
Computation Offloading Of Augmented Reality

In Warehouse Order Picking

Creative Technology Bachelor of Science Thesis

Harald Eversmann

July, 2019

UNIVERSITY OF TWENTE

Faculty of Electrical Engineering, Mathematics and

Computer Science (EEMCS)

Supervisor

Dr. Job Zwiers

Critical observer

Dr. Randy Klaassen

Client

Gerben Hillebrand

CaptureTech Corporation B.V.

1

[Page intentionally left blank]

2

ABSTRACT
A novel method is proposed to implement computation offloading in augmented reality

(AR) technology, such that said technology can be of more use for industrial purposes, and

in this case specifically, warehouse order picking. The proposed method utilises a wireless

connection between the AR device in question and a server and lets them communicate

with each other via video and MJPEG live streams. Experiments show promising results

for the prototype, but not yet in terms of fully offloading the AR devices workload. It is

expected that rising technologies like faster Wi-Fi connection can help in the successful

conclusion of fully offloading AR devices.

3

4

ACKNOWLEDGEMENTS
The author would like to express his deep gratitude towards CaptureTech Corporation

B.V. and in particular Gerben Hillebrand for the opportunity, knowledge, and resources

to make this research project possible.

The author thanks Dr. J. Zwiers for his continuous supervision and assistance throughout

the entire graduation project in question. Additionally, the author would also like to ex-

press his thanks to Dr. R. Klaassen for his role as critical observer during the process of

this research.

5

TABLE OF CONTENTS

ABSTRACT .. 2

ACKNOWLEDGEMENTS .. 4

LIST OF TABLES .. 7

LIST OF FIGURES ... 8

LIST OF ABBREVIATIONS .. 9

I. INTRODUCTION .. 10

II. BACKGROUND ... 12

AUGMENTED REALITY .. 12
USER TEST ... 12
OFFLOADING .. 14
POTENTIAL SUPPORTING DEVICES.. 16
PROBLEM STATEMENT .. 17

III. IDEATION .. 18

CREATIVE TECHNOLOGY DESIGN PROCESS ... 18
STAKEHOLDERS ... 18
OBSERVATIONS ... 18
DEVELOPMENT ... 19
COMMUNICATION ... 20
SENDING AND RECEIVING IMAGES TO PROCESS .. 20
OFFLOADING AS TOTAL BACKEND .. 21
IMAGE RECOGNITION ... 21
USER EXPERIENCE ... 22
INTERACTION DIAGRAM .. 23
REQUIREMENTS .. 24

IV. IMPLEMENTATION .. 26

FIRST PROTOTYPE .. 26
SECOND PROTOTYPE .. 27
THIRD PROTOTYPE ... 29
SETTING UP THE SERVER .. 32
ANDROID APPLICATION .. 33

V. EVALUATION ... 36

POSSIBLE EVALUATIONS .. 36
TEST SETUP .. 37
COLLECTED DATA .. 38
DISCUSSION ... 39
EVALUATION CONCLUSION .. 40

VI. CONCLUSION .. 41

VII. DISCUSSION AND FUTURE RESEARCH .. 42

IV. REFERENCES ... 43

APPENDIX A: QUESTIONNAIRE ... 45

APPENDIX B: CONSENT FORM.. 46

6

APPENDIX C: SEQUENCE DIAGRAM COMMANDS ... 48

APPENDIX D: FIRST PROTOTYPE ... 49

APPENDIX E: CODE FOR MEASURING TIME BETWEEN FRAMES .. 50

APPENDIX F: SECOND PROTOTYPE WITH ZBAR .. 51

APPENDIX G: THIRD PROTOTYPE WITH VIDEOSTREAM AND WHITE BACKGROUND 52

APPENDIX H: IMAGE PROCESSING SERVER CODE ... 53

APPENDIX I: ANDROID APPLICATION ... 55

7

LIST OF TABLES
Page number Table number Description

25 3.1 A list of requirements for the prototype, classified

in general and prototype specific necessities.

27 4.1 The measurements of time between two frames

for the first prototype.

29 4.2 The time between two frames measured for the

program with ZBar implemented.

31 4.3 The time between two frames measured for the

program with Imutils and a transparent back-

ground.

31 4.4 The time between two frames measured for the

program with Imutils, without a transparent

background.

38 5.1 The maximum distances the QR codes were still

readable for the program per resolution.

8

LIST OF FIGURES
Page number Figure number Description

13 2.1 The test setup for the conducted user test at

Idexx.

13 2.2 the situation implemented on a cart. If this

would be an actual real situation, all bins would

need an individual QR code.

14 2.3 The aspects of the prototype and their respective

scores

15 2.4

The previously mentioned four different IoT con-

cepts in a model that shows how communication

between the devices goes.

16 2.5 A model that visualizes the concept of cloudlet.

Note how a 3G connection can also connect with

the cloud, but the connection between device and

3G cannot provide any offloading on itself.

22 3.1 The structure of a QR code.

24 3.2 Interaction diagram for the prototype.

26 4.1 The result of the first prototype. The red text say-

ing “Hello :)” is the data stored in the QR code.

This could, otherwise, be an ID for a 3D object.

28 4.2

The resulting image with the ZBar library imple-

mented.

28 4.3 The QR code without any data, as seen in figure

8.

30 4.4 The resulting image with a “transparent” back-

ground. Now the program only has to change the

resulting pixels, and not the ones from the frame.

30 4.5 The new interaction diagram with a seemingly

small change, but with big impact on the speed

of the program.

32 4.6 The response from the Flask server in a browser.

33 4.7 The main menu of the Android application as

seen on a smartphone.

34 4.8 The streaming activity as shown on an Android

device.

35 4.9 The error message that pops up if no connection

can be established between the device and the

server with the given IP address.

37 5.1 The QR codes, as used in the evaluation.

38 5.2 The complete setup with an Android device (left)

and tape measure (right).

39 5.3 The graph that results from the collected data.

9

LIST OF ABBREVIATIONS
Abbreviation Meaning

AR Augmented Reality

UX User Experience

IoT Internet of Things

10

I. INTRODUCTION

Augmented reality (AR) in consumer electronics as society knows it today has seen an

explosive increase of use and development over the last couple of years. That is why ware-

houses see opportunities in the AR technology for the services they provide, as the organ-

isations believe they can increase the efficiency of the order picking process through this

technology.

In these warehouses, batch picking is a method of order picking in which multiple

product requests together form a pick batch [1], [2]. Together with similar products other

customers have requested, the order picker puts the requested product in the correspond-

ing bin. When other customers have requested the same product, the order picker will

pick the product as many times as requested in total, instead of picking them per client.

This way of order picking can thus be seen as product-based, rather than order-based [2].

It is believed that augmented reality can help in making this process faster and more

efficient.

 CaptureTech Corporation B.V. (CaptureTech for short) is currently investigating

if previously mentioned challenge is indeed possible. Specifically, they are intrigued by

the opportunity to integrate wearable Augmented Reality into this process. CaptureTech

is a relatively young company that specializes in the new generation of traceability in

terms of company resource management. Effective key management, electronic locker so-

lutions and web management is just a mere grasp of the challenges that keeps this dy-

namic company busy. They are constantly developing new systems that use state of the

art tracking technology such as RFID, voice recognition, and the Cloud.

 Previous work [3] concludes that the AR glasses currently need to do a lot of pro-

cessing in order to support the process of warehouse order picking. This results in slow

reaction time from the system and overheated AR technology. That is why the aim of this

thesis is evaluating the processing speed and performance of the current AR technology

and proposing a novel method that takes the processing off the AR device. This technique

will use computation offloading, and is defined in research as a solution that utilizes

nearby (mobile) devices and/or remote cloud for computational support [4]. Hence, the

research question of this thesis is stated as follows:

RQ “In what way can computation offloading for augmented reality devices be imple-

mented in warehouse order picking applications?”

To actually be able to answer the research question, there are still some things unclear

that need to be clarified. First of all, the technology needs to be well enough developed,

such that it is possible to really implement a system of sorts in the process of warehouse

batch picking. This results in the first and following sub-question:

1.1 “Is computation offloading technology currently fitting to be applied to augmented

reality?”

After a conclusion was drawn for the first sub-question, the first hurdle in a range of

challenges is overcome. Computation offloading technology was indeed found to be fitting

for AR technology to be offloaded. Afterwards, it became of importance to see how the

deficiencies in AR can be improved. As processing power and battery life seem to be real

problems, and these can be improved through computation offloading, the answer to this

can be found by answering sub-question 1.2:

11

1.2 “What device is a viable option for offloading AR technology in the given context of

warehouse order picking?”

This sub-question can be answered through mainly literature and context research, which

was done so extensively. The problem, together with the means to tackle this issue, are

believed to be clear. Consequently, the communication between these devices need to be

further specified, and this is where sub-question 1.3 comes into play:

1.3 “How can the chosen device for computation offloading and AR technology com-

municate with each other?”

After reviewing different kinds of communication technologies, Wi-Fi was found to be the

most reliable and fastest of the lot, hence the choice was made to use this for the prototype.

Once the communication was made, a novel method was proposed to increase the potential

processing power and battery life of wearable AR technology by letting the offloading de-

vice do the hard work of recognising QR codes in the environment for 3D objects to be

rendered on. This method has been evaluated through speed and distance experiments,

from which it can be concluded that computation offloading is a promising technique for

AR devices to gain more processing power, but the internet speed and heavy workload of

image recognition both seem to be a bottleneck. However, technology is constantly in de-

velopment, meaning that with some informed speculation this prototype cannot be

deemed a failure. As more stable and faster wireless communication protocols emerge,

together with the rise of new and better hardware solutions for image recognition, the

proposed method can still see its successful conclusion in the near future and proof to be

an effective technique for augmented reality to be implemented in industrial applications.

12

II. BACKGROUND

Augmented Reality
Augmented Reality in the order picking industry has been implemented in different ways,

and this section will discuss the most relevant, but certainly not all kinds of implementa-

tion. This because it is simply impossible for the scope of this thesis to include all different

solutions for it, since there are quite a few out there. Firstly, however, it needs to be de-

termined what will be considered AR and what not. That is why, for this thesis, the fol-

lowing definition is used, based on multiple sources [5]–[8]: Augmented Reality is consid-

ered to be technology that overlays virtual objects into the real world for the user to see

and interact with. AR technology uses the real world as a basis and is therefore support-

ive, not leading. Technologies that are defined as AR are thus all devices displaying vir-

tual objects on top of the real world, whether it is through glasses, screens or other usable

objects. In this thesis especially, the focus is on wearable AR technologies, as these tend

to have less processing power and battery life than their non-wearable counterparts.

 While there are definitely opportunities for AR out there, the technology still needs

development in order to be really effective in industry. Palmarini et al. for instance high-

light the technical limitations of the current state of AR in their review [7], mentioning

how the current technology is not reliable and robust enough for industrial implementa-

tions. Additionally, M. Akçayır and G. Akçayır in their research [6] talk about a research

that concludes that AR technology is considered to be complicated, and there were often

technical issues encountered while using it. Next to that, it is mentioned that there are

lots of different AR devices which can lead to misunderstanding and additional technolog-

ical problems. Therefore, they conclude that the AR technologies should be developed to

be “smaller, lighter, more portable, and fast enough to display graphics” (p. 2). In addition

to that, Shi et al. [4] point out that, for wearable AR devices computational capability,

memory storage, and power capacity are the biggest limitations when comparing these

technologies with AR smartphone applications. However, Meulstee et al. [5] suggest that

AR technology has seen a significant increase in development, and it can be expected that

forms of augmented reality will soon see such an improvement that it will be more useful

for industrial purposes. Because of the fact that it will probably get to such a state, the

AR technology is even more worth researching.

 From previously discussed situation it can be concluded that AR technology as of

now might not be well suited to be implemented in industry. Nevertheless, AR technology

is being improved rather quickly and will probably be capable of eventually replacing

and/or enhancing certain parts of the process of order picking. That is why researching

the implementation of this technology is definitely relevant and important. To improve

the effectiveness and user experience of AR, speed, portability and comfort are mainly of

importance. Furthermore, battery is currently still a limitation for the wearable devices.

All these problems could be solved by implementing offloading [4], although it being in a

more or less extent per issue.

User test
Since there already is a prototype of a solution for warehouse order picking [3], it is of

importance that this prototype is evaluated. This evaluation was done through a user test

executed at Idexx, a company that specialises in the manufacturing and distribution of

products for different animal markets. The users that were asked to evaluate the system

were professional order pickers in the industry, i.e. experts on the field of order picking

13

and end users of the to be finalized product. Goal of this user test was to find out what

part(s) of the process need(s) to be improved through offloading.

 The user test was conducted as follows: first, the users filled in a consent form that

can be found in appendix A. the users were asked to play out a scenario in which they

start their day in the warehouse. The prototype consists of two parts: pairing and real-

time feedback on the actual picking [3]. Hence, these two aspects were separately tested.

First the pairing process was tested by letting the users play out a scenario where they

are standing in the warehouse and “pairing” the lists with the bins. The users were given

a list in the form of a QR code and they were told to scan the list and the according bin.

Subsequently, the users were given a second scenario, in which the user puts the product

into a bin, with the product being a carton box with a QR code on it. Due to lack of an

actual order picking cart, a drawn version was made that represented the cart. The setup

can be seen in figure 2.1.

Figure 2.1: the test setup for the conducted user test at Idexx.

Since this setup was only for user testing, a “real” situation in which the markers are on

the actual cart can be found in figure 2.2. After working through both scenarios, the users

were asked to fill in a questionnaire which can be found in appendix B. The participants

were asked to indicate how much they agreed with a total of 14 statements, ranging from

the comfortability of the glasses to the digital display of the prototype. Six different as-

pects were evaluated through the user test: intuition, speed, performance, feedback, com-

fort, and potential. Each statement had to do with at least one of the aspects, and the

results from the questionnaire were translated into a score for the different characteris-

tics of the prototype. The following results were gained from the test, as can be found in

figure 3.

Figure 2.2: the situation implemented on a cart. If this would be an actual real situation,

all bins would need an individual QR code.

14

Figure 2.3: The aspects of the prototype and their respective scores.

As can be concluded from figure 2.3, performance and comfort seem to be the biggest de-

ficiencies of the current prototype. Surprisingly, speed does not seem to be the lesser of

the investigated aspects of the prototype, however this can be explained by the fact that

the prototype is at a very initial state. Due to the fact that this solution is still in such an

early phase, the hardware has rather easy tasks; The glasses only have to process the

markers and the “pushing” of the virtual buttons. That is, there is no real tracking of the

user’s hands, there is no wireless connection with, for instance, a database, and the mark-

ers still need to be quite big for the glasses to recognize them. All of previously mentioned

three aspects need to be improved and implemented in order to fully develop this product.

These features bring a lot of additionally required processing power along, and it is not

believed that the currently used Vuzix M300 glasses have the capacity to do all this. The

assumption that the glasses indeed do not have the required processing power is sup-

ported by the literature review done earlier. To make sure the glasses can handle all the

required processing, a technique called computation offloading can be implemented, such

that some of the processing is done by a different device.

Offloading
Computation offloading for AR has seen a significant rise of attention over the last few

years, and the problem of offloading has been tackled in various ways. As stated before,

offloading in the context of augmented reality is considered to be a solution that utilizes

nearby devices and/or remote cloud to support the computation and processing of different

steps in the software system. This concept is especially used for real-time computationally

heavy processes, for instance a machine learning application as marker tracking [9]. Com-

putation offloading is said to improve the performance and reduce energy consumption of

the system it is applied to [10].

As there are different ways of offloading, Lee et al. [9] identify four different cate-

gories in which methods fall: one-to-one, one-to-many, many-to-one, and many-to-many.

These terms are very common in Internet of Things (IoT) applications, and are thus not

only reserved for offloading, although it being in previously mentioned research that the

terms indeed refer to said technique. As the four different terms might already suggest,

this means that both the support and the supported devices can work in different quanti-

ties. Every term first names the supported device, i.e. the device that is being offloaded;

Thereafter the quantity of the supporting devices is meant, i.e. the device that is

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

Intuition Speed Performance Feedback Comfort Potential

Prototype aspects and their scores

15

offloading. One-to-many therefore means that one device is seeking computational sup-

port from multiple devices. A schematic showing the different concepts of IoT cross-device

computational offloading can be seen in figure 2.4.

Figure 2.4: The previously mentioned four different IoT concepts in a model that shows

how communication between the devices goes.

For this thesis, the main focus will be first on one-to-one communication/offloading to see

whether this is effective. If it turns out to be less effective than hypothesized, the one-to-

many concept might prove to be a better alternative.

 As an example of offloading in AR, Ha et al. [11] developed a prototype named

Gabriel. This prototype is based on the concept of cloudlets. As stated in the article, “A

cloudlet is a new architectural element that represents the middle tier of a 3-tier hierarchy:

mobile device — cloudlet — cloud. It can be viewed as a data centre in a box” (p. 4). The

cloudlet works as follows: a mobile device that normally would do a lot of processing, is

connected to the cloudlet. This cloudlet can be any device connected to the internet, like a

laptop or a notebook. In turn, the cloudlet can optionally be connected to the actual cloud,

where virtual machines get the processing commands from the cloudlet. The virtual ma-

chine(s) then send(s) the processed information to the cloudlet, which in turn sends it back

to the mobile device. The cloudlet could also just do the processing by itself, if the device

is strong enough to do so.

If the cloudlet is only connected to the device to be supported, it is called edge

computing. Otherwise the process is referred to as cloud computing. Cloud computing is

normally more powerful, while edge computing keeps the processed data closer to the end

user [12]. As the concept of edge computing seems reliable to use and not that difficult to

implement in any context, the preference goes out to this concept. On top of that, edge

computing, without making the step towards cloud computing, seems to be more than

sufficient for this prototype.

16

The mobile device can connect to different cloudlets, however the connection is al-

ways only with one, making it a one-to-one or many-to-one IoT solution. Nonetheless, if

the cloudlets use the cloud to do some of the processing, all of these cloudlets are connected

to the same cloud. This is in turn a Many-To-One concept. An image that visualizes the

concept of cloudlets is shown in figure 2.5, as taken from the article by Bahwaireth and

Tawalbeh [13]. Goal of the cloudlet is to “bring the cloud closer” [4] (p. 2). As a powerful,

well connected and trustworthy cloud proxy or standalone, a cloudlet is said to be an ex-

cellent offload site for cognitive assistance technology, such as augmented reality [14].

Figure 2.5: A model that visualizes the concept of cloudlets [13]. Note how a 3G connec-

tion can also connect with the cloud, but the connection between device and 3G cannot

provide any offloading on itself.

Potential supporting devices
In order to make offloading effective for the context of order picking and see what oppor-

tunities lie in this field, a context has to be made first. As the context for this paper is

warehouse order picking, there are a few things to keep in mind. First and most important

is that the order picker that is using this device should be free to walk wherever they need

to, together with their so-called “cart”. On this cart, many different bins are placed that

are used for different clients. Hence, every client has their own bin on this cart and the

products are placed in the according bin. The cart is moveable, and should be, also after

implementation of the proposed solution. That is why it may be more lucrative to imple-

ment the cloudlets across the warehouse, instead of implementing them on the carts, al-

lowing for a non-depleting power source. This results in a different problem, however.

Now the cloudlets are used by different users, and the users should be able to use different

cloudlets. The corresponding IoT concept becomes Many-To-One, as the mobile devices

should all be able to use offloading at the same place.

The Many-To-One concept extends the requirements for the cloudlet device to be

used significantly, as many different people need to be able to use the computation of-

floading at the same time. According to Idexx, the company that was visited to sketch a

context for this thesis, a maximum of nine people would be in the same area at the same

time. Hence, the requirements for the processing power of the supporting device becomes

nine times as high. Nevertheless, the prototype for this thesis will start with a one-to-one

connection, as this should at least prove the concept to be effective. That is why for this

thesis, initially only one cloudlet will be used.

 Because of the fact that this thesis is focused on making a proof of concept, a device

will be needed that is easy and reliable to use. The preference goes out to the Raspberry

Pi 3 B+, as it is hypothesized to be a stable and easy-to-use microcontroller that may not

have all the processing power that will ultimately be needed, but can proof that the con-

cept of computation offloading works. If the concept is proven, more expensive devices

with more processing power and compatibility can be looked into to increase the perfor-

mance of the prototype.

17

Problem statement
As of now, people do see the benefit of augmented reality in order picking industry, and

the prototype is well received. However, the current prototype is still missing some key

functionalities that are required to fully implement this product into industry. This accu-

mulation of process tasks calls for more processing power from the augmented reality

device, which it simply does not have. Next to that, the speed of the prototype is not opti-

mal already, and thus some form of computation offloading is desirable, if not needed.

 That is why this project will revolve around finding a smart solution for the lack

of processing power in wearable augmented reality devices. A prototype will be made in

which the AR device communicates with an offloading device, in this case a Raspberry Pi

model 3 B+. Both speed and performance will be tested for the recognition of QR codes. If

time allows, this processing can be implemented into the current prototype for an AR

supported batch picking system and evaluated through user tests to see if this helped the

application to be faster and more stable.

18

III. IDEATION

Creative Technology design process
For the study Creative Technology at the University of Twente, a design process was con-

structed by Mader and Eggink [15]. In the paper that the two researchers wrote, it is

stressed that the study Creative Technology has two major focuses: user centred design

and the development of prototypes. To get the best result in both fields, Mader and Eggink

developed a design process that is divided in four phases: ideation, specification, realisa-

tion and evaluation. In this study, previously mentioned design process was used in order

to come up with the best argued iterations and results. Hence, for every single part a short

evaluation was done to support the next choice of addition or alteration.

Stakeholders
To make a proper offloading system that can be of use for portable AR devices, and spe-

cifically for warehouse order picking, there are a couple of things to keep in mind. The

most important things for a creative technologist to keep into account are practically al-

ways the stakeholders for the research. In this design research, a couple of stakeholders

exist. CaptureTech Corporation B.V. is arguably the most important stakeholder, as they

are currently looking into the possibility of implementing these AR devices in real world

situations. However, in terms of design for this particular part of the prototype, the stake-

holder to be most looked at has to be the end user: a professional warehouse order picker.

The person that will be using the application to-be has to feel like the application is of

considerable added value. It is of importance that the AR device is still very portable, and

that the AR is providing actual real-time feedback, without noticeable latency. Next to

that, the computation offloading should preferably not get in the way of starting up the

rest of the application. In other words, the offloading part should ultimately be incorpo-

rated within the system and not be a standalone application. However, due to the time

restrictions for this project, this might have to be done in further work.

Observations
To fully understand the context of warehouse order picking and construct properly

grounded requirements for the prototype, a visit was made to IDEXX, as previously men-

tioned a company that among other things distributes animal pharmaceuticals. During

this visit, an observation was made for both the process of warehouse order picking, and

in particular batch picking, together with the environment in which this process happens.

The state-of-the-art batch picking system works with a voice recognition concept, where

order pickers confirm what they are doing to ensure a quite low error rate. The voice

recognition concept works as follows:

- Every product is placed on a numbered shelf. The voice agent tells the order picker

what shelf the product should be picked from, and what amount.

- The order picker confirms that they “pick” the product by saying the number to-

gether with “confirm”. By saying “confirm”, the system knows the message is fin-

ished.

- Then, the voice assistant tells the order picker in which bin the product(s) should

be placed. This again happens with numbers, ranging from one to fifteen in this

particular case.

19

- As expected, the order picker places the product in the correct bin and lets the

assistant know they did it by saying the number of the bin and adding “confirm”.

- The assistant continues by telling the order picker what the next product is.

This process of supporting order picking is, while working, not the fastest nor error-free.

There seemed to be a considerable amount of time between the confirmation of the order

picker and the system giving a next instruction. Hence, some time is lost in this process

which does not necessarily have to be the case. This could, for instance, be solved through

implementing a faster network or protocol, as the auditory agent needs to get the data

from a database in order to generate an instruction. This is currently done through a

Wi-Fi connection. With the rise of Wi-Fi 6 technology, that is said to be at least four times

faster than the currently used Wi-Fi-5 [16], the amount of time between the order picker

confirming their task and the agent giving a next one could be further diminished.

 Despite the fact that the speed of the system can be increased, no extra visual

feedback is currently possible with the device as is. Users of the current system need to

check their own work, which results in easily missed flaws in the process. Next to that,

Development
The first step into making a prototype to prove the concept of computation offloading can

be implemented has to deal with a choice: what to offload? For this, first the processes in

augmented reality need to be identified.

One of the most important processes used in the current prototype [3] is image

recognition. The kind of augmented reality technology that was applied uses a camera to

identify visual markers or objects, such as a QR/2D codes or specialized markers, to de-

termine positions of 3D rendered objects only when the marker is sensed by the device.

This marker based technology thus fully relies on what the camera of the AR device sees.

Image recognition generally takes up a lot of processing power, and it probably is the

heaviest task for the device as of now. Furthermore, M. Kenny Williams in his work [3]

mentioned the following:

“In order for the prototype to become a usable product, the image recognition should be

improved. At the moment, it is still too slow because picking processes happen quite fast.

[…] Moreover, the size of markers and the distance at which the user is standing also mat-

ters. The smaller the markers are, the better it would be for the warehouses, but it could

also affect the speed of the image recognition” (p. 54)

From the assumptions and the statement in previous work, it can be concluded that it is

probably best to focus on the offloading of image recognition as a start. After implemen-

tation of this offloading, other parts should be easy to add and thus the prototype should

be built in an easy adaptable way. In other words, the code that will be written for the

prototype should be easily adaptable for different applications, and not too hard to com-

bine with for instance high quality 3D rendering.

Another very important part of the prototype is rendering. Since the AR device

needs to be able to show 3D objects, it needs to render them first. Depending on the hard-

ware specifications, rendering can be heavier or less heavy for the device. As was con-

cluded earlier, the hardware in the currently used AR device is not of the most satisfactory

quality, and thus the device could use some offloading for this process. However, as of now

the amount of 3D objects to be rendered simultaneously is not of substantial rate that

offloading is really necessary in this part. This can be concluded due to the fact that the

20

application does not start “lagging” increasingly when the device needs to render multiple

objects.

Communication
Naturally, the communication for this computation offloading needs to be wireless, as

otherwise the processing on other devices cannot be done without interfering with the

portability of the AR glasses. Because of the fact that the offloading can only work when

frames of the to be altered reality are sent at a reasonable “real time” pace, it is of im-

portance that the data transmission speed is as high as possible. A protocol should be used

that can transmit relatively much data in very little time, such that the application still

gives real time feedback. A couple of different wireless communication technologies were

evaluated as potential candidates for this project: Bluetooth; Wi-Fi; 4G; Zigbee. Of all

these communication tools, Wi-Fi seems to be the best option as the maximum data trans-

mission per second is the highest – the current standard 802.11ac namely has a maximum

speed up to 1.3GBps [17]. The other standards currently have speeds that do not even

come close to Wi-Fi, except 4G technology with a theoretical maximum transmission speed

of 1GBps but with a much bigger gap between theoretical and actual transmission rates

[18]. That is why the choice goes out to Wi-Fi for this prototype.

That being said, in the near future two upgraded technologies are expected: 5G, as

the follow-up from 4G, which has a theoretical maximum of 1GBps [18] and will be up-

graded to around 4GBps. The second upgrade is a new version of the 802.11 standard for

Wi-Fi, 802.11ax. This Wi-Fi technology is said to have four streams of data, rather than

one like the current 802.11ac [17]. The 802.11ac standard is mostly cited to have a maxi-

mum speed of 1.3GBps [17], while the 802.11ax will have a max of 3.5GBps. Combine that

with the fact that it will have four times as much data streams available, and a 14GBps

bandwidth is reached. Hence, this is a tremendous improvement compared to the current

Wi-Fi technology.

With the upcoming advances in this field, the choice for Wi-Fi as communication

tool for this prototype becomes even more sensible than before. The prototype will defi-

nitely benefit from the future transmission rates, because it can help the accuracy and

pace of the application become better. Taking this in mind, it is not a failed prototype

when it cannot deliver real time feedback just yet. When transmission rates increase sig-

nificantly with the upcoming communication standards, the application could nonetheless

come into its own if it is not yet of proper quality already.

Sending And Receiving Images To Process
The image recognition part of this prototype can only be incorporated if there is some

transmission of images/frames. To do this, the VR device’s camera needs to be used. I.e.

the device needs to send a video stream of what it is currently seeing to a server. On the

server, the images can then be processed and sent back. To allow for sending this video

stream, an Android application should be developed that can both send and receive im-

ages. To first focus on the image processing, the images were firstly sent with the help of

an Android application called “IP webcam”. This application allows the device to send a

live stream inside a Wi-Fi network using its own IP address. The live stream can then be

found when navigating to this IP address. Through this medium, the server that will do

the image processing can easily receive the frames. Moreover, the application makes it

possible to stream in different qualities, which can be of great influence for the latency

21

within the proof of concept. A lower quality image can for instance be sent over Wi-Fi

faster than an image of higher quality, as the amount of data is simply a lot smaller.

 Sooner or later, however, an application has to be developed for the AR device to

receive the processed frames. The main reason for this is that the Android operating sys-

tem – which runs on the AR device – does not allow multiple applications to use the cam-

era. Next to that, the current IP Webcam application starts up a server to stream the

camera. This is rather unnecessary extra work for the device as there is already a server

running for the image recognition and processing. Naturally, the images to be sent cannot

be the same images that are received, hence there will definitely be a delay, whether or

not this is truly noticeable. For now, the IP Webcam can be used to develop a proof of

concept which shows that image recognition can be done sufficiently on a different device

than the one used for AR.

Offloading As Total Backend
For the proof of concept that is currently built, it is of importance to show the current

frame together with the results of the scanned QR codes. When this prototype would be

implemented in other applications, however, the response of the server could be totally

different. For other applications, it would probably be more convenient to just send

through the data about and the position of the QR codes, such that only the rendering of

the 3D object remains. The following string results from the decoded frame if a single QR

code is scanned with the text “Hello :)” encoded in it:

“Decoded(data=b'Hello :)', type='QRCODE', rect=Rect(left=119, top=157, width=184,

height=200), polygon=[Point(x=119, y=351), Point(x=297, y=357), Point(x=303, y=164),

Point(x=126, y=157)])”

If this would be sent through to the AR device, the device can render the objects on top of

the QR codes by itself, knowing the position and data of the QR codes. This actually takes

back the prototype a few steps in terms of complexity, which is why the choice was made

to not focus on that part for the time being.

 Nonetheless is this idea a good basis for further development, as it becomes much

more implementable for other prototypes or actual AR applications. If in the prototype it

is made possible to send through frames with overlay at a reasonable speed, it is hypoth-

esized to send through positions and size of QR codes even faster. With the focus of this

prototype being on speeding up image recognition and rendering of AR devices, together

with the fact that sending through simple Strings is much easier than a live stream, it is

hypothesized that deriving a solution like this from the future prototype will be relatively

simple.

Image Recognition
Different languages, packages, and even devices can be used for image recognition. As

OpenCV is a well-documented library of programming functions especially developed for

real-time computer vision [19] and thus for image recognition, the preference goes out to

using this library. If OpenCV turns out to be not specific enough for – in this case – QR

codes, i.e. the library takes up a lot of time, other libraries can be looked at to improve

efficiency.

 The OpenCV library can be used in many different programming languages, with

its primary interface being C++. There are bindings for OpenCV to run in the languages

22

Python, Java and MATLAB/OCTAVE. For the languages C#, Perl, Ch, Haskell, and Ruby,

OpenCV wrappers have been made. This means that there is a lot of choice for the adap-

tion of OpenCV. For rapid prototyping, Python is assumed to be a good foundation as the

language allows for easy rapid prototyping due to the small nature of the code, rendering

it perfect for a proof of concept. Additionally, there are a lot of different libraries for the

language, which makes it rather convenient for executing different tasks for this proto-

type, or the same task but more efficiently. In other words, iterations can easily be made

and the switch to another approach to this problem is rather doable if Python were to be

used for the first prototype.

 To scan a QR code that could be used in AR applications, OpenCV should know

what to look for. The structure of QR codes can be found in figure 3.1 [20]. The most im-

portant parts to recognize are the blocks from 4.1, as these indicate that the presented

square is a QR code. The data can afterwards be read from part 3, data and error correc-

tion keys. In other words, first the position and alignment of the QR code need to be de-

termined, after which the data inside the code can be read.

Figure 3.1: The structure of a QR code [20].

Fortunately, OpenCV has already a built in QR code detector, callable in Python with the

function cv2.QRCodeDetector() [21]. After that, the currently loaded frame from the

video stream can be called to scan by adding .detectAndDecode(inputImage) after

QRCodeDetector, where inputImage is the current frame in this case – hence, inputImage

is cv2.imread(frameFromVideoStream). This function returns a couple of results: the

data stored in the QR code, a “rectified” version of the QR code – especially handy when

the code is distorted or not perfectly aligned for the camera – and the position. The data

can be called when stored in a variable, and contains all the acquired data from one or

multiple QR codes, depending on the amount of QR codes that is readable in the image.

User Experience
The ultimate goal of this prototype is to support an AR application in order to make it

more user friendly. In other words, the focus of this project is not on user friendliness, but

rather on achieving user friendliness through improved performance. Hence, while it

might be the goal of this prototype, the most important part is getting it to work and

proving that offloading is indeed possible via the used approach, together with evaluating

23

if this would make the process faster. If the speed of image recognition with offloading

indeed turns out to be more real time than without offloading, the prototype itself can be

deemed more or less user friendly and ultimately successful. The rate of the prototype’s

user friendliness thus depends on how “real time” the image processing works. To give a

more precise specification on what is considered real time, the following definition is used,

as taken from the website TechTerms:

“When an event or function is processed instantaneously, it is said to occur in real-time. To

say something takes place in real-time is the same as saying it is happening "live" or "on-

the-fly." […] This means the graphics are updated so quickly, there is no noticeable delay

experienced by the user.” [22]

Whether or not this real time feedback can be achieved in the context for which this pro-

totype is meant, depends on a couple of factors. Firstly, the internet that this prototype

will be using to transfer frames needs to be fast enough to not already delay the process.

If the Wi-Fi connection would not be fast enough, the current approach of offloading will

simply not be sufficient as it will only slow down the AR application.

If sending the frames can be done quickly enough, however, the image recognition

can become the next bottleneck. This can, nevertheless, be solved in numerous ways. How

fast image recognition turns out to be namely depends on the speed of the code it is written

in and the processing power of the device on which the program is running. Consequently,

different iterations can be made in order to make this program run faster and decrease

the delay.

 The third hurdle in the process can become the processing of the AR device, but

this is something that can unfortunately not be solved. The only option for making the AR

device itself faster would be upgrading to better hardware. Hence, this is something that

will not be focused on in this report, as this is considered to be solvable for anyone willing

to implement the prototype in AR applications.

Interaction Diagram
For this prototype, there is limited interaction between the user and the application that

will be running on the AR device. There is, however, a lot going on in the background that

the user is not seeing/does not have to deal with. To visualise he concept that will be used

in this thesis, an interaction diagram was made which can be found in figure 3.2. The

interaction diagram was made with the online tool Sequence Diagram and can be found

on the website https://www.sequencediagram.com. The commands for the resulting inter-

action diagram can be found in appendix C.

24

Figure 3.2: Interaction diagram for the prototype.

Figure 3.2 clearly shows that both user input and feedback are very limited for this pro-

totype. The main reason for this is that the prototype and even the end product for this

concept is not supposed to be a standalone application to be used to just scan QR codes. It

is rather supposed to be a supportive application that can ideally be adapted for different

contexts, but is for now especially focused on warehouse order picking, and thus for in-

stance small computers are used that can be swapped out if the context allows.

The input for an IP address will be necessary in the prototype, but this can be

removed later on. The IP address namely changes while working on the prototype, as the

server is booted and stopped numerous times on different networks. To change this in the

code every single time seems rather redundant, especially when the application needs to

be uploaded to an Android device every time. That is why, as far as the user experience

goes, a very simple Android menu will be made in which the user can fill in the server’s

IP address. If the prototype were to be implemented in an AR application, this process

would be fully working in the background, hence there would be no front-end part neces-

sary.

Requirements
From previously discussed ideas, a list of requirements was setup for the prototype. The

requirements for the prototype can be found in table 3.1. The requirements are classified

in general requirements and prototype specific. Prototype specific requirements are part

of the prototype that would not by and of itself be implemented in another AR application,

as it is not of importance for offloading image recognition/rendering.

25

No. Requirement Prototype

Specific

1 The AR device live streams camera frames which the server can

access.

2 The server decodes every frame of the live stream for QR codes.

3 The server sends back decoded information of QR codes.

4 The AR device is able to connect with the server in question

5 The latency in the prototype is of such nature that the user expe-

riences decoding QR codes as real time.

6 The AR device shows decoded QR data to the user. X

7 The user is able to connect with a server through its IP address. X

8 The AR device’s IP address is easy to access such that the server

can be attenuated accordingly in a convenient matter.

X

9 The prototype uses small and relatively low-cost computers so that

the warehouse can be filled with them without the costs getting

too high

X

Table 3.1: A list of requirements for the prototype, classified in general and prototype spe-

cific necessities.

26

IV. IMPLEMENTATION

First Prototype
To see whether the proof of concept could work, a quick prototype was made in Python

with the OpenCV for opening/editing the frames of the livestream and recognizing the

QR codes. The IP Webcam application was used to have the live stream sent to the pro-

gram, and the program simply showed the processed image, thus the images were not yet

sent to a server. The code for this program can be found in appendix D. The output from

the program can be found in figure 4.1.

Figure 4.1: the result of the first prototype. The red text saying “Hello :)” is the data stored

in the QR code. This could, otherwise, be an ID for a 3D object.

As can be seen in figure , the results seem to be sufficient to prove that image recognition

over internet works. This first program, however, was measured to be very slow, at least

too slow to work in real time, even without sending the images back over the internet to

display them on the AR device. To show that this was indeed the case, the time between

the processing of two frames was measured six times in a row with the help of the code

that can be found in appendix E.

Each measurement was done with the same environment to be processed, namely

the one that can also be found in figure 4.1. The video stream quality was set to a resolu-

tion of 640×360 pixels, which is believed to be a proper resolution for the Vuzix glassses’

display as it has the exact same amount of pixels [23]. The Android device was held as

still as possible, but since the actual situation would also be with a human carrying the

device, it is believed that the relatively small movement of the camera should be no prob-

lem for the program. The results of the measurements for the program with OpenCV can

be seen in table 4.1.

27

Measurement Time between current and previous frame (s)

1 0.150447

2 0.120472

3 0.148361

4 0.160167

5 0.121904

6 0.129845

Mean 0.138533

Table 4.1: The measurements of time between two frames for the first prototype.

The Android device currently streamed the camera with a rate of 30 frames per second.

Making the image processing actually real time would mean that the program should be

able to process 30 frames per second. The mean time between two frames in this program

is 0.14 seconds, which would mean that the program is able to process 1/0.139 = 7.19

frames per second. This is considered to be unacceptably slow for a real time working

application. Additionally, the recognition did not seem reliable in a satisfactory fashion.

The result happened to continuously flash, and this could mean that the 3D object that

would ultimately be behind the QR code would be flashing as well. As earlier mentioned,

this delay can be solved in numerous ways. First, the program was run on a Raspberry Pi

3 b+, which has a rather limited processing power. It is namely equipped with a quad-core

64-bit processor with a clock frequency of 1.4GHz [24] and 1 gigabyte of random access

memory (RAM), which is considered to be a relatively low clock frequency. With a new

Raspberry Pi model being in development, both processing power and RAM can be up-

graded to achieve better results. Unfortunately the prototype could not be tested with this

new model, as at the time of writing this new Raspberry Pi model 4 was not released yet.

After running the program on a Lenovo Thinkpad P50, which has already a lot more pro-

cessing power – namely a quad-core processor with 2.6 GHz and 16GB of RAM, as found

in the devices system information, the delay was considerably diminished, with a mean

time between frames of 0.0974 seconds. While this was indeed an improvement, the pro-

gram was definitely still not fast enough to be considered real time. Next to that, to keep

up with the video stream, the program tended to skip frames after processing a few. While

the concept of skipping frames is reasonable to stay on track with speed, the delay to-

gether with skipping frames made the program rather rusty and unusable for real time

image recognition. Moreover, the choice for a raspberry Pi was made for the context this

prototype is made for, and thus the rest will also be done on this chosen device.

 Lastly, it can be a factor that the QR code was shown on a computer screen, rather

than showing a printed out one. In the context of warehouse order picking, it would be far

more logical to print the QRs instead of using digital screens for the markers, and this

could play a role in the programs ability to track and read the code. To make sure the

programmes are not influenced by that and the results can be compared in a fair manner,

all of the upcoming QR codes have been scanned from a digital screen.

Second Prototype
The most logical iteration to start with would be switching to another module or multiple

other modules than just OpenCV, such that more specialized modules are used for specific

tasks in the program. For QR code recognition, the ZBar library could be used, an open-

source C barcode reading library with bindings for C++, Python, Perl, and Ruby [25].

28

Implementing ZBar was the first iteration – a rather easy one, that is, and already made

the program reasonably faster. ZBar was used primarily for the QR code detection instead

of OpenCV, and the code for this program can be found in appendix F. Both results were

generated with the same parameters – QR code, camera and processing device –, except

for the use of ZBar and a little alteration in the drawing of the box around the QR code.

The latter was mainly done to make the code somewhat simpler, and is not expected to

have that much influence on the program as is. Figure 4.2 shows the resulting image

when incorporating the ZBar library.

Figure 4.2: The resulting image with the ZBar library implemented.

In figure 4.2, it can immediately be noticed that the image seems to be more clear than

the image made with solely the OpenCV library. This could be the case because of ZBar

having a better/more powerful image processing tool built in, or because of the camera

focusing better this time. Additionally, even a second QR code that is a lot smaller than

the target was detected, although it does not show data stored in the QR code. This seemed

odd at first, as the program is prompted to show all data from recognized QR codes. To

identify the reason behind the code being recognized but data not being showed, the QR

code was scanned with multiple programmes, devices and cameras. The QR code turns

out to simply not have any data in the form of readable text stored inside of it. The QR

code in question can be found in figure 4.3.

Figure 4.3: The QR code without any data, as seen in figure 8.

To see if this implementation was faster than the previous program, the same process of

measuring as before was applied. The results of this test can be found in table 4.2.

29

Measurement Time between current and previous frame (s)

1 0.06953

2 0.09444

3 0.110449

4 0.102992

5 0.129372

6 0.128882

Mean 0.105944

Table 4.2: The time between two frames measured for the program with ZBar imple-

mented.

In table 4.2 it can be found that the mean time between two frames was, while still rela-

tively high, already a bit lower than the previous measurement. With this program,

1/0.106 = 9.43 frames per second are achieved.

Although this amount of frames per second is still quite low to be considered real

time, it can be concluded that the program is showing the correct data for the recognized

codes at a faster rate than before. Take that together with the fact that even smaller codes

are scanned than before, it can be concluded that the ZBar library is a more powerful and

fitting library for recognizing and scanning QR codes than OpenCV. That being said, the

program is still not fast enough to be used in real time, and that is why at least one further

iteration will be necessary in order to make the program more usable.

Third Prototype
Using trial-and-error as problem solving method, different libraries were added and de-

leted in order to get to a more desirable result. As a result, the imutils library was imple-

mented, and specifically the Videostream module. The imutils package is a series of con-

venience functions for image processing, and the Videostream module especially is well

suited for processing frames from, naturally, a video stream. This especially helped with

starting and processing the live stream from the Android camera, as the module seems

faster than the OpenCV module. On top of that, if the stream would still not be fast

enough, the choice could be made to not send the whole frame but rather a white image

with an overlay of the scanned QR codes. The possible new interaction diagram with the

seemingly small change can be found in figure 4.4. As the white image does not change

other than the overlay it gets, it is less work for the program to process this “frame”. An

example of a resulting image that will be sent to the AR device can be found in figure 4.4.

30

Figure 4.4: The resulting image with a “transparent” background. Now the program only

has to change the resulting pixels, and not the ones from the frame.

This way, there remain two bottlenecks for the prototype, but as mentioned earlier, only

one that can be solved within the prototype. The hypothesized solvable bottleneck being

data transmission speed, the unsolvable being the AR devices hardware.

Figure 4.5: The new interaction diagram with a seemingly small change, but with big im-

pact on the speed of the program.

In figure 4.5, it can be seen that the AR device would now have an extra task to do: over-

laying the result onto the current frame. It is hypothesized that this might turn out to be

a problem, in which case this can be approached from two directions. The first option

would be to simply continue with the prototype as is, assuming that more powerful AR

devices are out there or still being developed. The other option would be looking into ways

of taking this task off the AR device again, and trying different – more powerful – devices

for the image processing part. For now, just sending through the frame with overlay from

the server seems sufficient, in order to take as much processing off the AR device as pos-

sible. The code used to make this prototype can be found in Appendix G.

After implementing Imutils and the transparent background, values were meas-

ured for the time between two frames. These values can be found in table 4.3.

31

Table 4.3: The time between two frames measured for the program with Imutils and a

transparent background.

Without the transparent background, the program achieved the following results, as seen

in table 4.4.

Measurement Time between current and previous frame (s)

1 0.068021

2 0.10131

3 0.130878

4 0.097624

5 0.103178

6 0.034753

Mean 0.089294

Table 4.4: The time between two frames measured for the program with Imutils, without

a transparent background.

With the white background instead of the frame, the program became somewhat faster,

but not remarkable. This can be deducted from the values in table 4.3 and 4.4, with an

average difference of 0.012 seconds per frame, which would mean a difference of less than

2 frames per second. Adding the processing the Android device now has to do, it is hypoth-

esized to not be worth the two frames per second extra. Consequently, the choice was

made to not implement the transparent background in the program.

 With the highest amount of frames per second being roughly 13.0 (situation with

transparent background), the program as of now cannot be deemed real time. In practice,

this amount of frames per second will never be sufficient to implement the offloading in

AR applications. However, with the rise of better Wi-Fi technology and possibilities to

upgrade the hardware tremendously, not all hope is lost. By practicing some informed

speculation about Wi-Fi technology getting better in relatively little time, the prototype

can still come into its own. Furthermore, the context of the tests, while all the , may not

have been ideal. The tests were all done on one wireless network, namely the University

of Twente’s Eduroam network. It could very well be that different networks give a better

result due to their higher bandwidth and lower traffic intensity. For that reason, the pro-

totype in its present state will not be deemed a failure, but rather one that can benefit

from better circumstances with superior technologies that are out there already, or will

be released in the near future.

Measurement Time between current and previous frame (s)

1 0.082027

2 0.066694

3 0.070003

4 0.088558

5 0.078358

6 0.075223

Mean 0.076811

32

Setting Up The Server
Now, it is time to make a server that was able to send back a livestream. For setting up

something like this, Python has multiple options. For this prototype, a Flask server was

setup. As the developers themselves state [26], Flask is a microframework for Python

which is based on Werkzeug – a web application library - and Jinja 2, a templating lan-

guage for Python. It allows for static pages and does not use up too much processing

power, which of course will be needed for live image processing in this prototype. That

being said, the framework is rather limited but flexible enough for this project.

 To stream frames over the internet, yield was used within the server response.

Yield is a keyword that can be used like a return, except it does not just return the frame

once. It creates a generator that constantly runs, until the webpage is closed or the server

does not have any frames left to show. To actually “stream” the frames, a multipart con-

tent type was used, to indicate that there are multiple frames to be received by the client.

Setting up a Flask server and making sure it responds with the stream resulted in the

webpage as can be seen in figure 4.5. To make sure the server is not only running on

localhost but can be accessed from other devices too, the server’s IP address was first

retrieved by connecting to Google’s public DNS, and retrieve the IP address through the

socket. The code for the resulting server can be found in Appendix H.

Figure 4.6: The response from the Flask server in a browser.

As can be seen in figure 4.6, no additional/unnecessary data was sent from the server,

which results in a fully optimized data transmission. This way, no redundant information

needs to be sent, encoded, or decoded and the program will be using its processing power

in the most effective way possible for this prototype. As the stream is basically a con-

stantly renewed image, or JPEG, the server is sending through a so-called MJPEG or

Motion JPEG stream. This now only needs to be implemented in an Android application,

and the offloading chain is complete.

33

Android Application
Because of the fact that the Vuzix M300 glasses runs on the Android mobile operating

system, an application was made in Android Studio for the second part of this prototype.

This developed application has the sole purpose to connect to the server and show the

video stream that it is returning. As of now, it is not a necessity to develop a streaming

option for the camera to a server, as the currently used IP Webcam app does this already.

Nevertheless, if the prototype were to be further worked out, having the application to

have a live stream of itself could be convenient. This could, for instance, be used for testing

if sending a white image with overlay and letting the AR device process the image would

be faster. Additionally, putting all essential tasks in one application instead of two could

make the process substantially faster. The code for the complete Android application as

is can be found in appendix I.

 The application has a simple main screen, or “activity”. There is one input element,

where the IP address of the server can be filled in. This was currently necessary as the

server was iterated and improved on different locations, making it more convenient to

make the IP address of the server an input rather than something that needs to be

changed in the code. When the IP address is filled in, the user can click on the “GO!”

button, after which the device will switch to a different activity where the stream is

shown. This stream is being received and shown through an MJPEG stream library, called

mjpeg-view. There is one other button, called “Find IP”. When the user presses this but-

ton, the Android device’s IP address is found and shown on the screen at the place where

now the text “IP address” is shown. This was found to be helpful when setting up the

server, but will not be very necessary in later developments of this product. The Android

menu and the stream activity on a smartphone can be seen in figure 4.7 and 4.8 respec-

tively.

Figure 4.7: The main menu of the Android application as seen on a smartphone.

34

Figure 4.8: The streaming activity as shown on an Android device.

In figure 4.8, one might notices how both the status bar (top of screen) and the navigation

buttons (right side of screen) are still visible. Since the prototype is just supposed to show

that offloading can be done through streaming back and forth, it was deemed unnecessary

to remove these screen obtrusions. Like mentioned before, the front-end of the application

is not of the utmost importance, since the code for image processing would be used purely

as a background process.

The streaming activity can be closed with the back button (arrow on the right side

of the screen in figure 4.8) on the phone, or with the back button of the Vuzix glasses,

after which the streaming automatically stops. In case the user fills in an invalid IP ad-

dress or no IP address at all in the main activity, a message pops up that says “This IP

address is invalid or the stream is not working!”. This way, the user gets feedback on their

error and knows to either check the filled in IP address or the server. The server can, for

instance, be checked by navigating to the corresponding IP address through an internet

browser. The error message and the way it is presented can be found in figure 4.8, a

cropped screenshot of the application.

35

Figure 4.9: The error message that pops up if no connection can be established between

the device and the server with the given IP address.

Now, the error message as seen in figure 4.9 currently pops up when there is no response

from the server. That being said, if there is a response but there is no MJPEG stream, the

application would theoretically continue with trying to show the stream in the correspond-

ing activity. This could be avoided by first letting the application check on what the server

is responding, but this would slow down the process of getting the stream to work in the

first place. In practice, the user is hypothesized to fill in the correct IP address, and even

if the user makes a typographical error, the chance of another server running on exactly

that IP address is very small. And that is if the user even filled in a proper formatted IP

address with the typographical error. These reasons combined is why the choice was made

to not let the application check for this particular situation.

36

V. EVALUATION

Possible Evaluations
To evaluate how well this prototype works in a working order picking environment, dif-

ferent aspects of the situation need to be taken into account. First of all is that the user

should be able to see a 3D rendered object from a reasonable distance, for instance at least

an arm’s length. That is because the application for which this prototype was made is

meant to increase order picking efficiency, and so no time should be lost by actively look-

ing at the AR markers/QR codes. Hence, a user should be able to walk to the different bins

and immediately see what bin the product should go into.

 The next important variable of the prototype is the stream quality. The IP Webcam

Android application that was used for his proof of concept allows for different settings in

terms of stream quality, which can make a substantial difference when it comes to trans-

mission speed. As expected, the lower the quality of the stream, the faster the images can

be processed and sent back. A lower quality, however, could mean that the program expe-

riences more difficulty recognizing and decoding the QR codes. Additionally, a lower

stream quality means a lower resolution for the user to see, which could cause confusion

or frustration while looking through the screen of the AR glasses. Finding a proper equi-

librium for this variable could very well elevate the prototype to a higher level, making

the possible application and/or further development for this concept more likely.

 As Mark Kenny Williams mentioned in his thesis about the AR supported batch

picking system, the size of the markers is an important factor in both the recognition and

user friendliness of the prototype [3]. In his report, he states the following about the QR

codes that he used:

“[…] the size of markers and the distance at which the user is standing also matters. The

smaller the markers are, the better it would be for the warehouses, but it could also affect

the speed of the image recognition.” (p. 54)

What can be taken away from this citation is that preferably the QR codes need to be as

small as possible to let them fit on the order picking cart without them getting in the way

of the worker. As can be seen in figure of the corresponding previously conducted user

test, the QR codes of the previous prototype were rather large. The image recognition of

that prototype was acceptable but not excellent, with the maximum possible distance for

image recognition being heavily dependent on the light intensity [3].

Consequently, different markers can be tested for this new form of image recogni-

tion to see if, with the new prototype, it is possible to make small enough QR codes with

a reasonable fast image quality stream, such that these codes are not in the way of the

order picking process anymore.

 Lastly, different hardware options could also be a variable to test. Better hardware

could, for instance, mean faster image processing and last latency. Finding a proper com-

puter for the server side would make the prototype even better. However, since the choices

for this prototype were made based on the context where it is meant for, an order picking

warehouse, this is a factor that is preferred to not deviate from the hypothesis too much.

In other words, looking at different kinds of hardware is preferred to only do so if evalua-

tion deems it necessary.

37

Test Setup
It was decided to test different video resolutions for different sizes of QR codes, and the

maximum distance at which these QR codes were still readable. As earlier concluded, the

system as is will not be fast enough to implement in real time, and while the program can

benefit from better and more advanced technologies, testing the speed of the current pro-

totype was found to be redundant. By testing different QR code sizes and different video

qualities, a conclusion can be drawn for at least the performance of the image recognition.

 The test involved the following setup: the prototype running on an Android device,

with three QR codes in front of it. These three QR codes were identical except for their

sizes: the first one being 13x13cm, the second one 6.5x6.5cm and the last and smallest

3.25x3.25cm. In other words, three QR codes were used where the second and third ones

had half the dimensions of their respective predecessor. The QR codes as used in the test

can be found in figure 5.1. The QR code is the same as the one constantly used in chapter

IV, with the text “Hello :)” behind the code.

Figure 5.1: The QR codes as used in the evaluation.

These QRs were hung up on the wall and a tape measure was installed next to them.

Then, the Android device was placed in front of the QR code, measuring the maximum

distance the resolution allowed the server to recognize the QR. This could then be seen in

the Android application. If the QR code’s result started flashing in the application after

the Android device was not moved for at least three seconds, the distance from the QR

code was measured and deemed to be the maximum. After this was done for all three QR

codes individually, the resolution of the stream was increased by one step. The IP Webcam

application allowed for 19 different resolutions, which means a total of 57 measurements

were conducted. A couple of tables were used in order to get the Android device on a proper

height without needing a person to hold it, such that human motion did not play a role in

this test. The Android device was chosen to not be the AR glasses specifically, because a

device with a bigger screen made the observation of the flashing results more reliable,

especially with the Android device put on a table. It was confirmed, however, that the

application can run on the Vuzix M300 glasses without any complication. There is no dif-

ference between the used Android device and the AR glasses, since both cameras allow for

a 1080p video stream [23], [27]. In figure 5.2, the complete test setup can be found.

38

Figure 5.2: The complete setup with an Android device (left) and tape measure (right).

Collected Data
By measuring the maximum distance per QR code per video resolution, the data as shown

in table 5.1 were acquired. Every distance in the table is given in centimetres, and the

distances were rounded off to the nearest 0.5 centimetre.

Video Resolution QR 1 (cm) QR 2 (cm) QR 3 (cm)

176×144 50 31.5 16

240×160 79 45 20.5

320×240 103 61 28

352×288 124 68 32.5

384×288 124 68 32.5

480×320 135 80 38

480×360 135.5 80 38.5

576×432 151.5 91 41

640×360 170 93.5 45

640×480 178 100.5 48

640×640 201.5 107.5 51.5

720×480 214 114 52

768×432 214 114 52

800×480 214 114 52

864×480 214 114 52

1280×720 219.5 120 58.5

1280×960 220.5 122 58.5

1440×1080 220.5 122.5 58.5

1920×1080 225 124 60

Table 5.1: The maximum distances the QR codes were still readable for the program per

resolution.

39

The results as found in table 5.1 were plotted in a graph, with the resolution on the hori-

zontal axis and the distance on the vertical axis. The graph can be found in figure 5.3.

Figure 5.3: The graph that results from the collected data.

Discussion
The results show that there is a clear relation between the size of the QR code, the used

resolution and the maximum distance at which the QR code is recognizable. In both the

graph and the table can be seen that QR code 1 is definitely the best recognizable one, and

seems to have the biggest growth over higher resolutions. That being said, QR 1 is

13x13cm, which could be too big for an order bin to not hinder the order picker that would

be in the process of order picking. QR code 2 is relatively well recognizable, at least at an

arm’s length starting at a resolution of 480×320 pixels. As earlier mentioned, the AR

glasses’ screen has a resolution of 640×360 pixels, and if that exact resolution is used the

second QR code is recognizable from almost a metre away. This is arguably far enough for

the order picker to know where the product needs to end up without having to stand too

close to it, as the maximum distance of 93.5 cm is more than an average human arm’s

length. That distance is namely said to be around 65 cm [28]. With the AR application’s

focus being on error preventing rather than speeding up the process, this distance is con-

sidered adequate for QR code recognition, especially since it is believed to not slow down

the process of order picking in any way.

 It is interesting to see that starting from a resolution of 720×480 pixels, the maxi-

mum distance does not increase that much anymore. This means that every resolution

higher than 720×480 does not add that much to the maximum distance while the amount

of processing power required increases quite a bit. Consequently, it might not be worth to

use resolution higher than 720×480 pixels.

0

50

100

150

200

250

Maximum distance per QR code in cm

QR 1 QR 2 QR 3

40

Evaluation Conclusion
From the concluded test and discussion afterwards, it can be concluded that computa-

tional offloading has the potential to help out AR devices struggling with image recogni-

tion due to their limited processing power. In general the prototype proved to be promising

but not ready for implementation just yet. The question, however, is not if the prototype

will ever be ready, the question is how long it will be before technology advances far

enough for computational offloading to become faster and more effective.

 A QR code of 6.5×6.5cm is considered to be big enough for the prototype to recog-

nize it at a reasonable distance. Video resolution might be a matter of preference, but the

AR device’s resolution of 640×360 pixels could already be enough. With a QR code of this

size, it is assumed that the code can be placed on the bin without hindering the user in

the process of order picking.

There are, however, a few aspects of this test that need to be taken into consider-

ation. Firstly, the measurements were done with a tape measure and the human eye,

which means this test could have some deviations if done multiple times due to measure-

ment insecurities. Furthermore, while the test was conducted under controllable circum-

stances without natural occurrences like daylight interfering, the light that was used

might not be of the exact same intensity and frequency as in a warehouse. That is why in

practice the achieved results could very well deviate from the results of the test.

41

VI. CONCLUSION
What can be concluded from literature research, realization and evaluation is that offload-

ing is a powerful tool that, while not perfect, continues to benefit from emerging technol-

ogies. The current prototype might not be ready to be implemented for AR applications

just yet, but can in the near future be the exact kind of technology augmented reality and

other image recognition reliant technologies need. As the prototype is only a proof of con-

cept, and the aim of this thesis was to find a smart solution to the limiting processing

power and speed of AR devices, the prototype is regarded proof that computation offload-

ing can be implemented in AR technology.

 The speed and performance of the prototype depend on many different factors.

Wi-Fi, marker size, light intensity and video resolution all influence the different parts of

this product. That being said, all these factors can be humanly controlled and do not have

to be a problem as such, with the exception for Wi-Fi technology. The biggest problem

with the current prototype is regarded to be the limiting bandwidth of state of the art

wireless internet technology. It is only to be expected that as time goes by, this limitation

will naturally become less of an issue. Moreover, hardware also gets increasingly better,

with processing power and portability of hardware developing. It is up for debate if the

growth of processing power and flexibility of hardware is going to outrun Wi-Fi technology

in its application potential. If this were indeed the case, the prototype could be considered

redundant, as computation offloading would not be necessary. Since this is not expected

to become reality, however, the prototype can be considered a success provided that inter-

net technology develops further.

 The choice for using Wi-Fi was deduced to indeed be the best way of communica-

tion, especially since the prototype as is still struggles to achieve a proper amount of

frames per second. The bandwidth of Wi-Fi with the 802.11ax standard could tremen-

dously help the prototype come more into its own than it currently does. This technology

is expected to be around soon, which could elevate the proof of concept to a whole new

level.

 To give a concise answer to the research question “In what way can computation

offloading for augmented reality devices be implemented in warehouse order picking ap-

plications”, the following explanation was formed: Computation offloading for augmented

reality devices in warehouse order picking applications can be a very effective way to

overcome the limiting processing power and speed of AR devices, given that Wi-Fi tech-

nology adequately evolves in the near future. With the help of Raspberry Pi’s a network

of offloading devices can be built, such that the amount of data hops remains small but

AR devices can get the computation support they need in order to work both in real time

and in a reliable manner.

42

VII. DISCUSSION AND FUTURE RESEARCH
The proposed method of computation offloading is considered promising, however there is

still a lot that needs to be improved. In the realization and evaluation parts, already some

of its current limitations were highlighted. Some of these limitations can be solved by

further research, other ones are simply a matter of time before they improve at the hand

of technological developments.

 The prototype is implementable for AR devices and applications, and while not fast

enough, future research is highly encouraged to test this prototype in a real AR based

environment, like the AR Supported Batch Picking System. This way, maybe new obsta-

cles are disclosed which need to be overcome before applying this technique to industrial

augmented reality applications.

 Furthermore, the prototype currently works with an external Android app that

allows for live video streaming. This background process should preferably be built into

the developed application to optimize processing power and connection speed. Addition-

ally, Future work could also focus on optimizing the speed of the supporting device. This

could be achieved by effectively using multithreading, or in other words dividing work

over multiple processor cores. Because of the fact that the used Raspberry Pi model has

multiple cores, there might be a lot to gain in terms of processing power.

 Lastly, the current AR batch picking system is not ready to be implemented in

warehouse order picking just yet. Next to implementing computation offloading fully into

the prototype, other parts of the product like implementing a database would be of great

value for further development of this proof of concept.

43

IV. REFERENCES
[1] J. P. van der Gaast, R. B. M. de Koster, and I. J. B. F. Adan, “Optimizing product

allocation in a polling-based milkrun picking system,” IISE Transactions, vol. 0,

no. 0, pp. 1–15, 2019.

[2] T. Le-duc and K. J. Roodbergen, Design and Control of Warehouse Order Picking :

a literature review René de Koster , Tho Le-Duc and Kees Jan Roodbergen

REPORT SERIES, no. January 2006. .

[3] M. K. Williams, “Augmented Reality Supported Batch Picking System,” 2019.

[4] B. Shi et al., “Offloading Guidelines for Augmented Reality Applications on

Wearable Devices,” pp. 1271–1274, 2016.

[5] J. W. Meulstee et al., “Toward Holographic-Guided Surgery,” Surgical Innovation,

vol. 26, no. 1, pp. 86–94, 2019.

[6] M. Akçayır and G. Akçayır, “Advantages and challenges associated with

augmented reality for education: A systematic review of the literature,”

Educational Research Review, vol. 20, pp. 1–11, 2017.

[7] R. Palmarini et al., “A systematic review of augmented reality applications in

maintenance,” Robotics and Computer-Integrated Manufacturing, vol. 49, no. July

2017, pp. 215–228, 2018.

[8] Z. He et al., “Progress in virtual reality and augmented reality based on

holographic display,” Applied Optics, vol. 58, no. 5, p. A74, Feb. 2019.

[9] H. Yoon and C. Shin, “Cross-Device Computation Coordination for Mobile

Collocated Interactions with Wearables.,” Sensors (Basel, Switzerland), vol. 19,

no. 4, p. 796, 2019.

[10] A. Toma and J.-J. Chen, “Computation offloading for embedded systems,” 2013,

no. December 2015, p. 1650.

[11] K. Ha et al., “Towards wearable cognitive assistance,” in Proceedings of the 12th

annual international conference on Mobile systems, applications, and services -

MobiSys ’14, 2014, pp. 68–81.

[12] Z. Lamb and D. Agrawal, “Analysis of Mobile Edge Computing for Vehicular

Networks,” Sensors, vol. 19, no. 6, p. 1303, 2019.

[13] K. Bahwaireth and L. Tawalbeh, “Cooperative Models in Cloud and Mobile Cloud

Computing,” no. October 2017, 2016.

[14] I. Fajnerová et al., “Could Prolonged Usage of GPS Navigation Implemented in

Augmented Reality Smart Glasses Affect Hippocampal Functional Connectivity?,”

BioMed Research International, vol. 2018, 2018.

[15] A. Mader and W. Eggink, “A Design Process for Creative Technology,” Proceedings

of the 16th International Conference on Engineering and Product Design

Education; University of Twente, no. September, pp. 1–6, 2014.

[16] “5G vs. Wi-Fi | Latest Standards Compared and Why We Need Both | Digital

Trends.” [Online]. Available: https://www.digitaltrends.com/mobile/5g-vs-wi-fi/.

[Accessed: 17-May-2019].

[17] “What is 802.11ax Wi-Fi, and what will it mean for 802.11ac | Network World.”

44

[Online]. Available: https://www.networkworld.com/article/3258807/what-is-802-

11ax-wi-fi-and-what-will-it-mean-for-802-11ac.html. [Accessed: 12-Jun-2019].

[18] “How Fast Is 5G Vs 4G?” [Online]. Available:

https://thedroidguy.com/2019/05/how-fast-is-5g-vs-4g-1084299. [Accessed: 17-May-

2019].

[19] K. Pulli et al., “Realtime Computer Vision with OpenCV,” pp. 1–17.

[20] “File:QR Code Structure Example 2.svg - Media Commons.” [Online]. Available:

https://commons.wikimedia.org/wiki/File:QR_Code_Structure_Example_2.svg.

[Accessed: 21-May-2019].

[21] “QR Code Scanner using OpenCV 4 (C++ & Python) | Learn OpenCV.”

[Online]. Available: https://www.learnopencv.com/opencv-qr-code-scanner-c-and-

python/. [Accessed: 21-May-2019].

[22] “Real-Time Definition.” [Online]. Available:

https://techterms.com/definition/realtime. [Accessed: 22-May-2019].

[23] Vuzix, “M300 Smart Glasses Hands-Free Mobile Computing,” 2016.

[24] “Raspberry Pi 3B+ Specs and Benchmarks - The MagPi MagazineThe MagPi

Magazine.” [Online]. Available: https://www.raspberrypi.org/magpi/raspberry-pi-

3bplus-specs-benchmarks/. [Accessed: 28-Jun-2019].

[25] “Index of downloads: zbar.” [Online]. Available:

https://linuxtv.org/downloads/zbar/. [Accessed: 24-May-2019].

[26] “Welcome | Flask (A Python Microframework).” [Online]. Available:

http://flask.pocoo.org/. [Accessed: 11-Jun-2019].

[27] “Xiaomi Mi Mix - Full phone specifications.” [Online]. Available:

https://www.gsmarena.com/xiaomi_mi_mix-8400.php. [Accessed: 19-Jun-2019].

[28] “Average Male and Female Dimensions.” [Online]. Available:

https://www.firstinarchitecture.co.uk/average-male-and-female-dimensions/.

[Accessed: 20-Jun-2019].

45

APPENDIX A: QUESTIONNAIRE

Please read the following statements and indicate how much you agree with each state-

ment. (1 = Strongly disagree, 5 = Strongly agree)

1. The system is intuitive and I understood it immediately. (Intuition)

2. The icons, as shown during the process, are clear in what they are representing.

(Intuition)

3. The system fits well in the regular process of batch picking. (potential)

4. The system is fast enough to support the process of batch picking. (Speed, perfor-

mance)

5. The markers are well enough recognized by the system. (Speed, Performance)

6. The size of the markers does not bother me. (Performance)

7. The arrows that indicate the correct bin give a good guidance. (Intuition)

8. The counter that indicates the amount of products to be picked is clear and intui-

tive. (Intuition, feedback)

9. The confirmation when successfully picking all the products is clear. (feedback)

10. The error indication when putting items in the wrong bin is clear enough to pre-

vent me from making mistakes. (intuition, feedback)

11. The accuracy of the device while tracking my hands was good. (Speed, perfor-

mance)

12. Augmented reality could be a good technology to support batch picking. (poten-

tial)

13. The augmented reality glasses are comfortable to wear during batch picking.

(comfort)

14. The fact that the screen of the augmented reality glasses only uses half of my

field of view is a good thing. (comfort)

Do you have any remarks on the study or the product? (optional)

46

APPENDIX B: CONSENT FORM

Consent Form for the study on User Experience Of Augmented Reality In The

Context Of Warehouse Order Picking

Please tick the appropriate boxes/mark what is applicable

Taking part in the study

I have read and understood the study information dated 08-04-2019, or it has been read to me.
I have been able to ask questions about the study and my questions have been answered to my
satisfaction.

❑

I consent voluntarily to be a participant in this study and understand that I can refuse to an-
swer questions and that I can withdraw from the study at any time, without having to give a
reason.

❑

I consent to being photographed during the study.

Yes No

I consent to it that taken photographs of me can be used in the study report or relevant
presentations, guaranteed that I am not recognizable in any way.

Yes No

Use of the information in the study

I understand that information I provide will be used for a Bachelor of Science thesis on the user
experience of augmented reality and how to improve this.

❑

I understand that personal information collected about me that can identify me, [e.g. my name
or where I live], will not be shared beyond the study team.

❑

Future use and reuse of the information by others

I give permission for the survey answers that I provide anonymously to be archived in a Bache-
lor of Science Thesis, so it can be used for future research and learning.

❑

I agree that the data I provide anonymously may be shared with other researchers for future
research studies that may be similar to this study or may be completely different. The infor-
mation shared with other researchers will not include any information that can directly identify
me. Researchers will not contact me for additional permission to use this information.

❑

47

Signatures

____________________________ _____________________ 08/04/2019

Name of participant Signature Date

I have accurately read out or shown the information sheet to the potential participant and, to
the best of my ability, ensured that the participant understands to what they are freely con-
senting.

____________________________ _____________________ 08/04/2019

Researcher name Signature Date

Study contact details for further information

Harald Eversmann, h.y.n.eversmann@student.utwente.nl

Contact Information for questions about your rights as a research participant

If you have questions about your rights as a research participant, please contact the Secretary
of the Ethics Committee of the Faculty of Electrical Engineering, Mathematics, and Computer
Science at the University of Twente by ethics-comm-ewi@utwente.nl.

mailto:ethics-comm-ewi@utwente.nl

48

APPENDIX C: SEQUENCE DIAGRAM COMMANDS

The first interaction diagram:

User -> AR device: Opens the application

AR device -> User: Asks for IP address of server

User -> AR device: Fills in IP address and prompts application to

start streaming

AR device --> Server: Sends live stream

AR device --> Server: Requests stream

Server --> Server: Processes frame, adds QR code data

Server --> AR device: Sends back information overlay on frame

AR device ->User: Shows frame with overlay

The second interaction diagram:

User -> AR device: Opens the application

AR device -> User: Asks for IP address of server

User -> AR device: Fills in IP address and prompts application to

start streaming

AR device --> Server: Sends live stream

AR device --> Server: Requests stream

Server --> Server: Processes frame, adds QR code data

Server --> AR device: Sends back information overlay on "transpar-

ent" background

AR device --> AR device: Overlays processed information over reality

AR device -> User: Shows frame with overlay

49

APPENDIX D: FIRST PROTOTYPE
#import OpenCV

import cv2

#Get the live stream

cap = cv2.VideoCapture('http://130.89.233.238:7777/video')

#if a QR code is found, put a square around it and show the data it has

def display(im, bbox):

 n = len(bbox)

 for j in range(n):

 cv2.line(im, tuple(bbox[j][0]), tuple(bbox[(j+1) % n][0]), (255,0,0), 3)

 text = "{}".format(data)

 cv2.putText(im, text, tuple(bbox[0][0]),

 cv2.FONT_HERSHEY_SIMPLEX,0.5, (0, 0, 255), 2)

while(cap.isOpened()):

 ret, inputImage = cap.read()

 inputImage = cv2.resize(inputImage, (720,480))

 # Import the QRcodeDetector from OpenCV

 qrDecoder = cv2.QRCodeDetector()

 # Gain all data from the detected QR codes, including position

 data,bbox,rectifiedImage = qrDecoder.detectAndDecode(inputImage)

 if len(data) > 0:

 # Display QR code location and data

 display(inputImage, bbox)

 # press q in the window to close it

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

 # Show the resulting frame, with or without QR code

 cv2.imshow('frame', inputImage)

cv2.waitKey(0)

cv2.destroyAllWindows()

50

APPENDIX E: CODE FOR MEASURING TIME BE-

TWEEN FRAMES

import time

currentTime = float(time.time())

counter = 0

…

if counter % 2 == 0:

 currentTime = float(time.time())

 difference = previousTime - currentTime

 print(difference)

 previousTime = currentTime

51

APPENDIX F: SECOND PROTOTYPE WITH ZBAR
import cv2

from pyzbar import pyzbar

#Get the live stream

cap = cv2.VideoCapture('http://130.89.233.238:7777/video')

Display barcode and QR code location

def detect_qr(frame):

 barcodes = pyzbar.decode(frame)

 # loop over the detected barcodes

 for barcode in barcodes:

 (x, y, w, h) = barcode.rect

 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)

Gain all data from the detected QR codes, including position

 barcodeData = barcode.data.decode("utf-8")

 barcodeType = barcode.type

 text = "{}".format(barcodeData)

Put the data as text above the QR code

 cv2.putText(frame, text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX,0.5, (0, 0,

255), 2)

while(cap.isOpened()):

 ret, inputImage = cap.read()

Resize the image to have a clear overview

 inputImage = cv2.resize(inputImage, (720,480))

 detect_qr(inputImage)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

 cv2.imshow('frame', inputImage)

cv2.waitKey(0)

cv2.destroyAllWindows()

52

APPENDIX G: THIRD PROTOTYPE WITH VIDE-

OSTREAM AND WHITE BACKGROUND
from imutils.video import VideoStream

import cv2

from contextlib import closing

import requests

from pyzbar import pyzbar

Open the livestream

vcap = VideoStream('https://130.89.235.71:7777/video').start()

def get_image():

 while(True):

 # Capture frame-by-frame

 frame = vcap.read()

 transparent = cv2.resize(transparent, (720, 480))

 frame = cv2.resize(frame, (720, 480))

 if frame is not None:

 # Detect qr code and draw a box around it + show data of the qr code

 barcodes = pyzbar.decode(frame)

 # loop over the detected barcodes

 for barcode in barcodes:

 (x, y, w, h) = barcode.rect

 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)

 barcodeData = barcode.data.decode("utf-8")

 barcodeType = barcode.type

 text = "{}".format(barcodeData)

 cv2.putText(frame, text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX,0.5,

(0, 0, 255), 2)

 #Display the resulting frame at a normal size

 cv2imshow('frame', frame)

cv2.destroyAllWindows()

53

APPENDIX H: IMAGE PROCESSING SERVER CODE
import socket, select

import requests

from flask import Flask, render_template, send_file, Response

from imutils.video import VideoStream

import cv2

from contextlib import closing

import requests

from pyzbar import pyzbar

app = Flask(__name__)

s= socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.connect(("8.8.8.8", 80))

ipadr = s.getsockname()[0]

s.close()

Open the livestream

vcap = VideoStream('https://130.89.235.71:7777/video').start()

def get_image():

 while(True):

 # Capture frame-by-frame

 transparent = cv2.imread('transparent.png')

 frame = vcap.read()

 transparent = cv2.resize(transparent, (720, 480))

 frame = cv2.resize(frame, (720, 480))

 if frame is not None:

 # Detect qr code and draw a box around it + show data of the qr code

 barcodes = pyzbar.decode(frame)

 # loop over the detected barcodes

 for barcode in barcodes:

 (x, y, w, h) = barcode.rect

 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)

 barcodeData = barcode.data.decode("utf-8")

 barcodeType = barcode.type

 text = "{}".format(barcodeData)

 cv2.putText(frame, text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX,0.5,

(0, 0, 255), 2)

54

 #Display the resulting frame at a normal size

 webFrame = cv2.imencode('.jpg', frame)[1].tobytes()

 yield(b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + webFrame +

b'\r\n\r\n')

@app.route('/string')

def string():

 return "Wow ik doe het."

@app.route('/')

def index():

 # if a normal request is made, initiate the image processing

 return Response(get_image(), mimetype='multipart/x-mixed-replace; bound-

ary=frame')

cv2.destroyAllWindows()

if __name__ == '__main__':

 app.run(ipadr, port=80, debug = True)

55

APPENDIX I: ANDROID APPLICATION

App build.gradle

apply plugin: 'com.android.application'

android {

 compileSdkVersion 28

 defaultConfig {

 applicationId "com.example.helloworld"

 minSdkVersion 23

 targetSdkVersion 28

 versionCode 1

 versionName "1.0"

 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

 }

 buildTypes {

 release {

 minifyEnabled false

 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'),

'proguard-rules.pro'

 }

 }

}

dependencies {

 implementation fileTree(dir: 'libs', include: ['*.jar'])

 testImplementation 'junit:junit:4.13-beta-3'

 androidTestImplementation 'com.android.support.test.espresso:espresso-

core:3.0.2'

 implementation project(':volley')

 implementation project(':libstreaming')

 implementation 'com.android.support.constraint:constraint-layout:2.0.0-beta1'

 implementation 'com.android.support:appcompat-v7:28.0.0'

 implementation 'com.github.perthcpe23:mjpegviewer:1.0.7'

}

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.helloworld">

 <uses-permission android:name="android.permission.CAMERA" />

 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 <uses-permission android:name="android.hardware.camera2.full" />

 <application

 android:noHistory="false"

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <service android:name="net.majorkernelpanic.streaming.rtsp.RtspServer"/>

 <activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

56

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name=".Test_Activity"

 android:screenOrientation="landscape"/>

 </application>

</manifest>

MainActivity layout

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.an-

droid.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <EditText

 android:id="@+id/ipadrEditText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="8dp"

 android:layout_marginLeft="8dp"

 android:layout_marginTop="132dp"

 android:layout_marginEnd="8dp"

 android:layout_marginRight="8dp"

 android:ems="10"

 android:hint="IP Address"

 android:inputType="text"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 <TextView

 android:id="@+id/currentTextView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="8dp"

 android:layout_marginTop="8dp"

 android:layout_marginEnd="8dp"

 android:layout_marginBottom="8dp"

 android:text="Your IP address"

 android:textSize="24sp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/findipButton" />

 <Button

 android:id="@+id/findipButton"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="8dp"

 android:layout_marginTop="108dp"

 android:layout_marginEnd="8dp"

 android:text="Find IP"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintHorizontal_bias="0.498"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/GoButton" />

 <Button

 android:id="@+id/GoButton"

57

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="8dp"

 android:layout_marginTop="100dp"

 android:layout_marginEnd="8dp"

 android:text="GO!"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintHorizontal_bias="0.498"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/ipadrEditText" />

</android.support.constraint.ConstraintLayout>

MainActivity Java

package com.example.helloworld;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

import android.widget.Toast;

import com.android.volley.Request;

import com.android.volley.RequestQueue;

import com.android.volley.Response;

import com.android.volley.VolleyError;

import com.android.volley.toolbox.StringRequest;

import com.android.volley.toolbox.Volley;

public class MainActivity extends Activity implements View.OnClickListener {

 public static String ipadr;

 public String url;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 final EditText ipadrEditText = findViewById(R.id.ipadrEditText);

 final TextView currentTextView = findViewById(R.id.currentTextView);

 Button testButton = findViewById(R.id.GoButton);

 testButton.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 ipadr = ipadrEditText.getText().toString();

 url ="http://" + ipadr;

 RequestQueue queue = Volley.newRequestQueue(getApplicationCon-

text());

// Request a string response from the provided URL to check if the IP address is

valid.

 StringRequest stringRequest = new StringRequest(Request.Method.GET,

url,

 new Response.Listener<String>() {

 @Override

 public void onResponse(String response) {

 Toast.makeText(getApplicationContext(), response,

Toast.LENGTH_LONG).show();

 Intent Stream = new Intent(MainActivity.this, Cam-

era_Activity.class);

 startActivity(Stream);

 }

 }, new Response.ErrorListener() {

 @Override

 public void onErrorResponse(VolleyError error) {

58

 Toast.makeText(getApplicationContext(), "The IP address is

invalid or the stream is not working!", Toast.LENGTH_LONG).show();

 }

 });

 queue.add(stringRequest);

 }

 });

 //Button for finding own IP address, linking to Utils.java

 Button findipButton = findViewById(R.id.findipButton);

 findipButton.setOnClickListener(new View.OnClickListener(){

 @Override

 public void onClick(View v) {

 try {

 String ip = Utils.getIPAddress(true); // finding IPv4

 currentTextView.setText(ip);

 } catch (Exception e) {

 currentTextView.setText("error finding IP address");

 }

 }

 });

 }

 @Override

 public void onClick(View v) {

 }

}

Camera stream Activity

package com.example.helloworld;

import android.os.Bundle;

import com.longdo.mjpegviewer.MjpegView;

public class Camera_Activity extends MainActivity {

 MjpegView viewer;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_camera);

 viewer = findViewById(R.id.mjpegview);

 viewer.setMode(MjpegView.MODE_FIT_WIDTH);

 viewer.setAdjustHeight(true);

 viewer.setUrl(url);

 viewer.startStream();

 }

 @Override

 public void onStop() {

 super.onStop();

 viewer.stopStream();

 }

}

59

Utils.java, used for finding IP address

/*

Full credits for this part of the code go to Toaster on StackOverflow

https://stackoverflow.com/questions/6064510/how-to-get-ip-address-of-the-device-

from-code

With this code, the device can find its own IP address.

*/

package com.example.helloworld;

import java.io.*;

import java.net.*;

import java.util.*;

//import org.apache.http.conn.util.InetAddressUtils;

public class Utils extends MainActivity {

 /**

 * Convert byte array to hex string

 * @param bytes toConvert

 * @return hexValue

 */

 public static String bytesToHex(byte[] bytes) {

 StringBuilder sbuf = new StringBuilder();

 for(int idx=0; idx < bytes.length; idx++) {

 int intVal = bytes[idx] & 0xff;

 if (intVal < 0x10) sbuf.append("0");

 sbuf.append(Integer.toHexString(intVal).toUpperCase());

 }

 return sbuf.toString();

 }

 /**

 * Get utf8 byte array.

 * @param str which to be converted

 * @return array of NULL if error was found

 */

 public static byte[] getUTF8Bytes(String str) {

 try { return str.getBytes("UTF-8"); } catch (Exception ex) { return null; }

 }

 /**

 * Load UTF8withBOM or any ansi text file.

 * @param filename which to be converted to string

 * @return String value of File

 * @throws java.io.IOException if error occurs

 */

 public static String loadFileAsString(String filename) throws java.io.IOExcep-

tion {

 final int BUFLEN=1024;

 BufferedInputStream is = new BufferedInputStream(new FileInputStream(file-

name), BUFLEN);

 try {

 ByteArrayOutputStream baos = new ByteArrayOutputStream(BUFLEN);

 byte[] bytes = new byte[BUFLEN];

 boolean isUTF8=false;

 int read,count=0;

 while((read=is.read(bytes)) != -1) {

 if (count==0 && bytes[0]==(byte)0xEF && bytes[1]==(byte)0xBB &&

bytes[2]==(byte)0xBF) {

 isUTF8=true;

 baos.write(bytes, 3, read-3); // drop UTF8 bom marker

 } else {

 baos.write(bytes, 0, read);

 }

 count+=read;

 }

 return isUTF8 ? new String(baos.toByteArray(), "UTF-8") : new

https://stackoverflow.com/questions/6064510/how-to-get-ip-address-of-the-device-from-code
https://stackoverflow.com/questions/6064510/how-to-get-ip-address-of-the-device-from-code

60

String(baos.toByteArray());

 } finally {

 try{ is.close(); } catch(Exception ignored){}

 }

 }

 /**

 * Returns MAC address of the given interface name.

 * @param interfaceName eth0, wlan0 or NULL=use first interface

 * @return mac address or empty string

 */

 public static String getMACAddress(String interfaceName) {

 try {

 List<NetworkInterface> interfaces = Collections.list(NetworkInter-

face.getNetworkInterfaces());

 for (NetworkInterface intf : interfaces) {

 if (interfaceName != null) {

 if (!intf.getName().equalsIgnoreCase(interfaceName)) continue;

 }

 byte[] mac = intf.getHardwareAddress();

 if (mac==null) return "";

 StringBuilder buf = new StringBuilder();

 for (byte aMac : mac) buf.append(String.format("%02X:",aMac));

 if (buf.length()>0) buf.deleteCharAt(buf.length()-1);

 return buf.toString();

 }

 } catch (Exception ignored) { } // for now eat exceptions

 return "";

 }

 /**

 * Get IP address from first non-localhost interface

 * @param useIPv4 true=return ipv4, false=return ipv6

 * @return address or empty string

 */

 public static String getIPAddress(boolean useIPv4) {

 try {

 List<NetworkInterface> interfaces = Collections.list(NetworkInter-

face.getNetworkInterfaces());

 for (NetworkInterface intf : interfaces) {

 List<InetAddress> addrs = Collections.list(intf.get-

InetAddresses());

 for (InetAddress addr : addrs) {

 if (!addr.isLoopbackAddress()) {

 String sAddr = addr.getHostAddress();

 //boolean isIPv4 = InetAddressUtils.isIPv4Address(sAddr);

 boolean isIPv4 = sAddr.indexOf(':')<0;

 if (useIPv4) {

 if (isIPv4)

 return sAddr;

 } else {

 if (!isIPv4) {

 int delim = sAddr.indexOf('%'); // drop ip6 zone

suffix

 return delim<0 ? sAddr.toUpperCase() : sAddr.sub-

string(0, delim).toUpperCase();

 }

 }

 }

 }

 }

 } catch (Exception ignored) { } // for now eat exceptions

 return "";

 }

}

