
Formal Automated Verification of a Work-Stealing Deque
C.M. van Kampen
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

c.m.vankampen@student.utwente.nl

ABSTRACT
Multi-core systems brought the possibility for concurrent
programs. In task-based parallelism, work-stealing has
been an important development. Many designs of a work-
stealing framework make use of deques, but they do not
properly prove the correctness of the deque. Therefore,
the deque from the Lace framework has been implemented
and verified for functional correctness using the VerCors
verification tool. Under our assumptions, the verification
in VerCors passes and shows that all tasks are executed
and return the correct result. The verification has been
partially validated, but more testing and validation is re-
quired before a statement can be made about the validity
of the proof.

Keywords
Concurrency, task-based parallelism, deque, work-stealing,
deductive verification, VerCors

1. INTRODUCTION
The development of multi-core systems has been of great
impact in computer science. It means that programs can
be executed in parallel and show the results much faster.
An important paradigm in parallel programming is the
task-based paradigm. A program is seen as a tree of tasks
that need to be executed one after another. However, some
tasks are independent and can be executed in parallel.
By having specific workers that each run on a separate
core, they can execute the tasks in parallel. Some work-
ers might be idle, because they are done with their tasks
earlier than others. To solve this problem of inefficiency,
a specific form of task-based programming involves work-
stealing (see 2.1). This means that workers can steal tasks
from other workers if they are idle. Each worker has a task
pool which is often implemented as a double-ended queue
or deque. Although a lot of designs for such a deque have
been proposed, they have not been formally proven to be
correct and are prone to data races or other concurrency is-
sues. To prove that the deque functions correctly, it needs
to be verified that each task in the deque is executed and
contains the correct result.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
32nd Twente Student Conference on IT Jan. 31st, 2020, Enschede, The
Netherlands.
Copyright 2020, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Several work-stealing frameworks exist and have shown
good performance. Some examples include Cilk [4] and
Wool [7]. Recently, a new work-stealing framework, called
Lace, has been developed that shows comparable, and in
some cases improved, performance. The Lace framework
implements a non-blocking split task deque [16]. Van Dijk
has provided a formal proof on paper but also states that
an automated proof using a verification tool is necessary.
It has been shown that deductive verification is a use-
ful verification technique. A specific deductive verification
tool is VerCors [3]. Based on behavioural constructs, Ver-
Cors can verify whether a program does not violate this
behaviour.

This research has implemented the deque from the Lace
framework and attempts to verify functional correctness
using VerCors. Due to time limitations, we assumed a
strongly consistent memory model. Accordingly, the cen-
tral research question that this paper attempts to answer
is: To what extent can Lace’s work-stealing deque be ver-
ified for functional correctness using the VerCors verifi-
cation tool and assuming a strongly consistent memory
model?

During the research, some challenges were encountered
with regard to VerCors. These challenges were partly
overcome, resulting in a passing verification. However,
the specification should be validated before anything can
be said about the validity of the proof. When a proof is
justified, the next step is to verify correctness in the TSO
(Total Store Order) weak consistency model.

1.1 Contributions
The contributed work of this paper is a formalized spec-
ification of Lace’s deque in PVL to verify its functional
correctness in a strongly consistent memory model. Fur-
thermore, this paper reports on the challenges, specifically
with regard to VerCors, that have been tackled. In the
end, we have decent confidence in the verification of the
deque. However, due to limitations, a formal proof cannot
be justified. Therefore, we propose directions for future
work.

2. BACKGROUND
This section provides more background information for
this research. First, we explain work-stealing in more de-
tail. Secondly, we discuss the deque along with the distinc-
tion between strong and weak consistency models. Next,
we provide a short explanation of the memory fence. Fi-
nally, we consider the Lace framework and deductive ver-
ification with VerCors.

2.1 Work-stealing

1

In task-based parallelism, a program can be seen as a tree
of tasks or problems to solve. The fork-join model defines
that each task can create subtasks that need to finish first
as seen in Figure 1. To efficiently execute all tasks, they
can be run in parallel. However, parallelism adds extra
overhead on the performance time for initializing separate
threads and synchronizing between them. Therefore, to
reduce the overall execution time, it is important to effec-
tively make use of parallelism.

In a multi-core system, each core is assigned a specific
worker that has its own task pool which it runs through.
To minimize each workers’ idle time, the work should be
split in equally partitioned tasks. Though, it is often un-
known how long each task will take.

Figure 1. An example of two workers solving a
task-based problem together. [1]

Work-stealing resolves this problem of load balancing by
giving workers the ability to steal tasks from each other if
they are experiencing idle time. A worker is idle when it
does not have any more tasks or when all its tasks are
stolen. The main worker starts running the root task
which creates subtasks that the other workers steal. A
stealing worker is called a thief and the worker it steals
from is a victim. Several implementations of work-stealing
frameworks exist such as Cilk [4] and Wool [7]. Wool has
been found to be slightly more efficient than Cilk [14].
Another recent development which has shown similar per-
formance to Wool is the Lace framework by Van Dijk [17].

A problem that occurs in work-stealing is when a thief
steals a task from a victim. Therefore, the victim might
run out of tasks and has to steal from other workers in
turn. A consequence would be that the size of the task
pool could grow beyond the size needed for a sequential
program [7], since the stolen task is added on top of the
current task that is blocked until a join. By stealing back
from the thief instead, the worker steals subtasks created
from the stolen task and thus helps itself finish its initially
owned task. This is called leapfrogging [18].

2.2 Deque
The task pool that workers use is often implemented as a
deque. A deque or double-ended queue is a type of queue
where elements can be added and removed, from the front
and back, using push and pop instructions respectively as
seen in Figure 2. Often also a peek method is defined that
returns the value of the front element. The worker holding
the deque is the owner of this deque and of all the tasks
it contains.

A deque can be implemented in many ways. An example
is by using a circular array and two descriptors called front
and back [6]. In work-stealing, the front can only be used
by thieves and its value can only be incremented. The
back is used by the owner to add and remove tasks.

Figure 2. An illustration of a deque where ele-
ments can be pushed to and popped from both
ends. [2]

An optimal deque is non-blocking. This means that an
error in a running thread should not lead to any errors
in other threads. To minimize the concurrency overhead
of synchronizing between workers, it should only require
atomic instructions like compare-and-swap (i.e. check if
the known value of a variable still holds and change it if
this is the case) and memory fences.

2.3 Consistency models
2.3.1 Strong consistency model

In a strong consistency model, access to a shared variable
always holds the same value for all observing (parallel)
processes. This means that storing a new value from a
process can directly be seen by all other processes. There-
fore, when a thief tries to steal a non-stolen task, it can
be assured that it is indeed not stolen and the thief will
be the only one completing it. In practice, such optimal
conditions cannot be met.

2.3.2 Weak consistency model
Most computer architectures make use of a weakly con-
sistent memory model, i.e. loads can be reordered before
stores. In a work-stealing environment, this means that
a thief can steal a task from another worker that started
executing said task, but has not yet told the rest of the
workers. Therefore, a memory fence or barrier is required
in the pop command to enforce execution order. However,
these are expensive to execute and can add a lot of over-
head to the performance time [12, 15].

Many types of weak consistency models exist. TSO (Total
Store Order) is the best known and most used.

It is important that we state the difference between the
strong and weak consistency models. Overall, an algo-
rithm that functions correctly in a sequential context, can-
not be trivially assumed to also work in concurrent pro-
grams. In concurrent programs, data races could lead to
incorrect execution. Additionally, the behaviour of con-
current programs cannot be expected to be the same in a
strong and a weak consistency model.

2.4 Memory fence
A memory fence or barrier is used to enforce the order-
ing of memory instructions (loads and stores). This means
that instructions before the memory fence will always hap-
pen before the ones that are written after the fence. Some
instructions might occur out of order, because of com-
piler optimizations. Usually, this will not result in un-
expected behaviour. However, in a concurrent program,
some shared variables might be accessed by different threads
which the compiler does not take into account when opti-
mizing the execution order. As a result, a variable might
be loaded before another thread is able to store a new
value.

2

As an example, assume a program has a boolean variable
called wait and an integer variable called x that start out
as true and 0 respectively. Two threads are started that
work on both variables. The first thread waits for the
boolean to become false and then prints x :

while (wait) {}

// Require memory fence

print x;

The second thread sets x to 5 and wait to false:

x = 5;

// Require memory fence

wait = false;

If some operations are executed out-of-order, it might hap-
pen that the second thread updates wait before x. As a
result, the first thread could jump out of the while loop
and print x as 0. Furthermore, it could also happen that
x is printed before the while loop. Consequently, memory
fences are necessary at the specified positions.

2.5 The Lace framework
Several work-stealing frameworks have been designed. Ex-
amples include Cilk [4], Cilk-5 [9] and Wool [7]. These
frameworks often use a deque to implement the task pool.
The Lace framework is a recently developed work-stealing
framework [16], taking in mind the designs of some afore-
mentioned frameworks. The task pool is implemented as
a non-blocking deque with directly stored tasks (instead
of pointers to a shared deque). It is split in a shared and
a private part and is described by the tail, split point and
head variables. Thieves can only steal tasks after the split
point. Stolen tasks remain in the deque; the result of a
stolen task is written back to the stored descriptor. The
work-stealing algorithm also makes use of leapfrogging.

The Lace framework clearly shows a lot of advantages over
other frameworks. The deque is non-blocking, and only re-
quires one memory fence and one compare-and-swap oper-
ation. However, an important problem is that there is only
a proof on paper [16] and no formal automated proof us-
ing a verification tool that the deque functions correctly,
i.e. that every task inserted in the deque is eventually
executed exactly once. The goal of this research is to im-
plement the deque from the Lace framework and prove its
functional correctness.

2.6 Deductive verification
As a result of weak consistency models, concurrency is-
sues can occur in a multi-core system. For instance, the
reordering of loads and stores introduces the possibility for
data races. Therefore, an implementation should always
be tested. However, this is limited to specific test cases
and a lot of situations can be overlooked because of unex-
pected behaviour as a result of data races. Therefore, it is
necessary to prove the correctness of concurrent programs.
A possible approach is to specify a formal mathematical
proof using induction. However, this can become tedious
in a concurrent program. Therefore, an automated verifi-
cation tool is often used. One technique is deductive veri-
fication which verifies for a program that it complies with
the modelled behaviour in every possible scenario [13].

Hoare logic, proposed by Tony Hoare and Robert Floyd,
provides logical rules for reasoning about sequential pro-
grams [10] and is a key concept in deductive verification.

The most important feature is called Hoare triple and
characterizes a triple {P}s{Q} where s is a program state-
ment, and P and Q are the pre- and postconditions respec-
tively. It specifies that a program being in a state where
P is satisfied, the state after execution of s satisfies Q [8,
13].

For concurrent programs, Hoare logic has been extended
as CSL (concurrent separation logic) [13]. It provides logic
for concurrent programs using a shared memory heap. It is
also able to examine basic locking patterns. CSL extends
Hoare logic with ownership and disjointness of ownerships.

Predicates can be defined as l
π
↪−→ v, stating that value v is

defined at location l on the heap. Additionally, π ∈ (0, 1]
describes the amount of ownership that is available for lo-
cation l where a value of 1 expresses write permission and
otherwise only read permission. The concept of disjoint-
ness of ownership is specified by the separating conjunc-
tion P ∗ Q, declaring that P and Q cannot assert write
access to the same memory location. Finally, one of the
most important proof rules is the parallel composition rule
[5, 13] which states that if programs C1 through Cn, oper-
ating on disjoint parts of the heap, can be proven for the
Hoare triples {P1}C1{Q1} through {Pn}Cn{Qn}, then it
can be concluded that they can also operate correctly in
parallel.

In this research, we use VerCors, a deductive verifier, as
the verification tool. Its logic is build on IDF (Implicit
Dynamic Frames), a variation of CSL.

VerCors is a tool for verification specifically useful for
concurrent programs [3]. It checks Java, C, OpenCL and
OpenMP programs. Furthermore, it defines its own speci-
fication language called PVL (Prototypal Verification Lan-
guage). A specification language consists of verification
constructs, such as pre- and postconditions and invariants,
integrated in a programming language [8].

In PVL, the pre- and postconditions are defined on method
declarations by requires P and ensures P where P is a
predicate. To avoid duplication, context P can be used to
specify that the predicate must hold as both a pre- and
postcondition.

Furthermore, VerCors provides resource invariants which
bundle a set of permissions and boolean expressions. This
makes it easier to reuse a collection of permissions. The
pre- and postconditions can take in resource invariants re-
quiring that all bundled expressions must hold. A method
requiring a resource invariant can unfold the resource to
be able to use the permissions and fold it back to ensure
the resource again.

Additionally, VerCors enables us to lock on a resource in-
variant, so other threads cannot use the permissions bun-
dled in the resource. The resource invariant needs to be
called lock invariant and needs to be defined in the target
class. The lock can then be acquired using: lock o where
o is the target object with the lock invariant.

Another important construct in VerCors is the loop in-
variant which makes assertions about a loop which hold
before, in between iterations and after termination of the
loop.

VerCors translates an input program to the Viper lan-
guage. Subsequently, the Viper verifier uses the Z3 SMT
(Satisfiability Modulo Theories) solver for verification [13].

VerCors makes use of a layered structure. In the first

3

layer, it verifies data race freedom. The second layer is
to prove memory safety and the final layer is about the
functional correctness of programs. The logic in VerCors
builds on IDF (Implicit Dynamic Frames) which is com-
parable to CSL, but ownership is specified in a slightly
different manner [13]. In the second layer, ownership of
shared memory is specified by permissions in the form:
Perm(o.f, π) where π is the amount of ownership avail-
able for the field f of object o.

By specifying all the aforementioned behavioural constructs
inside your code, the VerCors tool will generate verifi-
cation conditions which are verified by Z3 to determine
whether the program is correct.

3. RELATED WORK
A lot of research has already been done in the field of task-
based parallelism and work-stealing. Researchers have
discovered new techniques to implement a work-stealing
deque and make improvements upon existing ones. The
Lace framework took several designs in mind to create
an improved work-stealing framework with similar perfor-
mance to Wool [16, 17]. In his dissertation, Van Dijk gives
a formal mathematical proof on paper, but also states that
a full correctness proof should be performed using a veri-
fication tool [16].

Filliâtre specifically discusses the challenges in proving
program correctness [8]. It is already difficult to prove
safety, i.e. not running into any fatal errors, or termina-
tion of a program. However, a deductive verification tool
definitely speeds up the verification progress in compari-
son with a manually written proof.

Some more challenges in deductive verification are dis-
cussed by Hähnle and Huisman [11]. For example, they
state that in large programs, it is difficult to make sure all
required specifications such as pre- and postconditions are
defined. These challenges have to be kept in mind in this
research when using VerCors.

Oortwijn stresses that the strength of a deductive verifier
is that it analyzes all possible execution scenarios [13] some
of which might be overseen when manually trying to prove
correctness. For that purpose, Oortwijn uses VerCors to
verify parallel graph algorithms.

Overall, the literature shows that deductive verification
is a useful technique to prove the correctness of concur-
rent programs. Therefore, VerCors will be used in this
research to verify the correctness of the deque from the
Lace framework. However, some challenges might have to
be overcome or avoided beforehand.

VerCors has already been used to verify the
ConcurrentLinkedQueue class from the Java concurrency
library [3]. This is a non-blocking deque and mostly in-
volved the verification of atomic operations using resource
invariants. This specification can be used as a starting
point to verify our implementation of a deque.

4. METHODOLOGY
To verify the Lace framework, the algorithm is imple-
mented in PVL. The main classes that are necessary for
this include: Task, Deque and Worker.

These classes have been implemented first. Next, all nec-
essary permissions were added. To be able to update or
access the value of a class field write and read permissions

should be granted respectively. After these specifications
were verified correctly, verification logic has been written
that allows us to verify the functional correctness of the
deque.

To understand what verification logic needs to be added,
the goal has to be specified. What exactly does it mean
for a work-stealing deque to function correctly? In essence,
the deque functions correctly when the result is the same
as the result from sequential execution. For verification,
we should ensue a more strict definition:

A deque functions correctly when the result of
syncing a task is equal to the expected value of
the matching spawn.

To verify this, we specify the following assertion after sync-
ing a task:

assert task.done && task.result == task.expected;

We define the expected result when spawning a task and
assert that the result after syncing is equal to this value.
This ensures that a sync is matched with the correct spawn
and overwriting the task or its fields could fail the verifi-
cation.

In the following sections, we provide a short explanation
for the implemented classes. The description is not as
comprehensive, because the implementation is essentially
the same as the Lace framework described by Van Dijk
[16]. Additionally, we discuss the specification of the veri-
fication constructs and provide the verification result. Fi-
nally, we discuss certain challenges that were encountered
while working with VerCors. The source code can be used
as a reference 1.

4.1 Implementation and specification
4.1.1 Task

The Task class implements simple behaviour for executing
an algorithm in parallel. A newly created task is added
to the deque of a worker. This worker is the owner of this
task. Then a task can be executed by the worker or stolen
by a thief. A task keeps track of a boolean field stating
whether it is done, an expected value and a result of the
task’s execution algorithm. The execute method executes
the function that implements this algorithm and sets the
done field to true.

An example of such an algorithm could be calculating the
nth number in the Fibonacci sequence as defined by the
following equation:

fib(n) = (n < 2) ? n : fib(n− 1) + fib(n− 2) (1)

In a task, this would be implemented as:

1 i f (n < 2) {
2 r e s u l t = n ;
3 } else {
4 Task t1 = new Task (n − 1) ;
5 Task t2 = new Task (n − 2) ;
6 worker . spawn (t1) ;
7 worker . spawn (t2) ;
8 worker . sync () ;
9 worker . sync () ;

1the implementation of Lace’s deque in PVL can be found
at: https://github.com/campoe/lace-vercors

4

10 r e s u l t = t1 . r e s u l t + t2 . r e s u l t ;
11 }
12 done = true ;

Each recursively created subtask calculates their own Fi-
bonacci number, used by the parent task. However, it
needs to be verified that the deque functions correctly for
any implemented algorithm. Therefore, a function is de-
fined that is called by the execute method and directly
calculates the result. It is assumed that this function does
not affect the verification result. Hence, we use the Fi-
bonacci algorithm from Equation 1. The expected value
is set to the nth Fibonacci number when spawning a new
task. The execute method also sets the result field to the
nth Fibonacci number. Then we only need to verify that
the task contains the expected result when finished. The
Correct resource invariant has been defined that makes
this assertion:

1 r e sou r c e Correct () =
2 Value (done) ∗∗ Value (n) ∗∗ Value (

r e s u l t) ∗∗ Value (expected) ∗∗
3 (done ==> (expected == r e s u l t)) ;

In order for this assertion to pass, the value of n, expected
or result should not have been changed in the meantime.
If, for example, n has been updated, the wrong Fibonacci
number will be calculated.

If the task is not done yet, the value of result does not
matter. Furthermore, the task should be locked on to be
able to write to done and result. This ensures that not
only either field can have write access; i.e. both fields can
be written to within a locking block. Another advantage
is that no other thread can access these fields. Hence, in
the execute method, both result and done are set before
other threads are able to see these updates; ensuring that
result contains a value when done is true.

4.1.2 Deque
The deque of the Lace framework is a non-blocking split
task deque. The deque has methods for pushing, peeking
and popping. The peek method can be used to get the
current front task. Additionally, it returns a boolean in-
dicating whether the task is stolen or not. On another
note, the pop method does not remove the top task, but
this will be overwritten the next time a push instruction
is performed.

For verification, some useful resource invariants have been
defined. To access the elements, PArray gives access to all
tasks and with PIArray a specific task can be accessed:

1 r e sou r c e PArray (f r a c p) =
2 Value (ta sk s) ∗∗ ta sk s != null ∗∗ Value (

s i z e) ∗∗
3 (\ f o r a l l ∗ int j ; 0 <= j && j < s i z e ;

Perm(ta sks [j] , p)) ;
4
5 r e sou r c e PIArray (int i , f r a c p) =
6 Value (ta sk s) ∗∗ ta sk s != null ∗∗ Perm(

ta sk s [i] , p) ;

For PIArray it is necessary that the index of the task needs
to be less than the head, because all other tasks have been
popped off by the pop method. All popped off tasks have
an index more than or equal to the head. Therefore, the
popped off tasks do not exist as stated in the invariants

defined by Van Dijk [16]. New tasks can only be written to
the array at the head and will overwrite popped off tasks.

The steal method makes use of the PIArray resource in-
variant to steal a shared task that has not been stolen
yet. The compare-and-swap or CAS operation on the tail
makes sure to increment the tail. It is an atomic opera-
tion that compares the value in memory with an expected
value and, only if these are the same, puts a new value
in memory. Using a lock, write permission is granted on
the tail. This means that the current thread temporarily
takes full write permission and all other threads cannot
access the tail. Therefore, it can be safely updated when
its value is equal to the expected value. If the comparison
fails, or the split point was updated in the meantime, it
cannot be ensured anymore that there are any unstolen
shared tasks left.

The deque has a privately used method called shrinkShared.
In a weakly consistent memory model, a memory fence
should be included at the specified position. Otherwise,
the result will be that a task might be stolen, but the
method returns false as an update to tail is not detected
yet. Therefore, the owner of the task will assume that it
needs to execute the task itself. The stolen task is exe-
cuted by the owner and popped off the deque. Another
task pushes a new subtask on the deque which overwrites
the stolen task. After completion, the thief writes the
result to the new task which is (presumably) incorrect.
Consequently, the memory fence cannot be left out in a
weakly consistent memory model to ensure that this prob-
lem does not occur. As we assume a strongly consistent
memory model, we can omit this memory fence.

From the task’s done field, it can be verified whether a
task has been executed (at least once). In essence, it
is not necessary to prove that a task has been executed
exactly once. As long as it can be proven that the result
is correct.

4.1.3 Worker
The worker is basically a wrapper for the deque to make
it interact in a work-stealing context. Each worker has its
own deque and is able to execute its own tasks and steal
tasks from other workers. For simplification, the victim
that a worker steals from can be manually set. Therefore,
victim selection is not a concern anymore.

The worker can spawn new tasks in its own deque. This
essentially executes the push method of the deque. A
spawned task needs to be synced; i.e. the task needs to
be executed and then removed from the deque. Therefore,
the framework should be used correctly and each spawn is
matched with a sync. The spawn increments the head of
the deque while the sync decrements it again when calling
the pop method.

Two scenarios can be expected when this is incorrectly
used:

1. Spawning too often
Spawn requires that the head is less than the size of
the task array. Otherwise, the new task cannot be
pushed onto the deque. Spawning too often before
syncing might therefore result in an index overflow
error.

2. Syncing too often
Sync requires that the head is more than 0. Other-

5

wise, decrementing the head would result in an in-
valid (negative) index. Therefore, we cannot have
more executions of sync than of spawn.

As a result, each spawn that is executed needs to be fol-
lowed by a sync operation. Therefore, the head needs to
be a valid index before and after executing a spawn or
sync.

The worker contains a run method which is called when
forking the worker. Therefore, each worker is run on its
own thread. A work-stealing program would start out with
a single task called the root. The main worker (defined by
an identifier of 0) executes the root which spawns new sub-
tasks that can be stolen by other workers. These workers
keep stealing from each other until the root task is finished.

4.2 Verification
The most important verification step is done in the worker.
The invariant that should be verified is contained in the
Correct resource of the task. This resource invariant states
that a task that is finished executing, contains the cor-
rect result. This has been verified in the sync method by
asserting that the peeked task ends up done and the re-
sult is equal to the value expected by the matching spawn.
The same assertion is done in the run method of a worker
thread for the root task. The verification passes and there-
fore asserts that any spawned task is executed correctly
after syncing.

4.2.1 Validation
Unfortunately, a proof of the functional correctness of the
deque cannot directly be induced from a passing verifica-
tion. In other words, the proof can be unsound never-
theless. It is possible for an unsound verification to pass.
Therefore, we are required to validate the specification.
This can be done by introducing bugs in the specification.
We can adjust the implementation of a method to vio-
late its contract, or invert the boolean value of assertions
to test their validity. The verification is invalidated if it
passes nonetheless. Furthermore, we can move around a
false assertion to debug where the specification becomes
unsound. For example, we included a false assertion -
assertfalse - after unfolding a resource invariant. As the
verification passed nevertheless, we can conclude the speci-
fication is unsound. We moved the assertion before the un-
fold statement, resulting in the verification to fail. There-
fore, we discovered that the problem had to do with the
resource invariant.

4.3 Assumptions and limitations
Another reason why the verification does not induce a
proof is because some assumptions have been made which
should be validated as well. First of all, we assume a
strongly consistent memory model. Therefore, we can ex-
pect that loads and stores are not reordered and the mem-
ory fence in the shrinkShared method is not required.

Additionally, we expect that the task implements a deter-
ministic algorithm. Hence, we implemented the Fibonacci
sequence. We assume that the algorithm does not affect
the verification result, but this should be validated by test-
ing the verification for other algorithms. Furthermore, it
is uncertain whether VerCors truly verifies the execution
of a root task by multiple workers. Therefore, a main
method should be introduced. A root task, executed by
N workers, should calculate the nth Fibonacci number.

Furthermore, VerCors has some limitations. First of all,
we cannot define constant values. Therefore, we need to
assume that the framework is used correctly. The n and
expected fields in a task, for example, should not be up-
dated after they have been initially set. Secondly, a thief
is not supposed to directly call pop or push on a victim,
and a worker cannot steal from itself. A possible approach
to verify this is by restraining the method calls to specific
workers by a thread identifier. Finally, we assume that a
task is not overwritten before it has been executed and
sync pops off the task. In other words, pop should only
be called within sync. VerCors should be exploited to see
whether such verification is feasible.

In addition, the implemented framework is not a direct
copy of the Lace framework. The compare-and-swap op-
eration, used in the steal method, should be executed on
the tail and split point in one atomic operation. How-
ever, we have not taken this into account in the current
implementation, because we expect the behaviour to be
the same. The split point is compared after the tail has
been incremented, hence another thread can update the
tail or split point between these two operations. However,
as the CAS operation on the tail is already done, we can
ensure that thieves cannot steal the same task simultane-
ously. Nevertheless, more validation is required to ensure
that an update on the split point does not affect the ver-
ification result. Additionally, an atomic tuple could be
created that would incorporate the compare-and-swap of
both variables in a single atomic operation.

Some other challenges, with regard to VerCors, were en-
countered. As an example, some methods required a re-
source invariant which gave read permission on a vari-
able for which also write permission was necessary. Al-
though, VerCors passed verification, invalidating some as-
sertions does not fail the verification. For example, the
push method ensures that the head is incremented once.
However, incrementing the head twice did not fail on the
postcondition. As a solution, we removed these permis-
sions from the resource invariant, and added the necessary
read and write permissions to the method contracts.

A more important issue was encountered when verifying
that each task is executed and contains the correct re-
sult. It could not be verified that the done and result
field are set at the same time and are only set in the exe-
cute method. VerCors does not assume that the provided
code is the only code that can be executed. Therefore, it
is possible to set done to true without setting the result
correctly. Consequently, we specified the Correct resource
invariant, ensuring that any task that is done contains the
result of the function call.

4.3.1 Global invariants
In his dissertation, Van Dijk specifies five invariants [16].
Some of these invariants have been verified. For example,
the first invariant - a task x exists iff x < head - has been
verified by wrapping all access to the tasks with the PI-
Array resource invariant. This invariant is used to read a
task with an index less than the head. If write access is
required, then the index must be equal to the head. The
only place where a task is written is in the push method
which adds a new task that will be considered to exist.
Furthermore, the steal method accesses a task. It can be
asserted that the index of the task is less than the head.
However, due to time limitations, most of the other in-

6

variants could not be verified. In a perfect world, these
invariants can be ensured to always hold. Nonetheless, it
is uncertain whether this can be achieved in VerCors. A
possible approach could be to define a resource invariant
that encapsulates all the invariants. Each method should
then have this resource invariant as a pre- and postcondi-
tion.

5. CONCLUSION AND DISCUSSION
We implemented the deque from the Lace framework in
VerCors’ own specification language called PVL. The cor-
rectness of the deque should be verified. Although, there is
a formal paper proof, an automated proof using a verifica-
tion tool is crucial. Therefore, we verified the correctness
of the deque using a deductive verifier called VerCors. The
verification has been limited to assume a strongly consis-
tent memory model.

The specification in PVL passes the verification by Ver-
Cors. Therefore, we have decent confidence that the ex-
pected result from a spawned task is correctly returned by
the matched sync. However, we had to make some assump-
tions, because of bounded time and limitations regarding
VerCors. Some challenges were resolved, but proper val-
idation is necessary to justify our assumptions and come
to a valid proof.

Furthermore, it cannot be asserted that the shrinkShared
method returns true for a stolen task in a weakly consis-
tent memory model, because this proof is only valid for a
strongly consistent memory model. A memory fence needs
to be added to be able to prove this. Unfortunately, there
was not enough time to be able to come to this proof.
Therefore, we propose directions for future work.

5.1 Future work
All in all, to show that the deque used by the Lace frame-
work functions correctly in a strongly consistent memory
model, the specification should be tested for unexpected
behaviour. A possible approach would be to introduce a
bug by inverting boolean assertions and verifying that the
specification passes nevertheless.

Furthermore, the assumptions we made should be vali-
dated. A main function should be introduced to verify that
workers indeed correctly execute a task together. Ideally,
this can be verified for a more general case than the Fi-
bonacci algorithm. In addition, it should be verified that a
thief cannot directly call pop or push on a victim, and that
a worker cannot steal from itself. A possible solution is to
restrain the method calls to specific workers by a thread
identifier. Moreover, it should be verified that sync is the
only method to overwrite tasks, but it is uncertain whether
VerCors can verify this. Finally, the compare-and-swap
operation should be validated. An atomic tuple could be
implemented if the current implementation is invalid.

Additionally, the global invariants specified by Van Dijk
[16] should ideally be verified. A possible approach is to
create a resource invariant that encapsulates all these in-
variants. This resource invariant should then be included
in the pre- and postconditions of every method.

The next step is to rewrite the existing specification for a
weakly consistent memory model, because most computer
architectures nowadays do not use a strongly consistent
memory model. This would at least require to add a mem-
ory fence. After verification passes and a proof has been

established, the validity should be checked without the
memory fence. The verification tool should then detect a
bug and invalidate the verification.

6. REFERENCES
[1] https://fizalihsan.github.io/technology/

work-stealing.png.

[2] https://i.stack.imgur.com/czGx1.png.

[3] A. Amighi, S. Blom, and M. Huisman. Vercors: A
layered approach to practical verification of
concurrent software. In 2016 24th Euromicro
International Conference on Parallel, Distributed,
and Network-Based Processing (PDP), pages
495–503, Feb 2016.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: An
efficient multithreaded runtime system. SIGPLAN
Not., 30(8):207–216, Aug. 1995.

[5] S. Brookes and P. W. O’Hearn. Concurrent
separation logic. ACM SIGLOG News, 3(3):47–65,
Aug. 2016.

[6] D. Chase and Y. Lev. Dynamic circular
work-stealing deque. In Proceedings of the
Seventeenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA
’05, pages 21–28, New York, NY, USA, 2005. ACM.

[7] K. Faxén. Efficient work stealing for fine grained
parallelism. In 2010 39th International Conference
on Parallel Processing, pages 313–322, Sep. 2010.

[8] J.-C. Filliâtre. Deductive software verification. Int.
J. Softw. Tools Technol. Transf., 13(5):397–403, Oct.
2011.

[9] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the cilk-5 multithreaded
language. SIGPLAN Not., 33(5):212–223, May 1998.

[10] C. A. R. Hoare. An axiomatic basis for computer
programming. Commun. ACM, 12(10):576–580, Oct.
1969.

[11] R. Hähnle and M. Huisman. 24 challenges in
deductive software verification. In G. Reger and
D. Traytel, editors, ARCADE 2017. 1st
International Workshop on Automated Reasoning:
Challenges, Applications, Directions, Exemplary
Achievements, volume 51 of EPiC Series in
Computing, pages 37–41. EasyChair, 2017.

[12] N. M. Lê, A. Pop, A. Cohen, and F. Zappa Nardelli.
Correct and efficient work-stealing for weak memory
models. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, PPoPP ’13, pages 69–80, New York,
NY, USA, 2013. ACM.

[13] W. Oortwijn. Deductive Techniques for Model-Based
Concurrency Verification. Dissertation. University of
Twente, 2019.

[14] A. Podobas, M. Brorsson, and K.-F. Faxen. A
comparison of some recent task-based parallel
programming models. In Proceedings of 3rd
Workshop on Programmability Issues for Multi-Core
Computers. Swedish Insitute of Computer Science,
2010.

[15] C. G. Ritson and S. Owens. Benchmarking weak
memory models. SIGPLAN Not., 51(8):24:1–24:11,
Feb. 2016.

7

[16] T. van Dijk. Sylvan : Multi-core decision diagrams.
Dissertation. University of Twente, 2016.

[17] T. van Dijk and J. C. van de Pol. Lace:
Non-blocking split deque for work-stealing. In
Euro-Par 2014: Parallel Processing Workshops,
pages 206–217, Cham, 2014. Springer International
Publishing.

[18] D. B. Wagner and B. G. Calder. Leapfrogging: A
portable technique for implementing efficient
futures. SIGPLAN Not., 28(7):208–217, July 1993.

8

