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Abstract

This report identifies Machine Learning (ML) models of the water softening treatment process in a
Water Treatment Plant (WTP), using two different ML algorithms applied on time series data: eXtreme
Gradient Boost (XGBoost) and Recurrent Neural Networks (RNNs). In addition, a control method for the
draining of pellets in the softening reactor is explored based on collected softening treatment data and
the resulting ML models. In particular, the pH is identified as a potential variable for the control of pellet
draining within a softening reactor. The pH forecasts produced by ML models are able to predict the
future behaviour of the pH and potentially anticipate when the pellets should be drained.

For implementation of the ML algorithms, the inputs and outputs of the ML models are first identi-
fied. Wherein, the pH within the softening reactor is selected as the output, due to its potential control
properties. Subsequently, water softening treatment data is collected from a water company residing in
the Netherlands. After collection, the data is pre-processed and analysed to be able to better interpret
the ML results and to improve the performance of the ML models trained. During pre-processing, the
implementation of two ML data splitting methods, walk-forward and train-validation-test, is carried out.
The performance of the models is gauged using two different evaluation metrics: Mean Squared Error
(MSE) and R-squared. Lastly, predictions are carried out using the trained ML models for a set of forecast
horizon lengths.

Comparing the XGBoost and RNN pH predictions, the RNN performs in general better than the XG-
Boost method, where the RNN model with a train-validation-test split, has a MSE value of 0.0004 (4 d.p.)
and an R-squared value of 0.9007 (4 d.p.). Extending the forecast horizon to four hours for the RNN walk-
forward model yielded MSE values below 0.01, but only negative R-squared values. Thereby, suggesting
that the prediction is relatively close to the actual data points, but does not follow the shape of the actual
data points well.

The evaluation metric results suggest that it is possible to create a good performing model using the
RNN method for a forecast horizon length equal to one minute. Alternatively, this model is heavily de-
pendent on the current pH value and therefore is deemed to be not a good predictor of the pH. Increasing
the horizon length leads to only slightly lower MSE values, but the R-squared values are in general nega-
tive, indicating a poor fit.

Keywords: Machine Learning (ML), water softening treatment, Water Treatment Plant (WTP), time
series, eXtreme Gradient Boost (XGBoost), Recurrent Neural Network (RNN), pH, control, pellet drain-
ing, softening reactor, forecast, inputs, outputs, pre-process, data splitting method, walk-forward, train-
validation-test, evaluation metric, Mean Squared Error (MSE), R-squared, prediction, forecast horizon
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Term Definition

Activation function a function, that transforms the summed weighted input from the neuron into the output

Backend the computing task that is performed in the background. The user is not able to observe this
task being carried out

Backpropagation an algorithm used during the training of a Recurrent Neural Network (RNN) model

Break through the act of the grains in the pellet softening reactor being flushed out of the softening reactor
to the following stage of the Water Treatment Plant (WTP)

Corrupted data data containing blanks, NaNs, null-values or other placeholders

Crystallisation rate the rate at which a solid forms, where the atoms are organised into a crystal structure

Dissolution the action of becoming incorporated into a liquid, resulting in a solution

Effluent the water exiting a softening treatment reactor

Ensemble Learning building a model based on an array of other models [6]

Eutrophication the phenomenon of an excessive richness of nutrients in a body of water, causing a surge of
plant growth

Feature a measurable property of a system. Although, the target of the machine learning algorithm
is not considered a feature

Frontend the graphical user interface provided to the user when operating software

Horizon span the array of forecast time steps of a particular model

Hyperparameter a parameter of a learning algorithm and external to the model

Influent the water entering a softening treatment reactor

Ion an atom or a molecule that possesses a positive or negative charge

Learner variable a variable that is used during the training of a machine learning model

Linear regression the calculation of a function that minimises the distance between the fitted line and all of the
data points. The line is often referred to as the regression line

Lookback the number of past time steps used to make a model prediction

Misclassify the act of a result being wrongly classified

Model performance indicator a statistical measure of the performance of the model against the test set. This term is also often
referred to as an evaluation metric

Model Predictive Control (MPC) a method of system control, which seeks to control a process while satisfying a set of
constraints

Overfitting learning the detail and noise of the training data to the extent that it negatively impacts the
performance of the model on new data [12]

Predictor a variable employed as an input in order to determine the target numeric value
in the data

Redox reaction a reaction where a transfer of electrons is involved

Regularisation the process of adding information in order to prevent overfitting

Response variable the target (output) of a decision tree

Supervised learning the process of feeding a machine learning algorithm with example input-output training data
pairs

Target the output for a machine learning model

Water treatment act or process of making water more useful or potable [20]

Window of data a number of rows extracted from the original dataset
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Chapter 1: Introduction
1.1. Water Treatment Plant (WTP)
The purpose of a Water Treatment Plant (WTP) is to remove particles and organisms that cause dis-

eases, protect the public’s welfare and provide clean drinkable water for the environment, people and
living organisms [20]. As of 2016, there are ten different drinking water companies in the Netherlands,
employing 4,856 workers. A total 1,095 million m3 of drinking water was produced in the Netherlands in
2016 [23]. An overview of an example WTP can be found in Appendix A.

1.1.1. Softening Treatment Process

Figure 1: Softening treatment process diagram.

Once the water has been pre-
treated, it undergoes softening in the
WTP. A popular softening process set-
up is displayed in Figure 1. The raw
water enters the process and flows
through to the pellet-softening reactor.
The softened water then exits the re-
actor at the top and is subsequently
mixed with the bypassed water. Finally,
the water is dosed with a form of acid
to ensure that the pH reduces. A large
pH value kills the bacteria in the down-
stream biofilters. In addition, the acid
counteracts the chemical reactions in-
volving caustic soda. These reactions
can potentially negatively impact the
downstream WTP equipment. The by-
pass (described in Appendix A) and raw
water flow are controlled using valves.

1.1.2. Hard Water
Magnesium and calcium ions are dissolved when water comes into contact with rocks and minerals.

The hardness of the water is the total amount of dissolved metal ions in the water. In practice, the hard-
ness is determined by adding the concentration of calcium and magnesium ions in the water, since they
are generally the most abundant in the influent. Hard water can cause the following problems [1]:

• Decreasing the calcium concentration in water gives rise to a higher pH value in the distributed
water, leading to a decrease in the dissolution of copper and lead in the distribution system. Inges-
tion of large quantities of dissolved copper and lead has negative effects on the public’s health.

• A higher detergent dosage for washing is required for harder water. This increases the concen-
tration of phosphate in wastewater and contributing to the eutrophication effect. Furthermore, a
greater usage of detergent increases the average household costs.

• Hard water causes scale buildup in heating equipment and appliances, causing an increase in en-
ergy consumption and equipment defects.

• Hard water tastes worse than soft water.

• The damaging or staining of clothing during a wash is often caused by hard water.
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1.2. Machine Learning

1.2.1. What is Machine Learning?
Machine Learning (ML) is the science of programming computers using algorithms, so they can learn

from data [6]. The algorithms develop models, which are able to perform a specific task, relying only on
inference and patterns. A more formal definition is as follows:

A computer program is said to learn from experience E with re-
spect to some task T and some performance measure P, if its
performance on T, as measured by P, improves with experience
E.

ML has been frequently used to solve various real-life problems in recent years. One example is pre-
dicting the stock market, where stakeholders frequently want to predict future trends of the stock prices.
Implementing a ML algorithm using past stock data allows you to generate a model that can predict the
future trajectory of the stock price.

1.2.2. Train, Validation and Test Data
A dataset is often for ML partitioned into: train, validation and test datasets. The train partition is

used for training during the implementation of the ML algorithm. The validation data is used to evalu-
ate the model during training and allows you to effectively tune the hyperparameters. A hyperparameter
is a parameter of a learning algorithm and external to the model. Therefore, hyperparameters remain
constant during the training of a ML model. Checking the model against the validation data allows you
to identify if the model is overfitting (explained in Section 4.6) on the training dataset. The test partition
consists of the data used to determine the final performance of the created model.

1.3. Previous Research
In K.M. van Schagen’s research paper, Model-Based Control of Drinking-Water Treatment Plants (pub-

lished in 2009) [4], the softening process in the Weesperkarspel WTP is evaluated. K.M. van Schagen pro-
poses controlling the pellet-bed height using a Model Prediction Controller (MPC). The MPC determines
the seeding material dosage and pellet discharge, to maintain the optimal pellet diameter and maximum
bed height under variable flow in the reactor and corresponding temperature.

Stimela is a modelling environment for drinking water treatment processes (including the water soft-
ening process) in Matlab®/Simulink® [24]. Stimela was developed by DHV Water BV and Delft Univer-
sity of Technology. The Stimela models calculate changes of water quality parameters, such as pH, pellet
diameter and pellet-bed height.

PHREEQC (pH-Redox-Equilibrium Calculations) is a model that was developed by Uninited States
Geological Survey (USGS) to calculate the groundwater chemistry [10]. PHREEQC is comprised of all the
relevant chemical balance equations for water chemistry, such as acid-base and redox (reduction/oxi-
dation) reactions. The PHREEQC (in combination with a model of the calcium carbonate crystallisation
rate) simulates a pellet softening reactor [5].

A. Sadad published a research paper in 2019 [9], about a general step-by-step method of applying ML
analysis on a time-series dataset. One example case featuring in the research is a Wastewater Treatment
Plant (WWTP) system, where an accurate ML model was developed using Recurrent Neural Networks
(RNNs) and the XGBoost algorithm (see Chapter 5). Both of the ML algorithms were implemented in
Python. In this research, an adapted version of A. Sadad’s implementation is employed. This research
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firstly seeks to verify the step-by-step method proposed by A. Sadad and secondly, to adapt the imple-
mentation to be able to forecast further into the future.

There are no research publications about applying ML on the drinking water treatment softening
process. One purpose of this research, is to investigate if it is possible to apply ML on a drinking water
treatment softening process and generate an accurate model of the process.

1.4. Aim of the Report
The aim of the research is as follows:

Develop a control strategy that efficiently controls the seeding
and draining of the softening reactor based on the pH, using a
model developed through ML.

Moreover, this research seeks to answer the following questions:

1. Is it possible to develop a model of the softening treatment process of a WTP using ML?

2. Is the data provided for this research sufficient to develop a model using ML?

3. Can the seeding and draining control be improved by developing a control strategy using the pro-
duced ML model?

1.5. Report Layout
The report is organised as follows:

• Chapter 1. Introduction: In this chapter, an introduction to the problem and background infor-
mation about ML and WTPs are given. In particular, this chapter briefly describes: the softening
treatment process within a WTP, the problems associated with hard water, a definition of ML and
the different partitions of the dataset used for ML implementation. Finally, the relevant previous
research is identified and an aim of the report is defined.

• Chapter 2. Background Information: In this chapter, further background information about the
softening process in a WTP is presented. Beginning with a description of a typical softening pro-
cess configuration, explaining the role of reserve softening reactors in the softening process. Next,
the main features of a pellet softening reactor are described, including the standard WTP pellet
discharge action. Furthermore, the key control actions that take place in the softening process
are described, including caustic soda dosing in the softening reactor. Lastly, the properties of the
pH are described and its potential for use as a draining control variable in the softening process is
explained.

• Chapter 3. Data Pre-Processing and Data Analysis: Firstly, this chapter describes time series data,
the Z-score normalisation method and the applicability of normalising the data used for ML. Af-
terwards, methods of removing erroneous values from the dataset are explored, where erroneous
rows and columns can be removed or interpolation applied. Finally, Pearson’s correlation coeffi-
cient and the autocorrelation are mathematically described.

• Chapter 4. Machine Learning: In this chapter, ML principles are described, where the concept
of supervised learning is introduced and two techniques used to split data before applying ML
algorithms are introduced: walk-forward and train-validation-test data splitting. Next, the role
of hyperparameters is explained, along with examples of hyperparameters featuring in a Neural
Network (NN) and the use of implementing a hyperparameter grid search. Lastly, two so-called
evaluation metrics are introduced with an explanation of how they can be interpreted.

3



• Chapter 5. Neural Networks and XGBoost: In this chapter, the ML theory is studied in more depth
by exploring two prominent ML algorithms used for time series problems: NNs and eXtreme Gra-
dient Boost (XGBoost). Firstly, the NNs section introduces the main components of a NN and how
the NN parameters update during training, using samples from a dataset via the gradient descent
algorithm. Subsequently, the notion of a RNN is introduced, where past outputs are incorporated
into the NN. This concept is expanded on, by describing the function of a Long Short-Term Mem-
ory (LSTM) cell, where past outputs are selectively retained based on a mathematical algorithm.
Thereafter, the purpose of regularisation is explained and a pertinent NN regularisation technique
(the dropout layer) is described. Then, a typical RNN structure is described. In the beginning of
the XGBoost section: decision trees are introduced, a distinction between classification and re-
gression trees is shown and a relevant example is depicted. Afterwards, the XGBoost algorithm is
summarised with its associated feature importance score. The chapter is brought to a conclusion,
by comparing the prediction horizons of the XGBoost and RNN models, giving an indication of
their predictive qualities.

• Chapter 6. Methods: In this chapter, the methods used to apply the ML algorithms featured in
Chapter 5 are explained, which leads to the results shown in Chapter 7. Firstly, the inputs and out-
puts of the proposed model are identified, using knowledge of the softening process introduced in
Chapters 1 and 2. Thereafter, the data is collected from the given water company, taking into ac-
count data interpolation and deciding upon a suitable data time interval. Next, the delivered data
is pre-processed and analysed using techniques described in Chapters 3 and 4, as preparation for
the ML algorithms. Finally, the ML prediction phase methods are explained, making use of the the-
ory of the ML algorithms introduced in Chapter 5. Including an explanation of the hyperparameter
selection for the ML algorithms.

• Chapter 7. Machine Learning Results: In this chapter, the ML results generated using the methods
from Chapter 6 are analysed. In particular, the evaluation metrics described in Chapter 4 are used
to assess the performance of the different generated models.

• Chapter 8. Discussion and Conclusions: In this chapter, the results of Chapter 7 are discussed and
conclusions are drawn based on the results. The conclusion seeks to answer the questions posed
in the Aim of the Report Section (Section 1.4).

• Chapter 9. Recommendations: In this chapter, recommendations are given for further analysis,
including tips for improving the performance of a model generated using the ML algorithms and
the practical implications associated.

• Appendices: The appendices provide supplementary information to the reader. Appendix A de-
scribes an example WTP, as well as the pre-treatment process. In addition, the description outlines
where the softening process is positioned in the softening treatment process. In the remainder of
Appendix A, the dynamics of water flux in the softening reactor, water hardness chemistry, bypass
component in the softening treatment process and calcium carbonate crystallisation reaction are
explained. In Appendix B, the Pearson’s correlation coefficient matrix for the dataset used in this
research is shown and a brief description of the main features of a box plot are given. Moreover,
a figure of the hourly mean of the variables in the dataset is displayed. In Appendix C, the pros
and cons of using Python and Matlab® for ML and control theory implementation are consid-
ered. Furthermore, a modified version of the gradient descent algorithm (RMSProp Optimisation)
is considered, along with a detailed derivation of the backpropagation algorithm, a summary of
the steps taken in the backpropagation algorithm and the logistic activation function. In Appendix
D, the XGBoost ML algorithm is described. In Appendix E, additional results of the XGBoost and
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RNN algorithms are depicted. In addition, the hyperparameter choices for each ML algorithm are
described and the Python training logs are given.
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Chapter 2: Background Information
2.1. Introduction
In this chapter, the softening process in a Water Treatment Plant (WTP) is described in greater detail.

An example softening process configuration is introduced, demonstrating the function of reserve soft-
ening reactors. A typical pellet softening reactor and the general softening processes are described, such
as the draining of the pellets. Information is provided about the control actions and behaviour present in
the process, which seeks to aid the analysis of the dataset and provide more insight into potential control
strategy improvements. Finally, the properties of the pH are explained, along with reasoning as to why
the pH could be used as a control variable within the system.

2.2. Softening Process Configuration

Figure 2: Water Treatment Plant (WTP) standard
configuration. The green circles represent the active
pellet-softening reactors and the orange the reserve
reactors.

A typical WTP reactor configuration is shown
in Figure 2. In this example the reactors are split
into groups of three, consisting of two active re-
actors (shown in green) and one reserve reactor
(shown in orange). The active reactors are con-
sistently used in the process, unless the reactor
needs to be switched off. For instance, a reactor
may need to be unclogged or components within
the reactor replaced. Once an active reactor is
switched off, the influent water is redirected to
the reserve reactor, thereby giving continuity to
the process. The reserve reactors also give flex-
ibility to changes in effluent demand. If the ef-
fluent demand increases, the reserve reactors are
switched on, thus increasing the softening capac-
ity. Simultaneously, the influent flow is increased
by pumping more water from the raw water col-
lection points. Having multiple groups of reac-
tors, allows maintenance to be carried out on one
group, while the other groups can continue soft-
ening the influent.

2.3. Pellet Softening Reactor
The cylindrical pellet softening reactors used at one of the WTPs of Waternet have a diameter of 2.6

meters and a height of 6 meters. These reactors have a capacity of approximately 4800 m3/h [10]. Figure
3 displays an image of a typical pellet softening reactor.

During the pellet softening process, water is pumped in an upward direction in the reactor. The hard
water is supplied to the reactor via the pipe labeled A in Figure 3 and the reactor is filled with seeding
material. Calcium carbonate crystallisation takes place on the surface of the seeding material, leading
to a variation of pellet sizes being deposited in layers on the circular plate. More specifically, the heavier
larger pellets form the bottom layer of the bed and the smaller pellets accumulate on top. The flow of
water through the reactor, causes the majority of the pellets to swirl around above the circular plate in
their associated layers. Dosing heads span the width of the circular plate, allowing the supplied water at
the bottom of the reactor to pass through. Caustic soda is fed into the reactor via the pipe labeled B. The
caustic soda is required for the calcium carbonate crystallisation process that takes place on the surface
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of the seeding material. The outgoing water from the reactor (through pipe E) is called the effluent.

The presence of the pellets in the reactor results in a pressure difference across the reactor. Pres-
sure difference measurements across the length of the reactor are used to control the automatic pellet
discharge [4] (draining is facilitated by tap C shown in Figure 3). When the pellet diameters grow the
pressure difference increases. Once this pressure difference exceeds a certain value set by the operators
of the given WTP, the pellets are automatically discharged.

Figure 3: Typical pellet softening fluidised bed reactor [3].

2.4. Control Actions in the Softening Treatment Step
The main control actions in the pellet softening reactor are as follows [4]:

• Water flow through the reactor. This is controlled using a series of pumps upstream from the soft-
ening treatment step in the WTP.

• Base dosing (caustic soda is often used). This impacts the pH of the water in the reactor and con-
sequently the rate of crystallisation. A higher base dosing generally leads to a lower hardness and
a greater pH.

• Seeding material dosage. One example of a frequently used seeding is sand. Adding a greater mass
of seeding material to the reactor, leads to a greater surface area for crystallisation to take place.

• Seeding material diameter. Selecting a seeding material with a smaller diameter grain gives rise to
a larger surface area (per kilogram of seeding material). At the same time, the grains need to be
heavy enough to prevent them from breaking through to the next stage of the WTP.

• Pellet discharge. The pellet discharge action is controlled by the pressure difference across the re-
actor. An accumulation of large pellets causes the pressure difference to increase. The pressure
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difference threshold value can be adjusted by the operator at a certain WTP. Increasing the thresh-
old value leads to a lower discharge rate. Thereby, leading to an increase in the size of the pellets
in the pellet-bed and consequently less surface area for crystallisation to occur. Moreover, it can
cause blockages in the reactor, due to a decrease in the porosity of the pellet-bed. Conversely, de-
creasing the threshold value increases the frequency of discharges, generally leading to pellets with
a lower diameter in the bed. An increase in discharges, requires more seeding material to be added
to the reactor, therefore leading to higher softening treatment costs.

2.5. pH as a Control Variable
The pH describes the acidity or alkalinity of a solution and common values range from 0 to 14, where

7 indicates neutrality of the solution (at 25◦C). Values less than 7 (at 25◦C and a certain salinity) implies
an acid solution and greater than 7 (at 25◦C and a certain salinity) an alkaline solution. More formally,
the pH is the decadic logarithm (logarithm with base 10) of the reciprocal of the hydrogen activity in a so-
lution, where the hydrogen ion activity is denoted as aH+ and is described by the following mathematical
formula:

pH =−log10(aH+) = log10(
1

aH+
).

Once the pellets tend to saturation, less calcium carbonate is able to crystallise onto the pellets. Lead-
ing to surplus caustic soda in the reactor and an increase in pH. Consequently, the effluent becomes
harder, due to less metal ions being removed from the water. Therefore, an increase in pH gives a good
indication of when the pellets should have been drained.

A high pH in the reactor could kill the bacteria in the downstream biofilters, if the acid dosing down-
stream from the softening reactor is not able to lower the pH sufficiently. The biofilters are required to
eliminate dissolved organic compounds in the water. Moreover, reactions involving caustic soda down-
stream from the reactor could occur, if the pH is too high after the acid dosing step.
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Chapter 3: Data Pre-Processing and Data Analysis

3.1. Introduction
In this chapter, techniques of data pre-processing and data analysis are described. This chapter de-

scribes in particular: time series data, normalising data, removing corrupted data, Pearson’s correlation
coefficient and autocorrelation. Pre-processing and data analysis are necessary for datasets generated in
the water softening process (described in Chapters 1 and 2). After a dataset is pre-processed, Machine
Learning (ML) (Chapters 4 and 5) can be more effectively applied.

3.2. Time Series
A time series is a sequence of discrete time data. The stock market prices are an example of a time

series, since the numerical prices are recorded for a given time interval. We are going to solely focus on
time series data for our research.

3.3. Normalising the Data
Normalising the train data before training your model, ensures that the input data satisfies the scale

of the activation functions used during ML. An activation function is a function, that transforms the
summed weighted input from the neuron into the output. For example, let w be the weight vector, x the
corresponding input vector, σ the activation function and y the output. The activation function makes
the following transformation: y = σ(wTx). When the generated model provides a prediction, the data is
transformed back to the original scale. Normalisation of the data is sometimes not required, depending
on the ML algorithm and the scale of the original data [9]. If the variance of the dataset is relatively large,
then it is recommended to normalise the data for ML [9].

The Z-score normalisation is a popular method to normalise the data. This method entails trans-
forming the data to have zero mean and unit variance (equal to one). The transformation is mathemati-
cally described as follows:

Ynew = Yol d −E [Yol d ]

σ
,

where Yol d denotes the original data vector and E [Y] = 1
N

∑N
i=1 yi is the mean of the original data. N

denotes the number of samples and yi is the sample i of the original data. Using the same notation, the
standard deviation σ is described as follows:

σ=
√√√√ 1

N

N∑
i=1

(yi −E [Yol d ])2. (1)

3.4. Removing Corrupted Data
Real life datasets often contain erroneous values such as duplicated or missing values which are fre-

quently encoded as blanks, NaNs, null-values, or other placeholders [9]. The erroneous values reduce the
performance of ML algorithms. This is often the case for time series data, since the sensors are required
to measure regularly for a given time interval. Thus, if a sensor is for instance, temporarily switched-off,
damaged or blocked, missing values arise in the dataset.

To minimise the impact of the erroneous values in the dataset, the samples (rows) holding the erro-
neous value(s) can be deleted. However, removing time series samples can negatively impact ML, since
the ML models learn from past data steps with gaps in. For instance, let a time series be described by
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yt = αyt−1 +βut , where y is the output, u the input and t the present time step. If time step t − 1 is
removed from the dataset, then the previous time step t −2 is used instead (if it is not also removed from
the dataset), i.e. the equation becomes yt = αyt−2 +βut . Therefore, the value yt−1 is skipped, leading
to a gap in the information fed into the ML algorithms. In addition, if the number of corrupted sam-
ples is relatively large, it is generally better to find a way to save as many samples as possible, because
the data could hold important information about the system. Data samples can be saved by replacing
the erroneous values with interpolated values. Interpolation means estimating data values based on
known sequential-data. Another technique, is to set the missing values to a constant number, such as
0 or a large negative value, depending on the dataset. The idea is that the ML algorithm will ignore the
irregular values (outliers) when training the model. All of the methods explained should be taken into
consideration when cleaning a particular dataset. One method is likely to perform better than the rest
for a given dataset and can often be deduced from knowledge about the system.

3.5. Pearson’s Correlation Coefficient
The Pearson’s correlation coefficient measures the degree of correlation between two variables. The

coefficient (denoted ρ) satisfies −1 ≤ ρ ≤ 1, where 1 indicates strong positive correlation and −1 strong
negative correlation. If magnitude of the coefficient is relatively low, then the correlation is considered
weak between the two variables. A value of 0 indicates that there is no correlation whatsoever. Pearson’s
correlation coefficient is described by the following formula:

ρX,Y = cov(X,Y)

σXσY
,

where ρX,Y signifies the Pearson’s correlation coefficient between vectors X and Y, cov(X,Y) = 1
N

∑N
i=1(xi −

E [X])(yi −E [Y]) is the covariance between X and Y. N symbolises the number of samples, the vector pair
(X,Y) takes on values (xi , yi ) and E [X] (E [Y]) is the expected value (mean) of X (Y). Furthermore, σX and
σY represent the standard deviation of X and Y respectively and are calculated as described in equation
(1).

3.6. Autocorrelation
Autocorrelation is the degree of similarity between a given time series and a lagged version of itself

over successive time intervals [18]. It can be likened to calculating the correlation between two different
time series, except autocorrelation employs the same time series twice, i.e. a lagged version and an
original. The autocorrelation is defined as follows:

ρτ =
∑N−τ

t=τ+1(xt−τ−E [X])(xt − [X])∑N
t=1(xt −E [X])2

,

where τ (∈N\{0}) is the lag and xt is a sample of vector X. E [X] the mean of vector X and N the number
of samples of the variable.
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Chapter 4: Machine Learning
4.1. Introduction
In this chapter, key basic Machine Learning (ML) principles are explained. These explanations en-

compass: overfitting and underfitting, hyperparameters, supervised learning, two data splitting tech-
niques and ML evaluation metrics. The resulting pre-processed data (described in Chapter 3), needs to
be partitioned before applying ML algorithms. Afterwards, so-called hyperparameters can be tactically
selected for the given ML algorithm. Finally, the resulting ML model requires a performance evaluation
using evaluation metrics. In the ML research domain, a feature refers to an input of the ML model and
the target is the output.

4.2. Supervised Learning

Figure 4: Supervised learning spam identification example. Taken
from [26].

Supervised learning is when
you feed your ML algorithm with
example input-output training data
pairs. The ML algorithm then gen-
erates a function (model) that is
able to map the input to the out-
put, i.e. Y = f (X), where Y is the
output, f a function and X the in-
put. On the other hand, unsu-
pervised learning is when the ex-
ample data fed into the algorithm
does not include a corresponding
output (only input training data),
that it can learn from. Therefore,
unsupervised learning learns only
from the input X and the corre-
sponding output Y is unknown.
In this research, only supervised
learning algorithms are implemented, because time series forecasting ML models use supervised learn-
ing.

An example of supervised learning is illustrated in Figure 4. In this example, the aim is to differentiate
between the spam emails and the emails that do not contain spam. The computer is able to learn from
previous emails with a corresponding email label, not spam or spam. The spam labels are considered to
be the output Y. Implementing ML via the computer, generates the function f and can be subsequently
used to classify new emails, where input X consists of the email features and the corresponding outputs
consist of a prediction of the spam label.

Two possible data splitting methods for supervised ML are: train-validation-test and walk-forward.
The train-validation-test is the most commonly used data splitting method amongst data scientists. The
walk-forward method was originally designed by the financial trading industry and is these days fre-
quently applied on a variety of time series datasets.

4.2.1. Train-Validation-Test Data Splitting Method
For the train-validation-test data splitting method, the dataset is partitioned into a train-validation-

test data split (as illustrated in Figure 5). The train partition is used for training during the implementa-
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tion of the ML algorithm. The validation data is used to evaluate the model during training and allows
you to effectively tune the hyperparameters (explained in Section 4.3.). Checking the model against the
validation data allows you to identify if the model is overfitting on the training dataset. The test partition
consists of the data used to determine the final performance of the created ML model.

Figure 5: Train-validation-test data split.

A data split of 80% train data and 20% test data is
often selected as a starting point, where a partition of
validation data is not considered a necessity. An ad-
justment of the data split could be deemed necessary
based on the amount of data available. For instance, if
there is a large quantity of data available, then a higher
percentage can be allocated to the training dataset, since there is considered to be enough test data.

4.2.2. Walk-forward Data Splitting Method

Figure 6: Walk-forward.

The walk-forward validation
strategy is used exclusively for
time series data analysis. For this
strategy, the data is split into win-
dows. Each window has the same
train-test data split. The train data
contains the features (inputs) and
target (output) for a given time pe-
riod. The test data holds the target
data (outputs) for a time period
following the respective train data
time period. The following win-
dow is the same length and shifted
in time by the length of the test
set. This data splitting technique
is illustrated in Figure 6. A model
is generated for each set of win-
dowed data. The respective model gives a prediction based on the training data and this can be com-
pared against the test data to measure the performance of the model.

Applying the walk-forward validation strategy is useful to validate whether the hyperparameters need
to be adjusted to improve the performance of the ML algorithm, since the computation times to gener-
ate a model can be considerably lower than the computation times of the train-validation-test method,
depending on the length of the window selected. Moreover, the water softening treatment methods can
vary in a Water Treatment Plant (WTP) over the course of time, thus the walk-forward validation strategy
is able to cope better with these changes by training the given model on only the most recent window of
data. For example, the caustic soda dosing method could be altered for a certain WTP.

4.3. Hyperparameters and Hyperparameter Grid Searches
A hyperparameter is a parameter of a learning algorithm and external to the model [6]. The hyperpa-

rameters are fixed during training of the ML model. A few examples of hyperparameters are: the number
of layers in a NN, the amount of neurons in a layer, the type of activation function used in each layer and
the learning rate.
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The enormous size of potential hyperparameter combinations to train your NN can become over-
whelming. To mitigate this problem, it is helpful to use a hyperparameter grid search. This method
iterates through a set of hyperparameter combinations and calculates the optimum combination based
on evaluation metrics (explained in Section 4.5). Thus, sparing the user from having to manually input
new hyperparameters and noting the evaluation metrics at the end of each ML training run. Naturally,
there are an infinite number of combinations and the search can only analyse a small portion, due to the
computation times.

4.4. Overfitting and Underfitting
Overfitting occurs when a model is generated via Machine Learning (ML) and the resulting model

models the training data too closely. In other words, “overfitting happens when a model learns the detail
and noise of the training data to the extent that it negatively impacts the performance of the model on
new data" (J. Brownlee, 2016) [12]. Thus, the noise or random fluctuations of the training set are learnt
as concepts by the model. The resulting model is then not able to generalise as well and therefore is not
as effective at dealing with new data.

Overfitting can be reduced by increasing the amount of training data, applying regularisation tech-
niques to the ML algorithms or by reducing the size of the neural network.

Underfitting occurs when a model is unable to model the training data nor generalise to new data.
A model is said to generalise well to new data, when it is able to make an relatively accurate prediction
based on the new data as input. In terms of the two evaluation metrics introduced in Section 4.5, the
MSE would be relatively low and the R-squared value close to a positive value of one.

4.5. Evaluation Metrics
Once a model has been created by implementing ML on the training data, a prediction is made us-

ing the model. This prediction is then compared against the test data for an indication of model per-
formance. To be able to effectively determine the performance, it is helpful to use a model evaluation
metric. Two popular evaluation metrics, R-squared and Mean Squared Error (MSE), are described in Sub-
sections 4.5.1. and 4.5.2. respectively.

It is more effective to use multiple indicators in conjunction, since a single indicator is unable to give
a full explanation of the model performance, due to each individual indicator having its pros and cons
(Krause et al., 2015) [16].

4.5.1. R-squared
R-squared, also known as coefficient of determination is a statistical measure of the distance between

the data and the regression predictions. In other words, the R-squared metric measures the proportion of
variance of the actual data points that is described by a model prediction. The mathematical definition
is [9]:

R2 ≡ 1− SSr es

SStot
,

where SStot =∑
i (yi −E [Y])2 is the total sum of squares (variance multiplied by the number of data points

in the dataset) and Y is the vector of data points yi (with i ∈N\{0}). E [Y] = 1
N

∑N
i=1 yi denotes the mean

of the dataset, where N (∈N\{0}) is the number of data points in the dataset. SSr es = ∑
i (yi − fi )2 ( fi is a

given predicted value) represents the residual sum of squares.
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If R2 = 1, the regression prediction fits the actual data points perfectly. On the other hand, R2 = 0
implies that none of the variability of the data points is explained by the prediction around the mean
of the data points. Thus, the ultimate aim is to minimise SSr es . A value outside the range 0 to 1 occurs
when the model fits the data worse than the mean horizontal hyperplane (mean for each dimension).
This could indicate that the model is not an appropriate fit for the data.

4.5.2. Mean Squared Error (MSE)
The MSE measures the average of the errors squared, where the error is the difference between the

actual data point and the data point generated by the model. As a mathematical function, the MSE is
represented as follows:

MSE = 1

N

N∑
i=1

(yi − fi )2,

where N is the number of predictions, yi the actual data point at index i (∈ {1, ..., N }) and fi the predicted
data point at index i .

One criticism of MSE, is that the outliers are heavily weighted. On the other hand, MSE is widely
recognised as one of the best error functions.
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Chapter 5: Neural Networks and XGBoost

5.1. Introduction
In this chapter, Neural Networks (NNs) and the eXtreme Gradient Boost (XGBoost) algorithm are de-

scribed. NNs and XGBoost algorithms are often used for Machine Learning (ML) using time series data,
since they are able to incorporate relations between past and current time steps in the resulting model.
For improved results, the dataset should be pre-processed using techniques described in Chapter 3 and
split employing the two splitting techniques in Chapter 4. A resulting NN (or XGBoost) model can be
evaluated using the evaluation metrics described in Section 4.6. If the evaluation metrics results are not
satisfactory, adjusting the NN (or XGBoost) hyperparameters (described in Chapter 4) can lead to an im-
proved NN (or XGBoost) model. Subsections 5.2.1, 5.2.2, 5.2.3.1 and 5.2.3.2 are largely based on Chapters
11 and 14 from Hands-On Machine Learning with Scikit-Learn & TensorFlow, published by A. Géron in
2017 [6].

5.2. Neural Networks

Figure 7: Simple network.

NNs are comprised of layers of neurons with
weights interlinking them. A simple NN structure
can be observed in Figure 7. The orange circles
symbolise the bias neurons, the blue circles repre-
sent the hidden neurons, the green circles the in-
put neurons and the purple circles denote the out-
put neurons. The symbol a3

1 denotes the activa-
tion function of the first neuron in the third layer.
There is one hidden layer in this example. The
NN in Figure 7 is a feedforward network, since the
connections are in a forward direction, i.e. in the
direction of the output. The bias (orange circles
in Figure 7) neurons are not dependent on previ-
ous layers. The purpose of the bias is to create a
desired shift in the activation function of a given
layer and ultimately generate a better performing
model. In this research, a more sophisticated NN, Recurrent Neural Network (RNN), is employed.

5.2.1. Recurrent Neural Networks (RNNs)

Figure 8: RNN over time.

A recurrent network is almost iden-
tical to a feedforward network, except it
has also connections in a backwards di-
rection. The diagram of a RNN mapped
against a time axis can be seen in Figure
8.

For the example feedforward case
for a single neuron and a single in-
stance, the output is described as

y (t ) =φ
(

xT
(t ) ·w x +b

)
,

whereφ represents the given activation function, w x the weight for the input x and b is the bias constant.
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In comparison the RNN output for a single neuron and single time instance is given by

y (t ) =φ
(

xT
(t ) ·w x + y T

(t−1) ·w y +b
)
,

where y (t−1) symbolises the output of the previous time step and w y is the corresponding weight. The
training data is split into batches and each batch is referred to as a mini-batch. This formula can be ex-
tended to accommodate multiple recurrent neurons for all instances in a mini-batch, using a vectorised
form of the previous equation [6]

Y (t ) =φ
(

X (t ) ·W x +Y (t−1) ·W y +b
)
.

• Y (t ) is a m ×nneur ons matrix containing the layer’s outputs at time step t for each instance in the
mini-batch, where m is the number of instances in the mini-batch and nneur ons the number of
neurons in the layer.

• X (t ) is a m×ni nput s matrix containing the inputs for all instances, where ni nput s denotes the num-
ber of inputs.

• W x is a ni nput s ×nneur ons matrix containing the connection weights for the inputs of the current
time step.

• W y is a nneur ons ×nneur ons matrix containing the connection weights for the outputs of the previ-
ous time step.

• b is a vector of size nneur ons containing each neuron’s bias term.

Notice that Y (t ) depends on X (t ) and Y (t−1), which in turn is dependant on X (t−1) and Y (t−2), which is
dependant on X (t−2) and Y (t−3) and so forth. Therefore, Y (t ) is a function of all inputs from time t = 0,
i.e. X (0), X (1), X (2), X (3), ..., X (t ). At t = 0 it is assumed that there are no previous outputs and are taken to
be zeros.

5.2.2. Memory Cells

Figure 9: Memory cell.

The accumulation of outputs at a
recurrent neuron from the previous
time steps, can be likened to storing
memories. A component of a NN that
preserves some state across time steps
is called a memory cell.

Mathematically, a cell’s state is rep-
resented as h(t ) = f (h(t−1), x (t )) [6].
Thus, depending on the input vector of
the current time step and the memory
state of the previous time step. The vec-
tor h stands for "hidden". As a result,
the output at time step t , denoted by y (t ) = z(h(t−1), x (t )), is a function of the previous memory state and
the current inputs. A diagram representation of a memory cell is shown in Figure 9. The left hand side
image displays a memory cell. The right hand side shows the pattern of a memory cell over time.
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5.2.3. Standard Time Series RNN Structure
A typical RNN structure for time series data can be viewed in Figure 10, where the general direc-

tion is from left to right. The example construction contains two LSTM layers (described in Subsection
5.2.3.1), which are able to draw upon past data-steps. Furthermore, it has a dropout layer (described
in Subsection 5.2.3.2), which acts as regularisation in the model. It is possible that there exists a better
RNN structure for a given time series problem. An improved structure could be found by adjusting the
original structure and comparing the evaluation metrics, to determine whether the new model structure
performs better. In general, the best time series NNs contain regularisation and LSTM layers.

Figure 10: Example RNN structure.

5.2.3.1. LSTM Cells
The Long Short-Term Memory (LSTM) cell was founded in 1997 by Sepp Hochtreiter and Jürgen

Schmidhuber [21]. The LSTM cell is similar to the memory cell, except that it performs better; training
converges faster and it is able to detect long-term dependencies in the data. Training is said to converge
faster, when the error plateaus faster during training. A. Géron provides an explanation of the LSTM al-
gorithm and is summarised in the remainder of this Subsection [6].

Figure 11: LSTM cell. Note that FC stands for Fully Con-
nected and the definition of the logistic activation function
is in Appendix C.

The architecture of a LSTM cell is
displayed in Figure 11. If you ignore
the contents of the box, thereby treat
it as a black-box, the LSTM cell ap-
pears to be a regular memory cell, ex-
cept the state is split into two vectors:
h(t ) and c (t ) (c denotes "cell"). The
h(t ) vector can be considered a short-
term (memory) state and c (t ) a long-term
state.

Now drawing attention to the con-
tents of the box. The network structure
is based on determining what to store in
the long-term state, what can be removed
and what to read from it. As the long-
term state c (t−1) travels through the net-
work from left to right, it can be observed
that it initially goes through a forget gate,
dropping some information, and subse-
quently adds some new information via the addition operation (which adds information that were se-
lected by an input gate). Finally, the resulting c (t ) exits the box without any further transformations.
Furthermore, after the addition operation, the long-term state is replicated and then passes through the
tanh function and the output is filtered by the output gate. This produces the short-term state h(t ), which
is equivalent to the cell’s output at the present time step y (t ).
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The next step is explaining the origin of the new memories and how the gates function. Firstly, cur-
rent input vector x (t ) and the previous short-term state h(t−1) are fed to four different fully connected
layers. Each fully connected layer has its own function:

• The main layer outputs vector g (t ). It analyses the current inputs x (t ) and the previous short-term
state h(t−1). In a standard memory cell (as described in Subsection 5.2.2), there exist no other
neuron layers and its output goes straight out to y (t ) and h(t ). In contrast, in an LSTM cell this
layer’s output is instead partly stored in the long-term state.

• The remaining three neuron layers are so-called gate controllers. There outputs range from 0 to 1,
since they make use of the logistic activation function (see Appendix C for the definition). Notice
that their outputs are fed to element-wise multiplication operations. Therefore, if they output 0s,
the gate is closed and 1s as output, opens the gate. In more detail:

– The forget gate (controlled by f (t )) controls which time steps of the long-term state should be
removed.

– The input gate (controlled by i (t )) controls which time steps of g (t ) should be added to the
long-term state.

– The output gate (controlled by o(t )) controls which time steps of the long-term state should
be read and added to the output at the current time step (for both y (t ) and h(t )).

In summary, a LSTM cell is able to learn to recognise an important input (that is the role of the input
gate), store it in the long-term state, learn to preserve it for as long as it is necessary (that is the role of the
forget gate) and learn to extract it whenever it is required. This explains why LSTM are very successful in
capturing long-term patterns in time series.

5.2.3.2. Regularisation using a Dropout Layer

Figure 12: Dropout layer.

Regularisation is implemented to reduce overfit-
ting. A frequently used regularisation technique for
deep (many layered) NNs is dropout. It was proposed
by G. E. Hinton in 2012 and subsequently a paper was
published giving greater detail by Nitish Srivastava et
al. in 2014 [22].

At every training step, every neuron (including
the input neurons, but excluding the output neu-
rons) has probability p of being briefly "dropped
out". In other words, it will be completely ignored
during the current training step, but has the poten-
tial to be active during the next step. This algorithm is
shown in Figure 12. Note that the green circles repre-
sent the input neurons, the blue circles represent the
hidden layer neurons and the orange circles symbol-
ise the bias neurons. A cross in the neurons indicates
that the neuron is not active for that time step. The
hyperparameter p is called the dropout rate and is usually set to 50%. The neurons are not dropped once
the training is finished. The purpose of this method is to reduce the co-dependencies in the network,
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thus reducing overfitting.

5.2.4. Gradient Descent

Figure 13: Gradient descent.

The gradient descent algorithm is
a frequently used method to update
the weights of the network. Generally,
it is a iterative optimisation algorithm
for finding the minimum of a function.
The algorithm adjusts the weight with a
step proportional to the negative gradi-
ent of the cost function at a given itera-
tion. A diagram of a visual representa-
tion of gradient descent is depicted in
Figure 13. The vector of the network
weights is updated using the following
formula:

w (i ) = w (i−1) −η∇C (w (i−1)), (2)

where i is the current time step and η is
the learning rate hyperparameter. The
∇C (w (i−1)) part of the second term can be determined using backpropagation (see Appendix Section
C.3. for more information). A faster gradient optimiser is RMSProp and is explained in Appendix Section
C.2.

There are two different algorithms that can be used to apply Gradient Descent on our training data:
Stochastic Gradient Descent and Batch Gradient Descent. The Stochastic Gradient Descent algorithm
uses equation (2) to update the weights of the network and the gradient for every training sample. On
the other hand, the Batch Gradient Descent algorithm updates the weights only when all the training
samples have been fed into the network, therefore using formula (2) only once.
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5.3. XGBoost

5.3.1. Introduction to Decision Trees
A decision tree is defined by R. S. Brid (2018) as follows [15]:

A decision tree is a decision support tool that uses a tree-like
graph or model of decisions and their possible consequences,
including chance event outcomes, resource costs, and utility.
It is one way to display an algorithm that only contains condi-
tional control statements.

5.3.2. Difference between Classification and Regression Trees

Figure 14: Regression tree example based on WTP softening
variables. Note that x1, x2, x3, x4, x5, Z1, Z2 ∈R.

The classification tree splits the re-
sponse variable (target variable) into dis-
crete values (e.g. 0 or 1) or verbal classes
(e.g. Yes or No). These response vari-
ables are frequently referred to as cate-
gorical. Conversely, the regression tree re-
sponse variable is continuous or numeric
and not categorical [13]. We focus only on
constructing regression trees during our
research, since we wish to forecast numer-
ical data. An example of a simple regres-
sion tree can be found in Figure 14 based
on typical Water Treatment Plant (WTP)
softening data variables. The root node in
this case is the flow variable and is the be-
ginning point of the algorithm. An exam-
ple for one sample being processed by the
tree is as follows: the flow is higher than
Z1, so the sample is directed to the right hand side branch of the tree. The sample’s pellet-bed value is
larger than Z2, thus the pH is equal to x3.

5.3.3. Introduction to XGBoost
In recent years XGBoost was often implemented and has won many ML competitions in Kaggle (on-

line community of data scientists and machine learners), due to its computational speed and model
performance. T. Chen introduced the XGBoost technique when she published her work in 2016 [14]. XG-
Boost stands for eXtreme Gradient Boosting. The XGBoost algorithm builds on the additive optimisation
technique called gradient boosting by adding a regularisation term to the algorithm to combat overfit-
ting. It is argued that XGBoost is computationally ten times less expensive than the original gradient
boosting algorithm on a given machine [9].

The idea of gradient boosting is to convert the weak learner variables into strong learner variables.
This is carried out using the concept ensemble learning, where a decision tree model is constructed on
the basis of many other existing models. We call a combined model consisting of the best performing
models an ensemble. An ensemble will perform better than the best individual model. By continually
incorporating new models into the ensemble, the error usually reduces on the training set. A visual
example of the algorithm iterations can be seen in Figure 15. The points not lying on the plot are con-
sidered to be misclassified, i.e. the wrong value has been assigned by the model. The XGBoost method is

20



described in more detail in Appendix D.

Figure 15: Gradient boosting. This figure is taken from [6].
Note that the points not lying on the plot are bold blue.

5.3.4. Feature Importance
During implementation of the XGBoost

algorithm, it is relatively easy to derive a fea-
ture importance score for features involved
in the construction of the given model. In
essence, the importance score measures how
valuable each feature was during the genera-
tion of the boosted tree model [9]. The more
a feature is used to make decisions, the higher
the relative importance is. The importance
score is then determined for each feature based
on the amount a feature split point improves
the performance measure results, weighted
by the number of samples the node is respon-
sible for.

5.4. XGBoost and RNN Model Prediction Horizons

Figure 16: XGBoost and RNN model features and targets.
L stands for the so-called lookback, which is the amount
of past data steps that are used to make a prediction of
the target. F denotes the amount of forecast steps.

The prediction time steps from the
present time step to a certain future time
step is called the horizon. Figure 16 shows
the difference between the RNN model and
the XGBoost model horizons. Note that, the
XGBoost model does not make a prediction
for future time steps, but only for the present
time step. Conversely, the RNN model has a
horizon with future time steps. The number
of past time steps used to make a model pre-
diction is called the lookback and denoted by
L.
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Chapter 6: Methods

6.1. Introduction
In this chapter, the methods of implementing the two ML algorithms introduced in Chapter 5 are

explained as preparation for the interpretation of results featured in the following chapter. Firstly, the
inputs and output of the desired model are identified, based on the importance of the variables to the
water softening treatment process. Next, the data collection method is described, where a data time in-
terval is decided upon. Subsequently, the data is pre-processed using theory specified in Chapters 3 and
4. Finally, the methods used in the ML prediction phase are described, where the algorithms described
in Chapter 5 are implemented.

6.2. Identification of Inputs and Outputs
Before requesting drinking water softening data from the water company, the potential input(s) and

output(s) are identified.

The selection of inputs and outputs is limited, due to a lot of pertinent variables in the given Water
Treatment Plant’s (WTP’s) softening process not being measured. For instance, the hardness is not mea-
sured in the softening process, since there are no installed sensors in the softening process. The hardness
is instead constantly measured at the end of the WTP treatment process by a sensor.

In Machine Learning, the output is commonly referred to as the target. The target was identified
as the pH in the softening process, since it has promising properties for control (as seen in Chapter 2).
Based on availability of data and relevance to the pH (output), the inputs are chosen as: caustic soda flow,
bottom pressure, pellet-bed pressure, bed height, draining and seeding. The relevance of the variables
was assessed, by discussing the pertinent data with a process engineer from the given WTP. The inputs
are called features in the ML domain. A description of the features and target are as follows:

• Flow refers to the water flow rate travelling through the softening reactor [m3/h].

• Caustic Soda Flow (feature) is the flow rate of the caustic soda dosing into the pellet-bed reactor
[m3/h].

• Bottom Pressure (feature) refers to the pressure measured at the bottom of the reactor [kPa].

• Pellet-bed Pressure (feature) refers to the pressure difference measured across the pellet-bed
[kPa].

• pH (target and RNN feature) indicates the pH within the reactor.

• Bed Height (feature) represents the height of the pellet-bed [cm].

• Draining (feature) is the time at which the reactor drains an amount of pellets, i.e. when the
pressure difference threshold across the reactor is exceeded.

• Seeding (feature) is the time at which the reactor is seeded.

The flow variable is removed from the dataset for ML after the analysis shown in Subsection 6.4.1 is
carried out, which indicates that the caustic soda flow is strongly dependent on the flow.
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6.3. Data Collection

6.3.1. Data Storage

Figure 17: Data interpolation method. The red
points denote the recorded data points and the
green the disregarded data readings.

The data is recorded live in the water com-
pany’s system, using an interpolation method. It
is possible to extract data from the system by
specifying a time interval. This data is then sub-
sequently transferred to an Excel document. Nat-
urally, a smaller time interval for a requested
period of time leads to more data points, thus
costing more computation time to upload the
data.

In order to reduce the amount of saved data
on the water company’s storage drives, interpola-
tion is applied on the live data readings before be-
ing saved. The system adopted by the water com-
pany, records a value when it falls outside bound-
aries set by the WTP operator. For example, an operator may set the boundaries to 2% of the previously
recorded value. Once a value falls outside the boundaries and is therefore recorded, interpolation is
applied between the current recorded value and the previous one. This method of interpolation using
boundaries can be viewed in Figure 17.

6.3.2. Time Interval Selection
Firstly, a day’s worth of data with a time interval of one second is analysed, to ascertain which time

interval would be appropriate to use for ML implementation. The time interval of one second seems
to be unnecessarily low, because the data is interpolated (based on the method described in Subsection
6.3.1). Therefore, there is not a large loss of data information if a slightly larger time interval is selected.
Deciding upon a one minute time interval, provides satisfactory retention of data information and low
computation times.

Once the time interval, inputs and output are selected, a year’s data is extracted from the system
for ML implementation. A year’s data provides enough information about the patterns of the softening
process to train a ML model, since the seasons are not a large contributor to the dynamics of the water
softening treatment process. For example, one of the most influential seasonal variables is the water
temperature. The water temperature remains relatively constant throughout the whole of the WTP, due
to there being always a large volume of water within the WTP at a given moment. Moreover, the WTP is
insulated, so that the outside temperature does not have a substantial impact on the temperature inside
the WTP. Typically, the temperature of the water in the WTP is largely determined by the temperature of
the water at the source (collection point). On average the temperature is around 14◦C throughout the
year for the given WTP and is often two degrees higher or lower if the average is taken in the summer or
winter respectively.

6.4. Data Pre-Processing and Data Analysis
The pre-processing and analysis in this section is conducted using the Python packages: NumPy,

Pandas and StatsModels.
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6.4.1. Erroneous Values and Variable Dependencies
Looking at Figure 22 on page 28, it is clear that the sensors are not recording sensible values (or are

turned off) for irregular time intervals. For instance on 2 February, all the readings displayed in Figure
22 drop to zero, apart from pH, which instead falls in value considerably. The drop in the pH, could be
explained by no caustic soda being dosed, which typically increases the pH. During these periods, it is
also notable that no draining and seeding actions are recorded. This could be due to the reactor being
switched off. For our machine learning algorithms, the corrupted data readings are removed from the
dataset, since it does not describe the operational behaviour within the reactor. Removal of this uninter-
esting data, leads to retention of approximately two thirds of the data. The number of retained samples
is considered sufficient to feed into the ML algorithms. The irregular time periods of corrupted readings
span days. Thus, interpolating within these irregular time periods would not give an accurate represen-
tation of the actual values.

Figure 18: Caustic soda dosage flow rate and flow rate. The red plot is
the flow and the blue is the caustic soda flow. The time axis increases in
increments of 12 hours.

After removing the data
with the corrupted sensor
readings, we calculated the
Pearson’s correlation coeffi-
cient matrix for 2018 (seen in
Table 7 in Appendix B) to un-
derstand the relationship of
the variables with each other.
It can be observed in Table
7 that there is strong cor-
relation between the caus-
tic soda dosing and the flow.
This is due to the caustic
soda flow being controlled
by the flow in the given WTP.
Moreover, Figure 18 displays the caustic soda flow on the same plot as the flow over a few days in Febru-
ary. By observing Figure 18, it is evident that the caustic soda flow is strongly dependent on the flow.
Hence, the water flow in the softening reactor is not included as a feature during ML training. Further-
more, caustic soda flow is retained, due to the variable having a greater impact on the pH in the softening
reactor.

6.4.2. Feature Ranges
The minimums and maximums of the dataset after the erroneous are removed can be seen in Table 1.

This suggests that the resulting ML model may only be able to give accurate outputs for inputs (features)
within these boundaries, since the model is trained using a dataset that stays within these values.
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Feature Minimum Maximum

Flow 200.6 502.9
Caustic Soda Flow 30 95.7
Bottom Pressure 5.1 25.5
Pellet-bed Pressure 11.3 35.6
pH 7.6 9.4
Bed Height 298.9 401.6

Table 1: Minimums and maximums of features to one decimal place.

6.4.3. Normalisation
Normalisation is applied to the train dataset, using the method explained in Section 3.3 and is only

applied on the dataset used for the RNN ML algorithm, since the algorithm makes use of activation
functions. Conversely, the XGBoost algorithm does not use activation functions and is based on decision
trees. Therefore, normalisation of the dataset for the XGBoost algorithm is generally considered unnec-
essary [9].

6.4.4. Data Splitting
The data splits for ML algorithms are shown in Table 2. Note that, all the algorithm methods con-

sisted of a 90% train and a 10% test data split, except for the train-validation-test RNN algorithm method.
Based on the reasonably high number of samples available from the collected data, only 10% test data is
required to evaluate the resulting models. Although, for the RNN Train-Validation-Test method, a 65%
train, 30% validation and 5% test data split is picked, so that the hyperparameters can be altered during
training to improve the model, based on the evaluation metrics of the validation data. This prevents over-
fitting on the test dataset, since the hyperparameters are adjusted on the basis of the validation dataset
evaluation metric results, instead of on the basis of the test dataset evaluation metric results.

Data Splitting Method XGBoost RNN

Walk-Forward 90% train, 10% test 90% train, 10% test
Train-Validation-Test 90% train, 10% test 65% train, 30% validation, 5 % test

Table 2: Data splits for both algorithms: XGBoost and RNN.

6.4.5. Evaluation Metric Selection
The two evaluation metrics described in Section 4.6 (MSE and R-squared) are used in conjunction.

Analysing the MSE evaluation metric gives insight into the accumulated error of the actual data points
compared against the predicted data points. The R-squared provides information about the fit of the
prediction relative to the actual data points.

6.4.6. Output Variable Analysis
Before the prediction, the pH within the softening reactor is analysed. An analysis of the pH is neces-

sary to understand the prediction outputs generated in the following prediction phase (discussed in the
following section).

Draining of the pellets in the reactor is often shortly followed by seeding of the reactor (as seen in
Figure 22 on page 28). Sometimes during these actions, the pressure difference across the pellet-bed in-
creases drastically, since the pellet-bed has been disturbed. Furthermore, draining and seeding actions
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appear to lead to an immediate decrease in pH, because the saturated pellets are drained and replen-
ished with new sand. This increases the surface area, in which crystallisation of sodium carbonate takes
place. Thereby, using up more caustic soda (with typically a pH of about 12).

The autocorrelation plot in Figure 19 of the pH in February 2018, shows that there is a relatively
strong correlation with past time steps of data. Looking at the figure of three days worth of lags, it is
evident that the autocorrelation has daily periodicity, where the x-axis consists of the number of minute
lags. The daily periodicity can be explained by the draining actions in general occurring at approximately
the same time of day for most days. This suggests that including past pH readings as a feature would im-
prove the model produced through ML.

(a) Autocorrelation of the pH in February
2018.

(b) Autocorrelation of the pH in February, dis-
playing the three days worth of lags.

Figure 19: The light blue area represents the area bounded by the 95% confidence intervals, where the
standard deviation is calculated using Bartlett’s formula. The x-axis consists of the number of minute
lags.

In Figure 20a the mean pH is taken over the period of a day, where time zero is the first time step
after the draining action. This is calculated by compiling the instances of 24 hours of data after draining
and taking the mean over all the samples for each time step in the 24 hours of compiled instances. In the
first couple of hours after the draining action, the mean pH plummets, largely due to the sand seeding
being added to the reactor. The plot then gradually continues to decrease until approximately 18 hours
after the draining action. At about 22 hours, the pH increases significantly, since the pellets become sat-
urated. Figure 20b depicts the mean pH bounded by the maximum and the minimum over the period
of a day. The maximum and minimum are calculated for each time step, using once again the compiled
24 hours of data after a draining action. Furthermore, Figure 20b demonstrates the expected boundaries
for a realistic pH prediction, i.e. to stay within the minimum and maximum boundaries over the course
of the subsequent 24 hours after a draining action.
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(a) Mean pH over one day. Time zero is the
first time step after the draining action.

(b) Mean pH over one day bounded by the
maximum and minimum pH. Time zero is the
first time step after a draining action.

Figure 20

The box plot of the pH over the length of 24 hours is shown in Figure 21. Information about the
key characteristics of a box plot can be found in Appendix B. It is clear that the pH peaks at about 9:00,
since the majority of the draining actions occur at this time (see Figure 34 in Appendix B). Draining and
seeding is commonly carried out during working hours, so that operators can oversee the actions and
intervene if necessary. The IQR (Interquartile Range) is relatively large at 9:00, thus indicating that the
pH readings are more skewed at this time. This could be the result of differing draining amounts. The
draining action generally drains less than one percent of the pellet-bed in variable amounts. The outliers
are the points below or above the bar at a corresponding hour in a box plot. There are many outliers in
the following hours after 9:00, which is possibly due to draining actions sometimes occurring at other
moments in the day or an increase in the flow rate, leading to a higher caustic soda dosage.

Figure 21: pH box plot over hours.

The maximum pH value is 9.4 and the minimum is 7.6, as observed in Table 1. Implying that an ex-
pected prediction should stay within these minimum and maximum boundaries.
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Figure 22: A month of data graphed. The vertical yellow spotted-dashed lines represent a draining action
and the vertical black dashed lines represent a seeding action.
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6.5. Prediction

6.5.1. ML Implementation
A. Sadad published his thesis about using a general ML framework for time series data [9]. For imple-

mentation of the RNN algorithm, the Python code (using Tensor Flow as backend and Keras as frontend)
from A. Sadad has been adapted to give a greater horizon span (forecast length) and to use past data steps
of the target (pH) as a feature.

Colaborative (subsidiary of Google) was used to execute the Python code, due to its free-of-charge
GPU 12GB-RAM, which is significantly faster than the CPU RAM in a standard PC.

6.5.2. Hyperparameter Selection
The RNN structure adopted is as seen in Figure 10 on page 21, with seven features (inputs). The

hyperparameter, lookback, refers to the amount of past time steps that are used in a ML algorithm (see
Section 5.4). For the RNN implementation, a lookback of 180 minutes was set, based on a balance be-
tween computation time and evaluation metric performance. The other hyperparameter choices can be
found in Appendix E for the walk-forward and train-validation-test model training.

Training is applied for the forecast lengths: F=1[min], 4[hr] and 24[hr]. This set of forecast lengths
is selected to sufficiently test the limits of the RNN algorithm, i.e. the amount the evaluation metrics
decline in performance as the forecast length is increased.

XGBoost is only able to make a prediction of the present target value based on present and past fea-
ture values (as seen in Figure 16). A lookback of 60 minutes (60 past data steps) was selected, based on
a compromise between accuracy and computation times. The remaining value choices can be seen in
Appendix E and were selected based on the Wastewater Treatment Plant (WWTP) XGBoost implementa-
tion by A. Sadad.

6.5.3. Supervised Learning
The predictions are made using the supervised learning training technique (described in Section 4.2)

for both ML algorithms.
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Chapter 7: Machine Learning Results

7.1. Introduction
In this chapter, the results of implemented Machine Learning (ML) algorithms, Recurrent Neural

Networks (RNNs) and eXtreme Gradient Boost (XGBoost), are analysed using the evaluation metrics (de-
fined in Chapter 3). The ML algorithms make use of the pre-processed data from Chapter 6. Based on
the results, comparisons are drawn between the derived models from both of the data splitting methods:
walk-forward and train-validation-test. The pH is selected as the target (output), therefore all the results
in this chapter feature the pH as the output.

7.2. RNN Results

7.2.1. RNN Train-Validation-Test Model

Figure 23: The last three hours of the RNN train-validation-test
model prediction.

Figure 24 depicts the prediction
of the train-validation-test data split
model, where the forecast horizon con-
sists of one time step (i.e. F=1[min],
where F is defined in Section 5.4) and
Figure 23 displays the last three hours
of the prediction. Clearly, the predic-
tion lags marginally behind the fluctua-
tions of the actual data points. The pre-
diction follows the pattern of the test
data closely and is also able to follow
sharp peaks. Training the model, gives
a corresponding MSE equal to 0.0004 (4
d.p.) and an R-squared value of 0.9007
(4 d.p.). The relative MSE is equal to
0.0045% and is calculated by dividing the MSE value by the mean pH across the whole dataset used
for ML and multiplying by 100.

Figure 24: RNN train-validation-test model (with F=1[min]) prediction.
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7.2.2. RNN Walk-Forward Models

Model MSE Relative MSE R-squared

0 0.0013 0.0148% 0.6373
1 0.0009 0.0102% 0.8801
2 0.0016 0.0182% 0.7269
3 0.0005 0.0057% 0.8638
4 0.0017 0.0193% 0.3000
5 0.0011 0.0125% 0.7678

Table 3: Evaluation metrics for the walk-forward RNN mod-
els to 4 decimal places.

Setting the prediction one time step
into the future (i.e. F=1[min], where F
is defined in Section 5.4), gives the re-
sults in Figures 25 and 26. For more de-
tail, the first three hours of models 0 and
4 are plotted in Figure 27. The predic-
tion lags slightly behind the pattern of
the actual data points. The gaps in data
plots are a result of removing the cor-
rupted data values. It can be deduced that
the predictions follow the real data well,
although model 4 appears to be slightly
more shifted above the real data and con-
sequently have a lower R-squared value (as seen in Table 3). In general, the predictions follow the pattern
of the test data relatively closely, including the sharp peaks. For instance model 0 predicts a sharp peak
on 25 October in the morning, which exceeds a pH of 9.

Figure 25: The first two RNN walk-forward models (with F=1[min]).
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Figure 26: The last four RNN walk-forward models.
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Figure 27: First three hours of the forecasts from the RNN walk-forward (with F=1[min]) models 0 and 4.

Model MSE Relative MSE R-squared

0 0.0026 0.0295% -2.3583
1 0.0017 0.0193% -801.8891
2 0.0032 0.0363% -4.2461
3 0.0011 0.0125% -0.5360
4 0.0023 0.0261% -1.6060
5 0.0081 0.0919% -1.5569
6 0.0008 0.0091% -0.5401
7 0.0015 0.0170% -0.7771
8 0.0022 0.0250% -2.6563

Table 4: Evaluation metrics for the forecasting walk-forward
RNN models to four decimal places. The forecast horizon is
equal to 4 hours.

In Figure 28, the results of the walk-
forward RNN model are shown, where
the forecasting steps hyperparameter (F,
as seen in Section 5.4) is set to 4 [hr]. In
general, all eight models shown do not
follow the pattern of the real data fluctu-
ations closely. Furthermore, the predic-
tions fluctuate more frequently than the
interpolated test data. This is reflected
in the R-squared scores displayed in Ta-
ble 4. In particular, the predictions seem
to be unable to follow the largest peaks
in the pH, but instead remain relatively
flat. For example model 1 does not predict
the peak exceeding a pH of 9 at 10:00 on
the 10th of November 2018. On the other
hand, the errors between the prediction
points and the real data points are generally relatively low. The small MSE values between the predic-
tion and test data are accentuated by looking at the range of outputs, in the y-axes in Figure 28. The
corresponding evaluation metric results can be viewed in Table 4.
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Figure 28: Walk-forward forecasting RNN model predictions, where F=4 [hr].
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7.3. XGBoost Results

7.3.1. XGBoost Train-Validation-Test Model
The trained train-validation-test XGBoost model is displayed in Figure 29 and has a MSE value equal

to 0.0057 (4 d.p.) and an R-squared value of -0.1871 (4 d.p.). In addition the relative MSE is equal to
0.0647%, which is calculated by dividing the MSE by the mean pH of the dataset (≈ 8.8097) and multiply-
ing by a hundred. The predicted data as a whole does not follow the test data closely.

Figure 30 depicts the feature importance of the XGBoost train-validation-test model. The features
for the present time step, pellet-bed pressure, draining and seeding, have the greatest impact on the
resulting model. The most prominent past time steps from the most influential features, appear to be
one, two, 58 and 59. For example, the ’bottom_press_59’ represents the pressure at the bottom of the
softening reactor 59 minutes ago and scores as the fourth most influential feature.

Figure 29: XGBoost train-validation-test split model prediction.

Figure 30: The feature importance of the train-validation-test XGBoost model. The ’pellet_bed_press’
refers to the pellet-bed pressure difference feature for the present time step. An appended underscore
followed by a number, denotes the past time step in minutes for that particular feature.
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7.3.2. XGBoost Walk-Forward Models

Model MSE Relative MSE R-squared

0 0.0176 0.1998% -3.8138
1 0.0040 0.0454% -0.2805
2 0.0049 0.0556% -0.2389
3 0.0086 0.0976% -0.5057
4 0.0276 0.3133% -4.7629
5 0.0127 0.1442% -7.4727
6 0.0043 0.0488% -0.3530

Table 5: Evaluation metrics for the walk-forward XGBoost models to 4
decimal places.

The XGBoost walk-forward
evaluation metric results are
displayed in Table 5. All
the R-squared values are neg-
ative, suggesting that the mod-
els do not fit the actual data
closely. Alternatively, the
MSE values are relatively low
with respect to the pH scale,
indicating a low error. This
is confirmed by observing the
relative MSE metric. The
remaining walk-forward XG-
Boost results can be found in
Appendix E.
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Chapter 8: Discussion and Conclusions
8.1. Discussion
Comparing all the models displayed in Chapter 7 based on their evaluation metrics and output plots,

it is evident that the Recurrent Neural Network (RNN) train-validation-test model (with F=1[min]) per-
forms the best, since its R-squared value is the largest (positive value) and its MSE value is the lowest
(joint lowest with model 0 of the RNN walk-forward method). This could be the result of the model
learning from a larger train dataset than the models produced using the walk-forward data split. Fur-
thermore, looking at Figure 24, it is clear that the predictions closely follow the sharp peaks. This implies
that the model can accurately model the behaviour of the pH when a draining action takes place. Con-
versely, a model with a forecasting horizon length of one minute is extremely limiting in practice, since a
process engineer at a Water Treatment Plant (WTP) has only one minute to respond to changes based on
the prediction. In addition, observing the walk-forward RNN and train-validation-test RNN results (with
F=1[min]) more closely (see Figure 23 and Figure 27), it can be noted that the prediction lags slightly
behind the real data points. This may be caused by the model heavily relying on the present pH value to
predict the next time step. Thus, the lag implies that the model is unable to predict the fluctuations at
all, since it responds too late.

Clearly, the walk-forward forecasting RNN model (with F=4[hr]) is unable to fit the real data points
closely, by looking at Figure 28 and the R-squared results in Table 4. This could be due to the real data
being interpolated, thereby giving it a flat profile, whereas the predictions exhibit frequent fluctuations.
Conversely, the relative MSE remains under 0.1% for all of the walk-forward models produced (see Table
4). Therefore, indicating that the relative error between the predictions and the real data points is low.
Increasing the forecasting horizon from a length of four hours to a length of 24 hours, gives in general
slightly worse MSE results (see Table 8) and similarly negative R-squared values. These results are con-
firmed by looking at Figure 41 on page 62. Therefore, an increase of the forecast horizon from four to 24
hours does not seem to drastically worsen the results.

In Table 4, the extremely negative R-squared value for the RNN walk-forward model 1 can be justified
by referring to Subsection 4.5.1. Extremely negative R-squared values are caused by significantly larger
SSr es values than SStot values, i.e. the actual prediction performs significantly worse than the mean as a
prediction. This is reinforced by inspecting the prediction displayed in Figure 28.

The poorer results of the XGBoost models, could be attributed to the model not incorporating past
pH data as a feature or the model having a lookback of only 60 minutes (compared to a RNN lookback of
180 minutes). In particular, the R-squared values for the train-validation-test and walk-forward models
are all negative (see Section 7.3), hence implying that the prediction values do not fit the real data points
well. Moreover, although the relative MSE values for all the XGBoost models are low (less than 1%), they
are in general not lower than the values derived from the RNN models.

8.2. Conclusions
In this section, the research questions posed in Section 1.4 are answered, making use of the results pre-
sented in Chapter 7.

8.2.1. Is it possible to develop a model of the softening treatment process of a WTP using
Machine Learning (ML)?

The results featured in Chapter 7 suggest that an accurate model of the softening treatment process
of a WTP can be constructed using the RNN ML algorithm (with F=1[min]), based on the evaluation met-
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rics. Moreover, all of the model predictions are considered feasible in the water softening reactor, since
they stay within the maximum pH (9.4) and minimum pH (7.6) of the dataset used to train the model. On
the other hand, the model is considerably limited, since it is only capable of predicting one minute into
the future and is heavily influenced by the pH value at the present time step. Thus, the model does not
display predictive qualities, since the fluctuations lag behind the actual data points. In addition, when
the forecast horizon length is further increased (e.g. F=10[min] or 10 time steps), the resulting model
R-squared values are substantially worse, due to more fluctuations in the prediction than in the actual
data. Although, the MSE values remain relatively low. This may be caused by the actual data being inter-
polated according to the method presented in Subsection 6.3.1.

8.2.2. Is the data provided for this research sufficient to develop a model using ML?
It can be concluded that the data provided is insufficient to generate a good performing RNN model.

In spite of the RNN models (with F=1[min]) producing excellent evaluation metric results, the models
are heavily reliant on the present pH value. Thus, the model outputs a lagged version of the actual data.
Increasing the horizon length beyond one time step generally leads to a worse R-squared value. For
instance, the four hour walk-forward RNN forecasts have negative R-squared values (see Table 4) and
generally do not fit the trends of the actual data (see Figure 28). This suggests that the interpolated data
does not provide the amount of detail required to generate a model that fits the actual data closely for a
large forecast horizon. On the other hand, the MSE values remain relatively low with respect to the pH
scale.

In general, the XGBoost models have low MSE values, but negative R-squared values, thereby indi-
cating that the predictions do not fit the test data well. This could be due to a lack of data to learn from,
interpolation of the actual data or an absence of the incorporation of past pH values as a feature in the
model.

The data does not show the behaviour for instances when no draining occurs during the day, there-
fore the model is conditioned to expect a daily draining action. For instance, regardless of the input, the
model might output a peak in the pH, which would correspond to a draining action, even if no draining
occurs on that particular day. Whereas, when there is no draining action, you would expect the pH to
continue to increase, since the pellets in the reactor are saturated, causing a decrease in the crystallisa-
tion rate in the softening reactor.

The models are generated based on feature data contained within the maximum and minimum
boundaries seen in Table 1. Therefore, the model may not be able to effectively predict for feature data
outside these boundaries. This could be limiting, when extreme feature values (outside the boundaries)
appear in the system, since the model might not be able to predict a realistic value for the pH in the soft-
ening reactor.

8.2.3. Can the seeding and draining control be improved by developing a control strategy
using the produced ML model?

Based on RNN model predictive capabilities, it may be possible to predict when the pH is going to
rapidly increase and therefore in advance carry out a draining action. The XGBoost model is incapable
of forecasting, thus this control method can only be implemented using a RNN model. Furthermore, it
is advisable to set the forecasting horizon to about a couple of hours or greater (e.g. 4 hours), so that the
peak in pH can be on time anticipated and a draining action carried out in advance. Implementing this
control method would have a stabilising effect on the pH softening treatment, i.e. the method should
remove sharp peaks in the pH. In addition, the control implementation should lead to a more efficient
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process, since the pellets are drained before the crystallisation rate declines significantly. Therefore, in-
creasing the average of the crystallisation rate within the softening reactor.

The RNN walk-forward model predictions, with a prediction horizon equal to four hours (results seen
in Figure 28), do not fit the test data particularly well. Moreover, the predictions do not appear to predict
the sharp peaks in the pH value. Therefore, the model is regarded as unsatisfactory to use for the sug-
gested control strategy implementation.
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Chapter 9: Recommendations
In this chapter, potential further work is outlined, which could improve the performance of the Ma-

chine Learning (ML) model (based on the evaluation metrics). In addition, suggestions for implementing
the draining and seeding control strategy (described in Subsection 8.2.3) are explored.

9.1. Machine Learning (ML) Recommendations
It might yield better results if you split the data into subsets that span from slightly after a draining

action until slightly before the next draining action. These subsets will differ in size, because the draining
actions do not occur at a set time every day. The ML algorithms should be adapted to learn from subsets
of data of differing lengths. The implementation using subsets, could have the effect of removing the
impact of the daily draining control action on the resulting ML model, since the dataset does not contain
data around the time of draining.

Using a softening reactor experiment setup, allows you to collect data for when no draining action
occurs for a certain period of time or irregular draining times. For instance, a draining action could have
a probability of 75 % of occurring on a given day at a random time within WTP operating hours. A drain-
ing action occurring during operation hours, ensures that the draining action is supervised. If there is a
defect during the draining action or afterwards, the operators are able to oversee and intervene if neces-
sary. Experimentation could be carried out in a reserve softening reactor. Collecting data with irregular
and infrequent draining, prevents the model from being conditioned to expect a draining action and
allows the ML model to learn from data with more information, i.e. data that includes behaviour when
a draining action does not take place on a certain day. Furthermore, using the experiment setup gives
the opportunity to collect data for extreme influents. For example, an extreme influent could exhibit ex-
tremely low or high pH values, where the influent is the water entering the softening reactor.

Due to computation times, it is not feasible to update the model every time step (one minute), since
it takes longer than one minute to train the model. Although, it is possible to approximate computation
times of training a ML XGBoost or a RNN (depending on the algorithm selected) model and therefore
decide upon a regular model update that does not conflict with the computation time. The computa-
tion time can be reduced by using a GPU to run the ML implementation. Regular updating of the model
allows the new model to incorporate more recent data trends, since there are often changes in the op-
erations carried out at a WTP, that lead to different trends in the data. For instance, the water collection
point (source) could be switched to another.

It is recommended to implement the best performing model from this research on another softening
reactor using data with the same time interval. The model will work only if the features and the target are
kept the same, with the same corresponding units as the dataset used to train the ML model. Another
reactor from the same WTP, where the softening reactor has the same specifications and the influent
comes from the same collection point (source), should perform accurately. If the model does indeed
perform well, then it is possible to implement the model at other WTPs, thereby testing the generality of
the model. Although, if this is unsuccessful, another ML model with the correct data can be trained for
the respective softening reactor. Each WTP has a unique set of sensors installed, resulting in a unique set
of variables featuring in the dataset for each WTP. Therefore, the features and target(s) should be modi-
fied accordingly.

A hyperparameter grid search could lead to a model of greater accuracy, where multiple possible hy-
perparameter permutations can be tested and compared using the ML evaluation metrics. Naturally,
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the more permutations that are tested, the higher the computation time. This implementation was not
applied for this research, since it was deemed too time consuming to program the grid search in Python
given the deadline for this research.

Multiple output variables (targets) may be desired from the ML model. For example, a control method
within the WTP could require multiple inputs (outputs from the ML model). It is possible to train a mul-
tivariate output model by adapting the Python implementation.

It may be possible to obtain data that is not interpolated, thus providing more information about the
dynamics of the system. WTPs often have access to systems that take live readings from certain sensors.
Training on data that is not interpolated should lead to a more accurate ML model, since it learns from
more ‘informative’ data.

ML could possibly train a better performing softening treatment model, if the ML algorithm uses a
larger train dataset. More data can be obtained by retrieving data further into the past from the same
softening reactor or making the time interval of the extracted data smaller. For example, some WTPs
have access to three years (backtracking from the present time) of stored data. Furthermore, a better
performing model could result from data that contains less corrupted values, because less data would
be removed (or interpolated) and the resulting dataset would have greater continuity with respect to the
data time steps. Data with less corrupted values could be obtained from a different softening reactor.

A sensor measuring hardness could be installed in the softening reactor. Subsequently, these read-
ings could be used as a feature for training of the ML model. This would probably yield a more accurate
ML model, due to the algorithm having a larger dataset to learn from. Conversely, after the installation of
the sensor, it takes time to accumulate data readings, thus initially the feature would not provide much
information. Moreover, a sensor can be costly and the WTP would probably be reluctant to pay for a new
sensor. Furthermore, there are often many softening reactors in a WTP, thus many sensors would need
to be purchased to standardise all the softening reactors in the whole WTP.

9.2. Draining and Seeding Control Recommendations
A softening reactor experiment setup offers the chance to implement the control strategy proposed in

Subsection 8.2.3. The running costs can be compared, for the following scenarios: the softening process
with the implementation of the proposed control strategy and the softening process with the original
control strategy. Note that this control method can only be acceptably implemented, if a forecasting
model with a forecast horizon of at least two hours and satisfactory evaluation metric values can be gen-
erated.

It is hard to implement MPC (Model Predictive Control) to control the draining and seeding actions
within a softening reactor, since a MPC cost function can not be easily formulated. This is due to the
pellet softening reactor requiring a draining action each day within working hours, thus the amount of
draining and seeding control actions can not be reduced without potential consequences. For instance,
if a draining action is skipped on a certain day, then the reactor could become clogged leading to the pro-
cess coming to a halt and costing most probably more than draining the pellets using the MPC method.
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Appendix A: Drinking WTP Example and Softening
Process Background Information

A.1. Example WTP
In Figure 31, a diagram of a drinking water treatment process is presented. The water is pre-treated

at Loenderveen before reaching the Water Treatment Plant (WTP). The raw water is predominantly seep-
age water from the Buthune polder, sometimes blended with Amsterdam-Rhine Canal water. The raw
water is coagulated with ferric chloride (FeCl3) and flocs are removed in horizontal settling tanks. Result-
ing in the removal of phosphate, suspended solids, heavy metals and Natural Organic Matter (NOM) [4].
Afterwards, sedimentation, nitrification of ammonium and biodegradation take place in a lake-water
reservoir of 130 hectares. The retention time of the reservoir is approximately 100 days. The left over
ammonium, suspended solids and algae are removed using rapid sand filtration. The resulting water is
then transported more than 10 kilometers to the Weesperkarspel WTP.

At the drinking WTP Weesperkarspel, the first process applied is ozonation for disinfection and oxi-
dation of micro pollutants and NOM. Resulting in an increase in the biodegradability of organic matter.
Subsequently, softening pellet reactors are used to reduce the hardness of the water and then biological
activated carbon (BAC) filters are used to remove organic matter and organic micro pollutants. Finally,
the water passes through a slow sand filter for extra nutrient and suspended solid removal. The water is
then stored in a clear water reservoir ready for distribution.

Figure 31: Diagram of the pre-treatment processes at Loenderveen and drinking water treatment at
Weesperkarspel Water Treatment Plant (WTP) of Waternet [2]

A.2. Water Flux
The distribution of the particles in the reactor is dependent on the flow rate. A higher flow rate cor-

responds to a greater water flux in the reactor. We refer to the speed of the water travelling through the
pellet-bed as water flux.
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Figure 32: Water flux scenarios in the reactor. This figure is
taken from [19].

Figure 32 shows the impact of var-
ious water fluxes. The lowest speed
on the left, has a compact layer of pel-
lets accumulated on the circular plate
in the reactor, due to the speed not be-
ing high enough to push the pellets into
suspension. This scenario can cause
clogging in the reactor. System scenario
2 in Figure 32 shows a situation where
the water flux is large enough to dis-
place the pellets, leading to the suspen-
sion of the pellets. Scenario 3 displays a
greater distribution of pellets in the re-
actor, in reaction to an increase in the
water flux. Finally, in scenario 4 the wa-
ter flux is too high and leads to a large
proportion of the pellets being flushed out of the reactor with the effluent.

A.3. Water Hardness Chemistry

Classification [mmol/L]

Very soft water <0.7
Soft water 0.7 - 1.4
Average water 1.4 - 2.1
Quite hard water 2.1 - 3.2
Hard water >3.2

Table 6: Hardness classification in
the Netherlands [11].

The hardness of the water is the total amount of dissolved metal
ions in the water. In practice, the hardness is determined by mea-
suring the concentration of calcium and magnesium ions in the
water, since they are generally the most abundant in the influ-
ent.

Hard water arises in places where, among other things, calcium
and magnesium compounds dissolve under the influence of the
carbon dioxide present in water [10]:

CaCO3(s)+CO2(aq)
Ca2+(aq)+2HCO−
3 (aq)

Mg(OH)3(s)+2CO2(aq)
Mg2+(aq)+2HCO−
3 (aq),

where (aq) indicates that the substance is dissolved in water and (s) signifies that the given substance is
a solid. Conversely, when CO2 is removed from the water, for example by heating, lime will precipitate.
The hardness that can be removed by boiling is called temporary hardness.

The classification of hardness levels in the Netherlands can be observed in Table 6. Note that the
total hardness is measured predominantly in millimoles per liter.

A.4. Bypass
A pellet softening reactor is usually coupled with a bypass pipe. This bypass redirects a proportion of

the raw water and reconnects downstream from the pellet softening reactor (and before the acid dosing),
causing the softened water to mix with the raw water. The bypass contributes to preventing crystallisa-
tion in the following stages of the WTP, i.e. the bypass lowers the pH of the effluent. Furthermore, a
bypass reduces the costs of softening, since the pellet softening reactor softens less water. The bypass
mechanism can be viewed in Figure 1. Note that, for the softening reactor analysed in this paper, the
bypass was set to zero percent (turned off).
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A.5. Calcium Carbonate Crystallisation Reaction
Calcium carbonate is one of the most broadly studied minerals and is investigated in studies in-

volving geological, chemical and biological processes. The calcium carbonate crystallisation reaction is
described by the following chemical equation:

Ca2++CO2−
3 
CaCO3(s).

This reaction often takes place on the softening pellets in a softening reactor of a WTP.
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Appendix B: Data Analysis

B.1. Pearson’s Correlation Coefficient Matrix
The Pearson’s correlation coefficient matrix of the relevant variables of the drinking Water Treatment

Plant (WTP) softening reactor used in this research is displayed in Table 7. The second highest correla-
tion coefficient magnitude is between the bed height and the caustic soda flow, since caustic soda is used
to facilitate crystallisation and crystallisation leads to thicker pellets in the reactor. Thick pellets weigh
more and sink to a lower height in the reactor and consequently resulting in a higher bed height reading.

B.2. Box Plot

Figure 33: Boxplot. This image is taken from [25].

A boxplot is a visual rep-
resentation of how the data
is skewed. The graphic con-
sists of (from left to right):
"minimum", first quartile (Q1),
median, third quartile (Q3)
and the "maximum". The
outliers are also shown in a
boxplot. An example box-
plot can be viewed in Figure
33.
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Figure 34: Hourly mean of data features and the sum of the data features, seeding and draining actions,
per hour.
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Appendix C: Machine Learning

C.1. Python vs Matlab®: Machine Learning and Control Theory Imple-
mentation

Before carrying out the analysis on the dataset used in this research, a particular software package
was chosen to conduct the analysis. The choice was slimmed down to two candidates: Matlab® and
Python. Eventually, Python was selected on the basis of the following comparisons between the two
software packages:

• It is possible to obtain free extra RAM (memory) using Python in Colaborative. Using Matlab®, you
are restricted to using the graphics card in your PC or your CPU, which can be considerably slower.

• There are more help forums for Python machine learning. For instance, Kaggle has many examples
of machine learning algorithms being implemented using Python code. Matlab® on the other
hand, has less information via online forums, due to it being less frequently used.

• Matlab® does not react as quickly to new machine learning developments as Python and thus the
functionality of the machine learning toolboxes can be limiting. For instance, there is no Matlab®
function for the XGBoost algorithm.

• Colaborative (provided by Google) is free to use, although you need to upload your dataset to
Google Drive in order to use Colaborative. Some businesses may find this problematic, due to
data confidentiality. Conversely, Matlab® requires you to pay for a subscription licence.

• Matlab® has a useful control theory toolbox called Simulink®. This allows you to effectively sim-
ulate and control theoretical systems using visual block diagrams. Although Python has a recently
developed (in 2018) a new package SimuPy that is relatively similar to Simulink®, Simulink® is still
regarded generally speaking to be the best amongst Systems and Control engineers. However, for
this research Python is considered satisfactory to carry out the control methods, since the methods
are not particularly complicated.

C.2. RMSProp Optimisation
RMSProp optimisation is often chosen over the standard gradient descent optimisation method,

since it takes a more direct route to the optimum [6]. The standard Gradient Descent method, begins
by going speedily down the steepest slope and then slowly down to the bottom of the valley. The RM-
SProp on the other hand, is able to prevent this, by scaling down the speed going down the steepest slope
and taking a different route, that is more direct to the optimum point (bottom of the valley). RMSProp
optimisation algorithm can be described by the following two equations:

s(i ) ←−βs(i−1) + (1−β)∇wC (w (i−1))⊗∇wC (w (i−1)) (3)

w (i ) ←− w (i−1) −η∇wC (w (i−1))®
√

s(i ) +ε, (4)

where β represents the decay rate (often set to 0.9), w the weight vector, ⊗ symbolises the element-wise
multiplication operation, ® the element-wise division operation, η is the learning rate, ε is a smoothing
term to avoid division by zero (often set to 10−10) and i denotes the time step. In addition, ∇wC (w (i )) is
the partial derivative of C with respect to w for the time step i .
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C.3. Derivation of Backpropagation Equations
We can denote the weights of the Neural Network (NN) as w l

j k using notation proposed by M. Nielsen
[8], where the indices indicate that the weight connects the k-th neuron in the (l-1)-th layer of the NN
to the j -th neuron in the l-th layer [8]. Similar notation is employed for the bias bl

j ; symbolising the j -th

neuron in the l-th layer. Likewise, we express the activation as al
j and is described as follows:

al
j = h

(∑
w l

j k al−1
k +bl

j

)
, (5)

where the sum is over all neurons k in the (l-1)-th layer and h represents the activation function, which
acts as a hyperparameter.

For simplicity, equation (5) can be rewritten in matrix form as follows:

al = h
(
w l al−1 +bl

)
.

Let z l ≡ w l al−1 +bl and we refer to z l as the weighted input to the neurons in layer l .

In order to update our weights when carrying out training, we need to define a cost function C . A
popular choice is the Mean Squared Error (MSE) cost function:

C = 1

2N

∑
x
||y(x)−aL(x)||2,

where N is the total number of training samples, the sum is over the training samples x, y(x) signifies
the target output and L is the number of layers in the network and aL(x) represents the vector of activa-
tion outputs from the network and dependant on the input x. The aim is to minimise the cost function
output (error) when evaluating the model using the test data.

We have assumed that C = 1
n

∑
x Cx with cost function Cx for an individual training sample. There-

fore, for the MSE cost function Cx = 1
2 ||y(x)− aL(x)||2. Let us suppose that the training sample is fixed

and we drop the x subscript from the cost function. Thus, writing Cx as C .

Backpropagation in simple terms is about how changing the weights and biases in a network changes
the cost function. Meaning mathematically that the partial derivatives, ∂C

∂w l
j k

and ∂C
∂bl

j

, need to be com-

puted. M. Nielsen [8] explains a four-step technique to calculate the backpropagation and is explained
in the remainder of this Subsection.

Firstly, we define the error δl
j of neuron j in layer l by

δl
j ≡

∂C

∂z l
j

, (6)

where z l
j =

∑
k=1 w l

j k al−1
k +bl

j . Using the chain rule, equation (6) for the output layer is described as

δL
j =

∑
k

∂C

∂aL
k

∂aL
k

∂zL
j

, (7)
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where the sum is taken over all k neurons in the output layer. The output activation aL
k of the k-th neuron

is only dependent on the weighted input zL
j for the j -th neuron when k = j . Thus, the terms in equation

(7) disappear when k 6= j and results in the following simplified expression

δL
j ≡

∂C

∂aL
j

∂aL
j

∂zL
j

. (8)

Now, using equation (5) the second term in the product can written as h′(zL
j ). This gives

δL
j =

∂C

∂aL
j

h′(zL
j ). (9)

For our MSE cost function C = 1
2

∑
j (y j −aL

j )2, the partial derivative is ∂C
∂aL

j
= (aL

j − y j ). Similarly as before,

we denote the vector of errors associated with layer l as δl . Writing equation (9) in matrix form using the
MSE cost function gives

δL = (aL − y) ·h′(zL), (10)

where · symbolises the inner product.

Secondly, δl
j = ∂C

∂z l
j

is rewritten in terms of δl+1
k = ∂C

∂z l+1
k

. This is achieved using the chain rule,

δl
j =

∂C

∂z l
j

=∑
k

∂C

∂z l+1
k

∂z l+1
k

∂z l
j

=∑
k

∂z l+1
k

∂z l
j

δl+1
k , (11)

where the terms are interchanged. The first term in the resulting equation is further mathematically
manipulated as follows

z l+1
k =∑

j
w l+1

k j al
j +bl+1

k =∑
j

w l+1
k j h(z l

j )+bl+1
k .

Taking the partial derivative, leads to
∂z l+1

k

∂z l
j

= w l+1
k j h′(z l

j ).

Substituting back into equation (11), yields the vector equation for the error δl in terms of the error in
the next layer δl+1:

δl = ((w l+1)Tδl+1) ·h′(zL). (12)

Here, (w l+1)T is the transpose of the weight matrix w l+1 for the (l+1)-th layer. Combining the two equa-
tions (10) and (12) it is possible to determine the error δl for any layer in the network, i.e. beginning with
δL and working your way back calculating subsequently δL−1, δL−2, etc. Thus, backpropagating through
the network.

Thirdly, ∂C
∂bl

j

δl
j is derived using, once again, the chain rule:

∂C

∂bl
j

=∑
k

∂z l
k

∂bl
j

∂C

∂z l
k

= ∂C

∂z l
j

= δl
j , (13)

where z l
j =

∑
k w l

j k al−1
k +bl

j . Using the vector notation, equation (13) can be described as

∂C

∂bl
= δl .
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Lastly, the rate of change of the cost with respect to any weight in the network is calculated via the
following formula:

∂C

∂w l
j k

= al−1
k δl

j . (14)

The corresponding vector form for equation (14) is:

∂C

∂w l
= al−1δl , (15)

where the derivation is calculated in a similar way as the above equations, i.e. using the chain rule. An
interesting side-effect of equation (15) is that when al−1 is small (al−1 ≈ 0), the gradient term ∂C

∂w l will
also be small. This causes the weights to learn slowly, i.e. they do not change significantly during gradi-
ent descent implementation.

C.4. The Backpropagation Algorithm
The backpropagation equations derived in the previous section, make it possible to compute the

gradient of the cost function, which is often used in gradient descent (described in Subsection 5.2.2) for
the learning of a NN. The steps of the algorithm used to derive the gradient of the cost function, are as
follows:

1. Input x: Compute activation a1 for the input layer.

2. Feedforward: For each l = 2,3, ...,L calculate z l = w l al−1 +bl and al = h(z l ).

3. Output error δL : Calculate the vector δL = ∂C
∂aL h′(zL)

4. Backpropagation of the error: For each l = L−1,L−2, ...,2 calculate δl = ((w l+1)Tδl+1) ·h′(zL).

5. Output: Finally, the gradient of the cost function is calculated using ∂C
∂w l

j k

= al−1
k δl

j and ∂C
∂bl

j

= δl
j .
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C.5. Logistic Activation Function

Figure 35: Logistic Activation Function. This image is taken
from [27].

The logistic activation function is as
follows:

σ(z) = 1

1+e−z ,

where z symbolises the input.
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Appendix D: eXtreme Gradient Boost (XGBoost)

D.1. Regularisation Learning Objective

Figure 36: Example of a tree ensemble model, consisting of two
decision trees. The red weights are the weights corresponding
to a particular input x1.

For a given dataset with n sam-
ples and m features (inputs) D =
(xi , yi ) (|D| = n, xi ∈ Rm , yi ∈ R), a tree
ensemble model uses K additive func-
tions to predict the output. The predic-
tion is described as follows:

ŷi =φ(x i ) =
K∑

k=1
fk (x i ), fk ∈F ,

where F = { f (x) = wq(x)} (q : Rm −→
T, w ∈ RT ) is the space of regression
trees, q denotes the structure of each
tree which maps a sample to the corre-
sponding leaf index (includes the tree
decision rules), T is the number of
leaves in the tree and fk corresponds
to an independent tree structure q and
leaf weights w . Unlike decision trees
(or classification trees), each regression
tree contains a continuous score on
each of the leaves and is represented as
wi for the i -th leaf. An example tree en-
semble model is featured in Figure 36.
In this example, the function φ for an
example input x1 is equal to:

φ(x1) = f1(x1)+ f2(x1) = 0.3+0.9 = 1.2,

where f1 corresponds to the first deci-
sion tree and f2 to the second.

In order to learn the set of functions used in the model, we minimise the following regularised objec-
tive function:

L (φ) =∑
i

l (ŷi , yi )+∑
k
Ω( fk ), (16)

where Ω(w) = γT + 1
2λ||w ||2 and l is a differential convex (i.e. ∀ŷi , yi ∈ X ,∀t ∈ [0,1] : l (t ŷi + (1− t )yi ) ≤

t l (ŷi )+(1− t )l (yi ), where X is a convex set in a real vector space and a convex set is a set of points, where
every point on a line segment joining any two points within the set, lies within the set) loss function
calculating the difference between the prediction ŷi and the target yi . The second term Ω penalises
the complexity of the model (the regression tree functions) and is considered a regularisation term that
smooths the final learnt weights to avoid overfitting. A desired side-effect is that the regularised objective
will tend to select a model employing simple functions and functions that can more accurately predict
the target of new data. If the regularisation parameter λ is set to zero, the objective transforms back to
the standard gradient tree boosting loss function.
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D.2. Gradient Tree Boosting
The tree ensemble model described by equation (16) cannot be optimised by implementing the tra-

ditional methods in the Euclidean space, since the model employs functions as parameters. It is instead
trained by applying addition. Let ŷ (t )

i be the prediction of the i -th instance at the t-th iteration. We add
ft and minimise the resulting objective function:

L (t ) =
n∑

i=1
l (ŷ (t−1)

i + ft (x i ), yi )+Ω( ft ).

Therefore, the optimal ft that most improves the model (seen in equation (16)) is added to the prediction
in the loss function. The function ft has T leaves. For a speedier optimisation the objective function can
be written as follows using Taylor’s series:

L (t ) '
n∑

i=1

[
l (ŷ (t−1)

i , yi )+ gi ft (x i )+ 1

2
hi f 2

t (x i )
]
+Ω( ft ),

where gi = ∂l (yi ,ŷ (t−1)
i )

∂ŷ (t−1)
i

and hi = ∂2l (yi ,ŷ (t−1)
i )

∂ŷ (t−1)
i

2
are respectively the first and second order partial derivatives of

the loss function with respect to ŷ (t−1)
i . We proceed by removing the loss function, resulting in:

L̃ (t ) =
n∑

i=1

[
gi ft (x i )+ 1

2
hi f 2

t (x i )
]
+Ω( ft ). (17)

We define I j = {i | q(x i ) = j } as the instance set of leaf j and rewrite equation (17), using the fact that
f (x) = wq(x) and by expandingΩ, as follows:

L̃ (t ) =
n∑

i=1

[
gi ft (x i )+ 1

2
hi f 2

t (x i )
]
+γT + 1

2
λ

T∑
j=1

w2
j =

n∑
i=1

gi wq(xi ) + 1

2

n∑
i=1

hi (wq(xi ))
2 + 1

2
λ

T∑
j=1

w2
j +γT

= ∑
i∈I j

gi

T∑
j=1

w j + 1

2

∑
i∈I j

hi

T∑
j=1

w2
j +

λ

2

T∑
j=1

w2
j +γT =

T∑
j=1

[
(
∑

i∈I j

gi )w j + 1

2
(
∑

i∈I j

hi +λ)w2
j

]
+γT.

For a fixed structure q(x), the optimal weight w∗
j can be derived by taking the derivative with respect to

the weight and rearranging, giving:

w∗
j =−

∑
i∈I j

gi∑
i∈I j

hi +λ
,

The corresponding optimal objective value is then:

L̃ (t )(q) =−1

2

T∑
j=1

(
∑

i∈I j
gi )2∑

i∈I j
hi +λ

+γT. (18)

Subsequently, equation (18) can be used as a scoring function to measure the quality of a tree structure
q . The score is similar to the impurity scores used to evaluate a decision tree (such as the impurity score
calculated using the so-called entropy function), but instead applies for a wider range of objective func-
tions. In most cases, it is computationally too expensive to find the optimal for every tree structure q . To
avoid evaluating every possible q structure, the greedy algorithm is implemented. Briefly, the algorithm
begins at a single leaf and iteratively adds branches to the tree [14].
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Appendix E: XGBoost and RNN Implementation

E.1. XGBoost Results
Figures 37 and 38 display the resulting model predictions using the walk-forward data split method.

Clearly, the predictions do not follow the pattern of the real data closely. This is confirmed in Table 5,
where the R-squared evaluation metric values are negative. It is also evident, that the models are not
able to predict the pH values in the region of a draining action, since the predictions generally do not
spike significantly in value. On the other hand, the MSE evaluation metric values are relatively low.

The feature importance for model 4 is depicted in Figure 40. Clearly, the feature ’pellet_bed_press’,
denoting the pellet-bed pressure feature for the present time step, is by a long way the most important,
followed by the present time step seeding, bed height, bottom pressure and draining features in impor-
tance. The most influential past data steps appear to be one, two, 58 and 59, where for instance a past
time step of one indicates a measurement taken one minute ago.
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Figure 37: First four XGBoost walk-forward split model predictions on the same plot as the test data. The
test data spans three days in total.
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Figure 38: Last three XGBoost walk-forward model predictions on the same plot as the test data. The test
data spans three days in total.
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Figure 39: Feature importance of XGBoost models 0 to 3.
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Figure 40: Feature importance of XGBoost models 4, 5 and 6.

E.2. RNN Results (F=24[hr])

Model MSE Relative MSE R-squared

0 0.0120 0.1362% -6.2375
1 0.0100 0.1135% -0.1860
2 0.0035 0.0397% -0.4968
3 0.0020 0.0227% -0.1708
4 0.0030 0.0341% -0.0843
5 0.0019 0.0216% -0.1693
6 0.0031 0.0352% -0.2907
7 0.0026 0.0295% -0.1187
8 0.0038 0.0431% -0.7773

Table 8: Evaluation metrics for the forecasting walk-forward RNN models to four decimal places. The
forecast horizon is equal to 24 hours.
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Figure 41: Walk-forward forecasting RNN model predictions, where F=24 [hr].
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E.3. Hyperparameter Selection

E.3.1. XGBoost Hyperparameter Selection
For the XGBoost algorithm implementation the function XGBRegressor from the Python library xg-

boost was used. The following options are available within the function (according to the Python XG-
Boost documentation):

• colsample_bytree- Subsample ratio of the training instance, i.e. the fraction of columns to be ran-
dom samples for each tree [9].

• gamma- Minimum loss reduction required to make a further partition on a leaf node of the tree.

• learning_rate- XGBoost learning rate.

• max_depth- Maximum tree depth. Used to control overfitting.

• min_child_weight- Minimum sum of instance weight needed in a child. Used to combat overfit-
ting, since higher values hinder a model from learning relations.

• n_estimators- Number of trees to fit.

• reg_alpha- L1 regularisation term on weights.

• reg_lambda- L2 regularisation term on weights.

• subsample- Refers to the fraction of observations to be random samples for each tree.

• seed- The random number seed.

• tree_method- Specifies which tree method to use.

Options Input

colsample_bytree 0.4
gamma 0
learning_rate 0.07
max_depth 3
min_child_weight 1.5
n_estimators 1000
reg_alpha 0.75
reg_lambda 0.45
subsample 0.6
seed 42
tree_method ’gpu_hist’

Table 9: XGBRegressor function hyperparameters used for implementation.
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E.3.2. RNN Hyperparameter Selection
The RNN structure adopted is as seen in Figure 10, with seven features (inputs). The first LSTM from

left to right is comprised of 64 neurons and the second 32 neurons. The dropout probability is set to 0.2.
The amount of neurons and dropout probability are derived from A. Sadad’s thesis for the Wastewater
Treatment Plant (WWTP). Deviating these hyperparameters did not seem to give improved results. The
regression output is the pH in the softening reactor and the Mean Squared Error (MSE) function was
chosen for model training (see the backpropagation algorithm, in appendix C for more insight). Further-
more, when training the RMSProp optimiser (described in appendix C) was used.

E.4. Model Training Logs

E.4.1. RNN Walk-Forward Training (F=1[min])
Three epochs and a batch size of 256 were used for training of the model, using the Batch Gradient

Descent method (explained in chapter 5).

The Python log during training of the RNN walk-forward models (with F=1 [min]) is as follows:

Number of models for walkforward validation: 6
Training on index 189569:249569, Testing on index 249569:253889
Epoch 1/3
- 7s - loss: 2.5074 - mean_squared_error: 2.5074
Epoch 2/3
- 5s - loss: 0.0034 - mean_squared_error: 0.0034
Epoch 3/3
- 5s - loss: 0.0018 - mean_squared_error: 0.0018
MSE 0.0013159741401491626
R2 0.6372750930392224

Training on index 193889:253889, Testing on index 253889:258209
Epoch 1/3
- 7s - loss: 2.6694 - mean_squared_error: 2.6694
Epoch 2/3
- 5s - loss: 0.0031 - mean_squared_error: 0.0031
Epoch 3/3
- 5s - loss: 0.0016 - mean_squared_error: 0.0016
MSE 0.0009467924775900951
R2 0.8800728418928929

Training on index 198209:258209, Testing on index 258209:262529
Epoch 1/3
- 7s - loss: 2.1012 - mean_squared_error: 2.1012
Epoch 2/3
- 5s - loss: 0.0032 - mean_squared_error: 0.0032
Epoch 3/3
- 5s - loss: 0.0017 - mean_squared_error: 0.0017
MSE 0.0015642625093958199
R2 0.7268537541438583
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Training on index 202529:262529, Testing on index 262529:266849
Epoch 1/3
- 7s - loss: 2.1511 - mean_squared_error: 2.1511
Epoch 2/3
- 5s - loss: 0.0036 - mean_squared_error: 0.0036
Epoch 3/3
- 5s - loss: 0.0022 - mean_squared_error: 0.0022
MSE 0.00049519045882465
R2 0.8638080469281029

Training on index 206849:266849, Testing on index 266849:271169
Epoch 1/3
- 7s - loss: 3.0528 - mean_squared_error: 3.0528
Epoch 2/3
- 5s - loss: 0.0038 - mean_squared_error: 0.0038
Epoch 3/3
- 5s - loss: 0.0022 - mean_squared_error: 0.0022
MSE 0.0017305357657509948
R2 0.29995530964421924

Training on index 211169:271169, Testing on index 271169:275489
Epoch 1/3
- 7s - loss: 2.6670 - mean_squared_error: 2.6670
Epoch 2/3
- 5s - loss: 0.0035 - mean_squared_error: 0.0035
Epoch 3/3
- 5s - loss: 0.0021 - mean_squared_error: 0.0021
MSE 0.0011098926523554079
R2 0.767833364861183

E.4.2. RNN Train-Validation-Test Training (F=1[min])
The Python log during training of the RNN train-validation-test model (with F=1 [min]) is as follows:

Train on 200224 samples, validate on 92314 samples
Epoch 1/1
- 16s - loss: 1.4920 - mean_squared_error: 1.4920 - val_loss: 0.0024
- val_mean_squared_error: 0.0024

Train on 200224 samples, validate on 92314 samples
Epoch 1/1
- 14s - loss: 0.0032 - mean_squared_error: 0.0032 - val_loss: 0.0015
- val_mean_squared_error: 0.0015

Train on 200224 samples, validate on 92314 samples
Epoch 1/1
- 14s - loss: 0.0018 - mean_squared_error: 0.0018 - val_loss: 9.4053e-04
- val_mean_squared_error: 9.4053e-04
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MSE 0.00044540128569551184
R2 0.9006795730436753

E.4.3. RNN Walk-Forward Training (F=24 [hr])
The Python log during training of the RNN walk-forward models (with F=24 [hr]) is as follows:

Number of models for walkforward validation: 9
Training on index 200699:260699, Testing on index 260699:262139
Epoch 1/3
- 8s - loss: 25.4802 - mean_squared_error: 25.4802
Epoch 2/3
- 6s - loss: 0.0743 - mean_squared_error: 0.0743
Epoch 3/3
- 6s - loss: 0.0084 - mean_squared_error: 0.0084
MSE 0.01203079266193375
R2 -6.237542567644389

Training on index 202139:262139, Testing on index 262139:263579
Epoch 1/3
- 8s - loss: 25.7666 - mean_squared_error: 25.7666
Epoch 2/3
- 6s - loss: 0.0786 - mean_squared_error: 0.0786
Epoch 3/3
- 6s - loss: 0.0084 - mean_squared_error: 0.0084
MSE 0.009982301908486433
R2 -0.18603822796927627

Training on index 203579:263579, Testing on index 263579:265019
Epoch 1/3
- 8s - loss: 25.6982 - mean_squared_error: 25.6982
Epoch 2/3
- 6s - loss: 0.0777 - mean_squared_error: 0.0777
Epoch 3/3
- 6s - loss: 0.0083 - mean_squared_error: 0.0083
MSE 0.003514358208861444
R2 -0.496832759297005

Training on index 205019:265019, Testing on index 265019:266459
Epoch 1/3
- 9s - loss: 25.5791 - mean_squared_error: 25.5791
Epoch 2/3
- 6s - loss: 0.0761 - mean_squared_error: 0.0761
Epoch 3/3
- 6s - loss: 0.0081 - mean_squared_error: 0.0081
MSE 0.0019810804050362347
R2 -0.1708376011249737

Training on index 206459:266459, Testing on index 266459:267899
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Epoch 1/3
- 9s - loss: 25.6876 - mean_squared_error: 25.6876
Epoch 2/3
- 6s - loss: 0.0764 - mean_squared_error: 0.0764
Epoch 3/3
- 6s - loss: 0.0079 - mean_squared_error: 0.0079
MSE 0.003047756802827608
R2 -0.08428679237062675

Training on index 207899:267899, Testing on index 267899:269339
Epoch 1/3
- 9s - loss: 25.6174 - mean_squared_error: 25.6174
Epoch 2/3
- 6s - loss: 0.0761 - mean_squared_error: 0.0761
Epoch 3/3
- 6s - loss: 0.0078 - mean_squared_error: 0.0078
MSE 0.0018545439072492323
R2 -0.16927476280236786

Training on index 209339:269339, Testing on index 269339:270779
Epoch 1/3
- 9s - loss: 25.5759 - mean_squared_error: 25.5759
Epoch 2/3
- 6s - loss: 0.0752 - mean_squared_error: 0.0752
Epoch 3/3
- 6s - loss: 0.0078 - mean_squared_error: 0.0078
MSE 0.0031274762687713872
R2 -0.2907473882620255

Training on index 210779:270779, Testing on index 270779:272219
Epoch 1/3
- 9s - loss: 25.5906 - mean_squared_error: 25.5906
Epoch 2/3
- 6s - loss: 0.0761 - mean_squared_error: 0.0761
Epoch 3/3
- 6s - loss: 0.0077 - mean_squared_error: 0.0077
MSE 0.0026181155149427268
R2 -0.11874536027543758

Training on index 212219:272219, Testing on index 272219:273659
Epoch 1/3
- 9s - loss: 25.7260 - mean_squared_error: 25.7260
Epoch 2/3
- 6s - loss: 0.0786 - mean_squared_error: 0.0786
Epoch 3/3
- 6s - loss: 0.0076 - mean_squared_error: 0.0076
MSE 0.00377561454611042
R2 -0.7773242802171785.
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E.4.4. RNN Walk-Forward Training (F=4 [hr])
The Python log during training of the RNN walk-forward models (with F=4 [hr]) for the first nine

models is as follows:

Training on index 202979:262979, Testing on index 262979:263219
Epoch 1/3
- 6s - loss: 25.2531 - mean_squared_error: 25.2531
Epoch 2/3
- 5s - loss: 0.0879 - mean_squared_error: 0.0879
Epoch 3/3
- 5s - loss: 0.0085 - mean_squared_error: 0.0085
MSE 0.0025936636032497518
R2 -2.358257007307579

Training on index 203219:263219, Testing on index 263219:263459
Epoch 1/3
- 6s - loss: 25.5175 - mean_squared_error: 25.5175
Epoch 2/3
- 5s - loss: 0.0967 - mean_squared_error: 0.0967
Epoch 3/3
- 5s - loss: 0.0084 - mean_squared_error: 0.0084
MSE 0.0016546123607099616
R2 -801.8891442934232

Training on index 203459:263459, Testing on index 263459:263699
Epoch 1/3
- 6s - loss: 25.3872 - mean_squared_error: 25.3872
Epoch 2/3
- 5s - loss: 0.0890 - mean_squared_error: 0.0890
Epoch 3/3
- 5s - loss: 0.0084 - mean_squared_error: 0.0084
MSE 0.003222422027738503
R2 -4.24612932990162

Training on index 203699:263699, Testing on index 263699:263939
Epoch 1/3
- 6s - loss: 25.5995 - mean_squared_error: 25.5995
Epoch 2/3
- 5s - loss: 0.0926 - mean_squared_error: 0.0926
Epoch 3/3
- 5s - loss: 0.0084 - mean_squared_error: 0.0084
MSE 0.0011201554964107648
R2 -0.5359855698656777

Training on index 203939:263939, Testing on index 263939:264179
Epoch 1/3
- 6s - loss: 25.3692 - mean_squared_error: 25.3692
Epoch 2/3
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- 5s - loss: 0.0880 - mean_squared_error: 0.0880
Epoch 3/3
- 5s - loss: 0.0084 - mean_squared_error: 0.0084
MSE 0.0022737514387699775
R2 -1.6060138628962237

Training on index 204179:264179, Testing on index 264179:264419
Epoch 1/3
- 6s - loss: 25.4679 - mean_squared_error: 25.4679
Epoch 2/3
- 5s - loss: 0.0916 - mean_squared_error: 0.0916
Epoch 3/3
- 5s - loss: 0.0083 - mean_squared_error: 0.0083
MSE 0.008136325113143054
R2 -1.5568766810367651

Training on index 204419:264419, Testing on index 264419:264659
Epoch 1/3
- 7s - loss: 25.6191 - mean_squared_error: 25.6191
Epoch 2/3
- 5s - loss: 0.0929 - mean_squared_error: 0.0929
Epoch 3/3
- 5s - loss: 0.0083 - mean_squared_error: 0.0083
MSE 0.0007989311898692601
R2 -0.5401342870579247

Training on index 204659:264659, Testing on index 264659:264899
Epoch 1/3
- 7s - loss: 25.2936 - mean_squared_error: 25.2936
Epoch 2/3
- 5s - loss: 0.0885 - mean_squared_error: 0.0885
Epoch 3/3
- 5s - loss: 0.0083 - mean_squared_error: 0.0083
MSE 0.001480038286005462
R2 -0.7771419745709061

Training on index 204899:264899, Testing on index 264899:265139
Epoch 1/3
- 7s - loss: 25.2056 - mean_squared_error: 25.2056
Epoch 2/3
- 5s - loss: 0.0867 - mean_squared_error: 0.0867
Epoch 3/3
- 5s - loss: 0.0083 - mean_squared_error: 0.0083
MSE 0.0022336121114487164
R2 -2.65633232488729

E.4.5. XGBoost Train-Validation-Test Training
The Python log during training of the XGBoost Train-Validation-Test model is as follows:
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Training on index 0:292898, Testing on index 292898:308314
MSE 0.005656752010293507
R2 -0.18710613171327273.

E.4.6. XGBoost Walk-Forward Training
The Python log during training of the XGBoost walk-forward models is as follows:

Number of models for walkforward validation: 7
Training on index 217482:277482, Testing on index 277482:281802
MSE 0.017627705529895576
R2 -3.8138070276619054

Training on index 221802:281802, Testing on index 281802:286122
MSE 0.0040437185770498575
R2 -0.2805481716503393

Training on index 226122:286122, Testing on index 286122:290442
MSE 0.004901782404743926
R2 -0.23885435514421127

Training on index 230442:290442, Testing on index 290442:294762
MSE 0.008562428893266845
R2 -0.5057377146450821

Training on index 234762:294762, Testing on index 294762:299082
MSE 0.02763251097375469
R2 -4.7628726770061425

Training on index 239082:299082, Testing on index 299082:303402
MSE 0.012681836268440192
R2 -7.472719909357579

Training on index 243402:303402, Testing on index 303402:307722
MSE 0.004293264937667505
R2 -0.35304925162849266.
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