
GPGPU Verification: Correctness of Odd-Even
Transposition Sort Algorithm

Yernar Kumashev
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

y.kumashev@student.utwente.nl

ABSTRACT
With the increasing popularity of concurrent program-
ming, many parallel algorithms have been proposed, that
are not yet verified. The use of unverified parallel pro-
grams in production can result in wrong outputs from
the programs leading to undesired situations. This paper
discusses the verification of data race freedom and func-
tional correctness of one of the parallel algorithms, the
Odd-Even Transposition Sort algorithm, that was not yet
verified to the best of our knowledge. The first step is
to use Permission-Based Separation Logic supported by
verification tool VerCors, to verify that the algorithm is
data-race free. The Permission-Based Separation Logic
is an extension of Hoare logic and Separation Logic that
helps to reason about computer program correctness with
the use of pre/post conditions. The next step is to ver-
ify the functional correctness of the algorithm, meaning
that it outputs the sorted input array. The verification of
functional correctness is achieved by adding more anno-
tations to the Permission-Based Separation Logic annota-
tions used to prove data-race freedom.

1. INTRODUCTION
In the fast-paced world, it’s no longer performance-wise
sufficient to run algorithms on a single CPU. Inputs to
functions are enormous and more efficient algorithms are
required. Parallel programming is an excellent solution
due to the fact that the single task is split into many
sub-tasks and executed simultaneously on many cores of
GPUs1. Such efficient task management helps to achieve
significant performance improvements compared to having
a single processor running tasks in sequential order. An ex-
cellent example of significant performance improvements
achieved with the use of parallel programming is the paral-
lel implementation of the Odd-Even Transposition Sort[7],
which is verified in this research paper. A sequential im-
plementation of the algorithm runs in O(N2) time when
the parallel implementation runs in O(N) time, where N
is the length of the array to be sorted. The importance of

1General Processing Units is responsible for splitting a
complex problem into large amount of simple tasks per-
formed simultaneously. GPUs are ideal and widely used
for graphics in computer games.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
32nd Twente Student Conference on IT Jan. 31st, 2020, Enschede, The
Netherlands.
Copyright 2020, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

sorting algorithms is obvious since they are used not only
in almost every web application but in other algorithms
as well, such as search and merge algorithms. Therefore,
it is important to verify the correctness of parallel sorting
algorithms. This research aims to verify the absence of
data races2 and functional correctness3 of the Odd-Even
Transposition Sort. The algorithm will be verified using
deductive program verification, which is a verification ap-
proach where the source code is appended with pre/post
conditions. Pre/post conditions added to the code are
based on Permission-Based Separation Logic[1] supported
by VerCors[5]. The VerCors tool and the Permission-
Based Separation Logic are explained in more details in
Section 2.4.

2. BACKGROUND
This section gives background information about General
Purpose GPUs. In addition, it explains in more details
the parallel implementation of the Odd-Even Transposi-
tion Sort. Finally, there is a brief discussion of the VerCors
tool and its logic.

2.1 General Purpose GPUs
If a programmer writes any code in any programming lan-
guage, it’s most likely the written code will run on CPUs
(Central Processing Units), due to low popularity of con-
currency support by programming languages because of
inheritance anomaly4 [12]. However, the CPUs are not the
only processors that can execute code on the computer.
There are also Graphics Processing Units (GPUs) that
were designed to provide high-quality graphics on com-
puters since they were very cheap and able to manipulate
massive data processes in a short time due to its ability to
execute commands in parallel. Eventually, people started
using GPUs for other programming tasks. Such popularity
of GPUs in the computer industry developed a new area
of GPGPU(General Purpose GPU) programming. Only a
few popular programming languages support GPU pro-
gramming, such as OpenCL, CUDA, Halide. OpenCL
stands out compared to other languages, because it’s open-
source, meaning it’s free and anyone can write and run
code on any computers and hardware vendor-independent,
unlike CUDA that was created by NVIDIA and works only
on NVIDIA hardware. Only the OpenCL GPU kernel
programming model will be explained since the CUDA

2Data race occurs when 2 or more threads access the same
memory location in shared memory simultaneously, when
at least one of them has a write permission, leading to
memory corruption.
3Functional correctness in this research means that the
algorithm returns a sorted array.
4Inheritance anomaly is the result of conflicts that occur
often between inheritance and synchronization constraints
of a concurrent object.

1

Figure 1. Memory layout of OpenCL GPU

model is roughly identical[3]. The memory layout is il-
lustrated in Figure 1. A kernel is an instruction to be
executed by work groups. A work group consists of work
items (threads). Threads have access to private memory,
that other threads can’t access and also to the work group
memory (local memory), just like other threads inside of
that work group. Data in the global memory are accessi-
ble by all the threads running the kernel. A thread has
access to the unique thread id, that allows it to act in-
dividually. The synchronization between threads can be
achieved using barriers, such that each thread waits until
all other threads reach the same barrier.

2.2 Odd-Even Transposition Sort Algorithm
Odd-Even Transposition Sort is a parallel algorithm with
O(N) run-time complexity. It uses the same technique
as Bubble Sort by swapping 2 neighbouring elements in
the array if they are in the wrong order. However, multi-
threading is not supported by the Bubble Sort algorithm.
For parallelizing Bubble Sort the odd and even phases are
required where:
• Odd Phase: Compare every odd element with the next
element in the array and swap if it is in the wrong order.
• Even Phase: Every even element is compared with the
next element and swapped if it is in the wrong order.
Both phases alternate until no more swaps are made. In
each iteration every pair of elements are compared and
swapped by threads. Figure 2 illustrates how the algo-
rithm sorts the array of size 8.

2.3 Parallel implementation on GPUs
Algorithm 1 shows the pseudo-code of the parallel imple-
mentation of the Odd-Even Transposition Sort. This al-

Algorithm 1 Parallel Odd-Even Transposition Sort Al-
gorithm

1: function Parallel-OETS(int[] arr, int tid)
2: isSorted = false
3: while isSorted == false do
4: isSorted = true
5: if arr[tid ∗ 2] > arr[tid ∗ 2 + 1] then
6: swap arr[tid ∗ 2] and arr[tid ∗ 2 + 1].
7: isSorted = false

8: Barrier(tid)
9: if arr[tid ∗ 2 + 1] > arr[tid ∗ 2 + 2] then

10: swap arr[tid ∗ 2 + 1] and arr[tid ∗ 2 + 2].
11: isSorted = false

12: Barrier(tid)

Figure 2. Odd-Even Transposition Sort algorithm
illustration
Every red line in each step indicate a thread that compares 2
values on top of it and swaps them, if they are out-of-order

gorithm will be executed by exactly half the size of an
input array threads. The memory access by a thread de-
pends on the thread id. Synchronization between threads
is achieved using Barriers. Barriers can be found in the
pseudo-code in lines 8 and 12 since threads must wait for
other threads to be finished in the current phase and only
when all threads reached Barrier, they can proceed to the
next phase. Even and Odd phases are depicted in lines
5-7 and 9-11, respectively. In every Odd-Even iteration,
the isSorted Boolean variable is set to true and if any
swaps were made during the phase, this variable is set to
false, meaning that another Odd-Even iteration must be
executed. When no swaps were made, the algorithm ter-
minates, returning the sorted array.

2.4 VerCors
VerCors is a tool for static verification of concurrent pro-
grams. Static verification means that it does not execute
the source code of the input program it is verifying, but an-
alyzes if all the specified requirements are satisfied by the
program. VerCors supports subsets of high-level languages
like Java, C, OpenCL, OpenMP, PVL. PVL (Prototypal
Verification Language) is a toy language that was made for
VerCors to prototype new verification features. VerCors
can be used to verify that the algorithm is data race free
and functionally correct. The logic behind VerCors verifi-
cation is based on Permission-Based Separation Logic and
can be achieved by adding annotations to the program.
Permission-Based Separation Logic is an extension of the
Hoare logic[8] and Separation Logic[13] made for reasoning
about computer program correctness.To prevent a thread
from invalidation of properties of other threads, a strong
notion of ownership in the form of permission is used in
Permission-Based Separation Logic. Reading from or writ-
ing to shared memory for each thread is possible only if
they have permissions to do so. Permissions can be spec-
ified using ”write”/”read” keywords or with any decimal
between 0 and 1 (excluding 0 and 1) for a read permis-
sion and with 1 for a write permission. Explicit ownership
handling guarantees the data-race freedom and memory
safety of the program.
List 1 illustrates a sample program written in PVL to show
how Permission-Based Separation Logic handled in Ver-
Cors. Given class Counter with integer property val and
a function incr that increases the val by given number n,
with 3 pre/post conditions (Lines 4-6 in List 1). The first
annotation is a pre-condition, specifying that the thread

2

can call this function only if it has a write permission.

List. 1. VerCors Permission-Based Separation
Logic

1 class Counter {

2 int val;

3 /*

4 requires Perm(this.val, 1);

5 ensures Perm(this.val, 1);

6 ensures this.val == \old(this.val) + n;

7 */

8 void incr(int n) {

9 this.val = this.val + n;

10 }

11 }

The second annotation is a post-condition, ensuring that
the thread who made the call still has a write permis-
sion when the function terminates. The final annotation is
another post-condition, checking that the val was indeed
incremented by n. Checking the program with VerCors
compiler without all 3 annotations will result in ’Assign-
mentFailed’ error. If each thread has correct permission
throughout the whole program, that means the program
is data race free. In this example, the first 2 annotations
handle permissions correctly resulting in data race free-
dom verification. The last annotation verifies the func-
tional correctness of the algorithm, by specifying how ex-
actly the value has changed.
Ghost variables play an important role in the verifica-
tion of the functional correctness. We use ghost variables
to explicitly keep track of program history. They are part
of the verification and not the program. The proof of
functional correctness is achieved first on ghost variables,
then ghost variables are related to concrete variables in
the program.

3. METHODOLOGY
3.1 Research Questions
The research aims to answer 2 research questions.

1. How to prove that the Odd-Even Transposition Sort
algorithm is data race free?

2. How to prove the functional correctness of the Odd-
Even Transposition Sort algorithm?

3.2 Approach
For verification of the data race absence in the Odd-Even
Transposition Sort algorithm, the VerCors verification tool
is used. The pseudo-code of the parallel implementation
of the algorithm illustrated in Algorithm 1 is converted
to PVL. To verify that the algorithm is data race free,
the PVL code is augmented with pre/post-conditions in
Permission-Based Separation Logic and successfully ver-
ified with VerCors verifier. The verification of the func-
tional correctness can be achieved by adding more annota-
tions to already exiting annotations written to verify data
race freedom.

4. ALGORITHM VERIFICATION
In the following paragraph, the verification of data-race
freedom and functional correctness of the algorithm is de-
scribed. Small code snippets will be used to have a better
understanding of verification steps.

4.1 Data-Race Freedom
To prove that the algorithm is data race free, the read and
write permissions need to be specified for each thread, so
the situation when 2 or more threads modify the same
shared memory location does not occur. Algorithm 1 is
in-place and every thread has permissions to both read
from and write to 2 elements in shared memory location
during each phase, therefore we don’t use read permis-
sion at all. A number of threads needed for sorting an
input array equal to half the length of the input array, be-
cause each thread during even or odd phase has access to 2
shared memory locations. Each thread has a unique iden-
tifier tid that allows all threads access and modify different
elements in the input array. The sample PVL code with
annotations specifying permissions for threads is shown in
List 2.

List. 2. Permission scheme for data-race freedom
verification.

1 /*

2 loop_invariant tid*2 < arr.length ==> Perm(arr[tid

*2], write);

3 loop_invariant tid*2 +1 < arr.length ==> Perm(arr[tid

*2+1], write); */

4 while(!isSorted){

5 isSorted = true;

6 //even

7 if(tid*2+1 < arr.length && arr[tid*2] > arr[tid

*2+1]) {

8 int temp = arr[tid*2];

9 arr[tid*2] = arr[tid*2+1];

10 arr[tid*2+1] = temp;

11 isSorted = false;

12 }

13 barrier(fwd) { /*

14 requires tid*2 < arr.length ==> Perm(arr[tid*2],

write);

15 requires tid*2 +1 < arr.length ==> Perm(arr[tid

*2+1], write);

16 ensures tid*2 +1 < arr.length ==> Perm(arr[tid

*2+1], write);

17 ensures tid*2+2 < arr.length ==> Perm(arr[tid

*2+2], write); */

18 }

19 //odd

20

21 barrier(fwd) { /*

22 requires tid*2+1 < arr.length ==> Perm(arr[(tid*2)

+1], write);

23 requires (tid*2+2 < arr.length) ==> Perm(arr[tid

*2+2], write);

24 ensures tid*2 < arr.length ==> Perm(arr[(tid*2)],

write);

25 ensures tid*2+1 < arr.length ==> Perm(arr[(tid*2)

+1], write); */

26 }

27 }

The if-statement for odd phase (Line 20 in List 2) is skipped
due to it’s complete equivalence to if-statement in even
phase with only difference in a reference to elements in the
shared memory. During the even phase, each thread has
a write permission to arr[tid*2] and arr[tid*2 +1] (Lines
2-3) where arr is the input array. This annotation is writ-
ten as loop invariant5, since thread needs to acquire the
same write permission that it had when entering the loop
iteration, when loop iteration ends. In the odd phase,
each thread loses write permission to arr[tid*2], but still

5Invariant that must hold on every iteration of the loop.

3

Figure 3. Permission distribution over threads.
Illustration of thread allocation for 4 threads in an array of
length 8. This figure demonstrates what elements each thread
has access based on its tid, depending on the phase its in. Wi
represents thread with tid equals i that has write permissions
for 2 elements. Each thread is depicted with a different colour.

has a write permission to arr[tid*2 +1] and gains new
write permission to arr[tid*2 +2] (Lines 16-17), therefore
we update the permission scheme in the barrier. Barriers
are used in the algorithm for synchronization, so when the
threads that are finished with their tasks early can wait for
other threads to finish. With the help of the first barrier
(Lines 13-18 in List 2), the permissions of the threads are
updated by shifting indicators one position to the right,
preparing threads for the odd phase. The second barrier
(Lines 21-26 in List 2) is needed to shift the indicator one
position to the left, so when the even phase starts, there
is no conflict and each thread has access to the right el-
ements in the shared memory. Figure 3 visualizes thread
permission pattern in more details. Boundary checks of
indicators are important and taken into account since as
shown in Figure 3, when the input array has even length,
the last thread is idle during the odd phase. The absence
of boundary checks will invalidate verification.

4.2 Functional correctness
To verify functional correctness of Odd-Even Transposi-
tion Sort algorithm, we need to verify that the algorithm
returns a sorted array when it terminates. For verifica-
tion, the concept of inversion[6][p. 41] is used. Inversion is
one way of measuring the level of disorder in an unsorted
array. Given input array arr inversion count for an ele-
ment at index i is the number of smaller elements from
arr[i+1] to arr[arr.length-1]. Inversion is an array that
contains the inversion count for all elements in the input
array. The following equation is how the inversion array
can be found:

∀i. 0 ≤ i < |xs|
∑

(∀j. i < j < |xs| (xs[j] < xs[i])? 1 : 0)

For example, for the input array in Figure 1 ([2, 1, 4, 9, 5,
3, 6, 10]), inversion is [1,0,1,3,1,0,0,0]. It can be counted
that the number 9 at index 3 has inversion count 3, be-
cause there are 3 numbers (specifically 5,3,6) smaller than
9 to its right, and number 6 at index 6 has inversion count
that equals 0, because there are no smaller values to its
right. Figure 4 displays the initial inversion sequence of an
input array and then the updated inversion sequence after
odd phase and even phase. If we observe how the inversion
sequence is changing after each step, it can be concluded
that when the inversion count for an element equals 0 then
there is no bigger number to its right. Another observa-
tions is that if sum of all numbers in inversion sequence

Figure 4. Example inversion change after even and
odd phases.

equals 0 then all the elements in the input array are in the
right order. Finally, if isSorted equals true meaning that
the algorithm is terminated then the intSum6 of inversion
sequence equals 0. These observations provide 3 different
properties that need to be verified to prove the functional
correctness of the Odd-Even Transposition Sort algorithm.
The following steps are needed to verify the algorithm:

1. Define ghost variables to store the history of values.

2. Define functions to update the ghost variables.

3. Prove observed properties over the ghost variables.

4. Relate ghost variables with concrete variables in the
program.

Ghost variables.
The first ghost variable is a sequence named hist seq that
stores the same elements in the same order as in the in-
put array. This ghost variable is mainly created to keep
the history of the input array and it is updated together
with the input array, so there is no necessity in helper
function. The second ghost variable stores inversion count
for each element in an inversion sequence. Every element
with index i from 0 to arr.length from the input array
has its inversion count stored in inversion[i]. Updating
inversion sequence is more complicated compared to up-
dating hist seq, therefore 2 functions were created: one to
count the number of inversions for a single element and an-
other one to count inversion count for all elements in the
array with the help of the first function. The first func-
tion is called Count inversion and depicted in List 3. The
function receives a copy of the input array in hist seq, cur-
rIndex that tells the function from which position to start
counting inversion and i that helps to navigate through
the hist seq, because Count inversion is a recursive func-
tion. The first post-conditions in line 5-6 in List 3, verify if
the result equals 0 then all the numbers to the right from
the currIndex must be bigger or equal to the element at
currIndex and vice versa. If the result is more than 0
then there is at least 1 element smaller than the element
at currIndex and vice versa as specified in lines 7-8 in List
3.

List. 3. Recursive function to calculate the number
of inversion for an element at currIndex

1 /*@

6intSum is a helper function that sums all the elements in
a given sequence.

4

2 requires 0 <= currIndex && currIndex < |histSeq|;

3 requires 0 <= i && i <= |histSeq|;

4 ensures 0 <= \result && \result <= |histSeq| - i;

5 ensures (\result == 0) ==> (\forall int j; i <= j &&

j < |histSeq|; histSeq[j] >= histSeq[currIndex]);

6 ensures (\forall int j; i <= j && j < |histSeq|;

histSeq[j] >= histSeq[currIndex]) ==> (\result ==

0);

7 ensures (\result > 0) ==> (\exists int k; i <= k && k

< |histSeq|; histSeq[k] < histSeq[currIndex]);

8 ensures (\exists int k; i <= k && k < |histSeq|;

histSeq[k] < histSeq[currIndex]) ==> (\result >

0); @*/

9 static pure int Count_inversion (seq<int> histSeq,

int currIndex, int i) =

10 i < |histSeq| ? (histSeq[currIndex] > histSeq[i] ? 1

+ Count_inversion(histSeq, currIndex, i+1) :

11 Count_inversion(histSeq, currIndex, i+1)) : 0;

To update the inversion ghost variable another recursive
function is needed that calculates inversion count to all the
elements in the hist seq. This function is named Count all
inversions and shown in List 4. Similar post-conditions

as in Count inversion are specified for this function, only
difference is that in Count all inversions we apply result
checks to all the elements in hist seq instead of a single
one. Example outputs of the Count all inversions func-
tion are depicted in Figure 4.
The next step after defining functions to update ghost
variables, is to verify the properties over ghost variables.
Count all inversions function annotations help to verify
the following property:
Property 1 For any sequence xs:

∀i. 0 ≤ i < |xs| [xs[i] == 0 −→ ∀j. i < j < |xs|

hist seq[i] <= hist seq[j]]

Property 1 states that for every element in the inversion
sequence, if the inversion count of any element equals 0,
then there is no smaller element to its right in hist seq.
This property is verified in the post-condition of the cur-
rent function in line 5 in List 4 and the post-condition
that proves the same property vice versa is shown in line
6 in List 4. Another post-conditions verifying the situa-
tion when the inversion count is more than 0 are in lines
6 and 7 and were added to strengthen the verification of
the Property 1.

List. 4. Recursive function to calculate the inver-
sion count for all elements in hist_seq

1 /*

2 requires 0 <= i && i <= |hist_seq|;

3 ensures |\result| == |hist_seq| - i;

4 ensures (\forall int x; x >= 0 && x < |\result|; (\

result[x] >= 0 && \result[x] <= |hist_seq| - i));

5 ensures (\forall int x; x >= 0 && x < |\result|; \

result[x] == 0 ==> (\forall int j; x+i+1 <= j &&

j < |hist_seq|; hist_seq[j] >= hist_seq[x+i]));

6 ensures (\forall int x; x >= 0 && x < |\result|; (\

forall int j; x+i+1 <= j && j < |hist_seq|;

hist_seq[j] >= hist_seq[x+i]) ==> \result[x] == 0

);

7 ensures (\forall int x; x >= 0 && x < |\result|; \

result[x] > 0 ==> (\exists int k; x+i+1 <= k && k

< |hist_seq|; hist_seq[k] < hist_seq[x+i]));

8 ensures (\forall int x; x >= 0 && x < |\result|; (\

exists int k; x+i+1 <= k && k < |hist_seq|;

hist_seq[k] < hist_seq[x+i]) ==> \result[x] > 0);

*/

9 static pure seq<int> Count_all_inversions (seq<int>

hist_seq, int i) = i < |hist_seq| ? seq<int> {

Count_inversion(hist_seq, i, i+1)} +

Count_all_inversions(hist_seq, i+1) :seq<int>{};

Another property to be verified from the observation is:
Property 2 For any sequence xs:

[∀i. 0 ≤ i < |xs| [xs[i] == 0] −→ ∀j. i < j < |xs|

hist seq[i] <= hist seq[j]

Property 2 claim that if every element in the inversion
sequence equals 0, then for every number in hist seq there
is no bigger number to the right of it. In other words, if
intSum of inversion sequence equals 0, then the numbers in
hist seq are all in the right order. To verify this property
another function illustrated in List 5 was defined. The
function named lemma receives a hist seq as xs sequence
and inversion as a ys sequence. The post-condition in line
4 in List 5, verifies this property.

List. 5. Recursive function to calculate the inver-
sion count for each element in hist_seq

1 /*

2 requires |xs| == |ys|;

3 requires (\forall int j; j >= 0 && j < |ys|; ys[j] ==

0 ==> (\forall int k; k >= j+1 && k < |xs|; xs[j

] <= xs[k]));

4 ensures intsum(ys) == 0 ==> (\forall int j; j >= 0 &&

j < |ys|; (\forall int k; k >= j+1 && k < |xs|;

xs[j] <= xs[k])); */

5 void lemma(seq<int> xs, seq<int> ys){}

The final property is:
Property 3 For any sequence xs:

isSorted == true −→ [∀i. 0 ≤ i < |xs| [xs[i] == 0]

Due to the fact that the algorithm is terminated only if the
Boolean isSorted equals true, the property to be verified is
if isSorted equals true, then the intSum of an inversion se-
quence must be 0. This is the final property before achiev-
ing complete verification of the functional correctness of
the algorithm over ghost variables. However, because of
the short amount of time allocated for this project, the
proof of final property has not been achieved.
Relating ghost variable to a concrete program vari-
able.
The hist seq ghost variable is the only variable we can re-
late to a program variable because inversion ghost variable
is created only to achieve the verification of the algorithm
and cannot be not related to any variable in the program.
To relate hist seq with arr which is an input array, we spec-
ify both pre and post conditions such that whenever any
thread has access to a shared memory location, it verifies
if the number in the shared memory equals to the value in
the hist seq. The annotation is added as an loop invariant
and demonstrated in Line 4 in List 6.

List. 6. Recursive function to calculate the inver-
sion count for each element in hist_seq

1 /*

2 loop_invariant Perm(arr[tid*2], write);

3 loop_invariant Perm(arr[tid*2+1], write);

4 loop_invariant (\forall* int i; 0 <= i && i < arr.

length/2; hist_seq[i*2] == arr[i*2] && hist_seq[i

*2+1] == arr[i*2+1]); */

5 while(!isSorted){...}

5

5. FUTURE WORK.
Due to the short amount of time assigned to this paper,
some steps still need to be taken to prove the functional
correctness of the algorithm. Currently, Property 3 is un-
touched and it is one of the hardest properties to prove.
The source code can be found in footnote7. The func-
tion to update inversion inside the while-loop is already
written, but annotations failed verification check, so these
annotations need to be fixed and added to the program as
a loop-invariant.

6. RELATED WORK.
VerCors, PUG[10], GPUVerify[4] are few of several verifi-
cation tools that support static verification of the GPGPU
programs. However, only the VerCors tool allows to rea-
son about functional correctness of the GPGPU programs.
VeriFast[9] is similar to VerCors verification tool, with only
difference that VeriFast can only verify single-threaded
and multi-threaded programs written in Java and C.
There are many proposed parallel sorting algorithms, most
popular are Bitonic Sort, Radix Sort and Merge Sort [2].
Correctness proof of Bitonic Sort has been achieved by
proving axioms and inference rules defined based on the
observations of the algorithm.[11] However, this proof is
only formal and has not been verified using a verification
tool. To the best of our knowledge, small amount of re-
search is done regarding the parallel sorting algorithm ver-
ification. This is mainly, due to its complexity and lack of
supported features in verification tools. Despite the fact,
that there is not much work regarding parallel sorting al-
gorithm verification, there is a prefix sum verification of
data race freedom and functional correctness achieved us-
ing VerCors, that can be used to verify Radix Sort[14].

7. CONCLUSION
This paper shows the verification of Odd-Even Transpo-
sition Sort for data race freedom and functional correct-
ness. First using VerCors and Permission-Based Separa-
tion Logic the algorithm was verified to be data race free.
Next step using the same VerCors verifier, verification of
functional correctness of the algorithm was attempted, but
due to time constraints it is not finished. For verifica-
tion of functional correctness, the concept of inversion was
used and 3 properties were defined based on observations.
Property 1 and 2 were proven over ghost variables, but
Property 3 still needs to be verified. We believe that this
paper is the first attempt to verify Odd-Even Transposi-
tion Sort and the concept of inversion might be useful not
only to verify Odd-Even Transposition Sort algorithm, but
to verify other parallel sorting algorithms as well. VerCors
aims to automate the process of proof creation and this
paper is a small contribution to this goal.

References
[1] A. Amighi, C. Haack, M. Huisman, and C. Hurlin.

Permission-based separation logic for multi-threaded
java programs. Logical methods in computer science,
11(3):2, 2 2015. eemcs-eprint-25324.

[2] H. S. Azad. Advances in GPU Research and Practic.
Morgan Kauffman, 2017.

[3] E. Bardsley and A. F. Donaldson. Warps and atomics:
Beyond barrier synchronization in the verification of
gpu kernels. 2009.

7https : //figshare.com/articles/oddEven pvl/11725848

[4] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and
P. Thomson. Gpuverify: a verifier for gpu kernels.
pages 113–132, 2012.

[5] S. Blom, S. Darabi, M. Huisman, and W. Oortwijn.
The vercors tool set: Verification of parallel and con-
current software. In N. Polikarpova and S. Schneider,
editors, Integrated Formal Methods, Lecture Notes in
Computer Science, pages 102–110. Springer, 2017.

[6] T. H. Cormen, C. E. Leiserson, and C. S. Ronald
Linn Rivest. Introduction to Algorithms. The MIT
Press, 2009.

[7] A. N. Habermann. Parallel neighbor-sort (or the glory
of the induction principle). Carnegie Mellon Univer-
sity, 1972.

[8] C. A. R. Hoare. An axiomatic basis for computer
programming. 1969.

[9] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels,
W. Penninckx, and F. Piessens. Verifast: A pow-
erful, sound, predictable, fast verifier for c and java.
in: Nasa formal methods symposium. pages 41–55,
2011.

[10] G. Li and G. Gopalakrishnan. Scalable smt-based
verification of gpu kernel functions. in: Sigsoft fse.
pages 187–196, 2010.

[11] H. Lutfiyya and B. McMillin. Formal generation of ex-
ecutable assertions for a fault-tolerant parallel bitonic
sort. 1991.

[12] S. Matsuoka and A. Yonezawa. Analysis of inher-
itance anomaly in object-oriented concurrent pro-
gramming languages.

[13] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. 2002.

[14] M. Safari. Formal verification of parallel prefix sum.
2019.

6

