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ABSTRACT

The combination of Music and Machine Learning is a pop-
ular topic. Much research has been done attempting to
classify pop music in different genres, but classical mu-
sic has been looked at less, mainly because of the lack
of available datasets. In this paper, classical piano mu-
sic dating from the 17th to the 20th century is classi-
fied into the category period of composition. For this
the MAESTRO dataset from Magenta is used, consisting
of approximately 200 hours of piano performance record-
ings. Mel-Frequency Cepstral Coefficients and Chroma-
grams are evaluated as features, and they are tested with
Convolutional Neural Networks, Long Short-Term Mem-
ory (a type of Recurrent Neural Networks) and Support
Vector Machines as Machine Learning algorithms.
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1. INTRODUCTION

Within the field of music there exist many genres, such
as pop, rock, metal and classical. Each genre has its own
musical, tonal and harmonious properties, and different
subgenres. Classifying music can be useful for a multitude
of reasons: for indexing, or for research purposes on for
instance its popularity, or its cognitive effects [36]. While
these genres are defined and identified by humans, com-
puters can classify music pieces using Machine Learning,
usually performing just as well as a human would; this
already has been done quite often [19, 1, 33, 35, 25]. It
is usually referred to as (Automatic) Music Information
Retrieval, or MIR for short. Some types of music are in-
vestigated more than others, as there has been done much
research on modern, popular music, but less so the clas-
sical variant. Reasons for this might revolve around the
music’s impopularity itself, diminished commercial inter-
est, or a lack of widely available datasets.

Classical music can be placed in different subcategories,
based on time of composition. In this paper, I will at-
tempt to classify classical piano music dating from the
17th to the 20th century into their respective time peri-
ods 'Baroque’, ’Classical’, 'Romantic’ and "Modern’. This
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goal is reflected in the following research questions:

e RQ1: What makes piano music unique in terms of:

— RQ1.1: Music as a time series

— RQ1.2: Feature selection & Machine learning

e RQ2: Can we explore and extend previously used
machine learning methods in order to obtain accu-
rate classification of piano music based on into time
period of composition

First, RQ1 is defined because classical music can be per-
formed with different musical instrument setups (piano,
quartet, orchestra, vocal) and the dataset used in this pa-
per solely contains piano music recordings. It will then be
useful to go over the characteristics and methods that are
important to this specific classification problem.

Music Information Retrieval is usually performed in two
parts: first, a database is selected, and features are ex-
tracted from the data. Second, one or more classifica-
tion algorithms are applied and the data is classified. The
choice for features and algorithm heavily depends on the
source material and the type of classes. In this paper RQ2
will be answered by selecting and testing two different fea-
tures and three different Machine Learning methods based
on previous research on Music Information Retrieval, and
the best performing combination will be identified.

1.1 Main Contribution

The main contribution of this work is the comparison of
the performance between two popular Extraction Features
in music: Mel-Frequency Cepstrum Coefficients and Chro-
magrams, and three Machine Learning algorithms: Convo-
lutional Neural Networks, Long-Short Term Memory, and
Support Vector Machines.

2. RELATED WORK

Automatic music classification is a type of Music Informa-
tion Retrieval (MIR), a term first mentioned by Kassler
(1966) [18], naming the programming language he created
for extracting information from audio files. Since then,
MIR has split into many different branches. Fu et al. [10]
defines 5 of them directly related to music classification
in his 2011 survey: Genre and Mood Classification, Artist
Identification, Instrument Recognition, and Music Anno-
tation. The research presented in this paper is comple-
mentary with their work and focuses on Period Classifica-
tion, which is not part of that list, but comes closest to
Artist (composer) Identification. I will shortly go over a
history of research both Composer Identification and In-
strument Classification to give an overview of the progress
made over the years. I chose the latter because it is one



of the most straight-forward of MIR tasks and completely
audio-based, while the former introduces complications as
described in Section 2.2. Still, most attention will be paid
to Composer Identification. In 2011, Fu et al [10] described
feature types extracted from source data during the Fea-
ture Extraction part of classification. They lists low-level
Timbre and Temporal features, and mid-level as Pitch,
Rhythm and Harmony. Researchers having been tending
to use combinations of these features, selecting them based
on the type of task. Some develop their own specialized
features, often derived from the ones above.

2.1 Instrument Classification

Instruments are most often classified by extracting Tim-
bre and Spectral (a type of Timbre) features. One of the
earliest works here is performed by Marques et al [22] in
1999. Eight instruments were classified from 16 CDs, using
Mel-Frequency Cepstrum Coefficients (MFCC) and Cep-
strum features, with a Support-Vector Machine (SVM)
and Gaussian Mixture Model (GMM) tested as classifiers.
The best combination was MFCC and SVM, resulting in
an accuracy of 70%. This is one of the first papers to use
an SVM for MIR.

Eronen [9] classified 29 instruments using different fea-
tures and a k-NN classifier. The best performing feature
was MFCC with an accuracy of 32%.

Eggink and Brown [7] was the first to identify two instru-
ments being played at the same time out of a pool of 5,
using Timbre features, a-priori masks for instrument sep-
aration, and a GMM classifier, achieving 74% accuracy.
Simmermacher et al. [34] classified 4 instruments using a
mixture of features among which "MPEG-7". Testing on
a k-NN, Naive Bayes and SVM classifier, the SVM came
out best with 97% accuracy. It is noteworthy to mention
that just using MFCC features already gave 93% accuracy.
The same researchers published a comprehensive study on
features used in Instrument Classification two years later
(2008) [5], concluding that MFCC features performed best
individually in this task, especially when combined with
SVMs. Since then, there have been many more papers on
instrument classification, usually achieving similar results.
Neural Networks have also been researched as a classifier.
For example, in 2018 Chakraborty [2] stated that Convo-
lutional Neural Networks need much more training data
to achieve performance similar to the conventional MFCC
and SVM.

To conclude, one of the main points that can be deducted
from these papers is that the the task of classifying in-
struments often involved MFCCs and SVMs for the best
results, especially before deep learning came around.

2.2 Composer Identification

Classifying composers is the task that comes closest to
classifying the period in which a piece was composed, since
a period could be considered an aggregate of musical char-
acteristics exhibited by composers during a certain time-
frame.

Before I continue, it is important to note here that this
task of MIR brings to light an important distinction be-
tween two types of classification, namely classifying based
on symbolic data, and classifying based on audio source
material. Symbolic data usually comes in the form of
MIDI files or (digital) sheet transcriptions, of which MIDI
files are most commonly used. MIDI is ”a data communi-
cations protocol that allows for the exchange of informa-
tion between software and musical equipment through a
digital representation of the data that is needed to gener-
ate the musical sounds” (Rothstein, 1992) [29]. In other
words, it is a format that is easily processed and analyzed

by a computer. As a consequence, there has been done a
lot of research into classifying composers using MIDI files.
I will summarize some of it in the next section. However,
for research part of this paper I want to focus on audio
source files instead, which pose a different challenge in
terms of selecting feature extraction methods.

Pollastri and Simmencelli [28] first classified 4 composers
and the Beatles from a collection of 605 MIDI files. They
used melodies coded as intervals together with a Hidden
Markov Model, achieving 42% accuracy. Interestingly,
they also conducted a listening expirement where experts
and non-experts were asked to classify the music, observ-
ing accuracies of 48% and 24% for each group respectively.
Kranenburg et al. [37] classified 5 composers using a set of
self-defined ’style markers’, representing mostly low-level
features. Using Nearest Neighbour they achieved accura-
cies between 73 and 91% depending on the classification
problem.

Wolkowicz et al. [45] classified 5 composers as well, on a
set 251 piano MIDI files using a novel N-Grams method
describing melodic and rhythmic features. A similarity
measure formula achieved 84% accuracy.

Hillewaere et al. [14] created a system that could differen-
tiate between string quartets of Haydn and Mozart. They
used 3 subsets of features and statistics derived from Ali-
cante, Jesser and Mcay, and combined them with an SVM
classifier. They also implemented the N-Grams model for
comparison; both models achieved about 75% accuracy
maximum.

Kaliakatsos-Papakostas et al. [17] are one of the first to
use Neural Networks in Composer Identification in 2010.
They classified 7 composers by calculating Dodecaphonic
Trace Vectors from Chroma Profiles, and entered those
into a sequence of a Probabilistic Neural Network and a
Feedforward Neural Network. The reported accuracy was
48%.

Hontanilla et al. [16] used melody N-Grams on the same
dataset as Kranenburg [37], resulting in an average accu-
racy of 79%.

For a set of 5 composers Wolkowicz et al. [44] calculated
N-Grams, and compared the feature vectors using a va-
riety of statistical methods. Accuracies ranged between
70% and 75%.

Herlands et. al [12] classified two composers using the
same dataset as Hillewaere [14], this time testing melodic
and rhythmic features. Together with an SVM classifier
they increased the accuracy to 80%.

SVMs were once again used by Herremans et al. [13], clas-
sifying 3 composers by extracting 12 selected interval and
pitch features provided by software called 'jSymbolic’, get-
ting 80-86% accuracy. Sadeghia et al. [30] then tackled the
same problem using the same features but a (Enhanced)
Fuzzy Min-Max Neural Network. The accuracy only got
up to 70% this time.

In short, when dealing with symbolic data, classification
accuracy (for about 5 composers) often goes above 80%
when using n-grams, or SVMs with melodic or pitch-features.
But while there is plenty of research on symbolic data,
there has been little research on audio data. In the next
section I will describe a few of the only works that have
been done this way.

One of the first attempts classifying raw audio data was
done by Zwan et al. in 2011 [46]. They selected music of
60 different composers from 5 different genres, one being
Classical. 171 features were extracted, such as MPEG-7
and MFCC means. An SVM classifier achieved 72% accu-
racy, a Neural Network 70%. It is important to recognize



here that the music selected came from a wide variety
of genres with different instrumental occupations. That
type of data might contain a lot of timbre information not
present in a single genre/instrument dataset.

In a rather striking recent work, Micchi [24] managed to
classify 320 pieces of piano music from 6 Classical com-
posers using just Short-Time Fourier Transforms and a
Convolutional Neural Network, with the accuracy going
as high as 70%.

Lastly, Velarde et al. [38] classified several audio sets, some
of which were actually generated from MIDI files, into two
composers. They used spectograms and SVM and k-NN
techgniques for this. Accuracies reached 72%, but they
concluded ”in multi-class composer identification, meth-
ods specialised for classifying symbolic representations of
music are more effective.”

To close this section out, I wanted to note that there ex-
ists a yearly Music Information Retrieval Evaluation eX-
change, or MIREX [6] for short, in which participants
compete in several MIR subjects. One of these subjects
is Composer Identification, where a dataset of 11 classi-
cal composers is provided. However, in the 15 years of
its existence, there have only been two attempts at this
challenge. Of those just one case from 2015 is still docu-
mented. It only reached an accuracy of 35% [31] using a
variety of features together with a Neural Network.

2.3 Period Classification

On the specific subject of Period Classification, according
to my best knowledge, there has really only been work
done by one researcher: Christof Weifl. In 2017 he pub-
lished a PhD thesis on analyzing Classical Music Audio
Recordings [39]. In my opinion, it is by far the most
interesting work on the topic yet, containing some novel
papers and detailed descriptions of methods and related
work performed by other researchers. Besides that, he
also published some papers over the span of a few years,
which I will shortly go over. In all of his works, he used
a handcrafted dataset containing 1600 audio recordings of
classical music, half for piano, half for orchestra; 200 of
both for each Period. The dataset does not contain works
from transitional composers that lived and created works
in two Periods.

In [41], Weil proposed a method to extract audio fea-
tures tailored to the task of Period Classification. First
he calculated Chroma Vectors using a Nonnegative Least
Squares formula. From those vectors, 'Pitch Classes’ were
extracted. When using a SVM method, classification ac-
curacy reached 86% for piano.

In [40], he attempted a second method in the same setup,
extracting Complexity Features instead of Pitch Classes
from the Chroma Vectors. Accuracy for piano was lower
this time at 64%. Besides this, spectral features (such as
MFCCs) were also tried. They only provided 29% accu-
racy on piano audio, barely above random guessing.

A third paper [43] researched key detection features with
a Random Forest classifier. Accuracies went above 70%.
Moreover, inserting simple raw Chromagrams as features
still gave 53% accuracy.

Lastly, in his most recent paper on the topic [42], he in-
vestigated the historical lines drawn by musicologists in a
computational way, "using automated feature aggregation,
tonal complexity as well as the ratio of plagal and authen-
tic transitions arised as style markers in an unsupervised
fashion”. He concluded that the unsupervised statistics,
interestingly, mostly agreed with musicologists.

2.4 Remarks

To summarize, MIR has become a popular field of research
over the past two decades. While categories such as Instru-
ment Classification and Composer Identification have con-
tinuously been researched and improved upon, accuracies
still rarely go above 90%, which leaves room for improve-
ment. And while SVMs have been used many times, there
is still a lot to explore regarding Neural Networks. Clas-
sical Composer Identification has mostly been researched
in the form of symbolic data, with audio data largely left
untouched.

Closing this section, I want to mention that Sharma et
al [32] recently published a very useful survey, describing
all popular features used in the Feature Extraction part of
Music Classification up until now.

3. METHODOLOGIES

The experiments are conducted in python using keras [3]
and scikit-learn [27]. The code can be found in on github'.

3.1 Dataset

For the data I use the MAESTRO dataset [11], a rela-
tively new dataset released by Google in October 2018
as part of their Magenta project. It contains “over 200
hours of paired audio (WAV) and MIDI recordings from
ten years of International Piano-e-Competition”, divided
into 1282 different pieces from 37 composers, although not
every composer is equally well-represented. Figure 5 in the
Appendix shows eight example boxplots and Table 1 gives
some statistical information about the data. Figure 6 in
the Appendix shows the signal and Fourier transforms for
the same example music pieces as in Figure 1. Since these
statistics do not show any interesting patterns they will
not be used in the rest of the paper.

Mean (p) | Standard dev. (%)
Baroque -2.97e-05 0.050336
Clasical -3.18e-05 0.049551
Romantic | -2.44e-05 0.053910
Modern -1.93e-05 0.046481

Table 1: Statistical details of the MAESTRO dataset: the
average mean and standard devation of the discrete audio
signal per period

3.2 Feature Selection and Extraction

T opted to test two commonly-used features: Mel-Frequency
Cepstrum Coefficients (MFCCs) and Chroma Features.
MFCCs contain much information about timbre. I expect
this to be less useful since the data used solely contains
piano music, which does not differ much in timbre from
piece to piece. Chroma Features on the other hand con-
tain mainly pitch information, which is the main compo-
nent that differentiates piano pieces and their styles from
each other. For this research, I sampled the first 30 sec-
onds of each piece at a sampling rate of 8000 Hz, and
extracted the MFCCs and Chromagrams.

3.2.1 Mel-Frequency Cepstrum Coefficients
MFCCs were first introduced by Davis and Mermelstein in
1980 [4]. They have been one of the most popular features
in this research field for years now; they are used for every
type of classification (see also Section 2). They are a short-
term representation of the power spectrum of a signal,
with frequency weights adjusted to the range of frequen-
cies humans can perceive. MFCCs are calculated in five

'https://github.com /vantspijker /periodclassification



steps [20], using the python "python_speech features” [21]
library.

1. Framing the signal

The signals used in the MAESTRO dataset are sampled
at 44100Hz. This is more than I need for accurate fea-
ture extraction, so I subsampled to 8000Hz. The signal
is then framed with framing windows of 0.25 ms, creating
0.025*%16000 = 200 samples per frame. Frame step is 10ms
(80 samples), allowing some overlap in the frames.

2. Calculating the Periodogram estimate

First the Discrete Fourier Transform (DFT) is calculated
using the following formula:

N
Si(k) = Z si(n)h(n)e” ¥ 1<k<K (1)

where s;(n) denotes the time domain signal on the ith
frame number, n ranges over the 200 samples, h(n) is an
N sample long hamming window, and K is the length of
the DF'T, which I set to 256.

The Periodogram estimate of the power spectrum spec-
trum is then calculated by:

|Si (k)| (2)
3. Computing the Mel-spaced filterbank

This step is performed so simulate human hearing, which
is more sensitive to changes in the lower frequencies than
in the higher ones. The filterbank is ”a set of 20-40 (26
is standard) triangular filters that we apply to the peri-
odogram power spectral estimate from step 2. To calcu-
late filterbank energies we multiply each filterbank with
the power spectrum, then add up the coefficents. Once
this is performed we are left with 26 numbers that give
us an indication of how much energy was in each filter-
bank.” [20] Figure 1 displays a simple visual example of a
Mel-spaced filterbank.

@

Figure 1: Example of a Mel-spaced filterbank
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4. Taking the log of each of the 26 energies from the
previous step

This is also done in conjunction with the theory of human
hearing: for the human ear to perceive something as twice
as loud, the amplitude has to be about eight times as large.

5. Taking the Discrete Cosine Transform (DCT) of the
filterbank

This step decorrelates the 26 coefficients. Only the lower
13 of the 26 MFCCs that are calculated are kept. Using
more than 13 coefficients usually does not increase classi-
fier accuracy in Machine Learning.

After performing these steps, I end up with a MFCC ma-
trix of 13 by 2999.

3.2.2 Chromagrams

”Chroma features are an interesting and powerful repre-
sentation for music audio in which the entire spectrum is
projected onto 12 bins representing the 12 distinct semi-
tones (or chroma) of the musical octave.”[8] The chroma-
grams in this research paper are calculated according to

the following steps using the python "librosa.feature.chroma._stft”

library [23]:
1. Framing the signal

The signal is framed with a framing window of 2048 sam-
ples, and a frame step of 512 samples. This creates 802?;30 R
469 frames (the last frame is padded with zeros).

2. Calculating the Discrete Fourier Transform
The DFT is calculated the same way as in (1).
3. Mapping to tone bins

For every frame, the Fourier Transform values are then
mapped to 12 bins, each representing one tone in the mu-
sical 12-tone scale. Each bin represents all octaves (dou-
bling in frequencies).

These three steps output a Chroma matrix of 12 by 469.

3.3 Machine Learning algorithms

Since MFCCs and Chromagrams are both image repre-
sentations of the signals, I suspect Convolutional Neural
Networks might use the extracted features well. Further-
more, because more modern music pieces change notes and
chords over time more than the older, traditional ones,
I will also apply a Long Short Term Memory algorithm
(LSTM), which is a form of a Recurrent Neural Network
(RNN) first introduced by Hochreiter and Schmidhuber
in 1997 [15]. Lastly, one of the most popular methods in
the field of music classification is Support Vector Machine
learning. This is a much simpler form of Machine Learning
(SVM), as it only attempts to separate groups of classes
in their regions based on coordinates (value vectors) it is
given. The SVM here is used with a radial basis kernel.

3.3.1 Convolutional Neural Networks

The Convolutional Neural Network used in this research is
built from different layers: first a set convolution and acti-
vation layers, then a pooling layer, followed by a dropout
layer, and two dense layers. Because the Chromagrams
were of a smaller size than the MFCC spectograms, larger
networks could be built for the first. In the convolu-
tion layers, a 3x3 convolution window slides through the
Chroma or MFCC matrix with step size (1,1) and cal-
culates a filter dot product to identify relevant features.
The amount of filters increases in each new layer, so that
more detailed features are identified along the way. After
each convolution layer, an activation 'Leaky ReLu’ layer
follows, that is meant to only keep active neuron values.
The formula for this Leaky ReLu implementation is given
by:

T if x >0,
o) = {0.3x otherwise

At the end of the convolution layers, a max pooling layer
is added to compress data size. A 2x2 window with step
size 2 slides over the feature maps and keeps only the high-
est value, reducing the total data size by a factor of four.



This is followed by a dropout layer, where half of the neu-
rons are randomly dropped. This layer is meant to reduce
overfitting and force the network to recogize probabilistic
patterns. After this, the output is flattened to one dimen-
sion and two consecutive "Dense” layers are added: one
to be trained to recognize patterns, and a final one to de-
termine the most likely class (using a "softmax”) function.
Figure 2 provides a visualization of the layer setup. The
differences between setups for the MFCC and the Chroma
data can be found in Table 2.

Featun Convolution/ Poolin
l\i:urixe > Activation > I?; erg > Dropout
Layers Y T
Layers

Figure 2: Convolutional Neural Network Setup

| MFCC Chroma

Convolution Layers 4 6
Convolution Filter Maximum | 128 512
Dense Neurons 64 128

Table 2: Differences between the Convolutional Neural
Networks used for classifying. Since Chromagrams are less
dense than MFCC spectograms, a larger neural network
could be used.

3.3.2  Long Term Short Term Memory

The LSTM implementation is like the CNN, with a few
key differences: instead of convolution layers, there are
two consecutive LSTM layers of size 128. This is followed
by the dropout layer (there is no pooling layer), a 64-
sized dense layer (Time-distributed), an activation layer,
a flatten, and finally one more dense layer of size four.

3.4 Maetrics assessing the classification accu-
racy

Classification based on time period is a multi-class classifi-
cation problem by definition. Measuring its algorithm ac-
curacy can be done in multiple ways. Confusion matrices
on the test split of the data will be showed for illustration,
and I will calculate the accuracy and logarithmic loss for
each combination of feature and algorithm. The formula
for accuracy is given below:

True positives 4+ True negatives

Accuracy = Total number of predictions

The logarithmic loss is calculated using the class probabil-
ities the machine assigns to every single case. It especially
punishes heavy confidence in false positive and false neg-
ative cases. The close to zero the score is, the higher the
accuracy.

Because the dataset is heavily imbalanced (see section 4.1),
I also calculated the weighted accuracy, which takes this
imbalance into account. It is calculated here by taking
the average of the recall for evrey class. Given a confusion
matrix M, the recall of class x can be calculated by

> Mij
where i is the row of x and j ranges over the columns

of M. The weighted accuracy W of matrix M can then
be calculated by taking the average of the recall for every

Recall(x)

class X:

B X Recall(x)
o X
where X is the total number of classes.

W(M)

4. RESULTS

4.1 Pre-processing

Since the MAESTRO dataset does not contain informa-
tion about year or period of composition by itself, I added
this manually. Music historians generally identify four
distinct periods when starting from the 1600s, with mu-
sic pieces from each of them having uniquely identifiable
characteristics. As a rule of thumb, the later the cen-
tury, the more dissonant and less harmonious composi-
tions become, as composers experiment with new chords
and scales. There is no hard line between the periods and
the definitions can vary slightly from source to source. I
used [26] here, which keeps track of the lifespan of most
known classical composers. The four periods then are:

1. 1600-1750: Baroque
2. 1750-1820: Clasical
3. 1820-1910: Romantic

4. 1910-present: Modern

I categorized every piece in the dataset into its period
based on the canonically established year of its composi-
tion. This resulted in a division of periods as shown in
Figure 3. Evidently, the Romantic period is rather over-
represented. During the Machine Learning part this as-
pect proved to be difficult to completely counterbalance,
so I decided to reduce the amount of Romantic Pieces by
two thirds to compensate. The distribution after reduc-
tion is given in table 3. It also shows the split of data:
Train was used to train the networks, Validation was used
to test accuracy after each epoch, and Test was used for a
final accuracy measure.

Baroque

Classical 17.0%

Romantic
Modern

Figure 3: Database piece distribution.

Train | Validation | Test
Baroque 151 14 30
Clasical 160 20 38
Romantic 211 38 20
Modern 46 4 11
Total 522 76 99

Table 3: Distribution of the split of data across the four
periods in the MAESTRO dataset after reducing the num-
ber of Romantic pieces by two thirds. The data is split
into Train, Validation and Test according to the labels the
database provided.



Algorithm  Subset Metric MFCC Chroma
LSTM Validation Accuracy 0.3 0.49
Loss 2.89 1.14
Test Accuracy 0.37 0.33
Loss 3.04 1.4
Accuracy(W) | 0.37 0.29
CNN Validation Accuracy 0.5 0.58
Loss 1.43 1.33
Test Accuracy 0.38 0.42
Loss 1.5 2.19
Accuracy(W) | 0.39 0.37
SVM Test Accuracy 0.41 0.33
Accuracy(W) | 0.35 0.29

Table 4: Numerical Summary of the classification results.
The accuracy and loss are displayed for the validation
and test set of each algorithm. Accuracy(W) is the most
important statistic and denotes the Weighted Accuracy.
Since SVMs are only split in a train and test set, no vali-
dation accuracy is given.

4.2 Machine Learning

The numerical results of the tests can be found in table
4. The numbers for the best performing performing al-
gorithm (CNN) are in bold. The confusion matrices are
shown in Figure 4. Figure 7 in the Appendix displays
examples of MFCC and Chroma Feature graphs, two for
each period, along with their signal transform. The Fil-
terbank values, which are the result of performing every
step until the Discrete Cosine Transform while calculating
MFCCs (see also Section 3.2.1, step 4), are also shown.
The performance of algorithms differed quite substantially.
What table 3 does not display is the time efficiency of the
algorithms and features: as explained in section 3, MFCC
spectograms are much bigger (about 15 times) and contain
more information than Chromagrams. LSTMs are slower
than CNNs, so the slowest performing combination was
LSTM and MFCCs. The fact that Chroma feature vec-

tors are smaller also means that the CNN could be given
an extra layer of neurons, which helped the accuracy.
The most important statistic is the weighted accuracy.
The unweighted accuracy gives a warped impression of the
models robustness, as only guessing "Romantic” on the val-
idation set would give an accuracy of 50%, and guessing
”Classical” on the test set would give an accuracy of 38%.
Weighted accuracy gives exactly 25% in these cases.
Judging from the weighted accuracy, the best combina-
tion was an MFCC spectogram combined with a Convo-
lutional Neural Network, at 39% accuracy and one of the
lowest logarithmic losses. Contrary to what I expected,
the Chromagrams perform worse on every classifier com-
pared to MFCC spectograms. This might be because of
the larger information density of MFCCs. While Chroma-
grams clearly do not perform better directly here, there
still is potential in them left untapped in this research. For
example, Weif} [41] computed more specific pitch-related
information based on Chromagrams, which increased ac-
curacy as opposed to using flat Chromagrams as reported
in [43].

It appears the LSTM algorithm performed worse than the
CNN. Although the LSTM did well on MFFCs in terms of
Weighted Accuracy, the logarithmic loss was rather high.
The SVM performed the worst. From the confusion ma-
trices in Figure 4 it becomes clear the algorithms have the
much trouble correctly identifying Modern pieces. There
are two explanations for this: first, the Modern dataset
is by far the smallest (see table 3). Second, the modern
pieces are not very recent: they are mostly composed in
the early 1900s, shortly after the Romantic period ended,
half of them written by transitional composers that also
wrote music for the Romantic Period (such as Debussy).
Furthermore, what the numerical summary cannot rep-
resent accurately is the distance of periods next to each
other. For example, it is much worse for the machine
to classify a Baroque piece as Modern or Romantic than
Classical, since the former is more closely related to the
Baroque. The confusion matrices give a better idea of this,
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Figure 4: Confusion Matrices of the test sets for each of the Algorithm and Feature combinations presented in table 3.



but it would be better to devise an alternative metric that
takes this Period distance into account.

5. CONCLUSIONS AND FUTURE WORK
In this paper, I attempted to classify audio of classical pi-
ano music from a variety of composers into four different
Time Periods. I tested two feature extraction methods,
MFCCs and Chroma Vectors, on three different classifiers:
CNNs, LSTMs and SVMS. The highest test-set accuracy
came from the combination of MFCCs Vectors with CNNs.
Contrary to what I expected, raw Chroma features do not
perform better when using audio source material from a
single instrument. While Convolutional Neural Network
classifiers performed best here, the accuracy numbers at-
tained in this work leave much room for improvement.
Part of the accuracy deficiency could be attributed to the
large data imbalance in the MAESTRO dataset. Future
work could correct this during the pre-processing stage
in several ways: the small Modern subset could be dis-
carded (so that only 3 Periods can be classified), or tran-
sitional composers could be left out to establish clearer
distinction lines between Periods. The data-gap between
Periods could also be corrected by taking more than one
30-second sample per piece in the underrepresented Peri-
ods, although this might introduce bias into the system.
Furthermore, the parameters set for the Neural Networks
have been chosen rather arbitralily as of now; it would be
interesting to research if there exist more optimal values
that increase accuracy when applied.

Although two of the more commonly-used features have
been applied in this research, there are still many more to
be compared. Sub-features could also be extracted from
MFCCs and Chroma Vectors, reducing data size and spe-
cializing the information input for the task. Some research
papers reviewed in Related Work section describe the com-
bining of multiple features into a Feature Vector, some-
thing also not yet attempted here. Combining features
usually, though not always, results in higher accuracy.
Lastly, the MAESTRO dataset contains both MIDI and
WAV data for every piano piece. This opens up opportuni-
ties for directly comparing the performance of both Period
and Composer classification between audio and symbolic
representations of music.

6. ACKNOWLEDGEMENTS

I would like to thank dr. E. Mocanu very much for all her
help and feedback (and patience with me) while supervis-
ing the writing of this paper.

7. REFERENCES

[1] A. C. Bickerstaffe and E. Makalic. Mml classification
of music genres. In T. T. D. Gedeon and L. C. C.
Fung, editors, Al 2003: Advances in Artificial
Intelligence, pages 1063-1071, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[2] S. S. Chakraborty and R. Parekh. Improved musical
instrument classification using cepstral coefficients
and neural networks. In J. K. Mandal,

S. Mukhopadhyay, P. Dutta, and K. Dasgupta,
editors, Methodologies and Application Issues of
Contemporary Computing Framework, pages
123-138, Singapore, 2018. Springer Singapore.

[3] F. Chollet et al. Keras. https://keras.io, 2015.

[4] S. Davis and P. Mermelstein. Comparison of
parametric representations for monosyllabic word
recognition in continuously spoken sentences. I[EEE
Transactions on Acoustics, Speech, and Signal
Processing, 28(4):357-366, August 1980.

[5] J. Deng, C. Simmermacher, and S. Cranefield. A
study on feature analysis for musical instrument
classification. IEEFE transactions on systems, man,
and cybernetics. Part B, Cybernetics : a publication
of the IEEE Systems, Man, and Cybernetics Society,
38:429-38, 05 2008.

[6] J. S. Downie. Mirex home. https://www.music-
ir.org/mirex/wiki/MIREX_HOME, 2019. (Accessed
on 01/26/2020).

[7] J. Eggink and G. J. Brown. A missing feature
approach to instrument identification in polyphonic
music. In ICASSP, IEEFE International Conference
on Acoustics, Speech and Signal Processing -
Proceedings, volume 5, pages 553556, 2003.

[8] D. P. Ellis. Chroma feature analysis and synthesis.
http://labrosa.ee.columbia.edu/matlab/
chroma-ansyn/, 04 2007. (Accessed on 01/26/2020).

[9] A. Eronen. Comparison of features for musical
instrument recognition. In Proceedings of the 2001
IEEE Workshop on the Applications of Signal
Processing to Audio and Acoustics (Cat.
No.01THS8575), pages 19-22, 2001.

[10] Z. Fu, G. Lu, K. M. Ting, and D. Zhang. A survey
of audio-based music classification and annotation.
IEEE Transactions on Multimedia, 13(2):303-319,
April 2011.

[11] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon,
C.-Z. A. Huang, S. Dieleman, E. Elsen, J. Engel,
and D. Eck. Enabling factorized piano music
modeling and generation with the MAESTRO
dataset. In International Conference on Learning
Representations, 2019.

[12] W. Herlands, Y. Greenberg, R. Der, and S. Levin. A
machine learning approach to musically meaningful
homogeneous style classification. Proceedings of the
National Conference on Artificial Intelligence,
1:276-282, 01 2014.

[13] D. Herremans, D. Martens, and K. Sorensen.
Composer classification models for music-theory
building. In D. Meredith, editor, Computational
Music Analysis, pages 369-392, Cham, 2016.
Springer International Publishing.

[14] R. Hillewaere, B. Manderick, and D. Conklin. String
quartet classification with monophonic models. In
Proceedings of the 11th International Society for
Music Information Retrieval Conference, ISMIR
2010, pages 537-542, 01 2010.

[15] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9:1735-80, 12 1997.

[16] M. Hontanilla, C. Pérez-Sancho, and J. M. Ifiesta.
Modeling musical style with language models for
composer recognition. In J. M. Sanches, L. Micé,
and J. S. Cardoso, editors, Pattern Recognition and
Image Analysis, pages 740-748, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[17] M. Kaliakatsos-Papakostas, M. Epitropakis, and
M. Vrahatis. Musical composer identification
through probabilistic and feedforward neural
networks. In Lecture Notes in Computer Science,
volume 6025, pages 411-420, 04 2010.

[18] M. Kassler. Toward musical information retrieval.


https://keras.io
http://labrosa.ee.columbia.edu/matlab/chroma-ansyn/
http://labrosa.ee.columbia.edu/matlab/chroma-ansyn/

[19]

[20]

[21]

[24

[25]

[26]

[27]

Perspectives of New Music, 4(2):59-67, 1966.

Y. Lo and Y. Lin. Content-based music
classification. In Proceedings - 2010 3rd IEEE
International Conference on Computer Science and
Information Technology, ICCSIT 2010, volume 2,
pages 112-116, 2010.

J. Lyons. Mel frequency cepstral coefficient (mfcc)
tutorial. http://www.practicalcryptography.com/
miscellaneous/machine-learning/

guide-mel-frequency-cepstral-coefficients-mfccs/,

2009. (Accessed on 01/26/2020).

J. Lyons, D. Y.-B. Wang, , Gianluca, H. Shteingart,
E. Mavrinac, Yash Gaurkar, Watcharapol
Watcharawisetkul, S. Birch, L. Zhihe, J. Holzl,

J. Lesinskis, H. Almér, Chris Lord, and A. Stark.
jameslyons/python_speech_features: release v0.6.1,
2020.

J. Marques and P. J. Moreno. A study of musical
instrument classification using gaussian mixture
models and support vector machines. Technical
report, Compaq Corporation, Cambridge Research
laboratory, USA, 1999.

McFee et al. librosa/librosa: 0.7.2, 2020.

G. Micchi. A neural network for composer
classification. In International Society for Music
Information Retrieval Conference (ISMIR 2018),
Paris, France, 2018.

A. Nasridinov and Y. . Park. A study on music
genre recognition and classification techniques.
International Journal of Multimedia and Ubiquitous
Engineering, 9(4):31-42, 2014.

J. Paterson. Composer timelines for classical music
periods. https://www.mfiles.co.uk/
composer-timelines-classical-periods.htm.
(Accessed on 01/26/2020).

F. Pedregosa, G. Varoquaux, A. Gramfort,

V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg,

J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825-2830, 2011.

E. Pollastri and G. Simoncelli. Classification of
melodies by composer with hidden markov models.
In Proceedings of the First International Conference
on WEB Delivering of Music (WEDELMUSIC’01),
WEDELMUSIC ’01, page 88, USA, 2001. IEEE
Computer Society.

J. Rothstein. MIDI: A Comprehensive Introduction.
A-R Editions, Inc., USA, 1992.

P. Sadeghian, C. Wilson, S. Goeddel, and

A. Olmsted. Classification of music by composer
using fuzzy min-max neural networks. In 2017 12th
International Conference for Internet Technology
and Secured Transactions (ICITST), pages 189-192,
Dec 2017.

L. P. Sempere. Audio classical composer
identification in mirex 2015: Submission based on
structural analysis of music. Master’s thesis,
Polytechnic University of Valencia, 2015.

G. Sharma, K. Umapathy, and S. Krishnan. Trends
in audio signal feature extraction methods. Applied
Acoustics, 158:107020, 2020.

A. C. M. D. Silva, M. A. N. Coelho, and R. F. Neto.
A music classification model based on metric
learning applied to mp3 audio files. Expert Systems
with Applications, 144, 2020.

34]

37]

[38]

39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

C. Simmermacher, D. Deng, and S. Cranefield.
Feature analysis and classification of classical
musical instruments: An empirical study. In

P. Perner, editor, Advances in Data Mining.
Applications in Medicine, Web Mining, Marketing,
Image and Signal Mining, pages 444—458, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

J.-H. Su, C.-Y. Chin, T.-P. Hong, and J.-J. Su.
Content-based music classification by advanced
features and progressive learning. In N. T. Nguyen,
F. L. Gaol, T.-P. Hong, and B. Trawiriski, editors,
Intelligent Information and Database Systems, pages
117-130, Cham, 2019. Springer International
Publishing.

G. Subramaniam, J. Verma, N. Chandrasekhar,

C. NarendraK., and K. George. Generating playlists
on the basis of emotion. 2018 IEEE Symposium
Series on Computational Intelligence (SSCI), pages
366—-373, 2018.

P. Van Kranenburg and E. Backer. Musical style
recognition - a quantitative approach. Handbook of
Pattern Recognition and Computer Vision, 3rd
FEdition, pages 15-18, 05 2004.

G. Velarde, C. Cancino Chacén, D. Meredith,

T. Weyde, and M. Grachten. Convolution-based
classification of audio and symbolic representations
of music. Journal of New Music Research, pages
1-15, 05 2018.

C. WeiB. Computational methods for tonality-based
style analysis of classical music audio recordings.
PhD thesis, Ilmenau, Aug 2017.

C. Weiss and M. Miiller. Tonal complexity features
for style classification of classical music. In 2015
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 688—692,
April 2015.

C. Weifl, M. Mauch, and S. Dixon. Timbre-invariant
audio features for style analysis of classical music. In
Proceedings - 40th International Computer Music
Conference, ICMC 2014 and 11th Sound and Music
Computing Conference, SMC 2014 - Music
Technology Meets Philosophy: From Digital Echos to
Virtual Ethos, pages 1461-1468, 2014.

C. Weif3, M. Mauch, S. Dixon, and M. Miiller.
Investigating style evolution of western classical
music: A computational approach. Musicae
Scientiae, 23(4):486-507, 2019.

C. Weifl and M. Schaab. On the impact of key
detection performance for identifying classical music
styles. In Proceedings of the 16th International
Society for Music Information Retrieval Conference,
ISMIR 2015, pages 45-51, 2015.

J. Wolkowicz and V. Keselj. Evaluation of
n-gram-based classification approaches on classical
music corpora. In J. Yust, J. Wild, and J. A.
Burgoyne, editors, Mathematics and Computation in
Music, pages 213-225, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

J. WoLkowicz, Z. Kulka, and V. Keselj.
N-gram-based approach to composer recognition.
Archives of Acoustics, 33(1):43-55, 2008.

P. Zwan, B. Kostek, and A. Kupryjanow. Automatic
classification of musical audio signals employing
machine learning approach. In 130th Audio
Engineering Society Convention 2011, volume 2,
pages 1254-1264, 2011.


http://www.practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://www.practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://www.practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
https://www.mfiles.co.uk/composer-timelines-classical-periods.htm
https://www.mfiles.co.uk/composer-timelines-classical-periods.htm
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