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Abstract

This paper investigates the influence of bursty interactions patterns on the tie strength and
the clustering coefficient in tie-decay temporal networks. To model bursty interaction patterns,
we use a Markov process with two states and a high and low interaction probability. This
Markov model is used to find expressions for the expected value and variance of tie strength for
different degrees of burstiness. Moreover, we explore the behaviour of the clustering coefficient
of networks with bursty interaction patterns. We find that the mean tie strength remains
constant for different degrees of burstiness. However, the expected value of peaks in tie
strength and the variance of tie strength increase as interaction patterns get more bursty,
which results in a decreasing clustering coefficient.

Keywords: tie strength, temporal networks, bursty interaction patterns, weighted clustering
coefficient

1 Introduction
In social networks, people interact with each other. The frequencies of interactions may differ
per person and these interactions influence the structure of a network. How people relate to each
other is an interesting property of a social network. For various purposes, for example the study of
spread of information and disease, it is useful to analyze the properties of these networks. This can
be done using variables such as tie strength and clustering coefficient. The clustering coefficient is
a measure of the ‘clustering’ in a network: the extent to which neighbours of a node are connected
to each other. In the binary case (either two nodes are connected, or they are not connected), the
definition of clustering coefficient is straightforward. However, connections in real life are often
not binary and the relation between two people has a certain (continuous) strength. This strength
of connections is called tie strength. The tie strength of an edge is determined by the frequency of
interactions between the nodes incident to that edge. Therefore, we should use another definition
for clustering coefficient: one that includes the tie strength.

Besides the fact that ties are not binary, an important property of social networks is that they
change over time. These types of networks are called temporal networks. Because of this, the
clustering coefficient does also change over time. We separate the concepts interactions and ties:
interactions occur in discrete time, while ties change continuously in time. To model this, we build
on the work of Ahmad et al. [1] and Zuo and Porter [3]. The general model that is used is the
tie-decay model of Ahmad et al [1]: at each time step, two entities can have an interaction or not;
both possibilities affect the tie strength st of that pair of nodes at time t. If there is an interaction,
the tie strength increases by 1. Otherwise, the tie strength is multiplied by a factor e−α, where
α > 0 is the decay factor. An illustration is given in Figure 1. In choosing a value for α, one can
think of the half-life of a tie, η1/2 = log2

α , where log denotes the natural logarithm. In this paper,
we use α = 0.01, unless otherwise stated.

Zuo and Porter have found an expression for the long-term expected value of tie strength, which
we will revisit in Chapter 2. They used an interaction probability p for a pair of nodes. This
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Figure 1: Illustration of tie strength of the edge between two nodes with interaction probability r = 0.03
and α = 0.01. The peaks in the second graph represent interactions.

probability is constant over time and does not depend on the history of the edge. This creates a
‘uniform’ interaction pattern. However, in social networks interaction patterns often follow bursty
patterns: sometimes people interact very frequently in a short time period, but it is also possi-
ble that the time between two interactions is long. We model these interaction patterns using a
Markov process. We also investigate if the long-term expected value of tie strength differs from
the value found by Zuo and Porter and calculate the variance of tie strength for different degrees
of ‘burstiness’. Finally, we present a definition for a weighted clustering coefficient and investigate
the behaviour of this clustering coefficient when interaction patterns are bursty.

2 Behaviour of tie strength

2.1 Model of Zuo and Porter: one interaction probability
In the model of Zuo and Porter [3], at each time step there is an interaction between two entities
with probability 0 ≤ r ≤ 1. Similar to the model of Ahmad et al, the tie strength increases by 1 if
there is an interaction. Otherwise, the tie strength is multiplied by a factor e−α.

Definition 2.1. If xt is a Bernoulli random variable with parameter p that indicates whether
there is an interaction (xt = 1) or not (xt = 0) at time t, we can write the tie strength st as

st = xt + e−α(1−xt)st−1.

Using p = r as success probability for the Bernoulli random variable xt, we obtain by the law of
total expectation

E[st] = E
[
xt + e−α(1−xt)st−1

]
= E[xt]+E

[
e−α(1−xt)st−1|xt = 0

]
P (xt = 0)+E

[
e−α(1−xt)st−1|xt = 1

]
P (xt = 1)

= r + (1− r)E
[
e−αst−1

]
+ rE[st−1] = r(1 + E[st−1]) + (1− r)E[st−1]e

−α. (1)

It can be proved that we reach a stationary state as t −→∞ [3]. In this state we have E[st] = E[st−1],
so the next theorem follows.

Theorem 2.1 (Zuo and Porter [3]). In the long term, the tie strength of an edge with interaction
probability r and decay factor α is given by

E[s] = r(1 + E[s]) + (1− r)E[s]e−α =
r

(1− e−α)(1− r)
.
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As a check, for r = 0.03 and α = 0.01, we have E[s] ≈ 3.11. In a simulation of a network with
3 nodes where interactions between nodes are simulated with probability r = 0.03 at each time
step, we obtain average values 3.19, 2.85 and 3.00 (see Figure 2). These values correspond to the
expected value calculated using Theorem 2.1.

Figure 2: Simulation of tie strength of three edges, with r = 0.03 and α = 0.01. The mean tie strength
mij is m01 ≈ 3.19, m02 ≈ 2.85 and m03 ≈ 3.00.

2.2 A Markov process
2.2.1 The model

In real life, most interaction patterns cannot be described by one interaction probability that is the
same for each time. Interaction patterns alternate between interaction periods and idle periods,
and most of the time these periods take more than one time step. To model this, we consider
the random variable xt again, but now we assume that it follows a Markov process. Let xt be an
indicator variable with sample space S = {0, 1}, where xt = 1 if there is an interaction at time t.
Otherwise, xt = 0. Thus, the Markov process followed by xt has two states: ’0’ (no interaction)
and ’1’ (interaction).

Definition 2.2. An interaction period is an interval [a, b] such that xt = 1 for all a ≤ t ≤ b and
xa−1 = xb+1 = 0. An idle period is an interval [a, b] such that xt = 0 for all a ≤ t ≤ b and
xa−1 = xb+1 = 1.

We define

P (xt = 1|xt−1 = 1) = p

P (xt = 0|xt−1 = 1) = 1− p

P (xt = 1|xt−1 = 0) = q

P (xt = 0|xt−1 = 0) = 1− q

(see Figure 3).

Figure 3: Transition diagram

In words, p is the probability that a pair of nodes that has an interaction now is still interacting
the next time step, and q is the probability that a pair of nodes will interact during the next time
step if there is no interaction now. We will call p the active interaction probability and q the passive

3



interaction probability. The burstiness of interaction patterns is determined by the choice of p and
q: the greater the difference between p and q, the greater the degree of burstiness. In this paper,
we will have p > q. This is based on the fact that interactions in social networks occur in periods:
the probability that two nodes ’keep interacting’ is higher than the probability that nodes start
interacting. Using these probabilities, we can define the transition probability matrix as follows:

T =

[
1− q q
1− p p

]
We can calculate steady state probabilities using the following equations (where tij is the ijth
element of matrix T ):

π0 = π0t00 + π1t10

π1 = π0t01 + π1t11

π0 + π1 = 1.

It can be shown that steady state probabilities π0 and π1 are given by

π0 =
1− p

1− p+ q

π1 =
q

1− p+ q
.

Steady state probabilities can be interpreted as the fraction of time the system is in that state: π1
is the fraction of time two nodes are interacting.

An example is given in Figure 4. Notice that the model of Zuo and Porter can also be mod-
elled as a Markov process if we take p = q = r.

Figure 4: Simulation of tie strength of one edge, with p = 0.81 and q = 0.006 (so, π0 = 0.97 and π1 = 0.03).
This simulation has two interaction periods ([101, 108] and [157, 169]) and three idle periods.

2.2.2 Expected value

If we look at Figure 1 and Figure 4, it is clear that the tie strength in the second model grows
much faster than the tie strength in the first model. However, idle periods in the second model last
longer, which causes the tie strength to decay more. Therefore, it is natural to ask if the mean tie
strength in the Markov model differs from the mean tie strength in the model of Zuo and Porter.

Theorem 2.2. For equal stationary interaction probabilities (that is, r = π1), the mean value of
tie strength in a model where interactions follow a Markov process is equal to the mean value of tie
strength in a model with constant interaction probability.
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Proof. For the expected value of tie strength in the Markov model, we have by the law of total
expectation

E[st] = E[st|xt−1 = 0]P (xt−1 = 0) + E[st|xt−1 = 1]P (xt−1 = 1). (2)

In stationary state, we have P (xt−1 = 0) = π0 and P (xt−1 = 1) = π1. Moreover,

E[st|xt−1 = 0] = E[xt + e−α(1−xt)st−1|xt−1 = 0] = E[xt|xt−1 = 0]

+E[e−α(1−xt)st−1|xt = 0, xt−1 = 0]P (xt = 0|xt−1 = 0)+E[e−α(1−xt)st−1|xt = 1, xt−1 = 0]P (xt = 1|xt−1 = 0)

= q + (1− q)e−αE[st−1] + qE[st−1] = q(1 + E[st−1]) + (1− q)E[st−1]e
−α (3)

and
E[st|xt−1 = 1] = E[xt + e−α(1−xt)st−1|xt−1 = 1] = E[xt|xt−1 = 1]

+E[e−α(1−xt)st−1|xt = 0, xt−1 = 1]P (xt = 0|xt−1 = 1)+E[e−α(1−xt)st−1|xt = 1, xt−1 = 1]P (xt = 1|xt−1 = 1)

= p+ (1− p)e−αE[st−1] + pE[st−1] = p(1 + E[st−1]) + (1− p)E[st−1]e
−α. (4)

Substituting (3) and (4) in (2) yields

E[st] = (π0q + π1p)(1 + E[st−1]) + (π0(1− q) + π1(1− p)E[st−1]e
−α) (5)

Since
π0q + π1p =

q(1− p)
1− p+ q

+
pq

1− p+ q
=

q

1− p+ q
= π1

and
π0(1− q) + π1(1− p) =

(1− q)(1− p) + q(1− p)
1− p+ q

=
1− p

1− p+ q
= π0,

(5) can be rewritten
E[st] = π1(1 + E[st−1]) + π0E[st−1]e

−α

and this yields the exact same result as (1) if we choose r = π1.

From this theorem, it is possible to deduce the expected value of tie strength in stationary state
expressed in terms of π0 and π1.

Corollary 2.1. In stationary state, the expected value of tie strength for stationary interaction
probabilities π0 and π1 is

E[s] =
π1

π0(1− e−α)
.

2.3 Interaction cycles
In every interaction pattern, interaction periods are alternated by idle periods. These periods can
be viewed as the consecutive time steps the Markov chain is in a state. In this section, we no
longer use the recursive expression for E[st], but we use interaction and idle periods to calculate
the expected value and variance of the strength. We introduce the following definition:

Definition 2.3. An interaction cycle is one interaction period and a subsequent idle period.

Furthermore, let ak be the length of the kth interaction period in time steps and let bk be the
length of the kth idle period in time steps. With these definitions, we can state an expression for
the tie strength after n+ 1 interaction cycles un:

u0 = a0e
−αb0

u1 = (a0e
−αb0 + a1)e

−αb1

u2 = ((a0e
−αb0 + a1)e

−αb1 + a2)e
−αb2
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...

un = (un−1 + an)e
−αbn

The expression above can be explained by the fact that during an interaction period, the tie
strength increases by one every time step. Thus, in interaction cycle k, the tie strength increases
by ak in total. After that, the tie strength is multiplied by e−α for each time step in an idle period.
So in total, the tie strength decreases by a factor (e−α)bk .

We can also write

un = a0e
−α(b0+b1+...+bn) + a1e

−α(b1+b2+...+bn) + . . .+ an−1e
−α(bn−1+bn) + ane

−αbn (6)

or, in compact form:

un =

n∑
k=0

ake
−α

∑n
i=k bi

Since an interaction cycle always ends with an idle period, un is the tie strength after the nth
idle period (if we start counting after the first interaction period). This is illustrated in Figure 5.
Analogously, we can state an expression for the tie strength after the nth interaction period vn:

v0 = a0

v1 = a0e
−αb0 + a1

v2 = (a0e
−αb0 + a1)e

−αb1 + a2

...

vn = vn−1 + an

which can be written as

vn =

n∑
k=0

ake
−α

∑n−1
i=k bi .

Figure 5: Illustration of interaction cycles, interaction periods and idle periods. The length of the kth
interaction period is ak, the length of the kth idle period is bk. The tie strength after the kth interaction
period is vk, the tie strength after the kth interaction cycle is uk.
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2.3.1 Expected value

In this section, we do not assume ak and bk to be known. Instead, we treat them as random
variables. They are defined as follows:

• ak is the length of the kth interaction period in time units. ak is geometrically distributed with
success probability 1− p, mean 1

1−p and probability mass function P (ak = x) = px−1(1− p)
for all k.

• bk is the length of the kth ’no-interaction period’ in time units. bk is geometrically distributed
with success probability q, mean 1

q and probability mass function P (bk = y) = (1 − q)y−1q
for all k.

Here, p and q are the active and passive probability respectively, as defined earlier (Figure 3).

Lemma 2.1. If bk is the length of the kth idle period in time units, then

E[e−αbk ] =
qe−α

1− (1− q)e−α

for all k.

Proof. For discrete variables, the expected value of a function of a random variable is

E [f(X)] =
∑
x∈D

f(x)P (X = x).

Therefore, we have

E[e−αbk ] =

∞∑
i=1

e−αi(1− q)i−1q = q

1− q

∞∑
i=1

(
(1− q)e−α

)i
.

Since ∣∣(1− q)e−α∣∣ < 1,

the series converges and the sum is

E[e−αbk ] =
q

1− q
·
(

1

1− (1− q)e−α
− 1

)
=

q

1− q
· (1− q)e−α

1− (1− q)e−α
=

qe−α

1− (1− q)e−α

for all k.

It can be shown that the values of uk and vk converge to numbers u and v. The next theorem
gives expressions for the long-term expected value of tie strength after an interaction period and
after an interaction cycle:

Theorem 2.3. The expected value of tie strength after the nth interaction period is given by

E[vn] =

(1− (1− q)e−α)
(
1−

(
qe−α

1−(1−q)e−α

)n+1
)

(1− p)(1− e−α)

and converges to

E[v] =
1− (1− q)e−α

(1− p)(1− e−α)
as n −→∞. Furthermore, E[un] also converges as n −→∞ and

E[u] =
qe−α

(1− p)(1− e−α)
.
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Proof. We can write vn as

vn = a0e
−α(b0+...+bn−1) + a1e

−α(b1+...+bn−1) + . . .+ an−1e
−α(bn−1) + an. (7)

To calculate the expected value, notice that all ak and bk are independent, and hence

E
[
ake
−α(bk+...+bn)

]
= E [ak]E

[
e−αbk

]
. . . E

[
e−αbn

]
.

Now, using Lemma 2.1 and the fact that E[ak] =
1

1−p = E[a] for all k, we can rewrite (7) as
follows:

E[vn] =

n∑
k=0

E[a]
(
E
[
e−αb

])k
=

1

1− p

n∑
k=0

(
qe−α

1− (1− q)e−α

)k
.

This series can be rewritten and the sum is

E[vn] =

(1− (1− q)e−α)
(
1−

(
qe−α

1−(1−q)e−α

)n+1
)

(1− p)(1− e−α)
.

Since ∣∣∣∣ qe−α

1− (1− q)e−α

∣∣∣∣ < 1,

we obtain

E[v] =
1− (1− q)e−α

(1− p)(1− e−α)
in the long term limit (as n −→∞). Moreover,

un = vne
−αbn

and hence

E[un] = E[vn]E[e−αbn ] =

(1− (1− q)e−α)
(
1−

(
qe−α

1−(1−q)e−α

)n+1
)

(1− p)(1− e−α)
· qe−α

1− (1− q)e−α

which can be rewritten

E[un] =

qe−α
(
1−

(
qe−α

1−(1−q)e−α

)n+1
)

(1− p)(1− e−α)
.

We conclude that

E[u] =
qe−α

(1− p)(1− e−α)
as n −→∞.

Some numerical results are given in Table 1. Here, it can be seen that E[u] is constant and that
E[v] grows larger as the interaction pattern gets more bursty, that is, if the difference between
p and q gets larger. This can be explained by the fact that for a greater difference in p and q,
interactions periods last longer, so the tie strength grows much faster, resulting in a growing value
of E[v]. This can be deduced from the expected value of the length of an interaction period:
E[ak] = (1 − p)−1, so for greater p, E[ak] is also greater. However, idle periods last longer too:
E[bk] = q−1, so if q gets smaller, E[bk] grows. Because of this, the tie strength also decreases more,
which results in a constant value of E[u].

8



π1 p q E[v] E[u]
0.03 0.03 0.0300 3.077 4.11
0.03 0.60 0.0124 3.077 5.58
0.03 0.80 0.0062 3.077 8.08
0.03 0.90 0.0031 3.077 13.08
0.03 0.95 0.0015 3.077 23.08
0.03 0.98 0.0006 3.077 53.08
0.03 0.99 0.0003 3.077 103.08

Table 1: E[u] and E[v] for different active and passive interaction probabilities p and q.

2.3.2 Variance

Now that we know that the expected value of vn grows larger as the burstiness gets larger (that
is, the difference between p and q gets larger), we investigate if the variance does also grow if
interaction patterns get more bursty. First, we present a preliminary result.

Lemma 2.2. The covariance of two terms of vn, provided i < j, is

cov
(
aie
−α(bi+...+bn−1), aje

−α(bj+...+bn−1)
)
=

b(i, j)

(1− p)2

where

b(i, j) =

(
qe−2α

1− (1− q)e−2α

)n−j (
qe−α

1− (1− q)e−α

)j−i
−
(

qe−α

1− (1− q)e−α

)2n−i−j

.

Proof. To calculate the covariance, we use the following simplified expression:

cov(X,Y ) = E[XY ]− E[X]E[Y ].

Let xk = ake
−α(bk+...+bn−1). Since

xi · xj = aie
−α(bi+...+bn−1) · aje−α(bj+...+bn−1) = aiaje

−α(bi+...+bj−1+2(bj+...+bn−1))

for i < j, we have that

cov(xi, xj) = E
[
aiaje

−α(bi+...+bj−1+2(bj+...+bn−1))
]
−E

[
aie
−α(bi+...+bn−1)

]
E
[
aje
−α(bj+...+bn−1)

]
.

Since all factors are independent, we can rewrite this as follows:

E[ai]E[aj ]E
[
e−αbi

]
· . . . · E

[
e−αbj−1

]
E
[
e−2αbj

]
· . . . · E

[
e−2αbn−1

]
−

E[ai]E[aj ]E
[
e−αbi

]
· . . . · E

[
e−αbj−1

] (
E
[
e−αbj

]
· . . . · E [e−αbn−1]

)2
. (8)

In a similar fashion to the proof of Lemma 2.1, it can be shown that

E[e−2αbk ] =
qe−2α

1− (1− q)e−2α

for all k, and therefore (8) becomes(
1

1− p

)2
((

qe−α

1− (1− q)e−α

)j−i(
qe−2α

1− (1− q)e−2α

)n−j
−
(

qe−α

1− (1− q)e−α

)j−i(
qe−α

1− (1− q)e−α

)2n−2j
)

which yields

1

(1− p)2

((
qe−2α

1− (1− q)e−2α

)n−j (
qe−α

1− (1− q)e−α

)j−i
−
(

qe−α

1− (1− q)e−α

)2n−i−j
)
.
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This lemma is used for the following theorem.

Theorem 2.4. The variance of vn is given by

var(vn) =

n∑
k=0

1 + p

(1− p)2

(
qe−2α

1− (1− q)e−2α

)k
− 1

(1− p)2

(
qe−α

1− (1− q)e−α

)2k

+ cvn

where
cvn = 2

∑
0≤i<j≤n

cov(aie
−α(bi+...+bn−1), aje

−α(bj+...+bn−1)).

Proof. Since vn can be written as a sum:

vn = a0e
−α(b0+...+bn−1) + a1e

−α(b1+...+bn−1) + . . .+ an−1e
−α(bn−1) + an,

we apply the following rule for the variance of a sum of dependent random variables:

var

(
n∑
i=0

Xi

)
=

n∑
i=0

var(Xi) + 2
∑

0≤i<j≤n

cov(Xi, Xj). (9)

Let xk = ake
−α(bk+...+bn−1). For the variance of a single term of vn, we have

var(xk) = E[x2k]− E[xk]
2 = E

[(
ake
−α(bk+...+bn−1)

)2]
− E

[
ake
−α(bk+...+bn−1)

]2
=

E[a2k]E[e−2αbk ] · . . . · E[e−2αbn−1 ]−
(
E[ak]E[e−α] · . . . · E[e−αbn−1 ]

)2
.

For E[a2k], we use the fact that ak is geometrically distributed with probability 1− p:

E[a2k] = var(ak) + E[ak]
2 =

p

(1− p)2
+

1

(1− p)2
=

1 + p

(1− p)2
.

Using that, we obtain

var(xk) =
1 + p

(1 + p)2

(
qe−2α

1/(1− q)e−2α

)n−k
−

(
1

1− p

(
qe−α

1− (1− q)e−α

)n−k)2

. (10)

Now, since vn =
∑n
k=0 xk, by (9) and (10) we have

var(vn) =

n∑
k=0

1 + p

(1 + p)2

(
qe−2α

1/(1− q)e−2α

)n−k
− 1

(1− p)2

(
qe−α

1− (1− q)e−α

)2(n−k)

+2
∑

0≤i<j≤n

cov(xi, xj)

which can be rewritten as

var(vn) =

n∑
k=0

1 + p

(1− p)2

(
qe−2α

1− (1− q)e−2α

)k
− 1

(1− p)2

(
qe−α

1− (1− q)e−α

)2k

+2
∑

0≤i<j≤n

cov(xi, xj).

It can be shown that var(vn) converges as n −→∞. We will not prove this, but the proof is based
on the fact that ∣∣∣∣ qe−α

1− (1− q)e−α

∣∣∣∣ < 1

and ∣∣∣∣ qe−2α

1− (1− q)e−2α

∣∣∣∣ < 1

and therefore both terms go to zero as n −→ ∞, so vn converges to a stationary value. Some
numerical results of this stationary value of the variance are presented in Table 2.
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π1 p q var(u)
0.03 0.03 0.0300 1.59
0.03 0.60 0.0124 9.83
0.03 0.80 0.0062 33.73
0.03 0.90 0.0031 119.04
0.03 0.95 0.0015 439.66
0.03 0.98 0.0006 2601.52
0.03 0.99 0.0003 10204.62

Table 2: var(v) for different active and passive interaction probabilities p and q.

We conclude that the variance of v differs for varying degrees of burstiness: in a model where
interactions follow a Markov process, the variance of tie strength at the end of an interaction
period grows as the difference between p and q grows.

3 Clustering coefficient
In this section, we investigate the effect of bursty interaction patterns on the clustering coefficient.
In case of unweighted networks, the clustering coefficient is defined as follows:

C =
δc
δo
,

where δc is the number of closed triplets and δo is the number of open triplets. A triplet is three
nodes that are connected by either two (open triplet) or three (closed triplet) ties. However, in this
paper we are dealing with weighted ties, so there is no clear distinction between closed and open
triplets. Therefore, we should use a definition of clustering coefficient that includes tie strength.
We use the definition proposed by Kalna and Higham [2], but there are also other definitions of a
weighted clustering coefficient. First, we present a method to calculate tie strength for a network
in matrix form. This matrix is used to calculate the clustering coefficient.

Let A(t) be the interaction matrix at time t. If there is an interaction between nodes i and j
at time t, aij(t) = 1. Otherwise, aij(t) = 0. Since we only consider undirected networks, we have
aij(t) = aji(t) for all i 6= j, i.e. A(t) is symmetric.

Theorem 3.1. If interactions between nodes i and j occur at times τ ij0 , . . . , τ
ij
n < t, the tie strength

between nodes i and j at time t is given by entry sij of the matrix S(t), for which we have

S(t) =

t∑
k=1

e−α(t−k)A(k) +B(t), (11)

where the matrix B(t) is defined as follows:

bij(t) =

n∑
k=0

e(t−τ
ij
k )
(
eα(n−k) − 1

)
.

Proof. For each interaction between pair of nodes i and j at time τ ijk , the tie strength is increased
by aij(τ

ij
k ) = 1. If an interaction occurs at time τ ijk < t, its contribution to the tie strength

(= aij(τ
ij
k )) decreases every time step when there is no interaction. The number of time steps

from time τ ijk to time t is t − τ ijk , so the maximum factor by which the tie strength decreases is
e−α(t−τ

ij
k ). Therefore, the first part of (11) can be interpreted as the ’minimum’ tie strength at

time t, i.e. the tie strength if at time t if there are no interactions between time τ ijk and time
t. However, if there is an interaction, the tie strength that is already ’present’ does not decrease.
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Therefore, if interactions occur at times τ ij0 , . . . , τ
ij
n , the total contribution to the tie strength at

time t of the interaction at time τ ijk is

a(τ ijk )e−α(t−τ
ij
k −(n−k)) = e−α(t−τ

ij
k −(n−k)).

Now we solve the following equation:

e−α(t−τ
ij
k −(n−k)) = e−α(t−τ

ij
k ) + xijk ⇒ xijk = eα(t−τ

ij
k )(eα(n−k) − 1).

So, the total tie strength of pair of nodes i and j at time t is the ’minimum’ tie strength∑t
k=1 e

−α(t−k)aij(k) increased by
∑n
k=0 x

ij
k = bij(t). In matrix form:

S(t) =

t∑
k=1

e−α(t−k)A(k) +B(t).

We define the clustering coefficient of node k at time t to be

clustk(t) =

∑N
i=1

∑N
j=1 s̃ki(t)s̃kj(t)s̃ij(t)∑N

i=1

∑N
j=1 s̃ki(t)s̃kj(t)

where N is the number of nodes and s̃ij(t) is the normalized tie strength of the edge between nodes
i and j at time t. This normalization can be done in the following way:

s̃ij(t) =
sij(t)

β
,

where β is chosen large enough such that β > sij(t) for all i,j,t. This normalization process is done
to make sure that all values are between 0 and 1. The ’total’ clustering coefficient of a network at
time t is

clust(t) =

∑N
k=1 wk(t)clustk(t)∑N

k wk(t)

where wk(t) is the weighted degree of node k at time t:

wk(t) =

N∑
i=1

sik(t).

Our choice of the definition of a weighted clustering coefficient is consistent with [2].

With these definitions, it is possible to make a theoretical analysis of the behaviour of the clustering
coefficient for bursty interaction patterns. However, in this section we focus on simulations where
interactions between nodes are simulated with various active and passive probabilities p and q.
We run multiple simulations for a network with 4 nodes, where each pair of nodes has stationary
interaction probability π1 = 0.03. However, we vary the active and passive interaction probabilities
p and q and check how these values influence the behaviour of the clustering coefficient.
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Figure 6: Tie strength, interactions, clustering coefficient per node and clustering coefficient of the network
for a network with N = 4, p = q = 0.03, α = 0.01 and β = 150.

First, we take p = q = 0.03, α = 0.01 and β = 150 for all edges. This is a special case of the
Markov model: we have p = q, so this is equivalent to the model of Zuo and Porter with r = 0.03.
For convenience, all clustering coefficient values are multiplied by 15. The result can be seen in
Figure 6. All individual clustering coefficients follow similar patterns, the mean network clustering
coefficient is c = 0.19074 and the mean tie strength is s = 3.1323.

Now, for a much more bursty interaction pattern, we take p = 0.95 and q = 0.0015. All other
parameter values are kept constant. The result can be seen in Figure 7. In this case, the burstiness
of both individual and network clustering coefficients is much higher. Furthermore, the average
network clustering coefficient is c = 0.0405, which is more than four times smaller than the clus-
tering coefficient in Figure 6, while the average tie strength is slightly larger: s = 3.6290.

Table 3 shows some more results. The accompanying figures can be found in the appendix.
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π1 p q Average tie strength Average clustering coefficient
0.03 0.03 0.03 3.1323 0.1907
0.03 0.6 0.012371134 3.1207 0.1579
0.03 0.8 0.006185567 3.5243 0.1144
0.03 0.9 0.003092784 3.6719 0.0942
0.03 0.95 0.001546392 3.629 0.0405
0.03 0.98 0.000618557 3.3391 0.0001

Table 3: Average clustering coefficient for different degrees of burstiness.

Figure 7: Tie strength, interactions, clustering coefficient per node and clustering coefficient of the network
for a network with N = 4, p = 0.95, q = 0.0015, α = 0.01 and β = 150.

4 Conclusions
In this paper, we developed a model that incorporates bursty interaction patterns. One of the main
questions of this research was how the tie strength behaves on the long term and if the expected
value of tie strength in a Markov model with p > q differs from the expected value of tie strength in
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a model with one interaction probability. We found that for equal stationary interaction probabil-
ity, the long-term tie strength does not depend on the burstiness of interaction patterns. However,
we also proved that the expected value of tie strength at the end of an interaction period does
differ: when interaction patterns are bursty, the tie strength grows much larger than if there is one
interaction probability. This leads to the fact that the variance of the tie strength at the end of an
interaction period is higher for higher degrees of burstiness.

We also investigated the behaviour of a weighted clustering coefficient for interaction patterns
with different degrees of burstiness. Here we found that the mean clustering coefficient decreases
as interaction patterns get more bursty, while the mean tie strength does not change. This could
be explained by the fact that the clustering coefficient counts the number of ‘triplets’: for a high
clustering coefficient, it is necessary to have sets of three ties with a high tie strength. For bursty
interaction patterns, the variability of tie strength is higher and therefore the probability that
one of the three ties of a ’triplet’ has a low tie strength is higher than for non-bursty interaction
patterns, where values of tie strength are less variable. One tie with a tie strength close to zero is
sufficient to make the value of its triplet close to zero, and since the probability that a tie strength
is close to zero is higher for bursty interaction patterns, there will be more triplets with a value
close to zero. This results in a smaller clustering coefficient when interaction patterns are bursty.

It is clear that the way one models tie strength influences the clustering coefficient, even if the av-
erage tie strength remains constant. In this paper, we only did simulations of interaction patterns
to calculate the clustering coefficient. However, in earlier sections we provided all definitions to
make a theoretical analysis of the effect of bursty interaction patterns on the clustering coefficient.
These definitions can be used in further research into the influence of bursty interaction patterns
on tie strength and the clustering coefficient.
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Appendix A: clustering coefficient for different degrees of bursti-
ness

Figure 8: Tie strength, interactions, clustering coefficient per node and clustering coefficient of the network
for a network with N = 4, p = 0.6, q = 0.0124, α = 0.01 and β = 150.
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Figure 9: Tie strength, interactions, clustering coefficient per node and clustering coefficient of the network
for a network with N = 4, p = 0.8, q = 0.0062, α = 0.01 and β = 150.
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Figure 10: Tie strength, interactions, clustering coefficient per node and clustering coefficient of the
network for a network with N = 4, p = 0.9, q = 0.0031, α = 0.01 and β = 150.
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Figure 11: Tie strength, interactions, clustering coefficient per node and clustering coefficient of the
network for a network with N = 4, p = 0.98, q = 0.0006, α = 0.01 and β = 150.
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