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Abstract

We design and create an educational board game based on the mathematical concept of parity
games. We explore the research areas of computational, mathematical and systems thinking and
discuss how the game helps the players train these thinking styles. We test the game in a school
pilot with 44 students from age 8 to 12 from three different elementary schools. Finally, we create
a simulation of the game and implement a computer player. Using an evolutionary algorithm we
find an optimal configuration for the computer player. We analyze the data gathered from the
school pilot and the play patterns made by the computer player. The main findings are that the
game is suitable for the chosen age group in terms of complexity, challenge and entertainment.
Additionally, we recommend a number of ways the game and other future educational board
games could be improved.
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Chapter 1

Introduction

Parity games are a type of mathematical problem. Two players move a shared token along a
directional graph with numbered nodes. Each node is associated with a player, that player makes
the next move when the token is in that node. You win the game by forcing the token into an
infinite loop where the highest number on the nodes has your parity (odd or even).

We set out to make an educational board game based on the concept of parity games. First we
explore what educational benefits such a game might serve outside of parity games and graph
theory. To do this we turn to the research areas of computational, mathematical and systems
thinking. After this preliminary study we establish a set of requirements and design and create
the game through an iterative process. We take the game to three elementary schools to see how
suitable it is for students from age 9 to 12 and to observe how they play. Finally, we create a model
of the game and develop a computer player to play the game in simulations. Based on the data of
the school pilot and the simulations we make a number of recommendations for the board game
and educational games in general, specifically for the research area of computational thinking.

1.1 Preliminaries

In the preliminary study we explore related work. The main focus is computational thinking. Jean-
nette Wing [20] defines computational thinking as the thought processes involved in formulating
a problem and expressing its solution(s) in such a way that a computer—human or machine—can
effectively carry out. We also discuss Piaget’s theory of cognitive development and investigate how
mathematical and systems thinking relate to computational thinking. Finally we take a look at
other studies about educational games.

1.2 Game Design

Like tic tac toe, parity games are a perfect information game. That means both players know
everything and can theoretically determine who is going to win before the first player even makes
a move. This is not a problem when the players have a lot of options for their moves in games like
chess, but a small parity game would not be much more interesting than playing tic tac toe. Even
a larger parity game would eventually be solved completely and not be interesting for players who
have played the game several times before. This is why we added an element of hidden information
and randomness by giving the players a hand of cards. Players can not see the cards other players



have in hand and can play cards to change the numbers on the nodes and set a strategy for how
the token will move.

Instead of using parity (whether a number is odd or even), we use color. A node can have a number
of colored coins on it. The color indicates who the coins belong to and a node can only have coins
of one color. We made the decision to use colors instead of parity so more than two people can
play the game and because it is more intuitive.

Once all the cards are played, the token moves in a deterministic way across the graph and the
score is counted. During the final turns of the game the players still have perfect information if
they counted the cards that were played, which is doable with the small number of cards there are.

We create an initial design with this idea and make a paper prototype. We test this prototype and
improve it during three iterations. During this process we test several mechanics, rules, board
layouts and cards. We select the best design and create five copies of the game to be used in the
school pilot.

1.3 School Pilot

We visit three elementary schools and test the game with 44 students. Groups of 5 to 8 students
spend around an hour participating in the pilot. During this hour they learn how the game works,
play a few rounds and finally they take a survey. The survey asks the students what they thought
of the game. It aims to measure how much they enjoyed it, how complex the game was and how
challenging or exciting it was.

We analyze the data from the survey and test a list of hypotheses. Aside from the survey, we
observe how the students play: what sort of strategies they use and what kind of mistakes they
make. Based on these results we draw conclusions about the game and make recommendations for
future work.

1.4 Simulation and Computer Player

The simulation serves three purposes: to find ways to improve the game, to demonstrate how to
express the problem (and solution) of finding a good strategy in a way that a computer can execute
it (in other words, how to apply computational thinking to the game) and to lay a foundation
for future work of checking more complex properties in games like having a snowball effect (see
section 7.3 on page 58).

We create a Python program that tracks all the details of the state of the game. We implement a
computer player (for 2 player games) that will determine a move for any given game state. The
computer player distinguishes three different stages of the game:

1. There are still cards in the deck. At the end of every turn the active player draws a card from
the deck if possible. When there are still cards in the deck the computer player does not
know which cards the other player has in hand. It will use several heuristics and parameters
to come up with a reasonable move. The parameters of this stage play an important role in
the evolutionary algorithm later on.

2. The deck is empty but the players still have a lot of cards in hand. During this stage the
computer player knows what cards the other player has in hand, but there are too many
remaining turns to calculate the best move. Instead, it will calculate every possibility for up
to 3 moves into the future and picks the best one it can find.



3. The deck is empty and the players each have 2 or less cards in hand. During this stage the
computer player can calculate the best move for both players for last few turns of the game.

We use an evolutionary algorithm to find a local optimum for the parameters of the first stage of
the computer player. Finally we draw conclusions based on the local optimum that was found.

1.5 Research Goal and Questions

The goal of this project is to design and create a board game and to evaluate its potential to be
used as an educational tool. The game will be evaluated in two ways: a pilot with elementary
school students and a simulation with a computer player. We gather and analyze data from the
pilot as well as the simulation.

1.5.1 Research Questions
We aim to answer the following research questions:
1. How suitable is the game for students from age 9 to 12?

2. How do factors such as age, gender, group size, game outcome, board game experience and
competitiveness impact the experience of the students playing the game? The ’experience’ is
described in terms of how fun, challenging and complex the game is perceived.

3. How does the game relate to computational thinking?
4. What strategies do the students in this study use when playing the game?

5. How can we use the data from the pilot and the simulations to improve this game?

1.5.2 Motivation

For the field of computational thinking in education an important step forward would be to develop
a standardized method of measuring computational thinking skills in students. This could be
done with a test where students solve various age appropriate mathematical (or other types of)
problems. This would allow smaller studies like this one to directly measure the effectiveness
of a potential teaching method (such as board games). Unfortunately, creating such a method is
outside of the scope of this project. Instead, we will focus on things we can measure and are useful
for future research in this area. For example, if a game is considered to be used in education, it
should have a good balance of complexity, challenge and fun to maximize its potential. These
aspects of the play experience can be measured with a survey. Another thing we can measure and
analyze is the strategies which students use by observing them play the game.

According to Piaget’s theory of cognitive development (as discussed in the section 2.1.2) children
start to develop abstract reasoning around the age of 11. Ideally the game is suitable for children
who are about to start developing their abstract reasoning skills as well as older children and
adults. To test this, we have chosen to do the school pilot with students from age 9 to 12.

By collecting and analysing all this data we aim to draw useful conclusions for future research
in this area. For example, we may find that this game is too complex for the younger students
in this study because of a certain aspect of the game. That would allow future studies to avoid
using similar game aspects if they want to target students of the same age. Or we could find that
students mostly enjoyed one on one games, or three or more player games. Maybe the students
will not enjoy the competitive aspect at all, which means future research should be focused more
on cooperative games where the players work together towards a common goal.



The simulation part is included for a number of reasons. By building a model and running various
simulations we gain a better understanding of the game and the flow and patterns of the gameplay.
We can use the model to prove simple properties of the game, such as that it always terminates.
The simulation and the computer player also serve as a demonstration on how to use abstract
reasoning (an important computational thinking skill) to create strategies for the game.

1.6 Contributions

The main contribution of this study is a board game that is suitable for the chosen age group (age 9
to 12). The students indicate they enjoy the game a lot. We observe that they understand the basic
principle of the game and the concept of cycles. However there are still several tactics they did not
deploy, indicating there is still room for growth by playing the game more. We also demonstrate
how we applied computational thinking to create a simulation and a computer player. Finally we
use the data gathered from the school pilot and the simulations to make recommendations for
improving this game and educational games in general.



Chapter 2

Preliminaries

2.1 Related Work

In this section we discuss current status of the research area of computational thinking, board
games in education and similar styles of thinking. We first examine computational thinking and
then examine mathematical thinking and systems thinking. We show how these thinking styles
are present in the proposed game in section 3.8.

2.1.1 Computational Thinking

Although the concept of computational thinking dates back many years, it was brought to attention
again by Jeannette M. Wing in 2006 [19] as "It represents a universally applicable attitude and
skill set everyone, not just computer scientists, would be eager to learn and use.” There is no
universally agreed upon definition of what exactly computational thinking is, but there are several
noteworthy definitions:

* In the same paper from 2006 [19], Wing offers a whole host of examples and definitions such
as:

— ”Computational thinking is reformulating a seemingly difficult problem into one we
know how to solve, perhaps by reduction, embedding, transformation, or simulation.”

— ”Computational thinking is using abstraction and decomposition when attacking a
large complex task or designing a large complex system. It is separation of concerns.
It is choosing an appropriate representation for a problem or modeling the relevant
aspects of a problem to make it tractable. It is using invariants to describe a system’s
behavior succinctly and declaratively. It is having the confidence we can safely use,
modify, and influence a large complex system without understanding its every detail. It
is modularizing something in anticipation of multiple users or prefetching and caching
in anticipation of future use.”

¢ In the summary of a presentation in 2012 [9] Wing, Cuny and Snyder state that “Computa-
tional thinking is the thought processes involved in formulating problems and expressing its
solution as transformations to information that an agent can effectively carry out.” In this
context, an agent could be a computer, another type of machine or simply a person following
a set of instructions.



e In 2015, Atmatzidou and Demetriadis [14] carried out a study on the effect of doing seminars
with a robotics educational kit on the computational thinking skills of students aged 15 and
18. They use a model of computational thinking which breaks it down into five core skills:

Abstraction: separating important from redundant information to find the relevant
patterns and important ideas.

- Generalisation: expanding an existing solution to cover more cases.

— Algorithm: identifying effective algorithms and finding the most efficient algorithm to
solve a problem.

— Modularity: developing a set of often used actions/steps/commands that can be reused
to solve different problems.

— Decomposition: breaking down a problem into smaller, simpler parts that are easier to
manage.

* In a paper from 2016, David Weintrop et al. [16] divide computational thinking into four
categories: data practices, modeling and simulation practices, computational problem
solving practices, and systems thinking practices.

— Data practises are about how data is collected, created, analyzed, manipulated and
shared.

— Computational problem solving practises involve preparing problems to be solved
by computers, computer programming, choosing the right computational tools, trou-
bleshooting problems, developing modular solutions and creating computational ab-
stractions.

— Modeling and simulation practices involve constructing computational models, using
computational models to understand a concept, using computational models to find
and test solutions and assessing computational models.

- Systems thinking practises involve investigating a complex system as a whole, un-
derstanding the relationships within a system, thinking in levels and communicating
information about a system.

* In 2017, Shute et al. published a thorough literature study on many different computational
thinking definitions and models and compared computational thinking to other thinking
styles such as mathematical thinking [13]. They created their own definition of compu-
tational thinking: “the conceptual foundation required to solve problems effectively and
efficiently (i.e., algorithmically, with or without the assistance of computers) with solutions
that are reusable in different contexts”. They have six facets of computational thinking:
decomposition, abstraction, algorithms, debugging, iteration and generalisation. Most of
these are the same as previously mentioned processes or skills. Debugging is to detect,
identify and solve a problem. Iteration is to repeat design processes until the desired result
is achieved.

There are several different definitions of computational thinking. The citations above are listed
chronologically to show how the definitions used by different (or sometimes the same) authors
changed over time. The definitions started out quite vague and broad at the start but eventually,
most authors mostly have the same definition. The most common aspects of computational
thinking from these definitions are abstraction, problem decomposition and algorithms. As stated
in section 2.1.5, we will use the definition from Wing’s presentation in 2012 [9].



Since computational thinking re-emerged in 2006, there has been a lot of interest in integrating it
into the curriculum of k12 and sometimes also college or university level education. A number of
noteworthy projects and studies on this subject are listed below:

* The TangibleK program aims to teach simple robotics and programming concepts to young
children. In 2010 it had already been piloted in prekindergarten to second grade [5]. The
program offers the children a simple robotics kit that allows them to build robots and vehicles
by snapping together parts. These are then programmed with simple instructions such as
”(briefly) drive forward a number of times” or ”"turn on the light if the light sensor says it
is dark”. This teaches the children computational thinking concepts like modularity and
algorithms. In 2013 the TangibleK program was tested in three kindergarten classrooms [4].
This study showed that the children were both able to and interested in learning about the
aspects of robotics and programming.

* A paper by Yadav et al. in 2011 [21] describes the implementation and evaluation of a
computational thinking module for education majors. It teaches future teachers what
computational thinking is and how it can be taught without using computers. The results of
this study suggest that the module makes education students’ attitude towards computer
science more favorable and it makes them more likely to integrate computing principles in
future teaching.

2.1.2 Piaget’s Theory on Cognitive Development

Abstract reasoning is an important aspect of most definitions of computational thinking. According
to the widely used theory on cognitive development by Piaget [8] children and young adults
undergo 4 stages of cognitive development:

1. Sensorimotor stage, infancy. During this stage the child mostly develops their motor skills
through physical interations.

2. Pre-operational stage, toddler and early childhood. The child learns how to use a language
and develops their memory and imagination.

3. Concrete operational stage, elementary and early adolescence. In this stage the child learns
to use symbols and logic related to concrete objects (such as length, mass and volume).

4. Formal operational stage, adolescence and adulthood. During this stage the child or adult
develops abstract reasoning (”intelligence is demonstrated through the logical use of symbols
related to abstract concepts”).

The overlap between computational thinking and Piaget’s theory on cognitive development is
the abstract reasoning of the formal operational stage. It is generally agreed that the formal
operational stage starts between age 10 and 16 [2,7,10].

2.1.3 Systems Thinking & Mathematical Thinking

The literature study on computational thinking by Shute [13] also briefly discusses mathematical
thinking and systems thinking (among other styles of thinking) and its relation to computational
thinking. Mathematical thinking is the application of math skills to solve math problems. These
math skills range from basic skills such as counting and arithmetic to more advanced skills like
calculus and set theory. The overlap between Mathematical and computational thinking skills is
problem solving, modelling, analyzing and interpreting data and statistics and probability.

The main idea behind systems thinking is to consider all the elements and relationships that exist
in a system. Many problems can be analyzed in this manner to help with problem decomposition,
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as they can be quite complex and dynamic. Systems thinking is heavily involved when modelling
a system of any kind and using that model to run simulations. In particular, the systems thinking
skills are (a) define the boundaries of a problem/system, (b) model/simulate how the system works
conceptually, (c) represent and test the system model using computational tools, and (d) make
decisions based on the model [12,13].

Both of these thinking styles overlap with computational thinking and play a role in this project:
the mathematical thinking skills counting, arithmetic and probability are used while playing the
game, systems thinking is used because the players are constantly modelling the board as a system
while playing the game.

Mathematical Thinking Activities in the Dutch High School Curriculum

In 2004 the Dutch Committee Future Mathematics Education (cTWO, based on the Dutch name
’Commissie Toekomst Wiskunde Onderwijs’) was brought to life. Its goal was to design and test an
improved mathematics curriculum for Dutch high schools. In 2015 the committee produced their
final report [6]. The report stated that one of the six focus points for this reform was to include
mathematical thinking activities ("wiskundige denkactiviteiten’ in Dutch) as a common thread in
all mathematics subjects. The report identifies the following mathematical thinking activities:

* Modelling and algebraization: modelling is the act of creating a fitting mathematical struc-
ture for a situation. Algebraization is to create formulas or equations to describe an aspect of
a situation.

* Structuring and ranking: these abilities contribute to abstraction and analytical thinking.
e Manipulating formulas: the ability to change and solve formulas or equations.

* Abstraction: no definition given but likely similar to the abstraction aspect of computational
thinking: separating important from redundant information to find the relevant patterns
and ideas.

* Logical reasoning and proving: piecing together small parts of information to prove some-
thing.

The report also mentions that there has been too much focus on making students reproduce a
short solution for a small mathematical problem instead of posing a larger problem that needs
to be decomposed into smaller problems by the student, so problem decomposition is also an
important skill for this report. In a way, this type of mathematical thinking is different from the
mathematical thinking in section 2.1.3 and instead resembles a mix of computational thinking
and mathematical thinking.

2.1.4 Board Games as Teaching Method

Board games (or games in general) are worth considering as a teaching method for a more
computational thinking oriented curriculum. They are more engaging and fun than a conventional
lecture. They challenge the players to come up with strategies to decompose and solve problems
as efficiently as possible. When players repeatedly play the same game, they will start to recognize
and respond to common play patterns. Games often present the players with a story and a complex
system, so abstraction is required to understand the structure of the game. There have been many
studies about the use of games for education in the context of computational thinking (or for more
general purposes such as developing social skills), several noteworthy ones are listed below:

* A literature study by Hromek and Roffey from 2009 [11] argues that games are a good way
of teaching social and emotional skills that are needed to work together in a respectful way

11



when negative emotions can be involved.

* Crabs & Turtles: a series of computational adventures [15] is a set of three board games that
aims to teach coding concepts and computational thinking skills. This study found positive
gaming experiences with these games when piloted by children aged 8 and 9. These games
have a relatively explicit teaching style. For example, in one of the games the players move
objects by creating sequences and loops of commands.

¢ In the game RaBit EscApe [1] the players create a path using magnetic building blocks (called
bits) to help a rabbit escape from the apes. Although this game is not as explicit in teaching
computational thinking skills as Crabs & Turtles, it was created for this purpose.

* In 2011, Matthew Berland and Victor Lee explored collaborative games, such as Pandemic,
as a tool to foster computational thinking [3]. In this study, the communication between
players of a collaberative game was categorized into several categories and plotted to find
out how much computational thinking was going on. This showed that the players did in
fact use computational thinking during gameplay and also which types of computational
thinking they used.

* In South Africa, a Science, Education and Technology skill-building kiosk with computer
games is used to target disadvantaged communities and increase their computational think-
ing skills [17]. This kiosk lets children play computer games aimed at improving computa-
tional thinking. In one of the games, players give a robot a sequence of commands to move it
across a board. Another game lets the children play around with state machines.

All of the above games have a common goal: to teach computational thinking. Although some have
studied the effectiveness and suitability of these games for the targeted group of students, most
have not. Future work in this area should focus more on how these games are actually experienced,
how suitable they are for students and what makes a game a good teaching tool or not.

2.1.5 Preliminary Study Conclusions

There has been a lot of interest in computational thinking since Wing wrote about it in 2006 [19].
By many it is considered a valuable set of skills that can help anyone, not just computer scientists,
to solve problems. Researchers are making an effort to find methods to improve computational
thinking skills in students and in the Netherlands the high school mathematics curriculum is being
redefined to include several skills which are also important to computational thinking. Games and
board games play an important role in these studies. They are engaging learning tools that often
require the students to decompose problems and use abstract thinking to recognize gameplay
patterns and find winning strategies.

The definition of computational thinking we use will be the one from Wing’s presentation in
2012 [9]: ”Computational Thinking is the thought processes involved in formulating a problem
and expressing its solution in a way that a computer—human or machine—can effectively carry
out.”

This definition is selected as it was given by Jeanette Wing who arguably popularized computa-
tional thinking. We think it captures the essence of computational thinking, which is that it is
about the skills used by computer scientists to solve problems with computers. It is exactly those
skills that are useful for everyone, not just computer scientists, so we should make an effort to
teach them to all students.
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Chapter 3

Game Design

3.1 Parity Games

Although many board games could be suitable as a teaching method for computational thinking
skills, we opted to design a board game inspired by parity games. In addition to potentially
teaching computational thinking skills (such as problem decomposition, pattern recognition and
abstraction), parity games teach commonly used graph theory concepts such as reachability and
cycle detection. Furthermore, parity games have the interesting and rather unique property of
having a single token which is controlled by two players. This token has to be steered towards
favorable areas of the board while steering it away from unfavorable areas. Players will have to
deal with these unfavorable areas by going around them, altering them to be more favorable or
find a way to quickly cut through that area. As such, this new board game could offer a very
interesting, new and unique gameplay experience.

Figure 3.1: An example of a parity game [18].

13



The design of the game is inspired by parity games. So we will briefly discuss parity games before
diving into the design of the game. A parity game is played by two players on a directed graph.
Each node is associated with a player (the owner of that node) and a number. The players move
a token along the nodes of the graph. The owner of the node the token is on decides where the
token is moved next, it may be moved to any successor. The game ends when a player can force the
token into an infinite cycle. Player one wins if the largest number that occurs in this cycle is even,
otherwise player two wins. An example of a parity game is shown in figure 3.1. In this example,
player one controls the token in the round positions and wins if the highest number on an infinite
cycle is even. Player two controls the token in square positions and wins if the highest number is
odd. In the blue area, player one can force a winning infinite cycle and in the red area, player two
can force a winning infinite cycle.

3.2 Methodology

The game design process starts by setting up a set of requirements we believe the game should
fulfill based on the preliminary study. Based on these requirements we create an initial design.
This design is an adaptation of parity games. We make a paper prototype of the initial design and
improve it over the course of three iterations of playtesting with colleagues, friends and family.
During playtesting we experiment with different board layouts, cards, decks and rules. After the
third round of playtesting we select the design we believe is most suitable and create 5 copies of
the game for the school pilot. The simulation will also use the same design.

3.3 Requirements

We discuss a number of requirements below. For each requirement it is considered why it is
important, how to measure if the game fulfills the requirement and what can be done if it does not:

1. Primary school students (around age 9) should be able to learn the rules of the game in
around 10 minutes. This is important to ensure the school pilot sessions have a reasonable
duration, so they do not take up too much of the students and teachers time. This can be
tested by explaining the game to anyone (also someone older than 9), to see that it takes less
than 10 minutes. If it takes much longer than 10 minutes, obsolete or unimportant rules
should be removed from the game to simplify it or the explanation should be improved.

2. The game should present the students with a complex system that requires them to en-
gage systems thinking to understand all the relationships, levels and elements of the
game. This is important as it is part of the research goal to make a game that improves these
skills. This is measured by asking the students how complex they think the game is. If it
turns out the game is very easy to understand for them, more gameplay elements could be
introduced (as long as they are meaningful and also improve the game in more ways than
just adding complexity).

3. As it is part of the research goal, the game should require mathemetical thinking skills
like counting, probability, arithmetic. At the end of each school pilot session, the students
will be verbally asked about what strategies they used. At that point we can discuss how to
improve the game to make the players more likely to engage these skills.

4. Also, as part of the research goal, the game should require computational thinking skills
like abstraction and problem decomposition. It is difficult to test with young students if
they actually use these skills, since they would not understand the question because they are
too young to grasp these concepts.

14



Figure 3.2: An example board

5. The game should not last too long or too short. The game should be long enough to allow
the players to come up with interesting strategies to use and to let the advantage swing
back and forth between the players. At the same time, the advantage of a short game is that
players do not have to sit through a losing game for too long if they make a big mistake and
that they can quickly try to deploy new strategies they came up with during a game. In the
initial design, a game consists of three rounds. The aim is to have rounds that take around 5
minutes in a game that lasts two or three rounds. The duration of a round can be changed by
increasing or reducing the number of cards in the deck. The number of rounds in a game
can also be adjusted.

6. The game should have enough depth, strategy and counterplay to stay interesting enough
to replay many times, so that the same game can be used for a long time by the same stu-
dents. This will be tested by repeatedly playing the game. We know if the requirements are
met if the game is still challenging and interesting even for experienced players. In addition,
model checking could be used to simulate random games. If it turns out that there are a
lot of simulations where the player who plays last or first wins by always playing a specific
card at a specific time (for example the start or the end of each round), that means there is
probably a relatively simple and powerful strategy that needs to be toned down by adding
some restrictions to the game or tuning the numbers on the cards.

7. A snowball effect is when you can easily leverage your advantage in a game to increase your
advantage. The game should not snowball out of control like this, because it is frustrating
to be on the losing side and to be unable to recover. This requirement is confirmed by
playtesting. If a snowball effect is discovered, a possible solution is to give the player
who is behind some kind of edge in the next round (for example, they may decide the
starting position of the figure or they may decide who goes first). We also discuss how this
requirement can be tested using the simulation in section 7.3 on page 58.

15



1
Figure 3.3: The three types of board positions. 1: Potential starting position. 2: A position with no
choice where to go next. 3: A position with two choices where to go next.

3.4 Initial Design

In this section we describe the initial design of the game. This design is still quite open-ended as
it has a lot of room for variations to try during play testing and game design iterations. Before
diving into the details we give a brief overview of the flow of the game:

The game is played on a board with cards, a single figure, arrows and coins (each player has their
own coin color). The goal of the game is to collect the most coins. One game consists of a number
of rounds (for example, three, this number can be changed if the game takes too long or not long
enough). During each round, players take turns playing cards which let them place coins on the
board, change the direction of the arrows to program the figure’s movements and determine the
starting position for the figure. At the end of each round, the figure is moved across the board
from a starting position until it has reached a position it has encountered before. While the figure
moves, it collect the coins it encounters. The player who had the most coins on the route of the
figure wins them all. Figure 3.2 on page 15 gives an example board. The edges between the
positions are directional movement options (they can only be taken in one direction, indicated
by the arrowhead). Each board position with multiple outgoing edges has an arrow that can be
rotated to point at one of the outgoing edges. The figure will always move in that direction when
it encounters this board position.

There are three types of board positions. They are depicted in figure 3.3 on page 16 and described
in more detail below:

1. Potential initial position. Every board has at least one potential initial position. During each
round, one of the players will place the figure on one of these positions. Players may not
place coins here.

2. Position with a single possible outgoing edge. When the figure arrives here, it always goes in
the only possible next direction.

3. Position with multiple possible outgoing directions. When the figure arrives here, it goes in
the direction the arrow is pointing to.

3.4.1 Rounds and Cards

To create an element of randomness and hidden information, there will be a deck of cards. At
the start of each round the deck is shuffled and every player is dealt 5 cards, this is the players
hand, which will never have more than 5 cards. Players do not show each other their hand. Players
take turns playing a card and drawing a card until the deck and each players hand is empty, after
which the score is counted.

These are the cards in the deck:

* Place the figure on a starting position. There is only one copy of this card. A possible
variation (if this card turns out to be too powerful) is to label each starting position with a
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Figure 3.4: An example of the board after a round

number to indicate for which rounds it will be used. For example, if a starting position is
marked ”1,3” it will always be used as the starting position in the first and third round.

* Change the direction of a board position. This card might be too powerful and create very
’swingy’ games (where the advantage swings from one player to another player too much)
where it is difficult to find a meaningful strategy aside from using this card near the end of
the round. Possible variations are to restrict this card so it can only be used once per board
position (there would need to be exactly the right amount of copies of this card in the deck
for the board that is being used) or restrict it so it can only be used on a specific position (for
example, you can only use it on a position with your coins on it or no coins on it).

* Distribute 2 coins among 2 positions (place one coin on two positions or two coins on one
position).

* Place 3 coins on a single position.

* Place 4 coins on a single position.

» Switch the coins between 2 positions.

When placing coins, the players may only choose a position that does not have coins placed by an
opponent. Figure 3.4 on page 17 gives an example of how the board might look after two players
(blue and green) are done with the first round.

3.4.2 Counting Score

When each player’s hand as well as the deck are empty, the score is counted. The figure is moved
from the initial position. When it encounters a position with a single outgoing edge, it will go
in that direction. When it encounters a position with multiple outgoing edges, it will take the
direction that was ‘programmed’ by the players when they pointed the arrow of that position in
one of the directions. That means this process would be completely deterministic (players can not
influence how the figure moves once the round ends). If deemed necessary, players could later be
given control over the figure while it is moving. For example, a card could be added to the deck
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Figure 3.5: The figure moves until it has completed a cycle

that lets the player place a special figure on a position with multiple outgoing directions. The
first time this special figure is encountered, the player determines the direction for that position.
Figure 3.5 shows how the figure moves on the example board.

There are currently two methods in consideration for determining the winner’ of a cycle:
* The player with the greatest total number of coins on the cycle wins all the coins on the cycle.

* The player with the largest number of coins on a single position on the cycle wins all the
coins on the cycle.

Outside of the cycle, coins encountered are awarded to the player who placed those coins. In the
case that the first option is chosen (the greatest total number of coins on the cycle), the score would
be counted as shown in figure 3.6 on page 19. After counting the score, the board can be reset
for the next round by removing the coins or the remaining coins can be left there (this is a game
design choice). In the example (figure 3.6), if the coins would be left, the green player would have
more points, but the blue player would enter the second round with more coins on the board. This
also allows the players to use long term strategies which span multiple rounds.

3.5 Playtesting

After the first design phase we playtest the game. During this stage, the main goal is to test and
improve gameplay aspects such as the size and layout of the board, the type of cards that are in
the deck and their ratios. In addition, some variations of the game are tested, such as the win
condition (the highest total number of coins a player has on the cycle versus the highest stack of
coins a player has on the cycle).

3.5.1 First Iteration

We first started testing the game with the board from the initial design (see figure 3.8 on page 20)
and the following deck:
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Figure 3.6: The score is counted

Figure 3.7: The finished paper prototype in action (during the second iteration of playtesting)
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Figure 3.8: The board for the first prototype

# Card

1 Place the figure on a starting position

9 Place 3 coins on a position

6 Distribute 2 coins (can place two on one position or one on two)

2 Switch coins between two positions (can use an empty position, can switch the coins of two
different players)

7 Place an arrow and give it a direction

4 Change an arrow’s direction

29 total cards

After playing the game several times we made the following observations:

Playing the game with the rule "the player with the single highest stack of coins on the cycle
wins all the coins in the cycle” was not fun at all. The whole game revolved around making
one or two big stacks of coins and trying to switch them onto the cycle in the figure’s path in
the last few turns. The rest of the games in this iteration were played with the alternative
option: “the player with the greatest total number of coins on the cycle wins all the coins in
the cycle”.

One round of the game lasts around 15 minutes, which is too long.

The board is too small for the amount of cards in the deck. As a consequence, the board fills
up quickly with coins and a large portion of the game is played with no empty spaces on the
board.

Securing strong board positions (by placing just one coin) early on is very important.

Saving up cards to switch coins and place/change an arrow is a powerful strategy as the
winner is mostly decided in the last few turns of the game.

After most of the strong board positions have been secured, the game is relatively uninterest-
ing until the last few turns. The players are just spreading out their coins over the board
positions they have until it starts to become clear how the figure is going to move.
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It is possible to hold the card “place an arrow” and force other players who do not have this
card to use their “change an arrow’s direction” cards on different arrows. Additionally, the
fact that there need to be as many copies of this card as there are board positions that can
have arrows is problematic. When increasing or reducing the number of arrows on the board,
the deck size and ratio of cards in the deck also changes.

Whether the number of cards in the deck is odd or even is important. If the number of cards
in the deck is odd, the player who goes first has a big advantage as they have first pick on
which board positions they want to secure and they also get the last turn, which is a great
opportunity to impact the route of the game figure. Ideally, the deck size is even so that the
player who goes first does not get the last turn.

It is unintuitive that arrows can only point in the direction of certain edges. The directionality
of the edges should be made more obvious.

The fact that only the coins on the cycle are counted for the winning player (instead of all
coins encountered) is unintuitive and not very impactful for the gameplay.

3.5.2 Second Iteration

After the first round of playtesting, we have made the following changes to the game:

Instead of winning only the coins on the final cycle, the round winner gets all the coins
encountered by the game figure.

The card ”place an arrow and give it a direction” has been scrapped. Instead, positions that
can have arrows will now always have an arrow at the start of the game. On the board, a
default direction for each arrow is indicated.

The board has been expanded with a second ’cluster’ of positions. The original board has
been altered somewhat to keep the board as a whole balanced, although it still has the
general layout it had before (thee groups of three positions).

The overall number of cards has been reduced to make the games quicker and hopefully
remove the middle part of the round where the choices players make are almost irrelevant.

The number of rounds has been reduced from 3 to 2.

To make up for the lack of cards, a rule has been added. After playing a card, the player
places an additional coin on any position they already have at least one coin.

Each card now mentions how many copies of that card are in the deck.

This resulted in the board shown in figure 3.9 on page 22 and the following deck:

# Card

1 Place the figure on a starting position

7  Place 3 coins on a position

4 Distribute 2 coins (can place two on one position or one on two)

2 Switch coins between two positions (can use an empty position, can switch the coins of two
different players)

6 Change an arrow’s direction

20 total cards

After playing with the second paper prototype we made the following observations:

The rounds now take around 10 minutes, which seems like a good duration.
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Figure 3.9: The board for the second prototype
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Some of the players were skeptical because of how the paper prototype looked, but ultimately
said the game was fun.

One player said she thinks the game is likely appealing to the same people who would enjoy
playing chess.

The number of cards was quite low when playing the game with 3 players (only 3 cards in
the deck at the start of the game, after dealing each player a hand).

The ’old’ section of the board looks too busy and did not get used as much as the new section.

The card "place the figure on a starting position’ was making the game too unpredictable.

3.5.3 Third Iteration

Based on the observations from the second iteration we have made the following changes:

Each turn, players place a coin or remove someone’s coin from the board (instead of always
just placing a coin). This allows players to take back positions from other players if they do
not invest enough coins into it.

The card ’switch coins between two positions’ is too powerful, and is changed to ‘'move coins
from one position to another’.

Players can no longer place coins on switches.

There is now a different amount of cards for 2 and 3 player games. Two player games now
take two rounds and three player games take three rounds.

The card "place the figure on the starting position’ has been scrapped. Instead, the train
now starts at the first station in the first round and then alternates between the two possible
starting stations.

Since the starting position of the train is now set, we no longer count the coins encountered
before the final cycle.

The first column in the table below shows how many copies there are of each card for 2 player
games. The second column show how many there are for three player games.

#2 #3 Card

1 1 Place the figure on a starting position

3 4 Place 3 coins on a position

4 5 Distribute 2 coins (can place two on one position or one on two)
2 3 move coins

4 5 Change an arrow’s direction

14 18 total cards

With this prototype we made the following observations:

The deck is still too small for three player games.

Having less locations to place coins is good. It is now more important where players place
coins in the early stage of the game.

Adult players took a long amount of time to analyze the last few turns of the game, leading
to long games.
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Figure 3.10: Lift up the wooden arrow to reveal the default switch direction

3.6 Final game rules

The game rules are divided into five sections: the overview, the turn structure, the round start, the
cards and the round end.

3.6.1 Overview

The game can be played with 2 or 3 players. For 3 players, extra cards are put into the deck (see
subsection 3.6.4 'Cards’). In a 2 player game, the players play 2 rounds. In a 3 player game, the
players play 3 rounds. Players decide who goes first and then take turns in a clockwise fashion.
Once all the cards have been played, the round ends. The next round, the next player (clockwise)
takes the first turn. The same goes for the third round (if there is one). This way, everyone gets a
chance to play first. There are two starting stations (‘eerste beginstation’ and "tweede beginstation’).
In the first round, the train starts on the first starting station. In the second round, the train starts
on the second starting station. If there is a third round, the first starting station is used again.

3.6.2 Turn Structure
Each turn consists of 3 parts. These actions must all be taken, in the specified order:

* Place or remove a coin. You can either place a coin of your own color or remove a coin
belonging to another player from the board entirely. You may only place or remove a single
coin. You may only place a coin on a station with no coins or on a station with coins of the
same color. You may remove a single coin from a station with more than one coins.

* Play a card. The card goes on the played cards pile, face up. Follow the instructions on the
card.

* If possible, draw a new card from the face down card pile. Do not draw cards from the face
up played cards pile.

3.6.3 Round Start

At the start of each round:
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Figure 3.11: On the left, an invalid switch setting. On the right, a valid switch setting

* Make sure the deck is correct (see the ‘Cards’ subsection). For 2 players, there should be 16
cards. For 3 players, there should be 21 cards.

* Shuffle the cards and deal each player a hand of five cards. Players can look at their own
cards, but not at the cards of other players. Place the rest of the cards in a face down pile.

* Remove any coins that are still on the board.
* Put all the switches in the default position (see figure 3.10).

* Place the train figure on the appropriate starting station.

3.6.4 Cards

Below is a list of the 4 cards with an explanation of how they work and how many copies there are
in the deck for 2 and 3 player games. For 2 players, the deck has 16 cards. This means that one
player takes the first turn and has the advantage of being able to place coins on any station, but
the other player gets to play the last card, so they get a final say before the score is counted for that
round. The next round, the roles are reversed. For 3 players, the deck has 21 cards. This means
that one player goes first, another player goes last and one player gets neither advantage. Because
of this, it is important to rotate who gets to play first and to play the correct amount of rounds (2
for 2 players and 3 for 3 players). That way every player gets the advantage of playing the first and
last cards just as often.

* ’Plaats 3 muntjes’ (place 3 coins). This card lets you place 3 coins on a single station. You
are only allowed to place coins on a station with no coins from another player. 2 players: 5
copies, 3 players: 6 copies.

* ’Verplaats muntjes’ (move coins). This card lets you move all the coins from one station to
another station. You can move the coins from any station you want (even with coins from
another player), but you may only move them to a station with no coins or coins of the same
color. 2 players: 2 copies, 3 players: 4 copies.

* ’Verdeel 2 muntjes’ (distribute 2 coins). This card lets you distribute 2 coins among 2 staitons.
So you can either place 2 coins on 1 station or 1 coin on 2 stations. Once again, you may only
place coins on a station with no coins or a station with coins of the same color. 2 players: 5
copies, 3 players: 6 copies.

e ’Verander de richting van een wissel’ (change the direction of a switch). This card lets you
change the direction of one of the switches, as long as it is not sending the train onto the
track in the wrong direction (see figure 3.11). 2 players: 4 copies, 3 players: 5 copies.
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Figure 3.12: An example of train movement. Only the coins on green section are counted

3.6.5 Round End

Once all the cards have been played (the face down card pile is empty and the players no longer
have any cards in hand) the round has ended and the score is counted. To count the score, move
the train from the starting station, following the directions of the tracks and the switches. When
the train encounters a station it has encountered before, the train has encountered a cycle. This
cycle is crucial as only the coins on this cycle are counted. An example of this is shown in figure
3.12 on page 26. Another crucial rule is that the player with the most coins on this cycle, wins all the
coins on this cycle. Once the score has been determined, write it down so the next round can begin
or determine the winner if this was the final round.

3.7 Final Game Design

In order to easily allow for future changes and expansions, we opted for a modular design as
outlined in figure 3.14 on page 27. It is possible to make a completely different board by just
switching the thin covers. The solid board underneath can have many holes, so you only need one
set of boards to play with many different covers. It is also possible to make larger or smaller board
layouts by using a different amount of boards. If the tracks leave and enter the edge of the covers
at set points, the players can customize the layout by combining many different covers.

Due to time constraints and to ensure the experience of the game is the same for every student in
the school pilot, we only made a graphical design for one set of covers, see figure 3.13 on page 27.
We made 5 copies of the game using wood for the solid boards and thick Colotech paper printed at
Xerox for the covers and cards. The cards were also laminated so they will last longer. The arrows
for the switches are made of wood and metal pins were used to keep everything together. Sets
of bingo coins and train figures were purchased online. Small pieces of felt were placed on the
corners of the underside of the wooden boards so they do not damage the surface they are placed
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Figure 3.13: The graphical design for the board cover

Modular board design
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Figure 3.14: Concept for board game design
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Figure 3.15: The finished board game

on. The final result can be seen in figure 3.15 on page 27. One of the copies of the game resides at
the university, 3 with the schools that participated in the school pilot and one with the researcher.

3.8

Thinking Styles and Strategies in the Proposed Game

The game is related to computational thinking, mathematical thinking activities and graph theory
in a number of ways:

Algorithms: the figure moves along a path which is "programmed’ by the players. There are
cards that let the players determine how the figure will move when it encounters a board
position with multiple possible movement options. This results in a completely deterministic
path the figure follows at the end of each round. This path can be seen as a program or
algorithm created by the players. In a way, this teaches the basic concept behind a program
or algorithm: something is following a set of commands. In this case, the players are all
trying to change the set of commands for the same figure to their own benefit.

Cycle detection: finding cycles in a graph is a common exercise in graph theory. Creating
an algorithm to do this is also an exercise that is sometimes used in programming courses.
Finding and using such a systematic way to find cycles becomes increasingly important for
the players as they move to more advanced boards which could have dozens of cycles. This
could be something as simple as mentally iterating over each board position and considering
all the possible cycles that position is part of.

Abstraction: abstraction is removing unnecessary details (such as the exact amount of coins
or the specific layout of the board) and to instead mentally mark an area as favorable or
unfavorable. This allows the player to steer the figure towards favorable areas and away
from unfavorable areas without constantly doing the math of how many coins would be won
by everybody for several different paths.

Problem decomposition: the ‘problem’ of winning the game needs to be decomposed into
smaller problems such as "how to deal with a problematic area on the board created by the
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opponent”, “how to best utilize the cards in hand”, "which areas of the board are important
to invest in”, etc.

Systems Thinking: especially for the young students in the pilot, the game will present
them with a complex system they need to analyze and understand, with all its levels and
relationships.

Mathematical Thinking: the math skills involved while playing the game are counting, arith-
metics and probability. Counting and arithmetics are important for example for determining
the winner of a particular cycle or calculating how many coins still need to be won in a
round to win the game. Probability is used when reasoning about the cards in the hands of
the other players.

Modeling and simulation practises (from Weintrop’s computational thinking definition [16]):
although the players usually will not have any computational modelling or simulating tools
at hand while playing the game, they will still mentally create a conceptual model and
attempt to do some simulations of how the figure will move in their head. This model is
used to make decisions about the game.

In addition, there are a number of strategies or lines of play the players could try to use:

General board assessment: identifying strong board positions and locking them down early
by placing coins on them.

Reducing risk by spreading out coins instead of placing them all on a single board position.

Identifying strategies and counterplay: Disrupting an opponent’s strategy by, for example,
placing a small amount of coins on a key position for their assumed strategy.

Playing to your outs: in the last round of a game, the player who is behind has only one
way to have a chance to win the game and that is by winning all the coins on a large cycle.
Even if this requires drawing certain cards from the deck to make an unlikely strategy come
together, the player should still play as if they draw exactly the cards they need to make this
happen. This is only valid in a situation where taking a safer line of play (trying to score a
smaller cycle) would result in almost certain defeat.

Hidden information & probability: reasoning about the cards in the other player’s hands.
Based on their previous plays they could have a certain strategy which hints to which cards
they still have in hand. Based on knowledge of the deck and the number of each card played,
the probability the opponent has certain cards goes up or down. For example, consider a
three player game. All but two of the ‘change direction’ cards have been played, one is in your
hand. Opponent A has placed a lot of coins on the path the figure is currently programmed
for while opponent B has placed a lot of coins on a different path. This makes it likely that
opponent B has the last ‘change direction’ card in his hand (or they are following a ’play to
your outs’ strategy and must draw the last ‘change direction’ card from the deck to have a
chance at winning the game).

In conclusion, this is a game where we expect the players to use and improve several skills and
aspects of computational, mathematical and systems thinking.
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Chapter 4

School Pilot

To find out how suitable the game is for education, we took it to primary schools to test it in a
school pilot. The goal of the pilot was to find out how well the students understood the game, how
they played it, which strategies they used and what their opinion of the game was.

4.1 Participating Students

Three schools in a suburban area in the middle of the Netherlands were willing to participate in
the study. The schools were all located close together. For each school, one grade was selected. All
students of that grade that got permission from their parents to participate, participated. Figure
4.1, 4.2 and 4.3 visualize how the students were divided into groups of 2 or 3 who they played the
game with along with their ages and genders. At the day of the pilot, for each school, the teacher
send in groups of 5 to 8 students at a time. The students were asked if they had a preference for
who to play the game with. If they did not have one, they were assigned randomly.

In total, 44 students participated. 23 were female and 21 were male. 1 student was 8 years old, 12
were 9 years old, 15 were 10 years old, 13 were 11 years old, 2 were 12 years old and one student
failed to specify their age.

QTRQIQQIQ

Figure 4.1: School 1: ‘groep 7’
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Figure 4.3: School 3: ‘groep 8’

Methodology

The pilot happened in a separate classroom. The teacher would sometimes check in, aside from
that it was just the main researcher (Steven) with the students. Students participated in the pilot
in groups of 5 to 8 students at a time. Each group spend roughly 1 hour participating in the
pilot. The first 15 minutes were used to explain how the game works, play a practise round (while
observing how they played) and then correct any misunderstandings. Then they played the game
for 30 minutes, during which the scores were recorded. In the last 15 minutes, the students filled
out a survey. Because each group was scheduled for an hour and some students played faster than
others, not every student played the same amount of rounds.

The data from the surveys was entered in a spreadsheet and then imported into a python script. In
the python script, the data was split in a number of ways:

Competitiveness: students rated how much they like to win. Not at all (0), a little (1) or a lot
(2). The low competitiveness group consisted of 17 students (0) and the high competitiveness
group consisted of 26 students (1 or 2).

Age: how many years old. Since students from 3 different grades participated, the best
possible split was not very even. There were 28 students in the low age group (8, 9 or 10
years old) and 15 students in the high age group (11 or 12 years old).

Gender: all students identified themselves as male or female. There were 23 female students
and 21 male students.

Frequency of playing board games: students indicated how often they play board games.
On a yearly basis or less (0), on a monthly basis (1) or on a weekly basis (2). There were 28
students in the low frequency group (0 or 1) and 16 students in the high frequency group (2).

Total score: the total amount of points the student accumulated during the 30 minutes of
playing (practise round not included). There were 23 students in the low score group (0 to
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10 points) and 21 students in the high score group (12 to 69 points).

* Win or loss: if the student scored more points than the student(s) they played against, they
won. Otherwise they lost. 19 students won and 25 students lost. There were more losers
than winners because three player games only have one winner.

* Closeness of the game: In a two player game, the closeness of the game is the difference in
total score between the two students. In a three player game, the closeness for a particular
student is the average of the score differences with the two other students. This means that
the student with the middle score of the three experiences a smaller difference in score
with the two other students than the leading student or the student with the lowest score.
We think this accurately reflects how close the game feels to each student. There were 23
students in the low score difference group (2.5 to 15 average difference in score) and 21
students in the high score difference group (17 to 61 average difference in score).

* Group size. Students played the game in groups of 2 or 3 students. 20 students played in
groups of 2 and 24 students played in groups of three.

Some students simply did not answer every question. For example, one student did not specify
their age and another did not indicate how competitive they were. These students were simply left
out when splitting the samples on age or competitiveness.

Aside from the aforementioned factors (age, gender, etc) the survey measured the following:
* How fun the game was, rated from 0 to 4. A higher score means more fun.

* How much the students wanted to play the game in their free time, rated from 0 to 4. A
higher score means a bigger desire to play the game.

* Complexity of the game, rated from 0 to 4. Higher means more complex.

* How exciting (or boring) the game is, rated from 0 to 4. Higher means more exciting, lower
means more boring.

* How often it was difficult to pick a good move, rated from 0 to 4. Higher means more often.

* How difficult it was to come up with a strategy in general, rated from 0 to 4. Higher means
more difficult.

The values from the first two questions (how fun the game was and how much they want to play
it in their free time) are added together to form the enjoyment score (from 0 to 8). The values
from the last two questions (how often was it difficult to pick a good move and how difficult was
it to form a strategy in general) are added together to form the strategic difficulty score (from
0 to 8). These questions were chosen with the intention to do this, because there are multiple
aspects to how enjoyable or strategically difficult the game is, but each individual question has to
be understandable for the students.

With all of this data, we test the following hypotheses:
1. The game is less complex and/or less exciting for older students.

2. Boys and girls could very well develop their cognitive abilities at a different rate around this
age. We will investigate if there can be found any differences at all for the measured data
between boys and girls.

3. Competitive students are more eager to learn how the game works so they can win. As a
result they will score more points and win more often.

4. Competitive students who win enjoy the game more than other students who win.
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Figure 4.4: Excitement comparison for high and low age group.

5. Students who frequently play board games will find the game less complex.

6. Playing the game with a different group size (2 or 3 players) significantly changes the
dynamic of the game. We will investigate if there can be found any differences at all for the
measured data between 2 and 3 player games.

7. Students who win or score a lot of points enjoy the game more.
8. Students who have very close games (small score difference) enjoy the game more.
9. Students who thought the game was very complex enjoyed the game less.

To test these hypotheses, the data is split, visualized and tested in Python. For example for
hypothesis 1, 'the game is less complex for older students’, we split the data into a low age group
and a high age group. Then we visualize the data by creating a bar graph for the complexity
experienced for each group. Finally, the two complexity samples are compared with the Mann
Whitney U test.

The Mann Whitney U test is used to test the vast majority of hypotheses. It is appropriate because
it is unclear what the distribution of the data is and the data is in a small discrete range. When
splitting the data in multiple ways, such as with the hypothesis that winning is more important
for competitive students, we use a contingency table and the Chi-squared test. When comparing
data in a larger range, such as the total points scored, we use the Wilcoxon rank sum test. The
chosen alpha value is 0.05.

4.3 Data Visualization and Testing
4.3.1 Hypothesis: the game is less complex and/or less exciting for older stu-
dents

We use the Mann Whitney U test for this hypothesis. The data is visualized in figure 4.4 and 4.5.
For the excitement comparison, the p value is 0.238, so the null hypothesis that these samples
are from the same distribution cannot be rejected. For the complexity comparison, the p value
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Figure 4.5: Complexity comparison for high and low age group.

is 0.883, so the null hypothesis that these samples are from the same distribution also cannot be
rejected.

4.3.2 Hypothesis: there are differences in the experience based on gender

The data is visualized in figures 4.6, 4.7, 4.8 and 4.9 on page 35 and 36. For all the measured data,
the Mann Whitney U test is used. The p values are:

» Complexity: 0.720
* Enjoyment: 0.716
* Excitement: 0.523
* Strategic difficulty: 0.885

None of the null hypotheses (that the samples are from a different distribution) could be rejected.

high competitiveness low competitiveness total
winners | 11 8 19
losers | 15 9 24
total | 26 17 43

Table 4.1: Contingency table showing the number of wins for above and below average competi-
tiveness players

4.3.3 Hypothesis: competitive students perform better

Figure 4.10 shows the distribution plots for points scored by the low and high competitiveness
groups. The samples are also tested with the Wilcoxon rank sum test, which resulted in a p value of
0.451, so the null hypothesis that these samples are from the same distribution cannot be rejected.

Table 4.1 on page 34 shows how many students fall into each category (high competitiveness
winners, high competitiveness losers, etc). This data can be tested with the Chi-squared test.
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Figure 4.10: Total score comparison for competitiveness.

The expected frequencies used (based on the ratio of total winners and losers and high and low
competitiveness students) are 11.5 for high competitiveness winners, 7.5 for low competitiveness
winners, 14.5 for high competitiveness losers and 9.5 for low competitiveness losers. The null
hypothesis is that the expected frequencies are accurate, which would mean the hypothesis is false.
The p value from the test is 0.992. As such, the null hypothesis could not be rejected.

high competitiveness low competitiveness
winners | 7.09 7.38
losers | 7.00 7.11

Table 4.2: The average enjoyment of the game based on competitiveness and game outcome

4.3.4 Hypothesis: competitive students who win enjoy the game more than
other students who win

Table 4.2 shows the enjoyment for the students in the different categories (competitive winners,

competitive losers, etc). If anything, the difference in enjoyment between winners and losers is

greater for less competitive students. Also, these samples are too small for proper statistical testing
(N around 10).

4.3.5 Hypothesis: students who frequently play board games find the game
less complex

The data for this hypothesis is visualized in figure 4.11 on page 38. The resulting p value from the
Mann Whitney U test is 0.700 which means the null hypothesis could not be rejected.
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Figure 4.11: Complexity comparison for frequency of playing board games.

4.3.6 Hypothesis: there are differences in the experience based on group size

This hypothesis is tested for several metrics. The data is shown in figures 4.12, 4.13, 4.14 and 4.15.
The Mann Whitney U test p values are:

* Complexity: 0.214
* Enjoyment: 0.181
* Excitement: 0.205
e Strategic difficulty: 0.385
None of the null hypotheses could be rejected.

4.3.7 Hypothesis: students who perform better enjoy the game more

We test this hypothesis for game outcome (figure 4.17 on page 41) and total score (figure 4.16 on
page 41). The Mann Whitney U test results are 0.492 for the score comparison and 0.704 for the
game outcome comparison.

4.3.8 Hypothesis: students enjoy the game more when there is a low differ-
ence in score

We tested the hypothesis by comparing excitement and enjoyment for the low and high score
difference groups. The p value for the excitement comparison (figure 4.19 on page 42) is 0.244 and
for the enjoyment comparison (figure 4.18 on page 42) it is 0.0221. There is evidence to reject the
null hypothesis that students do not enjoy the game more when there is a low difference in score.
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4.3.9 Hypothesis: students who thought the game was very complex enjoyed
the game less

The p value for the Mann Whitney U test for this hypothesis is 0.946. The data is visualized in
figure 4.20.
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Chapter 5

Simulation

The simulation serves three purposes: to find ways to improve the game, to demonstrate how a
systematical approach (in other words, computational thinking) can be used when playing the
game and to lay a foundation for future work of checking more complex properties in games like
having a snowball effect (see section 7.3 on page 58).

We find ways to improve the game by programming a computer player, making it play against
itself and analyzing the play patterns it demonstrates. Due to time constraints, the simulation is
only done for two player games.

5.1 Methodology

The simulation and the computer player are programmed in Python. We start by creating an object
that tracks the state of the game. Next we make a function that makes random moves based on
who is the active player. Using this function we can play out games consisting of two rounds where
two players are just making random moves. Now we can start building the computer player.

The computer player consists of three parts. Each part is used during a specific part of the game:

1. While there are still cards in the deck: the computer player does not know which cards the
other player has. The computer player calculates a score for each station based on a number
of factors and parameters and prioritizes coin placement cards to place coins on a relatively
good station.

2. While the deck is empty and at least one player has three or more cards in hand: at this stage
of the game there are too many remaining moves to compute the full state space. Instead,
the computer player uses a shallow search to 'think a few moves ahead’ and find a relatively
good move that way.

3. While the players have at most two cards in hand: the computer player can now compute
the full remaining state space. To save time, it will automatically play the best move for both
players for the rest of the game so it does not compute the state space multiple times.

While building the first two parts we can still run and test the computer player by making it
fall back on the random move function for the last part(s) of the game. When the computer
player is finished and working correctly we optimize it with an evolutionary algorithm that makes
random changes (mutations) to the computer player configuration and lets it play against copies
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of itself with different configurations. Finally we let the computer play against itself with the best
configuration and analyze how it plays.

5.1.1 Terminology
In this chapter we use the following terms:
* Active player: the player who makes the next move.

¢ Current active cycle: the cycle which would be used to count the scored if the round would
end at that exact moment.

* Final active cycle: the cycle which is used to count the score at the end of the round.

* Premove: at the start of each turn, the player must place a coin on a station or remove a coin
from a station. This is called the premove.

5.2 Game State

The state of the game is tracked in an object called "State’. It has all the information about the state
of the game:

* For each station, how many coins are placed there.

¢ For each station, who owns the coins there.

* The active player (the player who has to make the next move).
* For each switch, whether or not it is in the default position.

* Which cards are still in the deck (and can be drawn).

* Which cards the players have in hand.

* Which station is the starting station.

Additionally, it tracks some information that helps optimize the computer player. There are 11
potential cycles for the train to end up in when the score is counted at the end of each round. To
optimize the computer player, some metadata about these cycles is also tracked:

* For each cycle, how many coins both players have in total on the stations in that cycle.

* For each cycle, how many switches need to be changed to make that cycle the active cycle
(the one that is used when counting the score).

* For each cycle, which stations are on it.

5.3 Playing out the Game

The ’state’ object has a number of functions to help play out the game. Initially, a function is
called to initialize the data and deal both players a hand of cards. Then the state object is passed
back and forth between two computer players who calculate a move based on the game data and
metadata and call a function on the state object to make that move happen. This function also
removes a card from that player’s hand, draws the active player a new card if possible, changes
the active player and updates the metadata. The computer players keep making moves until the
deck is depleted and then the score is counted. To complete one game, this process is repeated but
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with the second starting station and the other player now goes first. The winner of the game is the
player with the most points over both rounds combined.

5.4 Computer Player

As mentioned in the methodology of this chapter the computer player consists of three parts
corresponding to three stages of the game.

5.4.1 Stage One

In this stage, the computer player uses heuristics to pick a good move. It will always prioritize
cards that place coins, as it is important to save the switch and move cards for the end of the
round.

Below is a description of the algorithm for this stage. It mentions a number of multipliers and
thresholds. These parameters will come into play when we use an evolutionary algorithm to find
the optimal configuration for the computer player.

1. Calculate a score for each station based on the best cycle it is part of (the one with the least
switches that need to be changed to make it the active cycle). The formulais 7—-SD (SD is
the number of switches that need to be changed to make this cycle the active cycle).

2. For each other cycle each station is part of, increase the score of that station by (7 - SD)+ OM
where OM is the overlap multiplier, which is 0.1 by default.

3. Next, the score for each station is reduced depending on how many coins it already has. The
reasoning is that it is risky to put too many coins on one station. It is also important to add
coins to stations that have little coins on them to prevent the other player from stealing those
stations. The score is reduced by C * FM where C is the number of coins on that station and
FM is the fortify multiplier, which is 0.5 by default.

4. Next, the score is increased for empty stations as it is important to capture them before the
other player does. The score is increased by EB for empty bonus, which is 1 by default.

5. Finally the score for each station is multiplied by SM or the station multiplier. This multiplier
is 1 for each station by default, but gives the computer player an opportunity later to mutate
and gain a like or dislike for specific stations.

Now that the station scores are calculated it is time to make a move. First we need to determine
which station we want to place a coin on or remove one from. The computer player simply picks
the station with the highest score for this, because it can always either place or remove a coin
from any station. We assume that removing a coin from an opponent’s high score station is just as
good as placing a coin on one of our high score stations. For that individual station, the score is
calculated again. Next the computer player considers the two stations that are not owned by other
player with the highest scores. If the difference in score is smaller than ST (or spread threshold),
the computer player will use a “distribute 2 coins’ card to target both stations if possible. If the
difference is larger, the computer player will use place 3 coins’ to target the best station, or it
will use ’distribute 2 coins’ and put them both on the best station. It is also possible that the
computer player is still in stage one but has neither coin cards. In that case it will fall back to stage
2 algorithm (think n turns ahead) with n 0, which means it will simply make the move resulting in
the highest score if the round would end right after.
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5.4.2 Stage Two

In this stage the deck is empty, so the players should both know what cards the other player has.
The computer player will use a recursive algorithm to "think n moves ahead’. The algorithm starts
with n=3:

1. Make a list of potential moves.

2. For each move, copy the state object, make the move. This also updates the copied state to
reflect it is now the other player’s turn, updates the metadata, etc. If n > 0, recursively call
the stage two computer player for each move with n reduced by 1. Otherwise, return the
score of the best move.

3. If n > 0, evaluate all returned scores of the recursive calls. Pick the best one.

4. If n < 3 (it is not the initial recursive call), return the best score. Otherwise, make the move
on the real state object for which the best score was returned by the recursive calls.

5.4.3 Stage Three

State space explosion occurs at around 5 remaining moves (it takes minutes to perfectly compute
the best move with 4 moves remaining and hours when there are 5 moves remaining). So when
there are 4 moves remaining, the computer player switches to a recursive algorithm similar to
the one used in stage two, except it only stops when both players have no cards remaining and it
always returns an array of moves made. This array is needed because when the recursive algorithm
finishes, it simply plays out all best moves for both players. This avoids a lot of redundant
computing.

5.4.4 Premove in Stage Two and Three

At the start of each turn, the player has to place a coin on a station or remove one. Fully computing
every possibility for this would cause state space explosion to occur much sooner and generally
slow down the computer player a lot. This is unnecessary since players often just take turns
adding or removing a coin from the final active cycle. Instead, we will use a trick. We assume the
computer players, once in stage 2 or 3, know exactly which cycle is going to be the final active
cycle. The computer player that is going to lose will remove a coin from one of the stations on that
cycle every turn, while the computer player that is going to win will add a coin to one of those
stations every turn. This means we do not have to compute this because it has no bearing on the
amount of points scored by the winner of that round. The exception is when there are stations
with one coin on it. We use the following system of rules and a running premove bonus for each
computer player (which will come into play when the score is being counted):

* The computer player can treat one station with 1 coin on it as an empty station. If it does,
do not add a point to the running premove bonus. If it does not, add a point the running
premove bonus for that computer player and notify the next computer player.

* If notified the computer player did not use the premove to capture a station in the last
move, the computer player must ignore the best station with 1 coin on it. In other words, if
capturing a specific station turns out to be the move for the computer player (by more than
1 point) and the previous computer player did not use their premove to capture a station,
then retroactively determine that the previous computer player used the premove to defend
one of their stations with 1 coin on it. In this case, add a coin to that station for the previous
computer player and remove one point from their running premove bonus.
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Figure 5.1: Part of a state space demonstrating how the premove is optimized by the computer
player.

* Otherwise, the computer player can capture any station with 1 coin on it.

Figure 5.1 shows how this works in practise. The squares represent the state of the game. The
arrows are potential moves. The orange arrows represent moves that are only possible by first
capturing a station from the other player by using the premove to remove the coin from that
station. The other moves are represented by blue arrows. First, player 1 does not capture a station
from player 2. Because of this, the premove bonus for player 1 gets increased by 1, which means
they simply used the premove to gain 1 point of advantage on the final active cycle. In the resulting
game state after player 1 made their move, player 2 decides their best move is to capture a station.
At this point, the premove of player 1 from the last move is retroactively changed to defend this
station instead.

When the computer player is picking which move is best, each different move will have different
premove bonuses for both computer players. The winner is determined by first adding the premove
bonuses of both computer players to the amount of coins they scored on the final active cycle.
When the score is actually counted though, the premove bonus of the computer player that lost
is subtracted from the total points while the points of the computer player that won are added.
This is to simulate the fact that the computer player, with perfect knowledge, knew it was going to
lose, so it was removing coins from the other computer player to reduce the amount of points they
would win that round. A detailed proof that this works exceeds the scope of this thesis. In any
case, we think this system is at least very close in mimicking the real premove system in that it
gives the computer player the option to use the premove to influence to change how many coins
the players have on the final active cycle or to defend or capture stations.

5.4.5 Evolutionary Algorithm

The computer player takes a number of parameters that influence which move is picked in stage
one. We use an evolutionary algorithm to find an optimal configuration for this. First we define a
range of reasonable values for each parameter:

e Overlap multiplier: between 0 and 1. Default 0.1.
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* Fortify multiplier: between 0 and 1. Default 0.1.
* Empty bonus: between 0 and 2. Default 1.

* Spread threshold: between 0 and 2. Default 1.

o Station multipliers: between 0.5 and 1.5.

Next, we go through a number of rounds of the evolutionary algorithm. We start with a population
of 5 randomly configured computer players. For each parameter for each computer player a value
is randomly selected within the above range.

1. Each computer player plays against each other computer player twice. Once where one
player goes first in the first round and second in the second round and again but with the
roles reversed.

2. Count the amount of wins each computer player made.
3. Eliminate the two computer players with the least wins.
4. Introduce a new randomly configured computer player.
5. Cross the best two computer players to make a new computer player and mutate it.

To cross two computer players, simply create a new one with parameters randomly rolled between
the values of the parameters of the parents. A mutation of a computer player is simply a copy of
that computer player with its parameters randomly changed by a random value ranging from —x
to +x, where x is the mutation strength.

This process is repeated until the exact same computer player has the most wins 4 generations in a
row. Unless the algorithm takes more than 40 generations, at which point it will stop when the
same computer player wins 3 generations in a row. This final computer player configuration is
likely a local optimum. To discover more optimums, the entire process is repeated several times
(with different mutation strengths x). Finally all the different local optimums are pooled together
and play against each other to see which performs the best.

To optimize the process, the algorithm starts a new process for each game. This way CPU utilization
is close to 100% on a multi core processor.

5.4.6 Results

We started by running the algorithm with the mutation strengths x 0.1, 0.15, 0.2 and 0.25, 3 times
for each mutation strength. Then, all 12 computer players found this way play against each other
computer player 4 times. Below, the 12 players are sorted by how many wins they scored in this
last round (in case of a tie, both computer players get half a win):
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Figure 5.2: The best performing computer player configuration with 34 wins.
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Figure 5.3: The second best computer player configuration with 31.5 wins.
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Figure 5.4: The third best computer player configuration with 29.5 wins.
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Figure 5.5: Combined graph of the top 6 computer player configurations with standard deviation
shown.

The rest of the configurations can be found in the appendix. What stands out most is that the
empty bonus is rather high for the top 6 configurations (see figure 5.5). This means the computer
player tends to capture empty stations a little more than anticipated. Another thing that stands
out is that during the second round, the computer player has a high preference for station 7 (see
figure 5.6 and 5.6 on page 52).
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Figure 5.6: Station numbering for the computer player.

Figure 5.7: Station numbering for the computer player.
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Chapter 6

Conclusions

The goal of this study is to design and create a board game (based on parity games) and to evaluate
its potential to be used as an educational tool. We have designed a board game and evaluated it in
several ways.

6.1 School Pilot

We tested the game with 44 students ranging from age 9 to 12 from three different schools in the
outskirts of a Dutch suburban area. The students all played the game for at least 30 minutes and
then answered a series of questions in a survey and a verbal interview in a group setting.

Only hypothesis 8 could be supported by the data (meaning the null hypothesis was rejected):
students enjoy the game more when there is a low difference in score. This is valuable information,
because it could be used to improve the game. Due to the nature of the game, many students
earned 0 points. This could lead to games that do not feel very close to the students. It seems
worthwhile to change the game to make it more common for the score difference to be smaller. For
example, the coins from the stations leading up to the final cycle (of which all coins are awarded
to a single player) could be awarded to the owner of those coins. That way, most players would
usually gain at least some coins in each round and it would feel more like they still have a chance
of winning even if they are behind in score.

Although the null hypothesis was not rejected for most hypotheses, it does not mean we can
confirm the null hypothesis for those hypotheses either. Instead of looking at the p values, we
evaluate the graphs starting on page 37 for evidence in support of the hypotheses:

* As shown by figure 4.10, some of the highest scores were only achieved by the high competi-
tiveness group. This could indicate these students go for a more "high roller’ strategy where
they place many coins on only a few stations. This is also confirmed by the variance. The low
competitiveness group has a score variance of 154 while the high competitiveness group has
a score variance of 268.

* Figure 4.11 suggests that students who frequently play board games said the game was less
complex than the other students did.

 Figure 4.12 suggests that students who played the game in pairs said the game was a little
bit less complex.

53



* Figure 4.13 suggests that students who played the game in pairs said the game was more
exciting.

 Figure 4.14 suggests that students who played the game in groups of three said the game
was more fun.

* Figure 4.15 suggests that students who played the game in groups of three had a little more
strategic difficulty.

 Figure 4.16 and 4.17 suggest that students who scored a lot of points or won always enjoyed
the game.

 Figure 4.19 suggests that students in games with a smaller score difference thought the game
was more exciting.

In repeat studies with a larger number of students it might be possible to reject the null hypothesis
for the above hypotheses.

6.1.1 Other Observations

The students enjoyed playing the game a lot. Many students expressed how much they liked the
game during the pilot and asked if it was possible to buy the game later. They were happy to hear
each school would get one copy of the game. This was also confirmed by the average enjoyment
rating over all 44 students of 7.14 on a range from 0 to 8.

After the practise round and the correcting of misunderstandings, all students were able to
understand the fundamentals of the game. Most importantly, they grasped the idea that only
the final cycle counted for the scoring. Students had a good idea of which card type to use first
(‘distribute 2 coins’ and "place 3 coins’) and which cards to save for later (‘change a switch’ and
‘move coins’).

Although the students understood the game, they still have room for growth. For example,
students rarely counted the cards. By playing the game more they could learn how many cards of
each type are in the deck so they can always know what cards the other player has in hand during
the last few turns of each round. They also did not try to reduce the amount of points the other
player would win in a round they could almost certainly not win. Sometimes they would add their
own coins onto a cycle that already had many opponent’s coins on it, thus only adding to their
opponent’s winning for that round. During the last few turns of each round, the students also
seemed to have room for growth in abstract reasoning. Compared to the adult players who helped
test the paper prototypes, students seemed less capable of considering all the relevant cycles and
thinking ahead a few turns. This observation comes as no surprise as, according to Piaget’s widely
accepted theory of cognitive development [8], the oldest students in this study are just starting to
develop their abstract reasoning (during the formal operational stage, starting around age 12).

6.2 Simulation

At its core, computational thinking encompasses the set of skills used when expressing a problem
and a solution in a way that a computer can execute it. By building a simulation and a computer
player for the game we have shown how a computer scientist might solve the problem of finding
a good strategy for the game using computational thinking. The simulation and design of the
computer player also reinforce that forming a good strategy for the game requires a good amount
of abstract reasoning. The computer player keeps track of a lot of information which is not
explicitly tracked in the physical game, such as the current active cycle, how many switches need
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to be changed to make each other cycle the active cycle and which player is winning on each
cycle. Keeping track of all this information and reasoning about it, preferably several turns ahead,
requires abstract reasoning. According to Piaget’s theory of cognitive development [8], children
start developing their abstract reasoning during the formal operations stage starting at around age
12. In conclusion, the simulation as well as the preliminary study support the idea that our game
can be used as educational tool to help students around age 12 and up improve their abstract
reasoning, which is listed as one of the main skills for computational thinking according in most
recent definitions and models (see section 2.1.1 on page 8).

Furthermore we optimized the configuration of the computer player using an evolutionary algo-
rithm. Most of the high performing configurations have a high preference for placing coins on
empty stations (more so than anticipated). This could indicate that there are not enough stations
on each cycle. Especially considering that the simulation was only done for two player games and
that there are even fewer stations available per player in a three player game.

6.3 Research Questions

To summarize the conclusions we reiterate and answer the research questions:
1. How suitable is the game for students from age 9 to 12?

The students were able to quickly understand how the game is played and they enjoyed
playing the game. Although students understand the game easily they still have room for
growth in the area of abstract reasoning. Students show varying ability to reason about
abstract concepts such as cycles, but none of them were as proficient in this as the adult
players who played the game during the earlier design phases. We believe this makes the
game suitable as abstract reasoning learning tool for students around age 10 and up.

2. How do factors such as age, gender, group size, game outcome, board game experience and
competitiveness impact the experience of the students playing the game? The ’experience’ is
described in terms of how fun, challenging and complex the game is perceived.

The main finding is that students enjoyed the game significantly more when there was a
small difference in score. This can likely be explained by the fact that the game is more
engaging when both players have roughly the same amount of points and it is uncertain who
is going to win. When one player has many more points than the other player(s), the game is
less enjoyable for both players. There was not enough data to support other hypotheses from
the school pilot.

3. What strategies do the students in this study use when playing the game?

The students had a good idea of which cards to prioritize early on in the game and which
to save for later. They also thought about the up and downsides of spreading their coins
out on different stations or putting them all in one spot. However, most students did not
stop adding coins to a cycle where their opponent was already winning by a lot, which only
increased the score of the other players. Most students were not able to think ahead one or
more turns about the different cycles and possibilities.

4. How does the game relate to computational thinking?

The main relation with computational thinking is abstract reasoning. Advanced players
would quickly be able to reason about abstract concepts such as cycles, score totals on
different cycles and the minimum number of switches needed to make a specific cycle the
active cycle. They also need to think about how these things change in the next few turns
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as both players try to score as many points as possible. We observed some of the students
started to use some of these more advanced techniques.

5. How can we use the data from the pilot and the simulations to improve this game?

The game can be improved by adding a mechanic that reduces the difference in points scored
between the players. The idea is that when the game is closer, it is more engaging because
the player who is behind still has a chance to win and the player who is ahead has to stay on
their toes.

Data from the simulations suggest that it is very important to capture empty stations. Perhaps
this is not a problem but it is worthwhile to experiment with different boards with more
stations on each cycle or perhaps a different board for three player games, where there are
even fewer stations per player.

6.4 Limitations

The school pilot was done with only the primary researcher in the room with 5 to 8 students at a
time. At times this was quite hectic. For most of the hypotheses we tested in the school pilot we
could not reject the null hypothesis, likely due to the small amount of students that participated.
In addition, all the participating schools were from the same township, so the student population
in the study does not accurately reflect the population of similar age Dutch students as a whole.

Due to time constraints we only tested the simulation by writing various assert statements (to
assert that the game state is correct) and running a few thousand games with a computer player
that makes random moves. Ideally, the simulation as well as the computer player would be
unit tested rigorously as bugs can exist and affect the outcome of the game without crashing the
simulation.

Additionally, running an evolutionary algorithm on the computer player configuration was a
decision that was made after the preliminary study, so this research area has not been investigated
during the preliminaries of this study.
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Chapter 7

Future Work

We have created a number of suggestions for future work pertaining to the following areas: game
design; the school pilot and computational thinking; the simulation and the evolutionary algorithm

7.1 Game Design

For future work in the design of this specific game we make the following suggestions:

* Design and create more modular board covers for the game that can be mixed and matched
so the players can experiment with different board layouts.

* Design and create expansion cards with more interesting events. Example: last-minute
switch change: this card lets you select a switch. At the end of the round when the train
encounters that switch for the first time, the player who played this card may change the
switch.

* Give the game a more well defined theme. It should immerse you more into a world or a
story. For example, the coins could be replaced by passengers. The goal of the game would
then be to pick up as many of your passengers as possible. The cards could be specific events,
similar to Monopoly cards.

As we have found that students who had close games (low difference in points scored) enjoyed the
game significantly more, we recommend for board games in general (as well as this specific game)
to include mechanics and a scoring system that will result in more close games. This can be done
explicitly in the form of a rule or mechanic that directly grants something to the player who is
behind. For example, in the game we designed the player with the least points could decide who
goes first in the next round. Alternatively a rule or mechanic can grant a more subtle advantage to
the player who is behind. For example, all the coins the train encounters before reaching the final
cycle could be awarded to the player who placed those coins. This would result in less players
with 0 points scored over the course of one game and would make the player feel they are not as
far behind.
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7.2 School Pilot and Computational Thinking

For computational thinking and repeat studies of the school pilot with this game or another one
we make the following recommendations:

* Set up a standardized and peer reviewed computational thinking test. This would be a major
step forward for this research area as it would allow smaller studies to test and compare new
teaching methods to other studies.

* Repeat the school pilot with a better computational thinking test, a control group, more time
per student, a bigger range of ages and a wider selection of schools from all over the country.
It would also be a huge benefit to get permission to record these games and later analyse
how the students play: what strategies did they use and how do they improve over time.

* If it is not possible to record the game, use smaller groups of students and more researchers
observing the games.

7.3 Simulation and Evolutionary Algorithm

For this area we only have two suggestions for future research. The first one is to prove that
optimizing away the premove in the simulation as we did in subsection 5.1 does indeed not
change the outcome of the game. The second suggestion is to expand the simulation (or another
one) to investigate more complex properties. The most interesting one is the snowball effect. In
a game with a snowball effect gaining a small advantage makes the game easier. So the more
advantage a player has, the more easily they can gain an even bigger advantage. This makes the
game frustrating for the losing player and less challenging for the winning player. This can be
investigated by forcing the computer player to make mistakes at various points in the simulation.
If the game has a strong snowball effect, making a mistake early on will almost always cause that
computer player to lose that game, while making a mistake later on has a smaller impact on the
outcome of the game.
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Appendix A

Python Code and School Pilot Data

The code for the simulation, computer player and evolutionary algorithm can be found in a public
repository at https://github.com/Zypp/ParityBoardGameSimulation. The data from the school
pilot and Python code for analysing it can also be found here.
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Appendix B

Survey

Vul in of omcirkel het antwoord:

Vraag

Antwoord

Speler nummer

Leeftijd

Geslacht

Groep

Hoe vaak speel je bordspellen?

Hoe belangrijk vind je het om te
winnen?

jongen / meisje

eens per jaar of maandelijks
minder
helemaal niet een beetje
belangrijk belangrijk
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wekelijks

heel belangrijk



Geef antwoord door een van de rondjes in te vullen, bijvoorbeeld:

links O ® O O O rechts

Foutje gemaakt? Kruis het verkeerde antwoord door en vul alsnog het goede antwoord in, bijvoorbeeld:

links O » e O O rechts

Hoe ingewikkeld vond je het spel?

Totaal niet O O O O O Heel ingewikkeld
ingewikkeld

Hoe vaak vond je het moeilijk om een goede zet te bedenken?

Heel soms O O O O O Heel vaak

Hoe spannend was het spel?
Heel spannend O O O O O Heel saai
Hoe moeilijk was het om een manier te bedenken waarop je het spel kon winnen?
Heel moeilijk O O O O O Heel makkelijk
Hoe leuk vond je het spel?

Heel leuk O O @) O O Niet leuk

Zou je het spel nog eens in je vrije tijd willen spelen?

Absoluut niet O O O O O Heel graag
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Appendix C

Simulation Results (full
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Figure C.1: The best performing computer player configuration with 34 wins.
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Figure C.2: The second best computer player configuration with 31.5 wins.
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Figure C.3: The third best computer player configuration with 29.5 wins.
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Figure C.4: The 4th best performing computer player configuration with 23.5 wins.
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Figure C.5: The 5th best computer player configuration with 21.5 wins.
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Figure C.6: The 6th best computer player configuration with 20.5 wins.
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Figure C.7: The 7th best performing computer player configuration with 19 wins.
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Figure C.8: The 8th best computer player configuration with 18.5 wins.
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Figure C.9: The 8th best computer player configuration with 18.5.5 wins.
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Figure C.10: The 10th best computer player configuration with 17.5 wins.

General c

puter player p

Parameter value
-

overlap multiplier fortify multiplier empty bonus spread treshold

Round 1 station preferences

Parameter valus
- -

0 1 2 3 4 5 3 7 8 9 10
Station index

Round 2 station preferences

Parameter valus
= -

0 1 2 3 4 5 & 7 8 9 1o
Station index

Figure C.11: The 11th best computer player configuration with 12.5 wins.
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Figure C.12: The 12th best computer player configuration with 7.5 wins.
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