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Abstract

Split Learning obviates data sharing in multi-center Deep Learning. This work demonstrates fea-

sibility of Split Learning for medical applications and introduces novel adaptations.

Deep Learning based models have shown to aid diagnosis, treatment and clinical workflow. But
they rely on large quantities of diverse data and ever-increasing logistical resources and expertise
often not available in single health care institutions. Furthermore, collaboration is hindered by
regulatory, logistical and ethical concerns. This renders collaboration of multiple institutions in-

feasible for most studies, and leaves medical predictive models underperforming or undeveloped.

A solution, in the form of secure multi-party computing, has only been introduced recently. It
does not require centralization of data but has yet to see adaptation in health care. Split Learning
is a novel method in which a neural network is split into sequential elements that can be either
private and distributed, or centralized, while retaining their functionality. This allows for config-
urations that do not require data nor label sharing. Feasibility and preference of this method over
alternatives, but also opportunities for innovation are highly domain dependent and has not been

researched in literature.

For the first time in literature, this work demonstrates Split Learning for clinical applications. We
demonstrate feasibility and scalability of Split Learning for medical deep learning by comparing
four major performance characteristics using four representative use cases. Additionally, we
demonstrate several opportunities for innovation employing Split Learnings modularity for han-
dling heterogeneous data, improving security and handling data streams from multiple institu-

tions.

We conclude that the Split Learning paradigm meets all requirements for clinical feasibility while
providing improved performance and reduced institution-side computational requirements com-
pared to alternative methods. further opportunities for research into beneficial adaptations for

clinical applications.

Secondly, our proposed method for handling heterogeneous data using Local Adapters shows
promising initial results but requires further investigation. We analyzed the performance cost of

increasing privacy and present Split Learning as a tool to redefine the concept of medical data.
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Samenvatting

Split Learning maakt het delen van patiéntgegevens in multicenter Deep Learning overbodig. Dit
werk demonstreert de haalbaarheid van Split Learning voor medische toepassingen en introduceert

nieuwe mogelijkheden.

Deep Learning modellen zijn nu al van grote toegevoegde waarde bij diagnose en behandeling.
Voor de ontwikkeling van deze modellen is grote hoeveelheden data, logistiek en expertise nodig
die vaak niet beschikbaar is voor individuele zorginstellingen. Bovendien wordt samenwerking
gehinderd door regelgeving en logistieke en ethische problemen. Dit maakt multicenter onderzoek
meestal onhaalbaar waardoor deze modellen niet optimaal, of iiberhaupt niet ontwikkeld kunnen

worden.

Voor Deep Learning toepassingen enkele methoden recent geintroduceerd die geen centralisatie
van data vereisen. Deze zijn echter nog niet in de praktijk gebracht in het medisch domein. Split
Learning is één van deze nieuwe methoden, hierbij word een neuraal netwerk wordt opgesplitst in
opeenvolgende elementen die privé kunnen en gedistribueerd of gecentraliseerd kunnen zijn. Dit
maakt het mogelijk modellen te trainen zonder dat data of labels gedeeld hoeven te worden.
Toepasbaarheid en hoe het zich verhoudt ten opzichte van alternatieve methoden is sterk athan-

kelijk van het domein van toepassing en is tot op heden nog voor geen domein onderzocht.

Daarom presenteert dit werk voor het eerst een toepassing van Split Learning voor medische
toepassingen. We demonstreren de haalbaarheid en schaalbaarheid van Split Learning door vier
belangrijke kenmerken te vergelijken met behulp van vier representatieve toepassingen. Daarnaast
demonstreren we verschillende mogelijkheden voor innovatie voor het omgaan met heterogene
data, het verbeteren van de beveiliging en het verwerken van gegevensstromen vanuit meerdere

instellingen.

We concluderen dat Split Learning voldoet aan alle vereisten voor klinische haalbaarheid, terwijl
het verbeterde prestaties en verminderde computationele vereisten voor de instelling biedt in ver-
gelijking met alternatieve methoden. Ten tweede toont onze voorgestelde methode voor het ver-
werken van heterogene gegevens met behulp van lokale adapters veelbelovende resultaten dat
verder onderzoek vereist. We analyseerden de effecten van het verhogen van de privacy en pre-
senteerden Split Learning als een hulpmiddel om het concept van medische gegevens opnieuw te

definiéren.
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Introduction

1.1 Motivation

Deep learning based predictive models have already shown to be of great benefit in automation
and standardization of clinical decision making in diagnostics and therapy.! Common deep learn-
ing based medical tasks include image classification?, speech recognition® and natural language
processing® based on complex, high dimensional and sensitive data such as electronic health rec-

ords (EHR), diagnostic imaging, biosensors, omics and text.

These networks rely on vast amounts of diverse, structured training data in order to converge,
reach optimal inference performance, generalize and be robust.”® However, medical sample sizes
in single institutions tend to be small, especially in less prevalent diseases and diseases with less
standardization of care.” In addition, it has been observed that the number of model parameters
can drastically improve performance with the largest models reaching in the billions of parame-
ters.® 1! This increase in depth and complexity of deep learning models requires evermore expertise

and computing power that is not available to most institutions.

Collaboration among institutions holds the key to resolve these problems by increasing the amount

of available data and its diversity, and centralizing training effort. But the required data central-

ization forms a barrier through regulatory, ethical and logistical constraints.'* ** For one, regula-

tions to protect patient privacy such as HIPAA and GDPR usually restrict even anonymized

patient data to leave the premise as anonymization alone is inadequate to prevent re-identifica-
16 In rare cases, patients could for example be identified based on disease status and scanning
17,18

tion.
region'"'®. Secondly, policy to protect institution property, or even unwillingness to share this
valuable commodity can obstruct centralized pooling of data as it reduces level of control.?
Thirdly, data often lacks the appropriate consent. Lastly, centralized solutions impose logistical
challenges that require funding and expertise such as additional file-server storage and bandwidth
requirements. This often renders multi-center studies infeasible and results in only 2.9% of pub-
lished machine learning studies to include data from multiple institutions®, leaving value in data

locked off that could have been employed to improve clinical decision making.

Methods for multi-center machine learning without data sharing have shown to solve this problem
in training models in data centers and on mobile devices?' carrying sensitive information. These

distributed machine learning (DML) methods allow for training of predictive models without



centralization of data. This lowers the entry barrier for data providers to collaborate. Thus, mit-
igates previously mentioned obstructions, while retaining the benefits of a larger, more diverse

data pool.

DML as a concept has seen applications in, for example, mobile devices.?*> However, its applica-
tion in health care is currently limited to proof-of-concept studies of a few methods. In this work
we consider one of the most recently introduced DML method for health care, namely Split Learn-
ing®, and compare it to the most popular alternative, Federated Learning®. The concept of Split
Learning is the splitting of a neural network into several sequential elements. This allows part of
the network to remain distributed, and others to be centralized. The network can then be trained
by sending intermediate network activations from distributed sources and a centralized server. In
comparison, Federated Learning aggregates locally trained models on a centralized server. When
compared, Split Learning provides interesting traits such as its modularity, identical functionality
to centralized data, low institution-side computational cost, and a fundamentally different com-

munication cost equation.

1.2 Contribution

For the first time in literature, this work demonstrates Split Learning for medical applications.

In the first part about clinical feasibility of Split Learning, we propose, discuss, and implement
novel adaptations to conventional neural networks that enable Split Learning. We then investigate
performance aspects including inference performance, convergence rate, computational efficiency,
and communicational requirements, and translate this to clinical feasibility. We do this using
several representative medical imaging tasks for a variety of scenarios such as range of participat-

ing institutions or variable dataset sizes.

In the second part, we propose, and test several adaptations to Split Learning based on observa-
tions made in the first part, to display future opportunities of the paradigm. The first proposal
aims to account for inter institutional data heterogeneity using domain adaptation. The second
improved security using alternative weight sharing strategies. And the last aims to enable making

single predictions from multiple data sources, also known as vertically partitioned data.

1.3 Outline

In this work, Split Learning is implemented, developed, applied and evaluated for different medical
tasks. Evaluation takes in account several performance factors, which are qualitatively compared
to alternatives, and translated to their meaning in health care implementations. In addition, we
propose and apply modifications to the default concept of Split Learning aimed combating data

heterogeneity, security and logistical challenges.

In chapter 2 the background of machine learning in health is discussed. It poses both the motiva-

tion as basis of reasoning for the rest of the work. First, the added value and a range of



implementations of machine learning in health care are outlined. Secondly, its inner workings will
be discussed, aimed at providing the reader with the background used in later chapters. Lastly,
challenges of machine learning implementation in health care and their link to secure multi-party

computing will be discussed.

Chapter 3 discusses secure multi-party computing and several strategies of enabling multiple in-
stitutions to collaborate without sharing their sensitive data. In the second part, distributed ma-
chine learning is introduced in combination with descriptions of several existing methods. We will
introduce Split Learning in depth and highlight features that are of interest for health care imple-

mentation specifically and the research that they would require.

Chapter 4 investigates feasibility of Split Learning in health care. It proposes the methods of
analysis for the various performance characteristics of interest on vanilla Split Learning. It de-
scribes the testbed that is created to run Split Learning experiments on. It describes in detail the
tasks, data sets, and neural network topologies that were implemented to analyze inference per-
formance, convergence rate, computational efficiency, and communication overhead for a range of
scenarios. And finally, it provides a verdict about the feasibility of Split Learning, preferent cases
for Split Learning implementation in the context of alternative methods and training on central-
ized data.

Beyond opportunities described in the previous chapter, Chapter 5 proposes, investigates, and
discusses modifications of Split Learning. These modifications include varying communication
strategies among institutions to improve privacy and a domain adaptation strategy that employs

the modularity of Split Learning to account for inter institutional heterogeneity.

A concluding chapter on both topics is provided at the very end of this work.



Machine Learning in Health Care

Machine learning is a subset of artificial intelligence (AI) that learns to perform tasks from training
data as oppose to explicit programming. In 2019, machine learning was the top area of innovation
in health care®. At the same time, health care demonstrates the greatest application challenges
for this method.?*” An understanding of both the field and the method is required to efficiently
address inhibiting factors for machine learning to progress in health care. This chapter will provide
a basis for understanding how the opportunities for innovation in health care match the capabil-
ities that machine learning can provide. We will first describe the need in health care and how
machine learning has already shown to be capable of addressing these needs. To solidify our
understanding of the capabilities of machine learning, this chapter will provide the scientific fun-
damentals to understand its strengths. Finally, we will be able to examine the key challenges that

would have to be addressed to ensure long-term success.

2.1 The promise of machine learning in health care
Machine learning is hoped to aid health care in meeting the increasing demand and complexity of
care and provide new insights to realize improvement of care. This has been enabled by develop-
ments in computing power and the huge volumes of data that are being generated. The combina-
tion of these factors has put machine learning-based solutions at the forefront of health care

innovation.

2.1.1 Rising demand for health care

Most countries are seeing their life expectancy rise, and their population age.”® These older citizens
require more health care and expect a different, more personalized health care treatment.? In
conjunction, more ailments, diseases and disorders are becoming treatable, which increases the
population suffering from chronic diseases.* Future patients will present more coexisting illnesses
and medications increasing the call for personalized medicine and making medical care more com-
plex.** All these factors contribute to a steadily increasing demand for health care*? and increasing
medical complexity. This rising demand for health care has already pushed the workload per
clinical visit beyond the time allotted per visit and can only be expected to worsen.*

2.1.2  Change of medical professions

Technological progress has changed the type of work and workload clinicians. Whereas radiologists

were once confined to two-dimensional projection images such as chest radiographs, they now

4



possess a range of complex and high-dimensional imaging modalities. Although cross-sectional
imaging such as computed tomography (CT) and magnetic resonance imaging (MRI) have enabled
more accurate diagnoses®¢, they come at a price of an increased amount of data that has to be
reviewed. Radiologists are reading an increasing number of cases with more images per case. This
abundance of data has changed how radiologists interpret images. Work has changed from pattern
recognition, with clinical context, to searching for needles in haystacks; from inference to detec-

740 and

tion. These workloads are so demanding that fatigue may impact diagnostic accuracy?®
physician shortages further exacerbate the problem, especially for radiologists in medically under-
served areas.” In the case of the diabetic retinopathy epidemic® in India, integration of these
systems has already allowed remote clinics to provide screening of fundus photographs with quality
comparable to a board of medical experts. This is especially valuable in these remote areas as

ophthalmological expertise can be lacking.***

The amount of information continues to increase in imaging, both extractable by the human eye
and extractable only by software.* The abundance and complexity have empowered, but also
challenged, medical experts in clinical decision-making. This has paved the way for the role of
computers, which extract fine information invisible to the human eye and process those data
quickly and accurately. It is not expected that AI will replace physicians in this process, but it
could empower physicians in the bulk of routine work and shift focus back to the human side of

medicine. 647

2.1.3 Systematic improvement

The appeal of cognitive automation extends beyond reduction of labor into reducing the presence
of human error. Arriving at a medical diagnosis is a highly complex process that is extremely error
prone.”® Medical imaging is a major contributor to the overall diagnostic process, but also a major
potential source of diagnostic error. Most medical diagnoses are not missed because of the technical
or physical limitations of the imaging modality, but because of image interpretation errors by

051 " result from the in-

radiologists.” Other inadvertent human errors like prescription overdoses
trinsic lack of standardization in human decision making. Whereas the overall prevalence of radi-
ologists’ errors in practice does not appear to have changed since it was first estimated in the

1960", computer based method provide handles for systematic improvement.

2.1.4 Novel opportunities

It is this systematic improvement that forms the final merit. Guided by relevant clinical questions,
powerful Al techniques can unlock clinically relevant information hidden in the massive amount
of data, which in turn can assist clinical decision making.”® * Machine learning differs fundamen-
tally from manual methods in both discovery of new features as detection of found features Manual
feature discovery by doctors consists can be empirical and make use of domain knowledge and
reasoning, whereas machine learning based feature detection can detect many features systemati-

cally. The task of reading these features is also fundamentally different. Consider the challenge of



reading electrocardiograms. Conventional feature discovery consists of understanding of the un-
derlying physiology of the heart and empirical evidence. To contrast, discovery and diagnosis
using machine learning algorithms consists of systematically analyzing every heartbeat. There are
early signs that such analyses can identify subtle microscopic variations linked to sudden cardiac
death.” Another example is voice, as it has shown to contain features that distinguish health from

56

depressed people”™ but that have been hard to quantify. Machine learning could provide objective
criteria of psychomotor retardation or more general vocal acoustic features as biomarker for men-
tal health disorders.”™® Even more profound are aims to identify or redefine subgroups in hetero-
geneous diseases using features unaccounted for by contemporary diagnostic methods.”*® These
examples are by no means extensive, but they do support the hope that machine learning will
enable better disease surveillance, facilitate early detection, allow for improved diagnoses, uncover

novel treatments, and allow for more personalized medicine.

2.2 Scientific fundamentals of machine learning
2.2.1 The field and its subsets

No single definition exists for the overarching term ‘Al’. The term is most commonly used for
algorithms that mimic functions associated with human cognitive functions like ‘learning’, ‘recog-
nizing’ and ‘problem solving’. Because this definition also includes tasks that might be considered
of trivial complexity —like finding the shortest route through a maze— it is noted that the defi-
nition of AT shifts every time we figure a piece out and we say “that’s not thinking”®'. Counterin-
tuitively, the hardest problems for Al to solve are often times the easiest for humans. These are
62

the problems that we solve intuitively but are hard to describe formally.”” Machine learning, a

subset of Al targets these problem by learning relevant features from training data.

The field itself has existed for decades and is closely related to statistics and optimization. It has
seen rapid advancements due to developments in computing power and the increase of digitalized
information in the last few years.*® The most popular machine learning technique in medicine is
artificial neural networks." These networks are computational analytical tools inspired by the
biological nervous system. A neural network consists of artificial neurons that share characteristics
with neurons in a biological brain. Like the synapses in a biological brain, neurons are densely
interconnected and act as simple processing nodes: they transmit activations based on the pro-
cessing of signals of their input. In artificial neural networks, the neurons are most commonly
organized in sequential layers, that in combination with their connectivity define the network
topology, also known as architecture. Increasing the number of layers increases the depth of the
network. It has been shown that increased depth improves expressive power and potentially per-

81165 This has caused networks to become deeper and to consist of more neurons, creating

formance.
the term “deep learning”. For image processing, convolutional neural networks (CNN) are of most
interest through their property to capture the spatial relations in an image through application of

convolutional filters.



Convolutional neural networks have also been inspired by biological processes, specifically the
connectivity pattern of the visual cortex.%4" The visual field is divided into smaller visual fields
that partially overlap and are covered by individual neurons. In fully connected networks each
neuron in one layer is connected to every neuron in the next. This increases the amount of con-
nections exponentially and renders the network prone to overfitting. Convolutional neural net-
works are a regularized version of fully connected networks that reduce overfitting. In overfitting,
predictions of the trained model correspond too closely to the training data, see figure 1. Regular-
ization improves generalization and thus performance on newly presented data. Another benefit

of convolutional neural networks is that they require relatively little preprocessing.

Underfitted Good Fit/Robust Overfitted

Figure 1: Visual examples of model fitting. Overfitted models do not generalize well for new
data.

2.2.2 Neural Network Architecture
The core strength of artificial neural networks is that they do not rely on manually-crafted fea-

tures. 6869

Consider a supervised neural network which can be described as a function that takes
data point x to make a prediction ¥y of label y. This predictive function is also called the model.
The model is comprised of millions of nonlinear neurons with adjustable weights and biases. The
weights and biases of these neurons form the parameters of the network. These neurons are struc-
tured in sequential layers such that they only allow data to be processed in one direction. The
configuration of these layers and their connections constitute the network architecture. Deep neu-

ral networks are characterized by a very large number of layers.

It is good to know that many other types of layers exist besides the fully connected and convolu-
tional layers mentioned earlier, and most commonly visualized. Some layers are trainable, others
add regularization or apply dimensionality reduction. The order and parameters of these many
layers define the earlier mentioned architecture The architecture is part of the so called ‘hyperpa-
rameters’. The search space for these hyperparameters is immense and there is no way to guar-
antee an optimal configuration. Manual design of the architectures has therefore sometimes been
called an art, rather than a science.” It is common practice, especially in medicine, to reuse an
architecture that has been shown to work on a similar problem. Alternative options are methods
for automation of the modeling process like automated machine learning (AutoML) and Bayesian

hyperparameter optimization.™



2.2.3 Training a neural network

It is the weights and biases of these neurons, the parameters, that make up the full equation and
thus the error between y and y, the accuracy of our prediction. It is therefore that the iterative
optimization of these parameters is what we call learning. This optimization process is non-trivial,
as the number of parameters in these networks often run into the millions. Brute force approaches
like a grid searches are out of the question. The basis of optimization can be imagined as traversing
the mountainous landscape in the space of weight values blindfolded. This might sound hard, but
you should at least be able to reach a valley by following the descent in the landscape or put
otherwise: reach a local minimum by following the negative gradient vector. Interestingly enough,
poor local minima are rarely a problem for large networks and they nearly always reach solutions

of very similar quality.™

One learning step consists of a forward pass, an error computation, and a backward pass. All
these steps consist of matrix operations on the high dimensional matrices called fensors. In the
forward pass a data tensor X is passed through the layers, where the output of every layer is the
input of the next. The bulk these layers use the output of the previous layer to derive represen-
tations that accumulate to contain higher semantic representations in deeper layers, this is visu-
alized in Figure 2. The final representations are provided to the last layer, usually a classifier,
that generates y, completing the forward pass.” The error between § and y is computed using a
predefined objective function also called the loss function. The objective function is used to start
the backpropagation process. It is important and task-specific as it determines how the difference
between y and y is defined, and thus what exactly should be learned. In the following backprop-
agation process the gradient of the objective function with respect to the state of the model is a
practical application of the chain rule of derivatives.”” It is repeatedly applied to propagate gradi-
ents through the network, back to front. Finally, the parameters of the network are updated and

one training step has been completed.
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Figure 2: Simplified graphical representation of a deep neural network with two hidden layers.

Circles represent neurons, vertically aligned in layers. Lines denote inter layer connectivity, with
darker lines suggesting varying weights. Deeper layers capture higher semantic content with ex-
amples provided below the graph. Input data is represented left, forward propagation runs left
to right. Objective function is computed right, and backpropagation runs right to left.

2.2.4 Machine Learning tasks

Machine learning algorithms can be broken down into their approach of dealing with data. Most
belong to one of three types of learning algorithms: supervised, unsupervised and reinforcement
learning. Due to its popularity we will limit ourselves to supervised deep learning tasks, although

we expect our results to generalize for the other tasks as well.

2.2.4.1 Supervised Learning

The most common form of machine learning is supervised learning, also called inductive learning.
It learns a set of underlying patterns from instances that should generalize for new instances.®
These instances are explicit input-output pairs which incurs collecting a large labeled data set.
Data is used to learn features that hold predictive power. In linear regression, these could be as
simple as specific independent variables, but, in image classification, these features can be seman-
tically complex, reducing transparency in solving these complex tasks.?”™ Careful curation of these
data sets is often required as resulting performance is strongly dependent on the quality of the
data provided.® In addition, larger, more diverse data sets contain a more complete representation
of the probability distribution. This increases predictive performance. Tasks most frequently per-
formed by supervised learning algorithms are classification and regression problems. Medical ex-

amples of these kinds of tasks are given in figure 3.

9



a) classification b) segmentation C) regression

96.4

in out in out in out
Figure 3: Examples of typical supervised learning tasks. a) Staging of diabetic retinopathy from
fundus photographs.”™ b) Segmentation of anatomy from abdominal computed tomography (CT)
scans.”™ c¢) Determining skeletal age pediatric hand radiographs.”™

2.2.4.2 Unsupervised Learning

Unsupervised learning does not require these labels. It can perform operations like clustering, noise
reduction or generating samples from a learned distribution. The benefit of this method is its total
lack of dependence of information provided by labels. A drawback of this method is that the result
generated can be hard to interpret, since it might not match any predefined semantic meaning.

Medical examples of this approach are provided in Figure 4.

a) clustering b) denoising
e o i
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Figure 4: Examples of typical unsupervised learning tasks. a) Identifying sub-populations of pa-
tients with cardiovascular disease who may benefit from different medication”. b) Positron
emission tomography (PET) image denoising™.

2.2.4.3 Reinforcement Learning

Lastly, reinforcement learning is a method that gives rewards or punishments to train the algo-
rithm in optimizing its strategy. This type of method is most often used to teach algorithms play
games but has also shown to be useful for research in optimization of protein folding. However, it

has seen relatively few clinical applications.

2.3 Main inhibiting factors
Machine learning is a technique that comes with its strengths and weaknesses. In conjunction, it’s
application in the medical domain comes with specific challenges. We discuss properties of both
the technique and the domain to distill key challenges that should be faced to ensure rapid adap-

tation of machine learning in health care.
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2.3.1 Medical data properties

Humans and animals are able to learn from very few examples. We do not yet know how this is
possible.® In contrast, most current artificial neural networks rely on vast amounts of diverse,
structured training data in order to converge, reach optimal inference performance, generalize and
be robust.”® However, most of the various types of data used in modern biomedical research like
electronic health records, imaging, -omics, sensor data and text, are generally complex, heteroge-
neous, poorly annotated and unstructured. In addition, non-representative demographics have
also demonstrated reduced performance on underrepresented groups.™® When different institu-
tions employ for example different scanners, scan protocols or even sequences, this attributes to
inter-institution data heterogeneity. In addition, different labeling protocols can render label se-
mantics incongruent. Both can deteriorate inference performance, regardless whether training is
performed in distributed fashion. This effect is generally greater in uncontrolled environments like
clinical practice than the more controlled research environments. Coordinated data-preprocessing
and common labeling protocols should be employed minimize these effects.®® However, medical
sample sizes in single institutions tend to be small, especially in less prevalent diseases and diseases
with less standardization of care.® The increase in access to high quality medical data is critical

in the development and ultimate implementation of Al applications in health care.!>72 &

2.3.2 Medical data sharing

The promise of Al is tightly knit to the availability of relevant data. Even though there is an
abundance of data in the health domain, the quality and accessibility of these resources remains
a significant challenge.* Collaboration among institutions holds the key to resolve these problems
by increasing the amount of available data and its diversity, and centralizing training effort.®™ But
the required centralization of this sensitive and valuable information forms a barrier through

25 Tnitially, regulations such the Health Insurance

regulatory, ethical and logistical constraints.
Portability and Accountability Act of 1996 (HIPAA) in the United States or the General Data
Protection Regulation (GDPR) in the European Union usually restrict even anonymized patient
data to leave the premise to protect patient privacy. This is due to the observation that anony-
mization alone is inadequate to prevent re-identification.'® In rare cases, patients could for example
be identified based on disease status and scanning region'™'®, Secondly, health care data is expen-
sive to collect, especially in the cases of longitudinal studies and clinical trials. Therefore, policy
to protect institution property, or even unwillingness to share this valuable commodity often
obstruct centralization of data as it reduces level of control.” Thirdly, there is an ethical dilemma
that data on the infinite reuse of the implicit consent given by patients. Lastly, centralized solu-
tions impose logistical challenges that require funding and expertise such as additional file-server
storage and bandwidth requirements. This often renders multi-center studies infeasible, leaving

value in data locked off that could have been employed to improve clinical decision making.
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2.3.3 Logistical requirements

Limiting factors can also have logistical origins. The level of abstraction achieved by these net-
works is in part by their vast amount of parameters, with the largest models reaching in the
billions of parameters.® '' Most clinical institutions might not possess the compute to train or use
these models.* In addition, these models might require a level of expertise to engineer and oversee
that can be inhibitory for most hospitals to employ their data to train models.?

2.4 Conclusion

AT holds the potential to address critical health challenges and improve medical care. The effect
neural networks can have in health care is highly reliant on the training data available. Even
though there is an abundance of data in the health domain, the quality and accessibility of these
resources remain a significant challenge due to regulatory and logistical constraints. The allevia-
tion these constraints would open up vast amounts of information to implement these algorithms

in more places and higher efficacy.

“It’s not who has the best algorithm that wins.
It’s who has the most data.”

- Andrew Ng



Privacy-Preserving Collaboration

The multi-center approach to conduct medical research holds many merits over conventional
methods. However, centralization of data is a burden to set up. Alternative methods from the
field of secure multi-party computation aim to allow collaboration without sharing sensitive data.
Although most methods are not applicable to the computationally heavy demands of machine
learning, few are. Some of these distributed machine learning methods and their properties related
to security, inference performance, computational efficiency and communications cost will be high-
lighted. In conclusion, we will thoroughly introduce Split Learning, emphasize its interesting prop-

erties for medical applications and describe research that remains to be done.

3.1 Multi-center research
In health care, multi-center research is the cornerstone of clinical trials of treatment and diagnostic
innovations for patient care. The larger sample size and more diverse population in multi-center
clinical research can reduce the time needed to obtain the required number of study subjects,
increase statistical power”, and produce more results in terms of expertise and facilities.” To
broaden the impact of machine learning research in health care, research should therefore be

conducted multi-centrally.*%

3.2 Secure Multi-Party Computation
Widespread application of neural networks in sensitive areas, such as finance and health, has

created a need for both distributed and secure training and inference of neural networks called
Multi-Party Computing (SMPC).» o7

The distributed component of these methods was first proven to be feasible in server grade dis-
tributed gradient optimization®™® to simply train large scale deep neural networks over multiple

machines'®

or to efficiently utilize several GPUs on a single machine.'”* The security component
differentiates itself from traditional cryptography tasks in not just assuring security and integrity
of communication against adversaries outside the system, but also from each other. Under this
paradigm the owner of the network does not require access to the actual raw data used to train

the model.'”? Neural networks have shown to be very robust to addition of noise and have shown
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to be able to recover imaging from partial imput'® which makes it difficult to compute them

securely.'™

To fill this need, several methods have been developed of we examine a few. Initial methods used
cryptographic primitives to provide privacy-preserving multi-party computation. In homomorphic
encryption'™ 7 a central computing node computes on encrypted data and also returns encrypted
data. In oblivious transfer, a central computing node is oblivious to the data it receives, and the
institution is oblivious to the computation performed.'”™!" However, these methods have shown

£.109110 Some viable distributed

to not scale well for deep learning as they are inherently inefficien
Deep Learning methods do exist, of which we will discuss Cyclic Weight Transfer, Federated
Learning and Split Learning. Our main interest goes out to Split Learning due to several interest-

ing properties we will introduce later on.

3.2.1 Cyclic Weight Transfer

Institutional Incremental Learning (IIL) is a very basic collaborative learning approach and forms
the foundation of Cyclic Weight Transfer. In IIL, institutions train a model that is shared in
succession. An institution receives the current state of the model, trains it on its own data, for-
wards it to the next and finally receives the model that was trained on by all institutions. Band-
width usage is very low: only the model state is sent and received twice. The major drawback of
this method is a drop in performance with an increasing number of institutions due to catastrophic
forgetting.!"*'*? Cyclic Weight Transfer'™® (CWT), also known by the name Cyclic Institutional
Incremental Learning (CIIL)™ alleviates this problem by fixing the amount of epochs each insti-
tution trains the model, before passing it on to the next. This can significantly increase commu-
nication cost, especially for larger models when cycling relatively often. In addition, a trade-off

between communication efficiency and accepting a performance drop-off remains.

3.2.2 Federated Learning

In Federated Learning, a model is trained in a hub-and-spoke configuration. The hub is a central-
ized server that distributes a conventional neural network over its participating institutions. They
train the model and after some time return their states to the central server. The central server
performs an aggregation step of all these updates, after which the cycle is repeated. In Federated
Learning, no raw data but only model sates are being shared. An advantage to CWT is possibility
of parallelized training. The aggregation step performed does however incur a loss in performance,

especially for cases with smaller institution-side data sets.

3.3 Split Learning
In its most general form, Spit Learning splits a conventional neural network into any number of
components that can then reside locally and distributed, or centrally while retaining their function
in the network. Although many configurations can be imagined, the scope of this work is limited

to the simplest Split Learning configuration that does neither require data nor label sharing, called
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the Boomerang configuration. This configuration was named U-Shaped in literature® "' but to
avoid confusion with a type of commonly used deep neural network architecture called U-Nets we
introduce the name Boomerang Split learning in consultation with the original authors. Boomer-
ang Split Learning requires no input data sharing, no label sharing and allows a large part of the

computational load to be centralized.

3.3.1 Definitions

To explain Boomerang Split Learning, we consider a setup that consists of multiple institutions
that hold their proprietary data, and a single centralized server that holds no data. The paradigm
of Split Learning revolves around splitting a conventional neural network F consisting of layers
{Lo,Lq,...Ly} into sequential elements, analogous to a chain consisting of links. These links can
then be local: located and accessed by its owning institution, or central: hosted by the central
server and accessed as black box by all. In Boomerang Split Learning, the chain in this configu-
ration consists of three links such that Frront, Feenter» Foack < {Loond {Ln+1omb {Lm+1-n}. The
links are named from a forward propagation point of view. The first is called front and is local. It
receives raw input data during forward propagation and returns features of the n™ layer. The
second link is called center and is centrally hosted. It takes the features from the front, performs

most of the computation and forwards another set of features from the m'

layer to the final link
called back. The back is again local and performs the final decoding computation on its input.
This local stage is where gradients are computed from the decoded output and labels using a

predefined objective function G. This configuration is visualized in Figure 5.

Typically, the largest part of trainable networks layers can be found in the center. This can reduce
bandwidth used in sharing local states, as well as institution-side computational cost. This prop-
erty should allow computation of more complex networks for institutions with less computational

power, compared to alternatives like Federated Learning.

3.3.2 Training process

The training process consists of one institution feeding a sample of raw data X to its front network
Ferone- The resulting activations X, are passed onward to the center, and consequently to the
back as X,,. The back computes the output Y. The output and corresponding labels Y are used
by the objective function G (17, Y) to compute the loss and initiate back propagation. After back-
propagating the gradients one data sample has been processed, all model states are updated, and
a next sample-pair can be processed. Forward propagation in Split Learning involves sequential
computation and transmission followed by computation of remaining layers, which is functionally
identical to applying all layers at once. This also holds for the backpropagation process, due to
the chain rule in differentiation. Thus, in contrast to alternative methods, Split Learning does not
require any aggregation and is functionally identical to training in centralized fashion®, and is

expected to yield more similar performance results.

15



By default, training is switched to the next institution when the entire batch of a single institution
has been processed, we call this mode alternating-epochs. This switch includes sending the state
of the local links from the last trained institution to the next institution to update its states. The
algorithm for this process is provided in appendix 8.2. This method could theoretically suffer from
catastrophic forgetting. This effect is expected to be larger in setups where the total training set
is large, many updates to the model pass before validation and inter institutional heterogeneity
exists in the data. To combat this effect, the order of presenting batches to the central node can
be interleaved, we call this mode alternating-batches. In this work we will consider the ‘alternating-
epochs method’ the default because data in our experiments are homogeneous by default and

because it simplifies the training procedure.

Spit Learning does not require centralization of data or labels but is functionally identical to
training using centralized storage.” This solves aforementioned found in training in centralized
fashion, while at the same time mitigating the cost of dropping inference performance compared
to alternative DML methods.?*™

i N

| hospital C |
hospital B
hospital A server

/

Figure 5: Diagram of Boomerang Split Learning Three institutions named hospital A, B and C
hold their own data and labels to collaboratively train a model without sharing raw data. The
training process iterates over the hospitals of which hospital A is currently training.

3.3.3 Performance aspects

Performance of SMPC methods in general can refer to many things. That is why in this work we
refer to the inference error achieved as inference performance. In addition, we will be interested
in training dynamics answering questions such as: Does training using Split Learning delay con-
vergence? Therefor we define the convergence rate as the number of epochs required to achieve
minimal loss on the validation set. To get a full grasp at feasibility of Split Learning we will also

be interested in communicational and computational requirements.
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3.3.4 Privacy and security
As mentioned earlier, most interest in SMPC goes out to protecting data from peers. Protection
from outside attacks, like man-in-the-middle attacks, can already be assured conventional cryp-

tographic methods like end-to-end-encryption.

Split Learning offers security by design through three properties. Firstly, commonly used activa-
tion and pooling layers are non-invertible, rendering the inversion operation a one-to-many prob-
lem. Secondly, the information sent over is a compact representation of source information making
inversion a sparse problem. Lastly, recovery of underlying representations is further hindered as

no single entity knows the full model state.'’

Methods to provide additional security for Split Learning exist. Among these most prominent is

110 Tt proposes to decorrelate the features sent over from the

the concept of no-peek Split Learning.
local to a central node from the original raw data using a Kullback-Leibler (KL) divergence clas-
sifier. Methods like these can result in a drop of inference performance. No-peek Split Learning
retains performance relatively well, it is a performance drop that can be avoided by creating a
trusted eco-system if unreliable and adversarial or malicious participants can be avoided. We
assume a trusted environment with transparent oversight of institution behavior to obviate meth-

ods to achieve this costly definition of security. '*?

As currently viewed, control and ownership of the ecosystem can remain fully with the partici-
pating institutions. Split Learning does allow online learning by default such that participating
can be added or removed at any time. At any point in time, the model is optimized for all
participating institutions. Currently, no methods exist to remove information gleaned from cen-

trally trained models if institutions wish to quit participating, besides restarting training.

3.3.5 Other challenges

The distribution of data can present many challenges to methods for SMPC in general. For one,
real world scenarios often present heterogeneous data. Inter-institutional heterogeneity can be
caused by differences in hardware, scan protocols, sequences labeling protocols, or demographics

116 This is the case regardless whether training is performed in

and can deteriorate performance.
distributed or centralized fashion. This effect is generally greater in uncontrolled environments
like clinical practice than the more controlled research environments. In current multi-center
studies, data-preprocessing and common labeling protocols are employed minimize this effect.®! In
addition, data useful to make a predictions can reside at multiple institutions and be so called
vertically partitioned. In this work, we will initially demonstrate the principle of Split Leaning on
equally distributed, homogeneous, horizontally partitioned data. These concepts will be expanded

on in chapter 5.
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3.4 Conclusions
Multi-center machine learning can improve sample sizes and thus generalizability of predictive
models. The hurdles that accompany medical data mentioned earlier demand for SMPC. Most
methods do not scale well enough to support training of deep neural networks. The main sophis-
ticated methods that do are Federated Learning, Cyclic Weight transfer and Split Learning. Split
Learning splits a conventional neural network into sequential elements, of which a network split
in three is called a Boomerang configuration. Only features are sent over, which are a product of

many non-invertible operations, assuring security.

Split Learning is functionally more identical to training in centralized fashion than alternative
methods. In addition, the modularity provided by Split Learning can reduce computational re-
quirements, lowering the entry bar for participation. The communication costs are totally different
and highly domain dependent. Lastly, heterogeneous data can form a challenge for SMPC meth-

ods. The effect of these factors has not been researched for medical use cases.
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4 Split Learning Feasibility

In this chapter we will investigate the performance aspects of the default Split Learning, its ap-
plicability to health care, and how these results match up against alternative distributed as well
as the centralized approach. To achieve this, this work presents the first application of Split
Learning in literature and provides several adaptation and insights for future implementation.
Implementations of four clinical tasks are described. Their performance is analyzed in four do-
mains: inference performance, convergence rate, computational requirements, and communication
overhead. Based on our findings we present a verdict on Split Learnings applicability compared
to alternative methods, as well as adaptations relevant to Split Learning enabled medical deep

learning.

4.1 Aim

In this chapter we assess Split Learning feasibility for medical imaging applications. We split

feasibility into three topics:

i. Applicability: Can we apply popular neural networks to Split Learning, and what ad-
aptations would have to be made? Secondly, even if it is possible, what are the limita-
tions imposed by Split Learning on the flexibility of these implementations.

ii. Performance: How does training of models using Split Learning compare to models
trained using models trained in centralized fashion?

iii. Requirements: Is there a workable overhead due to communication. And how are in-

stitution-side computational requirements reduced by enabling outsourcing?

4.2 Methods

4.2.1 Split Learning implementations

An in-house built virtual Split Learning testbed was built for simulation of variable Split Learning
setups to assess inference performance, convergence rate, memory cost and bandwidth cost. The
test bed was built in Python (v3.7.5) and PyTorch (v1.2.0) on both Windows (Windows 10) and
Ubuntu (v18.04.3 LTS) and is made openly available.”” Core functionality of the testbed was
implemented based on algorithm 1 provided in appendix 8.2. The testbed provided modularity to
support quick implementation of several medical applications. Four representative non-trivial

medical imaging tasks were chosen to represent a variety of tasks, data, sample sizes and models.
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Data was partitioned into training and validation partitions, used during the training phase, and
an independent test set to compute inference performance values on. The training and validation
sets were distributed equally over all participating institutions, but final performance computation
was performed on the entire test set. The next part describes the data and task briefly, it goes in
depth on the networks applied to Split Learning. A summary of these implementation can be
found in Table 1. An in-depth description of each data set accompanied by visualizations of the

networks described below can be found in the appendix at 8.1.

Diabetic Retinopathy Challenge (DRC): Diabetic Retinopathy
is a complication of diabetes that affects the blood vessels in the
retina and forms the leading loss of blindness*. However, 90% of
cases can be reduced by proper treatment and monitoring of the eyes
after diagnosis'®. Diagnosis usually consists of acquiring fundus pho-
tography images. A sample fundus photograph is provided in Figure
6. Fundus photos from the Diabetic Retinopathy Challenge (DRC)"?

were classified for being normal or abnormal (presenting a stage of

diabetic retinopathy) using a 34-layer residual network'™ (Res- Figure 6: Example fundus

Net34). photograph from the DRC
data set used to classify if

Residual networks are inspired by pyramidal cells in the cerebral diabetic retinopathy is

cortex. They contain skip connections that connect two non-sequen- present.

tial layers, bypassing others. This overcomes a fundamental problem

in neural network optimization of vanishing gradients, thus allowing for deeper networks. To
adapt this architecture to Split Learning is simplest when split in between these skip connections.
Residual networks contain comparatively many parameters, which play a role in communication
equations for distributed machine learning. Because security is dependent on the non-invertible
operations in the frontal link, this link must be sufficiently deep. Because the final layer is a fully
connected layer, and information presented in this fully connected layer is highly randomized
compared to final classification results, depth of the back link does not require this depth, im-
proving institution-side computational load. Inference performance was measured on an independ-

ent test set and defined by the accuracy of the classification.

Brain Tumor Segmentation (BraTS): Accurate segmentation of high grade glioblastoma is
crucial in monitoring tumor growth dynamics, surgical results, or tumor response after oncological
treatment.'” This segmentation task was implemented using fluid attenuated inversion recovery
(FLAIR) magnetic resonance imaging (MRI) from the BraTS challenge data'** '** set using a 3D
U-Net'® architecture. A sample FLAIR image is provided in Figure 7. Since it was introduced in
2015, the U-Net has become one of the most popular topologies for biomedical image segmentation.

The network consists of an auto-encoder: a contracting path followed by an expanding path, with
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a bottleneck layer in between. In addition, every feature map in the
contracted path is concatenated with the corresponding feature map
in the expanding path, forming skip connections. To ensure security
in the adaptation of this architecture to Split Learning, high level
features sent through skip connections, originating from local con-
tracting layers, should not be concatenated with expanding layers re-
siding in central layers. We propose and implemented a Split Learning
adaptation in which the architecture is split symmetrically around the
bottleneck layer with the exterior links local and center link central,
visualized in Figure 17. To reduce the local computational burden,
and to improve the security, the network is split after the second
contracting layer. This setup is used to segment high grade glioblas-

toma from fluid attenuated inversion recovery (FLAIR) magnetic res-

Figure 7: Example FLAIR
MRI from the BraTS data
set used for tumor seg-
mentation.

onance imaging (MRI). Segmentation performance is quantified using the Sgrensen—Dice coeffi-

cient on an independent test set.

Chest X-ray multi label classification (CheXpert): Chest ra-
diography is the most common imaging examination globally. It is
critical for screening, diagnosis, and management of many life-threat-
ening diseases. Automated interpretation could improve workflow
prioritization and clinical decision support. The Large Chest X-ray
data set CheXpert'?® presents a multi-label classification task, classi-
fying the presence of fourteen classes. It was implemented using a
121-layer dense network (DenseNet)?”. The network consists of a
series of dense blocks followed by transition layers. The DenseNet is
popular because of its low number of parameters and higher perfor-
mance on low number of data samples. This is achieved by the dense
blocks containing dense connections that propagate superficial input
much deeper into the network. This also means these dense blocks

are hard to split for Split Learning. We therefor propose to split the

Figure 8: Example Chest

X-ray sample from the
CheXpert data set from
which presence of several
of fourteen findings are to
be established.

network after the first transition layer. Input is a chest X-ray image, and output consists of a

vector of fourteen binary values predicting the presence of the fourteen observations. This archi-

tecture is visualized in Figure 18. Implementation as described according to CheXNe

t12% was used.

Inference performance on the independent test set defined according to the method described in

the original paper as arithmetic mean area under the receiver operating characteristic (AUROC)

over five competing tasks (cardiomegaly, consolidation, atelectasis, pleural Effusion and edema).

21



Musculoskeletal Radiographs (MURA): Musculoskeletal condi-
tions are the most common cause of severe, long-term pain and dis-
ability."” Abnormality detection in musculoskeletal radiographs al-
lows for worklist prioritization and com-bat radiologist fatigue.
MURA is a large data set containing musculoskeletal radiographs

labeled for presenting abnormality by radiologists presenting a binary

classification problem. Instead of a 169-layer dense network that is
most common used, we used a 152-layer residual network (Res- Figure 9: Example of an

Net152) to include a model with more parameters in our comparison. elbow radiograph from the
The adaptation made and its reasoning are the same for this network MURA data set used for

as for the DRC described above. abnormality classification.

These implementations are summarized in Table 1. An in-depth description of each data set

accompanied by visualizations of the networks described below can be found in appendix 8.1.

A summary of the implemented tasks is provided in Table 1. The splits of conventional network
F determines properties of the resulting links Frront, Feenter and Fpgck, such as number of param-

eters N and size of the interface layers.

Table 1: Summary of implemented medical imaging tasks.

Data set Image type Task Topology Measure
DRC" Fundus photographs Binary Classification ResNet34'% Accuracy
BraTS' ' FLAIR MRI Binary Segmentation U-Net'® Dice
CheXpert'® Chest X-ray Multi-label Classification | DenseNet121'*" | AUROC
‘ Musculoskeletal
MURA™ uSCL,l osRerera Binary Classification ResNet152 Accuracy
Radiographs

4.2.2 Validation of the testbed
The tasks above were implemented in a virtual Split Learning testbed. Each of the implementa-
tions was validated by training them in the Split Learning testbed in centralized fashion and

comparing their inference performance to values found in literature.

The virtual testbed provided a functionally identical Split Learning environment for performance
research presented in this work. In parallel networking code developed and made openly available

130 The scope of this work was therefore limited to virtual perfor-

by our collaborator Kevin Pho.
mance analysis. However, to affirm the validity of the testbed it was finally validated using a
MNIST classification task where one institution was situated at the Advanced X-ray Imaging
Sciences Center in the department of Radiology at the Massachusetts General Hospital running
ArchLinux (v2019.11.01), and another at the Applied Chest Imaging Laboratory at Brigham and
Women’s Hospital running Ubuntu (v14.04.6 LST). The relay server was located at the Massa-

chusetts Institute of Technology Media Lab cluster running Ubuntu (v18.04.3 LTS). In this
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validation internet speeds and local computational requirements were measured to compare to be

used in communication and computation cost calculations.

4.2.3 Inference performance and convergence rate analysis

We investigate if inference performance and convergence rate are lower compared to training on
centralized data by computing Wilcoxon signed-rank test between repeated measurements of cen-
tralized training and Split Learning where the number of participating institutions is two. Sec-
ondly, we ascertain if inference performance and convergence rate in Split Learning are affected
by an increasing number of participating institutions by computing the same test for Split Learn-

ing for two, and Split Learning for fifty participating institutions.

To establish the effect of an increasing number of participating institutions K, many Split Learn-
ing models are trained using identical random initialization for K ranging from 1 to 100 institu-
tions. The relation between performance and K without collaboration was measured to be closely
linear related to log(K) (p = —0.98) Therefore, Pearson’s rank correlation is computed between

the log(K) and the inference performance, and log(K) and the epoch of minimal validation loss.

Finally, as an addition performance is also given for the scenario where the total data set is split,
but institutions are not collaborating. When compared to Split Learning, these results provide
insight in the added benefit of collaborative multi-center training. We expect any these results to
be hard to translate quantitatively to other real-world use cases. Therefore, these experiments are
of lower priority than other experiments and are only performed for the CheXpert and DRC

challenges.

4.2.4 Computational and bandwidth cost analysis

Computational requirement was defined as the minimum amount of GPU memory required to
run at a batch size of 32. In combination with the fraction of networks residing locally this results
in an estimation of local computing requirements. This estimation was further validated by the

earlier multi-machine validation process.

Relative communication cost of Split Learning to Federated Learning depends on size of the local
models, size of the interface layers and total size of the data set. They follow equations proposed
by Singh et al.'®. These equations were adjusted to account for the extra split layer after the
central link that is present in Boomerang Split Learning. Communication cost in Split Learning
is dependent on: number of participating institutions K, total number of model parameters N
which is a sum of Nyow, Neener and Ny, total data sets size p in bytes, total size of transmitted

layers ¢, a sum of @uom and @ in bytes, fraction of total number of model parameters residing

Nfront+Nback
N

finally internet speed v. For comparison, communication cost of Split Learning relative to Feder-

locally given by n = , communicational overhead {2, computation time per batch t and

ated Learning is expressed following the equation:
—Pa_. 7
1) ¢ = ne 12
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We apply this equation to each of our implementations using found values of N and n. Number
of samples and number of institutions for each data set was 10* and 10 for DRC, 250 and 19 for
BraT$S, 10° and 20 for CheXpert and 4x10* and 5 for MURA.

Communicational overhead is defined as the increase in computation time compared to a central-
ized approach. This overhead depends on computation time per batch t in seconds, ¢ in bits and

communication bandwidth speed v in bits per second, and is estimated by:

2) n=2=

vT

Note that, when 2 < 1, time required to send a batch of features (communication time) is lower
than the time required to perform computation on those features (computation time). When per-
formed efficiently in parallel, this means that the communication required for Split Learning could
be performed entirely during the computation of the previous sample-pair. This would negate

overhead due to communication.

Computation time per batch 1 is measured for each of the different Split Learning implementations
on several consumer grade processing units. We used Nvidia GeForce GTX 1080 Ti, 2080 Ti
TITAN X and Tesla P100 graphics processing units (GPU) and made sure training was performed
under constant maximum GPU load by increasing number of workers. Internet bandwidth was
measured over ethernet at the Massachusetts General Hospital and assumed fixed at v = 694

Mbps which is representative for modern fiber internet.!*?

4.3 Results
4.3.1 Resulting topological properties

The properties of the links resulting from the proposed splits are summed up in Table 2: Tasks

and implementations summaries.

Table 2: Tasks and implementations summaries. Number of parameters N, percentage of param-
eters that resides locally n and size of the interface layers q

Data set Niront Neenter Nyack q U
DRC 9.5k 21.3M 513 756.4k 2.40%
BraT$S 3.2k 2.0M 17.5k 580k 1.00%
CheXpert 1.7TM 5.2M 16.4k 501.8k 24.63%
MURA 9.5k 60.2M 513 756.8 0.87%

4.3.2 Validation of the testbed

Single institution DRC models achieved on average 78.3% accuracy, compared to 78.7% found in
literature.!** Sgrensen—Dice-Scores achieved on the BraTS set were 0.851 compared to 0.862 found
in literature.® Single performance for CheXpert achieved an AUROC of 0.866 compared to 0.855
and 0.889 in the original CheXNet'® and CheXpert'**papers respectively. The accuracy



performance metric for MURA did not match results found in literature such that validation was

not possible.

4.3.3 Inference performance and convergence rage
Results on inference individual inference performance and convergence rate measurements are
visualized in Figure 10 and Figure 11 respectively. Mean values for these results and their corre-

lation to K are given in Table 3.

Table 3: Results of number of participating institutions on performance and convergence.

inference performance convergence rate

Data set u+20 P u+20 P
DRC™Y 78.320.5% 0.110 119+19 0.274
BraT$S 0.851%.008 0.113 217468 0.037
CheXpert'* | 0.866+.003 -0.099 2.3+20.4 0.011
MURA 77.241.4% -0.141 5.5£1.0 0.006

Mean classification accuracy on the DRC task was 78.3% + 0.5% (mean £ 95% C.I.). Segmenta-
tion accuracy on the BraTS task scored a Sgrensen—Dice coefficient of 0.851 4+ 0.008. The CheX-
pert task achieved an AUROC of 0.866 + 0.004 and the MURA task reached an accuracy of 77.2%
+ 1.4%. Correlation to number of participating institutions K were p = 0.110 for the DRC, p =
0.113 for the BraTS, p = -0.099 for the CheXpert and finally -0.141 for the MURA data set.
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Figure 10: Scatterplot of inference performance over log(K) for each implemented task with lin-

ear trendlines.

The epoch of optimal performance was 199 4+ 19 for the DRC, 217 + 68 for the BraTS, 2.34+0.4
for the CheXpert and 5.5+1.0 for the MURA data set. Correlation to number of participating
institutions K were p = -0.274 for the DRC, p = 0.037 for the BraT$5, p = 0.011 for the CheXpert
and finally 0.006 for the MURA data set.
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Figure 11: Scatterplots of convergence rates over log(K) for each implemented task with linear

trendlines.

Performance results for non-collaborative settings compared to Split Learning are provided in

Figure 12.
A A
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Figure 12: The performance gain of collaboration. When a constant amount of data is split of a

number of participating institutions inference performance drops steeply when not collaborating

while remaining constant when using Split Learning.

4.3.4 Computational and bandwidth cost results

Computational requirements are described and communicational requirements both as compared

to federated learning and as overhead are provided in Table 4.

Table 4: Results on computational and communicational requirements.

computational Communication
Data set requirement relative to FL overhead
DRC'Y 2.9 GB 34.7 0.035
BraTS 33.4 GB 3.3 0.007
CheXpert'* 11.7 GB 359.3 0.008
MURA 26.3 GB 125.6 0.007
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4.4 Discussion
Our results also show low correlation between increasing number of institutions and performance,
indicating functional similarity between training with centralized data and Split Learning. We
also conclude that Split Learning is functionally scalable for a realistic range of clinical partici-
pants. Our results clearly demonstrate the performance benefit can be achieved by pulling data

resources together, regardless of network type, task or data set size.

Alternative methods like Federated Learning suffer from performance loss because of their funda-
mentally different aggregation-based training protocol. This effect is a larger benefit when single
institutions hold small data sets, which is often the case in medical multi-center collaboration.
This difference also affects the comparative computational load which can be up to four times
higher in Federated Learning compared to Split Learning. In practice this means that hospitals
would not have to possess state of the art hardware to participate in multi-center deep learning.
However, these benefits come at the loss of bandwidth efficiency. Many Split Learning implemen-
tations with common health care parameters using conventional architectures are expected to
require higher bandwidth usage than Federated Learning. Split Learning is more bandwidth effi-
cient in use cases when the total amount of data is small, many institutions are participating, and
models are large. However, we do not expect this bandwidth to form a problem for hospitals with
modern access to internet. Further research into the practical implications of bandwidth usage is
necessary to confirm these estimations. Alternatively, Split Learning bandwidth usage could be
improved by compressing intermediate representations or reduction of feature dimensions for ex-

ample using auto encoder-based compression.

Our work demonstrates feasibility of Split Learning for medical imaging problems by showing
application on different representative tasks. Although our results are applicable to a range of
similar problems, strong variation on the parameters chosen could for example change the logis-
tical requirements. Variations within the medical domain include Split Learning for non-imaging
problems and training in resource constrained environments. Resource-wise, imaging is relatively
demanding for Split Learning, which is why we expect our results to also extend to non-imaging
problems. In resource constrained situations, for example for rural hospitals with limited band-
width, the communicational overhead could increase drastically. However, the benefit of centrali-

zation of computing could be more important and remains.

Split Learning relies on intermediate representations generated from several layers of non-invert-
ible operations being sent between local and central entities. In certain situations where the system
contains adversarial institutions, caveats could be found in the notion of security this appeals to.
Although further research is being performed aiming at more rigorous definitions of security, they
currently come at a cost in performance. In health care we propose aiming at creating a trusted

environment before implementing such methods.



In practice, data sets are seldomly as homogeneous as presented in this proof of concept, which
poses a challenge for machine learning in general. This usually requires collective systematic data
preprocessing, which would be of no difference from preprocessing in a centralized setup. However,
recent research has stressed the increased effect of heterogeneous data in distributed compared to
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centralized training.''® We believe opportunities to lie in the modularity of Split Learning to pro-

vide a basis for a solution for heterogeneous data that we will touch upon in the next chapter.

Institutions can be added or removed from participation at any time. This further increases the
level of control that remains with participating institutions. Currently, no method exists to remove
information specifically supplied by leaving institutions, requiring retraining of such models. So-
lutions could lie in performing stochastic gradient ascent to find alternative local minima for the

new set of collaborating institutions.

Future implementation of Split Learning systems could be embedded in existing Al-platforms like
Nvidia Clara, General Electronics (GE) Edison or the American College of Radiology (ACR) Al
Lab. Distributed machine learning infrastructure in the process of being embedded for Federated

Learning could be leveraged to speed up deployment of Split Learning.

4.5 Conclusion
Privacy preserving distributed deep learning can enable health care institutions to collaborate on

training deep learning models.

Our results show that Split Learning is feasible for medical imaging applications and presents

several opportunities on each aspect of feasibility we analyzed:

i. Applicability: Implementation of all common networks was possible, but presence of
skip connections must be taken into account to prevent sharing of high-level features
with the centralized node.

ii. Performance: In contrast to many alternative distributed machine learning paradigms,
inference performance and convergence rate achieved using Split Learning do not seem
to be affected by an increased number of institutions. Because Split Learning is func-
tionally identical to conventional training this also implies no performance is lost com-
pared to centralized approaches.

iii. Requirements: Split Learning bandwidth consumption is significantly higher than Fed-
erated Learning in most cases but does not increase overall training time with modern
internet access. Institution-side computational resources requirements can be signifi-
cantly lowered using Split Learning, enabling institutions to participate without in-

vestment in hardware.

Our results affirm suitability of Split Learning for medical imaging applications and confirm fa-

vorable properties compared to both alternative distributed as centralized approaches.
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Future challenges for Split Learning lie in translating these results from sterile hypothetical chal-
lenges, to be more robust to be able to face real world challenges. For security, this means creating
a more rigorous description of an environment that would obviate the need of additional security
methods, like no-peek Split Learning. For handling of real-world data, further research is required

to ascertain the effect of, and come up with solutions for inter-institutional heterogeneity.



Split Learning Innovation

Previous chapter investigated feasibility and appeal of Split Learning for medical imaging appli-
cations. But beyond the previously presented ‘vanilla’ use case for Split Learning many alterna-
tives can be imagined that present novel opportunities but also come with specific challenges. In
this chapter, we focus on three fundamental challenges. These are training on heterogeneous data,

increasing security and handling of ‘vertically partitioned’ data streams.

The Split Learning paradigm involves modularity which we employ to propose solutions to these
challenges. We propose an alternative training scheme to allow for inter-institutional domain
adaptation by design, we experiment with alternative weight-sharing-strategies to improve secu-
rity and communication cost, and lastly, we discuss opportunities in combining data streams from

multiple institutions.

5.1 Aim

In the previous chapter Boomerang Split Learning has been introduced. From now on we will call
this ‘vanilla’ Split Learning. This chapter will discuss and evaluate three different adaptations to

it disjointly. Their method and purpose are as follows:

i.  Local Adapter Networks to solve inter-institutional heterogeneity
ii.  Alternative weight-sharing protocols to improve security
iii.  Vertical Split Learning to handle vertically partitioned data

5.1.1 Local Adapter Networks to solve inter-institutional heterogeneity

One assumption underlying deep learning models —one we implicitly employed in the previous
chapter— is that training and test data are independent and identically distributed (IID). This
means that the draw of data points does not influence the outcome of subsequent draws and that
the distribution does not change at some point.** Non-IID data is a challenge for machine learning
in general. For example, when data trained on does not generalize during inference for testing
data, or -even worse- during deployment. But for distributed machine learning, it also poses a

16 In federated learning for example, aggregation

fundamental challenge during the training phase.
of the gradients can see subtractive averaging, decreasing performance.??* Other methods like
Cyclic Weight Transfer could suffer from catastrophic forgetting as the optimization processes

aim to reach different minima.
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Many causes exist for non-IID data. However, in this part we specifically focus on the challenges
that arise with multi-center data, being inter-institutional differently distributed data sets. In
chapter 2 it was described that generation of medical data is a complex process, in which each
step can introduce variation that violate the IID assumption. This variation can be of epidemio-
logical, demographical or acquisitional origin. These epidemiological differences in prevalence are
also known as label imbalances. Differences in demographics can cause non-representative popu-
lations. One example of skewed demographics is the Veterans administration.™ And lastly, varia-
tion in acquisition can cause a difference of the data distribution within the same task. This is
called data set bias or domain shift. Domain shift can be caused by the wide variety of acquisition

protocols, hardware and contextual environments that make up the acquisition process.

No quantitative research exists on the effect of clinical sources of heterogeneity on distributed
machine learning. This chapter will focus on domain shift, as the other challenges are only a major
challenge in specific situations and can be solved by more conventional solutions such as strict

inclusion and labeling protocols.

Practical sources of inter-institutional domain shift can be differences in equipment or inclusion
and acquisition methods and protocols, an example of which is visualized in Figure 13. Domain
shift is usually difficult to define formally although domain shift as simple as differences in for

example pixel intensity distributions have shown to be enough to impede generalization of trained

6,134

models to other data sets,

Figure 13: Example of domain shift: Two semantically similar images from different scanners.

For training, the solution is to devise a transformation to convert any domain specific raw data
into domain independent representations. In current multi-center studies this transformation often
takes place in the preprocessing stage, using a manually designed set of operations that have been
previously observed to be useful, like high-pass filtering" and cropping. However, configuring an
optimal transformation can be challenging. This is especially true access to the distributed data
sets is limited. In addition, there is no guarantee that the manually configured preprocessing steps

produce optimal domain independency of the representations.

The modularity of Split Learning allows for novel solutions to tackle this problem, potentially

further lowering the entry barrier for participation and improving performance. The method we

31



propose employs the front in a Boomerang configuration as an adapter netowork to perform
institution specific domain adaptation. In this subsection we initially demonstrate that inter-
institutional variation can affect performance, and subsequently demonstrate effectiveness of pro-
posed solution. Finally, we test the generalizability of this method on inter-institutional MRI

heterogeneity due to variation in sequencing.

5.1.2 Alternative weight-sharing protocols to improve security

In the previous chapter we discussed how SMPC assures security from its peers by protecting
information about raw input and output data. In Split Learning participating institutions only
require the local parts of the network, and the server only requires the central part.''’ This pro-
vides an extra layer of security as the full architecture of the network is not required to be known

by any single contributor.

In the previous chapter we assumed the environment to be secure and behavior of clients to
benign. However, in less trusted environments these systems are vulnerable to membership infer-
ence, or adversarial example attacks because an attacker could recreate full model internals of
another institution. Such an attacker would be able to do so because it shares the exact local

nodes with each other institution and would be able to recreate the internals of the central model.

For such environments, security could be further improved by an alternative weight sharing strat-
egy. In this chapter we tested with not sharing certain local links, such that they would never be
sent over. This adaptation is expected to cause performance loss, or even instability as each
institution’s links are only trained on a subset of the total amount of available data. In this

subchapter we investigate the price of performance of these weight sharing strategies.

5.1.3 Vertical Split Learning to handle vertically partitioned data

The most common reason for medical multi-center research is to increase the number included
number of data points, such as patients or sessions. This has implicitly been the type of multi-
center collaboration that has been discussed throughout this work until now. In this case, for
every unique data point all features that can be used for prediction reside with a single institution
and increasing the number institutions improves prediction because the combination of these data
subsets presents a more complete representation of the probability distribution. According to this
concept the entire data pool is split horizontally. An example of a horizontally partitioned data

set is given in Table 5.



Table 5: Example of features (F) of several patients split horizontally.
This is the case for most multi-center studies.

Data point key Fi: F2: Data point key F3: Outcome:
name age BP name LDL mortality
Alice 64 125/83 Alice 180 51
Bob 72 140/81 Bob 130 20

Data point key Fi: F2: Data point key F3: Outcome:
name age BP name LDL mortality
Carol 81 142/93 Carol 117 73
Dave 58 123/79 Dave 159 13

Alternatively, there is another method of multi-center collaboration. It is possible to improve
prediction accuracy by acquiring not more data points, but by acquiring more features of a data
point. In this concept all institutions possess different features of every data point that could
together be used to cast a prediction. Such a data set is said to be partitioned wertically. An

example of a vertically partitioned data set is provided in Table 6.

Table 6: Example of features (F') of several patients split vertically.
This notion of partitioning is less common for medical data.

Data point key Fi: E2: Data point key F3: Outcome:
name age BP name LDL mortality
Alice 64 125/83 Alice 180 51
Bob 72 140/81 Bob 130 20
Carol 81 142/93 Carol 117 73
Dave 58 123/79 Dave 159 13

There are two reasons why horizontally partitioned data has been the most common notion of
multi-center data. For one, horizontally-partitioned multi-center research is just a scaled-up ver-
sion of single-institutional research, thus the same protocol is feasible without collaboration and
it is thus logistically simpler to conceive. Secondly, standardized data did not use to exist in the
abundance as it does today. Therefore, the medical diagnostic process is not yet geared towards
using externally generated data. However, a large part of the explosion of data produced is verti-
cally partitioned. This includes for example data from mobile devices, activity trackers and other
internet of things devices. It requires an integrated solution to make use of this data in a secure

mamnner.
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Redefining medical data to also include data not ac- ( mobile device | (- hospital ‘
quired inside the hospital presents great opportunities
which have mostly been investigated with respect to
new diagnostic methods for mental health as of yet.'
138 These benefits stem from the relieving the con-

striction that medical data is acquired only sporadi-

cally, in a limited amount of time. As an example, mo- | \.

A

features

bile phone app usage can already distinguish healthy

from symptomatic cognitive impaired patients.'* Pre-

senting a more continuous diagnostic method.

server

However, employing vertically partitioned data also

requires vastly new methods for handling these data \_ )

streams. In contrast to alternative distributed ma- Figure 14: Diagram of data flow in Split
chine learning methods, Split Learning allows for Learning for vertically partitioned data
seamless integration of externally acquired data alongside other data streams like in-house ac-
quired data. In its most simple form, such a configuration is provided in Figure 14. Passing this
technical hurdle would open up opportunity for researchers to start working at scale on some
many unique ethical and clinical challenges that this form of data poses to be useful for health

care applications.

Utilization of such externally generated data has not yet seen medical applications as of yet.
Therefore, it lies beyond the scope of this work to implement and testing such systems but en-

courage further work to do so.

5.2 Methods
5.2.1 Split Learning with Local Adapters

We first confirm the negative impact of inter-institutional heterogeneous training data in a worst-
case scenario using synthetically transformed data. In response, we propose a solution to this class
of problems we name Split Learning with local adapters. These two steps form a proof of concept
providing quantification of the problem as well a solution. Secondly, we test if this problem and

its solution generalize for real world heterogeneity.

5.2.1.1 Proof of concept

Our initial experiment is performed on a setup based on the DRC configuration detailed on in
previous chapter, with four participating institutions. Initially a model is trained using the default
vanilla Split Learning protocol, using default IID data and baseline performance is computed on
an independent test set. The DRC is a binary classification problem with exactly matched classes

such that random chance would result in a 50% accuracy.
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Secondly, we a apply an institution specific transformation to the data and perform exactly the
same experiment. The transformation is designed to separate every institutions data set into non-
overlapping distributions. The transformation used were different normalization boundaries being
[0, 2%, [20, 20], [0, 2] and [-10, 10]. Although trivial to correct using normalization in prepro-

cessing, they are the most basic example of data heterogeneity.

Thirdly we propose a solution to the challenge above we call Split Learning with Local Adapters.
The core concept of this method revolves around allowing each institution to train its front link
as a proprietary adapter to convert its data to domain independent representations. This theory
is based on AdapterNets for domain adaptation."* Each institution does this in an additional
training stage before the full chain of links is trained. In this stage, the center and back are frozen
such that in training their weights are not updated, and only the front adapter is updated until
it converges. This provides an unsupervised method that is completely explainable by looking at
the domain independent features sent over. The adjustments of this algorithm to default Split

Learning is provided in Algorithm 2 in appendix 8.3.

As a last tweak to this approach it still leaves two options. In its most basic form, states of front
links could be chosen not to be shared as each institution would train a different adapter anyways.
In this configuration front links state would remain mostly constant. Alternatively, front links
states could be chosen to be forwarded just like in regular Split Learning. This could be explained
as transfer learning one adapter from another. We compute performance for both methods and

compare achieved accuracy to vanilla Split Learning.

5.2.1.2 Real world data

To reinforce our conclusions, we repeat the same experiment using institutions using real MRI
data. The T2 and FLAIR sequences were chosen from the BraTS data set as they display edema
caused by the tumor by the same physical properties but the images on a whole display vastly
different domains. These scans are visualized in Figure 15. Additionally, mutual information in
these sequences has already been demonstrated by means of style transfer using generative adver-

sarial networks, 140141

To repeat the previous experiment, initially two baseline performances are computed: one where
every one of the four institutions hold 25% of all FLAIR scans, and another similarly for the T2
scans from the BraTS data set. Secondly, heterogeneity is introduced by providing two institutions
with 25% of the FLAIR and two with 25% of the T2 data sets so that no scans from one patient
overlap the groups but all remain present. In this heterogeneous setting vanilla Split Learning,
Split Learning using Local Adapters, and Split Learning using local adapters with transfer learning
are tested. The architecture of the adaptors consists of several convolutional blocks as proposed

in the original paper.*
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Figure 15: Example T2 (left) and FLAIR (right) MRI scans presenting domain shift. Visualiza-
tion of glioblastoma in the T2 is based on the same physical properties as the FLAIR but the
images present a domain shift that is hard to correct using conventional preprocessing methods.

5.2.2 Variety of weight sharing strategies.
In the Boomerang configuration introduced earlier the options of weights sharing among institu-

tions that we will experiment with are:

i.  full weight sharing (as used in the previous chapter)
ii.  sharing back link only

iii.  sharing no links at all

One option we did not investigate was ‘sharing front link only’. Because of the high complexity
of the fully connected layer in the back link and its expected large effect on achieved performance,
in combination with it being farter form interpretable data it was expected that the performance

cost would severely outweigh potential benefits.

To provide a baseline of the performance that Split Learning still achieves even when no links
shared, non-collaborative performance is also computed. All of these strategies are computed for

a number of institutions ranging from 1 to 50 using the DRC data set.
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5.3 Results
5.3.1 Split Learning with Local Adapters

Proof of conceptTable 7 presents performance as classification accuracy of models trained for the
proof of concept using trivial transformations on the DRC data with 50% accuracy being random

chance.

Table 7: Inference performance on trivial non-homogeneous data.

Homogeneous data Training Protocol Accuracy
Vanilla Split Learning 79.15%

Heterogeneous data  Training Protocol Accuracy
Vanilla Split Learning 52.96%
Local Adapters 75.37%
Local Adapters + Transfer 80.78%

5.3.1.1 Real world data
Table 8 presents performance as Sgrensen—Dice segmentation quality on real world data consisting
of FLAIR and T2 MRI scans.

Table 8: Inference performance on real non-homogeneous data.

Homogeneous data Training Protocol Dice
T2 Vanilla Split Learning 0.809
FLAIR Vanilla Split Learning 0.849
Heterogeneous data Dice
T2/FLAIR Vanilla Split Learning 0.621
T2/FLAIR Local Adapters 0.691
T2/FLAIR Local Adapters + Transfer 0.724
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5.3.2 Weight sharing options
Performance for different number of participating clients along with logarithmic trend lines is

provided in Figure 16.

Performance at DRC for different weight sharing options

85%

30% Sharing all
< 75% e Sharing back only
:‘ 70% ¢ Sharing none
@
§ 65% x  No collaboration
® 60%

55%

50%

0 10 20 30 40 30

number of clients

Figure 16: Performance for different weight sharing options.

5.4 Discussion
In order to achieve successful implementation of Split Learning for real world applications several
challenges not represented in the scenario presented in the previous chapter would require inves-
tigation. For distributed machine learning in general these include but are not limited to hetero-
geneous data, security for applications in less secure environments and handling of non-horizontal

data streams.

Our results with respect to the first topic, show that heterogeneous data can have severely detri-
mental effects on Split Learning performance. The expected cause is each institution to have
individual very different minima that no single model configuration can achieve proper optimiza-
tion for. We propose a solution that employs the front link of the Split Learning chain as adapter
Networks to transform raw data suffering from domain shift to domain independent representa-
tions that the subsequent model can optimize for properly. Our initial results show promising
recovery from synthetically induced transformations. Recovery from heterogeneity is less striking
when tested on real world data but still apparent. This might be due to the relative simplicity of
the adapter to the complex domain shift present. Results from the method utilizing transfer learn-
ing are higher than without, reinforcing our believe that transfer learning among similar adapters
provides a performance benefit. To investigate the full potential of this method more capable
adapters would have to be tested. These could be inspired models proposed in existing literature

or style or domain transfer.
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This chapter also introduced optional weight sharing and investigates its detrimental effects on
model performance. By not sharing elements of the Split Learning chain and thus not sharing part
of the network with any other party, reconstruction attacks would theoretically become signifi-
cantly more challenging although the practical increase of increase has not been investigated. Our
results indicate that the network optimizes differently for the different weight sharing strategies,
confirming that the links that are not shared vary from one another, but it comes at a cost in
performance. This performance loss is significantly more prominent when the final link is not
being shared. We hypothesize this to be due to the high complexity of the final fully connected

layer and how it is closely connected to the final classification process.

Finally, we introduce the concept of vertical partitioned data for health care. To employ these
opportunities would require a paradigm shift on what can be used as predictive medical data in
the hospital. This comes with many technical hurdles that would have to be faced, with at the
core the method used to fuse these data streams in a secure manner. We propose Split Learning
as a viable option for such efforts. Although implementation, testing and designing real world
use cases of such systems lies beyond the scope of this work, we propose Split Learning as a ca-

pable method for such challenges.

5.5 Conclusion

In addition to vanilla Split Learning, adaptations can be imagined to face specific problems. This

chapter has discussed three.

Initially, we confirmed that inter-institutional heterogeneity can pose a challenge when training
Split Learning models. We have proposed a novel Split Learning method that used local adapters
to overcome this problem. Although it has shown promising results on initial tests further research

is required to comprehensively investigate the potency of this method.

Secondly, we presented several alternative weight sharing strategies that should make reconstruc-
tion attacks more difficult. Although training of these models remained stable, performance

dropped markedly.

Lastly, we have proposed Split Learning as a viable method to be used for managing prediction

from multiple data streams, also known as vertical partitioning.
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Conclusions

Privacy preserving distributed deep learning can enable health care institutions to collaborate

on training deep learning models, improving their performance and generalizability.

Split Learning allows secure distributed training and inference of deep neural networks by send-
ing features of data instead of raw data. By centralizing computational effort, it can also reduce
computational power required for collaboration. Split Learning is functionally identical to train-
ing in centralized fashion and we have not observed dropping performance with an increasing
number of participating clients. Communicational requirements of Split Learning are low enough

to ensure feasibility in first world hospitals, even without overhead.

Challenges that Split Learning faces mainly center around training on heterogeneous data. Our
work has shown heterogeneity to be detrimental to performance. However, our work has also
proposed a novel method that employs local domain adapters to combat this effect. Although

this method shows promising initial results, it requires further research into its feasibility.

Results on improving security using alternative weights sharing strategies mainly emphasize the
cost in performance. Lastly, we advocate for Split Learning as a tool to integrate data flows

from multiple sources in future research.
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Appendix

8.1 Data set and implementation details
Brain Tumor Segmentation (BraT§S): The BraTS data set poses a segmentation problem of
gliomata from magnetic resonance imaging (MRI) brain scans. The data set consists of 259 pre-
processed T2 Fluid Attenuated Inversion Recovery (FLAIR) scans acquired according to different
clinical protocols, from various scanners and from multiple sites, from cases presenting high grade
glioma (HGG). Segmentation labels were created by manually by one to four raters and were
approved by experienced neuro-radiologists. Original segmentation labels consisted of the gado-
linium-enhancing tumor, peritumoral edema and necrotic and non-enhancing tumor core. We only
considered the whole tumor volume as defined by the union of the three labels to allow for sim-
plified evaluation of the method. Data sets were partitioned into 75% training, 15% validation
and 10% independent test data sets without any patients overlapping partitions resulting in 194
training, 39 validation and 26 test samples. Training and validation partitions were equally dis-
tributed over the number of participating institutions. Test performance was computed on the

entire test partition using the model state with lowest loss on the validation set.

A voxel wise binary cross entropy (BCE) was used. Adam optimization'*® using standard param-
eters (B1 = 0.9 and B, = 0.999), and learning rate of 5* without decay was used. Batch size used
was 16. Data was augmented by 50% chance of lateral inversion. The system was implemented in
Python (version 3.7.5) and PyTorch (version 1.2.0). Training was performed on a GeForce GTX
TITAN X graphics processing unit until validation accuracy reached a plateau as defined by not

decreasing for more than 30 epochs.

Figure 17: Schematic of proposed Split Learning adaptation of a U-Net
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Chest X-ray multi label classification (CheXpert): The CheXpert data presents a multi-
label classification problem of fourteen common chest radiographic observations from a large set
of chest radiographs. The data set consists of 224,316 chest radiographs with labels of 65,240
patients. Labels were generated using natural language processing (NLP). Cases where labels
contained uncertainty were excluded according to the baseline approach as described in the pa-
per'?®. All frontal images of most commonly occurring (320x390 px) resolution were used leaving
a remaining dataset of 96,326 chest radiographs. Data sets were partitioned into 75% training,
15% validation and 10% independent test data sets without any patients overlapping partitions
resulting in 72,244 training, 14,449 validation and 9,633 test samples. Training and validation
partitions were equally distributed over the number of participating institutions. Test performance
was computed on the entire test partition using the model state with lowest loss on the validation

set.

The network was pretrained on ImageNet? loss was defined computed using a combined sigmoid
BCE loss. Adam optimization'*® using standard parameters, and default learning rate 10* without
decay was used. Batch size used was 32. Data was augmented by 50% chance of lateral inversion.
The system was implemented in Python (version 3.7.5) and PyTorch (version 1.2.0). Training
was performed on a Nvidia GeForce GTX 1080 Ti graphics processing unit. Validation was per-
formed after 10% of every epoch. Models were trained until validation loss had not decreased after

30 validations. The state of lowest validation loss was used for inference on the test set.

RERREEE.

Figure 18: Schematic of proposed Split Learning adaptation of a DenseNet
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Diabetic retinopathy challenge (DRC) binary classification: We used the diabetic reti-
nopathy challenge (DRC) dataset as previously. This data set originates from the Kaggle Diabetic
Retinopathy dataset of retinal fundus photos. The original multi-class classification problem was
simplified to binary classification y € {0, 1} indicating normal or abnormal respectively. A class-
balanced subset of 9000 images was used for training and validation to prevent saturation of
learning for models. Images were down sampled to 256x256 RGB images. The images were pre-
processed via the method detailed in the competition report by the winner."* This included high
pass filtering to account for image capturing variation, cropping to remove filtering artifacts and

histogram normalization.

A 34-layer residual network' (Resnet-34) architecture was utilized with Glorot uniform initiali-
zation'*, stochastic gradient descent (SGD) optimization using standard parameters, and de-
fault learning rate 10* without decay was used. Data was augmented in real-time using random
rotations (0-360°) and 50% chance of lateral or axial inversion. Loss was computed used a bi-
nary cross entropy loss function. Training was performed on a GeForce GTX TITAN X graphics
processing unit until validation accuracy reached a plateau as defined by not decreasing for

more than 30 epochs.

Musculoskeletal Radiograph binary classification: MURA is a large data set containing
40,009 bone X-rays images from 14,052 studies. Each image was labeled as either normal or ab-
normal by radiologists, presenting a binary classification problem. From the total number of stud-
ies, a random subset was retained to include both 5177 positive as negative cases. Instead of the
DenseNet, commonly used in literature for this problem, a 152-layer residual network was imple-
mented, and split much like the network for the DRC data set. A residual network was used to
also include models with a comparatively higher number of parameters, as to diversify the four
tasks implemented. Data augmentation was based on similar methods found in literature'*®, which
consisted of random lateral inversion, 10° of random rotation, normalization and resizing to
224 %22 pixels. Loss was computed as classification accuracy. Training was performed on a Ge-
Force GTX TITAN X graphics processing unit until validation accuracy reached a plateau as

defined by not decreasing for more than 20 epochs.

Figure 19: Schematic of proposed Split Learning adaptation of ResNet
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8.2 Split Learning Algorithm

Algorithm 1: Boomerang Split Learning

Server Side:

H « {hA' hB' ey hZ}
F « {LO' Ll' ey LN}
G < objective function
Ffront' Fcenterl Fback < {Lo—m}: {Ln+1—>m}: {Lm+1—>N}
for hin H do

thront' Fl?ack < Ffront: Fback

while h contains more unique samples do

Fh « TRAIN NETWORK(h)

h h
Ffront: Fback < Ffront! Fback

procedure TRAIN NETWORK(h)
X, <« hFORWARD PASS()

Xm < Fcenter(Xn)
Fpaci, Vm < R.CENTER_PASS(X,,)

Fcenterr Vn « Fcenter(Vm)
Frront < RBACK _PASS(,)

return FP

Institution Side:

Assign participating hospitals.
Define neural network architecture.
Define the objective function

Split network.
Assign model states.

Train neural network.

Update model states.

Retrieve features of sample X.
Propagate features up to Lim

Send m™ layer features to hospital.
Apply gradients up to Lp.1.

Send n+15* gradients to hospital

0:

1
2:
3

oWy o

iyl S

procedure FORWARD PASS

Xy, Y < a unique sample-label pair

Xn = Ff};ont(XO)
return X,

procedure CENTER PASS(X,,)
Y« Flglack(Xm)
Vy < G(7,Y)
Flglack' Vm = Flglack(VN)

return FY ., Vi

procedure BACK PASS(V,)

h h
Ffront = Ffront(vn)
return thmnt

o1

Get unique data sample
Propagate data up to Ln

Send n' layer features to server

Propagate features up to Ln
Compute gradients.
Apply gradients up to Ly-1.

Send gradients to server.

Apply gradients up to Lo.



8.3 Split Learning with Local Adapters Algorithm

Algorithm 2: Boomerang Split Learning with Local Adapters

Server Side:

10: H < {hy, hg, ..., hz}
11 F « {LOlLll ---:LN}
12: G « objective function

13: Ffront' Fcenterl Fback < {Lo—m}: {Ln+1—>m}: {Lm+1—>N}
14: for hin H do

15: thront' Fl?ack < Ffront: Fback

16: while performance of F" increases do As long as it improves performance
17: Flone < TRAIN_ NETWORK(h) Train the front node

18: while h contains more unique samples do

19: F'" « TRAIN NETWORK(h)

20: Ffront: Fback < Ff@ont! Flilack



