neighbors regression. A brief description of the
two algorithms follows.

The Random Forest (RF) algorithm makes use of a
technique called bagging [2|, which is short for random
sampling with replacement. Bagging is used to reduce
variance of certain algorithms, like decision trees. Another
advantage of bagging is that each model can be run in
parallel, after which the outputs of each are aggregated.
A Random Forest is an estimator that uses many decision
trees, each being attached to random sub-samples of the
training data. Once each tree has computed its output, the
average is taken over all trees, resulting in the prediction.

k-Nearest Neighbors (KNN) is a non-parametric pre-
diction method, which essentially means that no random-
ness is involved in calculating the prediction [3]. Consid-
ering the context of graphs, pick a centrality feature c.
The algorithm will then calculate the difference between
the value of ¢ of a query node and those of the nodes in
the training data. Next, it determines the k closest sam-
ples from the training data, after which, for regression, it
evaluates the outcome by averaging the labels from the
k closest training samples. The distance is computed us-
ing the Minkowski metric, which is a generalization of the
Manhattan and Euclidean distance.

2.4 The data set

For each graph size N we will generate a data set. The
data set will contain a row for each seed node in each
graph of a certain size. For example, a data set for gener-
ated graphs will contain N % ]\4E| rows each. The following
columns will be included in the data set: values for each
centrality ¢ € C, where C' is the set of node centralities
covered in this research (see Section ; and the esti-
mated total influence spread per spread model configura-
tion (see Section [5).

2.5 Tools

All programming work will be done using Python 3.7. To
keep installation of tools and plugins simple, we will be us-
ing JetBrains Pycharm, professional edition with the Ana-
conda plugin. The Anaconda plugin eliminates the over-
head of finding compatible scientific plugins, since most
are already included.

scikit-learn, networkz, matplotlib and seaborn are the python
libraries that we depend on. scikit-learn will be used for
the Machine Learning matters. networkr will aid us in
generating and processing (network) graphs. matplotlib
and seaborn are plug-and-play libraries for generating plots
and heatmaps.

3. RELATED WORK

Other related work that are of particular interest are men-
tioned below.

Bucur et al. succeed in predicting the outbreak size of
an epidemic using Random Forest and k-Nearest Neigh-
bor regression [6]. Remarkably, they manage to achieve
worst-case R? scores of 0.92 for two predictors and 0.96
for three predictors. Interestingly, they find that using
the combination of PageRank, Katz and any measure sen-
sitive to the edge density (degree or edge density itself)

IThe number of graphs we generate for graph size N. The
value M is determined later in Section

results in the highest prediction precision. What this re-
search lacks is the analysis of these centralities on larger
networks. Furthermore, their focus lies on an epidemiol-
ogy context only.

Erkol et al. perform a systematic test regarding the per-
formance of several heuristics for the identification of in-
fluential spreaders [8]. They use the results of greedy opti-
mization as a baseline of identification performance for the
tested heuristics and conclude that relatively simple net-
work metrics, such as closeness centralities, can achieve
performances close enough to this baseline. More interest-
ingly, they achieve an increased performance of 2 to 5%
when combining topological metrics. However, they have
only shown that the results hold for small networks. In our
research, we will try to achieve the same performances on
larger networks. The node centralities looked at in the
context of our research are listed in section 2.2

Oo et al. apply Social Network Analysis to extract knowl-
edge from social media data, like Twitter [15]. They create
a trending topic network graph related to an event, after
which they use centrality measurements and link analysis
to find influential users. They verify that PageRank is the
most important centrality measure that can detect more
influential spreaders than any other centrality.

4. RESEARCH QUESTIONS

The main questions that will be answered by this research
are stated as follows:

1. How well can various combinations of node central-
ities predict the spread of information through an
OSN?

2. What is the most predictive combination of node
centralities?

3. Is the most predictive combination different per spread
model?

5. METHOD

This section will present our methodology in roughly chrono-
logical order. Important details and semantics are men-
tioned, but most other code specifics can be found on the
project’s GitHub pageﬂ

Graph retrieval and generation.

We retrieve all non-isomorphic graphs of size 6 < N < 9
from an enumeration algorithm that is described in [13].
The algorithm is implemented as geng in McKay’s graph
isomorphism checker nauty.

Small-to-medium graphs will be generated using the Barabasi-
Albert model, which is implemented in the networkz li-
brary. The parameter m, which represents the number of
edges a new node will make between existing nodes is cho-
sen to be %7 where N is the size of the graph. M graphs
of sizes 50,100,200 and 400 will be generated using this
model. The value for M is determined using Learning

Curves (discussed in Section [6.2]).

Each set of N sized graphs will be used for a separate data
set, as explained in Section [2:4]

Deployment of the spread models.

We obtain the estimated total (information) spread of each
graph in a data set using the IC and WC spread model
(see Section . The spread probabilities for IC are

%https://github.com/JustinPraas/ResearchProject
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p € {0.01,0.05,0.1,0.15}. These probabilities are seem-
ingly low, but higher probabilities will result in complete
cascadesﬂ quicker. Besides that, the probabilities p €
{0.01,0.1} were used in previously peer-reviewed research
[11].

For each node contained in each graph, both spread mod-
els will be applied I times, such that the estimated total
spread is the average of all I repetitions. The constant I
must be chosen carefully, since it can impact both the pre-
diction performance and time consumption of the program
tremendously. A higher I means greater performance, but
long computation times, especially on larger graphs. To
make matters worse, large graphs actually require a higher
I for a sufficiently good performance, because there are
many more ways the information can spread. The coeffi-
cient of determination (R?) is the chosen metric for predic-
tion performance. This metric ranges from 0 to 1, where
1 is the best value.

Choosing combinations of node centralities.

First we will look at the prediction performance of each
individual centrality. Next, we form combinations of two
centralities. There are (g) = 15 different combinations of
two centralities, from which the the most predictive will
be discussed. Finally, combinations of 3 centralities will
be evaluated and discussed.

Calculation of node centrality dictionaries.

For each graph in a data set, the required node centrali-
ties for the combination are computed using the networkx
library. Some important notes:

o All centrality values are normalized.

e The parameter k as specified in the documentation
of the betweenness centrality is set to the number of
nodes in the graph. A higher k results in a better
approximation. k is capped at the total number of
nodes in the graph.

e Katz centrality uses the following default parame-
ters: alpha = 0.1 and beta = 1.0.

e PageRank centrality uses the following default pa-
rameter: alpha = 0.85.

5.1 Data Analysis and Machine Learning
We generate simple but helpful scatter plots once the data
sets have been generated. This way, we can inspect the
correlation of the estimated total spread with the other
node centralities.

Next, we will split the data in training (75%) and test-
ing (25%) sets. Once split, we can fit the RF model on
the training data, score the test set and do the same for
KNN. Both RF and KNN regression models will return
the coefficient of determination as score metric.

We tune the hyperparameters for the machine learning
models while using 10-fold cross-validation to evaluate those
models. This diminishes bias and overfitting. GridSearchC VEI
is used for this purpose for both RF and KNN regression
models.

How many samples we need in a training data set can be
discovered by plotting a learning curve. The training size
is plotted against the cross-validation score and training
score. From the resulting plots we can confirm that we

3The phenomenon where each node in the network is ul-
timately informed

4GridSearchCV is part of the sklearn library

have sufficient samples for meaningful R? score and we
can determine whether our learning methods are proper
(not overfitting or biased).

6. RESULTS

This section is divided in subsection per graph context.
Within these subsections, we look at the prediction results
from different combinations of node centralities, starting
with one node centrality and finishing with combinations
of three centralities. We show and analyse the prediction
results of Random Forest Regression in this section. While
we also show prediction results of k-Nearest Neighbours,
those results will be put in the appendix. At the end of
this section we will briefly discuss the differences between
RF and KNN.

The figures shown in this research should be interpreted
using Figure [3] which depicts the color bars used in the
coming figures.

6.1 All small non-isomorphic graphs

The results in this subsection are based on data sets for all
non-isomorphic graphs. These data sets have been gener-
ated with I € {200, 1000}, where I is the number of spread
repetitions.

Data analysis.

From the retrieved data sets we can confirm that there
is some correlation between the centralities and the infor-
mation spread, as expected. This is especially evident in
the katz, pagerank and closeness scatterplots in Figure
Focusing on the top-left scatter plot, we can see that a
higher PageRank of a seed node results in an increased to-
tal spread. This essentially means that higher PageRank
nodes will influence more nodes in the network. It is also
good to note how the hue shifts from red to blue while the
PageRank increases. This also shows that there is some
correlation between degree and information spread.

Prediction performance.

We have generated hundreds of results, each of which
shows the R? scores. Only the most noteworthy results
will be displayed in this research. However, you can find
more on the GitHub page. Furthermore, we will only show
results that take I = 1000 spread repetitions into account.
Increasing the spread repetitions will result in greater per-
formance, but longer computation times. It is notable that
we got an average R2 increase of 0.1 up to 0.2 when going
from I = 200 to I = 1000 repetitions.

RFR - Single centrality

The predictive performance of single node centralities in
small graphs is displayed in Figure |5} It is clear that de-
gree and closeness outperform the other centralities, es-
pecially when the IC spread model is used. Remarkably,
however, for degree and closeness the WC spread model
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Figure 3. Color bars used for the scatter plots and
heatmaps respectively.
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Figure 4. Scatter plots of small graphs of size 8. IC
is applied on each node, with spread probability p = 0.05
and I = 200 repetitions. A correlation between the total
estimated spread and the centralities is especially evident
in the top and bottom-left plots.

is less predictive than the IC model, whereas in the other
node centralities it is the other way around.

RFR - combination of 2 centralities

In Figure[6] heatmaps are displaying the prediction perfor-
mance of the most noteworthy 2-combinations of node cen-
tralities. The most predictive combination with both the
IC and WC spread models is degree and PageRank, achiev-
ing great prediction performance as high as R? = 0.983.
The worst predictive combination in terms of IC but best
in terms of WC is PageRank and betweenness. The largest
difference in prediction performance between IC and WC
is apparent when analysing the PageRank and betweenness
combination.

RFR - combination of 3 centralities

The two most notable heatmaps that were generated from
using combinations of 3 node centralities are shown in Fig-
ure[7}] From the left heatmap we can see that increasing
p of the spread model in small graphs increases the pre-
diction performance. Furthermore, we observe that the
WC spread model in combination with 3 node centralities
predicts the total information spread best. In fact, in the
right heatmap of Figure E you can see we achieve an R>
score of 0.985 for N = 7 and spread model WC.

6.2 Small-to-medium preferential attachment
graphs

The results in this section are based on data sets for graphs

generated with preferential attachment. These data sets

have been generated with I € {200,500, 1000} spread rep-

etitions and M € {200,100, 50, 25} mapped on graph size

N € {50,100, 200,400} (e.g. 200 graphs of 50 nodes).

The values for M have been chosen such that the total
samples in the data sets are equal across the data sets
(M % N =10000). The number 10000 was chosen because
capping the maximum number of data samples consid-
erably reduced computation time on these larger graphs
(most notably when applying the spread models). Fur-
thermore, in the following section we will show that no
more than 10000 data samples are necessary in order to
obtain usable prediction performance data.
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Figure 5. Heatmaps showing the prediction

performance of single node centralities in small
graphs. Parameters: I = 1000, IC probabilities: p €
{0.01,0.05,0.1,0.15}, N € {6,7,8,9}

Data analysis.

Similarly to the small graphs, we can confirm from the re-
trieved data sets that there is again a correlation between
the centralities and the information spread (see Figure.
We see a few differences when we compare these scatter
plots to those in Figure[d The first thing that catches the
eye is how the Katz centrality loses its correlation with
estimated spread. Why this happens is explained later.
Moreover, the other scatter plots have become more dense
and have a more slim and curvy shape.

Furthermore, within the context of (randomly) generated
large graphs, we plotted learning curves to estimate the
necessary number of data samples. In the long term, this
number will save us time as we can limit the necessary
computations according to this number. In Figure in
the appendix we show the learning curves for each node
centrality, each on the same 50 graphs of size 200, with
an IC spread probability of 5%. From this figure we can
see that increasing the training set size does not increase
the cross-validation score at around 2000-3000 samples.
Nevertheless, all the heatmaps in the following section are
generated using 10000 samples per data set. The poor
cross-validation score for Katz is explained later.



degree, katz

0.83 0

082 0

Ao N B U
AL
DO N
pagerank, pagerank,
closeness

Figure 6. Heatmaps showing the prediction per-
formance of the most noteworthy 2-combination
of node centralities in small graphs. Parameters:
I = 1000, IC probabilities: p € {0.01,0.05,0.1,0.15},
N € {6,7,8,9}

Prediction performance.

Switching context from small to medium size graphs, we
similarly analyse the prediction performance of centralities
and combinations thereof (see Section [6.1]).

RFR - Single centrality

We first take a look at the R? scores of single node central-
ities. These numbers are depicted in Figure EI There are
a couple of things that we can quickly observe from these
heatmaps. Firstly, the predictive performance of the Katz
node centrality (given its method parameters) is only suf-
ficient for graphs of size N < 100. The Katz values of each
node are all equal when increasing the graph and thus no
predictions can be made from that data. This trend may
be due to the fact that Katz is more suitable for directed
acyclic graphs [14].

Furthermore, we observe that for all other centralities (dis-
regarding Katz) have very high highs in the context of
most IC probabilities and, especially, WC. The IC spread
model is less predictive of the total spread than WC as we
can see from the figure.

Finally, we see a yellow or light-blue area when increasing
N and p, indicating bad prediction performance. This is
due to the fact that for each node, there was almost always
a complete cascade or a near-complete cascade. This is
very likely given the high probability and the number of
possible neighbours in larger graphs. It is now that we can
see the effect of the WC spread model, which counters the
property of IC causing complete cascades (also explained

in Section [2.1)).

RFR - combination of 2 centralities

The heatmaps in Figure [I0] that result from combining all
centralities look very similar. The combination degree and

degree, pagerank,
pagerank, betweenness,
betweenness eigenvectar

LN 0.85 0.867 0.865

O 088 0.87 085 O

M
Q075084 083 081 0
o9 0320790750
N W
& P e P
P p
Figure 7. Heatmaps showing the prediction

performance of three node centralities in small
graphs. Parameters: I = 1000, IC probabilities: p €
{0.01,0.05,0.1,0.15}, N € {6,7,8,9}
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Figure 8. Scatter plots of 50 graphs of size 200. IC
is applied on each node from all graphs with I = 200 rep-
etitions. A correlation between the total estimated spread
and the centralities is evident in these plots.

PageRank performs best (again). Perhaps not surprising,
the power of a combination of centralities does not help in
increasing the prediction performance when (near) com-
plete cascades are occurring.

RFR - combination of 3 centralities

Figure [[1] shows the prediction performance heatmaps of
the most two most noteworthy combinations. It is worth
mentioning that the R? scores slightly increase, compared
to when combinations of two centralities are used. Fur-
thermore, the WC spread model again outperforms IC in
most instances, especially when p and N increase. Finally,
the combination as used on the right of Figure shows
improved prediction performance for instances where com-
plete cascades occur (when p and N both increase). This
is remarkable, because the only difference in combination
is the Katz centrality versus degree and previously we saw
that Katz did not predict well for large N.

6.3 Differences between RFR and KNN

Now that we have seen the different centralities and their
impact on prediction performance, it is time to see what
difference a Machine Learning model can make. On the
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small-medium sized graphs. Parameters: [ =
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first page of the Appendix you can find heatmaps that are
generated using KNN. We find that, while there are minor
differences in R?, the same conclusions for the centralities
hold.

7. CONCLUSION

In this research we have shown which node centralities (or
combinations thereof) are particularly predictive of the to-
tal estimated information spread and which are not. We
have done this by employing the IC and WC spread mod-
els over each node in sufficiently many small-to-medium
graphs generated using the Barabasi-Albert random graph
generation model and all non-isomorphic graphs of size
6 < N <9. Finally, the Random Forest regression learn-
ing method and k-Nearest Neighbors regression make pre-
dictions on the total estimated information spread using
10-fold Cross-Validation, resulting in R? scores, the cho-
sen metric for prediction performance.

Small graphs.

We showed that the degree and closeness centralities work
particularly well (individually) on small graphs, using IC.
PageRank is a great predictor of influence spread in small
graphs using WC. This is in line with the results of .
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Figure 10. Heatmaps showing the prediction

performance of the most notable combination
of 2 node centralities in small-medium sized
graphs. Parameters: I = 1000, IC probabilities:
p € {0.01,0.05,0.1,0.15}, N € {50,100, 200,400}, M €
{200, 100, 50, 25}

The best combinations of two centralities on small graphs
are degree & PageRank and PageRank & closeness, for
both IC and WC. A combination of three node central-
ities that predicts the influence spread best is degree &
PageRank & betweenness for both IC and WC, whereas
the combination PageRank & betweenness € FEigenvector
performs worst for IC, but is tied best for WC.

Small-to-medium graphs.

In the context of small-to-medium graphs we showed that
degree, pagerank and closeness perform best for IC. Fur-
thermore, we observed that the Katz centrality is a bad
predictor for larger graphs, as this centrality is more suit-
able for directed acyclic graphs. Equally important, the
heatmaps depict poor performance when both N and IC
probability p grow. This is due to the likeliness of a (near)
complete cascade, causing insufficient correlation between
the centralities and the influence spread.

Moving to combinations of two centralities, we showed
that degree & PageRank again works best for both IC and
WC. Combining the centralities degree & PageRank € be-
tweenness PageRank € betweenness € Katz result in the
best prediction performance for IC and WC.

IC versus WC.

The heatmaps show that WC outperforms IC in most
cases. These spread models were solely used for compar-
ison reasons; which spread model to use remains context
specific.

The best predictors.
Generally speaking, using the combination degree & PageR-
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Figure 11. Heatmaps showing the prediction

performance of the three node centralities in
small-medium sized graphs. Parameters: [ =
1000, IC probabilities: p € {0.01,0.05,0.1,0.15}, N €
{50, 100, 200, 400}, M € {200, 100, 50, 25}

ank & betweenness as influence spread predictor will result
in the best prediction performance. The highest R? score
that we were able to obtain using this combination was for
large graphs, using WC: 0.989

8. FUTURE IMPROVEMENTS

The size and number of graphs used in this research was
limited due to the relatively short duration of the research.
It might be interesting to apply the same method to larger
graphs or perhaps even real-life graphs obtained and anony-
mized from Facebook. Data sets for these real graphs al-
ready exist [12].

The approximation of real life scenarios could potentially
be improved by not just considering single seed nodes, but
more seed nodes at a time, as it is common for market-
ing strategists to inject an advert in more than one place
within a network.

Additionally, it might be interesting to work with more,
less trivial node centralities. Examples of such centrali-
ties are: k-shell, LocalRank, Collective Influence and Non-
backtracking. A comparison and summary of such central-
ities is provided in [8].
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APPENDIX

Heatmaps generated using the KNN regression method,
and 1000 repetitions are used for the

6 035

g 0

a
@

& 080
N 7 057

g 081

6 047

& 060

B,

<05

degree

betweenness

031 025 010
038 032 026

0.43 040 036

pagerank

0.59 085 052
062 057 048

065 057 0.50

degree,
pagerank

betweenness,
gigenvectar

062 060 060
058 054 052

065 061 056

071

07

075

0.6

0.60

0.54

0.59

0.57

0.68

071

spread models.

doseness

0.90 089

kaiz

0.57 0.56
0.57 049

0.61 053

eigenvector

0.49 047 048
0.55 050 045

0.58 053 047

pagerank,
betweenness

0.80 0.80 083
078 078 076

0.79 076 Lk

degree,
doseness

94 080

94 088

doseness

100

200

400

50 84 0a9
100
200 014 010 008 000 014
400 002 003 005 0.50 001
I o "l &
P oo N -.'.:E"

pagerank

100
200

400

degrese,
closeness

pagerank,
closeness

pagerank,
betweenness




N =200, IC = 0.100, spread reps = 500, closeness

1.0
) T
e e
09 08
08
% 08
07
07 - Training score 0.6
—— Cross-validation score
0 2000 4000 6000 8000

Training set size

N =200, IC = 0.100, spread reps = 500, degree

10
09 08
x 08 08
07
07 === Training score
= G -validati
ross-validation score 06
0 2000 4000 6000 8000
Training set size
N'= 200, IC = 0.100, spread reps = 500, katz
IS O —— 10
075 =
0.50 09
025
o —=~ Training score
& 000 —— Cross-validation score | 08
-0.25
e [\rw_,_,_——___._ .
-075
0 2000 4000 8000 8000

Training set size

N =200, IC =0.100, spread reps = 500, betweenness

=== Training score
—— Cross-validation score

0 2000 4000 6000

Training set size

8000

N =200, IC = 0.100, spread reps = 500, eigenvector

=== Training score
—— Cross-validation score

o

2000 4000 6000

Training set size

8000

N =200, IC =0.100, spread reps = 500, pagerank

—== Training score

— Cross-validation score
0 2000 4000 6000
Training set size

8000

Figure 12. Learning curves for each node central-
ity , each on the same 50 graphs of size 200, with a IC
spread probability of 5%. From top to bottom, left to
right: closeness, betweenness, degree, EigenVector, Katz,
PageRank
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Figure 13. Scatter plots showing the change in

spread with graph size N as variable
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Figure 14. Scatter plots (betweenness on the hori-
zontal axis and degree as hue) showing the change
in spread with spread probability (and model)
as variable. The bottom right plot shows the
Weighted Cascade model.
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