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ABSTRACT
Nowadays, it is impossible to imagine a world without
cars. However, the widespread use of cars has several
negative implications, such as accidents and greenhouse
gas emissions. Recent scientific advances have introduced
cooperative autonomous driving (CAD), which could al-
leviate these issues through danger-anticipation and fuel-
efficient driving. However, there is a variety of challenges
left before this can be fully implemented. One of these
challenges is to develop a set of rules and algorithms to
control how cars move. The research in this paper aims
to explore the possibility of basing the control process in
CAD on bird flocking behavior. A simulation was con-
structed based on the physical limitations of cars, incorpo-
rating the rules governing bird flocking to determine how
these cars act. Experiments were conducted using this
simulation to analyze the behavior and performance of cars
controlled by bird flocking rules. In situations where the
three rules are in balance, collision-free behavior is achiev-
able. Furthermore, if appended with a fourth, goal-driven
rule, flocks can travel collision-free to specified locations.
However, further research is required to determine how
this balance can be established without collisions.
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1. INTRODUCTION
It is hard to imagine a world without cars. Regardless, the
common occurrence of cars comes with a variety of nega-
tive consequences. The primary issue in traffic is safety. A
study in 2018 by the National Highway Traffic Safety Ad-
ministration has shown there have been almost 2.2 million
car crashes in America over a span of 2.5 years. Moreover,
in 94% of these cases, the driver was the critical reason for
the crash [7]. Cooperative Autonomous Driving (CAD) re-
moves the human from the equation, making it a potential
solution to this issue.

Furthermore, a study by the Environmental Protection
Agency has shown that in 2017 the transportation sector
was responsible for 29% of all greenhouse gas emissions.
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Cars make up 59% of this sector and are therefore the
primary source of greenhouse gas emissions in traffic [5].
Studies have already shown that the implementation of
CAD can contribute to the reduction of these emissions [4].

Moreover, roads are not always able to handle the high
number of traffic, resulting in congestion. Time spent in
traffic jams is wasted time and therefore costs a lot of
money [8]. While traffic jams cannot be prevented com-
pletely, less abrupt actions and better anticipation on ac-
tions could reduce the probability of congestion. This can
be achieved by the implementation of CAD.

Research into CAD has been ongoing since the 1980s [8].
However, there are still a lot of challenges left before CAD
can be fully deployed. The remaining challenges can be
broken into four categories: technical, non-technical, so-
cial and policy [8]. One of the technical challenges is con-
trol, which involves specifying algorithms and rule-sets to
determine the actions of vehicles independent of and rel-
ative to other vehicles. Each vehicle gathers information
about its surroundings via sensors and wireless communi-
cation with other vehicles. Based on this information, the
vehicle must decide how to act in any given situation. Con-
structing procedures that can handle unpredictable envi-
ronments and perform optimally is the goal within control
challenges. To ensure that CAD is collision-free and deliv-
ers the benefits it promises, these procedures have grown
to be large sets of rules to deal with any traffic situation
that might arise.

Looking at natural phenomena, guaranteeing collision-free
behavior does not necessarily require a complicated set of
rules. A primary example of this is the flocking behavior of
birds. Each bird in a flock determines its actions based on
three rules and on the actions of its direct neighbors [13].
Not only are such bird flocks a magnificent sight to see,
rarely does a single bird fall down after colliding with an-
other. If this control process is so simplistic for birds, why
must it be so complicated for traffic? This is the question
that drives the research proposed in this paper.

1.1 Research Questions
Formally, the primary research question to be answered is:

• What is the performance of cooperative autonomous
driving when controlled by rules governing bird flock-
ing behavior?

This question will be answered by addressing the following
sub-questions:

1. What are the requirements for collision-free flocking
behavior on a two-dimensional plane using car char-
acteristics?
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Figure 1. Boid rules visualization (from left to right: Separation, Alignment & Cohesion)

2. How does car flocking perform when goal-driven be-
havior is incorporated?

2. BACKGROUND
Scientists have been fascinated by the flocking behavior of
birds since the dawn of time. However, the first empiri-
cal studies date back to the 1930s [2]. Most early stud-
ies are credited to biologists, but other fields started to
show interest from the 1970s. In 1986, Reynolds laid the
foundation for simulations of this flocking behavior [13].
Reynolds referred to such a simulation as a Boid, which is
the common term to date. In this model, control is dis-
tributed over each individual bird in the flock. Each of
these birds bases its actions on the actions of the birds in
its direct neighborhood. The resulting behavior is based
on three rules: Separation, Alignment and Cohesion [14].
Figure 1 visualizes these rules.

Separation dictates that birds should steer away from its
neighboring birds, the weight of which increases as the dis-
tance between birds decreases. Because every bird in the
flock abides this separation rule, every bird will generate
space around itself. More space around a bird means that
it has more leeway, which decreases the chance of collisions
occurring. In a balanced flock, separation forces from all
sides sum to zero, indicating that the bird is sufficiently
separated from all its neighbors.

The second rule, alignment, dictates that any bird should
adapt its direction and velocity based on its neighbors.
This prevents birds from having to make sudden moves to
prevent collisions. Moreover, without alignment, collisions
might be unavoidable, since turning speed and decelera-
tion are limited. If all birds maintain the same direction
and velocity, the separation and cohesion forces will not
change either, resulting in a balanced flock.

The primary purpose of the third and final rule, cohesion,
is to ensure that the flock stays together. It dictates that
any bird should steer towards the center of its neighboring
birds. Therefore, if at any point some bird moves away
from the flock significantly, it will be steered back towards
the flock by this rule. In a balanced flock, each bird will
be either exactly in the center of its neighboring birds, or
the cohesion force is balanced out by the separation forces.

2.1 Related Research
Bird flocking behavior has inspired several research direc-
tions. Most notability into optimization algorithms, such
as Particle Swarm Optimization [9]. Reza Olfati-Saber
has provided a theoretical framework for the use of bird

flocking in multi-agent dynamic systems [12]. This frame-
work has been the foundation for most research inspired
by bird flocking. The only previous research found that
applies these concepts to CAD was performed by Yasuhiro
Hayashi and Toru Namerikawa [6], which focused primar-
ily on basic flocking behavior.

3. METHOD
To obtain results to substantiate answers to the research
questions posed, a simulation environment will be con-
structed in steps. Experiments will be performed on this
environment to obtain these results. Each subsequent re-
search questions will require an extension of this simula-
tion. The rest of this section describes the capabilities of
the simulation environment and the corresponding exper-
iments for each research question.

3.1 Car Flocking
To answer the first sub-question, a simulation is required
that closely resembles a two-dimensional Boid. There are
two elements to this simulation: the cars and the two-
dimensional plane they reside on. The cars will be mod-
elled as circles to simplify the calculations necessary to
determine collisions. Moreover, values will be obtained
from literature for acceleration, deceleration and turning
speed. The properties of the cars will be determined by
both the physical limitations of cars as well as the limita-
tions imposed by human comfort. The actions of the cars
will be decided based on the three rules explained earlier.
Since the cars will not have a goal at this stage, the veloc-
ity will be made constant to ensure that the cars stay in
motion.

At this point, experiments will be run on the simulation to
answer the first sub-question. The amount of collisions will
be measured for several variations of the weights of each
flocking rule. Moreover, the performance will be assessed
visually, comparing the simulation to flocking behavior as
observed in birds. Throughout this iterative process, ob-
servations might shed light on additional requirements or
limitations to ensure collision-free behavior. Based on the
results of these experiments, the first sub-question can be
answered.

3.2 Goal-Driven behavior
For the second sub-question, the simulation needs to be
extended to include goal-driven behavior. For a car, the
goal is to travel from point A to point B as quickly as
possible. Naturally, in order for this to happen, the car
cannot collide in the process. Therefore, the simulation
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will be extended with a fourth rule, which steers the car
towards the goal. Like the previous rules, this rule will
have weight attached to it. Moreover, this rule can be im-
plemented in multiple ways. First, each car abides by this
fourth rule and thus steers towards the goal individually.
Second, some but not all cars abide by the fourth rule and
the rest follow due to the cohesion rule. Third, a single
leader will steer towards the goal, while the rest follow.

The extended simulation can then be used for experiments
that allow sub-question two to be answered. Starting from
the flocking situation of the previous sub-question, a des-
tination will be provided, upon which the flock will start
steering towards it. The weight distributions of the rules
will again be varied. If collisions can be prevented suffi-
ciently, other metrics will be used to compare the perfor-
mance of each implementation, such as the time required
for the flock to reach its destination and the maximum
flock size for collision-free behavior.

4. SIMULATION DESIGN
The simulation consists of a world containing a variable
number of cars, which is updated a variable number of
times per second for a variable simulation time. Note that
a higher number of updates per second increases the accu-
racy compared to reality, but also increases the necessary
computation time. The world is modelled as an infinite
plane but is initialized as a rectangle with specified height
and width. These dimensions limit the initialization space
for the cars and the visual representation of the simulation.

Collision detection is the most computationally heavy as-
pect of the simulation. Therefore, the implementation was
simplified as much as possible. Two cars are considered
collided if the distance between their mid-points are less
than the length of the car. This will underestimate colli-
sions around the corners of the car, while overestimating
collisions to the sides of the car.

4.1 Car
There are two important aspects to consider for the model
of the car: appearance and movement. The dimensions
and limitations of the car are based on the specifications
of a 2019 Toyota Camry LE [1], which is among the most
popular cars in America [11]. The following constants de-
scribe the model of the car:

• Length: 4.9 m

• Width: 1.8 m

• Wheelbase: 2.8 m

• Maximum Steering Angle: 37◦

• Steering Angle Change: 37 ◦ s−1

The distance between the front of the car and the front
wheels are modelled to be equal to the distance between
the back of the car and the back wheels, which means that
the center of the wheelbase is equal to the center of the
car length. The maximum steering angle that the wheels
can make is based on the turning radius of the Camry, but
not limited by the velocity of the car. Therefore, at higher
velocities, the model could steer sharper than physically
possible. The steering angle change ensures that the steer-
ing angle does not change instantaneously, which would
crash the car. For simplicity purposes, the steering angle
change is modelled as a constant, but can be negative for
reverse rotation.

The movement is based on the simple car model [10]. This
kinematics model represents car movement in terms of po-
sition, direction and velocity, without considering forces.
It consists of three formula that determine the change in
x-direction, change in y-direction and change in car angle
respectively. During every simulation step, these changes
are applied for a given time step, after which the velocity
and steering angle are updated according to the accelera-
tion and steering angle change respectively.

Variable attributes of the car model include maximum
velocity and acceleration. While the possible values of
these attributes are limited by the specifications of the
Camry, these limitations are not enforced in the simula-
tion. Therefore, when performing experiments, reasonable
values for these variables must be provided. Other vari-
able attributes are the initial position, direction, velocity,
acceleration, steering angle and steering angle change of a
car.

4.2 Flocking
As described in section 2, flocking behavior can be achieved
by combining three rules. In the simulation, the effect
of each of these rules is modelled as a vector. The vec-
tors resulting from the three flocking rules are based on
the positions and directions of the six nearest neighboring
cars. Research has shown that birds use the topological
distance over metric distance to determine their neigh-
bors [3]. Therefore, in the simulation, the same is done.
The vectors used are always determined with respect to
the car. Therefore, the point of origin is always the posi-
tion of the car.

The separation vector is the sum of the separation forces
that a car experiences from its neighbors. The direction
of a separation force is equal to the direction from the
neighbor to the car. The magnitude of this force is the
inverse of the distance between the neighbor and the car.
Therefore, shorter distances result in a larger separation
force. Every force has equal weight in the summation,
because the inverse function already ensures that shorter
distances carry exponentially higher weight than longer
distances.

The alignment vector is the sum of the directions of the
neighbors. The direction of a car is modelled as a vector
with length one. Therefore, when summing these direc-
tions, each neighbor carries equal weight. Moreover, if all
neighbors face the same direction, the magnitude of the
resulting vector will be maximal, increasing its weight rel-
ative to the other flocking forces.

The cohesion vector originates at the car in question, end-
ing in the average position of its neighbors. Each neighbor
has equal weight in this average position. Note that the
magnitude of this vector by itself is high relative to the
other two flocking vectors.

The weighted sum of these three vectors is calculated,
which results in a vector signifying the direction a car
should move. The smallest angle between this target direc-
tion and the current direction the car is steering towards
is calculated, which corresponds to either a clockwise or
counterclockwise rotation of the steering angle to reach
the target direction. Note that the direction of the wheels
is used instead of the direction of the car in the calcula-
tion of the smallest angle. This not only ensures that the
target direction is reached as soon as possible, but also
damps how much a car will oversteer.

4.3 Goal
The goal is modelled as a single point in space. There

3



can only be at most one goal at any given, which all cars
will travel towards. Since it is inconvenient and unnec-
essary for a car to occupy this point exactly, a car will
be considered to have reached the goal when it is within
one car length of that point. Furthermore, since cars will
arrive at the goal in a flock, it is infeasible for every car
to come within one car length of this point. Therefore, a
car will also have reached its goal if any of its neighbors
has reached its goal. As a result, only one car of a flock
must come within one car length of the goal, after which
the entire flock will have reached the goal.

Goal-driven behavior is modelled analogously to the imple-
mentation of the flocking rules: as a vector. For a specific
car, the goal vector originates at the position of this car
and ends at the goal. Therefore, goal-driven behavior is
stronger as the distance to the goal increases. This vector
is incorporated into the weighted sum of the basic flocking
vectors.

5. EXPERIMENT SETUP
This section describes the experiments conducted on the
simulation. Four experiments were conducted on a sce-
nario with basic flocking behavior only, which were re-
peated for a different scenario including a goal. The pur-
pose of the first experiment was to optimize the weight
distribution of the flocking rules. The second experiment
analyses the performance over time. The third experiment
analyses the performance for different maximum veloci-
ties. The fourth experiment analyses the performance for
different car counts.

Two performance measures are used for each experiment.
The first performance measure is the amount of collisions.
The second performance measure denotes how dense the
flock is. This is expressed as the mean squared error of
a car to the center of its flock. Note that this can never
be zero, since this would indicate that all cars occupy the
same position. The squared error is used because a coher-
ent flock is considered to take as little space as possible.
Therefore, cars that extend this space at the edge of the
flock are punished extra hard. Furthermore, this measure
should only be used to analyze performance relative to
other measurements, since the mean squared distance has
no relevance as an absolute value. Performance is mea-
sured at the end of each time step.

Because performance is dependent on the initial positions
and directions of cars, these are randomized. Therefore,
experiments consist of a number of simulations and per-
formance measures are obtained as statistics over these
simulations. This random distribution of cars allows cars
to overlap initially. Therefore, collisions can be recorded
before the start of a simulation, which must be considered
when analyzing the results.

5.1 Basic Flocking
In all experiments on basic flocking behavior, cars are ini-
tially placed in an area of 100 by 100 meters. The positions
and directions of these cars are uniformly distributed. The
initial velocity, steering angle and steering angle change
are set to zero. Each simulation in this experiment will
run for 30 seconds.

The first experiment was performed to determine a good
weight distribution for the basic flocking rules. The car
count was set to 25, each having a maximum velocity of
5.0 m s−1 and a constant acceleration of 1.0 m s−2. Every
possible combination of weights for the basic flocking rules
in the range [1, 3, 9, ..., 729] was used in 20 simulations
with 50 simulation steps per second (343 sets of 20 simula-

tions). This range was established through visual analysis.
The total amount of collisions at the end of a simulation
was used as the performance measure. From the results,
the weight combination with the least amount of collisions
on average was chosen, which was [243, 9, 3] for [separa-
tion, alignment, cohesion] respectively. The rest of the
experiments use these weights for the corresponding rules.

The goal of the second experiment is to visualize the per-
formance change over time. It uses the same scenario as
the first experiment, with the weight distribution now con-
stant. This scenario was simulated 100 times with 100
steps per second to increase the accuracy of the experi-
ment relative to the first one.

In the third experiment, the performance was measured for
different maximum velocities in the range [3, 6, 9, ..., 30].
The constant acceleration was increased from 1.0 m s−2

to 2.0 m s−2. For each possible maximum velocity, the
scenario was simulated 50 times with 50 steps per second.

The fourth experiment looks into the performance of basic
flocking behavior for various amounts of cars in the range
[10, 20, 30 ..., 100]. The rest of the scenario is equal to the
scenario described for the first experiment. The scenario
was simulated 50 times with 50 steps per second for each
possible car count.

5.2 Goal-Driven Behavior
In all experiments on goal-driven behavior, the scenario
will span an initial area of 300 by 100 meters. This area
can be split into three square sub-areas of 100 by 100 me-
ters. The leftmost of these sub-areas will contain the cars
initially, uniformly distributed, analogous to the exper-
iments on basic flocking behavior. The initial velocity,
steering angle and steering angle change are set to zero.
The goal will be placed in the center of the rightmost of
these three sub-areas. Therefore, a minimum of 150 meters
must be travelled before the goal can be reached by any
car. Each simulation runs until the goal has been reached,
after which it continues for 30 more second. Therefore,
the total simulation time varies per simulation.

The goal of the first experiment was to determine a good
weight for the newly incorporated goal-driven rule, relative
to the weights for basic flocking. The car count was set
to 25, each having a maximum velocity of 5.0 m s−1 and a
constant acceleration of 1.0 m s−2. Every possible weight
for the new rule in the range [0.1, 0.2, 0.4, 0.8, 1. 2, 4, 8]
was used in a simulation 50 times with 50 simulation steps
per second. This range was determined through visual
analysis. The total amount of collisions at the end of a
simulation was used as the performance measure. From
the results, the weight with the least amount of collisions
on average was chosen. This was 0.4, which is the value
used throughout the rest of the experiments.

The other three experiments conducted for goal-driven be-
havior are exactly the same as the three experiments per-
formed for the basic flocking behavior, replacing only the
scenario with the scenario described for goal-driven behav-
ior.

6. RESULTS
This section describes the results obtained from perform-
ing the experiments described in the previous section.

6.1 Basic Flocking
Figure 2 shows how the total amount of collisions pro-
gresses over time. As explained in section 5, the random
distribution of cars enables collisions before the simulation
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Figure 2. Cumulative collision count over time
with basic flocking behavior

Figure 3. Flocking effectiveness over time with
basic flocking behavior

starts. This is visible in beginning of the graph, where on
average 1.98 cars have collided before simulation start. As
time progresses, the amount of collisions increases. This is
another result of the random car distribution. This distri-
bution limits the possible trajectories of cars. Therefore,
in some situations, it is inevitable for cars to collide.

The graph shows a clear difference in collision count pro-
gression before and after the halfway point. This is be-
cause the cars need time to form a balanced flock, which
requires the separation and cohesion rules to be balanced
out, allowing alignment to take over and maintain that
balance. This search process also contributes to the col-
lision count. However, once this balance has been found,
collisions rarely occur. After 15 seconds, an average of
6.95 collisions have occurred, increasing to 7.01 collisions
at the end. This means that 6 collisions have occurred in
15 seconds, spread out over 100 simulations.

Figure 3 shows how the density of the flock changes over
time. Because the cars have not yet formed an effective
flock in the first 15 seconds, the measurements in the graph
do not correctly reflect how effective the flock is during
that time period. The minimum plot shows how dense
a flock can be and that a flock is able to maintain this
density over time.

However, on average, the flocks drift farther apart over
time. Moreover, the spread of data increases alongside
the mean. This can be explained by the absence of a
common goal. If cars are distributed such that there is a
large enough gap between two sets of cars, these two sets
will not share neighbors. Therefore, the sets of cars will

Figure 4. Cumulative collision count for different
velocities with basic flocking behavior

Figure 5. Cumulative collision count for different
car counts with basic flocking behavior

act independently. Without a common goal, these sets of
cars can steer away from each other. Unless the sets move
closer, the sets will never share neighbors and will continue
to steer away. However, since these cars are considered to
be one flock, the mean squared distance to the center will
increase continuously, which is what is visible in the graph.

Figure 4 shows the total amount of collisions at the end
of a simulation for different maximum velocities. Over-
all, the amount of collisions increases for higher velocities.
This has to do again with the formation of a balanced
flock. At higher velocities, cars have less time to antici-
pate trajectories of other cars, increasing the amount of
collisions that occur. Note that this is the only aspect
impacted by higher velocities. After the 15 second mark,
0.04 collisions occur on average at 15 m s−1 and 30 m s−1,
0.02 collisions at 21 m s−1, 24 m s−1 and 27 m s−1, while no
collisions occur at the remaining velocities.

Figure 5 shows the total amount of collisions at the end
of a simulation for different car counts. Additional cars
increase the average amount of collisions, because it both
increases the probability of two cars spawning on top of
each other as well as the probability of unavoidable colli-
sions due to trajectory limitation. However, an increase in
car count does not impact the amount of collisions occur-
ring after 15 seconds. Only at car counts 40 and 60 was a
single collision detected out of 50 simulations, while other
car counts were collision-free after 15 seconds.

Figure 6 shows the flocking density for different veloci-
ties. It shows that the cars drift further apart on average
as the maximum velocity increases. This is explained by
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Figure 6. Flocking effectiveness for different ve-
locities with basic flocking behavior

Figure 7. Flocking effectiveness for different car
counts with basic flocking behavior

the occurrence of separate sets of cars, as mentioned be-
fore. Higher velocities increase the distance cars can travel
within the simulation time. Therefore, there will be more
distance between these separate sets of cars, increasing the
flocking error.

Whereas an increase in velocity results in worse flocking
density, an increase in car count enables better flocking
density, which is visible in figure 7. Note that more cars
require more space regardless of flocking, resulting in rel-
atively higher errors for higher car counts on that basis
alone. This is expressed by the minimum error, which in-
creases with the car count. Moreover, this explains why
the average error increases as well. However, note how
the standard deviation stops increasing significantly with
more than 30 cars. This is due to the fact that larger car
counts decrease the chance that separate sets of cars arise.

6.2 Goal-Driven Behavior
Figure 8 shows the progression of collision counts over time
when goal-driven behavior is incorporated. Note that the
total duration of each simulation is different, depending on
the time required to reach the goal. On average, this took
36.92 seconds. The fastest simulation took 32.43 seconds
to reach the goal, whereas the slowest took 50.06 seconds.
Therefore, the fastest simulation was done after 62.43 sec-
onds. For this reason, all data after this time was excluded
from the plot.

The plot has roughly the same shape as the correspond-
ing plot for basic flocking behavior. The main difference
is found at the end of the graph. Towards the end, the
average collision count starts to increase again. This is be-

Figure 8. Cumulative collision count over time
with goal-driven behavior

Figure 9. Flocking effectiveness over time with
goal-driven behavior

cause the goal-driven force persists after the goal has been
reached, resulting in flocking behavior around the goal.
However, since a new equilibrium must be found, much
like in the initial phase, the collision count goes up. Note
that there is a delay between this change occurring and
the time the goal is reached. When close to the goal, the
goal-driven force is at its smallest. Therefore, cars passing
the goal will not immediately turn around, but will rather
stay aligned with their neighbors. However, once a car has
travelled far enough past the goal, the goal-driven force
will start forcing it to turn around. The time required for
this to happen is the delay noticed earlier.

When a goal is included, a simulation can be separated
in three phases. The first two phases coincide with the
two phases in basic flocking behavior. However, note that
the average collision count is around five now, which was
around seven before. Between 15 and 30 seconds, the av-
erage collision count increases from 5.02 to 5.11, which is
slightly more than before. However, excluding flocking be-
havior in the third phase, goal-driven behavior decreases
the amount of collisions that occur.

Figure 9 shows the flocking density over time when a goal
is included. This data was obtained from the same experi-
ment as the previous plot. Therefore, the same holds true
for the variable simulation time, as explained. Compared
to the corresponding graph for basic flocking behavior, it
is clear that goal-driven behavior completely removes the
possibility for separate sets of cars to arise. The difference
in errors is caused entirely by the random distribution of
cars initially. Cars far away from the goal will never be
able to catch up to cars close to the goal, since velocity is

6



Figure 10. Cumulative collision count for different
velocities before goal reached

Figure 11. Cumulative collision count for different
car counts before goal reached

constant, resulting in a stretched-out flock, increasing the
error.

Near the end of the simulation, when the flock starts cir-
cling around the goal, the flocking density becomes even
better. This is due to the fact that the cars lagging behind
are allowed to catch up, since the front of the flock will
turn back around towards the goal. However, since the
collision count also increases at this stage, the error mea-
surement will not be accurate beyond this point. More-
over, since cars are not required to move once the goal has
been reached in reality, behavior in this third phase will
not be further analyzed in this section.

Figure 10 shows the collision counts for different maximum
velocities measured at the point in time when the goal is
reached. With the inclusion of a goal, changes in velocity
appear to have no significant impact on the amount of col-
lisions that occur. This is explained by a side-effect of the
goal force. Generally, a flock stabilizes once the balance
between separation and cohesion has been found, allowing
alignment to be the dominating force. Since all cars in
the flock have the same goal and have to travel roughly
the same direction, the goal force will have the same ef-
fect as the alignment force. Therefore, the flock takes a
shortcut to alignment. However, the initial placement and
trajectories of cars still make collisions inevitable.

Figure 11 shows the collision counts for different car counts
measured at the point in time when the goal is reached.
The shape of the plot is comparable to the shape of the
plot of the basic flocking counterpart. For each car count,
the amount of collisions is reduced slightly in comparison.
This is because the goal force produces relatively more

Figure 12. Flocking effectiveness for different ve-
locities when goal reached

Figure 13. Flocking effectiveness for different car
counts when goal reached

favorable trajectories for the cars, preventing some of the
collisions that would otherwise have occurred. However,
as explained, the initial placement of cars makes it near
impossible to prevent all collisions from occurring.

Figure 12 shows the flocking density for different velocities
measured at the point in time when the goal is reached.
This plot further proves that goal-driven behavior com-
pletely prevents a flock from partitioning. It also shows
that the maximum velocity has no significant impact on
the density of the flock. The spread in the measurements
is causes solely by the initial positions and directions of the
cars, because cars are unable to accelerate or decelerate to
increase flock density.

Figure 13 shows the flocking density for different car counts
measured at the point in time when the goal is reached. As
before, the initial placement of cars determines fully how
dense the flock is. The increase in error as the car count
increases is due to the fact that more cars take up more
space. For lower car counts, the flocking error is small,
because there is a lot of space available for each car, de-
creasing the chance of collisions. However, for higher car
counts, the flocking error does not change significantly,
while the total available space does not change either.
Therefore, the probability for collisions increasing dras-
tically.

7. DISCUSSION
A major flaw of the simulation used in this research is the
lack of a proper controller for the car. During each time
step, a car determines which target direction it should
flock to. The control goal is to align the direction of its
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wheels with this target. However, in the current simu-
lation, the only control parameter is the steering angle
change. Moreover, this steering angle change can only be
set to a constant value, or its negative counterpart for the
opposite rotation. Furthermore, the car does not antici-
pate the change over time. Therefore, the car will oversteer
heavily and then slowly oscillate towards the target. Over-
steering is likely to contribute to the collision count and
should therefore be prevented. This requires an optimized
controller to be implemented.

For simplicity purposes, acceleration was kept constant in
the simulation used, since acceleration as a control pa-
rameter is less important and more complicated to imple-
ment relative to steering. However, with an optimized con-
troller, acceleration and deceleration could be controlled
to prevent collisions. Moreover, this would allow flocks to
increase their density, because trailing cars could catch up
to the rest, while leading cars could allow this by deceler-
ating.

The goal-driven force also requires a revision. Through-
out the experiments conducted, the distance to the goal
was kept the same. However, if this distance were to in-
crease, the goal force would increase with it. If this dis-
tance grows large enough, the resulting goal force could
completely overtake the basic flocking forces, causing cars
to ignore each other and focus solely on the goal. There-
fore, the relative weight of the goal force cannot be linear.

Another limitation of this simulation was previously men-
tioned; the maximum steering angle. A constant value is
used, based on the turning radius specified for the Camry.
However, in reality, the maximum steering angle decreases
as velocity increases to prevent the car from crashing. The
same holds true for the maximum steering angle change,
which could also crash a car if too high. It is infeasible
to incorporate these aspects into a kinematics model as
used in this research. Therefore, a dynamics model is re-
quired over a kinematics model to obtain a more accurate
representation of reality.

8. CONCLUSIONS
The three basic flocking rules suffice as a control scheme
to prevent cars from colliding. However, this only holds
true if a balance is established between the separation and
cohesion forces, while the cars are all aligned. The pro-
cess of establishing this balance is only collision-free if the
initial positions and directions of the cars are favorable.
Cars facing the same direction are likely to collide using
the basic flocking rules alone. Moreover, cars positioned
too close to each other can experience infeasible flocking
forces, putting them on dangerous trajectories. Further-
more, without an optimized controller, oversteering will
occur and serve to amplify these effects. Therefore, the
weighted sum of flocking vectors suffices once a flock is
balanced but is too simplistic to handle complex starting
positions.

The inclusion of goal-driven behavior makes it easier for
flocks to find a balance between the flocking rules. The
performance of car flocking improves as a result. The
presence of a goal decreases the amount of collisions while
searching for this balance. However, since it does not mit-
igate them entirely, further research is required to address
this issue.

Based on this research, there are several recommendations
for future research. First, the simulation environment it-
self could be improved by, for example, replacing the kine-
matics model by a dynamics model. This would increase

the reliability of the data obtained from the simulations.
Second, the control process of the cars can be improved, as
mentioned in the discussion, to further increase the per-
formance. As a result, balanced flocks will likely never
collide. Third, the transition from stationary cars to a bal-
anced flock and the behavior once the goal is reached needs
to be investigated further. Fourth, virtual walls should be
incorporated, which cars steer away from. These can be
used to model roads, serving as a basis for the simula-
tion of realistic scenarios. Some functionality was already
implemented, but progress was discontinued due to time
limitations.
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