
Uniform Random Samples for Second-Order Restricted
k-Compositions

Thomas Stein
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

ABSTRACT
This paper introduces a method for finding uniformly ran-
dom second-order restricted k-compositions of N . This
method involves a new algorithm which maps an integer to
a composition, and uses a uniform random integer as the
input for this mapping. The paper also examines existing
methods to randomly select a composition, and discusses
the benefits of the new algorithm over those methods.

Keywords
uniform random samples, composition, k-composition, map-
ping, bijection, second-order restricted, constraint problem,
combinatorics

1. INTRODUCTION
This paper introduces a solution to the following problem:
Given a positive integer N and a vector R = ⟨Ri ∈ [0, N] |
1 ≤ i ≤ k⟩ (i.e. a list of k positive integers less than or equal
to N), find a random list a = ⟨ai ∈ [0, Ri] | 1 ≤ i ≤ k⟩ such
that a1+...+ak = N (i.e. a list of k positive integers where
each integer at index i is less than or equal to Ri, such that
the sum of the chosen integers is equal to N). Random
means that for all lists that satisfy these constraints, the
probabilities that one is generated are equal.

These lists ⟨a1, ..., ak⟩ a are a specific subset of integer
compositions, called second-order restricted by Page [3], or
(m1, ...,mn)-bounded by Walsh [6]. This list (m1, ...,mk)
is analogous to the vector R defined above. There has been
prior research on these compositions—this has mostly been
related to finding the number of solutions [4], generating
solutions iteratively in lexicographical order [6], and gener-
ating every solution [2]. Compositions are explained more
in-depth in section 2.

2. BACKGROUND INFORMATION
A composition of N is a way to write an integer N as a
sum of any amount of positive numbers. A k-composition
of N is a way to write an integer N as a sum of k positive
parts. Two compositions are considered distinct when they
contain the same set of integers in different orders: ⟨1, 2⟩
and ⟨2, 1⟩ are two different 2-compositions of 3 [4, p.107].
A composition is called ”weak” if its parts are allowed to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
32nd Twente Student Conference on IT Jan. 31st, 2020, Enschede, The
Netherlands.
Copyright 2019, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

be 0; The distinction is important to note because, for
compositions where there is no k specified, allowing 0 in
its parts results in infinite solutions: ⟨5⟩, ⟨5, 0⟩, ⟨5, 0, 0⟩,
etc. are all valid weak compositions of 5.

Generating functions that calculate the amount of solutions
for given N and k have been known for a long time [4,
p.124]. The amount of solutions is called the cardinality.

Specific restrictions may be placed on the parts of a com-
position: a possible restriction may be that all parts must
be even. A second-order restriction means that, rather
than one specific restriction, there is a list of restrictions
that each apply to one specific part: for example, part
1 must be even, part 2 must be between 2 and 20, part
3 must be a prime, etc.. Abramson discusses restricted
compositions in his paper on calculating cardinality [1].
The discussed restricted compositions include the subset of
compositions which Page calls second-order restricted com-
positions in his paper in which he introduces an algorithm
that generates the full set of solutions [3]. Walsh speaks of
(m1, ...,mk)-bounded weak compositions [6], which are a
subset of second-order restricted weak compositions: the
restriction on each part i is that it must be in the interval
[0,mi], inclusive. It is this type of composition that this
research concerns itself with, as described in section 1.

In relation to the sampling of integer compositions, we
use the following definition of uniformity: considering a
system where each solution of the solution space has an
associated number which describes the probability that this
solution is the one which is output by an algorithm, the
system is uniform if the associated probability is equal for
each solution. Besides demonstrating that this is the case,
uniformity can also be proven by performing an equivalence
test between the generated samples and a sample set that
is already proven to be uniform.

3. MOTIVATION
The value of a solution to the aforementioned problem
is that second-order restricted compositions represent a
selection of N objects from k distinct sources with limited
availability. To illustrate: they can be used to generate
random starting populations for natural selection simula-
tions – consider a population of, say, less than 5 wolves,
between 10 and 20 sheep, and at least 15 rabbits, with a
total population of 50. Having these starting populations
generated at random, with each possible starting popula-
tion being equally likely, allows for unbiased sampling of
simulation results without having to execute a simulation
for each possible beginning state. One can easily conceive
of similar distribution problems where uniform random
second-order restricted k-compositions can be applied.

Algorithms have been written which generate all solutions
to this constraint problem. However, when the goal is

1

to generate a single solution, these algorithms are not
satisfactory: when generating the full solution space, at
least one computation must be made for each solution
that exists, and at least one memory location is necessary
to store this solution. The amount of solutions i.e. the
cardinality of a composition is explored in section 2, but

in the worst case, it is (N+k−1)!
N !k!

.

For small N , k and elements of R, the cardinality can
already be very large. It must be possible to generate a
single unbiased random solution without requiring the time
and memory necessary for generating every solution.

4. APPROACH
There exist algorithms created by Vajnovzski [5], Walsh
[6], Page [3], and Opdyke [2], all of which may be used to
generate the array of the full solution space of second-order
restricted compositions. Because the size of the solution
space is subject to combinatorial explosion, generating it
in its entirety is undesirable when only a single solution is
needed. However, when many samples from the solution
space are needed, it may be efficient to calculate and store
the full solution space, and sample from it as needed. We
implement - or import - at least one of the mentioned
algorithms and use it to generate the array of solutions for
some N , k and second-order restriction, then take uniform
random samples from this array. The uniform distribution
of these samples will be the control group, against which
the new approach below will be compared.

We now introduce the approach which was taken for this
research: a novel algorithm which maps a uniformly ran-
dom integer to a (m1, ...,mk)-bounded k-composition of N .
This mapping uses the relation between the cardinality of
k-compositions with bounds (m1,m2, ...,mk) and the car-
dinalities of (k− 1)-compositions with bounds (m2, ...,mk):
consider the case where we are deciding whether to assign
the value 0, 1 or 2 to a1 in the second-order k-composition
of N (a1, ..., ak). We calculate that if we decide a1 = 0,
then the amount of solutions to the (k − 1)-composition
of (N − a1) equals 100. We then calculate that if a1 = 1
instead, that amount of solutions becomes 50, and if a1 = 2,
then the amount of solutions is 10. Therefore, in 100 cases
the random integer maps to a composition with a1 = 0, in
50 cases it maps to a composition with a1 = 1, and in the
remaining 10 cases it maps to a composition with a1 = 2.
This relation between cardinalities is explored in depth in
section 7.1.

Because the mapping is bijective, each valid input from the
domain of the function must map to a unique composition.
This implies that if we can sample uniformly from the
domain, we can use those samples to get uniform samples
from the range of the mapping, i.e., the solution set of com-
positions. Most programming languages natively provide
functions for the uniform random generations of integers
from an interval, which is sufficient for sampling uniformly
from the domain. To verify that the resulting distribution
of compositions is uniform, we will compare the results of
a χ2-test of the distribution against the results of a χ2-test
of a distribution which is known to be uniform.

5. PROBLEM STATEMENT
This paper answers the following research question:

Can the relation between cardinalities of second-order re-
stricted compositions be used to create a bijective map-
ping from an integer to a unique second-order restricted
k-composition of N?

Can such a mapping be used to generate uniform ran-

dom samples for solutions of second-order restricted k-
composition of N?

How does the application of such a mapping compare
against existing algorithms in terms of execution time and
memory usage?

6. EXISTING ALGORITHMS
6.1 Page’s Algorithm
Page’s algorithm can generate the solution space for com-
positions with arbitrary second order restrictions - even
restrictions such as: a1 must be in the set {1, 5, 9, 12, 15}.
So it is more powerful than the scope of this research
requires. We implemented Page’s algorithm and used to
generate the (m1, ...,mk)-restricted compositions of N . For
this use case, the algorithm functions as follows:

The algorithm starts with a vector of length k ⟨a1 =
0, ..., ak = 0⟩ consisting of zeroes: this is a list of all
(m1, ...,mk)-restricted compositions of 0. Next, for each
ai in the vector that is smaller than the corresponding
mi, a copy of the vector is made, and in this copy, ai is
incremented - these copies are collected in a set of vectors:
this set is the set of (m1, ...,mk)-restricted compositions
of 1. Next, these collected compositions are incremented
to make the set of (m1, ...,mk)-restricted compositions of
2, then of 3, and so on, up to N .

The issue with this approach is clear: the algorithm loops
over the (m1, ...,mk)-restricted compositions of 0 through
N , which is a much larger number than merely the number
of (m1, ...,mk)-restricted compositions of N . As such, the
time complexity of this algorithm can be expressed as
O(n×

(︁
n+k
k

)︁
). Despite this drawback, the algorithm does

succeed in generating the full set of (m1, ...,mk)-restricted
compositions of N , thus allowing for random sampling from
this solution space.

6.2 Walsh’ algorithm
Unlike Page’s algorithm, Walsh’ algorithm as provided
is only applicable for the restricted compositions that
this research paper concerns itself with [6]. It proposes
a lexicographical ordering for all (m1, ...,mk)-restricted
k-compositions of N where each composition is succeeded
by another composition that has some ai incremented and
some aj decremented by 1. The paper also proposes an al-
gorithm that generates a composition’s successor according
to this ordering.

The challenge of this method is determining which part
should be incremented and which part should be decre-
mented. The solution to this challenge is the usage of some
helper arrays to keep track of state, which is used in a
number of cascading conditional statements - this means
that the algorithm that transforms some ith composition
to the (i+1)th composition is in constant time. Therefore,
the full algorithm that generates all (m1, ...,mk)-restricted
compositions of N has the time complexity O(

(︁
n+k
k

)︁
). This

is a better time complexity than Page’s algorithm pro-
vides, as well as the best time complexity possible when
generating

(︁
n+k
k

)︁
elements.

7. NOVEL ALGORITHM
7.1 Relation between cardinalities
Note that in this section, we use different types of sec-
ond order restrictions for k-compositions ⟨a1, a2, ..., ak⟩:
these types are upper-bound restrictions of the form R =
⟨m1,m2, ...,mk⟩ where each part ai must be non-negative
and less than or equal to mi, and interval restrictions of

2

the form R = ⟨[r1, R1], [r2, R2], ..., [rk, R, k]⟩ with every
ri ≥ 0 and every ri ≤ Ri, where each part ai must be
within the interval [ri, Ri]. An upper-bound restriction mi

is equivalent to an interval restriction of [0,mi].

Let us define a function card(n,R) with n and R defin-
ing a second-order restricted k-composition of n, with
R = ⟨m1,m2, ...,mk⟩ being the vector of restrictions of
length k. The function card(n,R) returns the cardinality
of this composition, i.e. the amount of unique vectors
⟨a1, a2, ..., ak⟩ that are a valid k-composition of n with
second-order restriction R. This cardinality can be found
by taking the coefficient of xn from the following generator
function [4]:

(1 + x+ x2 + ...+ xR1)× (1 + x+ x2 + ...+ xR2)

× ...× (1 + x+ x2 + ...+ xRk) (1)

To demonstrate this, consider the composition with n = 6
with upper-bound restrictions R = ⟨3, 4, 5⟩. We can find
its cardinality by expanding the following polynomial and
taking the coefficient of x6:

(1 + x+ x2 + x3)× (1 + x+ x2 + x3 + x4)

× (1 + x+ x2 + x3 + x4 + x5) (2)

Because we are not interested in the coefficients of x7 and
higher, we can disregard those entirely. We expand the
two rightmost polynomials, ignoring coefficients of x7 and
higher:

(1 + x+ x2 + x3)

× (1 + 2x+ 3x2 + 4x3 + 5x4 + 5x5 + 4x6) (3)

To expand further, we calculate the following:

1× (1+2x+3x2+4x3 +5x4 +5x5 +4x6)+
x× (1 +2x +3x2 +4x3 +5x4 +5x5)+
x2 × (1 +2x +3x2 +4x3 +5x4)+
x3 × (1 +2x +3x2 +4x3)

= 1+3x+6x2+10x3+14x4+17x5+18x6

So card(6, ⟨3, 4, 5⟩) = 18. Now note how the polynomial
(1+2x+3x2+4x3+5x4+5x5+4x6) itself corresponds with
the compositions with upper-bound restrictions ⟨4, 5⟩. We
can easily find that card(6, ⟨4, 5⟩) = 4, card(5, ⟨4, 5⟩) = 5,
card(4, ⟨4, 5⟩) = 5 and card(3, ⟨4, 5⟩) = 4. Looking at the
table, the following is clear:

card(6, ⟨3, 4, 5⟩) = card(6, ⟨4, 5⟩) + card(5, ⟨4, 5⟩)
+ card(4, ⟨4, 5⟩) + card(3, ⟨4, 5⟩) (4)

This can be generalized to:

card(n, ⟨m1,m2, ...,mk⟩)
= Σm1

i=0card(n− i, ⟨m2, ...,mk⟩) (5)

Next, we will show that

card(n, ⟨m1,m2, ...,mk⟩)
= card(n, ⟨0,m1,m2, ...,mk⟩) (6)

This is because the corresponding polynomial of the upper-
bound restriction 0 is x0 = 1. If we want to change the poly-
nomial of the upper-bound restrictions ⟨m1,m2, ...,mk⟩
into the polynomial of ⟨0,m1,m2, ...,mk⟩, we must multi-
ply it by 1; thus retaining the original polynomial.

Next, we consider interval restricted compositions; Specifi-
cally, interval restricted compositions that correspond with

an upper-bound restricted composition — in the sense that
for each interval restriction [ri, Ri], ri = 0 and Ri = mi,
except in the restriction on its first part, which is instead
an interval containing only one integer: [r1, R1] = [a1, a1].
We will show that the following is true for compositions of
this form:

card(n, ⟨[a1, a1], [0,m2], ..., [0,mk]⟩)
= card(n+ 1, ⟨[a1 + 1, a1 + 1], [0,m2], ..., [0,mk]⟩) (7)

The polynomial of ⟨[a1, a1], [0,m2], ..., [0,mk]⟩ looks like
xa1×f(x), f(x) being the polynomial of ⟨[0,m2], ..., [0,mk]⟩.
Next, The polynomial of ⟨[a1+1, a1+1], [0,m2], ..., [0,mk]⟩
looks like xa1+1 × f(x), or x× xa1 × f(x).

Now, if the polynomial xa1 × f(x) contained the term axn,
in x× xa1 × f(x) this term is multiplied by x, along with
all other terms, i.e. x× axn = axn+1. So, if we are looking
for the coefficient a, in xa1 × f(x) we must look for the
coefficient of xn, whereas in x× xa1 × f(x) we must look
for the coefficient of xn+1.

This has the following consequences:

card(n, ⟨m1,m2, ...,mk⟩) = card(n, ⟨0,m1,m2, ...,mk⟩)
= card(n, ⟨[0, 0], [0,m1], [0,m2], ..., [0,mk]⟩)

= card(n+ i, ⟨[i, i], [0,m1], [0,m2], ..., [0,mk]⟩) (8)

Meaning that

card(n, ⟨m1,m2, ...,mk⟩)
= Σm1

i=0card(n, ⟨[i, i], [0,m2], ..., [0,mk]⟩) (9)

To give this slightly more semantic meaning: For a k-
composition of n ⟨a1, a2, ..., ak⟩ with upper-bound restric-
tions ⟨m1,m2, ...,mk⟩, the following is true:

card(n, ⟨m1,m2, ...,mk⟩)
= Σm1

i=0card(n, ⟨m1,m2, ...,mk⟩|a1 = i) (10)

Looking back at our example of the composition ⟨a1, a2, a3⟩
of 6 with upper-bound restrictions ⟨4, 5, 6⟩, the following
statements are true:

card(6, ⟨4, 5⟩) = card(6, ⟨3, 4, 5⟩|a1 = 0) = 4

card(5, ⟨4, 5⟩) = card(6, ⟨3, 4, 5⟩|a1 = 1) = 5

card(4, ⟨4, 5⟩) = card(6, ⟨3, 4, 5⟩|a1 = 2) = 5

card(3, ⟨4, 5⟩) = card(6, ⟨3, 4, 5⟩|a1 = 3) = 4

And of course

card(6, ⟨3, 4, 5⟩)
= card(6, ⟨3, 4, 5⟩|a1 ∈ [0, 3])

= card(6, ⟨3, 4, 5⟩|a1 = 0)

+ card(6, ⟨3, 4, 5⟩|a1 = 1)

+ card(6, ⟨3, 4, 5⟩|a1 = 2)

+ card(6, ⟨3, 4, 5⟩|a1 = 3)

(11)

We can verify this by looking at the full list of compositions:

3

a1 = 0 a1 = 1 a1 = 2 a1 = 3
⟨0, 1, 5⟩ ⟨1, 0, 5⟩ ⟨2, 0, 4⟩ ⟨3, 0, 3⟩
⟨0, 2, 4⟩ ⟨1, 1, 4⟩ ⟨2, 1, 3⟩ ⟨3, 1, 2⟩
⟨0, 3, 3⟩ ⟨1, 2, 3⟩ ⟨2, 2, 2⟩ ⟨3, 2, 1⟩
⟨0, 4, 2⟩ ⟨1, 3, 2⟩ ⟨2, 3, 1⟩ ⟨3, 3, 0⟩

⟨1, 4, 1⟩ ⟨2, 4, 0⟩

7.2 Mapping an integer to a composition
We can use the properties described in the previous sub-
section to create a function that maps each integer in the
range [1, card(n,R)] to a unique composition of n with
upper-bound restrictions R. This is desirable because it
means that, if we can sample integers from this interval
uniformly, we can also generate compositions from the so-
lution space that are uniformly distributed. Using Walsh’
method, this is already possible, but it requires the genera-
tion of the full solution space. For this method, this is not
necessary.

Consider the same composition as before: the 3-composition
of 6, ⟨a1, a2, a3⟩, with upper-bound restrictions ⟨3, 4, 5⟩.
This composition has a cardinality of 18. We randomly
pick a number i between 1 and 18, inclusive: say this num-
ber i = 11. We must first determine which value for a1 to
pick.

Cardinality Cumulative Sum
card(6, ⟨3, 4, 5⟩|a1 = 0) 4 4
card(6, ⟨3, 4, 5⟩|a1 = 1) 5 9
card(6, ⟨3, 4, 5⟩|a1 = 2) 5 14
card(6, ⟨3, 4, 5⟩|a1 = 3) 4 18

If i is within the bounds of the first cumulative sum, i.e.,
i ≤ 4, we determine that a1 = 0. If it is between the first
and second cumulative sums, i.e., 4 < i ≤ 9, then a1 = 1.
Following this pattern, we conclude that a1 = 2. We now
have a situation where we must find a composition of 6
with the following interval constraints: ⟨[2, 2], [0, 4], [0, 5]⟩.
This is equivalent to finding a composition of 4 with the
upper-bound constraints ⟨4, 5⟩, which we can do using the
same method as before. For our new i, we take the old
value of i and subtract the highest cumulative sum lower
than that i, i.e. inew = 11− 9 = 2.

Cardinality Cumulative Sum
card(4, ⟨4, 5⟩|a2 = 0) 1 1
card(4, ⟨4, 5⟩|a2 = 1) 1 2
card(4, ⟨4, 5⟩|a2 = 2) 1 3
card(4, ⟨4, 5⟩|a2 = 3) 1 4
card(4, ⟨4, 5⟩|a2 = 4) 1 5

inew is equal to the second cumulative sum, so we pick
a2 = 1. It follows that a3 = 3, because a2 + a3 = 4. This
gives us the composition ⟨2, 1, 3⟩ for i = 11.

7.3 Time and Space complexity
This new method requires two steps: creating the cardinal-
ity matrix generating the desired solution.

The cardinality matrix is a matrix of size k × n: There is
one row for each part of the composition, and each row i
contains the coefficients of the expanded polynomials of
ai×...×ak. Each cell of this matrix can be filled in constant
time (assuming the addition and subtraction of integers
is possible in constant time in the language). This means
that the cardinality matrix can be generated in O(n× k),
and the required space is k × n× the size of an integer.
For large inputs, it may be necessary to use integers or
arbitrary size, such as Java’s BigInteger, to avoid overflow.

The second part of the algorithm, which generates the
solution, has a loop over N . Within this loop is another

Algorithm 1: Cardinality Matrix Initialization

input : integer N, integer vector [m1, ...,mk]
output :M = cardinality matrix of

(m1, ...,mk)-bounded k-compositions of N
initialize M with k rows and N columns;
set elements 0 to mk of the bottom row of M to 1;
set the remaining elements of the bottom row of M to
0;

for i← k − 1 to 0 do
Mi,0 ← 1 ;
for j ← 1 to N do

summand←Mi+1,j ;
if j > mi then

subtrahend←Mi+1,j−1−mi ;
else

subtrahend ←− 0;
end
Mi,j ←Mi,j−1 − subtrahend+ summand ;

end

end
return matrix ;

loop, which is executed at most k times over the course
of the algorithm, giving this algorithm a time complexity
of (N + k). The memory requirements, in addition to the
memory of the cardinality matrix which is an input, is the
memory needed to store a single composition.

Algorithm 2: Mapping Integer to Composition

Data: cardinality matrix M, solution number x
Result: The unique (m1, ...,mk)-bounded

k-composition of N corresponding with
solution number

k ←M.rows;
n←M.columns;
row ← 1;
col←M.columns;
for col←M.columns to 0 do

while row < k and x ≤Mrow,col and Mrow,col ̸= 0
do

arow ← n− col;
n← n− arow;
row ← row + 1;

end
x←Mrow,col;

end
ak ← n;

8. VERIFICATION
8.1 Correctness
We tested the correctness of the algorithm empirically by
testing, for N ∈ [1, 25] and k ∈ [1, 10] and with random se-
lections for ⟨m1, ...,mk⟩, whether each number in the range
[1, card(N, ⟨m1, ...,mk⟩)] mapped to a unique (m1, ...,mk)-
bounded k-composition of N .Because the solution space
was too large to compute within reasonable time and mem-
ory constraints, we did not perform this test for higher
values of N and k.

For higher values of N and k, we tested the following: we
sampled 10000 random solutions and tested whether the
solutions were indeed correct, i.e., whether they added
up to N. We also specifically calculated solution 1 and
solution card(N, ⟨m1, ...,mk⟩), and in addition to testing

4

.05 .15 .25 .35 .45 .55 .65 .75 .85 .95

5

10

15

2

14

8

4

11

5

6 6

4

8

Rounded p-value

C
o
u
n
t

Figure 1. Counts of p-values for similarity tests
between sample set generated with the new algo-
rithm and sample set uniformly sampled from the
solution space

their correctness, we also tested whether those are indeed
the first and last solutions.

These tests all passed for approximately N ≤ 100, k ≤ 20,
at which point the generation of the cardinality matrix
failed due to the overflow of 64-bit integers. We are confi-
dent that the use of integers of arbitrary size over 64-bit
integers is sufficient to let tests pass for Ns and ks of
arbitrary size.

8.2 Uniformity
To test the uniformity of the newly introduced algorithm,
we performed a number of χ2-tests. Each test was per-
formed using the following method: a random N between 1
and 20 is selected, a random k between 2 and 10 is selected,
and the restriction vector ⟨m1, ...,mk⟩ is generated with
each mi randomly selected from 1 to min(N, 11). These
limits are chosen to allow for a wide range of compositions,
while having a reasonably low chance to have a cardinality
higher than the maximum size of an array in Java - any
composition with a cardinality that surpassed this number
is discarded.

For each of these compositions, the full solution space is gen-
erated, and we take 1000× card(N, ⟨m1, ...,mk⟩) uniform
samples from the solution space, which is generated using
Page’s algorithm. We also take 1000×card(N, ⟨m1, ...,mk⟩)
uniform samples from the range [1, card(N, ⟨m1, ...,mk⟩)],
which are then map to compositions using the new algo-
rithm. A χ2-test is then used to test whether the two
sample sets come from the same distribution. The result-
ing p-values from these tests are shown in figure 1, rounded
to two decimals.

While some p-values are outside the confidence interval
of 90%, this is to be expected from such a test, and does
not imply that the two distributions are dissimilar. To
show this, we also perform χ2-tests to test whether two
sample sets uniformly sampled from the solution space
come from the same distribution, which is known to be
true. These results are found in figure 2. This same test is
done on two sample sets generated by sampling uniformly
from the range [1, card(N, ⟨m1, ...,mk⟩)] and mapping those
numbers to compositions using the new algorithm. These
results are found in figure 3. The results from figures 1, 2

.05 .15 .25 .35 .45 .55 .65 .75 .85 .95

4

6

8

10

12

14

4

5

8 8

5

7

9 9

7

8

Rounded p-value

C
o
u
n
t

Figure 2. Counts of p-values for similarity tests
between sample sets both uniformly sampled from
the solution space

.05 .15 .25 .35 .45 .55 .65 .75 .85 .95

5

10

15

6

9

6

2

11

4

5

7

6

9

Rounded p-value

C
o
u
n
t

Figure 3. Counts of p-values for similarity tests
between sample sets both generated with the new
algorithm

5

20
40

20

400

2

4

6

N

k

m
ic
ro
se
co
n
d
s

Figure 4. Execution times the generation of a ran-
dom composition using the new algorithm

and 3 are similar enough to be confident that they imply
the same thing: that the sample sets in the χ2-tests come
from similar distributions, i.e. uniform distributions.

8.3 Time Complexity
We compared the time that the algorithm spends to gener-
ate a single random composition for N and k up to 50. In
these benchmarks, each part of ⟨m1, ...,mk⟩ is equal to N :
this causes card(N, ⟨m1, ...,mk⟩) to be at the maximum
for that N and k. Results for this can be found in figure 4.
For each pair (N, k), parts 1 and 2 of the algorithm were
executed 100000 times, and the average time was taken for
each pair.

There is a cutoff point around 6 microseconds: beyond this
point the cardinality matrix could not be created because
of 64-bit integer overflows. Despite this, the figure shows
that time increases linearly with N and with k.

Figure 5 shows the time spent to generate a single ran-
dom composition using Page’s algorithm. The time grows
rapidly with the increase of N and k - there is not enough
data available to analyze the nature of this growth, because
the algorithm runs out of memory space, but the differ-
ence in performance is clear when the labels of the z-axes
of figures 4 and 5 are compared: figure 4 is measured in
microseconds, while figure 5 is measured in seconds.

9. CONCLUSION
There now exists an algorithm that can be used to map an
integer to a unique (m1, , , , ,mk)-restricted composition of
N , as described in the paper. The mapping is a bijection -
each composition is pointed to by a unique integer between
1 and the number of compositions. By mapping uniform
random numbers from the interval [1, card(N, ⟨m1, ...,mk⟩)]
to compositions using this algorithm, we can generate
uniform random (m1, , , , ,mk)-restricted compositions of N .
This algorithm is significantly more efficient with regards
to time and space complexity than the previously available
methods: it is much faster to generate only one composition,
instead of each possible one.

10. REFERENCES
[1] M. Abramson. Restricted combinations and

compositions. Fibonacci Quart, 14(5):439–452, 1976.

[2] J. D. J. Opdyke. A unified approach to algorithms
generating unrestricted and restricted integer

20
40

20

400

20

40

N

k

se
co
n
d
s

Figure 5. Execution times the generation of a ran-
dom composition using the Page’s algorithm

compositions and integer partitions. Journal of
Mathematical Modelling and Algorithms, 9(1):53–97,
Mar 2010.

[3] D. R. Page. Generalized algorithm for restricted weak
composition generation. Journal of Mathematical
Modelling and Algorithms in Operations Research,
12(4):345–372, Dec 2013.

[4] J. Riordan. Introduction to combinatorial analysis.
Courier Corporation, 1958.

[5] V. Vajnovszki. Generating permutations with a given
major index. arXiv preprint arXiv:1302.6558, 2013.

[6] T. Walsh. Loop-free sequencing of bounded integer
compositions. JCMCC. The Journal of Combinatorial
Mathematics and Combinatorial Computing, 33, 01
2000.

6

	introduction
	Background Information
	Motivation
	Approach
	Problem Statement
	existing algorithms
	Page's Algorithm
	Walsh' algorithm

	Novel algorithm
	Relation between cardinalities
	Mapping an integer to a composition
	Time and Space complexity

	Verification
	Correctness
	Uniformity
	Time Complexity

	Conclusion
	References

