
Demonstrating runtime assertion checking using Snap!
Lars van Arkel

University of Twente, Enschede
The Netherlands

l.vanarkel@student.utwente.nl

ABSTRACT
This paper details the design of an extension to the vi-
sual programming language Snap! that aims to implement
program verification using runtime assertion checking. In
order to design this, we have looked at other program ver-
ification tools and how Snap! works. Three designs for
implementing the verification in the user interface have
been suggested, and a prototype has been made that uses
one of the design options. This prototype contains precon-
ditions, postconditions, assertions and a few extra Boolean
logic blocks. It has also been tested if the verification tech-
niques do work as expected.

Keywords
Program verification, Runtime assertion checking, Snap!,
Visual programming language

1. INTRODUCTION
When writing a software system, it is important that you
write programs that are correct. This can be verified by
proper testing, but it can also be done by using program
verification. There exists tools like this for a few pro-
gramming languages, like Java or C, but these languages
do require a moderate level of programming knowledge.
Visual programming languages do not necessarily have
this entry barrier. Visual programming languages are lan-
guages that do not require the programmer to write code,
but instead allows them to build their programs out of
blocks. Examples of this are the languages Scratch, the
software used to program LEGO Mindstorms and Snap!
[9]. Snap! allows people to build programs out of smaller
blocks. An advantage that Snap! has over Scratch is the
ability to Build Your Own Blocks. These blocks acts as
functions that the user can create themselves. Since Snap!
is easy to learn, program verification could be integrated
into Snap! as a demonstration of the capabilities and uses
of verification.
This paper will focus on how Snap! can be extended for
program verification, and how it can be used for runtime
verification.

2. BACKGROUND
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
32nd Twente Student Conference on IT Jan. 31st, 2020, Enschede, The
Netherlands.
Copyright 2019, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Figure 1. GUI of Snap!

2.1 The language Snap!
Snap! is, as the website states, "a visual, drag-and-drop
programming language [9]." If you are already familiar
with the language Scratch, Snap! is in fact an extended
version of Scratch, built from the ground up. In Snap!,
you can build programs from small blocks by dragging
them into the code environment and connecting them to
other blocks. This can be seen in figure 1. Those blocks
can represent functions, values, variables or predicates.
Snap! has been made with the purpose of education in
mind, making it accessible for new students, as well as
containing advanced functions for experienced computer
scientists to use. Snap! has programming features such
as variables, functions and control flow, but also drawing
mechanics using a turtle-like environment [1]. Its main ad-
vantage over Scratch is its Build Your Own Block feature,
in which you are able to build custom blocks using other
blocks. With this feature, you are able to build your own
functions that you can use anywhere else in your code.
Another feature of Snap! is that lists and functions are
considered first-class [10], which means that they can be
stored in variables and passed as parameters [9]. The vi-
sual aspect of programming with Snap! allows for people
who have never programmed before to be able to learn
how to program [2].

2.2 Program verification
There are multiple ways to verify the correctness of a pro-
gram. The most commonly used one is to test your pro-
grams, but sometimes this takes quite a lot of time to
test only basic features. Another solution is to use pro-
gram verification with design-by-contract. With program
verification, individual functions can be specified with cer-
tain rules that can be verified by a program. Design-by-
contract has two basic features that this extension will im-
plement; preconditions and postconditions [6]. There are
more features used in design by contract, more of them can
be found in the section on JML, but in this paper we will
only focus on the preconditions and postconditions. As
the name implies, preconditions and postconditions tell

1



something about the state of the program before and af-
ter the execution of a specific part of a program. Usually
this is limited to a single function. These conditions are
Boolean predicates that explain that a program requires
a specific state before the function executes, and that it
can ensure that the program has a specific state, or a spe-
cific range of states. Often verification tools use the terms
’requires’ and ’ensures’ for the preconditions and postcon-
ditions[8]. How to use these conditions in verification can
be divided in two methods, static checking and dynamic
checking. Static checking checks if a program complies to
the rules using mathematical proof techniques. It verifies
the program without executing it. Dynamic verification,
also called runtime assertion checking, checks the speci-
fication of the class at run-time. This means that every
time a function is executed, the specification is checked.
For the implementation of program verification, we will be
focusing on dynamic verification. This is done so that the
program can give accurate feedback on what mistake the
user has made, so when an assertion is violated, the input
of the function that violates the precondition or postcon-
dition can be displayed to the user so that they can check
what went wrong. Although static verification can prove
for all inputs that a function does not violate the pre-
conditions, according to Maurica et al.[5], static verifica-
tion is not always capable of verifying all programs, while
run-time assertion checking is capable, since it verifies at
run-time.

3. REQUIREMENTS OF THE EXTENSION
The extension will need to adhere to the following require-
ments. These requirements make sure that the extension
can be used effectively, and works as a program verifica-
tion software.

3.1 The look of the user interface
The advantage of Snap! is that it is visually intuitive. The
blocks that Snap! uses are distinct in their use. For ex-
ample, commands have a small indent at the top, and a
small part sticking out at the bottom, like a puzzle piece.
These two pieces fit together, so it gives a visual repre-
sentation that these parts can be combined together. The
same applies to different types of variables, with Boolean
predicates having arrow-shaped borders. Since Snap! is
used for education, adding an extension that resembles
the UI from Snap! would lower the entry barrier of prior
knowledge.
The extension should fit in with these design choices. This
means that the preconditions and postconditions should
resemble the blocks from Snap! or otherwise resemble the
UI of Snap! itself. Any errors thrown, such as a violation
of the verification, should also be reported using the error
system of Snap!.

3.2 Program verification features
Since the extension is a demo, it does not require all pro-
gram verification features. However it will require the ba-
sic features. The feature requirements of this extension
should at least be the validation of preconditions and post-
conditions. These conditions are the most basic features
of program verification, and can demonstrate the effects
of specifying a function.

3.3 Execution of program verification
This extension will focus on program verification by run-
time assertion checking. Therefore, the previously men-
tioned program verification features will be checked at
runtime. A requirement of this is that when an assertion

Figure 2. Blocks of Snap!

fails, the user is notified that the assertion fails, the pro-
gram will terminate, and the user is given information of
the state of the program, namely the variables that violate
the condition.

4. EXISTING PRODUCTS
Although there is not yet a tool for program verification
for Snap, there exist program verification tools for other
programming languages. In this section we will describe
how Snap! creates blocks and executes them. We will
look specifically where the blocks are defined, and how
they are executed when their block is called. We will also
show how program verification tools are used in other pro-
gramming languages. To do this, we focus on how the user
can specify their programs, and how these specifications
are checked. The examples we will look at are the Java
Modelling Language and the Eiffel programming language.

4.1 How Snap! creates and executes blocks
Snap! is an open source program written as a web applica-
tion in JavaScript. The code of Snap! can be found on its
GitHub page [7]. In the following section, we will describe
the basics of how Snap! works, and how modifications
to the system could be made. The multiple references to
code refer to the source code of Snap! on the GitHub page,
with the correct line numbers.

How normal blocks are created
Blocks in Snap! are created and executed in two steps.
First a definition of the block is created. This defini-
tion can be found in the objects.js file in the function
initBlocks, which initialises the blocks field in the Sprite-
Morph prototype. This field contains an object with all
block definitions (objects.js, line 183-1415). These defi-
nitions contain the type of the block, which is either a
hat, command, reporter or predicate. It also contains the
category the block is in, as well as the text on the block.
This text includes inputs, so for example the text on the
add block, named reportSum, is "%n + %n". The %n
represents a numeric input. This input will be shown as a
round slot on the block. A complete list of these formats
can be found in the documentation of the BlockMorph
(blocks.js line 2376). If a block is added in this way, it
will show up in the block editor in the correct category.
It will however not execute, since the code that executes
the block needs to be added. The code that executes the
blocks can be added in the threads.js file. In the Process

2



Figure 3. An example of verification with JML

prototype, the function evaluateBlock executes the block.
In this function, a selector is used to call the function. In
our previous example of the sum block, the function re-
portSum is used to evaluate the function (threads.js, line
3316). This function is stored in the Process prototype.

How custom blocks are created and executed
In Snap, the definition of custom blocks are stored in the
byob.js file, short for build your own blocks. In this file
there are a few important classes. The first one is Cus-
tomBlockDefinition. This class contains the data of the
custom block, like the category of the block, and the body
of the block. This definition is updated every time the
apply or OK button is pressed in the block editor. When
updating the definition, the contents of the hat are stored
in the CustomBlockDefinition.
When a custom block is executed in threads.js, it is done
inside the evaluateCustomBlock function in the Process
prototype. This function uses the custom block definition
to execute the sequence of blocks contained in the custom
block.

4.2 Existing program verification tools
Java Modelling language
The Java Modelling Language (JML) is a specification lan-
guage written for Java. JML itself is not a tool, but rather
a notation for Java that can be used by other tools. JML
has support for preconditions and postconditions, which
can be seen in Figure 3, but also other options, such as in-
variants and pure flags [8]. Invariants are conditions that
hold true for all examples, and if a method is flagged pure,
it means that the method does not have any side-effects.
JML code can be compiled with the JML compiler (jmlc),
which is an extension to the Java compiler. The code gen-
erated from this compiler can be executed with the JML
Runtime Assertion Checker (jmlrac) [4]. This checker ex-
ecutes the Java code, and performs a runtime assertion
checker of the preconditions and postconditions and the
other JML labels.
JML also adds some statements used only by JML. These
consists of extra Boolean logic in the form of implies state-
ments, and also some keywords as \return and \old(var),
which gives the return value of the function and the value
of the variable before the function executed respectively.

Eiffel programming language and design-by-contract
The Eiffel programming language is a language created
by Bertrand Meyer in 1986, which aimed to create reli-
able software systems. One of the techniques it uses for
that purpose is design-by-contract. Design-by-contract is
part of the language itself. Preconditions and postcondi-
tions can be placed at functions by using keywords at the
beginning or end of the function. Figure 4 shows how the
structure of how to place these keywords in your code. In
Eiffel, the precondition is written before the code, while

Figure 4. The structure of an Eiffel function with specifi-
cations [6]

the postcondition is placed after the code. This differs
from JML, where the user can put postconditions next to
preconditions above the code. Eiffel’s way of placing the
contract implies to the user that the code is ran at the end
of the program.

5. ARCHITECTURE OF THE EXTENSION
5.1 The user interface
The user interface of the extension is the first thing that
users see. Before users are able to execute the features nec-
essary for program verification, they will first need to use
the user interface to build the preconditions and postcon-
ditions. As stated in the requirements, the UI needs to fit
with the blocks of Snap!. Even then, there can be multiple
ways of implementing this. When developing the exten-
sion, we have found 3 ways of implementing the precondi-
tions and postconditions into Snap!. For these solutions, I
have found a few advantages and disadvantages that will
be explained in the next sections. All these solutions use
the same wording and pattern, which are implemented in
different parts of the program.
In the extension, we have named the preconditions re-
quires, and the postconditions ensures. We have done this,
since other validation tools use the same naming scheme
[8]. Since preconditions and postconditions require the in-
put of a Boolean, the input for the requires and ensures
blocks can be limited to allowing just predicates. Snap!
supports these predicates with the diamond shaped slots.
If a condition is violated, we can throw an error message
using Snap!’s standard error handler. If Snap! encounters
and exception, the error message will be displayed on the
UI. When this happens, the block that is being executed
will glow with a red border, and the error message will be
displayed in a speech bubble.

5.1.1 Inline conditions
The first solution would be to use inline conditions. These
are blocks that can be put anywhere in the program, and
are divided into requires and ensures. This would be more
in the form of assertions [8]. These assertions can be
placed anywhere in the code, but the precondition is ex-
ecuted before a function call, and the postcondition af-
terwards. This means that every time a custom block is
saved, the required and ensures blocks are separated from
the program. These blocks would be represented like Fig-
ure 5.

Advantages.
The advantage of inline conditions is that the blocks can
be placed together to the code. This can be good, but
it can also be confusing to the user, since there are no
restrictions on putting blocks anywhere, such as an ensures

3



Figure 5. Inline conditions

block after a requires block. Another advantage is that
each requires and ensures statement can be put in their
own block. There is no need to nest ’and’ statements
for each requires statement. In this way, if a statement
is violated, the error message can trigger on the correct
block.

Disadvantages.
The main disadvantage of the inline conditions is that the
ability to place the blocks anywhere in the code might be
confusing to the user. Since requires should always be ex-
ecuted before the code, and ensures always at the end of
the function, users could think that the verification blocks
are executed at that location of the code. This is not
the case, since otherwise they would just be assert state-
ments. Another difficulty of this implementation would be
the execution of the blocks. When executing the custom
block, the blocks first need to be separated into verifica-
tion blocks and blocks that are part of the program. When
implementing this into Snap!, extracting the requires and
ensures blocks could prove to be hard to process.

5.1.2 Separate blocks
The second solution was to have the blocks as separate,
non-connectable blocks. These blocks can be placed any-
where in the block editor, but cannot be connected to
other blocks. Therefore, they have no connectable puzzle
pieces. This should inform users that this block cannot be
connected to other block. Since this block does not have
rounded edges like a reporter [3], users should distinguish
this from a reporter, which returns a value. This block
can be selected from the editor, and can thus be placed
multiple times in the block editor, allowing for multiple
requires blocks, or none at all if there are no specifications
for the method. This option would look like Figure 6.

Advantages.
The main advantage of the separate blocks is that, com-
pared to the inline conditions, the blocks are distinct from
other blocks that are used to execute code. With separate
blocks, the blocks cannot be connected to other blocks.
This makes it so the separate blocks are distinct from the
main execution path. Users are also free to put the re-
quires and ensures blocks anywhere in the code. Another
advantage would be that this solution is easier to imple-
ment into the code of Snap! compared to the inline blocks.
Since the blocks are not nested somewhere in the program,
they can be extracted from the block editor, and put in
the correct order.

Figure 6. Separate blocks

Disadvantages.
A disadvantage of this solution is that the blocks could
not be as intuitive as expected, since Snap! has no blocks
without a flat top and bottom. Also, the blocks are only
used when making custom blocks, and should therefore
only execute in the block editor. If this was used in the
script tab, the blocks should not be executed. A solution
to this would be to not execute the block in the script tab,
like the reporter block, or another way would be to throw
an error if the verification blocks are executed outside of
the custom block editor.

5.1.3 Extended hat
The third solution is to change the hat block in the block
editor. This hat block normally contains the information
of the custom block, such as the parameters and the text of
the block, but also contains the starting puzzle piece of the
program. The solution is to add the requires and ensures
predicates as part of the hat block itself, with the requires
and ensures block put around the code. This is done by a
c-shaped ring, which is also used in if-statements and loops
to put blocks in the body. To use multiple predicates to
be used for requires and ensures, a multi-argument option
can be used. This is used by Snap! for lists with any type,
but can be also be used for a specific type, such as lists,
functions and Booleans, which is the type that we need.
Since the code is put in the c-shaped ring and we do not
need to execute code after the ensures, there is no need for
a puzzle piece after the ensures. This means that we could
have a flat bottom, similar to the report block and loop
forever. Combining these features can give us something
that looks like Figure 7.

Advantages.
The main advantage of the extended hat is that it is harder
to confuse the meaning of the solution compared to the
other solutions. With the inline conditions, the location
of the conditions does not change the execution of the
code, but can confuse the user. With the extended hat
being a rigid structure, the location of the conditions do
not change. The requires block is always above the code,
and the ensures block always below. As the hat has a
flat bottom, the only location to place blocks is inside the
c-shaped ring. This further adds to guiding the user to
place their code.
Since we use a multi-argument for the predicates, it is sim-
ple to add and remove predicate spots by clicking on the
arrows. This means that multiple different predicates do

4



Figure 7. Extended hat

not need to be put inside ’and’ statements. This could
also mean that the violation of a precondition or a post-
condition can be more accurately displayed to the user.

Disadvantages.
A disadvantage of the extended hat is the reduced space
for the program. Although the c-shaped ring changes size
when more pieces of code are added, the ensures block does
take up some space when creating the program. As the
preconditions and postconditions are part of the hat, it is
also not possible to remove them when making a custom
block. Even if there are no preconditions or postcondi-
tions to be specified, they do appear on the window. Even
changing the amount of predicates does keep the text.

5.1.4 Solution chosen
After analysing the 3 different solutions, we have decided
to choose the extended hat. We have quickly eliminated
the inline conditions, as we deemed it to be not intuitive
for the user that the preconditions are always executed at
the start of the code, even if the blocks are not put at the
top. Changing this to it being executed at the location
would also not be an option, since this would remove the
entire precondition and postcondition aspect of the pro-
gram, instead changing it to assertions.
When deciding between the separate blocks and extended
hat, we looked at how the Eiffel programming language
handles preconditions and postconditions. In Eiffel, the
conditions are placed before and after the code [6], like
the extended hat. As with the Eiffel language, the pre-
conditions and postconditions are added to the function
specification itself. If the user does not want or need any
preconditions or postconditions, the sections for these con-
ditions still exist, but the user does not need to put any-
thing in it.

5.2 Implementation of the extension
To demonstrate the extension, a prototype is made with
most features working. The code of this prototype is,
like Snap! itself open-source and can be accessed on the
GitHub page [11]

Implementation in the Block Editor
To implement the extended hat, the current hat is mod-
ified to incorporate the requires and ensures blocks. In
this new solution, the body of the block is stored in the
C-shaped slot, instead of as a child of the hat block. The
require and ensures blocks are added with a MultiArg list.
With a MultiArg, the user can select how many predicates
they need. Along with that, some changes were also made

Figure 8. how a custom block is made with the extension

to store the body of the block in the CustomBlockDefini-
tion. Before, the body of the definition was extracted by
finding the children of the custom hat, but now the defini-
tion uses the children of the C-shaped slot. The precondi-
tion and postcondition are stored in the CustomBlockDef-
inition as separate fields. When editing an existing block,
the conditions and body of the block are put in the right
place when reopening the block editor. This implementa-
tion can be seen in Figure 8

Execution of verification
The execution of program verification is implemented to
work similar to normal execution. When a custom block is
evaluated, a new stack frame is created and the contents of
the custom block are extracted and put in an array. The
extension adds preconditions and postconditions to this
array, with the precondition in the front and the postcon-
dition at the back of the array. This works for most blocks,
unless if a report block is used to quit the function. In or-
der to solve that problem, the ensures block is also called
when reporting from a function. As this does not interfere
too much with the regular execution order of the program,
the verification is also able to verify recursive functions,
and execute the preconditions and the postconditions of
each recursive step. If a precondition or postcondition is
violated, an error is thrown with the error message system
that Snap! already uses, so this works for the requirement
of the look and feel of Snap!.

Verification blocks in the Block Editor
The extension also has a few blocks added besides the ex-
tended hat. Some of these blocks were added to the code
of Snap!, while other blocks were custom made and can
be found in the same file as the tests. The blocks added
to Snap! are mainly some logic that we felt missing from
Snap!, which are the less than or equal and greater than or
equal blocks. Snap! did not have ’or equal’ blocks before.
Other blocks added could be used when writing program
verification, such as the implies predicate, or an assert
statement, so that preconditions and postconditions are
not the only option to verify the program.
Besides blocks added to the code, the testing file also con-
tains some blocks that are used for program verification,
but were made in the custom block editor. These blocks
could have also been added to the code, but we decided
to create them in the custom block editor as it would be
easier to make them while creating the test than it was
to implement it in Snap!. In a later version, these blocks
could also be added to the code.
The blocks that were custom made were a ’for all’ block,

5



which maps a predicate over a list and checks if all values
are true, a function that checks if a list is sorted, and a
loop invariant. This loop invariant is a modification of the
for-loop, and uses the assert statement that is executed at
the beginning of the loop and after each iteration of the
for loop.

6. TESTING OF THE EXTENSION
As the purpose of the tool is to check if the user has written
code that works properly, the tool also needs to function
correctly when given code that works and code that does
not work. To do this, we have made a test project contain-
ing multiple custom blocks that were given preconditions
and postconditions. In the examples folder of the GitHub
repository [11], the test file can be found. This file also
contains the extra custom blocks discussed in the previ-
ous chapter. These blocks can be found in the verification
tab, while the blocks used for testing can be found in the
variables tab, coloured grey.
The tests range from easy variable manipulation to check
if the verification works at all, to more complex algorithms
such as sorting of lists. Tests with variables are done with
the increment and square root blocks, while more complex
algorithms such as binary search and 2 sorting algorithms
are implemented. Also the custom loop invariant block is
tested. Using these tests, some bugs were discovered that
we were able to fix. For instance, there were problems
when calling recursive functions. The top case of the re-
cursive calls seemed to give a null pointer exception in the
code, but we were able to solve this, and further testing
also showed that the verification worked in recursion. An-
other problem that was found with the tests was that the
report block made sure the ensures block was called, so a
workaround for that was found.

7. CONCLUSIONS
Initially, we set out to find a way to add program verifi-
cation to a visual programming language. We first looked
at other program verification tools, how program verifica-
tion was implemented and what features existed. We also
looked at how Snap! worked, and how other programs
have adapted Snap! for other purposes, such as 3D draw-
ing and interacting with another application.
When designing the application, a few requirements were
set out. The first requirement was that the implemen-
tation should still feel like Snap! We have done this by
looking at a few designs of possible ways to add in pre-
conditions and postconditions, while still only using the
blocks and features from Snap!. The slots for the precon-
dition and postcondition have the shape of a predicate, so
the user knows what kind of block to put in. Even if a
condition is violated, we use the standard error handling
system of Snap!.
As for the program verification features, we have suc-
cessfully implemented preconditions and postconditions.
When deciding on how we represent this on the user inter-
face, we have chosen to follow the programming language
Eiffel and placed the preconditions before the code, and
the postconditions after the code. Compared to the other
solutions we came up with, we felt this option to be the
most easy to follow. Besides the preconditions, we also
added some more features such as the assert command
and some Boolean logic
The last requirement, the execution of the verification, has
also been fulfilled. The execution of the program verifica-
tion has been implemented and tested. The testing has
mainly focused on testing that the verification correctly
identifies if a precondition has been violated, and that it

does not give an error if no violations occur. These tests
range from small programs to more complex sorting algo-
rithms.
We think that this extension is useful in demonstrating
how to use program verification. As the language Snap!
is not especially useful in professional development, the
main use of this extension would be in education. A few
ideas will be explained in the following section.

Future work
The prototype could have a few more improvements. Firstly,
there are still some bugs with features such as block vari-
ables which can be fixed. Also, the custom blocks that
were made in the testing demo like the ’for all’ and ’sorted’
functions could be added to the code. More program verifi-
cation features like JML’s \old and \result keywords could
also be added.
As shortly mentioned in the last section, a major appli-
cation of the extension would be in education. Program
verification could be added to a curriculum that already
uses some form of visual programming. This could either
be incorporated into another curriculum, or could be used
when creating a new programming course. The inclusion
of new features could also be done by looking at how to
teach program verification.

8. REFERENCES
[1] R. Goldman, S. Schaefer, and T. Ju. Turtle

geometry in computer graphics and computer-aided
design. Computer-Aided Design, 36(14):1471–1482,
2004.

[2] B. Harvey and J. Mönig. Bringing “no ceiling” to
scratch: Can one language serve kids and computer
scientists. Proc. Constructionism, pages 1–10, 2010.

[3] B. Harvey and J. Mönig. Snap! reference guide.
https://snap.berkeley.edu/SnapManual.pdf.

[4] G. T. Leavens and Y. Cheon. Design by contract
with JML, 2006.

[5] F. Maurica, D. R. Cok, and J. Signoles. Runtime
assertion checking and static verification:
Collaborative partners. In T. Margaria and
B. Steffen, editors, Leveraging Applications of
Formal Methods, Verification and Validation.
Verification, pages 75–91, Cham, 2018. Springer
International Publishing.

[6] B. Meyer. Applying design by contract. Computer,
25(10):40–51, 1992.

[7] J. Mönig and B. Harvey. Snap! source code.
https://github.com/jmoenig/Snap.

[8] E. Poll. Introduction to JML, tool-supported
specification for Java.
https://www.cs.ru.nl/E.Poll/talks/jml_basic.pdf.

[9] B. Romagosa. About Snap!
https://snap.berkeley.edu/about.

[10] B. Romagosa i Carrasquer. The Snap! Programming
System, pages 1–10. Springer International
Publishing, Cham, 2019.

[11] L. van Arkel. Verification tool Prototype.
https://github.com/LvanArkel/SnapVerified.

6


