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Figure 1: Visual examples of model fitting. Overfitted models do not generalize well for new 

data. 
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Figure 2: Simplified graphical representation of a deep neural network with two hidden layers. 

Circles represent neurons, vertically aligned in layers. Lines denote inter layer connectivity, with 

darker lines suggesting varying weights. Deeper layers capture higher semantic content with ex-

amples provided below the graph. Input data is represented left, forward propagation runs left 

to right. Objective function is computed right, and backpropagation runs right to left. 

 

 



Figure 3: Examples of typical supervised learning tasks. a) Staging of diabetic retinopathy from 

fundus photographs.74 b) Segmentation of anatomy from abdominal computed tomography (CT) 

scans.75 c) Determining skeletal age pediatric hand radiographs.76 

 

Figure 4: Examples of typical unsupervised learning tasks. a) Identifying sub-populations of pa-

tients with cardiovascular disease who may benefit from different medication77. b) Positron 

emission tomography (PET) image denoising78. 

 

 



 

 



 

 

“It’s not who has the best algorithm that wins.  

It’s who has the most data.”  

- Andrew Ng  
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Figure 5: Diagram of Boomerang Split Learning Three institutions named hospital A, B and C 

hold their own data and labels to collaboratively train a model without sharing raw data. The 

training process iterates over the hospitals of which hospital A is currently training.  
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Figure 6: Example fundus 

photograph from the DRC 

data set used to classify if 

diabetic retinopathy is 

present.



Figure 7: Example FLAIR 

MRI from the BraTS data 

set used for tumor seg-

mentation.

Figure 8: Example Chest 

X-ray sample from the 

CheXpert data set from 

which presence of several 

of fourteen findings are to 

be established.



𝐹 𝐹𝑓𝑟𝑜𝑛𝑡 , 𝐹𝑐𝑒𝑛𝑡𝑒𝑟 𝐹𝑏𝑎𝑐𝑘

Table 1: Summary of implemented medical imaging tasks. 

 

Figure 9: Example of an 

elbow radiograph from the 

MURA data set
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Table 2: Tasks and implementations summaries. Number of parameters N, percentage of param-

eters that resides locally η and size of the interface layers q  

𝜂

 



 

Table 3: Results of number of participating institutions on performance and convergence. 
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Figure 10: Scatterplot of inference performance log(K)
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Figure 11: Scatterplots of convergence rates over 𝑙𝑜𝑔(𝐾) for each implemented task with linear 

trendlines. 

Figure 12: The performance gain of collaboration. When a constant amount of data is split of a 

number of participating institutions inference performance drops steeply when not collaborating 

while remaining constant when using Split Learning. 

 

Table 4: Results on computational and communicational requirements. 
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Figure 13: Example of domain shift: Two semantically similar images from different scanners. 



 

 

 



Table 5: Example of features (F) of several patients split horizontally.  

This is the case for most multi-center studies. 

Table 6: Example of features (F) of several patients split vertically. 

This notion of partitioning is less common for medical data. 



 

 

 

Figure 14: Diagram of data flow in Split 

Learning for vertically partitioned data
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Figure 15: Example T2 (left) and FLAIR (right) MRI scans presenting domain shift. Visualiza-

tion of glioblastoma in the T2 is based on the same physical properties as the FLAIR but the 

images present a domain shift that is hard to correct using conventional preprocessing methods. 

 

 

 

 

 



 

 

Table 7: Inference performance on trivial non-homogeneous data. 

 

Table 8: Inference performance on real non-homogeneous data. 

 



 

Figure 16: Performance for different weight sharing options. 
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Figure 17: Schematic of proposed Split Learning adaptation of a U-Net  

A 



Figure 18: Schematic of proposed Split Learning adaptation of a DenseNet 
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Figure 19: Schematic of proposed Split Learning adaptation of ResNet 



 

Server Side: 

1: 𝐻 ← {ℎ𝐴, ℎ𝐵, … , ℎ𝑍} Assign participating hospitals. 

2: 𝐹 ← {𝐿0, 𝐿1, … , 𝐿𝑁} Define neural network architecture. 

3: 𝐺 ← 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 Define the objective function 

4: 𝐹𝑓𝑟𝑜𝑛𝑡 , 𝐹𝑐𝑒𝑛𝑡𝑒𝑟 , 𝐹𝑏𝑎𝑐𝑘 ← {𝐿0→𝑛}, {𝐿𝑛+1→𝑚}, {𝐿𝑚+1→𝑁} Split network. 

5: for ℎ in 𝐻 do 

6: 𝐹𝑓𝑟𝑜𝑛𝑡
ℎ , 𝐹𝑏𝑎𝑐𝑘

ℎ  ← 𝐹𝑓𝑟𝑜𝑛𝑡 , 𝐹𝑏𝑎𝑐𝑘 

7: while ℎ contains more unique samples do 

8: 𝐹ℎ ← TRAIN_NETWORK(ℎ) 

9: 𝐹𝑓𝑟𝑜𝑛𝑡 , 𝐹𝑏𝑎𝑐𝑘 ← 𝐹𝑓𝑟𝑜𝑛𝑡
ℎ , 𝐹𝑏𝑎𝑐𝑘

ℎ  

 

Assign model states. 

 

Train neural network. 

Update model states. 

  

0: procedure TRAIN_NETWORK(ℎ) 

1: 𝑋𝑛  ← ℎ.FORWARD_PASS( ) 

2: 𝑋𝑚 ← 𝐹𝑐𝑒𝑛𝑡𝑒𝑟(𝑋𝑛) 

3: 𝐹𝑏𝑎𝑐𝑘 , 𝛻𝑚 ← ℎ.CENTER_PASS(𝑋𝑚) 

4: 𝐹𝑐𝑒𝑛𝑡𝑒𝑟 , 𝛻𝑛 ← 𝐹𝑐𝑒𝑛𝑡𝑒𝑟(𝛻𝑚) 

5: 𝐹𝑓𝑟𝑜𝑛𝑡 ← ℎ.BACK_PASS(𝛻𝑛) 

6: return 𝐹ℎ 

 

Retrieve features of sample X. 

Propagate features up to Lm 

Send mth layer features to hospital. 

Apply gradients up to Ln+1. 

Send n+1st gradients to hospital 

  

Institution Side: 

0: procedure FORWARD_PASS 

1: 𝑋0, 𝑌 ← a unique sample-label pair 

2: 𝑋𝑛 = 𝐹𝑓𝑟𝑜𝑛𝑡
ℎ (𝑋0) 

3: return 𝑋𝑛 

 

Get unique data sample 

Propagate data up to Ln 

Send nth layer features to server 

  

0: procedure CENTER_PASS(𝑋𝑚) 

1: �̂�  ← 𝐹𝑏𝑎𝑐𝑘
ℎ (𝑋𝑚) 

2: 𝛻𝑁  ← 𝐺(�̂�, 𝑌) 

3:  𝐹𝑏𝑎𝑐𝑘
ℎ , 𝛻𝑚 = 𝐹𝑏𝑎𝑐𝑘

ℎ (𝛻𝑁) 

4: return 𝐹𝑏𝑎𝑐𝑘
ℎ , 𝛻𝑚 

 

Propagate features up to LN 

Compute gradients. 

Apply gradients up to Lm+1. 

Send gradients to server. 

  

0: procedure BACK_PASS(𝛻𝑛) 

1: 𝐹𝑓𝑟𝑜𝑛𝑡
ℎ =  𝐹𝑓𝑟𝑜𝑛𝑡

ℎ (𝛻𝑛) 

2: return 𝐹𝑓𝑟𝑜𝑛𝑡
ℎ  

 

Apply gradients up to L0. 

 



 

Server Side: 

10: 𝐻 ← {ℎ𝐴, ℎ𝐵, … , ℎ𝑍}  

11: 𝐹 ← {𝐿0, 𝐿1, … , 𝐿𝑁}  

12: 𝐺 ← 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

13: 𝐹𝑓𝑟𝑜𝑛𝑡 , 𝐹𝑐𝑒𝑛𝑡𝑒𝑟 , 𝐹𝑏𝑎𝑐𝑘 ← {𝐿0→𝑛}, {𝐿𝑛+1→𝑚}, {𝐿𝑚+1→𝑁}  

14: for ℎ in 𝐻 do 

15: 𝐹𝑓𝑟𝑜𝑛𝑡
ℎ , 𝐹𝑏𝑎𝑐𝑘

ℎ  ← 𝐹𝑓𝑟𝑜𝑛𝑡 , 𝐹𝑏𝑎𝑐𝑘 

16: while performance of 𝐹ℎ increases do 

17: 𝐹𝑓𝑟𝑜𝑛𝑡
ℎ ← TRAIN_NETWORK(ℎ) 

18: while ℎ contains more unique samples do 

19: 𝐹ℎ ← TRAIN_NETWORK(ℎ) 

20: 𝐹𝑓𝑟𝑜𝑛𝑡 , 𝐹𝑏𝑎𝑐𝑘 ← 𝐹𝑓𝑟𝑜𝑛𝑡
ℎ , 𝐹𝑏𝑎𝑐𝑘

ℎ  

 

 

As long as it improves performance 

Train the front node 


