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Abstract

Optical dipole traps (ODTs) are among the most commonly used traps for confining Bose-
Einstein condensates (BECs). A high degree of control of light allows for the realisation of
a great variety of trapping geometries. One of the simplest, yet elegant methods of trapping
BECs is in an ODT is using a focussed red-detuned laser beam, which acts as an attractive
potential. While such a trap is easily realised and is very robust, it nevertheless poses various
disadvantages. To achieve a high degree of vertical atom confinement, i.e. a large trap fre-
quency, the trap area and uniformity have to be sacrificed due to the Gaussian nature of the
beam. In addition, when combining these traps with structured repulsive potentials, atoms
which are not part of the condensate (thermal atoms) may float outside of the structures
while still attracted to the red-detuned ODT. This results in noise in measurements and
prevents various experiments from being conducted.

In this thesis, a new trap is proposed which overcomes these issues. Through com-
bining two blue-detuned beams, which act as a repulsive potential, an optical lattice is
formed. Atoms are vertically confined in at the nodal planes and horizontally using another
blue-detuned beam. This allows for creation of nearly uniform traps, closely resembling a
finite-potential square well. The lattice spacing is easily adjusted, which provides stronger
vertical confinement, making the trap a 2D box trap for BECs.

We propose and realise the implementation of such a 2D box trap. After characterization,
a BEC lifetime in the trap of 19(5) s was found, which, while lower than the current red-
sheet beam trap, is a sufficient lifetime for 2D transport and turbulence experiments. A trap
frequency of νtrap = 58(1) Hz was realised at low trap powers and at a large lattice spacing.
By increasing the beam power and reducing the lattice spacing, a theoretical maximum of
over 10 kHz can be achieved.

While future work on the trap will have to experimentally demonstrate these higher
trap frequencies, the trap lifetime and uniformity have already opened possibilities to new
experiments, such as the experimental identification of a superfluid Reynolds number. Other
future experiments made possible by the higher trap depth and frequency include observation
of the superfluid fountain effect and observation of quantized conductance for bosons.
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1
Introduction

Bose-Einstein condensation was first achieved in 1995 by Cornell and Wieman’s group using
Rubidium atoms [1] and later in the same year by Ketterle’s group at MIT using Sodium
atoms [2]. Ever since, many Bose-Einstein condensate (BEC) experiments have been re-
alised, counting more than 250 experimental and theory groups in cold atoms around the
world and even outside, with one BEC experiment aboard of the International Space Sta-
tion. Ever since first realisation, cooling and trapping mechanisms for atoms have drastically
improved. The ability to have very high resolution and dynamic control over atomic clouds,
for example through use of a digital micromirror device (DMD) [3], have made BECs such a
versatile medium in which to study a wide range of topics in physics, ranging from high pre-
cision metrology [4] to atomic analogues of electrical circuits [5, 6] to studies of turbulence [7].

Key to performing experiments on BECs is confinement atoms. The most common
method of trapping atoms in a BEC is through the use of optical dipole traps (ODTs), in
the dipole moment of an atom is exploited by exerting a force gradient on the atoms using an
electric field. When studying the topic of two-dimensional (2D) transport and turbulence, it
is essential to be able to confine atoms strongly enough for the condensate to be considered
2D. At the University of Queensland (UQ), this is currently by focussing a red-detuned laser
beam, which acts as an attractive potential, on the atom plane. While this is an elegant and
simple method of trapping atoms, the current red-detuned ODT brings various disadvan-
tages with it. Increasing the vertical confinement, required for various experiments, always
sacrifices the area of the beam in which atoms are confined, due to the nature of Gaussian
beam optics. Another disadvantage, unique to the current trap at UQ, is atoms that are
still attracted to the red-detuned trap, but float outside the DMD-potential trap in which
we conduct our experiments. These atoms, called thermal atoms, are not condensed and
have a higher energy, and may therefore float outside of the DMD-potential trap. Thermal
atoms introduce noise and disrupt experiments.
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2 Introduction

A new trap which overcomes these issues, inspired by Ville et al. [8] is implemented and
demonstrated in the BEC experiment at UQ. Using two identical blue-detuned beams, which
implements a repulsive potential, an ODT trap is realised, shaped through the interference
of the two beams. The interference pattern forms an optical lattice, in which the atoms
are trapped in the nodes. While the area of the trap is still determined by the (horizontal)
Gaussian beam waist and the Rayleigh length, the vertical confinement (the trap frequency)
is determined and can be controlled by changing the lattice spacing of the trap. This allows
one to create harmonic traps which are nearly flat while having a high degree of control over
the trap frequency. Furthermore, because of the repulsive nature of the trap, any thermal
atoms are expelled outside of the DMD pattern.

In this thesis, the implementation and characterization of this optical lattice trap is pre-
sented. Chapter 2 is an introduction to anyone who is unfamiliar with BECs and describes
the physics relevant to the work discussed in the thesis. In Chapter 3, the experimental ap-
paratus at UQ is described. The vacuum system and the cooling and trapping mechanisms
to achieve Bose-Einstein condensation are described in the first part. The second part de-
scribes the DMD trap, pioneered at UQ, which is used to dynamically control the condensate
in the conducted experiments. The remainder of the Chapter describes techniques used to
image BECs. In Chapter 4, the experimental design of the optical lattice is discussed. In the
first part, the working principles behind the trap are explained, followed by the experimental
setup. In the remainder of the Chapter, the necessity for using an active lattice stabilization
feedback system and other important considerations to take into account are discussed. The
optical lattice trap is characterized in Chapter 5. An experiment for measuring the lifetime
of a BEC in the trap is discussed in Section 5.1, and in Section 5.2, the trap frequency at
the moment of implementation of the trap is measured. Chapter 6 serves as an outlook and
discusses three different experiments which can be conducted with the new trap, with each
of these experiments utilizes a different new feature of the trap. Chapter 7 concludes the
thesis by summarizing the thesis and giving a future outlook for the work.



2
Theoretical Background

Bose-Einstein condensation was first predicted by Albert Einstein. In a paper published
in 1924-1925 [9], Einstein followed up on a paper written by Bose from 1924 [10]. Bose’s
paper described a quantum theory of photon statistics, based on Planck’s famous radiation
formula of the light quanta. Einstein expanded this idea to massive particles which resulted
in the concept of a Bose gas, which follows the Bose-Einstein distribution. He proposed
that cooling bosonic atoms to a temperature close to absolute zero would cause them to
condense into the lowest accessible quantum state. It was not until 1995 that the first BEC
was experimentally realised by Cornell and Wieman’s group at the University of Colorado
using Rubidium atoms [1] and not much later by Ketterle’s group at MIT using Sodium
atoms [2].

The timespan between the theoretical description of BECs and the first experimental
realisation was long due to technical limitations. It was not until 1987 that laser Doppler
cooling was first demonstrated [11], which allows 87Rb to cool down to TDoppler = 146µK
[12]. Additional cooling techniques, such as evaporative cooling [13], are however to be used
in combination with laser Doppler cooling in order to get to the critical temperature needed
for condensation.

In the first section of this chapter, a general theoretical description of BECs and quantum
fluids is given. Before touching on a quantum description of Bose-Einstein condensation,
bosonic properties and statistics which lead to this exotic state of matter are discussed.
Based on the Hamiltonian for a system of interacting particles, a mean field description
is given, which leads to the Schrödinger equation analogue for BECs, the Gross-Pitaevskii
equation (GPE). The final part of the section is dedicated to what the GPE implies for the
superfluid behaviour of BECs. Sections 2.2.1 and 2.2.2 discuss the atomic structure and how
the atomic properties are exploited in cooling and trapping techniques to experimentally
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4 Theoretical Background

create BECs. In particular, Sec. 2.2.2 describes the physics behind the trapping mechanism
used in the optical lattice trap presented in this thesis and presents the mathematics used
to simulate ODTs, as is done later in Chapter 5.

2.1 Bose-Einstein Condensation

2.1.1 A collapse to the ground state

Any particle can be categorized as either a boson or fermion. Bosons and fermions behave
fundamentally different from each other as result of a different spin: Any particle with a half-
integer spin is classified as a fermion and any full-integer particle is classified as a boson. The
difference in full or half-integer spin changes the symmetry properties of their wavefunction.
While the wavefunction of bosons is invariant upon changing position of two particles, the
wavefunction for a fermionic system changes sign upon particle position exchange [14]:

Ψboson(r1, r2) = Ψboson(r2, r1); Ψfermion(r1, r2) = −Ψfermion(r2, r1). (2.1)

This fundamental symmetry property leads to the Pauli exclusion principle for fermions,
but does not apply to bosons and, as such, allows different non-distinguishable bosons to
occupy the same energy state simultaneously. Bose and Einstein realised that at sufficiently
low temperatures, the probability of finding bosons in excited states decreases drastically.
This leads to macroscopic occupation of the lowest energy state, the ground state. The
occupation probability distribution of bosonic atoms is now commonly referred to as the
Bose-Einstein distribution,

fBE =
1

e(ε−µ)/kBT − 1
, (2.2)

with ε and µ the energy and chemical potential of the atom, kB Boltzman’s constant and T
the temperature.

The temperatures at which macroscopic occupation of the ground state occurs, referred
to as the critical temperature are different depending on whether condensation occurs in free
space or in a trap. The optical lattice trap realised in this thesis can be approximated as a
harmonic trap. The critical temperature for non-interacting particles in a harmonic trap is
given by

Tc =
1

kBm

( √
2π2~3N

V Γ
(

3
2

)
ζ
(

3
2

))3/2

, (2.3)

in which N is the number of atoms, V the volume, m the atom mass, ~ the reduced Planck
constant, and Γ

(
3
2

)
and ζ

(
3
2

)
the gamma and Riemann zeta function for a non-interacting

(free) gas [15].



2.1 Bose-Einstein Condensation 5

Qualitatively, at this temperature the de Broglie wavelength, λ =
√

2π~2/(mkBT ) [16],
becomes of comparable length to the interatomic spacing. At this point the individual atoms
become indistinguishable and can no longer be described by individual wavefuntions, but
instead must be described as a macroscopic, coherent wavefunction.

2.1.2 Microscopic theory of BECs

Even though experimental BECs are considered dilute gases, densities are high enough to
have inter-atomic collisions play a significant role. A complete description of atomic BECs
would therefore be incomplete without including a two-body interaction term. In second
quantization language, the Hamiltonian for a system of interacting particles is given by [17]

Ĥ =

∫
d3r Ψ̂†(r)

[
− ~2

2m
∇2 + Vext(r) +

1

2
Ψ̂†(r′)V (r− r′)Ψ̂(r′)

]
Ψ̂(r), (2.4)

in which Ψ̂†(r) and Ψ̂(r) are the bosonic creation and annihilation operators that create
or remove a particle at r, Vext the external (applied) potential and V (r − r′) the two-body
interaction potential.

BECs are sufficiently dilute to only consider s-wave collisions. This allows one to ap-
proximate the two-body interaction potential V (r− r′) to an effective pseudo-potential term
V (r− r′) = gδ(r− r′), where the interaction term

g =
4π~2as
m

(2.5)

is characterized by the s-wave scattering length as. The delta function in the potential im-
plies the interaction between the atoms is point-like.

To investigate quantum fluid flow and transport phenomena, it is useful to apply addi-
tional approximations, allowing to find an effective, mean-field wavefunction ψ(r, t) for the
bosonic field operator Ψ̂(r, t). To obtain this effective wavefunction, the Bologiubov approx-
imation is made. This approximation decomposes the field operator Ψ̂(r, t) into an effective,

condensate wavefunction, ψ(r, t) =
〈

Ψ̂(r, t)
〉

and a term δΨ̂(r, t), which accounts for all the

remaining modes:

Ψ̂(r, t) = ψ(r, t) + δΨ̂(r, t). (2.6)

As the temperature T → 0, all particles are in the ground state and the remaining
modes δΨ̂(r, t) → 0. Substituting the remaining mean-field wavefunction ψ(r, t) and the
Hamiltonian (Eq. 2.4) with pseudo-potential V (r − r′) = gδ(r − r′) into the Heisenberg
equation,

i~
∂ψ(r, t)

∂t
=
[
ψ(r, t), Ĥ

]
, (2.7)
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one obtains the Gross-Pitaevskii equation (GPE), which is widely used in simulating quan-
tum fluid flows:

i~
∂ψ(r, t)

∂t
=

[
− ~2

2m
∇2 + Vext(r) + g |ψ(r, t)|2

]
ψ(r, t). (2.8)

The GPE closely resembles the time-dependent Schrödinger equation with an added
non-linear term, g |ψ(r, t)|2, to describe the inter-particle interactions. Furthermore, if Vext

is time-independent (as is often the case), Eq. 2.8 can be split using separation of variables
(i.e. ψ(r, t) = ψ(r)φ(t)), which gives a time-dependent and a time-independent solution.
Solving for the spatial part gives[

− ~2

2m
∇2 + Vext(r) + g |ψ(r)|2

]
ψ(r) = µψ(r), (2.9)

which, consequently, closely resembles the time-independent Schrödinger equation. A no-
table difference is that for solving the eigenvalue, the chemical potential µ, the energy which
is required to add another particle to the system, is found instead of the energy ε of an
eigenstate.

In large systems, the kinetic energy is often negligible compared to the inter-particle
interactions. In these systems an analytical solution can be found for the chemical potential
µ by utilizing the Thomas-Fermi approximation. When neglecting the kinetic energy, the
GPE (Eq. 2.9) becomes [

V (r) + g |ψ(r)|2
]
ψ(r) = µψ(r), (2.10)

which has the solutions

|ψ(r)|2 =


µ− V (r)

g
forµ ≥ V (r)

0 otherwise,
(2.11)

where
∫

d3r |ψ(r)|2 = N is the number of atoms in the condensate.

The Thomas-Fermi approximation is particularly useful to find the ground state energy
or the number of atoms, given the chemical potential, in the bulk BEC. It fails near the
edge of the condensate, at which the kinetic energy is sufficiently high. In Chapter 3, the
Thomas-Fermi approximation is used in the binodal fitting used to obtain the number of
atoms in the BEC and the thermal cloud.

2.1.3 Superfluids

Upon achieving Bose-Einstein condensation, several length scales and other characteristic
properties become relevant in order to understand and successfully execute simulations and
experiments in the superfluid BEC. Along with the scattering length, as, which along with
the mass determines in the interaction term in the GPE, another relevant length scale in
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superfluids is the coherence or healing length, ξ. This is the distance over which the BEC
goes from zero back to its bulk density, n0, in response to a local perturbation.

The healing length can be found by considering the GPE (Eq. 2.8) in 1D without external
potential with the boundary conditions ψ(0) = 0 and limx→∞ ψ(x) = ψ0 with |ψ0|2 = n0.
These boundary conditions imply the probability of finding the BEC on the edge and outside
the condensate, or on some local perturbation, is 0 (n = |ψ(x)|2) and far from the edge
density is at its bulk value. This gives the analytic solution

ψ(x) = ψ0 tanh

(√
mn0g

~
x

)
=
√
n0 tanh

(
x

ξ

)
, (2.12)

with ξ = ~/√mn0g the healing length.

Much like other condensed matter systems, excitations are carried by phonons. These
Bogoliubov excitations travel at the speed of sound in the system, c =

√
µ/m, much like

sound travels through air. The speed of sound can be used to measure the chemical potential
and is of relevance in the experiments described in Chapter 6.

It is useful to express the wavefunction obtained from the GPE in terms of a density and
a phase. To get the wavefunction in the polar representation, the Madelung transformation
is applied. The wavefunction then becomes

ψ(r, t) =
√
n(r, t) exp (iφ(r, t)) , (2.13)

with n(r, t) and φ(r, t) the density and the phase of the condensate. The velocity field at
time t is given by

v(r, t) =
~
m
∇φ(r, t). (2.14)

The vorticity of the quantum fluid, which is given by taking the curl of the velocity
field, must be zero because of the vector calculus identity ∇×∇φ(r, t) = 0. This leads to an
irrotational velocity field for quantum fluids. Circulation therefore requires a discontinuity in
the phase manifested as a pole. The wavefunction is still required to be single-valued around
the pole. The circulation is found using the well-known theorem from complex function
theory, Cauchy’s residue theorem,

Γ =

∮
dr v(r, t) =

~
m

∮
dl∇φ(r, t) =

~
m

2πn =
h

m
n = κn, (2.15)

with n ∈ Z. This means vortices in a BEC are quantised in units of κ = h/m. The value
n determines the winding number, called charge, of the vortex. The charge is given by the
number of times the phase goes through a 2π winding, which generally is ±1, clockwise
or counter-clockwise. Higher charge vortices require more energy and generally decay into
multiple single charge vortices, in which the charge a conserved quantity.
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Quantized vortices appear in all superfluids and their presence leads to many interesting
physical phenomena such as the presence of turbulence in superfluids. Although inviscid,
the presence of turbulence can be observed from vortex shedding by a cylindrical obstacle.
Through a study of the dynamical similarities of shedding on a classical and superfluid, a
Reynolds number for superfluids can be found. Chapter 6 discusses an experiment in which
quantized vortices are used to experimentally observe the superfluid Reynolds number, based
on a numerical study [18].

2.2 Trapping and cooling of atoms

2.2.1 Hyperfine structure of atoms

While nearly all atoms have bosonic isotopes, not all atoms are suitable for Bose-Einstein
condensation. Many elements have electronic transitions that cannot be used with laser
cooling, which reduces the number of available BEC candidates. 23Na, 87Rb, 39,41K, 7Li, 1H,
4He, 133Cs, 52Cr, 84Sr, 170,174Yt, 40Ca, 164Dy and 168Er are all atoms in which Bose-Einstein
condensation has been achieved to date. Many of these are of the alkali-atom group. Their
electronic structure makes them excellent candidates for trapping and cooling.

All alkali atoms consist of fully filled electrons shells except for the outer shell, which is
filled by a single electron and hence is in s-orbital. Because the electrons have no angular
momentum, there is no fine splitting and the only coupling between the nucleus and electrons
is due to the hyperfine interaction. The hyperfine splitting is a consequence of the magnetic
field produced by the electronic spin acting on the spin of the nucleus. The splitting of the
energy levels is represented by the hyperfine Hamiltonian

Ĥhf = ÂI · J, (2.16)

with Â the hyperfine structure constant, I the operator for the nuclear spin and I the operator
for the electronic angular momentum. Expressing I and J in terms of the operator for the
total angular momentum, F,

F = I + J, (2.17)

a scalar expression can be found for the product of I and J, which reduces equation 2.16 to

Ĥhf =
Â

2
[F (F + 1)− I(I + 1)− J(J + 1)] . (2.18)

As alkali atoms in their ground state have J = S = 1/2, the energy associated with the
splitting between F = I + 1/2 and F = I − 1/2 is

∆Ehf =

(
I +

1

2

)
Â. (2.19)

In addition to the hyperfine interaction, splitting of the states also occurs due to the
Zeeman effect. Whenever an external magnetic field is applied, the nuclei and electrons
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start interacting with it, giving rise to a Zeeman energy. The interaction Hamiltonian then
becomes

Ĥint = Ĥhf + ĤZel
+ ĤZnuc (2.20)

Ĥint =
Â

2
[F (F + 1)− I(I + 1)− J(J + 1)] + gµBBJi −

µ

I
BIi, (2.21)

where g is the Landé factor, µB is the Bohr magneton, B is the magnetic field and subscript
i ∈ {x, y, z} denotes the direction in which the magnetic field is applied.

The splitting of the energy levels of atoms is used for trapping. In a magneto-optical
trap (MOT), atoms are trapped in a quadrupole magnetic field and a series of laser beams,
exerting a radiation pressure. The re-absorbing and emitting of photons cools down the
atoms. While applied radiation pressure from the laser beams mostly contains the atoms,
random walk might cause atoms to escape the trap. To prevent this, a magnetic gradient
is applied to keep the atoms in the centre of the trap. Section 3.1 discusses MOTs in more
detail and explains how they are used to cool 87Rb.

2.2.2 Optical dipole trapping

Trapping using radiation pressure, as described in section 2.2.1 allows for traps with great
trapping depths, with a typical depth of a few Kelvin. The near-resonance operating range,
however, limits the trap performance. The strong optical excitation limits low trap temper-
atures, the density is limited by radiation trapping and light-assisted inelastic scattering,
and lifetimes are on the order of microseconds. Optical dipole traps (ODTs) [19] rely on the
electric dipole interaction with far-detuned light. These traps are generally much weaker
and have typical trap depths in the order from nK to mK. The lower trap depth allows for
lower temperature condensates and the nature of the dipole interaction allows the atoms to
be trapped in arbitrary geometries.

Upon placing an atom in an electric field, E(r, t) = êE0(r) exp (−iωt) + h.c., the field
induces an atomic dipole moment, p(r, t) = êp0(r) exp (−iωt)+h.c., oscillating at the driving
frequency, ω. The amplitude of the dipole moment and electric field are related by [20]

p0 = α(ω)E0, (2.22)

with α the complex polarisability.

The interaction potential is proportional to the time average of the induced dipole mo-
ment and the electric field [19],

Udip =
1

2
〈pE〉 =

1

2ε0c
Re (α(ω)) I, (2.23)

with ε0 the vacuum permittivity and c the speed of light. I = 2ε0c |E0|2 is the intensity of
the electric field. The factor 1/2 takes into account that the dipole moment is induced and
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not permanent.

The force exerted on the atom by the dipole field comes from the gradient of the inter-
action potential

Fdip(r) = −∇Udip(r) =
1

2ε0c
Re (α(ω))∇I(r). (2.24)

The potential energy of the atom in the dipole field is thus proportional to the intensity
I(r) of the field and the force exerted on the atom is proportional to the gradient of the
intensity ∇I(r).

For most of the alkali atoms, the polarisability can be found to good approximation by
treating the valence electron as a driven oscillator. From the classic equation of motion and
substituting Equation 2.22, the polarisability is found to be

α =
e2

me

1

ω2
0 − ω2 − iωΓω

, Γω =
e2ω2

2πε0mec3
, (2.25)

with e the electron charge, me the electron mass, ω0 the resonance frequency of the oscillator
and Γω the damping rate due to radiative energy losses. For the on-resonance damping rate
Γ = (ω0/ω)2 Γω, the polarisability then becomes

α = 6πε0c
3 Γω2

0

ω2
0 − ω2 − i(ω3/ω2

0)Γ
. (2.26)

By describing the electron in a two-level system, the decay rate Γ depends on the ma-
trix elements of the ground and excited state. The classical approximation, however, agrees
with the semi-classical two-level system within a few percent. Only when the excited state
gets strongly populated, for example at high intensities of the driving field, Eq. 2.26 is no
longer valid. Since most ODTs work with far-detuned light, saturation generally is very low,
making Eq. 2.26 a good approximation.

Substituting the obtained result of Eq. 2.26 in Eq.2.23 and applying the rotating-wave
approximation, the relevant potential energy of the atom due to the dipole field can be found:

Udip =
3πc2

2ω3
0

Γ

∆
I(r), (2.27)

with ∆ = ω − ω0 is the detuning from the atomic resonance frequency. For a laser with a
frequency lower than resonance, a red-detuned laser (∆ < 0), the potential is negative, and
the atoms are attracted to the field. For frequencies higher than resonance, blue-detuned
lasers (∆ > 0), the potential becomes positive and the atoms are repulsed by the field.

Second-order time-independent perturbation theory can be used to apply Eq. 2.27 to the
hyperfine states of the alkali atoms used in ultracold atom experiments. The potential of a
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ground state with total angular momentum F and magnetic quantum number mF is then

Udip(r) =
πc2Γ

2ω3
0

(
2 + PgFmF

∆2,F

+
1− PgFmF

∆1,F

)
I(r), (2.28)

with gF the Landé factor, P the laser polarization (with P = 0,±1 for linearly and circu-
larly polarised light) and ∆2,F , ∆1,F the energy splitting between the particular ground state
2S1/2, F and the centre of the hyperfine split 2P3/2 and 2P1/2 excited states, respectively (see
Fig. 3.2). The terms between brackets thus represent the contributions from the D2 and D1

lines to the dipole potential.

The dipole potential (Eq. 2.28) is useful for simulating ODTs. Various properties of
optical traps can be obtained from this equation, such as the trap depth and the trap
frequency. In Chapters 4 and 5, Eq. 2.28 is used for designing and characterization of the
dipole trap developed in this thesis.
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3
A Versatile BEC Apparatus

This chapter describes the process of experimentally creating a BEC using the experimental
apparatus at UQ. In Section 3.1, the background from Sec. 2.2 is applied to describe the
cooling and trapping of the 87Rb atoms from initial cooling to condensation. Section 3.2
describes the trap potential which confines the atoms horizontally and how this potential is
used for imprinting patterns and currents for dynamic control of BECs. In the last section,
Sec. 3.3, techniques for imaging BECs are described. Two common imaging techniques,
absorption and Faraday imaging are described. During the project, an improved method
of Faraday imaging, called phase contrast Faraday imaging, was implemented and used.
The last section describes the necessity of using this technique and how Faraday images are
processed to obtain data that is proportional to the atomic density.

3.1 Creation of Bose-Einstein condensates

To observe a phase transition to Bose-Einstein condensation of atoms, particles have to
reach sufficiently low temperatures. While cooling and trapping could in principle be done
completely with the optical traps in which the experiments are performed, doing so would
require incredibly high-power lasers, as dipole trapping happens far off-resonance. As such, it
is more desirable to cool atoms to sufficiently low temperatures using other methods first, be-
fore transferring to optical dipole traps and evaporating the atomic cloud into Bose-Einstein
condensation.

The first step in cooling the atoms is Doppler cooling in a MOT. The 87Rb atoms are
transferred to the 2D MOT of the vacuum system, depicted in Fig. 3.1. The 2D MOT con-
sists of two pairs of counter-propagating beams that realise transverse cooling of the 87Rb
vapour. The atoms are mainly cooled from absorbing and remitting of photons, as explained

13
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Figure 3.1: The vacuum system of the UQ BEC experiment utilized in this thesis. 87Rb is
transferred into the 2D MOT and cooled. The atoms are then transferred to a higher vacuum and
are cooled down to temperatures slightly above the critical temperature in the 3D MOT. After
transfer to the “Science Cell”, the hottest atoms are evaporated and Bose-Einstein condensation is
achieved. Retrieved from “Transport and Turbulence in Quasi-Uniform and Versatile Bose-Einstein
Condensates”, G. Gauthier, University of Queensland [21].

below. The magnetic field prevents atoms from escaping the optical beams through a ran-
dom walk and additionally provides a small degree of cooling. This results in a beam of
atoms that propagates through the differential pumping tube to the ultra-high vacuum side
of the vacuum system. To facilitate this transfer, a near resonance ‘push beam’ is used. The
force gradient from the radiation pressure pushes the atoms to the ultra-high vacuum. The
3D MOT is a glass octagon in which the atoms are irradiated from all six spatial directions.
The atoms are cooled to the Doppler limit of approximately TD = 146µK. At this point,
about 39 atoms are trapped. When this temperature is reached, the atoms are magnetically
trapped and transferred to the “Science Cell” in which our experiments are performed. In
the Science Cell, evaporative cooling is used to cool the atoms below critical temperature.
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For cooling the atoms in the 2D and 3D MOT, the D2 transition lines are used (see Fig.
3.2). The optical cooling laser drives the 52S1/2|F = 1〉 → 52P3/2|F ′ = 3〉 transition with
circular polarization σ±. This forms a closed transition between 52S1/2|F = 1,mF = ±2〉 →
52P3/2|F ′ = 3,mF ′ = ±3〉. The selection rules do not permit atoms which are initially in
the 52S1/2|F = 1〉 state to be pumped to the 52P3/2|F ′ = 3〉 state. As such, a repump beam
is used to facilitate the 52S1/2|F = 1〉 → 52P3/2|F ′ = 2〉 transition. Through spontaneous
emission, atoms in this state will decay into either the initial state used for the cooling
transition, 52S1/2|F = 2〉, or back into the 52S1/2|F = 1〉 state, after which they will be
repumped again. This creates a closed-loop cooling cycle.

After magnetic transfer to the Science Cell, the field is left on and microwave (MW) evap-
oration [22] is used to cool the atoms down to ∼ 15µK. During evaporation, the magnetically
trappable 52S1/2|F = 1,mF = −1〉 to the magnetically untrappable 52S1/2|F = 2,mF = −1〉
transition is used to drive the hottest atoms out of the trap. After 4 s, an atomic cloud of
1.5− 2 · 108 atoms remains. Condensation cannot be achieved through MW-evaporation due
to Majorana losses [23] which occur in the zero of the quadrupole trap. At this point the
quantization of the atoms becomes undefined, which can transition atoms to untrappable
states.

To overcome this issue, the magnetic field gradient is ramped down and the atoms, which

Figure 3.2: The hyperfine structure of 87Rb. The D2 line is the transition between the ground
state 52S1/2 and the 52P3/2 excited state. The hyperfine substates are utilized for trapping and
cooling of atoms.
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fall down due to gravity, are transferred into an ODT without heating. Approximately
3 − 4.5 · 106 atoms are loaded into the ODT at a temperature of 4.5µK. The decrease in
temperature after transfer is due to higher dispersion of hot atoms. The temperature of
the cloud is further decreased through optical evaporation, which is done by ramping down
the power in the ODT. This causes the hottest atoms to be expelled from the trap. At
T = 450 nK, just above condensation temperature, the atoms are finally transferred from
the ODT to a red-detuned 1064 nm beam focussed in the vertical direction and collimated
in the horizontal direction. After transfer to this red-sheet beam, optical evaporation takes
place in this trap until the condensation temperature of ∼ 300 nK is reached. Near the end
of optical evaporation in the sheet beam trap, the DMD potential is ramped on, to provide
horizontal confinement. After condensation, a cloud of 3− 4 · 106 atoms with a condensate
fraction of > 85% is obtained.

3.2 Configuring BECs with Digital Micromirror De-

vices

In order to perform transport and turbulence experiments, dynamic control of the conden-
sate is required. Over recent years, spatial light modulators (SLMs) have been significantly
advanced and have shown to be a very useful tool in optical manipulation and trapping
of atoms [24]. A disadvantage of SLMs is that they operate in the Fourier plane and as
a result, simple manipulations in the amplitude may require a lot of computational power.
An increasingly more common method for dynamic control in cold atom experiments is
through the use of a two-dimensional array of controllable mirrors, a digital micromirror
device (DMD), as implemented at UQ [3].

The use of DMDs allows for easy amplitude control of light and offers fast refresh rates
(20 kHz) at high spatial resolutions. The DMD used at UQ has a resolution of 1200× 1920
mirrors. After loading atoms into the red sheet-trap, the DMD light is ramped on. A blue-
detuned 532 nm laser is used to print a pattern into the condensate, which acts as a repulsive
potential. Using this technique, any arbitrary potentials can be printed into the BEC. An
example of early work with the DMD is shown in Fig. 3.3(a). As the mirrors can only be
turned on or off, in principle it would only be possible to create a binary pattern. However,
since light deflected from a single mirror undergoes diffraction, individual mirrors are not
resolved by the imaging system, meaning multiple mirrors contribute to each spot.

Through turning off mirrors that illuminate the same spot on the atom plane, smooth
potentials can be formed using the Floyd-Steinberg algorithm. In an ongoing investigation
at UQ, this algorithm is used to create a smooth potential using a feed-forward algorithm
[21], which predicts which mirrors to turn on and off based on data acquired in previous
experimental sequences. This allows to create smooth potential wells or more complicated
patterns, as depicted in Figure 3.3(b).
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Figure 3.3: Imprinted Bose and Einstein in a Bose-Einstein condensate. (a) shows Bose and
Einstein as a binary array and (b) shows the implementation of the Floyd-Steinberg with feed
forward algorithm to create arbitrary, smooth potentials.

3.3 Imaging techniques for Bose-Einstein Condensates

In cold atom experiments, various techniques are used to image the BEC. The most common
and simple one is through absorption imaging. Another well-known technique is Faraday
imaging. The experiment at UQ utilizes both of these imaging techniques, absorption imag-
ing is used when the BEC is imaged from the side and, depending on the number of atoms
in the trap, either Faraday or absorption imaging is used when the atoms are imaged from
the top.

To perform absorption imaging, a probe beam is used which drives the 52S1/2|F = 2〉 →
52P3/2|F ′ = 3〉 transition and is detuned by ∆ (see Fig. 3.2). The beam is detuned to prevent
saturation on resonance. As the imaging light excites the atoms and is therefore scattered, a
particular dark spot in the image is visible at which the atoms are located. The attenuation
of the light by the atoms is given by the Beer-Lambert law. Using the Beer-Lambert law, the
column density of an image can be obtained and from that the atomic density. To remove
background noise and obtain an image of the cloud, three images are taken. One without
any imaging light, a second one with imaging light but without atoms and a third one with
imaging light and atoms.

A downside of using absorption imaging is that it relies on the scattering of photons. Due
to optical pumping, acquired images are often blurred as a result of the radiation pressure
that pushes the atoms out of the plane of focus. As such, it is often difficult to see small
features in the condensate. Faraday imaging [25] overcomes this issue, as the measured signal
relies on the phase-information of the probe beam, such that no optical pumping is required.
The signal changes as the square of the column density, which makes this imaging technique
much more sensitive to small features in the condensate.

When considering linearly polarised light as a superposition of circularly polarised light,



18 A Versatile BEC Apparatus

each of the circulations experiences a different phase shift when passing through the atomic
cloud. This leads to a rotation of the linearly polarised light by the Faraday angle, θF. The
intensity fluctuation is obtained by transmitting the Faraday light through a polariser. The
intensity is found to be Is(r) = I0 cos2 θF(r).

The very nature of Faraday imaging also poses why it is not always the preferred method
of imaging. As the signal changes with the square of the density, it is challenging to im-
age clouds with low atom numbers. This poses an issue in experiments in which a large
condensate area is required and small features have to be clearly distinguishable, as in the
superfluid Reynolds number experiment, discussed in Chapter 6. The issue of using Faraday
imaging in a condensate with a limited number of atoms was first overcome in a 7Li BEC
by the group of Hulet [26]. Because of the effectively attractive interactions between 7Li
atoms, many-body theory predicts the occupation number of 7Li BECs are limited to only
1400 atoms. To use Faraday imaging at low densities, Hulet’s group implemented a phase
contrast technique can be used which enhances the signal. In this phase contrast technique,
the waveplate for Faraday imaging is rotated slightly, such that the probe beam becomes
elliptically polarised. One of these polarisations acquires a phase shift, while the other does
not. Upon recombination at the polariser, both beams combine and interfere, producing the
phase-contrast image. During the work for this thesis, this technique was implemented. The
Faraday angle (and hence the polarization of the probe beam) is slightly modified, which
adds a number of non-linear terms to the detected intensity distribution,

Is(r) = I0

[
cos2 θ +

√
3

4
φ(r) sin 2θ − 3

16
φ(r)2 cos 2θ

]
, (3.1)

in which θ is the angle between the initial polarization of the probe beam and the polariser
(or waveplate) axis and φ(r) the phase-contrast signal. In regular Faraday imaging, only
the first term is taken into account as the phase-contrast signal is approximately zero. The
signal φ(r = {x, y, z}) is related to the atomic density by

φ(x, y, z) = −
(σ0

2
+ i

α

2

)∫
dz n(x, y, z)

Γ

2∆ + iΓ
, (3.2)

in which σ0 is the absorption cross-section, α is the optical density and Γ is the transition
linewidth.

The number of atoms using Faraday imaging with phase-contrast is therefore found by
solving Eq. 3.1 for φ(r) and solving 3.2 for N =

∫
dz n(x, y, z). To investigate properties

such as the flatness of the trap (see Sec. 6.1), the Faraday images have to be converted to
data which scales linearly with the atomic number.
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One of the properties of atoms that is widely used for trapping them is their induced dipole
moment upon interaction with light. An easy way of exploiting this property is by fo-
cussing a red-detuned laser on the location at which the atoms are to be confined. The
high power at the beam’s waist will act as an attractive potential in which the atoms are
attracted to the centre. While a simple method, using a red-detuned source also brings
various drawbacks. One of these drawbacks if that for sufficiently strong traps, atoms which
are not part of the condensate, but which have sufficiently low energy are still attracted
by the trap. These thermal atoms can float outside of the DMD-potential and introduce
noise on measurements. Moreover, the use of a focussed Gaussian beam as a trap has the
drawback that the vertical trap confinement has to be sacrificed for a large trap area, as
the vertical waist of the beam depends on the Rayleigh length of the beam. This part of
the thesis discusses the realization and characterization of a new, blue-detuned trap, which
overcomes these issues. Because of its repulsive nature, thermal atoms are expelled from
the trap. Furthermore, by shaping the trap using two interfering beams, atoms are confined
in the fringes, and the vertical confinement can be controlled by adjusting the fringe spacing.

In Section 4.1, the working principles behind the blue-detuned optical lattice are dis-
cussed. Section 4.2 discusses the specific setup built at UQ in detail. A brief explanation
of the setup can be found in the summary at the beginning of the section. The rest of the
section goes through the setup and discusses all the major components. Section 4.3 discusses
how the fringe vibrations are stabilized using a feedback system, which is unique to the UQ
setup. The fringe fidelity of the trap plays a large role in the lifetime of the BEC in the
trap. Section 4.4 discusses how the fringe fidelity is held constant in our setup by ensuring
the polarisation of the light in the setup does not drift when using polarisation maintaining
fibres (PMFs).

19
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4.1 Trapping atoms in a blue-detuned optical lattice

Sheet-shaped focussed beams are easy to realise traps. Through use of cylindrical lenses,
the horizontal waist of the beam can be expanded and upon focussing through a lens, a
sheet-shaped trap is formed. When a red-detuned source is used, atoms will be trapped in
the sheet due to its attractive potential, as described in Section 2.2.2. Red-detuned traps
are often favoured over blue-detuned traps, due to their repulsive nature, traps are more
complex as they require multiple beams to prevent atoms from escaping in horizontal and
vertical directions. The downside of using a red-detuned focussed beam as trap it the vertical
trap frequency and depth highly depend on the vertical beam waist and Rayleigh length.
To obtain a high trap frequency, a small vertical waist is required and as a result, the beam
will have a small Rayleigh length, making the beam very anisotropic in both horizontal di-
rections. A quasi 2D trap is achievable using a focussed sheet-beam but achieving a true 2D
trap for a large condensate requires another method of trapping.

In 2017, Ville et al.[8] proposed a blue-detuned ODT using an optical lattice to confine
the atoms vertically. Another beam used to confine the atoms horizontally and to imprint
currents using a DMD. When considering the Science Cell in Figure 3.1, the optical lattice
confines the atoms vertically by illumination from the side. The horizontal confinement is
achieved by illumination from the top, through the DMD imaging objective. The lattice is
created through the interference of two identical blue-detuned beams. The atoms are confined
in the nodes of the lattice. The trap depth, i.e. the depth of the potential at a position,
r, depends on the intensity of the light, as obtained from Equation 2.28. If we assume the
trap is harmonic, the trap frequency is proportional to the second spatial derivative of the
potential, as will be discussed in more detail in Chapter 5. The trap frequency can therefore
be controlled by changing the intensity of the light or by adjusting the lattice spacing. The
lattice spacing is changed by adjusting the beam separation

λlattice =
λlight

(2n sin θ)
, θ = arctan

(
d

2 ffinal

)
, (4.1)

with λlight the laser wavelength, n the refractive index, d the centre to centre beam separation
and ffinal the focal distance of the final lens in the setup (see Fig. 4.3).

Theoretically, the lattice node can be made as small as λlight/2 at sin θ = 1. To achieve
this one is often limited by technical limitations: θ depends on the beam separation, d,
the lattice spacing is limited by the aperture of the final lens, ffinal and the size of the
beamsplitters that set the beam separation, as will be discussed in Sec. 4.2. The ability
to create these lattice nodes inside of the Gaussian envelope allows one to choose a vertical
beam waist, and as such, a Rayleigh length that is sufficiently large to trap large condensates,
while still having control over how tightly confined the atoms are in the vertical direction.
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Figure 4.1: The experimental setup for creating two identical beams. A single incoming 50/50
polarised beam is split using two polarizing beamsplitters. Using a lens both beams can be recom-
bined to create an optical lattice.

4.2 Experimental Setup Summary

This section summarizes the experimental setup created for the optical lattice and features
all the major components. A step-by-step description of the function of each component
can be found in Appendix A.2.3. The optical lattice setup built at UQ consists of various
components, which can be split up into four parts: The optics on the bottom optical table
(see Fig. 4.2), the tower, the optical path which transmits the light to the atoms, and the
feedback path (see Fig. 4.3).

4.2.1 Bottom optical table

On the bottom table, the laser head is mounted. The 532 nm laser light is blue-detuned for
the 87Rb atoms and is used for both the optical lattice and the DMD potential. Using a
waveplate and polarizing beamsplitter (PBS), the light at (1) is split into a 3W beam for
the DMD potential and a 7W beam for the optical lattice. The light is transmitted through
an AOM at (2). This AOM diffracts the light into various diffraction orders and is used to
control the intensity of the light in the path: Whenever high powers are required, most of
the light will be transmitted through the first diffraction order and whenever low powers are
required, most of the light is transmitted through the zeroth order, which is deflected onto
a beam dump. The power in the path is measured at (11), see Fig. 4.3.
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Figure 4.2: A diagram of all optical components found on the lower optical table. The light of
the λ = 532 nm is split into two different paths, the DMD setup path and the optical lattice.

The light is then transmitted through a fibre at (3). An optical fibre is used for two
reasons: The fibre couplers act as a spatial filter and as such, any irregularities in the
Gaussian beam profile we observed are induced by the AOM crystal are removed. Secondly,
the fibre decouples the first part of the setup from the other components. Any misalignments
or adjustments in optics before the fibre therefore do not result in misalignment of the optical
lattice.

4.2.2 The tower

To prevent thermal lensing in the optical components, the beam is (vertically) expanded at
(4), before being transmitted to the tower, shown in Fig. 4.3. The mirror at (5) is mounted
on a translation state, which allows us to move the beam closer and further apart from the
edge of the PBSs (6) and as such, to set the beam separation and the lattice spacing (see
Eq. 4.1). To obtain a small beam separation, the beams have to be very close to the edge
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of the beamsplitters. To achieve this without the beams clipping over the sides of the PBSs,
a small horizontal beam waist is required. As such, only the vertical waist is expanded at (4).

The light incident on the PBSs on the tower is 50/50 linearly polarised. As a result, 50%
of the light is reflected from the first beamsplitter. The remainder of the light is transmitted
through the second beamsplitter onto a mirror mounted on a piezoelectric actuator (7). This
mirror is connected to our feedback system which ensures any vibrations in the optical lattice
are corrected by locking the phase between both beams (for details, see Sec. 4.3). A λ/4
waveplate in front of the mirror rotates the beam’s polarisation to be vertically polarised
and as such, to be reflected from the top beamsplitter.

4.2.3 Top optical table

Both beams travel through the remainder of the system with a vertical polarisation. At (8)
the light is split again using a PBS, but as the beams are vertically polarised, only a fraction
is reflected onto the feedback path. The transmitted light travels to the atoms, but first has
its waist reduced at (9). The final lens, ffinal, at (10), vertically focusses the light on the

Figure 4.3: A diagram of all optical components found on the top optical table. After being
split into two, the majority of the light is transmitted to the Science Cell. A fraction of the light
is reflected to the path which ensures the phase-locking feedback in the system.
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atoms, at which the beams will interfere and form the optical lattice.

The light which is reflected at (8) is partially used to control the intensity of the light
in the lattice. A photodiode at (11) sends reads the power in the system and sends the
measured signal to the AOM at (2). The remainder of the light in this path is used to
send the input signal to the feedback system, using a pinhole and photodiode at (14), and
to monitor the stability of the optical lattice using a camera at (15). In Section 4.3, our
feedback system is described in detail.

The input power in the optical lattice path is Pinput = 7 W. Due to losses in the system,
the total power, measured in (9) is Ptotal ≈ 2 W. For the given beam waist of w(3) = 1.38 mm
at the fibre coupler after (3), the final beam calculated beam waists at the atoms are
wz = 25.6µm and wx = 1.23 mm for the vertical and horizontal waist, respectively. We
will see in Chapter 5 that these calculated values do not exactly match the measured waists
at the atoms, and how that affects the trap frequency.

4.3 Phase locking using active feedback

A unique feature about the setup at UQ is the phase locking feedback system. This feedback
system ensures any vibrations in non-common mode paths are corrected. Any vibrations in
non-common mode paths result in a phase difference between both beams. As illustrated in
Figure 4.4, a phase difference in the beams results in displaced fringes, and as such, random

Figure 4.4: The optical lattice in the Gaussian beam envelope with various phase differences
between top and bottom beam. (a) shows a phase difference of 0.8π between the beams, (b) is
the default setting, to which the system is locked, which is a π phase difference and (c) shows a
1.2π phase difference. These phase differences correspond to a 52 nm vibration in the system for
λlight = 532 nm. The most obvious feature is a the intensity mismatches between both fringes,
which exerts a force on the atoms. Additionally, while the Gaussian envelope remains in the same
position, the trap centre moves around. Vibrations at the trap frequency of the trap heat the atoms
which reduces the BEC lifetime.
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Figure 4.5: The trap depth of the optical lattice with (a) a π phase difference between both
beams and (b) a 2π phase difference. While it is still possible to trap atoms in one of the minima
in (b), the trap depth is much lower which results in a much lower trap frequency. The dark green
line represents the Gaussian envelope in which the lattice is formed.

noise results in shaking of the lattice. If the frequency spectrum of the noise has any overlap
with the trap frequency, the atoms heat up and escape the trap, resulting in a low trap
lifetime. In Chapter 5, the lifetime of the trap with and without utilisation of the feedback
system is compared.

While the main feature of the system is to actively lock-in the phase between both beams,
it also allows one to configure the relative phase between both. To maximize the trap depth,
the interference minimum is centred on zero. Although it is still possible to trap atoms at
other interference minima, the trap depth is highest at the centre of the Gaussian envelope.
Figure 4.5 illustrates the full in and out of phase picture of the trap.

The active feedback system consists of three components: The pinhole and photodiode,
the PI-controller (proportional-integrator controller) and the piezo actuated mirror (see Fig.
4.3). The photodiode provides the signal for the error measurement, the PI-controller reads
the signal and compares it to the locked-on signal value and sends a corrected signal1 to the
piezo actuator. The system is able to respond to fluctuations just over 12 kHz.

The signal acquisition for the feedback system works as follows: Two lenses are combined
to focus the light and form an interference pattern on the pinhole. To get a high resolution,
i.e. to measure only a small portion of the interference pattern, an interference pattern much
larger than the pinhole is required. The two lenses are combined to have a focal distance
of approximately 550 mm. Using Equation 4.1 we find a fringe spacing of λlattice ≈ 90µm.
The amount of power transmitted through the pinhole is detected by the photodiode and
translated to a voltage. The relative phase difference between both beams is set by moving
the offset of the piezoelectric actuator that drives the mirror. Figure 4.6 illustrates how
this is achieved: When the phase difference is 2π, depicted in (a), the photodiode detects a
maximum signal. The mirror is moved is shifted until a π phase difference is observed on the

1More commonly referred to as the ‘error signal’ by system and control engineers.
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Figure 4.6: An illustration of how the relative phase difference between both beams is set and
how the system is locked. Figure (a) shows the interference pattern with a 2π phase difference.
The piezoelectric actuator which moves the mirror is then moved to obtain a phase difference of π
(b). Once a dark fringe is in the centre of the Gaussian beam envelope, we move the pinhole to the
side of the fringe, at which the derivative is largest and the lock is most effective (c).

camera. Once a dark fringe is located in the middle of the Gaussian envelope, the pinhole is
moved to the side of the fringe, at which the system is locked.

The photodiode is connected to a Newport LB1005-S High-Speed Servo PI-Controller.
The PI-controller features two input channels, a positive and a negative bias input channel.
The negative input channel can be used to remove an offset signal or to remove any signal
which is not to be corrected. This is useful when for example applying noise-correction on
an AC-signal. Other than for inducing a perturbation in the system to measure the trap
frequency (see Chapter 5), this channel is not used in day-to-day operation.

A useful feature of the PI-controller is the ability to sweep over a signal. When fed a peri-
odic signal, as is done from our oscilloscope, a sweep can be turned on which drives the piezo
actuator. Using this sweep, the input signal offset can be adjusted such that the controller
locks-on to a value in the signal which has a large derivative. At this point, fluctuations from
the original signal are more easily detected, ensuring better operation and error correction.
The controller has two modes of operation, the low frequency gain limit (LFGL), which acts
as an intermediate step before fully locking, and the lock-on mode. Once the lock-on point
has been found, the LFGL mode can be switched on. At this stage the PI-filter can be set
to the desired frequency and the gain can be increased to slightly below the point at which
the piezo starts self-oscillating. The camera in the feedback path is used for setting and
monitoring the lock.

In summary, the system is locked-on as follows: The relative phase between both beams
is set to be π by moving the pinhole and output offset of the PI-controller. Once the camera
shows the dark fringe is in the centre of the Gaussian envelope, we lock the PI-controller
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Figure 4.7: When the polarisation in one of the beams isn’t equal to the other one, the power
in the beams is not distributed equally. This results in a non-zero intensity point in the lattice.
This means that in any point in the trap, a force is exerted on the atoms, resulting in a low lifetime.

to the point at which the derivative is the signal is the largest. This is the point at which
fluctuations are the easiest to detect. After locking, gain is set slightly below the point of
self-oscillating, which can be observed on the camera. The system is now ready for operation.

4.4 Polarisation-maintaining fibres

The main working principle of creating the optical lattice is creating an identical second
beam through utilization of the polarisation of the initial beam. Because of the repulsive
nature of the trap, lattice nodes with zero intensity are a requirement to achieve long BEC
lifetimes in the trap. It is therefore crucial that the power in both beams remains equal. A
mismatch in beam intensity results in a low fringe fidelity. Figure 4.7 shows a simulation of
the trap potential in which one of the beams carries five times more power than the other,
which results in a trap with a non-zero minimum. The power that is reflected into each
beam at the PBSs (number (6) in Fig. 4.3) depends on the polarisation of the incident beam
and has to be split 50/50 horizontally/vertically to equally distribute the power throughout
the system. No polarisation drift over time is a requirement to the functionality of the opti-
cal lattice. As such, special considerations must be made to ensure the conservation of the
polarisation in the system.

The fibres which uncouple the AOMs from the rest of the system, shown in Figure 4.2 are
polarisation-maintaining fibres (PMFs). These fibres have a built-in birefringence to main-
tain the polarisation of incoming light, contrary to ordinary fibres, in which birefringence
is undesired and induced by stress. The birefringence in regular fibres cause cross-coupling
of power between both polarisations, which results in a not well-maintained polarisation.
Provided the input polarisation is aligned with the birefringent axis, the polarisation is con-
served [27].

Misalignment with the birefringence axis exerts itself in the setup by a slow drift in the
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polarisation when the fibre is heated up, i.e. when a large amount of optical power is cou-
pled into the fibre. In the system, the drift can be seen as a shift in power distribution
in the beams. As the fibre heats up, the polarisation changes until the fibre is completely
heated up. Upon alignment with the birefringence axis, little to no change in polarisation is
expected.

The degree of incoming which light which is aligned to the birefringence axis is quanti-
tatively described by the polarisation-extinction ratio. The extinction ratio is measured by
mounting a polariser or a waveplate in front of and after the optical fibre. By rotating the
waveplate after the fibre and measuring the maximum and minimum power using a polariser
mounted on a detector, the extinction ratio is obtained. In the setup at UQ, instead of plac-
ing a polariser in front of the detector, one of the beams on the upper table can be blocked to
achieve the same effect, as the each of the PBSs only transmits one of the polarisations. The
angle of the waveplate in front of the fibre is set and the waveplate after the fibre is rotated.
The extinction ratio is calculated from the minimum and maximum power measured from
rotating the second waveplate. The extinction ratio is then found by

ER = 10 log10

(
Pmax

Pmin

)
, (4.2)

with Pmin and Pmax the measured minimum and maximum powers.

The procedure for matching the polarisation to the birefringence axis is as follows: At
low power, the angle of the first waveplate is set. As a λ/2 waveplate is used, ideally only a
quarter of the full rotation has to be scanned to find the lowest and highest extinction ratio.
This waveplate is rotated in steps of 3◦. The second waveplate is subsequently rotated to
measure the power in the top beam. To achieve an extinction ratio greater than 20 dB, the
misalignment must be less than 6◦ and to achieve an extinction ratio greater than 30 dB,
the angular misalignment must be less than 1.8◦. The power is measured using a high-power

θ (◦) Pmax (mW) Pmin (mW) ER (dB)
162± 0.5 61± 0.5 0.8± 0.1 −19± 0.5
165± 0.5 63± 0.5 0.6± 0.1 −20± 0.7
168± 0.5 65± 0.5 0.7± 0.1 −20± 0.6
171± 0.5 67± 0.5 0.5± 0.1 −21± 0.9
173± 0.5 66± 0.5 0.3± 0.1 −23± 1.4
174± 0.5 66± 0.5 0.4± 0.1 −22± 1.1
177± 0.5 68± 0.5 0.6± 0.1 −20± 0.7
180± 0.5 67± 0.5 1.1± 0.1 −18± 0.4
183± 0.5 66± 0.5 2.3± 0.1 −14± 0.2

Table 4.1: The extinction ratios found for different angular rotations of the λ/2 waveplate in
front of the PMF. The polarisation of the incident beam is best for the highest extinction ratio.
Pmax and Pmin are the maximum and minimum measured top beam power upon rotating the λ/2
waveplate after the optical fibre.



4.5 Conclusion 29

thermal sensor, while the bottom beam is blocked by a beam block at (4) in Fig. 4.3. The
results of the measurement are shown in Table 4.1.

Upon finding the highest extinction ratio, the polarisation drift over time at high power
is measured. This is expected to be minimal at the highest extinction ratio. To measure
the drift over time, the top beam power has to be measured simultaneously as the power in
both beams. The power in the top beam is measured after (4) and compared to the power in
both beams, measured from the photodiode which controls the AOM power. The extinction
ratio over time is not directly measured from this, as the power to voltage conversion in both
detectors is different and the overall power in the feedback path is much lower. Instead, the
drift is measured simply by dividing the top beam power over the total measured power. To
record overall thermal drifts in the system, without correcting the power with the photodiode
and AOM, the experiment is done two times: Once without locking the AOM to a certain
high power and once with locking the AOM. Figure 4.8 shows the results of the measurement.

The least thermal drift is found for θ = 175 ± 0.5◦, which is very close to the angular
rotation at which the highest extinction ratio is found. The second waveplate is set to
polarise the light 50/50% horizontally/vertically, to equally distribute the power when the
beam is split. The fringe fidelity now remains unchanged to any perturbations to the fibre.

4.5 Conclusion

In this Chapter, the working principles behind the optical lattice were discussed. In Section
4.1, the advantages of using an optical lattice over a focussed beam sheet-trap were dis-
cussed and in Section 4.2 we demonstrated how an optical lattice is created experimentally.
To ensure a long BEC lifetime in the trap, the lattice needs to be free from fluctuations.
The realisation of an active feedback system to reduce vibrations in the lattice was demon-
strated in Section 4.3. In addition to a vibration free system, it is also important to have a
high fringe fidelity to achieve long condensate lifetimes. To ensure the power distribution in
both beams remains equal over time, we implemented polarisation maintaining fibres in our
system, described in Section 4.4.

With all these features implemented into the system, we can start characterizing the
optical lattice trap. The next few Chapters will focus on the characterization of the trap.
In Chapter 5, the lifetime of a BEC in the optical lattice is measured. We compare the
condensate lifetime of the setup with the feedback system turned on and off, to demonstrate
the necessity of using active lattice stabilization. Another important characteristic of the
trap is the trap depth and frequency. As we have already seen in Section 2.1.3, many of
the dynamic properties of the BEC depend on the frequency of the trap. In Chapter 5 we
propose an experiment through which we can find the trap frequency of the system.
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Figure 4.8: Power drifts due to fluctuations in the polarisation over time at high power. The
different colours represent different angular rotations of the waveplate in front of the fibre, which
correspond to different misalignments with the birefringence axis in the fibre. The top figure shows
the drifts in power when the overall power of the light is not locked using an AOM, which shows
thermal drifts in the system. In the bottom figure, the power is locked with an AOM. The least
drift is found for θ = 175◦, at which the highest extinction ratio was found.
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Characterization of the optical lattice

One of the key properties of experimental BECs are their lifetimes. The lifetime of a BEC
depends highly on the type of condensate, with photon and exciton-polariton BECs having
a lifetime of the order of picoseconds to nanoseconds [28, 29] and atomic BECs having life-
times from seconds to minutes [3]. An atomic condensate with a lifetime of a few seconds
or of a minute firstly depends on the quality of the vacuum system, but also on the trap
in which the condensate is confined. In the first Section of this Chapter, the lifetime of the
optical lattice trap is investigated. Section 5.1.1 describes the various loss mechanisms which
affect the lifetime of an atomic condensate. In Section 5.1.2, the experimental sequence for
measuring the lifetime is proposed and Section 5.1.3 discusses the results of the experiment.

The trap depth and frequency are important properties that affect the chemical potential,
and as such, the dynamics of the BEC in trap. As seen in Chapter 2, the healing length,
the speed of sound and the effective dimensionality depend on the chemical potential. As
such, to accurately predict the behaviour of a trapped BEC, it is essential to have a good
estimate of the trap frequency. In the second Section of this Chapter, an experiment that
measures the trap frequency of the optical lattice trap is described. The most common
method of doing so is using parametric heating, as discussed in Sec. 5.2.1. This method
works well for attractive, harmonic traps. In this Chapter we demonstrate this method
also works for repulsive, anti-harmonic traps, which are nearly flat. In Section 5.2.2, the
trap depth and frequency of the trap are predicted using numerical simulations with the
design parameters from Chapter 4. Section 5.2.3 discusses the experimental sequence of the
proposed experiment and in Section 5.2.4, the results are presented and compared to the
numerical simulations. The differences between the simulation and experimental data are
discussed and future improvements to the trap to more accurately match the simulation with
the experiment are proposed.

31
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5.1 The lifetime of anti-harmonically trapped BECs

5.1.1 Background

Any BEC has a certain finite lifetime when trapped. The lifetime is a result of interparticle
collisions with background atoms or molecules and is measured as the time taken to reach
the 1/e level of initial atoms in the trap. Various collision processes must be considered for
an accurate description of the atom number in the trap [30].

Interactions between trapped atoms and background atoms or molecules in the vacuum
affect the lifetime considerably. Collisions between the higher energy particles in the vac-
uum and the trapped atoms allows for an inelastic momentum transfer. If the momentum
transfer is too large, the trap depth may be too low to confine the atom any longer. Other
heating processes, such as photon scattering or shaking of the atoms also limit the life-
time. All these processes are first order collision processes; the rate of atoms lost over time
due to these interactions is linearly proportional to the number of atoms in the trap at time t.

Collisions between two atoms in the condensate, two-body collisions, can cause a redis-
tribution of energy and convert internal energy into kinetic energy. The increase in kinetic
energy may result in a loss of atoms if the trap depth is too low. Two-body interactions play
a large role in multi-component and spin-polarized condensates [31], in which the scattering
between different hyperfine states are present.

At high densities, such as after loading atoms into traps with high trapping frequencies,
wherein all atoms are confined in one mode, three-body interactions must be considered.
Three colliding atoms may form a diatomic molecule. The binding energy of the two atoms
forming the molecule is transferred to the third atom, and both the molecule and atom are
lost.

A description of the atom number in trap with these loss mechanisms is given by

dN

dt
= −ΓN − βN2 − γN3, (5.1)

in which N is the atom number in the trap, Γ encompasses the BEC and background col-
lision rate, as well as photon scattering, β is the two-body and γ the three-body collision rate.

All the experiments performed in this thesis are done in densities far below the threshold
in which three-body interactions are relevant and to good extend, two-body interactions
can be neglected. The lifetime in the optical lattice is dominated by photon scattering and
collisions between BEC and thermal atoms. This gives the simple solution

N(t) = N0 exp

(
− t
τ

)
, (5.2)

with τ = 1/Γ is the lifetime in the trap.
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5.1.2 Experimental sequence

The atoms are initially transferred from the optical dipole trap to the red-detuned sheet trap
with the DMD potential ramped on, as discussed in Chapter 3. The imprinted potential
used for this experiment is a 50 µm radius circle. To achieve transfer with as little losses
as possible, the red sheet trap power is ramped down equally as much as the optical lattice
trap is ramped on. Once the atoms are transferred into the lattice, the lifetime measurement
starts.

Figure 5.1: The experimental sequence for measuring the lifetime of the optical lattice. The
measured time starts at the “Lattice Trap Hold” timestep.

The lifetime is determined by measuring the number of atoms in the BEC. This is done
by imaging the cloud from the side. Imaging is done using absorption imaging, as discussed
in Chapter 3; a beam probes the 52S1/2|F = 2〉 → 52P3/2|F ′ = 3〉 transition. The lack of
imaging light in a certain spot on the camera corresponds to the presence of the atomic
cloud. The number of atoms in the cloud is then extracted using the integrated optical
density and the absorption cross-section of the probed transition.

5.1.3 Results and discussion

Measurements are performed with the active phase-locking feedback (described in Sec. 4.3)
turned on and off, to investigate the improvement in the lifetime with lattice stabilization.

The purple and green dots correspond to the mean of the experimental atom number
data with and without feedback, respectively. The solid lines are fits to the data, using Eq.
5.2. The lines are fit using the full data set, instead of from the mean, to give each data
point the same weight. This explains the slight overshoot in the fit without feedback.

A general higher uncertainty is found for the data in which no feedback is used. This
is expected because of the irregular shaking of the lattice. The BEC lifetime in the trap
without feedback is found to be τ = 2.9(8) s and τ = 19(5) s with active feedback, both
at 95% confidence. The lifetime with feedback is slightly dependent on the tuning of the
PI-controller lock. There was a clear distinction in the robustness of the lock just after the
experiment had been turned on and after it had been running for a while. A possible expla-
nation for that is the increase of the temperature in the box causing a drift in the alignment
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of the beam on the pinhole, and as such, the point to which the PI-controller is locked.

To compare the lifetime of the red sheet-beam trap to the optical lattice trap, a similar
experiment has to be conducted in the red sheet-beam trap. Recent data find a lifetime
of approximately 1 minute for a BEC in the red sheet without the DMD-potential turned
on. Experiments without the DMD-potential turned on cannot be conducted for the optical
lattice trap, as due to its repulsive nature there is no horizontal confinement. As the DMD-
potential may introduce photon scattering or other first-order collision processes, the BEC
lifetime is affected by the DMD. The lifetime of both traps has to be compared with the
DMD-potential turned on.

The lifetime data of the red sheet, taken shortly after the DMD was implemented, showed
lifetimes which were highly dependent on the DMD power and a lifetime of 18.2 s was found
to a DMD trap depth of 1.2µ [3]. The rapidly reducing lifetime by increasing the DMD
potential was later found to be caused by presence of light when the DMD potential should
have turned off. Unfortunately, no more recent data was taken on the lifetime in the red
sheet trap before the system went offline, so it is challenging to quantitatively compare the
BEC lifetime of both traps. Through day-to-day use, we observed a slightly longer lifetime
in the red sheet-beam trap than the optical lattice trap at a DMD potential of ∼ 8µ. The
measured lifetime of τ = 19(5) s is sufficiently long to perform the transport and turbulence
experiments proposed in Chapter 6.

Figure 5.2: The atom number as a function of the time the trap held onto the atoms before
measuring the atom number. The circles are experimental data, the solid lines are fitted curves
based on Eq. 5.2. Purple and green represent measurements with, and without active feedback,
respectively.
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5.2 Trap frequency of the optical lattice

5.2.1 Background

Quantitative comparison of experiment to simulation or theory requires knowledge of the
potentials used for trapping atoms. The trapping frequency of these potentials is a feature
which greatly affects the dynamics of the system, as for instance, both the healing length and
the speed of sound depend on it. Most optical dipole traps are approximated as harmonic
oscillators, so to find the trap frequency of the optical lattice, the harmonic approximation
must be applied. The trap frequency can then be computed by [32]:

ωi =

√
1

mRb

∂2
i Udip(r = 0) , νi =

ωi
2π

(i ∈ {x, y, z}), (5.3)

where ωi and νi the angular and linear frequency, mRb the mass of a Rubidium atom and ∂2
i

the second derivative with i ∈ {x, y, z}.

This expression follows from the classic harmonic oscillator, UHO(x) = mω2x2/2. The
Taylor series in Eq. 5.3 is taken to approximate a harmonic oscillator around r = 0. Udip is
the potential of the optical dipole trap, given by Eq. 2.28.

Various experimental mechanisms can be used to determine the frequency of a trap. One
of these methods is applying a short, pulse-like perturbation to the system. The horizontal
and vertical waist of the cloud start to contract and expand, in an oscillatory manner called
a breathing mode. The frequency of this oscillation corresponds to twice the trap frequency
of the trap [33, 34]. Another method of determining the trap frequency of the system is cur-
rently being investigated at the University of Queensland by B. Mommers. In this method,
the BEC is spatially, adiabatically oscillated. Through mapping of the trajectory of the
cloud and analytically solving the GPE (Eq. 2.8) with a Husimi [35] driving term, the trap
frequency can be determined.

The most common method of determining the trap frequency of optical or magnetic
traps is through parametric heating [36, 37]. This method relies on the harmonicity of the
trap, as this method approximates the trap as a harmonic oscillator using the harmonic
approximation:

Ĥ =
p̂2

2mRb

+
1

2
mRbω

2 [1 + ε(t)] x̂2, (5.4)

with ε(t) an applied perturbation.

From classical mechanics, it is well known that parametric resonance occurs when
x̂(t) = x0 cos (ωt) and ε(t) = ε0 sin (2ωt), i.e. at a driving frequency twice the resonance
frequency. At this point, energy is pumped into the system at an exponential rate. The
energy is transferred to the atoms which deplete from the trap as the trap depth is no longer
deep enough to confine the now thermal atoms.
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5.2.2 Modelling the optical lattice

The properties of the optical lattice can be predicted through modelling of the electric fields
of both beams. Through use of Eq. 2.28, the trap depth, frequency, flatness and shape can
be obtained for two interfering beams with given input power, waist and beam separation.
For a beam input diameter of 2.67 mm and beam separation of 3.3 mm, the horizontal and
vertical waist are 1120µm and 25.4µm, respectively. The lattice spacing is calculated using
Eq. 4.1 and is found to be λlattice = 32.2µm for a beam separation of d = 3.3 mm. The
corresponding potential and trap frequency uniformity for this waist and beam separation
are shown in Figure 5.3. The centre trap frequency is expected to be νtrap = 186 Hz.

Figure 5.3: The simulated trap depth (a) and frequency (b). With the calculated vertical waist
and beam separation, the lattice only consists of two fringes with a well in which the atoms are
trapped in the centre. (b) shows the trap frequency throughout the trap. The large horizontal
waist and Rayleigh length of the beam ensure a uniform potential, with variations of less than
0.5% throughout the DMD trap area.

5.2.3 Experimental Sequence

After transfer from the optical dipole trap to the red-detuned sheet trap, the DMD is ramped
on. Similarly to the lifetime experiment, the imprinted potential used is a 50µm radius circle.
The red sheet trap power is ramped down at a similar rate as at which the optical lattice is
ramped up for most efficient transfer. Once transferred to the optical lattice, the parametric
heating process starts, in which the lattice is oscillated for 1 second. After oscillating, the
atoms are held for an additional 500 ms before imaging to allow atoms to thermalize.

To find the parametric resonance, any periodic perturbation can be applied to the sys-
tem. Because the active feedback is used in these experiments, fluctuating the intensity of
the light through the AOM causes the feedback system to unlock, as we lock to a certain
light intensity. By fluctuating the intensity, the PI-controller moves the mirror to find its
locked-to power. The oscillating intensity, however, causes the integrator to overdrive which
unlocks the controller, making periodically alternating the intensity to find the resonance
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Figure 5.4: The experimental sequence for measuring the trap frequency of the optical lattice.

unreliable. The response time of the levitating magnetic field is too slow to apply periodic
perturbations to the system using this method. In order to apply oscillations to the sys-
tem, a periodic signal was applied to the input offset channel of the PI-controller. As a
result, the lock-to value slightly oscillated, forcing the PI-controller to vibrate the fringes of
the lattice in a controlled fashion: The system is perturbed by spatially oscillating the fringes.

5.2.4 Results and discussion

To get an estimation of the trap frequency, the measurements are performed within step
sizes of 50 Hz. The amplitude of the oscillation is high, resulting in a broad resonance.
This allows to scan over a large frequency range with a bigger step size, while still seeing
the resonance. The disadvantage of a large amplitude is that all atoms will escape the trap
around the resonance. It is challenging to find the centre frequency through fitting when

Figure 5.5: The atom number after oscillating the BEC for given frequencies. A clear dip is
observed at twice the parametric resonance, i.e. twice the trap frequency.
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at various frequencies, all atoms are expelled from the trap. As such, once the resonance is
found, the measurement is repeated over a smaller frequency range and at a lower step size
of 10 Hz. The amplitude is decreased to let a large portion, but not all the atoms escape.
The data is then fitted using a Gaussian.

Far from resonance, the average atom number is found to be N = 2.2 · 106. A clear dip
is observed at a modulation frequency of νmod = 116(2) Hz. The corresponding trap fre-
quency, half the modulation frequency, is νtrap = 58(1) Hz, far from the predicted frequency
of νtrap = 186 Hz. The difference may be attributed to various factors: The beam separation
may be different from the simulated one, the power at the atoms is lower than expected or
the beam waists at the atoms is different from the calculated waists.

The vertical beam waists are not changed throughout the system, except for the final
lens, which focusses the light on the atoms. As there are no lenses in the system that ma-
nipulate the beams vertically, the beam separation remains equal throughout the system.
That allows us to measure the beam separation with high accuracy. The beam separation
remains d = 3.3 mm and matches the simulated value.

The beam power is estimated by measuring the power before and after propagation
through the Science Cell, which has uncoated windows. The power at the atoms is esti-
mated by measuring the total beam power before and after propagation through the Science
Cell. From that data, the power at the atoms is estimated by finding the transmission coef-
ficient of the first window, which was found to be T = 0.533. Upon investigating the beam
propagation throughout the system, we observed a slightly diffraction satellite beam coming
out of the top beam. This satellite beam can be seen in the top beam before propagation
throughout the Science Cell, but its presence becomes obvious far from propagation through
the Cell. The presence of the satellite beam is expected to be a result from slightly misaligned
optics in the tower. When the PBSs are not mounted perfectly, clipping may occur when the
beams are close to the edge of the beamsplitters. When one of the cubes is not aligned with
the other, a satellite beam may be formed in one of the beams which propagates through
the system under a very small angle. As the satellite beam propagates under a slight angle,
it will also be focussed on a slightly different spot; something we observed when aligning
the lattice but was first considered to be an imaging artefact. It is challenging to measure
the amount of power in this satellite beam and as such, to estimate the total power in the
lattice. A lattice power lower than expected contributes to a lower trap frequency.

The waists for the beams at the atoms are calculated using a given exit diameter of
the optical fibre after the AOM. After the fibre, the beam propagates through a series of
cylindrical lenses which manipulate the horizontal beam waist, with the vertical waist only
changed by the final lens, ffinal. To investigate whether the actual beam waist matches the
expected one, the beam waists are measured. The waists cannot directly be measured in situ
through the camera of the BEC imaging system, as it is aligned to focus on 780 nm light.
We can only get an estimation of the vertical waist based on the calculated lattice spacing
for the known beam diameter using Eq. 4.1. Figure 5.6(a) depicts an image of the optical
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Figure 5.6: The optical lattice in situ, as imaged by the 780 nm imaging system. (a) depicts
the lattice in situ. The dimensions on the axis do not correspond to the actual dimensions, as
the imaged light is 532 nm, but the imaging system is set up for 780 nm light. As such, Fig. (a)
is out of focus. We do observe more lattice nodes than expected and can therefore conclude the
vertical waist must be larger than expected. To measure the vertical waist, a camera is mounted
before the beams are focussed by ffinal. Fig. (b) shows trapped atoms in situ. The image is taken
using absorption imaging, i.e. with the 780 nm beam. The effective trap area is the size of the
DMD-potential. The relatively small DMD-area compared to the lattice trap beam size ensures a
large trap uniformity.

lattice in situ. The effective trap area can be seen in Fig. 5.6(b), which shows the atoms
trapped in the lattice. As Fig. 5.6(a) is an image of a 532 nm beam on a system aligned for
imaging 780 nm light, the dimensions on the axes don’t match the actual beam size, as the
image is out of focus. We can observe the vertical waist is bigger than expected, as more
lattice nodes than expected are visible. To get accurate beam waist data, the waists have to
be measured before ffinal.

Upon measuring of the beam waists before ffinal, a horizontal and vertical waist of
wx = 1069(2)µm and wz = 844(2)µm are measured. After propagation through ffinal, this
results in a horizontal and vertical beam waist of wx = 1069(2)µm and wz = 40.1(1)µm at
the atoms. While the horizontal beam waist is close to the expected value of wx = 1230µm,
the vertical waist, expected to be wz = 25.4µm, is larger by almost a factor of two. This re-
duces the amount of power in the central fringes of the trap and as such, the trap frequency.
The larger than expected vertical waist implies the beams are not perfectly collimated in the
vertical direction, which over a long optical path have resulted in a slightly expanded beam.

The lower power in the top beam and the larger vertical beam waist contribute to a
lower measured trap frequency than simulated. Future work on the optical lattice trap can
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overcome the power issue in the top beam through re-alignment of the optics in the non-
common mode elements. Collimation of the vertical beam to match the beam waist at the
atoms with the expected one is challenging, due to the divergence of Gaussian beams for
small beam sizes: While initially a beam may appear collimated in a collimation device such
as a shearing interferometer, over large distances, the beam may start to slightly diverge.
To correct for a diverging beam, a slightly misaligned 1× magnification telescope may be
implemented into the setup far from the initially collimated point. The misalignment of this
telescope can change a diverging wavefront to a collimated wavefront while approximately
maintaining the same beam size.



6
Applications

Chapter 4 discussed the advantages of using a blue-detuned lattice trap over a red-detuned
focussed beam trap. Since the lattice spacing can be adjusted by changing the beam separa-
tion, the trap potential isn’t limited by Gaussian beam optics. The trap depth and frequency
are easily adjusted and allow for trap frequencies in which the trapped BEC must be consid-
ered a quasi-two-dimensional condensate. The repulsive nature of the trap facilitates thermal
atoms floating over the condensate to escape, which reduces noise on measurements. Finally,
due to the large horizontal beam waist the trap is very uniform which opens the possibility
of doing experiments on large area condensates without any density dependent forces acting
on excitations like superfluid vortices.

This chapter proposes three experiments which can be executed with the new lattice trap,
each of them utilizing a different feature of the trap. Section 6.1 discusses an experiment
in which the large trap area is utilized in an experiment in which a superfluid analogue for
the Reynolds number can be found. Section 6.2 proposes an experiment in which one of
the features that classify a liquid as superfluid, called the fountain effect, can be measured
utilizing the large trap depth and repulsive nature of the trap to remove extraneous thermal
atoms. Finally, Section 6.3 proposes an experiment in which a bosonic version of ‘quan-
tized conductance’ can be found. Quantized conductance has been observed for electrons
(fermions) in 1988 using a two-dimensional electron gas and quantum point contacts. To
find a quantized conductance for bosons, a 2D BEC is required. This experiment utilizes
the ability to achieve trap frequencies high enough for the condensate to be considered fully
two-dimensional.
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6.1 Superfluid analogue to the Reynolds number

6.1.1 Introduction

One of the characteristic properties of superfluids is they flow without viscosity. Using
the definition of the Reynolds number, used in classical fluid mechanics as a dimensionless
quantity to characterize the degree of turbulence in a system, a singularity is reached when
applying it on superfluids. Even though their inviscid behaviour, superfluids do exhibit dis-
sipation and a clear distinction is seen between laminar and turbulent flow. The existence
of dissipative excitations in superfluids which introduce turbulence, such as vortices, seem
to suggest an analogous Reynolds number can be found for superfluids.

In classical fluids, wake turbulence is a common phenomenon in aviation. As the wing
of an aircraft moves through air, vortex shedding occurs behind the wings. The same phe-
nomenon occurs for water flowing past a buoy or landline phone wires signing in the wind.
The irregularity of the shedding depends on the relative velocity of the fluid compared to
the barrier. In 1878, Czech physicist Vincec Strouhal experimented with vortex shedding
in phone wires singing in the wind [38]. Strouhal found the frequency of the vortex shed-
ding was related to the thickness of the wire – the characteristic length scale – and the flow
velocity. The three parameters are expressed in the dimensionless Strouhal number

Sr =
fD

u
, (6.1)

with f the frequency of the shedding, D the characteristic length scale and u the relative
velocity of the fluid to the obstacle.

Because of the dynamical similarity between the Strouhal number and the Reynolds
number Re = uD/ν (with ν the kinematic viscosity), the Strouhal number is a universal
function for the Reynolds number. As vortex shedding is a phenomenon which occurs in
both classical fluids and superfluids, a superfluid analogue of the Reynolds number can be
defined and tested as a function of the Strouhal number. As noted, although there is no
viscosity in superfluids, energy dissipation occurs through vortices. Moreover, the quantum
of circulation h/m (as discussed in Sec. 2.1.3) has the same units as viscosity, as first noted
by Onsager in 1953 [39].

Plotting St against a superfluid Reynolds number defined as

Res ≡
(u− uc)D

κ
, (6.2)

with uc the critical velocity in the superfluid and κ ≡ ~/m1, reveals dynamical similarity of
the classical and the quantum cylinder wake. [40]

1Note that, contrary to the definition in Chapter 2, κ is here defined as κ ≡ ~/m because this results in
a transition from laminar to turbulent flow near Res ∼ 1.
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6.1.2 Previous experimental studies

Numerical studies of this phenomenon have been conducted by M. Reeves [18], by simulating
a BEC flowing past a circular barrier. For obstacle sizes larger than a few healing lengths, a
von Kármán vortex street is formed which exhibits a universal St-Res relation similar to the
classical one. Upon decreasing the barrier size, a new quantum regime is observed. Although
experimental studies have observed the von Kármán vortex street, [41], the regimes from the
numerical study aren’t clearly observed and transition to turbulence doesn’t quite match the
prediction. To achieve the wake in an experimental setting, a barrier is swept through the
stationary condensate. Since the vorticity at the boundaries of the superfluid is zero, a large
condensate is required for any vortex shedding to occur. In addition to a large condensate,
it is essential to have a uniform trap, so the superfluid critical velocity is uniform along the
barrier path and furthermore, so there is no density dependent force gradient acting on the
vortices.

A previous experimental attempt to perform this study using the red-detuned sheet trap
was restricted to using a smaller condensate area due to trap non-uniformity. Figure 6.1
shows a comparison between atoms loaded in the optical lattice trap and red-sheet trap.
In the optical lattice image, atoms are loaded into a rectangle almost the size of the DMD
beam which confines the atoms horizontally and prints patterns into the BEC. The image
on the right shows a density image of the rectangle used for the earlier superfluid Reynolds
experiment. The area into which the atoms are loaded is smaller, but with the largest area to
uniformity possible within the red sheet trap. Note that the scale of both images is the same.

Figure 6.1: A comparison between the area which could be used for the superfluid Reynolds
number experiment in the optical lattice trap versus the largest area in the red sheet trap, used in
a previous attempt to perform this experiment at UQ.

Unfortunately, due to the different mechanisms used for imaging in both experiments, it
is not possible to quantitatively compare both traps. The image in the optical lattice is made
using phase-contrast Faraday imaging (see Sec. 3.3 whereas the red-sheet trap image is made
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using absorption imaging. Both images have been processed to be linearly proportional to
the atomic density, n(r), however the Faraday image could not be directly scaled to n(r)
because the background light intensity was not measured before the system went offline.
Due to the absence of proper scaling, the density image of the optical lattice is expressed in
φ(r) (φ(r) ∝ n(r), see Eq. 3.1 and 3.2) which is why the background looks much more noisy
than the red-sheet image. Qualitatively, however, it is obvious the trap area in the optical
lattice is much larger, while still uniform. The red sheet trap can be increased to the same
size, but the non-uniformity of the trap would be too great to perform experiments. The
density peak in the centre of the red sheet not only introduces a force gradient acting on
the vortices, it also results in a variation of the critical superfluid velocity (Eq. 6.2), which
introduces additional challenges in finding the superfluid Reynold’s number.

6.1.3 Proposed experiment

Experimental observation of the three vortex shedding regimes and the transition to turbu-
lence using equation 6.2 can be done through preparation of a sequence of images uploaded
to the DMD which sweep a barrier through the superfluid. The barrier speed and size are
varied to observe the three regimes, the oblique dipole (OD), the charge-2 von Kármán and
irregular shedding, as shown in Fig. 6.2. At low Res, vortex dipoles are released obliquely
from the barrier (OD). As Res is increased, a charge-2 von Kármán vortex street appears
(K2). The Strouhal number has a maximum around and drops after Res ∼ 0.7. Beyond this
value, vortex shedding becomes irregular, which is a clear indication of turbulence. For semi-
classical barriers, in which the barrier size is considerably larger than the healing length, the
OD regime is missing, which is also the case in classical fluids.

Figure 6.2: Strouhal number as a function of the superfluid Reynolds number. The figure
on the left shows the three regimes visible when the barrier size is comparatively small to the
healing length, the quantum barrier. The image on the right shows the Strouhal number as a
function of Res for larger barrier sizes, the semi-classical case. In this case, the oblique dipole
(OD) regime is clearly missing. Retrieved from “Identifying a Superfluid Reynolds Number via
Dynamical Similarity”, M.T. Reeves et al., Phys. Rev. Lett. 114, 155302 [18].
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Figure 6.3: The three different regimes in the von Kármán vortex street. (a) shows oblique
dipole shedding, in which dipole are obliquely released from the barrier, (b) shows the charge-2 von
Kármán shedding, in which charge-2 von Kármán vortex street appears and (c) shows irregular
shedding, which indicates turbulent flow. Adapted from “Identifying a Superfluid Reynolds Number
via Dynamical Similarity”, M.T. Reeves et al., Phys. Rev. Lett. 114, 155302 [18].

Although a circular barrier is used in the numerical study, a square barrier has a much
higher drag coefficient. At higher drag coefficients, a lower relative velocity is required in
order to see the different regimes. In previous studies it was hard to find the OD regime
and it might therefore be favourable to use a square barrier at lower velocities to see oblique
shedding appear before the barrier exits the condensate. To further help break the initial
symmetry in the superfluid, which prevents vortices from forming, it is useful to slightly
angle the plane of incidence. Numerical simulations in which experimental limitations were
considered, conducted by T. Bell at UQ [42] found that using an incident plane with an
inclination of 56◦ maximises the street length.

To find the Strouhal and superfluid Reynolds number from the experimental data, the
wake velocity must be calculated. Direct wake velocity measurements would require non-
destructive imaging techniques or could alternatively be calculated using the vortex’ signs.
This method would generally require Bragg diffraction signed vortex detection methods [43].
However, in the von Kármán vortex street regime, vortices are shedded sufficiently regular
that the vortex signs can be determined by looking at the vortex position and propagation
alone.

6.2 Superfluid fountain effect

6.2.1 Introduction

Superfluidity was first realised in liquid 4He in 1938 when it was cooled below a critical tem-
perature [44]. Shortly after first realisation of superfluidity, the superfluid fountain effect
was observed [45]. Allen et al. observed 4He flow from a cold to hot channel. It was not until
1941 that Landau proposed the two-fluid model [46] which was able to explain the counter
intuitive flow, which appeared to violate the second law of thermodynamics. While one of
the first effects discovered in superfluid Helium, and in fact one of the characteristic traits
of superfluidity, the fountain effect has not yet been observed in a BEC.
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Figure 6.4: The superfluid helium fountain effect. The image on the left shows the system
in thermal equilibrium. The system consists of a large reservoir and a smaller thermally isolated
container connected by a superleak, depicted by a capillary. The image on the right shows the
system after heating the container. The heating induces a difference in chemical potential (µ),
which is higher for the cold reservoir. As such, superfluid helium flows from the smaller to larger
chemical potential. Adapted from “Looking for the Superfluid Fountain Effect in a Bose-Einstein
Condensate”, C. Manning, University of Queensland [47].

Landau’s two-fluid model described a superfluid as composing of two components: A
viscous, ‘normal’ part, which transports heat (or entropy) and a superfluid part which flows
without viscosity and cannot transport heat. In the superfluid helium fountain effect, two
reservoirs are thermally isolated from each other and connected by a superleak, depicted in
Fig. 6.4 as a capillary tube. The superleak is too small for the viscous fluid to flow through
because of its surface tension. The superfluid part of the two-fluid model fluid can, however,
flow between both reservoirs, because it has zero viscosity.

One of the reservoirs is heated up and the system is now out of thermal equilibrium.
The difference in temperature consequently means there is a difference between chemical
potential between the reservoirs with a gradient pointing into the opposite direction of the
temperature gradient. The imbalance in chemical potential leaves the system out of me-
chanical balance and fluid starts overflowing from one reservoir to the other, much like a
fountain. As only the normal part of the fluid can transport heat and the superleak prevents
the normal part from flowing back into the hot channel, the superfluid and normal fluid start
to separate as the system tries to get back into equilibrium.

While other characteristics of superfluidity, such as non-dissipative fluid flow and forma-
tions of quantized vortices have been observed in superfluid BECs, the fountain effect has
yet to be observed. Utilizing the high trap depth of the optical lattice trap, thermal atoms
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can be trapped to conduct the superfluid fountain effect experiment.

6.2.2 Previous experimental studies

A previous experimental study to the superfluid fountain effect in BECs was conducted at
the UQ BEC lab in 2015. The two reservoirs were created in a 2D dumbbell shape using
the DMD. Initially the reservoirs are not connected, and one is larger than the other. After
loading the atoms into the shape, the reservoir is shrunk and stirred, which heats up the
reservoir. A short time built into the sequence to allow any sound waves or other excitations
to leave the superfluid. At this point, the reservoirs are connected through a narrow channel.
The channel width is small enough to allow only superfluid transport from the cold to hot
reservoir. A bimodal analysis of the atoms, which allows to fit the number of thermal atoms
and the number of atoms in the condensate using the Thomas-Fermi approximation can
only be performed for one channel at the time. As such, after transport, one of the chan-
nels is illuminated with resonant light. The atoms in the illuminated reservoir are excited
and escape the trap, leaving only the other channel for analysis. The measurement is then
repeated to analyse the other channel.

Figure 6.5: The experimental sequence of the previous experimental study to the superfluid
fountain effect. Two reservoirs are formed, one of which initially larger than the other. After
shrinking and stirring of one reservoir, both channels are out of thermal equilibrium. At this point,
the reservoirs are connected by a narrow channel to allow transport. At this point, the fountain
effect should take place in which atoms flow from the cold to the hot reservoir. As analysis is only
performed one channel at a time, resonant light is used to excite the atoms in one of the reservoir
channels. Image provided by Guillaume Gauthier.
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The experimental study was inconclusive due to various issues with the used experimen-
tal setup and methods used at that time. The largest issue with the setup at that time was
due to the attractive nature of the red-sheet trap. Atoms were still trapped in the sheet trap
but were not trapped in the DMD trap (due to a too low trap depth of this trap), which may
have the two reservoirs in thermal contact at and for an unknown time. This poses an issue
as this may have allowed transport between the reservoirs without the channel. As such
very little change was observed upon measuring the relative condensate fractions in both
channels after different times. The possibility of floating of atoms outside the DMD poten-
tial is eliminated when using the optical lattice trap, as atoms floating outside of the trap
experience a force gradient which moves away the atoms away from the trap. Furthermore,
during the realisation of the optical lattice trap, the trap depth of the DMD was increased
by replacing the optical fibres in the setup to fibres which couple light better, resulting in a
higher overall power in the DMD optical path.

6.2.3 Proposed experiment

In a new proposed experiment at UQ, a study if performed to finding the superfluid fountain
effect in a BEC using the optical lattice trap and improved DMD trap to have sufficient trap
depth. If the trap depths in both traps are deep enough to trap thermal atoms, the study
can be conducted. The repulsive nature of the optical lattice trap ensures that if any atoms
are not trapped by the DMD potential, these atoms are expelled from the trap.

In the new proposed study, another method of heating one of the channels is used. This
new method is used to ensure the temperature gradient between both reservoirs is sufficiently
high. Step (a) in Figure 6.5 is omitted and instead the BEC is heated through a ‘bubbling’
method, developed by C. Manning [47]. In this method, DMD mirrors are quickly turned
on and off on one of the channels. When done at the right frequency, this pumps energy in
the system which results in heating of atoms.

While the first stages of finding the superfluid fountain effect in the new trap were
performed by C. Manning, the experimental study is still an ongoing investigation. Upon
the first attempts to find the effect, the optical lattice trap depth was not sufficiently high
yet. Better coupling in the optical fibre in the future and better alignment in the components
in the tower of the setup (see Fig. 4.3) should give a sufficient trap depth according to our
simulations. To use this in experiments, the PI-controller in the active feedback system
must be configured accordingly to be able to function at these higher powers. Current
limitations to measuring the fountain effect are due to solving these engineering problems.
These problems could not be solved, however, before the system went offline. Once the
system is online again, the experimental study can be continued.
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6.3 Quantized conductance of bosons

6.3.1 Introduction

Quantized conductance was first observed in 1988 independently by researchers at Cambridge
University [48], as well as by researchers at Philips Laboratory and the University of Delft
[49]. First observed in a quantum point contact, it was found that increasing the voltage
over the contact only increases the current in discrete steps, quantizing the conductance in
steps of πe2

~ . Quantized conductance has been shown to be a useful tool in atomic switches
[50], and Conductive Bridge Random Access Memory (CBRAM) [51], steadily making its
way to consumer products [52].

Although being a well-established phenomenon for fermions, other than theoretical pre-
dictions of a similar phenomenon existing for bosonic transport [53], so far no experimental
proof has been provided. The creation of a one-dimensional channel between two reservoirs,
a setup similar to the superfluid fountain experiment, allows two investigate transport from
one to the other reservoir. If the channel is sufficiently small enough to be considered a 1D
channel, and the chemical potential difference between both reservoirs is sufficiently high,
quantized conductance for bosons can be measured.

6.3.2 Previous and proposed experimental studies

To perform this experiment in a BEC, a geometry of two reservoirs is created, connected by
a small channel, similar to Fig. 6.5. To observe quantized conductance, it is crucial the two
reservoirs are thermally insulated and the channel’s width and height are small enough to
only allow 1D transport.

A previous study conducted at UQ investigated transport for channels with small width.
In this investigation, the red sheet-beam trap was utilized. Because of its low vertical trap
frequency, the channel still had to be considered 2D. Moreover, because of the attractive na-
ture of the red sheet-beam trap, thermal atoms were floating around the pattern. An effect
first described by Ketterle’s group, called distillation [54] allowed transport between both
reservoirs, even in absence of a channel. Due to a difference in trap depth of both channels
(necessary for transport to occur), atoms are transported from the ‘hotter’ to the ‘colder’
channel. This transport is facilitated by the thermal cloud, which couples both channels.
The atoms can condense again in the colder channel, much like classical distillation.

The optical lattice trap overcomes both issues simultaneously: Because of its repulsive
nature, thermal atoms are expelled from the trap, thus getting rid of any distillation to occur.
The ability to increase the trap frequency by reducing the lattice spacing will allow one to
create a true 1D channel to connect both reservoirs and observe quantized conductance.
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7
Conclusion

Red-detuned ODTs are a great tool for trapping BECs. When vertically focussed to a tight
beam, red-detuned ODTs provide sufficient confinement for a great range of 2D BEC ex-
periments [6, 7]. The current red-sheet beam trap in the BEC experiment at UQ, however
has a limited trap depth and frequency. Moreover, as it is a focussed Gaussian beam, the
vertical beam waist is always limited to the Rayleigh range of the beam. In other words,
higher trap frequencies cause lower trap uniformity. As a non-uniform trap introduces a
force gradient on the atoms, these are undesired features in superfluid experiments. In this
thesis, a new trap is proposed and realized which allows to execute experiments at much
higher trap frequencies with much improved trap uniformity.

The proposed trap is realised by trapping atoms in node of a blue-detuned optical lattice.
The optical lattice is created through interference of two identical 532 nm beams, created
using two PBS cubes. Through control of the intensity of the light using AOMs and the
lattice spacing by changing the beam separation, the trap frequency can be adjusted over a
large range. Through the use of an active feedback system, the vibrations of the lattice are
removed to achieve long BEC lifetimes in the trap.

At the time the optical lattice was realised in the experiment at UQ, the measured trap
frequency was found to be νtrap = 58(1) Hz. This is much lower than the trap frequency
expected from the performed simulation, which was νsim = 186 Hz. Upon investigating the
difference between the simulated and experimental frequency, the measured beam waists
near the atoms did not match the calculated and simulated ones. This might be due to
slight misalignments in telescopes in the setup. The setup is relatively long and as such
a slightly diverging beam can significantly change the beam waist on a focussed spot. In
addition, the power in the lattice at the atoms might have been lower than expected. Due to
clipping of a very small part of the beam on one of the PBSs, a satellite beam was created far
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from the PBS and close to the atoms. This reduced the actual optical power in the lattice,
and therefore the trap frequency.

The 1/e BEC lifetime in the trap was found to be τ = 19(5) s, which is of the same order
of the red-sheet beam when the DMD potential was first implemented [3] and is sufficient
for superfluid transport and turbulence experiments. To achieve this lifetime, an active feed-
back system had to be implemented in the system, which allowed to lock the relative phase
between both beams using a PI-controller. The feedback system compensates for any vibra-
tions near the trap frequency, which heats the atoms and allows them to escape the trap.
Without using an active feedback system, the BEC lifetime was found to be τ = 2.8(8) s.
While the feedback system currently does not operate at higher laser powers, it is a simple
matter of engineering to overcome this limitation.

Before work could start to re-align the optics in order to have the desired beam waist
size at the atoms and remove the clipping at the PBS, the experiment went offline due to
a leak in the vacuum. As soon as the system is back online, work can start to improve the
setup. An example of a feature which could be implemented is a 1× magnification tele-
scope close to the atoms, to compensate for any beam divergence in the system and have a
less curved wavefront incident on the lens which focusses the light to form the optical lattice.

The new trap opens a range of new experiments. Three of these experiments were
discussed in the thesis: A superfluid Reynolds number analogue, the superfluid fountain
effect in a BEC and quantized conductance for bosons. The superfluid Reynolds number
experiment can be executed as soon as the experiment is back online, as it only requires low
trap frequencies but utilizes the high trap uniformity of the setup. The superfluid fountain
effect in BECs experiment can be performed as soon as a sufficient amount of power can
be coupled in the trap, as this experiment involves trapping of thermal (not-condensed)
atoms. After re-alignment of the optics, this experiment can be executed. After further
improvements of the optical lattice, such as implementation of the ability to actively change
the fringe spacing when the atoms are loaded in the trap, the proposed quantized conductance
for bosons experiment can be performed, for which a quasi-2D BEC is not sufficient. Using
the high power and small lattice spacing, the setup should theoretically be able to reach trap
frequencies sufficient to confine a BEC completely two-dimensional.



A
A detailed look at the optical lattice setup

In Chapter 4, a summary was given on components the optical lattice setup. The summary
describes the setup sufficiently well to understand the setup without being too heavy on
the details. In this Appendix, a more detailed description of all components in the setup is
given, with sufficient detail such that the setup may be reproduced. Section A.1 lists every
component and its function in the setup and in Section A.2, we briefly touch upon the effects
of thermal lensing in setups when working with high intensity laser beams. A method is
described to effectively cancel thermal lensing effects in AOMs. This method, proposed by
Simonelli et al. [55], is tested and the advantages and disadvantages of using this method
are discussed.

A.1 A walk-through of all components

The following section provides a list of all components used in the optical lattice setup with
provided description. Numbers in the list correspond with labels in Figure A.1 and A.2.

1. A telescope consisting of a -25 mm and a 100 mm lens to initially expand the laser
beam. Because of the small laser size, the -25 mm lens is an aspheric lens, to prevent
spherical aberrations. The laser light coming out of the laser is Plaser = 10 W at
λlight = 532 nm.

2. A high power polarizing beamsplitter with λ/2 waveplate mounted in front of the PBS.
The waveplate sets the polarisation to be 70/30 horizontal/vertical. This means 7 W of
laser power is being reflected onto the optical lattice path and 3 W is being transmitted
to the DMD potential path.

3. The DMD-potential path. During this project, a new fibre was implemented in the
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Figure A.1: A diagram of all optical components found on the lower optical table, identical to
Fig. 4.2, with added labels.

system to increase the transmitted power and as such, the trap depth of the DMD-
potential. The path from (2) to the DMD fibre is identical to the optical lattice path.

4. A 150 mm and -50 mm telescope, to reduce the beam size to the aperture of the AOM.
Two telescopes are used to first expand and then reduce the beam size, as no aspheric
lens of the right focal length was available to change the beam size to the right aperture
using a single telescope.

5. A dense flint-glass B-coated AOM. This AOM sets the power distributed to the optical
lattice. The zeroth order is used to dump excess light onto a beam dump. Over the
course of this project, this AOM was changed from a tellurium dioxide (TeO2) A-coated
AOM to a dense flint-glass B-coated AOM. It was found that (TeO2) suffers greatly
from a thermal lens when used for high intensity applications. This resulted in a very
non-Gaussian beam profile which spatially moved when the power was changed in the
path. Consequently, the beam quality at the optical lattice was poor and the lattice



A.1 A walk-through of all components 55

moved when the AOM was heating up. Section A.2 discusses this issue in more detail.
The TeO2 was changed with a dense flint-glass crystal AOM, which was only available
with a B-coating (used for infrared applications) at the time of implementation. As
such, the total efficiency of the AOM is only approximately ∼ 60%.

6. A fibre is used to decouple parts (1-5) from the rest of the setup and to spatially filter
the light. If any of the optics are misaligned or changed (for example when chang-
ing to an A-coated quartz AOM), the optical lattice will still be aligned. Moreover,
the fibre couplers act as spatial filters, as even though almost no thermal lens will be
present in the quartz AOM, there are still some aberrations on the wavefront. The
beam which has propagated through the fibre will have an (almost) perfect Gaussian
wavefront again. The fibres used are polarisation maintaining fibres. To maintain the
polarisation of the beam through the fibre, the incident polarisation must be aligned
with the birefringence axis (see Sec 4.4 for more details). As such, a λ/2 waveplate is
present before and after the fibre: The waveplate in front of the fibre is there to align
the polarisation with the birefringence axis and the waveplate after the fibre sets the
right polarisation to split the beam in equal powers at (10).

7. The beam waist after the fibre coupler is 1.34 mm, to prevent any other thermal lensing
effects in the setup, the intensity of the beam is reduced by expanding in the horizontal
beam waist to 4.0 mm using a series of −50 and 150 mm cylindrical lenses. The waist
is only expanded in the horizontal direction to allow the beams to be reflected very
close to the edge of the PBSs at (10), which allows us to have a small beam separation
and as such, have a large lattice spacing (see Eq. 4.1).

8. The discontinuity of the line here represents a change of axis. The next components
are mounted on the tower, which are mounted in the z-direction.

9. The light is reflected onto the PBS at (10) using a mirror mounted on a translation
stage. The translation stage can move in such a manner that it deflects the beam
further and closer to the edge of the PBS. As such, this mirror sets the beam separation.

10. The two PBSs split the beam into two. To obtain an optical lattice with zero intensity
at the nodes (i.e. a high fringe fidelity), the power in both beams must be the same.
To achieve this, the λ/2 waveplate at (7) sets the polarisation to 50/50. This reflects
the vertically polarised light on the first and transmits the horizontally polarised light
on both the first and the second PBS.

11. The transmitted light is reflected by a mirror at (12), to reflect this light on the second
PBS, the polarisation must rotated vertically. This is done by the λ/4 waveplate. As
the beam travels through the waveplate twice, a λ/4 is used.

12. A mirror mounted on a piezoelectric actuator reflects the beam such that it can be
reflected by the second beamsplitter. The piezoelectric actuator is part of the feedback
system which stabilizes shaking of the lattice at the atoms. By measuring a signal at
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Figure A.2: A diagram of all optical components found on the top optical table, identical to
Fig. 4.3, with added labels.

(19) and comparing this to the locked-on signal value, the PI-controller sends the error
signal to the piezo at (12) to move the measured signal back to the locked-on signal.
A more detailed description of the feedback system can be found in Section 4.3.

13. As the light is polarised in the vertical direction, almost all the light at the PBS at
(13) is transmitted. A small fraction of the light is reflected due to the finite extinction
ratio of the beamsplitter. This light is used for the feedback system.

14. The transmitted light at (13) goes to the atoms. At (14) the horizontal waist is reduced
again to increase the intensity of the beam. A 250 mm and 70 mm cylindrical lens are
used to reduce the horizontal beam waist to wx = 1.12 mm.

15. The final cylindrical lens, ffinal = 200 mm focusses the beams vertically, such that
an interference pattern is formed at the atoms. This lens is mounted on a series of
translation mounts, to ensure the lens is aligned with the optical axis. Misalignment
in the optical axis results in the beams interfering on an angle. As a result, the atoms
will fall out on the side. To prevent this, the lens is mounted on a rotation stage which
also allows the lens to move in the x, y and z direction.
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16. A glass window, mounted under a 45◦ angle is mounted in the feedback path. The
small fraction of reflected light is refracted on the photodiode connected to the AOM
at (5) to control the intensity in the optical lattice. When the diode detects too much
power, the AOM sends more power through the zeroth diffraction order, which is
dumped into a beam dump. The amount of power in the optical lattice path during
the sequence is controlled by an experimental sequence programme, developed for cold-
atom experiments, called Cicero.

17. The light transmitted through the window is focussed by a lens and another series of
lenses (a 4× magnification finite conjugated objective is used for this). The objective
is aligned so that it is part of an imperfect or slightly misaligned telescope. As a result,
all lenses combined act as a single lens with a long focal distance, a telephoto. The
focal distance of the combined lenses is approximately ftelephoto ≈ 550 mm The long
focal distance ensures a large enough fringe spacing to work efficiently for the feedback
system.

18. The light is split again using a PBS and a λ/2 waveplate. The majority of the light
is transmitted to the photodiode at (19) and a small fraction is sent to the camera at
(20).

19. A 45µm pinhole is mounted at the point in which the two beams interfere. The focal
distance of ftelephoto ≈ 550 mm results in a fringe spacing of approximately λlattice ≈
90µm, which is sufficiently large for the pinhole to sample a small portion of the
beam. This small portion of the beam is detected by the photodetector, mounted next
to the pinhole. The photodetector translates the intensity of the light diffracted by
the pinhole to a voltage, supplied to the PI-controller. This photodetector is the input
signal on the PI-controller. Section 4.3 discusses the feedback system in more detail.

20. A camera is mounted at the focal point of the telephoto to monitor the stability of the
optical lattice. As the lenses used in the telephoto do not have the same focal distance
as ffinal, this camera cannot be used to measure the fringe spacing and the waist of the
beam at the atoms. The frame rate of the camera is sufficiently high to monitor low
frequent vibrations in the lattice.

A.2 Thermal lensing in AOMs

A.2.1 Introduction

A common occurrence in optical setups that operate with high intensity lasers is thermal
lensing. This occurs upon transmission of high intensity laser beams through optical compo-
nents with a sufficiently high absorption coefficient. The absorbed light heats up the optical
component which induces mechanical stress and furthermore changes the refractive index of
the material, which always features some temperature dependence. As such, the material
locally deforms and has an altered index of refraction, which introduces aberrations in the
wavefront. Upon propagating through these materials, a collimated wavefront may obtain a
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small focus, or the quality of the wavefront can decrease.

In many cases, one may choose to use optical components of a different material to pre-
vent thermal lensing. UV Fused Silica (UVFS), for example, has a much lower absorbance
than the commonly used N-BK7 [56]. In some cases, however, changing optical components
is not a feasible option and alternative methods have to be found in order to minimize the
amount of thermal lensing in an optical setup.

In the setup at UQ, tellurium dioxide (TeO2) crystal AOMs were used for controlling the
intensity of the λlight = 532 nm DMD-potential and the optical lattice. These AOMs were
chosen because of their high diffraction efficiency for visible light. The optical lattice was
implemented over the course of the project, which requires a considerable amount of optical
power. In addition, the trap depth of the DMD-potential was improved by increasing the
amount of optical power in the DMD path. The high power in both paths resulted in a
thermal lens in both paths, most pronounced by the TeO2 crystal. At this stage, the optical
lattice path did not have a fibre to spatially filtered the beam. The thermal lens resulted in
an aberrated beam profile for the optical lattice, and as such, a poor trap quality. For the
DMD path, thermal lensing resulted in poor coupling to the fibre; while more power was
coupled into the fibre, the outgoing power remained almost unchanged.

A.2.2 Background

In a paper published by Simonelli et al. [55], thermal lensing in TeO2 crystals is investigated.
Contrary to thermal lensing in most optical components, the lens induced by the TeO2 crystal
diverges the beam. To measure the focal distance of the thermally induced lens, the waist
of the beam is measured and compared to the beam waist when the AOM is removed, i.e.
when no thermal lensing occurs,

wl
w0

=
1√

1 +
(
zR
fth

)2
, (A.1)

with wl and w0 the lensing induced waist and the old waist, zR the Rayleigh length and fth

the focal distance of the thermally induced lens.

As the thermally induced lens introduces a small curve in the wavefront, the focal dis-
tance of the lens, fth, is large. The thermal lens is most effectively cancelled when zR � fth,
i.e. when zR is small. The waist is measured by focussing the beam on a camera after
propagation through the AOM.

To cancel thermal lensing, a Galilean telescope consisting of two lenses of short focal
distances, separated by f1 + f2 + δz, is created. The short focal distance ensures a small
Rayleigh length, zR, and the δz slightly converges or diverges the wavefront, which is then
collimated again by the thermal lens due to the AOM. The distance required to focus the
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Figure A.3: The setup for measuring thermal lensing, with the AOM located at the point of
least thermal lensing. Figure (a) depicts the situation in which the AOM is put close to the waist of
the beam in the telescope. Figure (b) corresponds to the situation in which the AOM is put right
after the telescope. The telescope is slightly misaligned by δz, to create a collimated wavefront
when combined with the induced thermal lens of the AOM. The shift in imaging distance, ∆zth is
zero in absence of thermal lensing.

beam on the camera is given by f3+∆zth, with ∆zth the induced shift due to thermal lensing.
In the situation where thermal lensing is not present, ∆zth → 0. When modelling the system
using ABCD-matrices for Gaussian beams, ∆zth → 0 at two locations: Next to the waist
in the telescope, where the curve in the wavefront is small, and right after the telescope, as
depicted in Fig. A.3.

A.2.3 Experimental implementation

To measure ∆zth, the experiment is performed with and without an AOM present in the
setup. The distance between f1 and f2 is varied by δz and the distance from the lens f3 and
the camera is measured. To find ∆zth, the distance between f3 and the camera without, and
with AOM present is subtracted.

The data is compared to the data from Simonelli et al., to qualitatively compare the
trend of the curve. The data is plotted in Fig. A.4. The experiment is performed for the
configuration where the AOM is placed outside of the telescope (Fig. A.3(b)). While this
method is less effective than placing the AOM inside the telescope, the beam waist is larger
at this point, reducing the change to damage the AOM with the laser.

For the configuration of Fig. A.3(b), ∆zth goes through zero twice. The point of the
maximum shift in ∆zth corresponds to the point where the telescope is aligned perfectly,
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which results in a large thermal lens. Two distinct difference can be observed between the
literature data and the UQ experimental data: The centre of the peak is at a different loca-
tion, and the amplitude of the shift is much larger in the UQ data. The difference in centre
of the peak can be attributed to the authors using different lenses and beam sizes in their
setup. The difference in amplitude can be attributed to use of a different wavelength laser.
Simonelli et al. used a 1064 nm laser for their work, while UQ data was taken with a 532 nm
laser. It is obvious that the absorption coefficient for TeO2 is much higher in the visible
range than it is for the near-infrared.

After this data is taken, the alignment in the first telescope can be set to one of the
points at which ∆zth is close to zero. One may choose the point with the lowest derivative,
to avoid a rapid increase in thermal lensing when thermal drift occurs in the system. The
misalignment of the telescope, however, is much larger at this point, which results in an
increased (collimated) beam size. Once the telescope is set to the right δz, the setup is free
of a thermal lens, regardless of the laser power.

This method proves effective against thermal lensing. Upon implementation at UQ, the
coupling efficiency to the fibre coupler in the DMD-path and – at the time implemented –
fibre coupler in the optical lattice path did not exceed 50%. The low efficiency was attributed

Figure A.4: The measured thermal shift as function of the ‘misalignment’ in the telescope δz.
Panel (a) shows the experimental data and fit of Simonelli et al. Panel (b) shows the experimental
data at UQ. The data from UQ follows a similar trend as the data by Simonelli. The difference
in location of the peak and amplitude of zth is attributed to different laser power and wavelength,
which changes the absorption in the AOM crystal and the use of different lenses, which changes
the location of the centre of the peak. Panel (a) adapted from “Realization of a high power optical
trapping setup free from thermal lensing effects ”, C Simonelli et al., Opt. Express 27, 27215-27228
[55].
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to the increased beam size, due to how the telescope was aligned. As the use of a fibre was
required for the DMD path and desired for the optical lattice path, the TeO2 AOMs were
replaced by B-coated dense flint-glass AOMs. While the overall efficiency of these AOMs
is lower, thermal lensing effects were much less pronounced. Future work in which fibre
coupling is not required, but optics with a high absorption coefficient are used, could use
this method for cancelling thermal lensing.
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