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Abstract 
 

Objective: Prediction of intracranial hypertension in acute traumatic brain injury patients. We 

studied the potential to predict intracranial hypertension by morphological features of the ICP 

signal and by the use of a neural network.   

Methods: Fifty-three traumatic brain injury patients were included in this retrospective study. 

These patients were admitted to the ICU at RadboudUMC, Nijmegen. The ICP was monitored using 

an intraparenchymal probe. Spectral regression analysis was performed to robustly detect the 

ICP-subpeaks and calculate 27 morphological metrics of the ICP signal (MOCAIP). The spectral 

regression method required a test and training set. 7 experts of the RadboudUMC labelled 

subpeaks in averaged ICP waves. The performance and consistency in peak labelling of the experts 

was evaluated by the percentage of inconsistency and intra-and-intraclass correlation 

coefficients. By lack of a gold standard the labelled waves were used as a gold standard to train 

and evaluate the performance of the spectral regression algorithm. A Kruskal Wallis test was 

performed to test for significance in the MOCAIP metrics between control waves, waves leading 

to intracranial hypertension (pre-IH) and intracranial hypertension (IH) waves. A classic machine 

learning approach was used to test the potential to predict intracranial hypertension based on the 

MOCAIP metrics by a classification tree. A CNN and LSTM neural network were used to classify IH 

and no intracranial hypertension (no-IH) based on the original ICP-waves.  

Results: We found statistical significance in 11 metrics between the IH waves and pre-IH waves. 5 

metrics were significant between ICP waves leading to hypertension and control waves. Waves 

leading to hypertension could be distuingished from control waves with a sensitivity of 89% and 

specificity of 71%. The predicitive power in classification of pre-IH waves at specific timing prior 

to IH (5, 10, 15, 20 minutes) based on MOCAIP metrics is still limited. The obtained results from 

the neural network showed an accuracy of 70%, 97% sensitivity and 66 % specifity to classify 

between IH and no-IH waves. These results were very disparate for the test and training set.  

Conclusion: Prediction of intracranial hypertension is promising for classification between ICP 

waves leading to hypertension and control waves based on the MOCAIP metrics.  
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List of abbreviations  
 

TBI Traumatic Brain Injury 

ICU Intensive care unit 
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dP Delta Pressure 

CBF Cerebral blood flow 
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Introduction 

 

Traumatic brain injury (TBI), is a significant cause of mortality and morbidity in both children and 

adults [1,2]. Road traffic accidents and falls are the most common cause of  TBI [3,4]. The focus in 

the critical care management of TBI patients is identification, prevention and treatment of 

secondary brain injury [5]. To supplement the clinical examination of TBI patients a combination 

of monitors, integrating physiologic and biological variables into assessment of the brain 

metabolism, oxygenation and perfusion is often used [6]. The combined use of multiple monitors 

is termed multimodal monitoring. Common parameters in multimodality monitoring are arterial 

blood pressure (ABP), intracranial pressure (ICP), partial oxygen pressure in the brain (Pto2), 

electroencephalography (EEG) and transcranial doppler [1]. Bedside analysis and integration of 

these parameters has potential to provide more insight in the health-status of the patient and 

optimization of management of brain injured patients [6]. The role of multimodal monitoring in 

neurocritical care is still to be fully elucidated as it is rapidly evolving [5].  

ICP monitoring is fundamental in the care of patients with TBI and is routinely used. The purpose 

of ICP monitoring is to control the intracranial pressure and maintain adequate cerebral perfusion 

pressure (CPP). Normal ICP in a supine healthy adult typically ranges from 7 to 15 mmHg [7]. 

Current guidelines suggest treating ICP greater than 20mmHg. Intracranial hypertension (IH) (ICP 

> 20 mmHg) poses a risk for secondary brain injury as it may impede the cerebral blood flow 

(CBF) and cause ischemia [8]. The causes of intracranial hypertension are diverse, examples are 

brain edema a growing intracranial mass or bleeding. ICP monitoring has been included in every 

guideline of the Brain Trauma Foundation for severe TBI management [9].  Relying solely on mean 

ICP is an accurate way to detect ICP elevation, but it carries a significant risk of treatment delay 

[10]. ICP treatment based on a numerical threshold may be oversimplification of the situation, as 

hypoxia or cellular dysfunction can occur in the ‘normal’ ICP range [11].  

Many studies support the use of ICP monitoring. Most studies were observational and found that 

IH led to poorer outcomes, they concluded a significant lower mortality for patients treated using 

an ICP monitor compared with patients treated without an ICP monitor [12,13,14].  

In the last decennia, numerous studies have tried to predict IH using time-series analysis and 

machine learning techniques [15]. They conducted research to automatically analyze ICP on the 

basis of mathematical models [16,17,18].  The collection and elaboration of large amounts of data 

on ICP waveform have therefore been possible, but the clinical value of these data is still a matter 

of debate [19].  Research showed that the onset of an intracranial pressure crisis can be predicted 

30 minutes before IH with an area under the receiver operating characteristics curve of 0.86 
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[20,21]. This suggests the use of ICP data to predict long term neurological outcomes and acute 

secondary injury, further research is required to assess the impact of these predictions in clinical 

practice [21].  

Changes in the ICP waveform might be informative for an incoming or established increase in the 

intracranial pressure[19]. The phenomenon of ICP pulse transiting from a normal three-peak 

configuration to a more rounded form is included in numerous machine learning methods. Some 

methods have been conducted to understand the characteristics in waveform morphology linked 

to elevated intracranial pressure [22,23,24,25]. Results obtained by Xiao Hu et al., using the 

Morphological Clustering and Analysis of Intracranial Pressure (MOCAIP) algorithm, indicated 

that an extensive set of ICP pulse morphological metrics may provide necessary information for 

forecasting ICP elevation. However, a heterogeneous group of patients was included in this study 

and  the applicability of their algorithm on data of TBI patients is unknown [10].  Machine learning 

algorithms have demonstrated to be a viable approach for intracranial hypertension detection. 

Accessibility of these algorithms and MOCAIP methods remains an issue as these models are not 

easily understood by bedside clinicians, limiting their practical use.  An algorithm and program 

which can be easily understood would be groundbreaking and enable patients to be  treated in a 

proactive manner [25].  

 

Figure 1: A. Intracranial pressure over intracranial volume. The compliance (dV/dP) is high as the intracranial volume is 

low, the pressure rise is small as the intracranial volume increases. There is no compliance as the intracranial volume is 

high. The beginning of the curve represents the stage in which the pressure-buffering capacity of the brain is functional [7, 

26]. B. The hypothesized relation between the ICP waveform morphology related to an increase in the intracranial 

hypertension. The morphology of  ICP-wave might elucidate information of the risk of development of intracranial 

hypertension linked to the intracranial compliance and pressure-buffering capacity of the brain [27]. 
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The morphological changes of the waveform are the scope of this research. We hypothesize that a 

change in the morphology of the ICP wave precedes an increase in pressure. As the morphology 

of the ICP waveform is different under diverse (patho)physiologic conditions. Changes in the ICP 

waveform morphology are linked to the development of intracranial hypertension, acute changes 

in the cerebral CO2 level, a decrease of the cerebral blood flow and changes in the craniospinal 

compliance [28]. The physiological waveform contains three peaks, as can be observed in figure 

1B. The peaks are referred as P1 (percussion wave), P2 (tidal wave) and P3 (dicrotic wave). The 

origin of the ICP waveform is a complex interaction between the arterial inflow, venous return 

and the intracranial content. The waveform is primarily arterial with retrograde venous pulsation 

contributing to the latter components [29]. The exact origin of the morphology remains to be 

elucidated but some studies specify P1 as arterial pulsation, P2 as the intracranial compliance and 

P3 as aortic valve closure [28,30]. To the best of our knowledge there is no consistency in 

literature in the definition of P1, P2 or P3 peaks during pathological situations when peaks may 

merge.  

 

In the first stage of  increasing intracranial pressure the cranium encloses a compensatory 

mechanism for this increasing pressure, which can be explained by the Monro-Kellie doctrine [3]. 

An increase in intracranial volume, is compensated by a decrease of the venous volume or 

cerebrospinal fluid volume, preventing an increase of ICP. This pressure-buffering capacity of the 

venous blood and cerebrospinal fluid (CSF) is limited. The adaptive potential of this pressure-

buffering capacity is represented in the compliance. The compliance is the change in volume over 

a change in pressure (dV/dP). In the first stage of a growing intracranial mass when the 

compliance is high, the rise in pressure is low as the volume increases. Beyond the pressure-

buffering capacity there is a poor compliance of the brain: a small increase in volume induces a 

large increase in the ICP, figure 1A. An elevated ICP may impede cerebral blood flow (CBF) and 

cause ischemia [8]. The cerebral autoregulation regulates and maintains the CBF across a range 

of blood pressures. The autoregulation ensures that as the cerebral perfusion pressure (CPP) or 

mean arterial pressure (MAP) increase, the resistance of the cerebral vasculature increase by 

vasoconstriction and the CBF is maintained. Conversely, the CBF is maintained constant as the 

MAP or CPP decrease by vasodilation of the cerebral vasculature [1,31]. This mechanism of auto-

regulation functions only in a certain range, in this range a change in the systemic blood pressure 

or the cerebral perfusion pressure does not change the CBF [32]. Variations in the ICP-

morphology are linked to a loss of intracranial compliance and dysregulation of the autoregulation 

mechanism [30,33].  
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We hypothesize that the waveform morphology of intracranial pressure pulses holds essential 

information about intracranial pathophysiology. The ICP-wave morphology can be regarded to a 

certain degree to reflect cerebral compliance. Changes in waveform characteristics, as the 

amplitude of ICP or rounding of pulse waveform can be detected in the signal prior to IH, figure 

1B visualizes this hypothesis [34].  Automatic analysis of the ICP waveform may help to detect 

changes in the ICP waveform morphology and predict intracranial hypertension [28,35]. As 

current clinical practice is reactive and therapeutic interventions occur after a prolonged episode 

of elevated ICP, there is room for improvement of ICP monitoring systems that would provide 

more actionable information[35]. The goal of this research is to analyze the waveform 

morphology and develop an algorithm to automatically detect changes in the ICP waveform 

morphology and predict intracranial hypertension.  By a machine learning approach, we hope to 

contribute to treatment of  intracranial hypertension in TBI patients in a proactive manner [25].  

This research will focus on prediction of intracranial hypertension by two different machine 

learning approaches. The first approach will predict IH based on a set of MOCAIP features 

describing the morphology of the ICP curve. We will develop an algorithm to detect the ICP sub-

peaks, the algorithm will be learned over a set of by experts annotated ICP waves. A classification 

tree will be used to identify if a wave belonged to intracranial hypertension, the period before 

hypertension or a control segment. The second approach will elaborate on the use of neural 

networks to classify waves belonging to intracranial hypertension from normal ICP waves.  
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Method  

Dataset  

We performed a retrospective study in severe traumatic brain injury patients admitted to the ICU 

at the Radboud Universel Medical Center, Nijmegen (RadboudUMC). Inclusion criteria were 

patients with severe TBI, continuously monitored by a intraparenchymal ICP probe. Patients were 

excluded as they obtained decompressive craniectomy.  

Preprocessing 

The raw ICP signal will be preprocessed to reduce the effect of noise. The first step is detection of 

individual ICP pulses, this was done by the use of a moving average filter.  

 

 

Moving average filter to detect heart beat  

The ICP signal was filtered by a moving average filter using 30 samples and transfer coefficients 

b = 0.0333 and a = 1. This filter reduced the effect of high-frequency noise. The signal was filter 

forward and backward to eliminate phase shift. The low pass filtered signal is shaped like a 

sinusoid with one cycle per heartbeat [2]. The peaks of the low pass filtered signal were used to 

identify the location of one heartbeat. Individual ICP waves could be extracted as the location of 

Figure 2: A. Raw ICP signal (light blue) with the low pass filtered ICP signal (green), the maximum of each period of the low 

pass filtered signal is marked (yellow). B. The averaged wave (blue) of the raw ICP signal in figure 2A. the candidate peaks 

were detected and marked by a yellow cross.  
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an ICP-wave was equal to the location of a heartbeat.  Figure 2A visualizes the above described 

preprocessing steps for low pass filtering of the ICP signal.  

 

Pulse preprocessing  

The individual ICP waves should be represented as vectors with equal lengths. As the vector 

length of the ICP wave was >200 samples the extra samples at the end of the wave were discarded. 

If the wavelength was <200 samples the last value was repeated to fill the vector. A vector length 

of 200 was set as it was unpreferable to discard samples and lose information of the ICP wave. We 

assumed that a wavelength >200 samples was scarce as this corresponded to a bradycardia of <37 

beats per minute. Figure 2B shows an example of an ICP wave filled with repeated values to 200 

samples.  

 

Pulse averaging and normalization 

The individual ICP waves were often contaminated by noise and artefacts. The contamination 

originated from high frequency noise of electronic devices or patient movement. Individual ICP-

pulses originating from one-minute of raw-ICP signal were averaged to reduce the influence of 

noise. The averaged wave was calculated by the mean of all individual waves in the one-minute 

signal. The averaged waves were used for the further analysis.  

 

Each averaged wave was normalized between 0 and 1  

Normalized wave =
wave−min(wave)

max (wave)
   .        (1)  

The normalization was performed to prevent a bias in classification between intracranial 

hypertension and no-intracranial hypertension by the absolute pressure of the averaged ICP 

wave.  

 

Sub-peak detection as a regression problem  

This section focuses on the problem of robust peak detection. Robust peak detection is important 

to extract morphological feature based on the position of the peaks from the ICP wave. These 

features will be used in this research to predict intracranial hypertension. The morphology of the 

ICP waves is extremely variable, this challenges accurate detection of the ICP peaks. A spectral 

regression algorithm will be implemented to deal with the variability in the ICP waves and assign 

the ICP sub-peaks (P1, P2, P3). The spectral regression algorithm requires a set a labelled ICP 

waves to train the algorithm. The labelled set will be constructed by experts of the RadboudUMC. 
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We evaluated the use of this labelled set as a gold standard by the intraclass correlation and the 

inconsisenty in the labels assigned by the experts.  

 

Expert labelling  

We constructed a set of labelled averaged ICP-waves to train the spectral regression algorithm 

and test its performance. For construction of the test and training set experts in TBI care 

(intensivists, neurosurgeons and a technical physician) were asked to label sub-peaks in averaged 

ICP-waves by the use of a Matlab tool. They could assign 1, 2, or 3 peaks in each wave. As a peak 

was missing it obtained the label not a number (NaN). 730 waves were labelled by seven experts 

of the RadboudUMC.  

 

Intraclass Correlation and inconsistent labelling 

To evaluate the reliability and the consistency of the peaks labelled by the experts we calculated 

the intraclass correlation (ICC). The ICC was computed as an estimate of the inter-rater reliability 

and the intra-rater reliability.  The interrater reliability reflects the variation between 2 or more 

raters who label the same set of peaks [36].  The ICC estimates and their 95% confidence intervals 

were calculated using SPSS (version 24, SPSS Inc, Chicago IL) based on mean rating (k=7), absolute 

agreement, 2-way random effects model  [37].  The intra-rater reliability reflects the variation in 

the labelled peaks labelled by 1 rater across 2 or more trials. The intra-rater reliability was 

Figure 3:  Overview of the number of dominant waves labelled by 7 experts of the Radboud UMC. The seven experts labelled 

together a total of 730 unique waves. These waves were used for testing and training of the spectral regression algorithm. 

All experts were asked to label 16 extra waves, these waves were identical for each expert. The experts labelled a sub-

selection of these 16 waves twice. These waves were used to calculate the inter and intra-rater reliability and the percentage 

of inconsistent labelling. 
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calculated based on absolute agreement, One-way random effect model with a 95% confidence 

interval.  

Inconsistent labeling was defined as the percentage of conflicting sub-peaks.  We counted for the 

number of waves with inconsistency in the existence of a peak between the raters and calculated 

the percentage of disagreement (inter-rater % of inconsistent labelling). The P1 inconsistent 

labelling parameter was the percentage of waves where P1 was assigned by 1 or more experts 

and missed by others.  The intra-rater percentage of inconsistent labelling was the percentage of 

conflicting subpeaks between the first and second time a rater labeled an identical wave. An 

overview of the number of waves labelled by the experts and reviewed for the inter-and-intra 

rater reliability and the inter-and-intra rater percentage of inconsistent labelling is visualized in 

figure 3.  

Spectral regression 

The spectral regression analysis applied in our research is a recent method, proposed by Scalzo 

et all. to detect ICP sub-peaks [38, 39]. The key idea of this method is to use a regression model 

combined with spectral graph analysis during sub-peak designation. The regression model is able 

to predict the most likely position of the three peak, 𝑦 = (𝑃1, 𝑃2, 𝑃3) [38]. The spectral regression 

approach will be extended by a kernel to capture nonlinear relationships between the input and 

the output  [40].  Using a supervised machine learning approach, we aim to find predictions for 

the sub-peak positions. Spectral methods are a powerful tool for dimensionality reduction. 

Dimensionality reduction has been a problem in machine learning as supervised machine learning 

algorithms degrade in performance when faced with many features that are not necessary for 

predicting the desired output [41].   

Spectral regression is a method to solve discriminant analysis as a regularized regression 

problem 

𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛α ∑ (𝛼𝑇𝑥𝑖 − 𝑦𝑖) + 𝛿‖𝛼‖2𝑛
𝑖=1 .        (3) 

An elaborate description of the spectral regression analysis can be found in appendix 1. The 

regularization problem can be formulated as follows  

𝛼 = (𝑋𝑋𝑇 + 𝛿𝐼)−1𝑋𝑇𝑦.         (4) 

Where 𝑋 is a matrix formed by the input waves [𝑥𝑖 … 𝑥𝑛], 𝛼 is the eigenvector, 𝐼 is the identity 

matrix and δ  is the regularization parameters, we used δ = 0.001. This formula can be solved 

using Cholesky decomposition [21].  
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We used Kernel spectral regression (KSR) to extend this method to nonlinear problems. This 

allows to use a linear regression analysis to solve a nonlinear problem. The kernel maps the 

input waves 𝑥 to a higher dimensional space. We used a Gaussian kernel (K):  

𝐾𝑖𝑗 = exp (−
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎2 ).           (5) 

Where 𝜎 is the standard deviation of the kernel. Similar to the spectral regression approach we 

use Cholesky decomposition to obtain the vector 𝛼 , 

𝑟 = 𝑐ℎ𝑜𝑙(𝐾 + 𝛿I)          (6) 

𝛼 = 𝑟\(𝑟𝑇\𝑦).           (7) 

 

Now we can find the embedding function: 

 

 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐾 ∗  α        (8) 

 

where α is the eigen vector that minimized the residual sum of square error in equation 3.  

We calculated the class centers (mean of the embedding functions) of the wave with the same 

label in the training set [42].  

 

The Kernel of the test set was constructed, in a similar way as the Kernel from the training set, 

equation 5. The embedding function of the test set was calculated by equation 8. The 

corresponding labels were assigned by minimization of the Euclidian distance between the 

embedding functions of the test set and the class centers of the embedding functions of the 

training set. The labels of the class center that minimized the Euclidian distance were assigned to 

the waves in the test set. The KSR algorithm assigned 1, 2, or 3 ICP-subpeaks to the averaged ICP 

waves.  

 

Train algorithm 

The KSR algorithm was trained by, the leave one out crossvalidation method. During the leave one 

out training the training set contained all averaged waves except for the averaged waves 

belonging to one patient. The test set contained the averaged waves of the last patient. The cross-

validation was performed 31-times. 
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Detect candidate peaks 

We will search for candidate sub-peaks in the averaged waves. Each candidate peak was 

susceptible to become one of the three ICP sub-peaks. The first and second derivative of the 

averaged waves were calculated to identify each candidate peak. A sample was located as 

candidate peak as it met the following definitions.  The first derivative of the signal is 0. The second 

derivative changes from concave to convex or vice versa. The second derivate was convex as its 

sign was >0, the second derivative was concave as its sign was <0. An example wave can be 

observed in figure 2B. 

Sub-peaks 

The ICP sub-peaks were assigned based on the minimal distance between the candidate peaks and 

the peaks predicted by the KSR algorithm. The candidate peak closest to the first regression peak 

was assigned as P1. This process was repeated for P2 and P3, if assigned by the spectral regression 

algorithm.  

Position of sub-Peaks 

The experts and the spectral regression algorithm could assign 1, 2 or 3 sub-peaks to a averaged 

wave. We renamed the sub-peaks to compare the peaks labelled by the expert to the 

corresponding peaks of the spectral regression algorithm in case they assigned a different number 

of sub-peaks. When one peak was assigned to a wave we called this peak P2.  In case two peaks 

were assigned, the position and the amplitude of sub-peak determined if we called the peaks P1 

and P2 or P2 and P3.  

Prediction accuracy 

Sensitivity, specificity, accuracy and the prediction error were used to evaluate the performance 

of the spectral regression algorithm.  

The prediction error was calculated for the true positive peaks. The prediction error in 

milliseconds (ms) is the error between the actual position of the peaks, assigned by experts, 𝑦 and 

the predicted peak position �̂� by the spectral regression algorithm, equation 9 [39]. The average 

prediction error is the mean of  𝑒1, 𝑒2, 𝑒3 

{𝑒1, 𝑒2, 𝑒3} =
1

𝑛
∑ |�̂� − 𝑦|.𝑛

𝑖=1          (9)  
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MOCAIP metrics 

We used Morphological clustering and analysis of ICP (MOCAIP) to extract features from the ICP-

wave. MOCAIP analyzes morphological changes in the ICP-pulse and provides intuitive 

parameters of the ICP-pulse to the clinician. 27 metrics were calculated allowing characterization 

of the ICP pulse morphology by the pulse amplitude, time intervals among subpeaks, curvature, 

slope and decay of time constants [18]. Figure 4 visualizes the MOCAIP metrics in an ICP -wave. 

metrics were calculated depended on the peaks assigned by KSR algorithm. Metrics were assigned 

empty as they were based on a non-existent subpeak. We added two extra metrics to the original 

MOCAIP metrics, the maximal amplitude and the maximal slope. These metrics were added as they 

did not include the position of P1, P2 or P3. They are robust for limitations of the spectral 

regression algorithm.  An extensive description of the 27 metrics is described in appendix 2.  

 

 

Figure 4:  Visualization of the 25 original MOCAIP metrics from an averaged ICP wave. The metrics were based on the 

amplitude, latency, curvature, slope and decay [35]. 
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Segment selection  

To predict intracranial hypertension, we had to select waves belonging to IH, no-IH and waves 

leading to IH. To obtain these waves two types of segments were selected from the raw ICP signal. 

Segments to classify intracranial hypertension versus no-intracranial hypertension (figure 5) and 

segments to predict intracranial hypertension (figure 6). All segments were selected using a 

sliding window, which averaged the mean pressure over 1 minute, shifted to the next window and 

averaged the mean pressure again. The segments in figure 5 to classify IH and no-IH waves had to 

fulfill the following requirements. IH segments: the ICP should be > 22 mmHg for > 5 consecutive 

minutes. There should be minimum period > 5 min between the IH segments. No-IH segments: the 

ICP < 15 mmHg for > 5 min, >5 min between no-IH segments. A label was assigned to the segments 

for classification. The label 1 was assigned to IH segments and 0 to no-IH segments. 181 segments 

of intracranial hypertension and 282 no-IH segments were selected. 

Figure 5: Selection of intracranial hypertension segments and no-intracranial hypertension segments. The red vertical 

lines mark intracranial hypertension periods, ICP > 22 mmHg for > 5 min. The green vertical lines mark periods without 

intracranial hypertension, the ICP was < 15 mmHg for a minimum of 5 minutes. 
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 Segments leading hypertension had to meet refined requirements. Figure 6 illustrates the 

requirement for segment selection. The ICP should be > 22 mmHg for a minimum of 5 consecutive 

minutes, this is the start of IH, marked by the red vertical lines. Label 1 was assigned to the IH 

segments. The ICP should be < 22 mmHg in the period before IH. The period before IH was split 

in 4 segments of 5 minutes. These segments obtained the following labels, 0-5 minutes pre-IH 

(Label 2), 5-10 minutes (Label 3), 10-15 minutes (Label 4) and 15-20 minutes (Label 5) prior to 

IH. These pre-IH segments are marked in figure 6B and C by orange and yellow colors. Control 

Figure 6:  ICP signal over time (samples), intracranial hypertension and control segments were detected by a sliding 

window. The start of an IH segments is indicated by a red vertical line. The start of the control segments is indicated by 

a green horizontal line. We zoomed in on two parts of the signal. B. A segment leading the hypertension. 5 minutes of 

hypertension are showed in red, the pre-IH segments are visualized by orange/yellow colors. Each color indicates a pre-

IH segments of 5 minutes. C. Zoomed in on a control segment. The control segments were selected 15 minutes after  the 

start of a period with a minimum of 90 minutes ICP <22 mmHg. This control period was followed by two segments 

leading to hypertension. 
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segments were selected in the same signal. The control segments were selected from a control 

period where the ICP was < 22 mmHg for > 90 min. The 5- minute control segments were selected 

15 minutes after the start of the 90minute segment. The start of the control periods was marked 

by green vertical lines. The control segment 15 minutes after the start of the control period was 

marked green as visualized in figure 6C. Multiple pre-IH/IH segments and control segments could 

be selected from the same patient. In total 96 pre-IH/IH segments and 79 control segments met 

the criteria. Only segments from patients having both a pre-IH/IH segment and control segment 

were included in further analysis. This resulted in a selection 85 pre-IH/IH segments from 19 

patients.  These patients had a median of 4 [1.25 5.75] IH episodes.  

Classification tree - Morphological features 

Statistical analysis of MOCAIP metrics 

The MOCAIP metrics were calculated for all averaged waves in the selected segments. The 

individual MOCAIP metrics were checked for gaussian distribution. As the data was not normal 

distributed, a Kruskal Wallis test was performed. We tested for significance between the MOCAIP 

metrics in segments leading to IH. The changes were reported for IH, Pre-IH (0-5, 5-10, 10-15, 15-

20 minutes before IH) and a control segment. The control segments were selected from the same 

patients. The null hypothesis was rejected as P>0.05. 85 segments leading to IH were included in 

this analysis. This analysis was performed in GraphPad Prism.  

Classification tree 

Classification was performed to distinguish IH waves from no-IH waves and to classify the pre-IH 

segments based on the MOCAIP metrics. A classification tree package in Matlab was used for this 

analysis. The classification tree classified the waves into classes 0 or 1, no-IH or IH. For 

classification of the pre-IH and control segments the classification tree classified in 0, 1, 2, 3, 4, 5, 

6.  The parameters in this classification model were tuned by the minimal leave size and the 

number of function evaluations to obtain the best classification results. Different values for the 

min leaf size were tested to find a balance between the most optimal solution for the training and 

test set, as we should prevent overfitting on the training set [43].  A leave one out method was 

used for training and classification of the IH/pre-IH and control waves. The classification 

performance was evaluated by the sensitivity, specificity, accuracy, negative predictive value 

(NPV) positive predictive value (PPV), false positive rate (FPR) and the false negative rate (NPR).  

Neural Network – Averaged wave  

The use of a Neural Network was explored for classification of IH and no-IH waves based on their 

morphology. Inputs of the previous MOCAIP classification experiment were metrics describing 
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morphological changes of the wave. This neural network experiment uses the averaged, 

normalized wave as its input. It is not limited to pre-defined features for classification, the neural 

network had the freedom to recognize any properties that are characteristic for IH [25]. Two types 

of neural network were evaluated for their classification performance, we used a Long Short Term 

Memory (LSTM) network and a Convolution neural network (CNN).  The LSTM network relies on 

temporal changes of the signal. As the input were averaged ICP waves we investigated the use of 

convolution neural network to discard this problem. The CNN network was constructed using 12 

layers: 3 convolutional layers, 2 batch normalization layers, 2 relu layers, 2 dropout layers, 1 fully 

connected layer, 1 softmax layer and 1 classification layer. The network was trained over 50 

epochs with a mini-batch size of 15 and 10 hidden units.   

The LSTM network was constructed using to 2 LSTM layers (one sequence and one last), 1 

sequence input layer, 2 fully connected layers, 1 softmax layer and 1 classification layer. The 

network was trained over 5 epochs, with a mini-batch size of 15 and 10 hidden units.   
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Results  

Dataset 

The dataset used in our research originated from 53 traumatic brain injury patients admitted to 

the intensive care department of the Radboud-UMC, Nijmegen. These patients were admitted to 

the ICU between Mai 2017 and August 2019.  22 patients were excluded from the analysis as they 

obtained decompressive craniectomy.  

Table 1: Patient characteristics of TBI patients at the Radboud UMC, Nijmegen.  

Descriptive    

TBI patients (with ICP 

monitoring between Mai 2017 – 

Aug 2019)  

 53 

Sex      Male                    39 

 Female 14 

Age in years       (median (IQR))       44 (30 - 58) 

Decompressive craniectomy   22 

 

Sub-peak detection as a regression problem  

Expert Labelling - Inter-intraclass correlation and inconsistent labelling 

The performance of the experts to label the ICP sub-peaks P1, P2, P3 was evaluated. Table 2 

presents the intra class correlation and the percentage of inconsistent labelling of the three ICP-

subpeaks by seven experts. The intraclass correlations are close to one for all subpeaks. What 

stands out in table 2 is the high inconsistent labelling for P1, as well as the inconsistency of 0% for 

P2.  
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Table 2: The intra- class correlation of the sub-peak positions P1, P2, P3 labelled by seven experts. The intra-class 

inconsistent labelling is the percentage of identical peaks labelled by one or more experts and missed by others. The inter-

class percentage of inconstant labelling is the percentage of inconsistent assigned peaks between the first and second time 

a rater labelled a wave.  

Peak Intra-class  

correlation (95 % CI) 

Intra-class, Inconsistent 

labelling (%) 

Inter-class, Inconsistent 

labelling (%) (ME [IQR]) 

P1 0.999 (0.997 – 1) 43.75% 10 % [2.5% 10%] 

P2 0.990 (0.981 – 0.996) 0% 0%    [0%       0%] 

P3 0.997 (0.992 – 0.999) 18.75% 10%  [0%    10%] 

 

A complete overview of the results for the intraclass correlations and the percentage of 

inconsistent labelling of the three ICP subpeaks for the individual experts is reported in appendix 

2. It is apparent from these results that only one expert was consistent in peak labelling for all 

waves. As can be observed in table 2, P1 and P3 had again the highest inconsistency, the median 

of inconsistent labelled P1 and P3 peaks was 10% for the experts between the first and second 

time they labelled a similar wave. The interclass correlations for all raters and peaks are close to 

1. This indicates that the experts labelled precisely.  

Spectral regression  

Peak prediction 

We calculated the error between the peaks labelled by the experts and assigned peaks in the 31 

leave one out cross validation method of the KSR algorithm. The peak prediction error was 2.3 

samples (18 ms) for P1, 5.8 samples (46 ms) for P2 and 6.1 samples (48 ms) for P3. The average 

prediction error over the three sub-peaks was 4.7 samples (38 ms). As table 3 shows, the 

sensitivity, specificity and accuracy of P1 was quite low. The sensitivity for P2 was 100% and the 

accuracy 99%. The specificity was undetermined for P2 as there were no true negative or false 

positive peaks because P2 was assigned and present in all waves. The presence of P3 was more 

variable but better compared to P1. An interesting observation is that the largest confusion clearly 

exists in the assignment of P1, which is in consonance with the inconsistency in expert labelling.  
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Table 3: Sensitivity, specificity and accuracy of the sub-peaks P1, P2 and P3 predicted by the leave on out cross validation 

method. The peaks labelled by the spectral regression algorithm were compared with the peaks labelled by the experts. The 

ground truth were the labels assigned by the experts.  

Peak Sensitivity  Specificity Accuracy 

P1 65% 50% 57% 

P2 100% -  100% 

P3 89% 23% 79% 

P123 88% 43% 78% 

 

A selection of ICP waves labelled by expert (marked in yellow) and the sub-peaks predicted by the 

spectral regression algorithm (marked in blue) are presented in figure 7. In figure 7A, C and D the 

expert and KSR marked the same number of sub-peaks. Remarkable is figure 7B where P1 is 

marked by the KSR but not assigned by the expert. There was a large deviation in the position of 

the sub-peaks in figure 7D. The peaks marked by the KSR did not correspond to the right position 

of the sub-peaks.  

Figure 7:  A selection of the results of the Kernel Spectral Regression algorithm (KSR). Dominant ICP waves with the 

manual labelled peaks by the expert in yellow and the labels predicted by the algorithm in blue. 
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The performance of the spectral regression algorithm improved, especially for exceptional ICP 

waves, as we randomly split the waves over the test and training set.  We tested for 80% of the 

labelled waves in the training set and 20% in the test set (80-20 training). Figure 8 shows the 

results obtained by the leave one out training approach and the 80-20 training approach for an 

exceptional but physiological ICP wave. The leave one out approach assigned three unrealistic 

peaks, figure 8A. The 80-20 approach assigned 2 realistic peaks corresponding to the peaks 

assigned by the experts, 8B.  

This illustrates a limitation of the current KSR algorithm. The prediction errors, sensitivity, 

specificity and accuracy of this 80-20 training approach can be found in appendix 3.  The poor 

results of the leave one out training method can be explained as this type of wave occurred just in 

one patient in our dataset, the KSR was not trained on this type of wave. The KSR assigned the 

peaks of the closest class center. In the 80-20 approach the KSR was trained on a similar wave and 

performed accurate assignment of the sub-peaks. According to these results, we can infer that the 

algorithm worked but its generalizability is limited by the small amount of training data.  

  

Figure 8: A. Averaged ICP wave where we marked the peaks assigned by the KSR algorithm and the experts. The peaks 

predicted by the KSR algorithm resulted from the leave-one-out training method. The peaks assigned KSR are aberrant. B. 

Averaged ICP wave where the peaks assigned by the KSR algorithm are the result of the 80-20 training approach. The peaks 

assigned by the KSR algorithm and the expert have identical positions.  
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MOCAIP metrics  

Statistical analysis of MOCAIP metrics  

A Kruskal Wallis test was conducted to test for significance of the 27 MOCAIP metrics in the IH, 

pre-IH and control segments, table 5 gives an overview of the results. 85 segments leading to IH 

and 85 control segments were included in this analysis. The colors in table 5 indicate statistical 

significance, green states statistical significance and yellow states no statistical significance. 20 

metrics were significant different between the IH, pre-IH and control waves. These metrics 

changed over time in the period before IH.  L1, L2, RatioL12, Curv1, Curv12, Curv31 and Lx were 

never significant. 11 to 18 metrics were significant between the IH vs 5, 10, 15, 20-minute 

segments before IH and control. The amount of significant metrics between the pre-IH segments 

was limited. There were no significant metrices in 10 vs 15, 10 vs 20 and 15 vs 20 minutes. These 

results can be found in appendix 5. We can assume that morphological changes over time were 

limited in these pre-IH segments. Closer inspection of the table showed significance of the 

parameters mICP, diasICP, Ratiod13, Ratiod23 and Curv2 between the control segment and pre-

IH segments. Some changes in the morphology might have occurred between the control period 

and the pre-IH periods. These results support the potential to distinguish waves leading to 

intracranial hypertension from control waves.  
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P-value 

IH vs 

 5 

IH vs 

Control 

5 vs 

Control 

10 vs 

Control 

15 vs 

Control 

20 vs 

Control 

mICP <0.0001       

diasICP <0.0001       

dP1 <0.0001       

dP2 <0.0001       

dP3 <0.0001       

Ratiod12 0.0028       

Ratiod13 < 0,0001       

Ratiod23 < 0,0001       

Amplitude < 0,0001       

Lt 0.0007       

L1 0.9282       

L2 0.8573       

L3 0.0005       

RatioL12 0.6063       

RatioL13 0.0014       

RatioL23 0.0007       

Curv1 0.9169       

Curv2 < 0,0001       

Curv3 < 0,0001       

Curvm < 0,0001       

Curv12 0.1956       

Curv31 0.3033       

Curv32 0.0004       

Slope < 0,0001       

Lx 0.1362       

dPx < 0,0001       

Slopemax < 0,0001       

Table 5: Summery statistics of the Kruskal Wallis test. The green color indicated statistical significance 

between the two groups for the corresponding metric. Yellow indicates no statistical significance between 

the two groups. The first column is the P-value, a P-value <0.05 states a significant change over time for the 

corresponding metric in the period from control to intracranial hypertension.  
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Classification tree –Morphological features   

A supervised learning approach was used for classification between IH and no-IH waves based on 

the MOCAIP metrics. The aim of this section was to determine the feasibility to distinguish IH-

waves and no-IH waves based on MOCAIP metrics describing the morphology of the curve. The 

metrics mean ICP and diastolic ICP were excluded from this analysis.  

 

 

The results of the classification tree for classification of IH-waves and no-IH waves based on the 

morphology of the curve can be observed in the confusion matrices in figure 9. The elements in 

the diagonal (in green) are correctly classified. The elements out of the diagonal are misclassified. 

A minimal leaf size of 18 was used as it had the best performance for both the test and training 

set. IH waves were classified as 1, no-IH wave were classified 0.  The accuracy for the test set was 

93% and the accuracy for the training set was 84%. The sensitivity for correct classification of 

waves belonging to IH and no-IH was respectively 91% for training and 66% for testing. The 

specificity was 95% for training and 96% for testing. 

Figure 9: A. Confusion matrix of the training set for classification of IH (Class 1), and no-IH (Class 0) based on the MOCAIP 

metrics. B. Confusion matrix of the test set for classification of IH and no-IH based on the MOCAIP metrics. 
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Figure 10 visualizes the predictive power of the MOCAIP metrics for classification of IH and no-IH 

waves. The predictive importance was defined as the change in the sum of the mean squared error 

due to a metric, divided by the sum of the number of branch nodes. The slope had the highest 

predictive value. dP3 was the second most important and Lt and dPx the third most important 

metrics.  

 

  

Figure 10:  Predictor importance estimates of the MOCAIP metrics for classification between IH (ICP > 22 

mmHg) and no-IH (ICP <15 mmHg). 
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The most challenging classification is to classify the IH, pre-IH and control waves based on the 

MOCAIP metrics. As pre-IH waves and control waves could be classified correctly, prediction of an 

episode of intracranial hypertension may be feasible. The 20 significant metrics in table 5 were 

included in this classification. The confusion matrix in figure 11A, shows the leave one out 

classification results for the test set. Class 1 represents IH, 2 represents 0-5 minutes before IH, 3: 

5-10 minutes before IH, 4: 10-15 minutes before IH, 5: 15-20 minutes before IH, 6: Control waves. 

The overall accuracy was 42%. Figure 12, presents an overview of the accuracies (acc), 

sensitivities (sens), specificity (spec), positive predictive value (PPV), negative predictive value 

(NPV), true positive rate (TPR) and the false positive rate (FPR) of the different classes. 

The obtained results for classification between waves leading to hypertension (pre-IH and IH) vs 

control waves are promising as the obtained a sensitivity of 89%, specificity of 71% and accuracy 

of 86%. The classification of the pre-IH segments at their specific timing is limited as the obtained 

sensitivities were between 13 and 39%. These classifications included the mICP and diastolic ICP. 

The mICP and diasICP were the most important predictors for classification. We performed the 

same analysis while excluding these 2 metrics. The confusion matrix based on metrics describing 

the morphology of the curve is visualized in figure 11B. What stands out in this matrix is the 

increase in the amount of false negative waves. They were predicted as a control wave while they 

often belonged to the pre-IH classes. The overall accuracy decreased to 34%. The sensitivity, 

specificity and accuracy for classification of the IH and pre-IH vs the control segments were 

respectively 74%, 66% and 73%. dP1 was the most important predictor.  

Figure 11:  A. Confusion metrics of the test set, prediction of the classes 1: IH, 2:  0-5 min before IH 3: 5-10 minutes before 

IH, 4: 10-15 minutes before IH, 5: 15-20 minutes before IH, 6: Control segments. Classification was performed including 

all significant MOCAIP metrics. B. Confusion metrics of the test set of the same classes as in figure A. Classification was 

performed with all significant metric based on the morphology of the curve (excluded mICP and diasICP). 
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Figure 12: A. Sensitivity, Specificity and Accuracy of waves leading to hypertension (IH + pre-IH), waves leading to 

hypertension without mICP and diasICP, IH waves, pre-IH waves at their specific timing and classification of the control 

waves. The results of the classification tree based on the MOCAIP metrics. B. The positive predictive (PPV), negative 

predictive value (NPV), true positive rate (TPR) and false positive rate (FPR) of the same classes and waves as in figure A.  
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Neural Network – Averaged wave  

The classification results for the LSTM neural network were inconsistent. We trained the LSTM 

network by averaged waves with the label 1 IH and 0 no-IH. The classification results can be 

observed in table 6. The results of the convolution neural network were sensitive for overfitting 

on the training set. A dropout layer was added to prevent overfitting.  

 

 Test - LSTM Training - LSTM Test - CNN Training- CNN 

Accuracy 70% 69% 58% 77 % 

Sensitivity 97% 58% 47% 85% 

Specificity 66% 88%  60% 75% 

 

The results for the test and training set are very disparate for both the LSTM and CNN. As the 

sensitivity from the LSTM test set was very high, we could assume that as the network classified 

a wave as IH it should be true. Closer inspection rejects this assumption as the sensitivity for 

training was limited to 58%. The results of the LSTM network are slightly better compared the 

CNN network.  

  

Table 6: Classification results (Sensitivity, Specificity and Accuracy) of intracranial pressure waves and no – intracranial 

pressure wave by a LSTM neural network and a CNN network.  
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Discussion 

Our goal was to predict intracranial hypertension. We developed an algorithm to accurately detect 

and extract morphological information from the ICP wave. We tried to detect the ICP sub-peak 

positions P1, P2 and P3 by the utilization of a machine learning approach called spectral 

regression analysis. The spectral regression method was a very efficient method to extract the 

sub-peaks positions after training with a training set labelled by experts. We evaluated how 

experts assigned ICP subpeaks to an ICP waves. Interesting insights were obtained as the experts 

were inconsistent in what they called a sub-peak. 27 (MOCAIP) metrics describing the 

morphology of an ICP wave were extracted from each averaged wave and used for classification 

between IH, pre-IH and control waves. Our promising results suggest the potential to distinguish 

waves leading to intracranial hypertension from control waves.  

Preprocessing  

The performed preprocessing steps focused on selection of individual ICP peaks to create a robust 

averaged peak.  Artefacts or segments with noise were not removed before analysis. Instead, an 

averaged wave was constructed as the mean of one minute of raw individual waves. It is 

recommended to improve this preprocessing step in future to prevent forming of non-

physiological signals. A potential solution is to cluster waves and select the largest cluster as the 

averaged wave. Additionally the waves could be compared with a reference library with valid ICP 

waves, as the averaged wave correlates with a reference ICP wave, the averaged wave could be 

identified as physiological and valid [39]. Improved preprocessing will result in less variation in 

the averaged waves, this will improve the performance of the spectral regression algorithm and 

increase the reliability of the MOCAIP metrics.   

Expert labelling  

An important finding was found in the peak labelling consistency. There was a large disagreement 

in the presence of ICP sub-peaks. In 43.75% of the waves the experts did not agree over the 

presence or absence of the P1 sub-peak. The agreement was better for P3, as the experts disagreed 

in 18.75% of the waves. The agreement was excellent for P2 where the experts agreed in 100% of 

the waves about the presence of P2. This finding was not unexpected because the label P2 was 

always assigned to one of the subpeaks. It is somewhat surprising that the expert opinion over the 

sub-peak existence is so disparate. There is no gold standard for sub-peak positioning in 

literature. This implies that we should be careful in the intensive care unit in the discussion about 

ICP and the position of the sub-peaks. Prior studies focused on accurate detection of the ICP sub-

position P1, P2, P3 [10, 28, 29, 44]. Very little was found in the literature on the question what 
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should be called a sub-peak. Being aware of this we should review the use and naming of P1, P2, 

P3 in prior studies and carefully interpret their results. A potential solution to limit influence of 

the missing gold standard is to develop an unsupervised learning algorithm. This algorithm will 

be insensitive for the missing gold standard as no expert opinion is included in the peak 

assignment. A potential solution was proposed by Lee et al. They developed an algorithm based 

on peak clustering to assign peaks in individual pulse morphologies [45].  

We asked experts to label ICP peaks in preprocessed waves visualized on a laptop screen. The 

displayed ICP-wave was large compared to an ICP-wave on the monitor at the ICU. This allowed 

the experts to distinguish more variations in the ICP wave than they would see on the monitor. 

The experts were not familiar with such a detailed image of an ICP-wave, causing confusion in the 

interpretation and assignment of the sub-peaks.  In addition, as the clinician reviews the ICP-

signal at the ICU unit the MAP signal is visualized in the same window. The MAP signal might be 

used to interpret the ICP signal. The dicrotic notch of the MAP should be aligned with the dicrotic 

notch of the ICP signal. This marker can be useful to determine the sub-peak positions. The dicrotic 

notch is associated with the closure of the aortic valve at the end of the ventricular systole. The 

wave components before the dicrotic notch are assumed to be related to arterial influence, the 

component after the dicrotic notch to the venous pressure. P2 ends on the dicrotic notch and P3 

follows the dicrotic notch [30].  It is therefore likely that addition of the MAP signal to the ICP 

signal during expert labelling will reduce the inconsistency in ICP sub-peak labelling. Revised 

preprocessing might also improve the performance of the experts. The experts were a few times 

confronted with a non-physiological wave, causing extra confusion in the sub-peak assignment.  

Spectral Regression 

The spectral regression approach to detect ICP sub-peaks has been exploited in literature. The 

implementation of machine learning techniques improved the accuracy of peak detection 

compared to older techniques [18]. Scalzo et all obtained an 99% accuracy for peak designation 

[38, 39]. We implemented a version of the spectral regression method and obtained an accuracy 

of 78% for individual (leave one out) training and 91% for global (80-20) training.  

The inconsistency in peak labelling by the experts is important to bear in mind will interpreting 

the results of the spectral regression algorithm. The algorithm was trained by ICP waves with sub-

peaks labelled by experts. The results of the inter-and-intraclass correlation coefficient and the 

percentage of inconsistent labelling indicate a large variability in the training and test labels. The 

algorithm used the test and training set constructed by the experts as its gold standard. The 

inconsequent peak labels in the training set will learn the algorithm to label peak in the same 

inconsequent way. Due to the inconsistent labelling the peak assignment was erratic, and the 



32 
 

accuracy, sensitivity and specificity of the algorithm were low even though the performance was 

quite promising. The low accuracy, sensitivity and specificity were due to comparison with a ‘gold 

standard’ in which a large inconsistency in the labelled sub-peaks exists.  

The same cautiousness is required for interpretation of the peak prediction error. The peak 

prediction error was quite large and varied between 2.3 samples in P1 to 6.2 samples for P3 in the 

leave one out cross-validation method. The algorithm performed quite well, but in some cases the 

algorithm assigned false peaks. The findings of the prediction error might be somewhat limited 

and should be interpreted with caution. The error was calculated by the sample difference 

between the sub-peaks labelled by the expert and predicted by the KSR. The error was unfairly 

large in some situation. In an example situation, the expert assigned three peaks (P1, P2, P3) and 

the algorithm assigned two peaks assigned as P1 and P2. Similar named ICP sub-peaks will be 

subtracted, it might occur that the KSR peaks named as P1 and P2 corresponds to the expert’s 

peaks P2 and P3. This resulted occasionally in a large error, we did not correct for these large 

errors. In future research, it might be useful to ask the expert to assign a label (P1, P2, P3) to each 

of the labelled ICP-subpeaks.  This will give more insight in the inconsistency in sub-peak labelling 

and will be helpful to calculate a more realistic prediction error. 

 The results of the prediction error, sensitivity, specificity and accuracy show the different 

performance of the 80-20 and individual training method.  As expected, the 80-20 algorithm 

performed better than the individual training approach. Data from the same patients appeared 

both in the training and test set in the 80-20 approach. To have a viable algorithm it should 

perform well on previously unseen patients.  According to the results of the individual training 

approach the performance of the algorithm is limited.  

The performance of the spectral regression algorithm can be improved in future. Concluding from 

this discussion we have three important future recommendations. The dataset of 31 patients 

should be expanded.  In this research a small amount of training and test data, only 730 labelled 

waves, were used. Elaboration of the data and the test and training set is an important issue for 

future research. A final important improvement is consistent peak labelling by experts. As the 

algorithm uses the expert labels as gold standard, it is important to have a reliable gold standard 

with consistent labels.  

MOCAIP 

A general important discussion point is the reliability of the MOCAIP metrics. The peaks predicted 

by the spectral regression method were used the calculate the metrics. As discussed before, the 

peak prediction is not perfect due to a limited dataset, inconsequent peak labelling and limitations 
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in the signal preprocessing. Interpretation of the results should be performed regarding this 

inaccuracy.  

However, the results showed significance in 20 of the 27 metrics between the IH, pre-IH and 

control waves. This suggests the potential to classificy based on these metrics. Many metrics were 

significant between IH and the pre-IH classes. The significance was limited between the pre-IH 

classes. This might indicate that the predictive power of morphological changes to predict IH is 

limited to a short period prior to IH. At least 5 metrices were significant between the control 

classes and the pre-IH waves, two of them were the mICP and diastolic ICP.  The  significant 

differences between waves leading to hypertension and control waves supports the hypothesis of 

development of morphological changes prior to hypertension. From our results, development of 

morphological changes in the period from 20 to 5 minutes prior to IH seemed limited, as their 

were no significant metrics between these periods, except for the mICP.  

Classification by a classification tree - MOCAIP 

However, the fact that a metric had no predictor importance does not signify the metric is not 

useful for classification. This can be illustrated by the significance of several metrics, which were 

not selected in the classification tree. This could be explained by reciprocal correlation with other 

metrics, as a result of the correlation it might not be selected for classification. Vice versa, metrics 

assessed as not significant by the Kruskal Wallis can be important for classification. The statistical 

analysis focused on the importance of one metrics, while the classification emphasizes the 

predictive power of a combination of metrics [10].  

The experiment achieved a high specificity 96%, but a moderate sensitivity of 66% for 

classification of IH – waves and no – IH waves. Classification of the averaged waves in pre-IH and 

IH and control classes was quite promising. 

We obtained promising results for IH prediction while classifying the IH, pre-IH and control 

waves. We could distinguish ICP waves leading to hypertension (within 20 minutes) from control 

waves with a sensitivity of 89%, specificity of 71%, accuracy of 86%. As the mICP and diasICP 

were excluded the sensitivity, specificity and accuracy were 74%, 66% and 73%. The predictive 

power of classification of pre-IH segments at a specific time prior to IH is still limited from this 

experiment. The clinical relevance of classification of waves leading to hypertension from control 

waves is high. This provides valuable information to clinician, as it allows to clinician to intervene 

before the pressure increases. From these results the clinician could be warned that a rise in ICP 

will occur within a period of 20 minutes.  
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It is important to realize that control segments were selected from episodes with no intracranial 

hypertension for a minimum of 90 minutes over the full length of the ICP signal. Control segments 

could be selected before and after the IH period. Morphological alterations might have occurred 

before the control segment in previous IH periods. In this cases discrimination between IH, pre-

IH and control might be impossible as the morphological changes have yet occurred in all 

segments. It is recommended to select control segments prior to the period of increasing 

hypertension and verify if it is possible to classify these control waves from the waves leading to 

hypertension.  

Criteria for segment selection were based on the ICP guidelines and previous literature [9, 10]. An 

IH segment was selected as the mean pressure was above 22 mmHg for a minimum of 5 

consecutive minutes, detected by a sliding window averaging over 1 minute. Further studies 

require evaluation of this selection protocol. Segments might be missed due to the strong selection 

criteria.  

Classification by a Neural Network  

The relevance of ICP wave classification by a neural network is limited from this research. We 

obtained better classification results based on the MOCAIP metrics. Beside the advantage of better 

classification results, the classification tree based on MOCAIP metrics has the benefit to be very 

insightful. The classification tree is similar to a clinical protocol. The neural network is a black box, 

which complicates acceptance by the clinicians. The neural network performances might benefit 

improved preprocessing. In future, it might be interesting to explore classification based on the 

MOCAIP metrics by a neural network. As Matlab could not deal NaN values during classification 

by a neural network we could not elaborate on this performance. Another interesting focus is the 

use of LSTM Neural Networks to forecast the ICP values of future timesteps. As the values of 

multiple time step could be forecasted, it would be possible to predict IH.  

Clinical application 

Although our results need further study, a future application of the algorithm is to process 

continuous ICP signals and extract MOCAIP metrics. Bedside analysis of the MOCAIP metrics 

would provide more information than the mean ICP to the clinician. The algorithm should be 

adapted to allow real-time analysis of the signal and monitoring of the most important MOCAIP 

metrics. This would be valuable to provide predictive information that warns for increasing 

intracranial pressure and progression of a secondary insult. It is important to be aware of the risk 

of false positive predictions or failure to predict intracranial hypertension.  
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Conclusion 

Our aim was to predict intracranial hypertension. We presented two machine learning methods 

to classify IH waves from no-IH waves. The MOCAIP method based on a spectral regression 

algorithm obtained promising results for classification between IH and no-IH waves. The 

classification results of our second approach based on neural networks, using the full wave as its 

input, were limited. Both methods might benefit improved pre-processing and expansion of the 

training, test and dataset. The MOCAIP method was elaborated to predict intracranial 

hypertension. It was feasible to classify between ICP waves leading to hypertension and control 

waves based on the MOCAIP metrics. These results are promising for future clinical practice as it 

could provide valuable information to the clinician, allowing to intervene within a period of 20 

minutes before intracranial hypertension. 
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Appendices 

Appendix 1 – Spectral Regression Algorithm 

We have a matrix 𝑋 of input waves [𝑥𝑖 … 𝑥𝑛]. Each vertex represents a wave.  

Let W be a symmetric 𝑚 ∗  𝑚 matrix with 𝑊𝑖𝑗  having the weight of the edge joining vertices. The 

purpose of graph embedding is to represent each vertex of the matrix as a low dimensional 

vector preserving the similarities between the vertex pairs.  

Let 𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑚]𝑇 be the map from the matrix to the real line. The optimal y can be found 

by minimizing  

∑ (𝑦𝑖 − 𝑦𝑗)
2

𝑖,𝑗 𝑊𝑖𝑗 ,           (A1)  

∑ (𝑦𝑖 − 𝑦𝑗)
2

𝑖,𝑗 𝑊𝑖𝑗 = 2𝑦𝑇𝐿𝑦 .          (A2)  

Where 𝑊 is the affinity matrix, 𝐿 = 𝐷 − 𝑊 is the graph Laplacian and 𝐷  is the diagonal matrix of 

𝑊 whose entries are the column sums of 𝑊. 

The optimal y’s can be obtained by solving the maximum eigen value problem:  

𝑊𝑦 = 𝐿𝐷𝑦.            (A3) 

This graph embedding approach describes the mapping of the training set. As we would like to 

classify the ICP sub-peak in previously unseen ICP waves. We can choose a linear function 

 𝑦𝑖 = 𝑓(𝑥𝑖) = 𝑎𝑇𝑥𝑖  we have 𝑦 = 𝑋𝑇𝑎.         (A4) 

The optimal 𝑎’s are the eigenvectors corresponding to the eigen value problem:  

𝑋𝑊𝑋𝑇𝑎 = λXDXTa.           (A5) 

Find a which satisfies 𝑦 = 𝑋𝑇𝑎.  

A possible way to find a is via a regularized least squares problem,  

𝑎 = 𝑎𝑟𝑔𝑚𝑖𝑛α ∑ (𝛼𝑇𝑥𝑖 − 𝑦𝑖) + 𝛿‖𝛼‖2𝑛
𝑖=1 .        (A6) 

The regularization problem can be rewritten as:  

𝛼 = (𝑋𝑋𝑇 + 𝛿𝐼)−1𝑋𝑇𝑦.         (A7) 

Where 𝑋 is a matrix formed by the input waves [𝑥𝑖 … 𝑥𝑛], 𝛼 is the eigenvector, 𝐼 is the identity 

matrix and δ  is the regularization parameters, we used δ = 0.001. This formula can be solved 

using Cholesky decomposition [21].  
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We used Kernel spectral regression to extend this method to nonlinear problems. This allows to 

use a linear regression analysis to solve a nonlinear problem. The kernel maps the input waves 𝑥 

a higher dimensional space. We used a Gaussian kernel (K):  

𝐾𝑖𝑗 = exp (−
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎2 ).           (A8) 

Where sigma is the standard deviation of the kernel. Similar to the spectral regression approach 

we use Cholesky decomposition to obtain the vector 𝛼,  

𝑟 = 𝑐ℎ𝑜𝑙(𝐾 + 𝛿I)          (A9) 

𝛼 = 𝑟\(𝑟𝑇\𝑦).           (A10) 

Now we can find the embedding function: 

 

 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐾 ∗  α        (A11) 

 

where α is the eigen vector that minimized the residual sum of square error in equation A6.  

We calculated the class centers (mean of the embedding functions) of the wave with the same 

label in the training set [42].  

 

The Kernel of the test set was constructed, in a similar way as the Kernel from the training set, 

equation A8. The embedding function of the test set was calculated by equation A11. The 

corresponding labels were assigned by minimization of the Euclidian distance between the 

embedding functions of the test set and the class centers of the embedding functions of the 

training set. The labels of the class center that minimized the Euclidian distance were assigned to 

the waves in the test set. The KSR algorithm assigned 1, 2, or 3 ICP-subpeaks to the averaged ICP 

waves.  
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Appendix 2 – MOCAIP metrics  

- Amplitude: The amplitudes dP1, dP2 and dP3 are the height of the peaks from the diastolic 

ICP height to the top of the peaks. The diastolic ICP was determined as the minimal value 

in the averaged ICP-pulse.  (dP2/dP1), (dP3/dP1) and (dP3/dP2) were the ratios of the 

peak amplitudes.  

- Latency: The peak distances in horizontal direction were (L1, L2 and L3). Lt was the x-

coordinate of the diastole. The difference in latencies were calculated as L2-L1, L3-L1 and 

L3–L2.  

- Curvature: The curvatures (curv1, curv2, curv3) of the peaks were calculated by the 

following formula A12: 

   

 𝐶𝑢𝑟𝑣(𝑛) =
|𝑥′′ (𝑛)|

(1+𝑥′(𝑛)2)3/2 .       (A12) 

Where 𝑥 is the averaged wave and n corresponds to the position (1,2, or 3) of the peak. 

Curm is the mean of the curvatures.  

- Lx:  is the position where the signal returned to 37% of the height of P3.  

- Slope: The slope was calculated by the following formula:  

 𝑆𝑙𝑜𝑝𝑒 =
𝑃1−𝑑𝑖𝑎𝑠𝐼𝐶𝑃

𝐿𝑝1
.        (A13) 

   

Two extra metrics were added compared to the original MOCAIP algorithm. These metrics were 

added as they did not include the position of P1, P2 or P3. They are robust for limitations of the 

spectral regression algorithm.  

- Amplitude: The amplitude was the difference between the diastolic ICP and the max height 

of the wave. This metric represents the hypothesis that a raised ICP amplitude could be 

indicative of impaired intracranial compliance and pressure-buffering capacity of the 

brain [27]. 

 

- Max Slope: The max slope was the max amplitude of the wave divided by the latency of the 

diastolic ICP to the point where the ICP was maximal.  

Which metrics were calculated depended on the peaks assigned by the regression model. Metrics 

were assigned empty as they were based on a non-existent subpeak.  
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Appendix 3 – Interrater correlation coefficient and percentage of 
inconsistent labelling  

Table A1: The intra-rater reliability for all seven experts who labelled peaks in single ICP waves. The intraclass correlation 

coefficient was calculated for P1, P2, P3.  Inconsistent labelling P1, P2 or P3 was the percentage of waves with inconsistency 

between and the first and second time the expert assigned a label to the wave.  

 

  

Rater  Interclass 

correlation, 

P1 

Interclass 

correlation, 

P2 

Interclass 

correlation, 

P3  

Inconsistent 

labelling P1 

(%) 

Inconsistent 

labelling P2 

(%) 

Inconsistent 

labelling P3 

(%) 

1 0.999 

(0.993 – 1) 

0.998 

(0.993 – 1) 

1  

(0.999 – 1) 

10% 0% 10% 

2 1  

(0.997 -1) 

0.997 

(0.990– 

0.999) 

1  

(0.999 – 1) 

10% 0% 10% 

3 0.999 

(0.997 – 1) 

1  

(0.999 – 1) 

1  

(0.999 – 1) 

10% 0% 0% 

4 0.998 

(0.991 – 1) 

0.999  

(0.998 -1) 

 

1  

(0.999 – 1) 

10% 0% 20% 

5 1  

(0.999 – 1) 

0.998  

(0.994 – 1) 

1  

(0.999 – 1) 

10% 0% 0% 

6 1 

(0.998 -1) 

0.999 

(0.996 -1) 

0.998 

(0.983 -1) 

0% 0% 0% 

7 0.999  

(0.989 -1) 

0.999  

(0.997 – 1) 

1  

(1 – 1) 

0%  0%  10% 
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Appendix 4 – Performance of spectral regression algorithm  

The kernel spectral regression algorithm was trained by a 31 leave on out training approach. We 

explored the effect of a different training approach by a random selection of waves in the test and 

training set. 80% was used for training and 20% to test the performance. This improved the 

performance compared to the leave one out training approach. This improvement was expected 

as the training and test included waves from the same patients.  

The prediction error for P1 was 0.93 samples, P2 was 2.5 samples and the error for P3 was 3.2 

samples.  The average prediction error was 2.2 samples. 

The prediction error was the error calculated from a test and training set with 80% of the labelled 

waves in the training set and 20% in the test set.  The sensitivity, specificity and accuracy for P1, 

P2 and P3 can be observed in table 4.  

Table A2: Sensitivity, specificity and accuracy for assignment of the subpeaks P1, P2 and P3 predicted by the 80-20 training 

method. 20% of the data was used in the test set and 80% in the training set. 

Peak Sensitivity Specificity Accuracy 

P1 87% 77% 82% 

P2 100% -  100% 

P3 98% 60% 92% 

P123 97% 73% 91% 
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Appendix 5 – MOCAIP statistics  

 P-value IH vs 5 
IH vs 
10 

IH vs 
15 

IH vs 
20 

IH vs 
Control 5 vs 10 5 vs 15 5 vs 20 

5 vs 
Control 

10 vs 
15 

10 vs 
20 

10 vs 
Control 

15 vs 
20 

15 vs 
Control 

20 vs 
Control 

mICP <0.0001                
diasICP <0.0001                

dP1 <0.0001                

dP2 <0.0001                

dP3 <0.0001                

Ratiod12 0.0028                

Ratiod13 < 0,0001                

Ratiod23 < 0,0001                

Amplitude < 0,0001                

Lt 0.0007                

L1 0.9282                

L2 0.8573                

L3 0.0005                

RatioL12 0.6063                

RatioL13 0.0014                

RatioL23 0.0007                

Curv1 0.9169                

Curv2 < 0,0001                

Curv3 < 0,0001                

Curvm < 0,0001                

Curv12 0.1956                

Curv31 0.3033                

Curv32 0.0004                

Slope < 0,0001                

Lx 0.1362                

dPx < 0,0001                

Slopemax < 0,0001                

Table A3: Summery statistics of the Kruskal Wallis test. The green color indicated statistical significance between the two groups for the corresponding metric. Yellow indicates not statistical significance 
between the two groups. The first column is the P-value, a P-value <0.05 states a significant change over time for the corresponding metric in the period from control to intracranial hypertension.  
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