
DATAFLOW-BASED MODEL-DRIVEN
ENGINEERING OF CONTROL SYSTEMS

K.A.E. (Koen) Zandberg

MSC ASSIGNMENT

Committee:
dr. ir. J.F. Broenink
dr. ir. D. Dresscher

ir. J. Scholten

January, 2020

003RaM2020
Robotics and Mechatronics

University of
P.O. Box 217
AE Enschede

The Netherlands

EEMCS

7500

Twente

a

Contents
1 Introduction 1

1.1 Context of This Thesis 1
1.2 Application Workflow . 1
1.3 Research questions . 3

1.3.1 Which dataflow models of computation are suit-
able as basis for model-driven development? . . 3

1.3.2 Which simulation features are required to verify
the supplied models? 3

1.3.3 Which platform specific information is required
to transform the dataflowbasedmodel into aPSM? 4

1.4 Thesis Structure . 4

2 Background 6
2.1 model-driven development Methodologies 6
2.2 Dataflow Models of Computation 7

2.2.1 Dataflow Theory 8
2.2.2 Synchronous Dataflow 8
2.2.3 Homogeneous Synchronous Dataflow 9
2.2.4 CSDF . 9
2.2.5 VRDF/VPDF . 9
2.2.6 BDF . 9
2.2.7 SADF . 9
2.2.8 FSM-SADF . 10
2.2.9 Dataflow analysis 10

2.3 Platform Meta Model Designs 10

3 Analysis 12
3.1 Control System requirements 12

3.1.1 Modelling Requirements 12
3.1.2 Model Analysis Requirements 12
3.1.3 Simulation Requirements 13

3.2 Dataflow Model of Computation 13
3.3 Platform Meta Model . 14

3.3.1 Platform Meta-Model Components 14

4 Design Requirements 16
4.1 Application design . 16

4.1.1 Model backend 16
4.1.2 Model analysis . 16
4.1.3 Model Simulation 17
4.1.4 Model-to-model conversion 18

4.2 Language design . 18
4.2.1 Model description 19
4.2.2 Hardware description design 19

5 Implementation 21
5.1 Function blocks . 21

5.1.1 Communication 21
5.1.2 Configuration . 22
5.1.3 Computational functionality 22

5.2 System meta-model . 22
5.3 Plant integration . 23

5.3.1 Model rendering 24
5.4 Model analysis . 24

5.4.1 SDF based models 25
5.5 Model simulation . 25

5.5.1 Co-simulation synchronization scheme 26

Koen Zandberg Dataflow based model-driven engineering of control systems b

5.6 Simulation Results . 26
5.7 Platform Meta Model . 27

5.7.1 Component types 28
5.8 Model-to-model conversion 29

6 Testing 31
6.1 Model handling . 31
6.2 Formal Model Verification 31

6.2.1 SADF extensions for models 34
6.3 Model functionality verification 35
6.4 Simulation . 35
6.5 Physical Quantity support 36
6.6 Platform Metamodel . 36
6.7 Model-to-model Conversions 37

6.7.1 Actor Expansion 38
6.7.2 Timing Adaptation 38
6.7.3 PSM Parameter override 39

7 Case Study 41
7.1 Model . 41
7.2 Platform Independent Model 42
7.3 PIM analysis . 42

7.3.1 Delay effects . 42
7.4 Platform Design . 43

7.4.1 RaMstix board . 43
7.4.2 Arduino Uno . 45

7.5 PSM Conversion . 45
7.5.1 RaMstix Target . 45
7.5.2 Arduino Uno Target 46

7.6 Evaluation . 46

8 Discussion 48

9 Conclusion and Recommendations 50
9.1 Recommendations . 51

Appendices 52

A Model examples 52
A.1 SDF and SADF examples 52
A.2 PID example . 54
A.3 Unit example . 56
A.4 Linix demonstrator . 57
A.5 Platform model files . 61

A.5.1 Platforms . 61
A.5.2 Boards . 62
A.5.3 Compute . 64
A.5.4 Actuators . 66
A.5.5 Sensors . 67

10 References 68

Koen Zandberg Dataflow based model-driven engineering of control systems 1

1 Introduction

With the need for more advanced control systems, tools and applica-
tions to aid the design of these control systems help to reduce the
number of design iterations required. One of the often used design
paradigms is model-driven development (MDD) (Selic, 2003). These
paradigms allow the engineer to focus on the control system by offer-
ing abstraction layers for both the hardware platform and the software
implementation details.

The increasing demand and increasing complexity of embedded con-
trol systems demands strong requirements on the design paradigms.
The systems, often distributed, are limited in resources while still hav-
ing to adhere to strict execution deadlines. With these limitations and
added requirements to the interaction between the software and the
hardware components, designing a full embedded control systems be-
comes a challenging exercise.

While it is clear from earlier work that a model driven structured ap-
proach with accompanying tools is a suitable approach, there is no
single correct solution. Multiple approaches each with their advan-
tages and disadvantages are available. Often these approaches focus
on a hierarchical structural approach to the software based on object
oriented design principles. From a control engineer working with an
algorithmic approach, this is not an optimal approach.

1.1 Context of This Thesis

This thesis shows a stepwise-refinement approach based on dataflow
representations of the models as an alternative to the previous work
at the research group. The workflow is geared towards an incremental
approach to control system design, each step increasing the level of
detail available in the models.

The approach uses a dataflow representation internally for analysis
and simulation of the models. The dataflow-based approach offers
analysis into the latency of the models.

Themain use of dataflowmodels is in the analysis of DSP applications,
but is used here for modelling control systems. In contrast to control
systems, for DSP systems throughput is often more important than
latency. Within this paper, throughput analysis is going to be neglected
in favor of latency analysis.

An analysis and simulation application is presented and used as proof
of principle of the approach. This is used for verification of the ideas
and for validation of the proposed workflow. At last it will be used to
provide answers to the research questions.

1.2 Application Workflow

A top down approach to the design of these control systems is given
here with an accompanying application to enhance the development.
The workflow used for the system design flow is based on Broenink,
Ni, and Groothuis (2010) and Broenink and Ni (2012). The multi-step
refinement approach allows for a modular and incremental way to the
challenges of the control system design.

The different steps of the workflow are shown in Figure 1.1. For an end
user (control engineer) this application workflow consists of a multi-
step approach where each step increases the level of refinement of

Koen Zandberg Dataflow based model-driven engineering of control systems 2

the model of the control system descriptions until the result is the gen-
erated application code. This workflow allows the engineer to supply
a high-level model based on the component interaction as a start. The
application should allow for verifcation of functional properties, with
emphasis on non-functional properties such as deadline analysis. Af-
ter the final step, platform-specific application code is presented as
implementation of the control system on the selected platform.

Plant Model

Plant Model

Plant Model

Plant Model

Plant Model
(RT sim)

Real Plant

Control Laws

Platform Inde-
pendent ModelPlatform Model

Platform Spe-
cific Model

Platform Code

Platform

1

2a

2b

3a

3b

4

Figure 1.1: Stepwise refinement work-
flow for control systems, the bold steps
are the main focus of this thesis.

The first step of theworkflow is to have a set of control laws engineered
for the plant model designed. The design of the control laws itself is
out of scope for the application proposed here, but must be in a format
suitable for conversion to a block diagram-like structure. This step is
shown as stage 2a of the workflow described in Figure 1.1.

The next step as shown in stage 2b of the workflow is to convert the
control laws into a platform-independent model (PIM), converting the
control laws into a suitable format for the application. The PIM allows
for early formal verification of the model using modelling analysis fea-
tures, and for functional verification of themodel by co-simulation with
the plant model. The PIM allows for analysis and simulation with ar-
bitrary accuracy, with infinite accuracy assumed by default. Function
blocks are assumed to have no delay, but can be configured with a
non-zero worst-case execution time.

Parallel to this stage models of the available hardware platforms are
created. Thesemodels contain the specifications of the hardware com-
ponents on the platform. The separate platform models can be used
as a library and they are aimed to be reusable bymultiple different con-
trol systems.

In the third step, the model is adapted to a chosen target platform
system, an automated conversion from the PIM to a platform-specific
model (PSM). The specification from the platform models is used to
augment the PIM with details from the platform model to a PSM. The
goal is to have a model that closely matches the worst-case behaviour
on the target hardware platform, enabling analysis and verification of
the behaviour of the system on the target hardware.

Step 3b from Figure 1.1 consists of a translation of the PSM to plat-
form code. Based on the hardware description from the second step,

Koen Zandberg Dataflow based model-driven engineering of control systems 3

platform- and application-specific code is generated. The resulting
code can be deployed on the hardware and should function compa-
rable to the earlier analysis. This step is out of scope for this thesis.

1.3 Research questions

Theworkflow described above offers a number of challenges when us-
ing dataflow-based models. This thesis attempts to provide answers
to the challenges involved in step 2b and 3a of the workflow. The set
of research questions presented here are used to explore these chal-
lenges and come to a set of requirements for the application.

1.3.1 Which dataflow models of computation are suitable as basis for model-
driven development?

Within dataflow different models of computation (Stuijk et al., 2011)
are available. Comparisons of thesemodels often results in a trade-off
between available formalmodel analysis techniques andmodelling ex-
pressiveness. Not allmodels provide the analysis techniques or the ex-
pressiveness to model control systems. The focus of this question is
to determine which models of computation are suitable for modelling
control systems, resulting in a list of models of computation which of-
fer enough expressiveness while offering enough analysis techniques
to still allow for sufficient model verification.

• How is the system limited by the choice of dataflow model of
computation? When a control system is modelled as dataflow
model, sufficient modelling expressiveness is required to repre-
sent the control system as the dataflow model. Some models
of computation are too restricted to properly model all possible
aspects of a control system.

• Which analysis techniques from the dataflow models of compu-
tations can be applied for control-model analysis? Each model
of computation provides a set of analysis methods. The analy-
sis required for formal verification of the control systemmust be
mapped to these analysis methods. The expressiveness of the
Model of Computation (MoC) can be limited to satisfy require-
ments of required analysis techniques, placing restrictions on the
expressiveness available for the control system models.

Together these subquestions limit the available models of computa-
tion by either a minimum amount of required expressiveness or the
required analysis provided.

1.3.2 Which simulation features are required to verify the supplied models?

While dataflow based models allow for some analysis by themselves,
it does not include functional aspects of the system in the models.
To extend the models in such as way to allow functional simulation, a
dataflow simulator must be extended to include these features.

• Which additional details are required for improving the design
and analysis of models? Model design can benefit greatly from
additional details and features added to the models. This in-
cludes features to clarify the model and limit the interpretation
ambiguity of the models. A simulator must provide the level of
detail required for a sufficient model verification required by the
end user.

Koen Zandberg Dataflow based model-driven engineering of control systems 4

• How should external models be integrated in the simulator? Ac-
curate model simulation is only possible with an accompanying
plant model integrated in the simulator. Without this model, it is
not possible to verify the model against the real-world usage of
the system.

The goal is to end upwith an extended feature set on top of the dataflow
models to allow for functional simulation of models. Without these
features the analysis is restricted to timing analysis, but without ver-
ification of the model functionality it is not possible to show how the
model behaves under the timing restrictions. These questions attempt
to seek for answers on which features must be implemented to add
sufficient analysis options to the simulator to allow the end user to
verify the functionality of their models.

1.3.3 Which platform specific information is required to transform the dataflow
based model into a PSM?

Translating the dataflow based model to a platform specific model re-
quires refinements to the initial model adding platform information.
The platform meta model (PMM) provides the necessary platform ab-
straction for the control model to enable this transformation. This ab-
stractionmust strike a balance between providing enough detail for the
control model to adapt without increasing the complexity necessarily

• Which properties of thePMMare strictly necessary for themodel-
to-model conversion? ThePMMmust properly propagate platform-
specific limitations to the model. Based on these limitations, the
model-to-model conversion can be adapted to adhere to the re-
quirements of the platform.

• How should the PMMbe structured to allow for reuse of different
components? Multiple target platforms can share components
between them, such as different platforms sharing an identical
sensor or actuator. This reuse can exist at multiple levels, Differ-
ent SoCs could share processor architectures or peripheral IP im-
plementations. For efficient use of the PMM, enabling the reuse
of information is a must have.

• Which extended analysis options are availablewith the additional
information from the PMM for the dataflow model? Adding the
extra information from the PMM results in a more detailed and
more specific model. Information such as allowed parallel exe-
cution or peripheral accessmodes can add additional refinement
to the model. This extra information can then be used to affirm
whether the model is realisable on the specified platform.

The resulting PMM, when adhering to the results of these questions,
offers the required features for the model-to-model conversion and al-
lows the refinement of the PIM into the PSM. Furthermore it offers a
basis for the code generation required for a final model-to-text conver-
sion.

1.4 Thesis Structure

The rest of this thesis is structured as follows. First the previous work
relevant for this thesis is described (Chapter 2), including an concise
exploration of the different dataflow models of computation and a de-
scription of a number of different existing model-driven engineering
solutions. Based on this, a dataflow model of computation is selected
in the analysis (Chapter 3). The extensions required to the simulator

Koen Zandberg Dataflow based model-driven engineering of control systems 5

are also discussed in the analysis. From this analysis and the research
questions a set of requirements for the proof-of-principle application
are formulated in the design decisions (Chapter 4). These design re-
quirements are used as a basis for the application of which the design
principles are described in the execution in Chapter 5. The resulting
features are extensively tested and verified in Chapter 6: Testing. In
Chapter 7, a further case study showing the design steps, expectations
and results for a model is presented in the case study. Finally the re-
sults from the verification and the case study are discussed in Chap-
ter 8 and finally the research questions are answered in Chapter 9.

Koen Zandberg Dataflow based model-driven engineering of control systems 6

2 Background

2.1 model-driven development Methodologies

Code generation based on model-driven development (MDD) as mod-
elling system is not a new area. Already a number of solutions exist
with multiple different approaches to MDD. These approaches distin-
guish themselves based onmodelling language, component represen-
tation and offered features.

RobotML (Dhouib et al., 2012) is a DSL for design, simulation and de-
ployment of robotic application. The model consists of architecture,
communication, behaviour and deployment meta-models. Each meta-
model has their own function defining different aspects of the robotic
application. The architectural model defines the high level aspects of
the robotic application. This includes the robotic system, describing
the structural composition of the application using the CPC model.
The communications aspect handles formalized data exchange us-
ing ports. Behaviour allows defining high level instructions using al-
gorithms or finite state machines. Deployment specifies the target
robotic platform, assisting in the code generation for the appliction A
full eclipse based toolchain provided with the workflow. RobotML al-
lows for defining non-functional properties such as timing information.
This can be fed into schedulability analysis tools e.g. Cheddar (Singhoff
et al., 2004).

The BRICS component model (Bruyninckx et al., 2013) describes two
paradigms – Model-driven approach and separation of concerns. The
separation of concerns paradigm is mapped to the 5Cs: Communica-
tion Computation, Configuration, Coordination and Composition. The
model-driven approach follows aComponent-Port-Connector (CPC)meta-
model. The components represent computations and can be hierar-
chically composed to represent composite components. Ports repre-
sent communicationwhere connectors combine twocompatible ports,
Configuration allows for influencing the system behaviour by configu-
ration parameters Coordination determines the behaviour of the com-
ponents and how the different components must function together.
Composition brings the model together as a instance of a particular
system, allowing decoupling and reuse where necessary. The work-
flow as defined by the BRICS model is roughly as follow: A structural
architecture is defined using components, ports and connectors. Each
complex component includes a coördinator based on state machines.
A model to text transformation is applied to generate the code.

SmartSoft (Schlegel andWorz, 1999) has amodel based approachbased
on amultilayered component approach. SmartSoft provides primitives
as building blocks to create robotic systems. The internal component
implementation is abstracted away by a skeleton representation. Mod-
elling is based on UML based diagrams to facilitate reuse of compo-
nents. The component itself define strict interfaces to provide reliable
reuse of components. Models do not contain any timing information,
although one of the target platforms is a real time operating system.

The V3CMM components meta-model (Diego et al., 2010) uses three
complementary views: Structural, coordination and algorithmic to achieve
a component based model. The structureal view provides the static
structure of the required components. The coordination viewdescribes
the event-driven behaviour of each component. Lastly the algorithmic
view provides a way to express algorithms implemented by the com-
ponents. Components are reusable in multiple ways. The modelling
tools use UML to represent the models using both class diagrams and

Koen Zandberg Dataflow based model-driven engineering of control systems 7

state transition diagrams.

The model-driven approach as described for TERRA (Bezemer, 2013)
separates the design workflow into amulti stage approach; each stage
refining the model. The TERRA models are based on the Communi-
cating Sequential Processes (CSP) language. Hardware design and
loop control components are separated into two branches. It allows
for a strong separation of components and hardware. Furthermore the
incremental approach of TERRA allows for increasing the complexity
model in a stepwise manner.

While not containing a code generator, the Ptolemy II software frame-
work (Liu et al., 2001) contains functionality to experiment with actor-
oriented design. It supports multiple different models of computation,
synchronous dataflow among others. It allows for hierarchically de-
signed models and is able to model heterogeneous systems. The aim
is to be able to study timing properties of different hybrid systems.

ThingML(Harrand et al., 2016) is a framework for code generation tar-
geting heterogeneousplatformsaimedat sensor network applications.
Multiple different target languages and platforms are targeted and a lot
of work went into tuning the approach for high customizability. It sup-
portsmultiple different architectures and frameworks as targets. Each
language has their own set of code generator targets. Furthermore,
functionality is split into a number of categories. For each category, be-
haviour can be overridden by using inheritance. Support for so called
channels and connectors is used to implement either inter-actor com-
munication possibly spanning multiple physical systems. This also in-
cludes functionality to communicate directly to peripherals, for exam-
ple I²C connected peripherals. Behavioural implementations are gen-
erated by generating state machine structures. It can generate either
full code for a component or rely on middleware API’s to support the
required functionality.

Among the advantages of ThingML is the use of a single languagewith
multiple supported platforms as target backend, resulting in a platform
independent specification. To allow for a practical system, the system
must allow for extending and integrating the generated code with ex-
isting code. This to allow for a gradual adoption of model-driven engi-
neering (MDE) and allowing interfacing legacy code.

Summarizing, most of the approaches describe the models using an
UML-like structural approachwhere the relation betweendifferent com-
ponents is specified. This allows for detailed descriptions of the mod-
els, focussing ondescribing the functional aspects of themodels. How-
ever they lack simulation and analysis options required for verification
of the system models.

In contrast to most of the approaches listed here, the proposed work-
flow will focus on letting the end user create a model from a chain of
computational functions. The approach used here allows for providing
analysis and functional simulation during the modelling process.

2.2 Dataflow Models of Computation

Dataflow is a modelling technique to describe operations on a stream
of data. Closely related toKahnProcessNetworks (Kahn, 1974), dataflow
diagrams can be used to describe concurrent real-time systems, and
data processing applications. DifferentMoCsare availablewithin dataflow,
each with different limitations on expressiveness and analysis. Fig-
ure 2.1 shows a hasse diagram of different dataflow MoCs. Each MoC

Koen Zandberg Dataflow based model-driven engineering of control systems 8

RPN

DDF

KPN

SADF

BDF

PSDF

CSDF

CG

SDF

HSDF

VPDF

VRDF

FSM-SADF

Figure 2.1: Hasse diagram of different
dataflow models of computation

in the diagram is able to model all MoCs below itself.

2.2.1 Dataflow Theory

A concise description of dataflow operation theory is required as back-
ground information. Dataflow diagrams are expressed as a set of ac-
tors. Each actor has an associated predefined firing duration. An ac-
tor fires as soon as it’s firing condition is satisfied. For most dataflow
MoCs the firing condition is satisfied as soon as each input edge con-
tains at least the number of required tokens for that input. Tokens are
used to represent data within the model, representing abstract data.
An actor consumes the required number of tokens from each inbound
edge when starting and releases the indicated number of tokens on
each outbound edge when done.

Actors are connected using edges. An edge can be modelled as a
buffered directional unbounded communication channel. Edges can
contain an initial set of tokens.

An actor is only limited by the firing condition before it is executed.
There is no limitation on concurrent execution of a single actor. How-
ever it can be limited by adding a self edge with only a single token

The MoC selected for this system should allow for enough expressive-
ness to describe control systems with, while allowing for enough anal-
ysis possibilities to validate the control system.

An example dataflow graph is shown in Figure 2.2. The dataflow graph
contains two actors, named t1 and t2, each with an execution time of
1ms, indicated by the ρ symbol. t1 Has a production of 4 tokens on
the edge to t2 and consumption of 1 token on the edge from t2. Actor
t2 has opposite butmatching consumption rates. Furthermore 1 initial
token are available on the edge from t2 to t1, indicated with δ symbol.
Each actor also has a self edge with one initial token and consump-
tion and production equal to 1. This limits parallel execution of each
actor by requiring a token to be available on the self edge. This token
is consumed when the actor execution starts and produced when the
execution of the actor finishes.

t2

�=1.0 ms

 �=1

11

t1

�=1.0 ms

 �=1 1
1

4

4

 �=1

11

Figure 2.2: Example synchronous
dataflow model with two actors.

A limited set of dataflowMoCs relevant for this work is presented here.
Not all properties of the different MoCs are described. Features re-
quired for this work are emphasised.

2.2.2 Synchronous Dataflow

Synchronous dataflow (SDF) allow for modelling statically scheduled
applications. Dynamic behaviour however is not possible. Within an
SDF model, actors can have a arbitrary but fixed number of consumed
or produced tokens for each edge, and firing times are constant. Anal-
ysis options contain schedule, deadlock and buffer size analysis. Due
to the static nature of the SDF schedule, the firing pattern will form a
repetitive pattern, or iteration, after each iteration, a deadlock-free SDF
model is at the same state. With these properties, an SDF-basedmodel

Koen Zandberg Dataflow based model-driven engineering of control systems 9

allows for synthesis based on a static schedule. When data-dependent
choice is not required in themodel, SDF-basedmodels are sufficient to
model the applications.

2.2.3 Homogeneous Synchronous Dataflow

HomogeneousSynchronousDataflowmodels are a subset of SDFmod-
els. Within an HSDF model, all token production and consumption
rates are equal to one. While this simplifies the analysis, the expres-
siveness is severely limited with this.

2.2.4 CSDF

Cyclo static dataflow (Bilsen et al., 1996) allows for variable schedule
based on a predefined repeating sequence. No data dependent pat-
tern is possible, keeping the system statically schedulable. Some ad-
ditional expressiveness is available due to this pattern based variations
in the actors.

2.2.5 VRDF/VPDF

Variable Rate Dataflow (Wiggers et al., 2008) allows for actors with
predefined variable production and consumption rates. This allows for
data dependent data rates. VPDF extends this in a CSDF-like way with
different phases for each actors. Multiple different predefined variable
production and consumption rates can be defined for each actor, with
the actor state being in one of these predefined rate settings.

2.2.6 BDF

Boolean Dataflow (Buck and Lee, 1993) allows for an additional actor
type implementing an boolean choice between two output actors. To-
kens are produced on one of the two edges. The output edge depends
on the value of the control token consumed by the boolean-controlled
actors. This provides the model with a limited way to influence the
behaviour of the models.

2.2.7 SADF

Scenario-aware dataflow (Theelen et al., 2006) allows for a fully dy-
namic schedule, with switching based on special detector actors. The
additional detector type actor allows for changing state based on a
combination of a state machine and the received token. Special con-
trol edges, originating from the detector actors, allow for propagating a
state change to different actors. The control tokens from these edges
are consumed by the actors befor processing the regular tokens. Both
token consumption and execution time is determined by the control
token consumed.

While analysis is limited by the dynamic scheduling nature, it is possi-
ble to reduce themodel to a set of different SDF-typemodels, based on
the different states reachable. When the models are limited to strong
consistency and strongdependency, similar analysis to SDF-basedmod-
els is applicable.

An important aspect of scenario-aware dataflow (SADF) based graphs
is the explicit sequence of scenarios possible represented by the state
machines associated with the decoder actors. This is not available
with other data dependent dataflow MoCs such as VPDF and DDF.

Koen Zandberg Dataflow based model-driven engineering of control systems 10

2.2.8 FSM-SADF

Finite State Machine Scenario Aware Dataflow (Stuijk et al., 2011) are
less expressive compared to SADF in that data rates can be varied once
per iteration. It is based on the SADF MoC with the limitation that the
system is only allowed to switch states at the beginning of the SDF it-
eration. Each iteration, a state switch happens, influencing token rates
and firing times. While technically data dependent choice is available,
state transitions are modelled with a probabilitstic model.

2.2.9 Dataflow analysis

The dataflow analysis as used here focuses on consistency checks,
deadlock checks and latency analysis.

• Consistency: A dataflow graph is consistent if on each edge, in
an infinite firing, the same number of tokens are consumed as
produced.

• Repetition vector: The vector describing the number of repeti-
tions for each actor that will cause the number of tokens pro-
duced and consumed on an edge to be equal.

• Deadlock Free: An dataflow is deadlock free if sufficient tokens
are available such that all actors are able to fire a number of times
equal to their repetition vector entry.

Consistency checks are important to prevent either deadlocks or to-
ken accumulations in long-runningmodels. Depending on the dataflow
MoC, different techniques are available to verify whether a graph is
consistent, based on a set of balance equations (Lee, 1991), (Buck and
Lee, 1993), (Theelen et al., 2006) The null space of the balance equa-
tions has a nontrivial solution when the graph is consistent. This non-
trivial solution is the repetition vector of the graph.

A model is deadlock free when sufficient tokens are available on ev-
ery cycle of actors in the graph to let every actor execute a number of
times equal to their repetition vector. A consistent dataflow graph is
not necessarily deadlock free, a consistent graph does not necessar-
ily have sufficient tokens available to prevent deadlocks. After each
execution cycle, the token distribution is at the initial distribution. A
deadlock-free graph is not necessarily consistent as a graph accumu-
lating tokens can be deadlock free but is not consistent.

2.3 Platform Meta Model Designs

Platform models are already extensively used on computer systems
where no enumeration of connected components is available, often
the case with embedded systems.

Device Tree (Likely and Boyer, 2008) is used on the Linux operating
system when the hardware does not support enumeration. While enu-
meration is available on platforms containing a BIOS, platforms such
as PowerPC require a description of the hardware to provide the kernel
with the hardware configuration. Device Tree offers a tree based sys-
tem containing the layout of the hardware with all properties required
to initialize the proper drivers. It offers a human readable format sup-
porting a hierarchical and reusable format which is compiled into a
binary representation when deployed.

Mbed OS (Arm Limited, 2019) follows an hierarchical structure sepa-
rating the SoC from the platform config code. Configuration can be

Koen Zandberg Dataflow based model-driven engineering of control systems 11

specified at multiple levels with the target board as the highest level.
Boards can contain configuration for peripherals and supported fea-
tures.

Both of these frameworks succesfully separate function and config-
uration from eachother. They also succesfully use a hierarchical de-
scription of reusable components. However, their application is strictly
geared towards a single application and their definitions are not aimed
at reusability by other projects.

Koen Zandberg Dataflow based model-driven engineering of control systems 12

3 Analysis

Identification of the required features for modelling control systems
must be explored before application requirements can be formulated.
First modelling and analysis requirements for control systems must
be explored. This provides the groundwork for the requirements of the
application. Based on the same requirements, the explored dataflow
models of computation are compared and one is selected as model
backend for the application.

3.1 Control System requirements

For the system to be of use to the control engineer, some requirements
have to be explored first. These requirements are necessary to allow
the control engineer to use the software for control system design. Re-
quirements can be categorized:

• Modelling: The expressiveness required formodelling control sys-
tems.

• Analysis: The set of analysis features required for verification of
the non-functional parts of the control system.

• Simulation: The features required in the simulator for verification
of the functional aspects of the control system.

3.1.1 Modelling Requirements

Some degree of expressiveness is required in the modelling system to
allow the control engineer enough expressive freedom to design the
control system. Limiting this too much obstructs the control engineer
making the software unusable. First the requirements from control
system perspective are enumerated. These are then translated to re-
quirements for the modelling language in Chapter 4.

Identified control system modelling expressiveness requirements are:

• Function blocks: It must be possible to model function blocks
such asmultipliers or integrators or more com. The components
are the basic building blocks of the control system and provide
the computational aspect of the models

• Component interaction: As a basic requirement it must be pos-
sible to model interaction between different components of the
system. This allows for making complex networks of compo-
nents interacting to create a control system and model the com-
munication aspect of the control system.

• Runtime reconfiguration: Control systems could require multiple
operation regions or configurations. Having a way to model be-
havioural change based on model values allows for expressing
choice. The co-ordination can be used to model multi-agent sys-
tems, safety layers or startup and shutdown effects. Two types
of runtime reconfiguration can be distinguished, influencing con-
figuration parameters of a function block during execution and in-
fluencing the active processing path within multiple parallel pro-
cessing paths. Both are required for modelling control systems.

3.1.2 Model Analysis Requirements

Verification of the supplied model is required on non-functional as-
pects to confirm that the control systemwill not stall during execution.

Koen Zandberg Dataflow based model-driven engineering of control systems 13

Latency analysis allows the end user to investigate the influence on the
dynamic behaviour of the plant (Jensen et al., 2011).

• Deadlock: It must be possible to analyze the system for deadlock
problems. No guarantees are possible with a system where a
deadlock situation is possible in the control flow.

• Latency: As latency determines for a large part whether the sys-
tem is stable, it must be possible to view and analyze the latency
between different components of the control system. This re-
quires that an actor execution schedule for the system must be
constructed. Sufficient knowledge of the target platform by the
software is required for the construction of the schedule and the
following analysis.

3.1.3 Simulation Requirements

Part of the model verification requires simulations of the model. This
allows for determining the response of the model to different situa-
tions and determine the functional performance of the control system
(Jensen et al., 2011). A number of aspects are required to facilitate the
verification of the models for the end user:

• Plant integration: Integration of continuous-time plantmodels via
a co-simulation interface provides the end user with away to sup-
port the design flow. Without this integration, the models can
not be verified against scenarios representative for real-world us-
age andwill hamper a first-time right realisation (Broenink andNi,
2012).

• Unit aware: The simulator must allow the end user to take advan-
tage of defining units for different signals (Broenink andBroenink,
2018). This provides additional details to themodels to verify sig-
nal relations.

Simulation should be possible with multiple levels of detail, depending
on the amount of information provided by the platform model. This
allows for a trade-off between simulation speed and accuracy for the
selected platform.

3.2 Dataflow Model of Computation

The selected dataflow MoC must provide the required expressiveness
and analysis options suitable for modelling control systems. The re-
quirements described earliermust be satisfied by theMoC. All dataflow
models of computationmodel systems based on a collection of actors
and edges between the actors, effectively satisfying the function block
and interaction requirements. Runtime choice, deadlock analysis and
latency analysis differ for the different models of computation.

Model of Deadlock Latency Runtime path Runtime
Computation analysis analysis selection reconfiguration

SDF ✔ ✔ ✘ ✘
CSDF ✔ ✔ ✘ ✘
VRDF ✘ ✘ ✘ ✔
VPDF ✘ ✘ ✘ ✔
BDF ✔ ✔ ✔ ✘
FSM-SADF ✔ ✔ ✘ ✘
SADF ✔ ✔ ✔ ✔

Table 3.1: Requirements versus the
different dataflow MoC options

Koen Zandberg Dataflow based model-driven engineering of control systems 14

1 https://git.ram.ewi.utwente.nl/ramstix/ramstix

Shown in Table 3.1 are the different dataflow models of computation.
Two dataflow models of computation can be selected from the table.
The first case when no runtime choice is required, SDF as MoC satis-
fies the requirements. While CSDF appears to be suitable for this case,
it allows for variable consumption and production rates, adding com-
plexity where it is not necessarily required.

When runtime choice is required, SADF satisfies all requirements. To
allow for deadlock and latency analysis, the SADF models however
need to be limited in their expressiveness. Notably any detector ac-
tor must fire only once every cycle. Still with this limitation in place,
SADF offers the flexibility required by the control system requirements
while retaining the required analysis options.

When runtime choice is not required for the model, the SADF-based
graphs can be simplified to SDF graphs without any effort. The main
advantage of using SDF instead of SADF as MoC is that it allows for a
static scheduler when realizing the model. Simplifying an SADF-based
graph to SDF is possible when no detector actors are present in the
model.

3.3 Platform Meta Model

The PMM gives a description complete enough to generate the PSM.
It needs to describe the hardware platform in a code-independent way,
and provide the information required for both the PSM and the gen-
eration of the final platform-specific code. The platform description
domain-specific language (DSL) should allow for reuse of components,
component timing, and performance specification, furthermore, itmust
specify a target execution architecture. The information can be cat-
egorized into code-generation assisting information and timing infor-
mation. The code-generation related information allows for convert-
ing the PSM into the platform-specific code. Timing information is
required for analysis and simulation of the PSM, while essential for
analysis, it is not required for the code generation.

3.3.1 Platform Meta-Model Components

The PMM describes a contained and interconnected set of hardware
providing sufficient details for a refinement of the PIM to a PSM. The
PMM must allow for describing the required information to allow for
sufficient timing analysis on the PSM. It provides a worst-case execu-
tion time and a value accuracy specification of the processing units.
This allows for more detailed simulations using the additional hard-
ware specification from the platform model on the system model.

A hierarchicalmodelling structure describing the components of a hard-
ware platform is required to model the complexities of hardware plat-
forms. Hardware platforms consist of multiple components, the phys-
ical components on a platform acting on the data, interconnected to
complex structures sometimes containing another different platform
as subcomponent. For example, the RaMstix board1 contains an FPGA
and a Gumstix platform.

Different types of components can be identified to simplify the PMM
into a set of component-type specific meta-models. Components can
to be separated into execution models such as a SoC or FPGA and
peripheral based components such as sensors, actuator and commu-
nication modules. A short description of each identified component
type follows here:

Koen Zandberg Dataflow based model-driven engineering of control systems 15

platform
(platform)

platform/board
(board)

platform/board/fpga
(compute)

platform/board/dac
(actuator)

spi

spi0

platform/board/adc
(sensor)

spi

spi1

platform/plant
(plant)

input

out

in

output

Figure 3.1: Platform model containing a
plant and a board. The board contains
a compute module, an actuator and
a sensor connected to each other via
their interfaces.

Sensors: The sensor component type provides the properties of differ-
ent available sensor types. The sensor acts as a boundary between
the continuous-time plants and the event-driven function blocks. Main
attributes of a sensor are measurement interval, accuracy, and delay.
A sensor requires at least one event-driven input to trigger the sensor
and one analog input to sample values from.

Actuators: The actuator component type provides the properties re-
quired for modelling different actuator types. It acts as a boundary be-
tween the event-driven function blocks to the plant models. Attributes
used here consist of update interval, accuracy and delay. Actuators
require at least one analog output and at least one event-driven value
input.

Computemodules: Thesemodules consist of components such asmi-
crocontrollers and FPGAs. They allow for allocating multiple function
blocks on them to be scheduled within the same processing unit.

Plants: A component representing the dynamic system of which the
behaviour is steered by the control system. The plant models can in-
clude additional components to aid the plant connectors such as built-
in actuators or sensors.

From the components described above two structures can be derived:

Boards: Boards represent components containing multiple interfaces
and one or more compute modules. A board can inherit (contain) dif-
ferent other boards, modules and components. The structure of a
board allows for a hierarchical description of the components.

Platform: A platform is the final structure consisting of at least a single
board. The platform defines the full configuration for a single model
and is to be used as a target for amodel. A platform can include plants.

Interfaces provide the meta-model framework for describing ports on
different modules. The interface provides the additional information
required to model the properties of the interconnection between the
components. Different types of interfaces provide different properties
here and the type of interface is dictated by the physical implementa-
tion of the component.

An example platform model is shown in Figure 3.1. It consists of a
platform containing connecting a board component with a plant com-
ponent. The board contains a compute module, a sensor and an ac-
tuator. In the example, the different components are named (shown
between parentheses) after their specific component types. Interfaces
provided by the components are used to connect the components with
each other.

Koen Zandberg Dataflow based model-driven engineering of control systems 16

4 Design Requirements

A large part of the work consist of a tool design as a proof of principle
for the proposedworkflow and design paradigms. Both the application
itself and the input files required for the application must adhere to a
set of requirements. The requirements formulated here are based on
the research questions and analysis results.

4.1 Application design

The application requirements are split into a number of different cate-
gories.

• The model backend specifies the requirements for the dataflow
based model processing.

• Themodel analysis builds upon this and specifies which analysis
is required for the models for verification of the models.

• The simulation requirements specify the requirements on the sim-
ulation of the models and which results are expected from the
simulations by the engineer.

4.1.1 Model backend

Requirement 1: The application must use scenario-aware dataflow as
dataflow MoC

The choice inmodel backend dictates the restrictions on themodelling
freedom and which analysis is available for the models. Based on the
exploration of the different dataflow MoCs, SADF fits the current ap-
proach. As discussed in Chapter 3, It allows a limited notion of choice
within themodel. With the limitations preventing Turing-completeness,
it allows for sufficient analysis of the models. Having this in the appli-
cation allows for supervisory control by modifying the state of actors
during run-time. The consistency and deadlock analysis from SADF
can be used on the models for formal verification of these aspects.
While it does not put any guarantees on the functionality of the model,
it allows for proving that the model will not deadlock at some point in
time.

Requirement 2: The application must be able to operate on physical
quantities

It must be aware of the relation between different quantities and units
of measure. The advantage is that it allows for expressing models
with the physical quantities included, increasing the ease of use for
the end user by removing the need for converting measurements and
setpoints to opaque values. The addition of physical quantities to the
model adds another layer of verification by restricting operations to
adhere to the rules of dimensional analysis.

4.1.2 Model analysis

The goal of the model analysis is to verify a number of essential prop-
erties of the model. This to ensure that the modelled system is able to
execute indefinitely without running into memory constraints.

Requirement 3: The application must be able to formally verify whether
the dataflow equivalent of the model is consistent

Koen Zandberg Dataflow based model-driven engineering of control systems 17

Without this verification, a cyclic dependency will either deadlock or
use unbounded FIFO space. If this is the case, themodel can not be run
indefinitely and will crash the execution platform either by deadlocking
or by consuming too much memory.

Requirement 4: The application must be able to prove that the supplied
model is deadlock free.

The second requirement is that every cycle must be proven to have
enough tokens available to be deadlock free. Together with the proof
that themodel is consistent, this ensures that themodel can run indefi-
nitely without deadlock. This is essential for long running applications.

Requirement 5: The application should be able to prove whether clock
elements are the limiting factor in throughput for a model

This requirement allows the application to formally verify that token
throughput of the system is limited by tasks representing periodic clocks
in the models, in other words, all components in the system have at
most an execution time equal to a clock element. When the token
throughput of the dataflowmodel is not limited at the clock, it is limited
at a component too slow for the configured clock frequency.

4.1.3 Model Simulation

Requirement 6: The simulation must allow for verification of the func-
tional aspects of the model

One of the goals of the application is to allow the engineer not only
analysis of the models, but also verification of the functionality of the
models. This is essential for a performance-based comparison be-
tween the PIM and the PSM. To allow for this, the simulator must be
able to produce results based on an execution.

Requirement 6.1: A computational model must be supported by the
simulator for function blocks

For the model to simulate signals and events, a computational aspect
is required to calculate values of the produced tokens. Detector func-
tion blocks depend on the token values for the selection of the emitted
state token. This adds a hard requirement for including computational
models in the dataflow-based actors.

Requirement 6.2: A time-series output of one or more signals from a
simulation must be available as output.

Visualization of time-series allows for a convenient way to show the
engineer signal traces from the simulation run. This helps with com-
parisons between different configurations of the model and allows for
verification of the model functionality.

Requirement 6.3: A graph of execution times of the different model
components must be available as output.

Within a complex model, it might not be directly clear how component
dependencies are structured. An overview of actor execution times
allow for visualization of component dependencies and timing sched-
ules. It allows for identifying components with a significant impact on
the performance.

Requirement 6.4: It should be possible to include computational mod-
els for plants in the system

Including support for plant-representing models in the tool adds sig-
nificant value. It allows for more in depth confirmation of the func-

Koen Zandberg Dataflow based model-driven engineering of control systems 18

tionality of the model by including the plant in the simulation. How-
ever, plant models do not convert properly to SADF semantics. Fore-
most as continuous-timemodels are not suitable for conversion due to
the event-based nature of Dataflow. To allow for simulation including
these continuous-time models, either the edges to and from plants re-
quire adaptation to facilitate the conversion, or the plant models them-
selves require to be adapted to event-based models.

4.1.4 Model-to-model conversion

The goal of the model-to-model conversions is to refine the supplied
PIM to PSM.

Requirement 7: It must be possible to specify a component for each
system-model function block as target for conversion

Converting platform-independent function blocks to amodel represent-
ing the physical component on a system requires information on this
conversion. One of the steps is to have a specification of function
blocks to component mappings, otherwise the engineer has no control
over the distribution of functionality over the physical system. Depend-
ing on the type of the function block, the specified component must be
restricted to a compute component, a sensor, or an actuator.

Requirement 8: The conversion must be able to adapt the execution
times and the resolution of the function blocks to a value representative
for the matching physical components.

By adapting the execution times the function blocks match the worst-
case execution time on the specified hardware. This can be an esti-
mated worst-case execution time, in the case the component is only
able to guarantee a maximum execution time, or a precise duration
when the platform is able to guarantee an exact execution time.

Requirement 9: The conversion must be able to adapt the resolution
and bounds of output values of a function block.

Depending on the hardware specification, output values of the function
must be limited in resolution and/or bounded between minimum and
maximum values. This to represent conversion hardware with limited
resolution such as D/A- and A/D-converters

Requirement 10: The modelled connection between the mapped hard-
ware components must be included in the model.

Depending on the specified hardware communication interface, the
communication latency between twocomponents is significant enough
to influence the system behaviour and must be included in the PSM.
The non-zero delays caused by communication systems can signifi-
cantly influence the performance of the system.

The generated PSM must allow for identical analysis as the PIM, to al-
low for performance comparison between the PIM and different PSMs
This includes a generated dataflow representation of the PSM to show
the generated data dependencies between different components and
identify performance limiting components.

4.2 Language design

The input of the tool consists of descriptions of the system models
and the platform models. These model files contain detailed specifi-
cations of the models, with specifications such as component specifi-

Koen Zandberg Dataflow based model-driven engineering of control systems 19

cation and interconnections. This can be implemented by a structured
domain-specific language for describing the models.

Requirement 11: Both themodel language and the hardware description
should be both human and machine readable

This allows for both writing models manually as well as generating or
converting them from an external application. Extending the tool be-
comes an exercise in generating the model files. While it is shown
that it is possible to have a human readable format compiled to a ma-
chine readable format, it is chosen to keep a single format for simplic-
ity instead of requiring an additional conversion application. A mid-
dle ground between machine readable and human readable is thus re-
quired.

Requirements for the model description and the platform descriptions
are similar in their requirements, both must specify blocks with identi-
fiers, properties and connections.

4.2.1 Model description

These requirements specify the functionality of the system modelling
language required.

Requirement 12: Themodel descriptionmust allow for describing a col-
lection of function blocks including configuration.

To satisfy the re-usability of components, the language must be able
to specify a function block type. The model description must be able
to specify configuration parameters of a function block, as function
blocks must be reusable with only requiring modification of the config-
uration of the function block. Some of these configuration parameters
can be optional, others mandatory, depending on the function block.

Requirement 12.1: The model description language must be able to
specify connections between function blocks including properties of these
connections.

Not only must it be possible to specify the relation between the func-
tion blocks, it must be possible to specify a set of initial values for an
function block input, otherwise it is impossible to create a loop without
deadlocks.

4.2.2 Hardware description design

The hardware description is on a high level similar to the model de-
scription.

Requirement 13: The description language must allow for describing
physical components with specifications and interfaces.

The hardware description must contain a specification of the compo-
nents, describing the parameters of the components. The goal is to be
able to directly copy them from the component vendor datasheets.

Requirement 13.1: Component interconnections must also be part of
the specification.

Without this, the relation between different components of a platform
can not be specified. To transfor a model, information about the re-
lation between the different components and which communications
interface is used must be part of the specification.

Koen Zandberg Dataflow based model-driven engineering of control systems 20

Requirement 13.2: it must be possible to describe a component as a
collection of components.

This requirement facilitates the reuse of component descriptions. For
example, a boardwith an FPGA and a number of sensors and actuators
must be specified as a component containing include-like statements
for the separate FPGA, sensor and actuator specification.

Koen Zandberg Dataflow based model-driven engineering of control systems 21

5 Implementation

The tool created, Deimos, consists of a collection of functions tomodel,
convert, analyze and simulate complex dataflowbased systems. Deimos
is named after the second moon of the planet Mars.

First the approach of how systems are modelled with Deimos is de-
scribed, describing the function blocks and describing how the model
files are designed and processed around these function blocks. Later
the simulator itself is thoroughly explained. At last the conversion
method from a PIM to a PSM is described.

5.1 Function blocks

Function blocks are the components of which the system is build upon
based on the system model. Each function block, when instantiated,
represent some functionality of the system. For example, this can be
computational operations executed by the controller or some interface
providing conversion between data formats. The building blocks of
the models contain computational functionality to provide not only a
timing analysis but also functional simulation of the modelled system.

When instantiating function blocks, Deimos can usemultiple locations
to look for the specified function block type. This ensures an extensible
library where function blocks specific for a single model can be added
separate from themain library. A function block can be represented by
either a single dataflow actor, or as a composite block using multiple
dataflow actors. Every dataflow actor representing function blocks is
automatically created with a self edge to prevent unwanted concurrent
execution of the actor.

A single function block requires the information contained in the sup-
plied model and an implementation to function. A function block re-
quires a number of properties:

• Inputs and outputs

• Data type

• Function block instantiation

• Computational functions

• Parameters

These property requirements can be split into communication, config-
uration and computational properties.

5.1.1 Communication

The input and output ports of a function block dictate which connec-
tions the function block can have with other function blocks within a
model. All input ports must be connected to an output port, but not
all output ports within a function block have to be connected. Output
ports that do not have a connected input port discard their produced to-
kens. Output ports that have multiple connected input ports duplicate
their produced tokens to all connected input ports. It is valid for an in-
put to be connected to the output of the same function block, however
caremust be taken to ensure that enough initial tokens are available on
the connection as not to cause a deadlock. As an exception to this, the
input for state tokens is only added and required when states are used
with the function block. As to adhere to the dataflow model, function

Koen Zandberg Dataflow based model-driven engineering of control systems 22

blocks are executed by the simulator as soon as all inputs have the
required number of tokens.

5.1.2 Configuration

Parameters provide the configurational aspect of the function block
and provide the flexibility in themodels. The parameters directly deter-
mine the required set of parameters in the system model, from which
the values can be requested at run-time. Function blocks can parse
a parameters both as plain value or with interpreted physical dimen-
sions.

Parameters can be suppliedwith dimensionality included such as lengths,
time, speed, current and voltage. Calculations using these parameters
will propagate the units and will detect errors when the operands of an
operations have incompatible units. For example, it is possible to sum
different lengths such as meters, centimeters and inches. In this case
conversion will happen automatically. However, adding units with dif-
ferent dimensionality will result in an error condition.

5.1.3 Computational functionality

The computational functionality is added to a function block by imple-
menting at least two functions of the python model class. This allows
for the model to add computational aspects to the system model, al-
lowing verification of the functional aspect of the system.

First is the initialization of the function block. While not strictly nec-
essary, it allows for functional verification of the parameters and the
instantiation of the initial values.

Second is the step function, handling the computational aspect of the
model. It calculates the output of the function block based on the in-
puts and the state of the function block. The step function is supplied
with the current start time and the input tokens. Based on these argu-
ments, a finish time and a new set of output tokens is produced and
returned to the simulator.

For example, the multiply-accumulate function gathers the input to-
kens from each input, multiplies them with the respective factors and
sums the results. The finish timeof the function is calculated by adding
the worst-case execution time to the start time. This result is returned
to the simulator. For this to work, the input tokens multiplied with their
factors must all have the same dimensionality, otherwise summing
them is not possible.

5.2 System meta-model

The system meta-model (SMM) provides a structure to describe sys-
tem models as a system of interconnected function blocks. It must
provide a framework to desribe the function blocks as described above
with all required options. The meta-model designed for the systems is
based on the both machine and human readable YAML Ain’t Markup
Language (YAML) specification (Ben-Kiki et al., 2005). This allows for
models written directly by the engineer or generated by external tools.
The YAML specification satisfies requirement 11.

A full model is based on a description of a set of interconnected func-
tion blocks. These function blocks define the different components of

Koen Zandberg Dataflow based model-driven engineering of control systems 23

the system. Based on the input model description, the tool instanti-
ates the function blocks configured and connected as specified by the
model.

The SMM requires a number of values to instantiate a function block
from:

• Name: An unique name to identify the function with. Used as an
identifier to distinguish functions within the model.

• Type: The type of the block, used to identify and select the com-
putational model for the function.

• Parameters: A dictionary of parameters to configure the func-
tion. The required parameters dependon the computationalmodel
of the function.

• Inputs: A dictionary of inputs, used to specify connections be-
tween the blocks. The inputs specify to which output port a spe-
cific input port of a function is connected. It also allows for spec-
ifying a set of initial tokens for the input port.

An example function specification of an proportional–integral–derivative
(PID) controller is shown in listing 5.1. It shows a function block named
PID using the computational model of the type pid. The parameters
of the PID controller are specified, including the worst case execution
time (the wcet parameter defined as 0ms).

1 PID: # Name of the function block
2 type : p id # Model identifier
3 params: # Configuration parameters
4 kp: 0.2
5 t i : 0.5
6 td : 0 . 1
7 beta : 0.2
8 wcet: 0ms
9 inputs : # Input port connections

10 i n :
11 source : E r r o r . out
12 states : # Control states
13 safe : # `safe' state
14 params: # Config parameters to
15 t i : 0 # override with this
16 td : 0.0001 # state

Listing 5.1: Example function block specification of an PID controller

The behaviour of a function can be influenced at run-time by signalling
states to the function. When used, every execution requires a token
specifying the execution state of the function. This state is used to
override the parameters of the function to the state-specific parame-
ters. Special detector based function blocks emit these state tokens
to influence the run-time behaviour of the model.

5.3 Plant integration

Plant models can be added to the system model as a functional block
representing the plant. Similar to regular function blocks they have
inputs and outputs, but opposed to the regular function blocks, plants
can not be modelled with an SADF model.

Two types of plant models are available for use, a continuous-time
transfer function based plant and an external plant importer. The trans-

Koen Zandberg Dataflow based model-driven engineering of control systems 24

fer function basedplant allows for adding simple continuous-time func-
tions. It does not have advanced capabilities, it allows however for
rapid development to the plant during iteration cycles as it does not
require an externally created plant model. The external import based
plant model is using the Functional Mock-up Interface (FMI) specifi-
cation (Blochwitz et al., 2012). Functional Mock-up Unit (FMU) based
files can be specified and integrated into the model, their inputs and
outputs can be connected to other function blocks.

The plant configuration requires specifying for each input and output
the physical dimensions required by the port.

The main challenge with plant representing function blocks is that a
plant does not adhere to SADF semantics. Analysis and simulation
are adapted to take this into account. When modelling the pure SADF
representation of the model, plants are omitted from the model.

5.3.1 Model rendering

A full system model as described by the model files can be displayed
as a collection of function blocks with connections. Deimos includes
options for rendering a block representation of the model. This allows
for initial testing of the system model description, by allowing the en-
gineer compare the generated model properties and connections with
the expected system. Figure 5.1 shows the output of such a render for
a simple PID based control loop with a plant included.

Step Function

ErrorClock
�=200.0 ms

ADConverter

PID DAConverter

Plant

Figure 5.1: Block diagram of a PID
based control loop

5.4 Model analysis

The SADF model as constructed internally by Deimos allows for veri-
fication of a number of properties. Before any simulation is done on the
model, it is first checkedwhether themodel is consistent anddeadlock-
free.

The analysis is done using an implementation of the definitions and
theorems applicable to SADF graphs (Theelen et al., 2006). Required
for this analysis is that the dataflow representation of themodel is both
strongly dependent and strongly consistent. This requirement allows
for formal verification of the absence of deadlocks within the model.

The implementation first determines the non-trivial repetition vector
of the SADF graph. For this, the full matrix of token consumption and
production for every tuple of actors and the states of that actor is build.
With this matrix, the repetition vector of the graph can be solved from
the matrix.

For this to hold it is required that the production and consumption rates
of tokens only depends on the parameters of a function block. The
rates must not be time-dependent or dependent on an internal state of
the function block.

Within this analysis, plants are excluded, this as they do not follow
dataflow-based simulation rules, but also do not influence the acti-
vation condition of the dataflow-based actors. They can be excluded

Koen Zandberg Dataflow based model-driven engineering of control systems 25

from the model analysis, a plant will never block the execution of a ac-
tor connected to a plant. Within the analysis, the model from figure 5.2
is converted to the model from figure 5.3.

Step Function

 �=1

Error

float64

Clock
�=200.0 ms

 �=1

ADConverter

 �=1

PID
float64

 �=1

DAConverter
float64

 �=1

Plant

analog

 �=1

float64 �=1

Figure 5.2: SDF model of a PID based
control loop extended with analog
components

5.4.1 SDF based models

Step Function

 �=1

Error

float64

Clock
�=200.0 ms

 �=1

ADConverter

 �=1

PID
float64

 �=1

DAConverter
float64

 �=1

float64
 �=1

Figure 5.3: SDF model of a PID based
control loop

5.5 Model simulation

Simulation of the system is based on SADF token interaction between
the different function blocks. The simulator works as a discrete-event
based system, executing function blocks from an execution queue.
The main advantage is that this results in a fast simulator design with
a flexible time step based on the granularity of the actors. Function
blocks are always executed in sequence and causal in time.

The simulator maintains an internal time stamp which contains the
simulator time stamp of the last started function block. To determine
the next function block to simulate, the execution queue is sorted and
the function block that has the lowest start time stampamong function
blocks in the queue is executed.

After a function block is executed, every connected function block is
checked for readyness. Every function block that is determined to be
ready is added to the execution queue.

The start time of a function block is based on the production time of
the token that caused the function block to become ready. At the sim-
ulation start, all function blocks are checked for readyness to set the
initial execution queue.

The simulator works with a number of rules on which the simulation
algorithm is based

1. A function block is considered ready when all inputs contain at
least the minimum amount of tokens required for the function
block to execute.

2. For every function block p, the simulator maintains a boolean in-
dicating if the function block is ready to execute.

3. A function block that is executed has an associated execution
start time tstart and an execution stop time tend

4. A function block p has a possible empty set of function blocks R
such that there is an output from p to at least one input of every
function block in R.

5. After a function block p has fired, for every function block p′ in R
it is checked if the function block is ready. Every function block

Koen Zandberg Dataflow based model-driven engineering of control systems 26

that became ready receives a start time tstart equal to tend of p and
is added to the execution queue.

6. The function block in the execution queue with the lowest value
for tend is executed next.

While it is not required to simulate actor execution in order of their low-
est starting time, it is required for the synchronization with an external
simulation.

5.5.1 Co-simulation synchronization scheme

To allow for a simulation with a continuous time based plant, a co-
simulation interface is available within Deimos. The interface, based
on the FMI specification, requires synchronisationwith the event-based
simulation for proper interaction between the models.

Synchronization between the event-based systemmodel and the plant
is based on a lock-step simulation using token interaction to exchange
state between the models(Nicolescu et al., 2007). The value of the to-
ken is always set to the output value of the plant at the time the function
block consumes the token. This ensures that a function block consum-
ing tokens from the plant always receives the output of the plant at the
time the value is used, removing the FIFO-based nature of dataflow
edges.

The token interaction between the system and the plant is not based
on SADF, the non-blocking nature of a continuous time model does
not fit the SADF modelling restrictions. A modified behaviour is used
where the plant is always able to consume an infinite amount of to-
kens and always has tokens available for the component consuming
from the plant. This way, a functional block representing a digital-to-
analog converter is always allowed to specify input values to the plant.
Furthermore, an analog-to-digital converter can always sample a value
from the plant by consuming a token and reading the value from the
token.

Tokens supplied to the plant behave as a zero order hold between the
arrival time of the token and the arrival time of the next token. This is
used to simulate the behaviour of a simple digital-to-analog converter.
When a token value originating from the plant, the plant is simulated
up to the consume time stamp of the token. By ensuring that function
blocks are always processed in the order of activation, all tokens used
as input of the plant are available. This removes the requirement for
a roll-back scheme in the simulator and allows for the relative simple
lock-step based scheme.

One of the limitations originating from the SADF MoC approach is the
inability to model asynchronous external events. This is extended to
the co-simulation interface, the approach does not allow for receiving
an asynchronous event (interrupt) token from the plant.

5.6 Simulation Results

The simulator records results in a machine readable file format for
post processing. Function-block execution times and token values are
stored in the file. This allows for postprocessing by both Deimos and
external tools.

Built-in are options for plotting the output values of function blocks
over time. Multiple time series can be plotted and are split out over
different graphs based on the dimension of the values.

Koen Zandberg Dataflow based model-driven engineering of control systems 27

Another option is to plot the start and finish time of function block ex-
ecutions, visualizing the delays caused by different function blocks.

5.7 Platform Meta Model

The PMM offers a structure to describe the hardware of a full physical
system. The meta model includes options to describe components,
their specifications and the interconnections between different com-
ponents. The implementation allows for describing the models as a
collection of components distributed over a number of different files.
With the properties described in a platform model, a model can be
converted from a platform-independent model to a platform-specific
model.

First the PMM is described, later the way the specification interacts
with the model-to-model conversions.

The main meta model only specifies a schema for the top level prop-
erties. Modules must contain a number of properties describing the
component

• The name: a human readable descriptor of the component.

• The type: describing the component type, for example a sensor.

• The variant: indicating a specific component variation.

• The specification: the properties allowing for modelling the com-
ponent.

• Interfaces: describing the interfaces used to build interconnec-
tions with the component.

The PMM defines a number of component types: boards, actuators,
sensors and compute modules. Each type allows for describing a dif-
ferent set of properties related to the function of the type. The ex-
act specification required to model the full component depends on
the component type and variant. For example, two different digital-
to-analog converters require both a sample rate and bit resolution, but
can differ in the types of delays required, depending on the interfaces
provided.

Each non-board non-platform component has a variant. The variant
indicates which specific implementation of the function block must
be used to represent the component. This allows to select a different
model representation of the function block and thus requiring a possi-
ble different configuration of delays and data dependencies. With this
the components with a similar function but with different architecture
can be distinguished.

Specifications describe the components in more detail. It represents
the configuration aspect of a combination of component type and vari-
ant. Depending on the component type and variant, different specifi-
cations are required to model the component. As an example, an ADC
connected via the SPI bus is using the spiadc variant, therefor uses
the ADC model of the spiadc variant, requiring properties such as the
maximum SPI bus frequency.

Interfaces allow for specifying the physical input and output interfaces
of a component. Each interface has a name, a type, a variant The name
is a unique identifier for the specific port on the component. The type
and the variant identify how the interface must be modelled. Further
specifications can be required for an interface. This is used to model
interfaces such as general purpose I/O and communication buses.

Koen Zandberg Dataflow based model-driven engineering of control systems 28

5.7.1 Component types

Different platform component types are defined to allowmodelling the
different properties of each component while maintaining a common
set of properties over a single component type.

Compute: The compute model allows for defining a component with
a computational function. It represents physical components such as
microprocessors, microcontroller and FPGAs. It allows for accommo-
dating function blocks with a purely computational aspect. Multiple
components can be scheduled on a single compute module at a sin-
gle time. The scheduling algorithm is left up to the implementation
specifics of the compute module. Specification of the compute mod-
ule is defined by an indication of the computational speed of the plat-
form. With an FPGA, the speed can be expressed as a frequency, with
microcontroller based platform not only the clock frequency but also
the architecture of the system is important.

The compute module allows for specifying the speed of the platform
and a set of interfaces. Depending on the variant, the speed is either
used as an indication of the platform performance or used as a pre-
cise delay multiplier. For example on an FPGA-based variant the clock
speed can be used as an accurate indication of the speed while on a
processor based component the effective duration of a function is also
dependent on the architecture and load of the processor.

Sensors: Sensors represent a physical measurement device on the
platform. The specifications of the sensor are geared towards defining
the accuracy and sample rate of the device. This includes the latency
between triggering a sample and sampling a value, and the propaga-
tion delay from the sampling to the output of the sensor. The limited
sample rate of the sensor can be included in the model by limiting the
rate at which tokens triggering a conversion can be consumed. A sen-
sor requires at least two interfaces of which one must be an analog
interface and the other a regular (digital) interface.

Actuators: Actuators represent the devices on the system responsible
for the controlling mechanism of the system. The conversion of sig-
nals from event-based to continuous time is an essential part of the
actuators. They accommodate the function blocks that convert data
from the ‘regular’ edges to an analog edge.

Boards: Boards provide the meta model with a way to group collec-
tions of components. The board does not allow for function blocks to
be assigned to it, instead it allows for defining a set of sub-components
with their interconnections. By allowing a platformor board typemodel
to include different component files, including other boards, both hi-
erarchical descriptions and reuse of component model files made is
possible.

As a board itself does not define a component, but only includes other
components, any interface from the board is an interface from a com-
ponent on the board. A set of interfaces from components on the
board can be exposed for use outside the board. This represents a
physical connector available on the board itself. The following listing
shows an example connector on the board, indicating the expose type
to indicate that it is a subcomponent from which an interface is made
available.

Koen Zandberg Dataflow based model-driven engineering of control systems 29

1 i n te r faces :
2 dac0_analog :
3 type : expose
4 name: dac0_analog
5 spec i f i ca t i on :
6 passthrough : dac0/ out

Listing 5.2: Exposed ‘analog’ interface of the component named ‘dac0’

A board is also able to connect interfaces from different subcompo-
nents. Separate specification indicated with connections indicate
which component interfaces are connected together. For example, to
connect the SPI type interface from two different components the fol-
lowing specification is required:

1 connections :
2 - from: fpga / spi0
3 to : dac0/ sp i

Listing 5.3: Specification of an interconnection between the first SPI interface of ‘fpga
and ‘dac0’

The meta-model allows for defining a component hierarchy of which a
platform is always the top level entity.

Plants: Plants are included in the PMM to allow providing details on
the connected plants of the model. The main reason is that mapping a
simulated plant on the PMM allows for verification of the connections
between the actuators, sensors and plants. It removes ambiguity in
how a plant is connected to the setup.

Platform: A platform describes a target for a model-to-model conver-
sion. The minimal form of a platform is a plant and a component com-
bined with the interconnections between the two. It is comparable to
a board in that the platform does not allow for function blocks to be
mapped on it. However, the platform does not allow for ‘exposing’ con-
nectors as it is the most top level model component.

5.8 Model-to-model conversion

The model-to-model conversions translate the PIM to a PSM using the
platform model and a mapping of function blocks to components.

Each function block is assigned to a platform component. The conver-
sion looks up the component and replaces the function block with the
variant of the function block as indicated by the component. A com-
munications bus, while in the PIM represented by an ideal FIFO, can be
replaced with a limited capacity bus with a non-zero latency.

The configuration of the function block from the PIM can be overrid-
den. Based on the platformcomponent specification, parameters such
as worst case execution time and resolution are replaced to match the
platform. The exact details of this conversion, how the configuration
is replaced, is left up to the function block variant. This allows the
function block to match a possible code generator for each supported
variant type.

The result of a model-to-model conversion is a newmodel, compatible
with analysis and simulation options described above. This model can
be simulated and the results can be compared by the end user with the
behavior of the PIM.

Koen Zandberg Dataflow based model-driven engineering of control systems 30

Limitations of the conversion however are present. SADF limits the
model in the sense that it is not possible tomodel mutual exclusive ac-
cess to a resource. This presents a limitation in that shared access to
a communications bus cannot be modelled. Furthermore, the conver-
sion does not take a limited concurrency scheduler in account. Actors
scheduled together on a compute unit are executed in parallel when
possible.

Koen Zandberg Dataflow based model-driven engineering of control systems 31

Table 6.1: Repetition vector of the
model from Figure 6.2 and Figure 6.3.
actor repetition
t1 1
t2 1

6 Testing

The implementation as described in Chapter 5 must be verified on a
number of aspects. Without this verification, the results produced by
the application can not be used in any form whatsoever. This verifi-
cation check if the implementation satisfies the requirements as de-
scribed in Chapter 4.

6.1 Model handling

6.2 Formal Model Verification

Before simulation, amodel is formally verified for consistency anddead-
locks. Deimos always verifies these properties before starting a simu-
lation. The process of formal model verification is shown and verified
here to shown that the application satisfies requirement 3 and 4.

The first test is a simple inconsistent model shown in Figure 6.1. Two
actors, t1 with a production of 4 tokens and actor t2 with a consump-
tion on the same edge of 5 tokens is constructed. The edge in the re-
verse direction has production and consumption equal to 1. Thismodel
is inconsistent as it consumes more tokens than produced. When the
verification from Deimos is used, it refuses to simulate the model due
to the consistency property missing as shown in Listing 6.1.

t2

�=1.0 ms

 �=1

11

t1

�=1.0 ms

 1
1

5

4

 �=1

11

Figure 6.1: Small inconsistent dataflow
model. The actor production and con-
sumption rates are not balanced.

1 ERROR:root:Model is not consistent
2 CRITICAL:root:Error during model verification "model is not

consistent"
Listing 6.1: Deimos output when supplying an inconsistent model. Shown is Deimos
aborting the application due to an inconsistent model

An example of a consistent model is shown in Figure 6.2. This model
has two actors, one with consumption of 1 token and production of 4
tokens, the other actor with consumption of 4 tokens and production of
1 token. Only 3 tokens are available where 4 are required to start actor
t2. The repetition vector of the model is shown in Table 6.1. While the
model is consistent and thus will not accumulate or exhaust tokens,
the model is not deadlock free due to a missing initial token. Deimos
is able to detect this for arbitrarily sized SDF cycles. Analysis of this
model is shown in Listing 6.2

Deimos correctly detects a deadlock in the loop between actor t1 and
actor t2.

t2

�=1.0 ms

 �=1

11

t1

�=1.0 ms

 1
1

 �=3
4

4

 �=1

11

Figure 6.2: Consistent dataflow model
without sufficient initial tokens to be
deadlock free

Koen Zandberg Dataflow based model-driven engineering of control systems 32

0 2 4 6

·10−3

t1

t2

time (s)

Figure 6.4: Timing diagram of the
model from Figure 6.3

1 DEBUG:root:Model has repetition vector {'t2': 1, 't1': 1}
2 INFO:root:Model is consistent
3 DEBUG:root:Cycle: ('t1',)
4 DEBUG:root:Building t1 to t1 with cons 1 and prod 1
5 DEBUG:root:Loop has tokens
6 DEBUG:root:No deadlock detected at cycle ['t1']
7 DEBUG:root:Cycle: ('t1', 't2')
8 DEBUG:root:Building t1 to t2 with cons 1 and prod 4
9 DEBUG:root:Building t2 to t1 with cons 4 and prod 1

10 DEBUG:root:Loop has tokens
11 WARNING:root:Deadlock detected at cycle ['t1', 't2']
12 ERROR:root:Deadlock in cycle <synth.analysis.cycle.Cycle

object at 0x7f0c8bfee5f8>
13 ERROR:root:Model is not deadlock free
14 CRITICAL:root:Error during model verification "model is not

deadlock free"
Listing 6.2: Deimos output when supplying a consistent model with a deadlock.
Shown is the analysis stage being aborted due to possible deadlock in the model

When setting only a single initial token on the edgewith a consumption
of 1, the model is consistent and deadlock free. This model is shown
in Figure 6.3 and the Deimosmodel source is shown in Listing A.1. The
repetition vector of the model is identical to the previous model and is
shown in Table 6.1. Thismodel is identical to the previous example, but
only has a single initial token on the other edge. As shown by Deimos
Listing 6.3, this model is consistent and deadlock free. Only after the
analysis showing a positive result, Deimos starts the simulation. The
timing diagram of the simulation is shown in Figure 6.4. Visible is that
the pattern repeats after each actor has executed a number of times
equal to the corresponding repetition vector entry from Table 6.1.

t2

�=1.0 ms

 �=1

11

t1

�=1.0 ms

 �=1 1
1

4

4

 �=1

11

Figure 6.3: Deadlock free dataflow
model

1 DEBUG:root:Model has repetition vector {'t2': 1, 't1': 1}
2 INFO:root:Model is consistent
3 DEBUG:root:Cycle: ('t1',)
4 DEBUG:root:Building t1 to t1 with cons 1 and prod 1
5 DEBUG:root:Loop has tokens
6 DEBUG:root:No deadlock detected at cycle ['t1']
7 DEBUG:root:Cycle: ('t2',)
8 DEBUG:root:Building t2 to t2 with cons 1 and prod 1
9 DEBUG:root:Loop has tokens

10 DEBUG:root:No deadlock detected at cycle ['t2']
11 DEBUG:root:Cycle: ('t1', 't2')
12 DEBUG:root:Building t1 to t2 with cons 1 and prod 4
13 DEBUG:root:Building t2 to t1 with cons 4 and prod 1
14 DEBUG:root:Loop has tokens
15 DEBUG:root:No deadlock detected at cycle ['t1', 't2']
16 INFO:root:Model is consistent and deadlock free
17 INFO:root:Simulating for 1.0 second
18 INFO:root:Starting simulation
19 INFO:root:Simulation done, exiting

Listing 6.3: Deimos output when supplying a consistent and deadlock free model.
Shown is a positive analysis result as the model is proven consistent and deadlock
free

Koen Zandberg Dataflow based model-driven engineering of control systems 33

t2

�=1.0 ms

 �=1

11

t4

�=1.0 ms
 2

1

t1

�=1.0 ms

 �=1

11

t3

�=1.0 ms

 3
3

 �=2
2

8

 �=1

11

t5

�=1.0 ms

4

8
 �=1 2

1

 �=1

11

1

1

 �=1

11

Figure 6.5: Larger consistent but not
deadlock free dataflow model, there are
not enough tokens on the cycle of t1 -
t3 - t2 - t4.

t2

�=1.0 ms

 �=1

11

t4

�=1.0 ms �=1 2

1

t1

�=1.0 ms

 �=1

11

t3

�=1.0 ms

 3
3

 �=2
2

8

 �=1

11

t5

�=1.0 ms

4

8
 �=1 2

1

 �=1

11

 �=1

1

1

 �=1

11

Figure 6.6: Larger deadlock free
dataflow model

Table 6.2: Repetition vector of the
model from Figure 6.5 and Figure 6.6.
actor repetition
t1 1
t2 4
t3 1
t4 2
t5 2

0 0.5 1 1.5

·10−2

t1
t2
t3
t4
t5

time (s)

Figure 6.7: Timing diagram of the
model from Figure 6.6

The analysis scales to larger models. Two similar larger models are
shown in Figure 6.5 and Figure 6.6 with the source of the second one
shown in Listing A.2. The repetition vector of the model is shown in
Table 6.2. While both models are consistent, The repetition vector of
the model is shown in Table 6.2 the first is not deadlock free due to a
missing token between t5 and t4. The second model does not lack
this token and should thus be deadlock free.

Validating the models with Deimos shows for the first model an issue
with the deadlock detection as shown in Listing 6.4. The secondmodel
is deadlock free as shown with Deimos in Listing 6.5 The timing dia-
gram from simulation is shown in Figure 6.7. Visible is that here the
execution pattern also repeats after each actor executed a number of
times equal to the repetition pattern. For the timing diagram, the sup-
port for requirement 6.2 is used.

1 DEBUG:root:Model has repetition vector {'t2': 4, 't1': 1, '
t3': 1, 't4': 2, 't5': 2}

2 INFO:root:Model is consistent
3 DEBUG:root:Cycle: ('t3',)
4 DEBUG:root:Building t3 to t3 with cons 1 and prod 1
5 DEBUG:root:Loop has tokens
6 DEBUG:root:No deadlock detected at cycle ['t3']
7 DEBUG:root:Cycle: ('t1',)
8 DEBUG:root:Building t1 to t1 with cons 1 and prod 1
9 DEBUG:root:Loop has tokens

10 DEBUG:root:No deadlock detected at cycle ['t1']
11 DEBUG:root:Cycle: ('t4',)
12 DEBUG:root:Building t4 to t4 with cons 1 and prod 1
13 DEBUG:root:Loop has tokens
14 DEBUG:root:No deadlock detected at cycle ['t4']
15 DEBUG:root:Cycle: ('t1', 't3', 't2', 't4')
16 DEBUG:root:t1: Production is 3
17 DEBUG:root:Building t1 to t3 with cons 2 and prod 3
18 DEBUG:root:t3: Production is 8
19 DEBUG:root:Building t3 to t2 with cons 3 and prod 8
20 DEBUG:root:t2: Production is 1
21 DEBUG:root:Building t2 to t4 with cons 2 and prod 1
22 DEBUG:root:Building t4 to t1 with cons 2 and prod 1
23 DEBUG:root:Loop has tokens
24 WARNING:root:Deadlock detected at cycle ['t1', 't3', 't2',

't4']
25 ERROR:root:Deadlock in cycle <synth.analysis.cycle.Cycle

object at 0x7fe54e18f208>
26 ERROR:root:Model is not deadlock free
27 Result: model is not deadlock free
28 ERROR:root:Stopping analysis because of problems with the

Koen Zandberg Dataflow based model-driven engineering of control systems 34

model
Listing 6.4: Deimos output from the large consistent model of Figure 6.5. Shown is the
analysis stage being aborted due to possible deadlock in the model

1 DEBUG:root:Model has repetition vector {'t2': 4, 't1': 1, '
t3': 1, 't4': 2, 't5': 2}

2 INFO:root:Model is consistent
3 DEBUG:root:Cycle: ('t3',)
4 DEBUG:root:Building t3 to t3 with cons 1 and prod 1
5 DEBUG:root:Loop has tokens
6 DEBUG:root:No deadlock detected at cycle ['t3']
7 DEBUG:root:Cycle: ('t1',)
8 DEBUG:root:Building t1 to t1 with cons 1 and prod 1
9 DEBUG:root:Loop has tokens

10 DEBUG:root:No deadlock detected at cycle ['t1']
11 DEBUG:root:Cycle: ('t4',)
12 DEBUG:root:Building t4 to t4 with cons 1 and prod 1
13 DEBUG:root:Loop has tokens
14 DEBUG:root:No deadlock detected at cycle ['t4']
15 DEBUG:root:Cycle: ('t1', 't3', 't2', 't4')
16 DEBUG:root:t1: Production is 3
17 DEBUG:root:Building t1 to t3 with cons 2 and prod 3
18 DEBUG:root:t3: Production is 8
19 DEBUG:root:Building t3 to t2 with cons 3 and prod 8
20 DEBUG:root:t2: Production is 1
21 DEBUG:root:Building t2 to t4 with cons 2 and prod 1
22 DEBUG:root:Building t4 to t1 with cons 2 and prod 1
23 DEBUG:root:Loop has tokens
24 DEBUG:root:No deadlock detected at cycle ['t1', 't3', 't2',

't4']
25 DEBUG:root:Cycle: ('t2',)
26 DEBUG:root:Building t2 to t2 with cons 1 and prod 1
27 DEBUG:root:Loop has tokens
28 DEBUG:root:No deadlock detected at cycle ['t2']
29 DEBUG:root:Cycle: ('t5',)
30 DEBUG:root:Building t5 to t5 with cons 1 and prod 1
31 DEBUG:root:Loop has tokens
32 DEBUG:root:No deadlock detected at cycle ['t5']
33 DEBUG:root:Cycle: ('t1', 't3', 't5', 't4')
34 DEBUG:root:t1: Production is 3
35 DEBUG:root:Building t1 to t3 with cons 2 and prod 3
36 DEBUG:root:t3: Production is 8
37 DEBUG:root:Building t3 to t5 with cons 3 and prod 8
38 DEBUG:root:t5: Production is 1
39 DEBUG:root:Building t5 to t4 with cons 4 and prod 1
40 DEBUG:root:Building t4 to t1 with cons 1 and prod 1
41 DEBUG:root:Loop has tokens
42 DEBUG:root:No deadlock detected at cycle ['t1', 't3', 't5',

't4']
43 INFO:root:Model is consistent and deadlock free
44 Result: model is valid

Listing 6.5: Deimos output from the large consistent and deadlock free model from
Figure 6.6. Shown is a positive analysis result as the model is proven consistent and
deadlock free

6.2.1 SADF extensions for models

SADFmodels extend the SDF based functionality with run-time config-
uration through state-based actors called detectors. A detector is able
to influence consumption and production rates of a system through
state tokens. An examplemodel is shown in Figure 6.8with theDeimos
model source shown in Listing A.3. The detector d1modifies the exe-
cution time, production and consumption rates of the other two actors.

Koen Zandberg Dataflow based model-driven engineering of control systems 35

t2
�=1.0 ms

 �=1

[1, 1]

t1
�=1.0 ms

[1, 1]

d1
�=1.0 ms

 �=1 1
[1, 1]

 �=4

[2, 4] [2, 4]

 �=1

[1, 1]

1 1

 �=1

11

Figure 6.8: SADF-based model, Where
shown, the production and consump-
tion states are per state

0 0.5 1

·10−2

d1

t1

t2

time (s)

Figure 6.9: Timing diagram of the
model shown in Figure 6.8

0.2 0.4 0.6 0.8 1

·10−2

−3

−2

−1

0

1

2

time (s)

va
lu
e

t2 output signal

Figure 6.10: Simulated output value of
t2.

The execution timing diagram is shown in Figure 6.9. The detector
switches between states depending on whether the token consumed
by d1 has a positive or negative value. Visible is a variable execution
time of t2, which is influenced by the detector state. The detector input
from the output of t2 is shown in Figure 6.10. The initial token supplied
to d1 is negative, supplying the n state to t2. The first execution thus
is a short one. The output of t2 after the first execution is positive as
shown in the output plot. This changes the outputted state by d1 to
p, thus causing a long duration execution of t2. The new output of
t2 is negative, switching the state outputtted by d1 again. As visible
in Figure 6.10, the duration between a positive and negative value is
longer than the duration between a negative and then a positive value,
which is caused by the longer execution time of t2 while it is the p
state.

This sufficiently verifies the dataflow aspect of Deimos, showing how
the models are verified and processed during simulation.

With the verification output shown here on the availablemodel verifica-
tion and the interaction between the actors based on detector states
emitted, the design is shown to implementent an SADF based mod-
elling sufficiently to satisfy requirement 1.

6.3 Model functionality verification

6.4 Simulation

To verify the functional aspects of the simulator itself, a comparison
between Deimos and an existing and verified application, 20-sim, is
done. This comparison is used as a verification of the basic simulation
capabilities of the application.

Two models which should have identical behaviour in the two applica-
tions are simulated and compared for this verification. The twomodels
each implement a simple PID control loop with a connected plant. A
matching response, with small differences due to floating point round-
ing, is expected while comparing the results from these two simula-
tors.

Themodel file usedwithDeimos is shown inAppendixA.2 and is shown
in Figure 6.11.

Step Function

 �=1

Error

float64

Clock
�=200.0 ms

 �=1

ADConverter

 �=1

PID
float64

 �=1

DAConverter
float64

 �=1

Plant

analog

 �=1

float64 �=1

Figure 6.11: Representation of the
Deimos model used for the 20-sim
comparison

Koen Zandberg Dataflow based model-driven engineering of control systems 36

0 5 10 15 20
0

0.2
0.4
0.6
0.8
1

time (s)

ou
tp

ut

20-sim

0 5 10 15 20
0

0.2
0.4
0.6
0.8
1

time (s)

ou
tp

ut

Deimos

0 5 10 15 20
0

2

4

·10−15

time (s)

ou
tp

ut

Difference between 20-sim and Deimos

Figure 6.12: Simulation comparison
between 20-sim and Deimos. Shown
is the sampled A/D converter signal of
both models

0 2 4 6
0

0.5

1

1.5

2

time (s)

ou
tp

ut
(m

/s
)

Speed

0 2 4 6
0
1
2
3
4
5
6
7
8

time (s)

ou
tp

ut
(m

)

Distance

Figure 6.13: Simulation results of the
model from Appendix A.3

As shown in Figure 6.12, both simulators have a comparable signal
trace. The maximum difference in time between 20-sim and Deimos
in a matching data point is 1.07× 10−14 s, the maximum difference in
value between20-simandDeimos inmatching data points is 1.22× 10−15.
The value error here is well within the quantization error of the simu-
lated 12-bit A/D-converter component.

The trace signal shown in Figure 6.12 from Deimos can be used to ver-
ify the functional aspects of the model. The full simulation and the
output here shows support for design requirment 6, including all sub-
requirements except for requirement 6.2 for which support is shown.
Furthermore, support for requirement 12 is shown as the model is con-
figured to match the model from 20-sim.

6.5 Physical Quantity support

The model from Appendix A.3 is used, this model has an integrator
connected to a motion profile. The motion profile generates a profile
between 0m/s and 2m/s with cosine-shaped ramps. It can be rea-
soned that with the motion profile ramping up and down over 1 s dura-
tion each and holding 2m/s for 3 s, it must integrate to 2ms−1×3 s+
2 × 1 s×2m s−1

2 = 8m The first graph of Figure 6.13 shows the motion
profile applied to the integrator. The second graph shows the output
of the integrator, resulting in 8m after the motion profile returned to
0ms−1 output.

This example shows a multiplication between ms−1 and s. Attempt-
ing to add or subtract units with different dimensionality, an exception
is produced and handled in the application aborting simulation as is
shown in Listing 6.6.

1 INFO:root:Simulating for 8.0 second
2 INFO:root:Starting simulation
3 CRITICAL:root:Error simulating step for Integration at 0

second: "Cannot convert from 'kilogram' ([mass]) to '
meter * millisecond / second' ([length])"

4 CRITICAL:root:Task Integration received token with invalid
unit [mass] received, expected [length]

Listing 6.6: Deimos output when simulating a model that attempts to add tokens with
different dimensionality.

The support within Deimos for physical quantities can be shown and
verified with a simple integrator design model. The verification done
here is shown the support for design requirement 2.

6.6 Platform Metamodel

The platform metamodel offers a hierarchical way of describing com-
ponent interconnections. It allows for descriptions of physical com-
ponents with sufficient detail to allow for the model-to-model conver-
sions.

An example board, a hypothetical board containing a microcontroller
and the same A/D and D/A-converter as the RaMstix board, is shown
in Figure 6.14. It contains an Atmel Atmega328 microcontroller as
compute component. The sensor, an ADS8321, and the actuator, an
AD5541, are connected to the microcontroller via two different SPI in-
terfaces.

This model reuses the definition files for the A/D and D/A-converter
from the RaMstix design and thus only contains a new board combin-

Koen Zandberg Dataflow based model-driven engineering of control systems 37

hypothetical
(hypothetical)

hypothetical/atmega
(atmega328)

hypothetical/adc0
(ADS8321)

spi

spi1

hypothetical/dac0
(AD5541)

spi

spi0

Figure 6.14: Graphical representation
of the hypothetical platform model as
described in Listing A.19. Each com-
ponent has a name enclosed in paren-
theses. The model describes an At-
mega328 compute component and two
peripherals.

ing the atmega based microcontroller and the two other components
with the necessary definitions for the interconnects. In both models
it is visible how each part is connected to the other parts and which
interfaces are used for the interconnects. This allows the model-to-
model conversion to select the appropriate model representations of
these interconnects. This fullfills requirement 13 including the sub-
requirements.

The hierarchical nature of the platform metamodel allows for reusing
the components by including them in different designs.

The plant is intentionally not included in the platformdescriptions shown
above, to allow reuseof the different boardswith different plants. Adding
plants in the platform models is possible by including them in a plat-
form descriptor together with the board and the interconnections be-
tween the components.

6.7 Model-to-model Conversions

The platform models as shown earlier are used to convert the PIM to
PSM. Three aspects of the model-to-model conversions are verified
here. Whether the conversion results in a model accurately reprenting
the target hardware requires additional measurements comparing the
models with an implementation on the platform and is considered out
of scope here.

First the expansion of function blocks to multiple actors is verified.
This modification is used when a single actor does not offer the re-
quired level of detail for representing the platform components.

The second part is consists ofmodifications to parameters of the func-
tion block based on the specification of the platform models. This in-
cludes the calculation of approximate execution times based on the
supplied platform model specification.

Koen Zandberg Dataflow based model-driven engineering of control systems 38

Source

 �=1

11

DAConverter
float64 1

1

Clock

�=10.0 ms

 1
1

 �=1

11

 �=1

11

Figure 6.15: Simple model containing a
source and a D/A-converter.

platform
(platform)

platform/board
(board)

platform/board/fpga
(compute)

platform/board/dac
(actuator)

spi

spi0

Figure 6.16: Board model containing
a generic FPGA and a generic D/A-
converter connected via an SPI-based
interface. The platform model descrip-
tion is shown in Listing A.15

Themain verification step required is to confirm that amodel-to-model
conversion selects the variant for the models and adapts the parame-
ters. Whether the conversion results in a correct representation of the
hardware platform then only depends on the model itself and the im-
plementation of the function block variant which is out of scope here.

The systemmodel used as example conversion is shown in Figure 6.15.
The platform model used as target for the conversion is shown in Fig-
ure 6.16. It contains a clock, a source and a D/A-converter. The source
acts as a sawtooth-wave generator.

The platform model used for this test describes a generic FPGA con-
nected to the D/A-converter via a serial bus as shown in Listing A.14.

The platform is used for the verification tests and models a set of
generic components without physical counterpart. As specified by the
platform model, the D/A converter has the SPIDAC variant.

The description of the platform model indicates an SPI-based connec-
tion between the D/A-converter and the FPGA. The SPI bus, as a syn-
chronous serial bus, needs to be modelled by two actors for sufficient
detail. The first actor is representing the peripheral interface between
the FPGA and the SPI bus modelling the latency in the interface. The
second actor models the delay caused by the serial bus transfer.

6.7.1 Actor Expansion

Conversion of the PIM to the PSM results in the model as shown in
Figure 6.17. The actor representing the D/A-converter in the PIM is ex-
panded into three actors to represent the whole SPI connected D/A-
converter. The DAConverter/periph/tx actor represents the delay
caused in the SPI peripheral of the FPGA. The
DAConverter/channel/tx actormodels the delay causedby the com-
munication channel. This delay, and with that the execution time of the
actor, depends on the throughput of the channel and the bits transfered
per sample. The final component in the graph is the
DAConverter/dac/DAC, representing the delay in the D/A-converter
peripheral itself and adding the computationalmodel for theD/A-converter.

DAConverter

DAConverter/dacDAConverter/channelDAConverter/periph

Clock
�=50.0 ms

 �=1

11

Source
�=1.0 µs

1
1

 �=1

11

DAConverter/periph/tx
�=2.0 µs

float64 1
1 DAConverter/dac/DAC

 �=1

11

DAConverter/channel/tx
�=3.2 µs

float64 1
1

 �=1

11

float64 1
1

 �=1

11

Figure 6.17: PSM of the model shown
in Figure 6.15 using the platform model
shown in Figure 6.16.

6.7.2 Timing Adaptation

The PSM as shown in Figure 6.17 is influenced by the specification of
the platformmodel. The original PIM does not contain timing informa-
tion besides the sampling rate dictated by the
Clock function block. The PSM is adapted with the extra information
and the function blocks now contain execution time configured by the
function block variants based on the specification from the platform
model.

Koen Zandberg Dataflow based model-driven engineering of control systems 39

0 2 4
−1
0
1
2
3
4
5
6

time (s)

Va
lu
e

DAC with 16 bit resolution

0 2 4
−1
0
1
2
3
4
5
6

time (s)

Va
lu
e

DAC with 8 bit resolution

0 2 4
−1
0
1
2
3
4
5
6

time (s)

Va
lu
e
DAC with 6 bit resolution

0 2 4
−1
0
1
2
3
4
5
6

time (s)

Va
lu
e

DAC with 4 bit resolution

Figure 6.18: Simulation results of the
DAC PSM with different resolution val-
ues specified in the platform model.
Shown is the output of the DAC.

The Source block is specified by the variant specific model to have an
execution time equal to a single clock tick period of the specified FPGA
clock rate. The default clock rate of the FPGA used here is configured
at 1MHz, resulting in an execution time of 1

1MHz = 1µs. When this
clock rate is modified to 100 kHz, the new execution time generated is
equal to 10 µs.

The execution times of the function blocks in the D/A-converter block
are derived from both the D/A-converter model and the FPGA model.
The DAConverter/periph/tx actor timing is purely dependent on
the FPGA specification and the execution time is lengthened by a fac-
tor 10 with the clock rate modification to 100 kHz. The
DAConverter/channel/tx actor however depends on the SPI inter-
face specification from both the FPGA and the D/A-converter platform
models and is configured as an interface-specific property. The delay
of the serial channel results from the maximum clock rate of the chan-
nel and the number of bits contained in a single transfer. The max-
imum clock rate of the channel is the lowest clock rate between the
two components using the bus. The execution time of the channel is
set to wcet = bits

clockrate . Between the D/A-converter and the FPGA, hav-
ing a clock rate of 50MHz and 5MHz respectively, the 5MHz from the
FPGA SPI interface specification is used as a clock rate for the bus.
The D/A-converter specifies 16 bits for a single transfer. This results
in an execution time of 16

5MHz = 3.2µs as shown in Figure 6.19.

DAConverter

DAConverter/dacDAConverter/channelDAConverter/periph

Clock
�=50.0 ms

 �=1

11

Source
�=10.0 µs

1
1

 �=1

11

DAConverter/periph/tx
�=20.0 µs

float64 1
1 DAConverter/dac/DAC

 �=1

11

DAConverter/channel/tx
�=3.2 µs

float64 1
1

 �=1

11

float64 1
1

 �=1

11

Figure 6.19: PSM of the model shown in Figure 6.15 using the platform model shown
in Figure 6.16 with an FPGA clock rate of 100 kHz.

DAConverter

DAConverter/dacDAConverter/channelDAConverter/periph

Clock
�=50.0 ms

 �=1

11

Source
�=10.0 µs

1
1

 �=1

11

DAConverter/periph/tx
�=20.0 µs

float64 1
1 DAConverter/dac/DAC

 �=1

11

DAConverter/channel/tx
�=32.0 µs

float64 1
1

 �=1

11

float64 1
1

 �=1

11

Figure 6.20: PSM of the model shown in Figure 6.15 using the platform model shown
in Figure 6.16 with an FPGA clock rate of 100 kHz and an SPI interface clock rate of 500 kHz.

Decreasing the maximum clock rate of the SPI interface on the FPGA
to 500 kHz results in an PSM as shown in Figure 6.20. The maximum
clock rate of the D/A-converter is still specified as 50MHz, causing the
bus to be limited by the clock rate of the FPGA. The resulting execution
time of actor representing the bus delay is 16

500 kHz = 32µs

6.7.3 PSM Parameter override

The specifications contained in the platformmodel override the param-
eters in the PIM when generating the PSM. In the example used here
as shown in Figure 6.17, one of the parameters modified is the resolu-
tion of the D/A-converter is adapted to the resolution specified in the
platform model.

Modifications to the specification of the D/A-converter component are
reflected in the PSM. Reducing the resolution specified in the platform
model from 16 bit to 8, 6 and 4 bit causes a reduction in the num-
ber of quantization levels in the D/A-converter output. The results of
this parameter modification are shown in Figure 6.18. The input of the

Koen Zandberg Dataflow based model-driven engineering of control systems 40

D/A-converter is a ramp function from 0 to 5 over 5 s, and the D/A-
converter is used to quantize the values and convert them to an ana-
log signal. Clearly visible in the series of graphs is the reduction in
resolution and the reduced number of quantization levels produced by
the D/A-converter. Where with the 16 bit resolution, a smooth ramp
is produced, the 6 and 4 bit D/A-converter output the same values for
multiple different closely related input values.

Koen Zandberg Dataflow based model-driven engineering of control systems 41

Table 7.1: Configuration of the PID con-
troller used in the Linix setup.
Parameter Value
β 0.001
kp 0.29
τD 130ms
τI 11.6 s

7 Case Study

A full workflow example using Deimos is used to validate the design
flow of the application. The end goal is a functional PSM of the model
to simulate the model as if it is running on the platform.

The in-depth verification options of Deimos are used to verify the de-
sign and the functionality of the different function blocks used.

The incremental refinement workflow as shown in Figure 1.1 is used
here. The control laws in a format suitable for Deimos are provided
as a start. Furthermore, an FMU for the plant model is available for
cosimulation with the plant. The PIM is constructed from the control
loop configuration and is evaluated usingDeimos. Twoplatformmodel
are available for the model-to-model conversion. Based on these plat-
form models, two PSMs are generated and simulated. The results are
compared with simulation results from 20-sim where applicable.

7.1 Model

The example used for the case study is the Linix system (Vries et al.,
1997) including a controller. The Linix plant model consists of two
axes, each with an inertia attached and connected with eachother via
a belt running along pulleys on each axis. A sensor and motor are con-
nected on the same axis with the secondary axis acting as load. A
graphical representation of the Linix setup is shown in Figure 7.1.

flexible

transmission
load

motor

Figure 7.1: Graphical representation of
the Linix setup.

Figure 7.2: 20-sim model of the Linix
system with additional configurable
delay block.

Design and tuning of the controller is out of scope, the provided values
are used. The controller is based on an PID controller, and AD/DA-
converters for interfacing with the plant. The controller is configured
with a loop frequency of 50ms. The AD and the DA converters are
configured with a resolution of 12 bits and with a range between +10
and -10. The configuration parameters used for the PID controller are
shown in Table 7.1. As input signal, a motion profile is used with with
a stroke of 8 rad and using a sine wave shaped transition.

Amodel of the systemwith both the controller and the plant is available
in 20-sim for a comparison of the simulation results. The model used
in 20-sim is shown in Figure 7.2 The Deimosmodel is expected to have
a similar block diagram topology as the 20-sim diagram. Deimos and
20-sim use the same FMU for simulation of the plant behaviour.

Koen Zandberg Dataflow based model-driven engineering of control systems 42

0 2 4 6 8
−2
0
2
4
6
8
10

time (s)

Ro
ta
tio

n
(ra

di
an

)

Linix response with no delay

Figure 7.5: Simulation results of the
Linix model. Shown is the response
of the plant as sampled by the A/D-
converter of the model.

0 2 4 6 8
−2
0
2
4
6
8
10

time (s)

Er
ro

r(
ls
b)

Linix response difference

Figure 7.6: Simulation result difference
between 20-sim and Deimos.

7.2 Platform Independent Model

A description of the PIM suitable for Deimos is available in Listing A.7.
The resulting block diagram of the model is shown in Figure 7.3 and
the SDF graph of the PIM is shown in Figure 7.4. To exclude effects
from the loop delay, the PIM is intentionally designed without delays
configured in the function blocks.

The block diagram shows the expected structure of the PID controller
with motion profile function and A/D-converter as inputs to the error
block. This setup is also reflected in the SDF graph.

motionprofile
err

clock
�=50.0 ms

adc

pid dac

plant

Figure 7.3: Block diagram of the Linix
system model.

motionprofile

 �=1

11

err

float64

1
1

clock
�=50.0 ms

1

1

 �=1

11

adc
1

1

 �=1

11

pid
float64 1

1

 �=1

11

dac
float64 1

1

 �=1

11

plant

analog

1
1

 �=1

11float64 1

1
1

1

 �=1

11

Figure 7.4: SDF graph of the Linix sys-
tem model.

7.3 PIM analysis

The PIM as shown in Listing A.7 is verified in both non-functional and
functional aspects. The non-functional verification consists of consis-
tency and deadlock analysis performed by Deimos. After this verifi-
cation, the model is simulated as to show the dynamic behaviour of
the plant and the controller. This behaviour is compared to the 20-sim
simulation results.

Analysis of the PIM by deimos shows a consistent and deadlock free
model (Listing 7.1).

1 INFO:root:Model is consistent
2 INFO:root:Model is consistent and deadlock free
3 Result: model is valid

Listing 7.1: Deimos output when checks on the model as visible in Figure 7.4 is
executed. Shown is a positive analysis result as the model is proven consistent and
deadlock free

Simulation results of the model are shown in Figure 7.5. A compara-
ble simulation is performed using 20-sim. The difference in simulation
results is visible in Figure 7.6. While both simulators have a compara-
ble response, a difference of at most 6 least significant bit values is
measured over the simulation time. This is a quantization difference
of 6

4096 × 100% = 0.15% over the full range of the A/D-converter.

7.3.1 Delay effects

To show the effects of a delay within the loop, the Linix system model
with plant is reconfigured with an additional delay. A delay is added to
the Deimos system model using a FIFO function with a modified wcet
to influence the delay. The D/A-converter will produce an analog value
as soon as it received a new token, the delay causing a delay between
the PID function block and the new analog value produced by the D/A-
converter function block. The 20-sim model is also modified with the
same delay for comparison between the two simulators.

Koen Zandberg Dataflow based model-driven engineering of control systems 43

0 2 4 6 8
−2
0
2
4
6
8
10

time (s)

Ro
ta
tio

n
(ra

di
an

)

Linix response with 20ms delay

0 2 4 6 8
−2
0
2
4
6
8
10

time (s)

Ro
ta
tio

n
(ra

di
an

)

Linix response with 30ms delay

0 2 4 6 8
−2
0
2
4
6
8
10

time (s)

Ro
ta
tio

n
(ra

di
an

)

Linix response with 40ms delay

Figure 7.7: Simulation results of the
Linix model with different delays.
Shown is the response of the plant
as sampled by the A/D-converter of the
model.

Themodels differ in that Deimoshas the delay before theD/A-converter
function block and the 20-simmodel has the delay after theD/A-converter
block. This difference is caused by the limitations of both simulator im-
plementations. For 20-sim, it is not possible to add a continuous-time
delay in the discrete-time parts of the model, within a discrete section,
it is limited to delays of a multiple of the sample period. By adding it
in the continuous-time section of the system, it can be configured to
match the delay configured in Deimos. Within Deimos it is not possible
to add an event-based FIFO after the D/A-converter, this is a limitation
of the simulated connection between the D/A-converter and the plant,
it does not adhere to the dataflow semantics expected by the other
function blocks.

The simulation results for the Linixmodelwith 20ms, 30ms, and40ms
delays in the loop using Deimos as simulator are shown in Figure 7.7.
These results are compared to an identical simulation run using 20-sim
for verification of the results. The difference between the two simula-
tions is shown in Figure 7.8. The diffence is shown in as multiple of
A/D-converter least significant bit values.

Between the two simulators, a difference in the resulting response in-
creases up to 10 least significant bit values over the 8 s of simulation
time. This is a quantization difference of 10

4096 × 100% = 0.25% over
the full range of the A/D-converter.

The simulation performed here using Deimos will act as a baseline for
the dynamic behaviour of the control system when the PSM behaviour
is evaluated.

7.4 Platform Design

Two platform models are available as target for the conversion to a
PSM. First is the RaMstix board which includes an FPGA, D/A and
A/D-converters to run the control system on. The second option is an
Arduino based board with integrated D/A and A/D-converters.

7.4.1 RaMstix board

ramstix
(ramstix)

ramstix/firestix
(overo)

ramstix/firestix/dm3730
(dm3730)

ramstix/fpga
(cyclone3)

gpmc0

gpmc0

ramstix/adc0
(ADS8321)

spi

spi2

ramstix/adc1
(ADS8321)

spi

spi3

ramstix/dac0
(AD5541)

spi

spi0

ramstix/dac1
(AD5541)

spi

spi1

Figure 7.9: Representation of the platform model of the RaMstix board as
described in (Listing A.17). Each component has an identifier and a
name (enclosed in parentheses).

Koen Zandberg Dataflow based model-driven engineering of control systems 44

0 2 4 6 8
−2
0
2
4
6
8
10

time (s)

Er
ro

r(
ls
b)

Linix response error with 20ms delay

0 2 4 6 8
−2
0
2
4
6
8
10

time (s)

Er
ro

r(
ls
b)

Linix response error with 30ms delay

0 2 4 6 8
−2
0
2
4
6
8
10

time (s)

Er
ro

r(
ls
b)

Linix response error with 40ms delay

Figure 7.8: Simulation error results
of the linix model with different de-
lays. Shown is the error in the response
compared to the 20-sim simulation in
a/d-converter bits.

TheRaMstix board asmodelledwith the relevant components is shown
in Figure 7.9. Visible are the FPGA and DM3730 providing the com-
pute components. Sensors and acutators are available via multiple
ADS8421 and AD5541 instances on the RaMstix board. Specifications
used with the components are retrieved from the datasheets of the re-
spective components.

In Figure 7.10, a full platform including the RaMstix board and the plant
is shown. The source of the platformmodel is available in Listing A.12.
Visible is the RaMstix board and how the plant is connected to an A/D
and D/A-converter of the RaMstix board.

linix
(linix)

linix/ramstix
(ramstix)

linix/ramstix/firestix
(overo)

linix/ramstix/firestix/dm3730
(dm3730)

linix/ramstix/fpga
(cyclone3)

gpmc0

gpmc0

linix/ramstix/adc0
(ADS8321)

spi

spi2

linix/ramstix/adc1
(ADS8321)

spi

spi3

linix/ramstix/dac0
(AD5541)

spi

spi0

linix/ramstix/dac1
(AD5541)

spi

spi1

linix/plant
(generic_plant)

input

out

in

output

Figure 7.10: Graphical representation of the platform connecting a plant to the
RaMstix board from Listing A.12.

The D/A and A/D-converters connected to the FPGA in the RaMstix
model are connected via an SPI bus. This serial bus has a non-zero de-
lay in the transfer of the values from and to the peripherals. These pro-
vide 16 bit D/A and A/D-converters for interfacing with the plant. When
using the platform model as target for the PSM conversion, a commu-
nication delay is expected with data from the A/D-converter and data
to the D/A-converter.

The resolution of both theA/D-converter and theD/A-converter is higher
than used in thePIM, no additional sampling noise from the value quan-
tization is expected.

Koen Zandberg Dataflow based model-driven engineering of control systems 45

2 https://store.arduino.cc/arduino-uno-
rev3-smd
3 https://www.microchip.com/wwwproducts
/en/ATmega328

linix
(linix)

linix/arduino_uno
(arduino uno)

linix/arduino_uno/atmega
(atmega328)

linix/plant
(generic_plant)

input

pwm0 adc0

output

Figure 7.11: Graphical representation of
the platform connecting a plant to the
Arduino Uno board from Listing A.13.

7.4.2 Arduino Uno

The second board that is used as a target for the PSM conversion is a
board based on the Arduino Uno2. The microcontroller, an Microchip
Atmega3283, provides the computational aspect of the platform, but
also provides A/D and D/A peripherals.

The D/A-converter provided by the microcontroller is an 8 bit pulse
width modulation (PWM) based conversion between 0V and 5V.

The A/D-converter offers 10 bit resolution between 0V and 5V. The
A/D-converter available on the AVR microcontroller does have a non-
zero delay, but in contrast to the RaMstix board, it is internal to the
microcontroller and delays caused by an external bus are non-existent.
The A/D-converter iself of the Atmega328 has a delay and is modelled
to specification.

Sample delays of the A/D-converter are based on specifications of
the Atmega328 component. For the MCU-based platforms, the A/D-
converters are modelled as two connected actors where the first rep-
resents the setup time before a sample moment and the second rep-
resents the delay caused by the conversion process.

The platform model including the plant is shown in Figure 7.11.

The decrease in resolution with both the A/D and the D/A-converters is
significant. With the conversion to the PSM, oscillations due to value
quantization noise can occur in the PSM simulations.

7.5 PSM Conversion

Both platforms are used as conversion target for the PIM, to allow for
a comparison of the dynamic response in both situations.

7.5.1 RaMstix Target

The PSM as generated based on the PIM and the RaMstix platform
is shown in Figure 7.12. The mapping file used for the conversion is
shown in Listing A.9. A number of actors have been added to increase
the level of detail in modelling the communication bus between the dif-
ferent peripherals. The model actors are configured with an execution
time. Execution times of the FPGA-allocated actors in the model are
an estimate, accurate execution times for these function blocks are
out of scope. Execution times of the A/D-converter and D/A-converter
actors are based on the specifications from the datasheets of these
components.

dac

dac/dacdac/channeldac/periph

adc

adc/periph

adc/channel

motionprofile
�=20.0 ns

 �=1

11

err
�=40.0 ns

float64

1

1

clock
�=50.0 ms

1

1

 �=1

11

adc/periph/trigger
�=20.0 ns

1

1

 �=1

11

pid
float64 1

1

 �=1

11

dac/periph/tx
�=40.0 nsfloat64 1

1

dac/dac/DAC

 �=1

11

plant

analog
1

1

dac/channel/tx
�=3.2 µs

float64 1
1

 �=1

11

float64 1
1

 �=1

11

 �=1

11

adc/periph/rx
�=40.0 ns

float64 1
1

 �=1

11

 �=1

11

adc/channel/trigger

float64
1

1

adc/channel/tx
�=3.8 µs

float64

1

1

 �=1

11
 �=1

11

adc/adc
�=1.0 µs

float64

1

1

1

1

float64

1

1

 �=1

11

Figure 7.12: Graphical representation of the PSM of the Linix setup using the RaMstix
as target platform.

The output values of the D/A-converter and the input values of the A/D-
converter are scaled to correct for the power amplifier connected to the

Koen Zandberg Dataflow based model-driven engineering of control systems 46

0 2 4 6 8
−2
0
2
4
6
8
10

time (s)

Ro
ta
tio

n
(ra

di
an

)

Linix response

Figure 7.13: Simulation results of the
Linix model when converted to a PSM
based on the RaMstix platform. Shown
is the response of the plant as sampled
by the A/D-converter of the model.

0 0.2 0.4 0.6 0.8 1

·10−5

motionprofileclock
adc/periph/trigger

adc/channel/trigger
adc/adc

adc/channel/tx
adc/periph/rx

err
pid

dac/periph/tx
dac/channel/tx
dac/dac/DAC

time (s)

Figure 7.14: Timing diagram as result
from the simulation of the Linix model
with the RaMstix platform.

0 2 4 6 8
−2
0
2
4
6
8
10

time (s)

Ro
ta
tio

n
(ra

di
an

)

Linix response

Figure 7.16: Simulation results of the
Linix model when converted to a PSM
based on the Arduino platform. Shown
is the response of the plant as sampled
by the A/D-converter of the model.

0 0.5 1 1.5 2

·10−4

motionprofile
clock

adc/setup
adc/adc

err
pid
dac

time (s)

Figure 7.17: Timing diagram as result
from the simulation of the Linix model
with the Arduino platform.

Linix plant. This does not influence the resolution of the signal. With-
out this the performance evaluation would be influencend in a negative
manner.

The PSM is verified and simulated using Deimos, the SDFmodel is con-
firmed to be consistent and deadlock-free. The response as visible in
Figure 7.13 closely matches the initial response from the PIM, the set-
tle time is slightly longer compared to the simulation results from the
PIM. The timing diagram, as visible in Figure 7.14, shows that a signif-
icant portion of the processing time is occupied with the SPI channel
transaction. The duration of the transfers and computations fromA/D-
converter to the D/A-converter is slightly longer than 80µs.

7.5.2 Arduino Uno Target

The PSM as generated based on the Arduino platform and the PIM
is shown in Figure 7.15. The mapping file used for the conversion is
shown in Listing A.10. All actors have an execution time. The A/D-
converter is split in two actors where the first actor represents the
setup time before sampling.

adc

motionprofile
�=50.0 ns

 �=1

11

err
�=2.0 µs

float64 1
1

clock
�=50.0 ms

1

1

 �=1

11

adc/setup
�=86.4 µs

1

1 �=1

11

pid
�=15.0 µs

float64 1
1

 �=1

11

dac
�=25.0 µs

float64 1
1

 �=1

11

plant
analog 1

1

 �=1

11

adc/adc
�=73.6 µs

float64

1

1 1

1

 �=1

11

1
1

 �=1

11

Figure 7.15: Graphical representation of the PSM of the Linix setup using the Arduino
Uno as target platform.

The PSM is verified and simulated using Deimos, the SDFmodel is con-
firmed to be consistent and deadlock-free. The simulated response on
this platform is shown in Figure 7.16. Where with the PIM model, the
response would settle within the simulation time, the PSM based on
the Arduino does not settle within the simulation time.

The timing diagram, as visible in Figure 7.17, shows that a significant
portion of the processing time is occupied with the A/D conversion.
The full transaction takes 202µs, though the time from an A/D conver-
sion sample to D/A-converter output is 116 µs. TheA/D converter takes
86.4 µs to set up for a conversion which does not influence the latency
between the feedback and the output of the system in this case.

7.6 Evaluation

Simulations of the dynamic behaviour of the Linix plant differs signif-
icantly between the two PSMs. Where the RaMstix-based model is
able to sufficiently control the Linix system with a finite settle time, the
Arduino-based PSM does not settle within the simulation time. Both
PSMs have a latency well below the 10% of the loop frequency and
should be fast enough for stable loop control.

The RaMstix platform closely matches the dynamic behaviour of the
PIM simulation results. Assuming the platform model matches the
real-world perfomance close enough, it would be a suitable platform
as target for the Linix control system.

The Arduino-based model suffers from the limited A/D and D/A con-
verter resolution. While it is able to control the system, oscillations
within the signal remain and it would not be advisable to use the plat-
form for a Linix control system in the current configuration. Thus this

Koen Zandberg Dataflow based model-driven engineering of control systems 47

controller should be redesigned to be robust enough to handle the 8-bit
converters though this might not be possible.

Koen Zandberg Dataflow based model-driven engineering of control systems 48

8 Discussion

The dataflow-based MDE solution as presented in this thesis generally
offers sufficient capabilities for proper modelling a basis for a model
driven design approach of control systems. However the design pro-
cess allows for a number of observations based on the application re-
quirements and test results.

SADF allows for complex systems with sufficient expressiveness for
modelling control systems. As results from the tests and validation,
using SADF, as required by requirement 1, as modelling backend fits
the requirements for modelling control systems, the dataflow seman-
tics map well to the control system requirements. When required, the
run-time choice provided by SADF allows for modifying the controller
in a number of different ways such as parameter modifications allow-
ing flexibility and choice during the control system execution. It further
allows for supervisory control based on state machines of the control
systems.

One of the limitations of the dataflowsemantics is thatmodelling asyn-
chronous events is not compatible with the semantics and analysis
options. Asynchronous signals such as interrupts from sensors can
only be modelled by converting them to polling based system. This
limits the systems that can be modelled to purely clocked and thus
synchronous models. Other limitations in the modelling language is
that mutual exclusive access to a resource can’t be modelled. This
can be resolved by modelling the resource access by a static sched-
ule. Further validation of the expressiveness provided by Deimos and
required by control systems is recommended to explore the limitations
of the modelling semantics.

Model analysis allows for early detection of system issues. Analysis
to prove a system is consistent and deadlock free are available with
the current implementation, providing an implementation for both re-
quirement 3 and 4. The model analysis integrated in the design allows
for basic validation of the model providing proofs whether the model
is both consistent and deadlock free. With additional extensions to
the analysis, more elaborate timing analysis such as a slowest cycle
analysis can be added such as proposed by requirement 5.

Given the latency-critical nature of control systems, an automated anal-
ysis of the latency between an input of one function block and the out-
put of another is a useful addition to the analysis suite of the applica-
tion. It would allow end users to both analyse the latency aspect of
the loop, but also show if there is a component having a significant im-
pact on the loop latency. This analysis is already somewhat available
with the timing diagrams produced by Deimos, but a more automated
structure would offer benefits.

Simulator performance: The simulator fully satisfies requirement 6 and
the simulator performance is sufficient to simulate larger models on
the desired time scale relevant for control systems. The discrete event-
based nature of the simulator allows for dynamic time steps without a
fixed discrete time step during simulation. It allows for functional ver-
ification of the full SMM as shown during the case study. The imple-
mentation allows for a flexible computational models and determin-
istic simulation. Different components including externally designed
plants can be combined in complex SMMs. The included support for
physical quantities in the simulator (requirement 2) adds valuable re-
finement to the models due to the added inherent verification of re-
lations between the different dimension-related operations handled by

Koen Zandberg Dataflow based model-driven engineering of control systems 49

the components. The FMI-based plantmodels integration provides the
essential co-simulation required to verify the dynamic behaviour of the
plant based on the designed control system.

There however seem to be small differences in the simulation results
when comparing complex models with 20-sim. While not significant
in the tested cases, care has to be taken that the simulator operates
within reliable bounds.

The hierarchical nature of the platform meta-model allows for creation
of a reusable platform model library. The PMM offers a structure to
describe components and their specifications, as required by require-
ment 13. By explicitly distinguishing the different components into
types the framework enforces a structured approach, where reuse of
components is The meta-model provides a structure to describe inter-
connections between the components where it allows freedom within
the conversions to adapt the PIM to the specified interfaces during the
conversion.

Model-to-model transformations allow for freely replacing function blocks
and adapting configuration parameters. The implementation behind
the model-to-model conversions allow for a lot of freedom in replac-
ing function blocks for their platform specific counterparts, satisfying
requirement 7 through 10. It allows for both refinement of the actors al-
ready present in the PIM and for addition of new actors, for example to
represent communication bus based delays in the model. The down-
side of this is that it leaves a lot of responsibility with the component
design for the design of valid models. Verification of these platform
specific function blocks requires careful testing and measuring. One
of the limitations is the absence of dealing with the limited paralleliza-
tion of the target platform, while a processor-based compute module
has no or only limited options for parallelization, the model does not
take this into account and will execute multiple function blocks con-
currently.

Koen Zandberg Dataflow based model-driven engineering of control systems 50

9 Conclusion and Recommendations

The goal of this thesis is to improve the way control systems are de-
signed and built, improving both the workflow of the control engineer
and the software engineer. The proof of principle application presented
in the previous chapters, together with the test results is used to an-
swer the research questions from Chapter 1.

Which dataflowmodels of computation are suitable as basis for model-
driven development?
The approach based on SADF with a function block oriented approach,
allows for capturing both the required dynamic behaviour of the con-
trol system while allowing for detailed analysis. The model-driven en-
gineering approach allow the end user to focus on the algorithmic as-
pects of the system, without having to take structural details into ac-
count in the early design step. The consistency and deadlock analysis
offers feedback to the end-user in every step of the design process.
When the dynamic behaviour is not required for modelling the control
system, the more restricted SDF MoC can be used to simplify both the
analysis and the code synthesis. However, the model design does not
allow for modelling asynchronous events sources, limiting the ability
to respond to external events from the plant.

Which simulation features are required to verify the supplied models?
The dataflow-basedmodels are extended with computational function
implementation for the application to allow functional verification. The
physical quantity extension in the model allows for additional model
refinement, and provides verification of the function block interaction
based on dimensional analysis. Furthermore, the co-simulation mod-
ule allows for simulating the control systems against plant models us-
ing the FMI specification. These features combined allow the simu-
lator to give the end user extensive information about both the signal
values and the timing of the system models, providing continuous ver-
ification of the functionality of the system model during each design
steps.

Which platformspecific information is required to transform the dataflow
based model into a PSM?
The information provided by the platformmodels is twofold, it describes
the timing and resolution specification of the physical components, but
also provides information on the interconnections between the physi-
cal components on the hardware platforms. The components describe
the timing and resolution specifications of the physical counterparts
and their interfaces. The board and platform component meta models
provide semantics reuse of component models in different configura-
tions. The model-to-model conversions based on these platformmod-
els to generate the PSM only modify existing actors or add additional
actors to the PIM, this way retaining the existing analysis and simula-
tion options available.

When comparing the results of this thesis to previous work, a number
of remarks can bemade. The dataflow-based approach presented pro-
vides a workflow for modelling control systems with a strong focus on
analysis and functional simulation. The dataflowMoCused, while orig-
inally designed for DSP systems, is successfully used tomodel control
systems. It offers an alternative to the more often used UML-based or
CSP-based approaches by using an algorithmic approach to the design
workflow. As shown in the case study, the stepwise approach com-
bined with dataflow-based models allow for verification of the mod-
elled system during each of the design steps to detect problems in the

Koen Zandberg Dataflow based model-driven engineering of control systems 51

control system design as soon as possible.

9.1 Recommendations

The recommendations for next steps on this topic are split into research-
related recommendations, and more practical application-related rec-
ommendations. Two paths are recommended for extending the re-
search into dataflow-based control system design:

• Integration in other design applications: Deimos is heavily geared
towards latency analysis of control loops. Integration with other
MDD applications can provide valuable interaction where the ex-
ternal application provides high-level supervisory control forwhich
the analysis currently available in Deimos is less suitable.

• Code synthesis: Based on the stepwise model refinement work-
flow, the next step is platform code synthesis. Related work on
the topic of code synthesis based on dataflow models is avail-
able, and should be applicable to the platform code generation
required for control systems.

To further improve the application itself and allow for full validation
of the application workflow, it is recommended to add the following
functionality:

• Extensive latency analysis: Extending the already existing run-
time schedule display with latency analysis should allow for iden-
tification of critical delays in the full control path.

• Clock timing analysis: In a clocked system, all clocked processes
must have a worst-case execution time lower than the clock pe-
riod. Amaximum cycle mean analysis of the different cycles and
clockedprocesses can offer proof that for themodels the clock is
the slowest process. This helps in validating that the used func-
tion blocks are fast enough for the required clock rate.

• Function block execution scheduling on different processing types:
While an FPGA is able to execute any number of processes in
parallel, a microcontroller can only execute a limited number of
processes concurrently. The PSM models currently do not take
this limitation into account when converting from the PIM. The
model-to-model conversion canbe extendedwith facilities to limit
the parallel execution of a set of actors to take this limitation into
account.

The recommendation here result into an improvedworkflow for the end
user and add valuable extensions. The proposed extensions for the
application further improves the use of dataflow models when applied
to control system design.

Koen Zandberg Dataflow based model-driven engineering of control systems 52

Appendix A Model examples

A.1 SDF and SADF examples
1 name: deadlock_free
2

3 model:
4 t2 :
5 type : resampler
6 params:
7 r a t i o : 0.25
8 wcet: 1ms
9 inputs :

10 input :
11 source : t 1 . out
12

13 t 1 :
14 type : resampler
15 params:
16 r a t i o : 4
17 wcet: 1ms
18 inputs :
19 input :
20 source : t2 . out
21 i n i t i a l : [1]

Listing A.1: Deadlock free SDF model

1 name: cons is tent
2

3 model:
4 t2 :
5 type : resampler
6 params:
7 r a t i o : 0.5
8 wcet: 1ms
9 inputs :

10 input :
11 source : t3 . out
12 i n i t i a l : [1 , 1]
13

14 t 1 :
15 type : resampler
16 params:
17 r a t i o : 3/2
18 wcet: 1ms
19 inputs :
20 input :
21 source : t4 . out
22 i n i t i a l : [1]
23

24 t3 :
25 type : resampler
26 params:
27 r a t i o : 8/3
28 wcet: 1ms
29 inputs :
30 input :
31 source : t 1 . out
32

Koen Zandberg Dataflow based model-driven engineering of control systems 53

33 t4 :
34 type : mac
35 params:
36 wcet: 1ms
37 inputs : 2
38 fac tors : [1 , 1]
39 rates : [2 , 1]
40 inputs :
41 0:
42 source : t2 . out
43 i n i t i a l : [1]
44 1:
45 source : t5 . out
46 i n i t i a l : [1]
47

48 t5 :
49 type : resampler
50 params:
51 wcet: 1ms
52 r a t i o : 1/4
53 inputs :
54 input :
55 source : t3 . out

Listing A.2: Large deadlock free SDF model

1 name: deadlock_free
2

3 model:
4 t2 :
5 type : mac
6 params:
7 inputs : 1
8 fac tors : [−1/4]
9 rates : [4]

10 wcet: 1ms
11 inputs :
12 0:
13 source : t 1 . out
14 i n i t i a l : [−1 , −1 , −1 , −1]
15 cont ro l :
16 source : d1 . s ta te
17 states :
18 p:
19 params:
20 rates : [2]
21 fac tors : [−1/2]
22 wcet: 1 . 5ms
23 n:
24 params:
25 rates : [4]
26 fac tors : [−1/4]
27 wcet: 0.5ms
28

29 t 1 :
30 type : resampler
31 params:
32 r a t i o : 4
33 wcet: 1ms
34 inputs :

Koen Zandberg Dataflow based model-driven engineering of control systems 54

35 input :
36 source : t2 . out
37 cont ro l :
38 source : d1 . s ta te
39 states :
40 p:
41 params:
42 r a t i o : 2
43 wcet: 1ms
44 n:
45 params:
46 r a t i o : 4
47 wcet: 1ms
48

49 d1:
50 type : c o n t r o l l e r
51 params:
52 wcet: 1ms
53 states :
54 - p
55 - n
56 inputs :
57 detector :
58 source : t2 . out
59 i n i t i a l : [−1]

Listing A.3: Deadlock free SADF model

A.2 PID example
1 name: P lant FMU Model
2

3 globals :
4 - &samplerate 200ms
5

6 model:
7 Step Function :
8 type : source
9 params:

10 samples: [0 , 0 , 0 , 0 , 0 , 1]
11 un i t : meter
12 repeat : fa l se
13 inputs :
14 t r i gge r :
15 source : Clock . t i c k
16

17 Clock :
18 type : c lock
19 params:
20 ra te : *samplerate
21

22 Er ro r :
23 type : mac
24 params:
25 inputs : 2
26 fac tors : [1 per second , −1 per second]
27 wcet: 0ms
28 inputs :
29 0:
30 source : Step Funct ion . samples

Koen Zandberg Dataflow based model-driven engineering of control systems 55

31 1:
32 source : ADConverter . d i g i t a l
33

34 PID:
35 type : p id
36 params:
37 kp: 0.2
38 t i : 0.5
39 td : 0.0000001
40 beta : 0.2
41 wcet: 0ms
42 inputs :
43 i n :
44 source : E r r o r . out
45

46 DAConverter:
47 type : dac
48 params:
49 b i t s : 12
50 maximum: 10 m/s
51 minimum: −10 m/s
52 wcet: 0ms
53 inputs :
54 d i g i t a l :
55 source : PID . out
56

57 Plant :
58 type : fmu
59 params:
60 fmu: examples /fmu/ t r ans fe r f unc t i on . fmu
61 # Describes the units of the FMU ports
62 ports :
63 input :
64 un i t : meters /second
65 output :
66 un i t : meters
67 inputs :
68 input :
69 source : DAConverter . analog
70

71 ADConverter:
72 type : adc
73 params:
74 b i t s : 12
75 maximum: 10
76 minimum: −10
77 wcet: 0ms
78 inputs :
79 analog :
80 source : P lant . output
81 t r i gge r :
82 source : Clock . t i c k

Listing A.4: FMU PID example

1 # filename of the target platform
2 platform : arduino_setup
3

4

5 elements:

Koen Zandberg Dataflow based model-driven engineering of control systems 56

6 Step Function :
7 ta rge t : arduino_uno /atmega
8

9 Clock :
10 ta rge t : arduino_uno /atmega
11

12 Er ro r :
13 ta rge t : arduino_uno /atmega
14

15 PID:
16 ta rge t : arduino_uno /atmega
17

18 DAConverter:
19 ta rge t : arduino_uno /atmega
20 spec i f i ca t i on :
21 conversion : meter / (v o l t second)
22

23 ADConverter:
24 ta rge t : arduino_uno /atmega
25 spec i f i ca t i on :
26 conversion : meter / v o l t
27

28 Plant :
29 ta rge t : p lan t

Listing A.5: FMU PID example, arduino mapping file

A.3 Unit example
1 name: un i t s example
2

3 globals :
4 - &samplerate 10ms
5

6 model:
7 Speed:
8 type : mot ion_p ro f i l e
9 params:

10 'off': 0 m/s
11 'on': 2 m/s
12 s ta r t _ t ime : 1 second
13 on_time : 2 second
14 stop_time : 5 second
15 off_ t ime : 6 second
16 wcet: 0ms
17 inputs :
18 t r i gge r :
19 source : Clock . t i c k
20

21 I n t eg ra t i on :
22 type : mac
23 params:
24 inputs : 2
25 fac tors : [1 , *samplerate]
26 inputs :
27 0:
28 source : I n t eg r a t i on . out
29 i n i t i a l : [0 ki logram]
30 1:
31 source : Speed . samples

Koen Zandberg Dataflow based model-driven engineering of control systems 57

32

33 Clock :
34 type : c lock
35 params:
36 ra te : *samplerate

Listing A.6: Unit example

A.4 Linix demonstrator
1 name: L i n i x model
2

3 globals :
4 - &samplerate 0.05s
5

6 model:
7 mot ionprof i le :
8 type : mot ion_p ro f i l e
9 params:

10 'off': 0 radians
11 'on': 8 radians
12 s ta r t _ t ime : 1 second
13 on_time : 2 second
14 stop_time : 5 second
15 off_ t ime : 6 second
16 wcet: 0ms
17 inputs :
18 t r i gge r :
19 source : c lock . t i c k
20

21 clock :
22 type : c lock
23 params:
24 ra te : *samplerate
25

26 er r :
27 type : mac
28 params:
29 inputs : 2
30 fac tors : [1 , −1]
31 wcet: 0ms
32 inputs :
33 0:
34 source : mot ionpro f i l e . samples
35 1:
36 source : adc . d i g i t a l
37

38 pid :
39 type : p id
40 params:
41 kp: 0.29 ampere / radians
42 t i : 1 1 . 6
43 td : 0.130
44 beta : 0.001
45 wcet: 0ms
46 inputs :
47 i n :
48 source : e r r . out
49

50 dac:

Koen Zandberg Dataflow based model-driven engineering of control systems 58

51 type : dac
52 params:
53 b i t s : 12
54 maximum: 1 ampere
55 minimum: −1 ampere
56 wcet: 0ms
57 inputs :
58 d i g i t a l :
59 source : p id . out
60

61 plant :
62 type : fmu
63 params:
64 fmu: examples / l i n i x / l i n i x . fmu
65 # Describes the units of the FMU ports
66 ports :
67 input :
68 un i t : ampere
69 omega:
70 un i t : rad ians
71 inputs :
72 input :
73 source : dac . analog
74

75 adc:
76 type : adc
77 params:
78 b i t s : 12
79 maximum: 10
80 minimum: −10
81 wcet: 0ms
82 inputs :
83 analog :
84 source : p lan t . omega
85 t r i gge r :
86 source : c lock . t i c k

Listing A.7: Linix demonstrator

1 name: L i n i x model
2

3 globals :
4 - &samplerate 0.05s
5

6 model:
7 step :
8 type : mot ion_p ro f i l e
9 params:

10 'off': 0 radians
11 'on': 8 radians
12 s ta r t _ t ime : 1 second
13 on_time : 2 second
14 stop_time : 5 second
15 off_ t ime : 6 second
16 wcet: 0ms
17 inputs :
18 t r i gge r :
19 source : c lock . t i c k
20

21 clock :

Koen Zandberg Dataflow based model-driven engineering of control systems 59

22 type : c lock
23 params:
24 ra te : *samplerate
25

26 er r :
27 type : mac
28 params:
29 inputs : 2
30 fac tors : [1 , −1]
31 wcet: 0ms
32 inputs :
33 0:
34 source : step . samples
35 1:
36 source : adc . d i g i t a l
37

38 pid :
39 type : p id
40 params:
41 kp: 0.29 ampere / radians
42 t i : 1 1 . 6
43 td : 0.130
44 beta : 0.001
45 wcet: 0ms
46 inputs :
47 i n :
48 source : e r r . out
49

50 delay :
51 type : f i f o
52 params:
53 wcet: 20ms
54 inputs :
55 i n :
56 source : p id . out
57

58 dac:
59 type : dac
60 params:
61 b i t s : 12
62 maximum: 1 ampere
63 minimum: −1 ampere
64 wcet: 0ms
65 inputs :
66 d i g i t a l :
67 source : de lay . out
68

69 plant :
70 type : fmu
71 params:
72 fmu: examples / l i n i x / l i n i x . fmu
73 # Describes the units of the FMU ports
74 ports :
75 input :
76 un i t : ampere
77 omega:
78 un i t : rad ians
79 inputs :
80 input :

Koen Zandberg Dataflow based model-driven engineering of control systems 60

81 source : dac . analog
82

83 adc:
84 type : adc
85 params:
86 b i t s : 12
87 maximum: 10
88 minimum: −10
89 wcet: 0ms
90 inputs :
91 analog :
92 source : p lan t . omega
93 t r i gge r :
94 source : c lock . t i c k

Listing A.8: Linix demonstrator with delay function block

1 # filename of the target platform
2 platform : l i n i x _ r ams t i x
3

4 elements:
5 mot ionprof i le :
6 ta rge t : ramst ix / fpga
7

8 clock :
9 ta rge t : ramst ix / fpga

10

11 er r :
12 ta rge t : ramst ix / fpga
13

14 pid :
15 ta rge t : ramst ix / fpga
16

17 dac:
18 ta rge t : ramst ix /dac0
19 spec i f i ca t i on :
20 conversion : 1 ampere / vo l t
21

22 adc:
23 ta rge t : ramst ix /adc0
24 spec i f i ca t i on :
25 conversion : 4 radians / vo l t
26

27 plant :
28 ta rge t : p lan t

Listing A.9: Linix demonstrator, RaMstix mapping

1 # filename of the target platform
2 platform : l i n i x _ a r d u i n o
3

4 globals :
5 datatype : f l oa t32
6

7 elements:
8 mot ionprof i le :
9 ta rge t : arduino_uno /atmega

10

11 clock :
12 ta rge t : arduino_uno /atmega

Koen Zandberg Dataflow based model-driven engineering of control systems 61

13

14 er r :
15 ta rge t : arduino_uno /atmega
16

17 pid :
18 ta rge t : arduino_uno /atmega
19

20 dac:
21 ta rge t : arduino_uno /atmega
22 spec i f i ca t i on :
23 conversion : 1 ampere / vo l t
24

25 adc:
26 ta rge t : arduino_uno /atmega
27 spec i f i ca t i on :
28 conversion : 8 radians / vo l t
29

30 plant :
31 ta rge t : p lan t

Listing A.10: Linix demonstrator, Arduino mapping

A.5 Platform model files

A.5.1 Platforms

1 type : p lat form
2 name: p lat form
3

4 components:
5 board: ! i nc lude . . / boards / gener ic . yaml

Listing A.11: Test platform with FPGA and DAC file

1 type : p lat form
2 name: l i n i x
3

4 components:
5 ramstix : ! i nc lude . . / boards / ramst ix . yaml
6 plant : ! i nc lude . . / p lants / gener ic . yaml
7

8 connections :
9 - from: ramst ix / dac0_analog

10 to : p lan t / inpu t
11 - from: p lan t / output
12 to : ramst ix / adc0_analog

Listing A.12: RaMstix with plant platform file

1 type : p lat form
2 name: l i n i x
3

4 components:
5 arduino_uno : ! i nc lude . . / boards / arduino_uno . yaml
6 plant : ! i nc lude . . / p lants / gener ic . yaml
7

8 connections :
9 - from: arduino_uno /pwm0

10 to : p lan t / inpu t
11 - from: p lan t / output

Koen Zandberg Dataflow based model-driven engineering of control systems 62

12 to : arduino_uno /adc0
Listing A.13: Arduino with plant platform file

1 type : p lat form
2 name: l i n i x
3

4 components:
5 arduino_uno : ! i nc lude . . / boards / arduino_uno . yaml
6 plant : ! i nc lude . . / p lants / gener ic . yaml
7

8 connections :
9 - from: arduino_uno /pwm0

10 to : p lan t / inpu t
11 - from: p lan t / output
12 to : arduino_uno /adc0

Listing A.14: Arduino with plant platform file

A.5.2 Boards

1 type : board
2 name: board
3

4 components:
5 fpga : ! i nc lude . . / compute/ fpga . yaml
6 dac: ! i nc lude . . / actuators /dac . yaml
7

8 i n te r faces :
9 dac_analog :

10 type : expose
11 name: dac_analog
12 spec i f i ca t i on :
13 passthrough : dac/ out
14

15 connections :
16 - from: fpga / spi0
17 to : dac/ sp i

Listing A.15: Generic test board with FPGA and DAC file

1 type : board
2 name: arduino uno
3

4 components:
5 atmega: ! i nc lude . . / compute/atmega328 . yaml
6

7 i n te r faces :
8 spi0 :
9 type : expose

10 name: spi0
11 spec i f i ca t i on :
12 passthrough : atmega/ spi0
13 spi1 :
14 type : expose
15 name: sp i 1
16 spec i f i ca t i on :
17 passthrough : atmega/ sp i 1
18 adc0:
19 type : expose
20 name: adc0

Koen Zandberg Dataflow based model-driven engineering of control systems 63

21 spec i f i ca t i on :
22 passthrough : atmega/adc0
23 pwm0:
24 type : expose
25 name: pwm0
26 spec i f i ca t i on :
27 passthrough : atmega/pwm0

Listing A.16: Arduino Uno board file

1 type : board
2 name: ramst ix
3

4 components:
5 f i r e s t i x : ! i nc lude overo . yaml
6 fpga : ! i nc lude . . / compute/ cyclone3 . yaml
7 adc0: ! i nc lude . . / sensors /ADS8321 . yaml
8 adc1: ! i nc lude . . / sensors /ADS8321 . yaml
9 dac0: ! i nc lude . . / actuators /AD5541 . yaml

10 dac1: ! i nc lude . . / actuators /AD5541 . yaml
11

12 i n te r faces :
13 dac0_analog :
14 type : expose
15 name: dac0_analog
16 spec i f i ca t i on :
17 passthrough : dac0/ out
18 dac1_analog :
19 type : expose
20 name: dac1_analog
21 spec i f i ca t i on :
22 passthrough : dac1 / out
23 adc0_analog :
24 type : expose
25 name: adc0_analog
26 spec i f i ca t i on :
27 passthrough : adc0/ in
28 adc1_analog :
29 type : expose
30 name: adc1_analog
31 spec i f i ca t i on :
32 passthrough : adc1 / i n
33

34 connections :
35 - from: f i r e s t i x /gpmc0
36 to : fpga /gpmc0
37 - from: fpga / spi0
38 to : dac0/ sp i
39 - from: fpga / sp i 1
40 to : dac1 / sp i
41 - from: fpga / spi2
42 to : adc0/ sp i
43 - from: fpga / spi3
44 to : adc1 / sp i

Listing A.17: RaMstix board file

1 type : board
2 name: overo
3 components:

Koen Zandberg Dataflow based model-driven engineering of control systems 64

4 dm3730: ! i nc lude . . / compute/dm3730 . yaml
5 i n te r faces :
6 gpmc0:
7 type : expose
8 spec i f i ca t i on :
9 passthrough : dm3730/gpmc0

Listing A.18: Overo firestix board file

1 type : board
2 name: h ypo the t i ca l
3

4 components:
5 atmega: ! i nc lude . . / compute/atmega328 . yaml
6 adc0: ! i nc lude . . / sensors /ADS8321 . yaml
7 dac0: ! i nc lude . . / actuators /AD5541 . yaml
8

9 i n te r faces :
10 dac0_analog :
11 type : expose
12 name: dac0_analog
13 spec i f i ca t i on :
14 passthrough : dac0/ out
15 adc0_analog :
16 type : expose
17 name: adc0_analog
18 spec i f i ca t i on :
19 passthrough : adc0/ in
20

21 connections :
22 - from: atmega/ spi0
23 to : dac0/ sp i
24 - from: atmega/ sp i 1
25 to : adc0/ sp i

Listing A.19: Hypothetical atmega based board file

A.5.3 Compute

1 type : compute
2 va r i an t : fpga
3 name: compute
4 spec i f i ca t i on :
5 clock : 100 kHz
6 model:
7 va r i an t : fpga
8 i n te r faces :
9 gpmc0:

10 type : mm
11 va r i an t : gpmc
12 name: gpmc0
13 spi0 :
14 type : s e r i a l
15 va r i an t : sp i
16 name: spi0
17 spec i f i ca t i on :
18 max_speed: 500 kHz
19 spi1 :
20 type : s e r i a l
21 va r i an t : sp i

Koen Zandberg Dataflow based model-driven engineering of control systems 65

22 name: sp i 1
23 spec i f i ca t i on :
24 max_speed: 5MHz

Listing A.20: Generic FPGA compute file

1 type : compute
2 va r i an t : fpga
3 name: cyclone3
4 spec i f i ca t i on :
5 clock : 50 MHz
6 model:
7 va r i an t : fpga
8 i n te r faces :
9 gpmc0:

10 type : mm
11 va r i an t : gpmc
12 name: gpmc0
13 spi0 :
14 type : s e r i a l
15 va r i an t : sp i
16 name: spi0
17 spec i f i ca t i on :
18 max_speed: 5MHz
19 spi1 :
20 type : s e r i a l
21 va r i an t : sp i
22 name: sp i 1
23 spec i f i ca t i on :
24 max_speed: 5MHz
25 spi2 :
26 type : s e r i a l
27 va r i an t : sp i
28 name: spi2
29 spec i f i ca t i on :
30 max_speed: 5MHz
31 spi3 :
32 type : s e r i a l
33 va r i an t : sp i
34 name: spi3
35 spec i f i ca t i on :
36 max_speed: 5MHz

Listing A.21: cyclone3 FPGA compute file

1 type : compute
2 va r i an t : mcu
3 name: atmega328
4 spec i f i ca t i on :
5 clock : 20 MHz
6 adc:
7 b i t s : 10
8 maximum: 2 .5V
9 minimum: −2.5V

10 t r i gge r _de l ay _ t i c ks : 13 .5
11 de lay_ t i cks : 1 1 . 5
12 clock : 156.25 kHz
13 dac:
14 b i t s : 8
15 maximum: 2 .5V

Koen Zandberg Dataflow based model-driven engineering of control systems 66

16 minimum: −2.5V
17 model:
18 va r i an t : mcu
19 i n te r faces :
20 spi0 :
21 type : s e r i a l
22 va r i an t : sp i
23 name: spi0
24 spec i f i ca t i on :
25 max_speed: 10MHz
26 spi1 :
27 type : s e r i a l
28 va r i an t : sp i
29 name: sp i 1
30 spec i f i ca t i on :
31 max_speed: 10MHz
32 adc0:
33 type : analog
34 va r i an t : analog
35 spec i f i ca t i on :
36 d i r ec t i on : i n
37 pwm0:
38 type : analog
39 va r i an t : analog
40 spec i f i ca t i on :
41 d i r ec t i on : out

Listing A.22: Atmega328 microcontroller compute file

1 type : compute
2 va r i an t : l i n u x
3 name: dm3730
4 spec i f i ca t i on :
5 clock : 1 GHz
6 model:
7 va r i an t : l i n u x
8 i n te r faces :
9 gpmc0:

10 type : mm
11 va r i an t : gpmc
12 name: gpmc0
13 eth0 :
14 type : network
15 va r i an t : e thernet
16 name: eth0
17 spec i f i ca t i on :
18 throughput : 100 Mbit /s

Listing A.23: DM3730 processor compute file

A.5.4 Actuators

1 type : ac tuator
2 va r i an t : DAC
3 name: ac tuator
4 spec i f i ca t i on :
5 provides : dimensionless
6 samplerate : 1 MHz
7 b i t s : 16
8 maximum: 5

Koen Zandberg Dataflow based model-driven engineering of control systems 67

9 minimum: −5
10 model:
11 name: dac
12 va r i an t : spidac
13 i n te r faces :
14 spi :
15 type : s e r i a l
16 va r i an t : sp i
17 name: sp i
18 port : d i g i t a l
19 spec i f i ca t i on :
20 b i t s : 16
21 max_speed: 50MHz
22 out :
23 type : analog
24 va r i an t : analog
25 name: out
26 port : analog
27 spec i f i ca t i on :
28 d i r ec t i on : out
29 balanced : t rue

Listing A.24: Generic DAC actuator file

1 # The DAC available on the Ramstix board
2 type : ac tuator
3 va r i an t : DAC
4 name: AD5541
5 spec i f i ca t i on :
6 provides : vo l tage
7 samplerate : 1 MHz
8 b i t s : 16
9 maximum: 5 v o l t

10 minimum: −5 vo l t
11 model:
12 name: dac
13 va r i an t : spidac
14 i n te r faces :
15 spi :
16 type : s e r i a l
17 va r i an t : sp i
18 name: sp i
19 port : d i g i t a l
20 spec i f i ca t i on :
21 b i t s : 16
22 max_speed: 50MHz
23 out :
24 type : analog
25 va r i an t : analog
26 name: out
27 port : analog
28 spec i f i ca t i on :
29 d i r ec t i on : out
30 balanced : t rue

Listing A.25: AD5541 DAC actuator file

A.5.5 Sensors

1 # The ADC available on the ramstix board

Koen Zandberg Dataflow based model-driven engineering of control systems 68

2 type : sensor
3 va r i an t : ADC
4 name: ADS8321
5 spec i f i ca t i on :
6 provides : vo l tage
7 samplerate : 100 KHz
8 b i t s : 16
9 t r i gge r _de l ay _ t i c ks : 5

10 maximum: 5 v o l t
11 minimum: −5 vo l t
12 model:
13 name: adc
14 va r i an t : spiadc
15 i n te r faces :
16 spi :
17 type : s e r i a l
18 va r i an t : sp i
19 name: sp i
20 port : d i g i t a l
21 spec i f i ca t i on :
22 b i t s : 24
23 max_speed: 50MHz
24 i n :
25 type : analog
26 va r i an t : analog
27 name: i n
28 port : analog
29 spec i f i ca t i on :
30 d i r ec t i on : i n
31 balanced : t rue

Listing A.26: ADS8321 ADC actuator file

10 References
Arm Limited (2019).Mbed OS. URL: https://www.mbed.com/ (visited

on 06/06/2019).
Ben-Kiki, Oren, Clark Evans, andBrian Ingerson (2005). “Yaml ain’tmarkup

language (yaml™) version 1.1”. In: yaml. org, Tech. Rep, p. 23.
Bezemer, Maarten M (2013). “Cyber-physical systems software devel-

opment: way of working and tool suite”. In:
Bilsen, Greet, Marc Engels, Rudy Lauwereins, and Jean Peperstraete

(1996). “Cycle-static dataflow”. In: IEEE Transactions on signal pro-
cessing 44.2, pp. 397–408.

Blochwitz, Torsten,MartinOtter, JohanAkesson,Martin Arnold, Christoph
Clauss, Hilding Elmqvist,Markus Friedrich, Andreas Junghanns, Jakob
Mauss, and Dietmar Neumerkel (2012). “Functional mockup inter-
face 2.0: The standard for tool independent exchange of simulation
models”. In: Proceedings of the 9th International MODELICA Confer-
ence; September 3-5; 2012; Munich; Germany. 076. Linköping Univer-
sity Electronic Press, pp. 173–184.

Broenink, Jan F and Yunyun Ni (2012). “Model-driven robot-software
design using integrated models and co-simulation”. In: 2012 Interna-
tional Conference on Embedded Computer Systems (SAMOS). IEEE,
pp. 339–344.

Broenink, Jan F, Yunyun Ni, and Marcel A Groothuis (2010). “On model-
driven design of robot software using co-simulation”. In: Proceed-
ings of SIMPAR 2010 workshops international conference on simula-

https://www.mbed.com/

Koen Zandberg Dataflow based model-driven engineering of control systems 69

tion, modeling, and programming for autonomous robots. TU Darm-
stadt, Darmstadt, pp. 659–668.

Broenink, Tim Gerhard and Johannes F Broenink (June 2018). “A vari-
able detail model simulation methodology for cyber-physical sys-
tems”. English. In: pp. 219–225.

Bruyninckx, Herman,MarkusKlotzbücher, NicoHochgeschwender, Ger-
hard Kraetzschmar, Luca Gherardi, and Davide Brugali (2013). “The
BRICS componentmodel: amodel-based development paradigm for
complex robotics software systems”. In: Proceedings of the 28th An-
nual ACM Symposium on Applied Computing. ACM, pp. 1758–1764.

Buck, Joseph Tobin and Edward A Lee (1993). “Scheduling dynamic
dataflow graphs with boundedmemory using the token flowmodel”.
In: 1993 IEEE international conference on acoustics, speech, and sig-
nal processing. Vol. 1. IEEE, pp. 429–432.

Dhouib, Saadia, Selma Kchir, Serge Stinckwich, Tewfik Ziadi, and Mikal
Ziane (2012). “Robotml, a domain-specific language to design, sim-
ulate and deploy robotic applications”. In: International Conference
on Simulation, Modeling, and Programming for Autonomous Robots.
Springer, pp. 149–160.

Diego, Alonso, Cristina Vicente Chicote, Ortiz Francisco, Pastor Juan,
and Álvarez Bárbara (2010). “V3cmm: A 3-view component meta-
model for model-driven robotic software development”. In:

Harrand, Nicolas, Franck Fleurey, BriceMorin, andKnut Eilif Husa (2016).
“Thingml: a language and code generation framework for heteroge-
neous targets”. In: Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems.
ACM, pp. 125–135.

Jensen, Jeff C, Danica H Chang, and Edward A Lee (2011). “A model-
based design methodology for cyber-physical systems”. In: 2011 7th
International Wireless Communications and Mobile Computing Con-
ference. IEEE, pp. 1666–1671.

Kahn, Gilles (1974). “The semantics of a simple language for parallel
programming”. In: Information processing 74, pp. 471–475.

Lee, Edward A (1991). “Consistency in dataflow graphs”. In: IEEE Trans-
actions on Parallel & Distributed Systems 2, pp. 223–235.

Likely, Grant and Josh Boyer (2008). “A symphony of flavours: Using
the device tree to describe embedded hardware”. In: Proceedings of
the Linux Symposium. Vol. 2, pp. 27–37.

Liu, He, Xiaojun Liu, and Edward A Lee (2001). “Modeling distributed
hybrid systems in Ptolemy II”. In: Proceedings of the 2001 Ameri-
can Control Conference.(Cat. No. 01CH37148). Vol. 6. IEEE, pp. 4984–
4985.

Nicolescu, Gabriela, HBoucheneb, LGheorghe, and FBouchhima (2007).
“Methodology for efficient design of continuous/discrete-events co-
simulation tools”. In:High Level Simulation Languages andApplications-
HLSLA. SCS, San Diego, CA, pp. 172–179.

Schlegel, Christian and Robert Worz (1999). “The software framework
SMARTSOFT for implementing sensorimotor systems”. In: Proceed-
ings 1999 IEEE/RSJ International Conference on Intelligent Robots
and Systems. Human and Environment Friendly Robots with High In-
telligence andEmotional Quotients (Cat. No. 99CH36289). Vol. 3. IEEE,
pp. 1610–1616.

Selic, Bran (2003). “The pragmatics of model-driven development”. In:
IEEE software 20.5, pp. 19–25.

Singhoff, Frank, JérômeLegrand, LaurentNana, and LionelMarcé (2004).
“Cheddar: a flexible real time scheduling framework”. In:ACMSIGAda
Ada Letters. Vol. 24. 4. ACM, pp. 1–8.

Stuijk, Sander,MarcGeilen, Bart Theelen, andTwanBasten (2011). “Scenario-
aware dataflow: Modeling, analysis and implementation of dynamic

Koen Zandberg Dataflow based model-driven engineering of control systems 70

applications”. In: 2011 International Conference on Embedded Com-
puter Systems: Architectures,Modeling andSimulation. IEEE, pp. 404–
411.

Theelen, Bart D, Marc CWGeilen, Twan Basten, Jeroen PM Voeten, Ste-
fanValentinGheorghita, andSander Stuijk (2006). “A scenario-aware
data flow model for combined long-run average and worst-case per-
formance analysis”. In: Fourth ACM and IEEE International Confer-
ence on FormalMethods andModels for Co-Design, 2006.MEMOCODE’06.
Proceedings. IEEE, pp. 185–194.

Vries, Theo JA de, Paul BT Weustink, and Johannes A Cremer (1997).
“Improving dynamic systemmodel building through constraints”. In:
submitted to CACD’97 Lancaster InternationalWorkshop on Engineer-
ing Design, Lancaster, UK.

Wiggers, Maarten H, Marco JG Bekooij, and Gerard JM Smit (2008).
“Buffer capacity computation for throughput constrained streaming
applicationswith data-dependent inter-task communication”. In:2008
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium. IEEE, pp. 183–194.

	Introduction
	Context of This Thesis
	Application Workflow
	Research questions
	Which dataflow models of computation are suitable as basis for model-driven development?
	Which simulation features are required to verify the supplied models?
	Which platform specific information is required to transform the dataflow based model into a PSM?

	Thesis Structure

	Background
	model-driven development Methodologies
	Dataflow Models of Computation
	Dataflow Theory
	Synchronous Dataflow
	Homogeneous Synchronous Dataflow
	CSDF
	VRDF/VPDF
	BDF
	SADF
	FSM-SADF
	Dataflow analysis

	Platform Meta Model Designs

	Analysis
	Control System requirements
	Modelling Requirements
	Model Analysis Requirements
	Simulation Requirements

	Dataflow Model of Computation
	Platform Meta Model
	Platform Meta-Model Components

	Design Requirements
	Application design
	Model backend
	Model analysis
	Model Simulation
	Model-to-model conversion

	Language design
	Model description
	Hardware description design

	Implementation
	Function blocks
	Communication
	Configuration
	Computational functionality

	System meta-model
	Plant integration
	Model rendering

	Model analysis
	SDF based models

	Model simulation
	Co-simulation synchronization scheme

	Simulation Results
	Platform Meta Model
	Component types

	Model-to-model conversion

	Testing
	Model handling
	Formal Model Verification
	SADF extensions for models

	Model functionality verification
	Simulation
	Physical Quantity support
	Platform Metamodel
	Model-to-model Conversions
	Actor Expansion
	Timing Adaptation
	PSM Parameter override

	Case Study
	Model
	Platform Independent Model
	PIM analysis
	Delay effects

	Platform Design
	RaMstix board
	Arduino Uno

	PSM Conversion
	RaMstix Target
	Arduino Uno Target

	Evaluation

	Discussion
	Conclusion and Recommendations
	Recommendations

	Appendices
	Model examples
	SDF and SADF examples
	PID example
	Unit example
	Linix demonstrator
	Platform model files
	Platforms
	Boards
	Compute
	Actuators
	Sensors

	References

