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A B S T R A C T

As Industrial Control Systems (ICS) are turning into automated and
highly integrated systems, a closer link between the cyber world and
the physical processes is created. Consequently, these critical systems
are becoming more prone to cyber attacks. To prevent such systems of
becoming unavailable or compromised due to an attack, we propose
a method to monitor the physical process and to detect anomalous
behaviour. We do this by defining an approach to automatically iden-
tify behaviour models of an ICS. Using a machine learning algorithm,
state machines are inferred from time series data of sensors and ac-
tuators. The normal behaviour of these devices is modelled as Timed
Mealy machines, identifying one per subprocess. The results show an
efficient way of identifying the models without needing any expert
knowledge of an ICS. By using the models as a classifier, the results
show a good performance of detecting anomalous behaviour caused
by attacks. For testing and validating our approach we use data from
the SWaT testbed, i.e. a Secure Water Treatment testbed which is a
scaled down representation of a water treatment plant. Out of 36 at-
tack scenarios that were launched on the testbed, our approach de-
tected 28 attacks correctly. The final precision rate shows us that of
all the triggered alarms, around 85 percent is relevant. The final at-
tack detection approach is also suitable for other types of industrial
control systems.
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1
I N T R O D U C T I O N

Industrial control systems (ICS) are experiencing a big transformation
since the last decade, also known as the fourth industrial revolution
or Industry 4.0 [1]. ICSs are becoming more innovative, automated
and highly integrated systems [2]. These systems are creating a closer
link between physical processes and the cyber world by using mod-
ern computing and communication infrastructures [3]. The term in-
dustrial control systems includes control systems that monitor and
control industrial processes in different types of sectors and infras-
tructure such as manufacturing, distribution and transportation [4].
ICSs also control life-critical industries such as power plants or water
distribution. Misuse of such a system can lead to serious damage to
the environment or can have harmful consequences for human beings,
which means that these systems are a high risk when being attacked.

Since Industry 4.0 these critical systems became more prone to cy-
ber attacks, mainly because of the increasing connections with the
Internet, but also because nowadays ICSs make more use of commer-
cial software and open architectures to reduce costs and increase the
ease of use [5]. ICSs evolved into highly interconnected systems con-
trolling physical processes and consist of a wide variety of equipment
with many interdependencies [6]. This leads to increased system com-
plexity and an increasing need for ICS security research.

ICS security differs in many ways from the traditional IT security
because of the cyber-physical nature of an ICS. For example, ICSs
have many different risks and priorities than IT systems, including
the safety risks for human lives and the environment [4]. When con-
sidering the CIA triad, the main focus for a classical IT system is
mostly the confidentiality and integrity of data while ICSs usually
prioritise the availability and integrity of the systems due to the phys-
ical processes that are involved here [4].

In the literature ICSs fall into the category of cyber-physical sys-
tems (CPS) and often these terms are used interchangeably [6]–[8].
Since the start of the Industry 4.0 trend a lot of research is done on
these type of systems. Cyber-physical systems include all systems
that combine multiple physical, computing and networking compo-
nents [9]. Important characteristics of these systems are real-time com-
munication, information processing, remote control and a highly in-
teractive network [9]. Because ICSs have changed from isolated sys-
tems to smart and connected cyber-physical systems, the attack sur-
face has become bigger and the number of threats have increased [3].

1

March, 2020



2 introduction

For instance because nowadays ICSs make more use of Ethernet-
based network protocols for communication between all the physical
devices, control systems and the human interfaces, some attacks are
inherited from IT. Examples can be DOS and DDOS attacks, replay
attacks and MITM attacks [6]. These type of cyber-threats do not di-
rectly influence the physical processes of an ICS.

In this study the focus is on attacks related to operational technol-
ogy (OT), e.g. the physical threats, and then specifically the semantic
attacks. These are defined as attacks that require specific knowledge
of the physical systems including the protocols, software, hardware
etc., with the main goal to inflict damage on the physical processes.
These attacks mostly have a specific goal for a specific target, com-
pared to a DDOS attack whose aim is to disturb a system. Examples
of semantic attacks are false data injection attacks, e.g. spoofing data,
or sequence attacks which aim to interrupt the normal sequence of
events in ICS operations [10].

1.1 attack detection

To prevent or mitigate these attacks from happening, a lot of research
has been done on intrusion detection systems (IDS) for CPS, i.e. at-
tack detection [11]. The main objectives of a CPS IDS are collecting
data from the industrial process and analysing this data. Different
types of analysis can be applied such as pattern matching, data min-
ing or statistical analysis [11]. Mitchell et al. divide the CPS intrusion
detection techniques into two main categories which are knowledge-
based intrusion detection and behaviour-based intrusion detection
[11]. A knowledge-based IDS can be seen as a dictionary, it holds spe-
cific patterns of misbehaviour and tries to match these patterns with
the real-time data. A big advantage of knowledge-based detection is
that it does not trigger many false alarms. However, this type of IDS
hardly ever detects new types of attacks. For a behaviour-based IDS,
instead of looking for a specific pattern of misbehaviour, here the IDS
will trigger an alarm for anything that does not look normal. The
main advantage of a behaviour-based IDS is that by looking out for
odd behaviour, also unknown attacks can be detected. The disadvan-
tage is that this technique generally produces more false alarms. This
behaviour-based technique is also known as anomaly detection, as it
will try to detect anomalous behaviour.

A variant of behaviour-based IDSs is behaviour-specification-based de-
tection and appears to be the most competent technique for intrusion
detection in CPSs [11]. This technique will define a model of the nor-
mal behaviour of a system and an anomaly is detected whenever the
monitored behaviour differs from the modelled behaviour. A big ad-
vantage of this technique is that it has a very low false-negative rate,
meaning a lot of intrusions will be detected correctly. The disadvan-
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1.2 problem statement 3

tage of this method is that it often requires expert knowledge and
thus a lot of effort to specify the behavioural models [11].

1.2 problem statement

Cyber-physical attacks on industrial control systems can have quite
a big impact for human safety or the environment, therefore it is
important to be able to detect malicious behaviour in these systems.
Although these systems can be complex nowadays - due to the many
components that are spread over a possibly large geographical area,
the interdependencies and the increasing connectivity - the physi-
cal processes controlled by the the systems do not often change that
much. The focus in this thesis will be on the physical process, the low-
est layer in an ICS. By placing the attack detection on a lower layer,
the attack surface that will be covered becomes bigger [6]. More on
the different layers of an ICS architecture can be found in Section 2.1.

As was mentioned before, it requires a lot of expert knowledge to
specify a precise behaviour model of a physical process that can then
be used for an anomaly-based attack detection approach. Furthermore,
manually creating a behaviour model of a system can become quite
difficult with the advanced and complex systems nowadays. And al-
though often is assumed that such models are already created during
a system development phase, this is usually not the case [12]. In the
literature it is often referred to as the modelling bottleneck [13]–[15].
Common problems that emerge from manual modelling, in addition
to the complexity and the need for expert knowledge, are (1) inter-
nal variables that may not be observable but are needed to define the
system’s dynamics, (2) it requires a lot of resources, and (3) when
systems are updated, the model also needs to be manually updated
[13].

Therefore it is useful to be able to learn the behaviours and struc-
ture of a system using machine learning which requires less manual
effort and system knowledge, and is able to automatically update the
model if any changes occur. Learning the behaviour of a system can
also be seen as reverse engineering a system. However, there are some
pitfalls on learning a model. For example, no attacks can be happen-
ing when learning the model of the normal behaviour. Even small
disturbances can affect the behavioural model.

A problem that occurs with attack detection is for the operator to
handle the amount of alarms that are triggered and to comprehend
the detected anomalous behaviour. For this the operator needs to have
a good understanding of the processes itself to be able to understand
the anomalies. Therefore it would be useful to have an accurate graph-
ical representation of the processes.
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4 introduction

1.3 related work

Creating a behaviour model of a control system can be beneficial for
various types of tasks. In this study the model will be used to detect
anomalies in the behaviour of a system, however these models can
also be used for model-based system design, to identify faults in a
system, or to assure the quality of a system [15]. As creating a model
of a system manually can become complicated and time consuming,
the automation of establishing these models is quite valuable. System
behavioural models can be learned by using machine learning ap-
proaches such as support vector machines, neural networks, decision
trees or state automata [16].

One of the first related studies on behaviour-based anomaly detec-
tion using the SWaT testbed is from Goh et al. [17]. They also used
machine learning by modelling the normal behaviour using recurrent
neural networks (RNN). They only focused on the first subprocess of
the testbed due to time limitations, and included only 10 attack sce-
narios for evaluating the detection technique. Another related study
that also tested anomaly detection on the SWaT testbed is from Inoue
et al. [18]. They compare two different kind of unsupervised machine
learning methods: deep neural networks (DNN) and support vector
machines (SVM). Similar as in this study they first train on the data
of the normal operations of the system without any attacks, and then
evaluate the the two methods using the four days of testing data. Lin
et al. [19] also used machine learning approaches for anomaly detec-
tion. They learned a model of the normal operations of the sensors
of the SWaT dataset as a timed automata (TA). In addition a Bayesian
network (BN) model was learned to discover the dependencies be-
tween the sensors and actuators. They called their method TABOR.
Combining theses two models resulted in better detection rate com-
pared to the two methods suggested by Inoue et al. However, the
fusion of the TA and BN model did cause some false negatives.

The study from Medhat et al. [20] shows a framework for infer-
ring Mealy machines (i.e. a type of automata) from input and output
traces. They based the automaton generation on Angluin’s L* algo-
rithm, which is an algorithm that is often used as a basis for inferring
Mealy machines. They used the sensors as output and actuators as
input. They first found the correlation between those devices. They
said one output, a sensor, can have multiple inputs, actuators, and
thus created for every sensor a separate timed automaton. The pur-
pose of this study was however, not to use the learned behaviour
models for anomaly detection.
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1.4 research questions 5

1.4 research questions

Derived from the problem statement we defined one main question
and multiple subquestions that will be answered in this research.�
�

�
�

Can we infer a precise model of the physical process of an ICS using
time series data in order to detect anomalies in process behaviour
without needing expert knowledge?

The main research question can be divided into two separate sub-
questions. To answer the first subquestion we want to create precise
models of the physical processes without needing expert knowledge
that can give us also a clear understanding of the behaviour of the
processes. For the the second subquestion we use the models to mon-
itor process behaviour and detect anomalies. We define the questions
as follows:

rq1 Is it feasible to map an ICS subprocess to a single model?

1 .1 Is it possible to automatically learn a model of process
behaviour of an ICS using time series data?

1 .2 Is it possible to represent the complete behaviour of an
ICS subprocess into a single model?

rq2 How can we use the behaviour models to monitor the
process behaviour of an ICS?

2 .1 To what extent are the models able to detect anomalous
behaviour?

2 .2 To what extent is the anomaly-based attack detection ap-
proach able to detect attacks?

1.5 proposed solution

Four different phases are defined for the final purpose of creating
this attack detection technique for industrial control systems. These
phases can be found in Figure 1.

Figure 1. Phases of Detection System.
Based on the architecture of the sequence-aware IDS proposed by Caselli et al. [10].

For testing and validating our approach we use data from the Se-
cure Water Treatment (SWaT) testbed. This water treatment testbed is
located in Singapore and is created for research in ICS security [21].
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6 introduction

As it is not an easy task to access and perform tests on an actual live
ICS, a testbed is proven to be a good alternative as it simulates the
real physical processes on a lower scale. The creators of the testbed
performed multiple different attacks on the testbed and created a la-
beled dataset of the monitored behaviour. The dataset can be used to
analyse attacks and test detection techniques. Both network traffic as
data from the physical devices was collected, however in this study
only the latter one is used for creating the behaviour models.

To answer the first subquestion we consider the first three phases.
In the first phase of our approach the time-series data from the phys-
ical properties of the SWaT testbed is collected. This data includes
signals from all the sensors and actuators of the testbed. In the sec-
ond phase the data is transformed into sequences of events in order
to learn the behaviour which will be modelled as state machines or
state automata. A state machine is an abstract system and represents
the different states of a system and how it moves from one state to
another. Figure 2 shows a very plain example of a state machine mod-
elling behaviour of a valve. In this example, S1 represents the state
where the valve is closed. When receiving the input, i.e. an action, to
open the valve, the state machine moves to the next state S2.

Figure 2. Example of simple state machine.
State S1 represents the valve being closed. When receiving the input to open the
valve, it transitions to state S2.

For representational purposes, system or process behaviour is of-
ten illustrated as a state diagram, i.e. a graphical representation of a
state machine. These state diagrams tend to give a clear description
of system behaviour and thus can give, in addition to using the ab-
stract models for anomaly detection, clear insights into the normal
and anomalous behaviour. For this third phase - modelling the be-
haviour as state machines - the tool RTI+ [22] is used. This tool was
chosen as it can learn state machines from positive time series data,
where in this case the positive data is data of the normal behaviour.

The most general state machine, or also known as the finite state
machine, can move to a next state given an input and the current state.
The moving between states is defined by transitions. For representing
a control system we want to use a different kind of state machine
called the finite state transducer. The difference here is that a trans-
ducer, in addition to determining the next state, also generates an
output. There are two types of finite state transducers which are the
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1.5 proposed solution 7

Moore machine and the Mealy machine. Where a Moore machine de-
termines the output based only on the current state a system is in, a
Mealy machine determines the output on both the current state and
the input value. Figure 3 shows an example of a simple Mealy ma-
chine. As can be seen a transition has a pair of symbols (i/o) instead
of just one. For example, a system is in a state (S1) where a valve is
open and reads an input action "Water level is high". These two val-
ues together will not only determine the next state of the system but
also an output action, e.g. "Close valve". In this case the input comes
from a sensor and the output is the action of an actuator. These char-
acteristics of a Mealy machine match well with the properties of the
ICS process behaviour, and in the literature these state machines are
considered to be a good fit for modelling the behaviour of real-time
reactive systems [23].

Figure 3. Example of simple Mealy machine.
A transition holds a pair of symbols (i/o) specifying an input and output symbol.
In this example the input comes from a sensor measuring if the water level is high
or low. The output describes if the valve should be closed or opened.

Where Lin et al. [19] only learn a state machine of a few sensors of
the testbed and combining this with a Bayesian network, we propose
an even simpler and easier understandable model by including the
behaviour of all the devices and grouping them per subprocess. This
will result in a variant of the Mealy machine. In the end we will have
six behaviour models, one for each subprocess of the SWaT testbed.
More on the subprocesses in the SWaT testbed can be found in Sec-
tion 2.1.1. In addition, as the Mealy machine does not include the con-
cept of time, we will add this by creating time-based transitions. As an
ICS has real-time requirements, e.g. a valve should probably not stay
open for an infinite amount of time, the timing behaviour should be
included in the state machines. The Timed Mealy machines will be
learned passively from the monitored signals from the sensors and
actuators of the SWaT testbed.

To answer our second subquestion we consider the last phase in
Figure 1. We want to use the behaviour models to monitor the pro-
cesses and detect anomalous behaviour. This is done by using the
models as a one-class classifier, i.e. the normal behaviour. The attack
scenarios that were launched on the testbed are used to validate our
approach. We check if this approach is able to detect the anomalous
behaviour that was caused by the attacks. As this is a behaviour-based
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8 introduction

anomaly detection we can expect many alarms of which some of them
are false alarms. Therefore we suggest a prioritisation of the anoma-
lies to, in the end, make it more efficient for the operator to use.

1.6 contributions

The contributions of this thesis are as follows. We propose an ap-
proach for attack detection in ICSs that (1) creates models of the pro-
cesses without needing expert knowledge, (2) creates understandable
graphical models that precisely model the physical processes which,
(3) are able to trigger many correct alarms. And (4) we prioritise the
detected anomalies to make the final approach more efficient and
manageable for an operator.

We define a variant of the Mealy machine where instead of only an
input and an output tape, the machine has more than two tapes, each
of them defining the behaviour of a single device. This way multiple
signals are aligned to define the behaviour of a subprocess of an ICS.
This will result in a Timed Mealy Machine which will give a good and
understandable visualisation of a subprocess and in addition can be
used to detect anomalous behaviour by using the identified behaviour
models as a one-class classifier. The results show that 28 of the 36

attack scenarios are detected, which is more than previous studies
using the SWaT testbed. The final precision rate, when combining
the six models, shows us that of all the triggered alarms, around
85 percent is relevant. The final attack detection approach should be
suitable for many types of industrial control systems.

1.7 thesis structure

This thesis is structured as follows. Chapter 2 provides background
information on ICS, the testbed, state machines and the learning pro-
cess. The methodology of this research is defined in Chapter 3. The
behaviour learning of the SWaT testbed can be found in Chapter 4.
Chapter 5 shows the results of the anomaly detection. To conclude
we discuss the results of the proposed anomaly-based attack detec-
tion approach and provide suggestions for future work in Chapter
6.
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2
B A C K G R O U N D

This chapter covers background information on the important top-
ics of this research. This includes industrial control systems and the
created testbed for ICS security research. In addition this chapter pro-
vides the formal definitions for the used models and a small intro-
duction to automata learning.

2.1 ics security

The most common types of industrial control systems are supervisory
control and data acquisition (SCADA) systems, distributed control
systems (DCS) and programmable logic controllers (PLC) [4]. These
control systems are for example controlling a physical process such
as power generation or distribution, manufacturing or oil and gas re-
finery. Figure 4 visualises the basic operation of an ICS [4]. An ICS
consist of various control loops and human interfaces and makes use
of industrial network protocols that can provide real-time control. A
control loop employs controllers, sensors and actuators. The sensors
receive data from the controlled process, and send this to the con-
troller, the controller being for example a PLC. The controller receives
the incoming signals from the sensors, performs programmed instruc-
tions, and then sends the output signals to the actuators. A human
machine interface (HMI) is used to monitor and operate the controller.
The HMI will display all information on the current state of the pro-
cess and everything that happened before this state.

2.1.1 A Water Treatment Testbed

SWaT is a testbed created for ICS security research and is a scaled
down representation of a water treatment plant. It can produce 5 gal-
lons/minute of filtered water. The SWaT testbed consists of 6 subpro-
cesses (P1-P6), each controlled by a PLC. The PLCs are networked and
communicate with each other constantly to share state information
which a subprocess may need from another subprocess. Each PLC
receives data from the sensors and actuators. In the SWaT testbed
the actuators are for example a pump or a valve. In able to decide
whether a pump should be turned ON or OFF, there are sensors that
will look at the water level in a tank. Figure 5 shows the different
layers of the testbed. A layered communication network is used in
SWaT, where the communication between layer 1 and 0 is an Ethernet-
based ring network. This ring network communicates data between

9
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Figure 4. Basic operation of an industrial control system.
An ICS consists of various control loops including a controller (e.g. a PLC), sensors
and actuators. Example architecture from NIST [4].

the PLCs and its field devices [24]. The communication between layer
2 and 1 is an Ethernet-based star network where an industrial switch
connects the SCADA system and HMI with the six PLCs [21]. There
is also a historian that will record the data from the sensors and actu-
ators that is collected by the SCADA system.

Figure 5. Layers of the SWaT testbed.
The creators of the SWaT testbed based the different layers on a basic ICS network
architecture [24].

The six different stages of the water treatment process include the
following:

p1 This stage is controlling the inflow of the raw water. Valve
can be opened and closed.

p2 Raw water is chlorinated and then pumped into another
tank.
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2.1 ics security 11

p3 The water is filtered using a Ultra Filtration (UF) system.

p4 This stage is a de-chlorination process using ultraviolet
lamps to remove any remaining chlorine.

p5 The water will go through a Reverse Osmosis filtration
unit. The filtered water is then stored in the permeate
tank, and is ready for the distribution.

p6 The last stage is in control of the cleaning of the UF unit.

Figure 6 shows an overview of the six subprocceses of the SWaT
testbed [25]. For every subprocess corresponding sensors and actua-
tors are represented in this diagram. These field devices are all given
a name such as FIT for a flow meter and P for a pump. The first num-
ber that is given indicates to which subprocess the device belongs to.
A description of the 51 devices can be found in Table 9 in Appendix
A [24].

2.1.2 Attack Scenarios

Goh et al. [24] collected data from the SWaT testbed while launching
attacks on the testbed. For defining the attacks they used the attack
model that is defined by Adepu and Mathur [26]. The attacks were
launched through the network between layers 2 and 1 (Fig. 5). Before
sending the network packets to the PLCs, Goh et al. manipulated the
data from sensors and actuators by hijacking the packets.

They identified different types of attack points such as a physical
element (e.g. a sensor or actuator) or a point to access a communica-
tion network. Based on the available attack points, Goh et al. defined
four different types of attacks [24].

single stage single point (sssp) This attack only focuses
on one point in an ICS.

single stage multi point (ssmp) This attack focuses on mul-
tiple attack points that are present in one stage.

multi stage single point (mssp) This attack is a single point
attack but performed on multiple stages.

multi stage multi point (msmp) This attack is performed
on multiple stages and based on multiple attack points.

In total there were 36 attacks in the dataset that actually affect the
physical state of the testbed. As the focus here is on the physical
process, only these 36 attacks are included in this study. The dataset
contains 23 SSSP, 6 SSMP, 4 MSSP and 3 MSMP attacks. Some attacks
are launched in succession without letting the system to fully stabilise
before the new attack, in contrast to other attacks where the system
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Figure 6. Process overview of the SWaT testbed.
There are six subprocesses (i.e. P1-p6) in the testbed [25]. The field devices are
divided by subprocess. The first number indicates to which subprocess it belongs
to. Not all devices that are named in Table 9 are in the overview. Some devices in
the table act as backup device.

was able to stabilise until normal operations. The difference in the
stabilisation phases are due to how advanced the attacks are and what
effect they have on the system [24]. A short description of the 36

different attack scenarios can be found in Table 10 in Appendix A.
In addition, Table 12 shows some more information on the scenarios
including the duration of the attacks, start time and the type.
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2.2 state machines 13

2.2 state machines

State machines are mathematical models which are used in various ar-
eas. They are also known as automata or finite state machines, as they
have a finite number of states. Examples of their use are defining lan-
guages, designing protocols and modelling behaviour of numerous
applications. A state machine can move from one state to another by
receiving inputs. As mentioned before, in this study we use a type
of finite state transducers, which specifies a transition with input and
output symbols.

2.2.1 Finite State Transducers

As elaborated in the previous chapter, in this study behaviour will be
modelled as a finite state transducer (FST). Where a normal finite state
machine only uses an input tape to move from one state to another
state, a finite state transducer can also generate an output. This can
also be seen as a mapping between two sets of symbols: the input and
the output alphabet. See Definition 2.1.

Definition 2.1 Finite State Transducer A = (Q,Σ, Γ , δ,ω,q0, F) where Q
is a finite set of states, Σ is the input alphabet, Γ is the output alphabet,
δ : Q× Σ → Q is the transition function given a state and symbol to the
next state, ω : Q× (Σ ∪ {ε}) → Γ is the output function where ε is the
empty string, q0 is the start state, and F is a set of final states.

For every transition in a finite state transducer an input and out-
put symbol is associated. This defines a relation between the input
and output alphabet. A transition from one state to another can be

defined as: s
i/o−−→ s ′. It holds a pair of symbols: i/o. Thus where a

normal finite state machine defines a set of accepted strings, a finite
state transducer defines the relation between the sets of strings. In
this thesis, it will define the relation between the behavior of the sensors
and the behavior of the actuators.

A Mealy machine is a type of finite state transducer, as it holds an
input and an output alphabet. Every output is determined by both
the current state and the input value. The difference with the Mealy
machines is that it does not contain a set of final states. This means
that there are no input strings that can be accepted in a final state,
instead every transition generates an output. A formal definition of
the Mealy machine can be found in Definition 2.2.

Definition 2.2 Mealy machine M = < S, s0, I,O, δ, λ > where S is a finite
nonempty set of states, s0 is the initial state, I is the input alphabet, O is
the output alphabet, δ : S× I → S is the transition function given a state
and input symbol to the next state, and λ : S× I → O is the output of the
transition given a state and input symbol.
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2.2.2 MIMO Mealy Machine

A more complex variant of the Mealy machine can be a variant with
multiple inputs or multiple outputs or both (MIMO). The Mealy ma-
chines that will be created of the behaviour of the SWaT testbed will
not consist of the mapping between an input tape and an output
tape, instead there will be x tapes and the relationship between these
x tapes where x > 2. Every x will represent a device (e.g. sensor or
actuators) that will be included in the Mealy machine. See Definition
2.3.

Definition 2.3 MIMO Mealy machine MM = < S, s0, {Di}, δ, λ > where
S is a nonempty set of states, s0 is the initial state, {Di} are the alphabet
sets belonging to the devices included in this machine, where i ∈ 0..x, δ :

S×D0 → S is the transition function given a state and the symbol of the
first device to the next state, and λ : S×D0 → {Di} is the function that
outputs the symbols of the other devices given a state and symbol where
i ∈ 1..x

As can be seen in Definition 2.3, δ is similar as in the normal vari-
ant of the Mealy machine but instead of using the input alphabet I to
determine the next state, the alphabet of the first device is used. Then
the output function λ defines the symbols of the other devices accord-
ing to the first one, i.e. it reads symbol D0 which then determines the
other symbols.

2.2.3 Timed Mealy Machine

In order to include the concept of time, transitions will be trans-
formed into time-based transitions. This means adding a time de-

lay guard to the transitions. A transition will become s
d0/.../dx/t−−−−−−−→ s ′.

This time delay guard defines in what time frame the machine should
move to the next state when reading the next symbols.

2.2.4 Probability

In addition to time, the learning tool that is used is also able to learn
probabilities. This is quite useful for our model of normal behaviour,
as the time series data that is used may contain some noise. This leads
to modelled behaviour that is not very likely to occur often. Using the
probabilities in a transition the model specifies which transitions are
most likely to happen.
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2.2.5 Determinism

A Mealy machine is a deterministic FST, meaning that given a state
and an input value there is only one transition possible. However, for
our Timed MIMO Mealy machine it is possible to have more than
one transition given a state and input value if there is a different time
frame.

In addition, if we consider D0 to be the input value, the output is
not always deterministic. It might happen that there is a state from
which two transitions can be taken, for example with the symbols
’1/2/2’ and ’1/2/1’. In such a case we consider the probabilities of
both transitions, as one of the two is presumably noise in the be-
haviour that was still modelled.

2.3 automata learning

Automata learning has been proven to be quite useful in the area of
studying unknown behaviour of a system [27]. Two types of learning
algorithms can be distinguished here which are passive and active
learning. Active learning is also known as query learning and can be
defined as a learner (e.g. an algorithm) that will query an oracle (e.g.
a system) [23]. This also means that access to the system is required.
For a passive learning algorithm this is not necessary, instead it will
learn from collected data samples.

In this study an automaton (state machine) will be passively learned
from a dataset. More specifically, the RTI+ tool that is being used,
that implements an automata learning algorithm, will create a proba-
bilistic deterministic real-time automaton (PDRTA). This algorithm is
based on the evidence-based state-merging algorithm and makes use of
a red-blue framework [28]. More on this algorithm can be found in the
study from Verwer et al. [22], [28]. More on how this tool is used in
this study can be found in Section 3.3.

In the following sections the most important steps that are taken in
an automata learning algorithm are explained. This includes creating
a tree from the data sequences, merging states and splitting transi-
tions.

2.3.1 Prefix Tree

In an automata learning algorithm which will learn from data se-
quences, the algorithm starts with creating an automaton in the shape
of a tree [22]. All data sequences are represented in this tree and se-
quences with the same prefix are merged together. These data sequences
can be seen as an input string. Every data element of a sequence - or
symbol in the input string - is defined as a transition in the tree. An
example of a prefix tree can be found in Figure 7.
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The data strings from which the automaton tree is created are for
example the following: ABC, CD, CDA, ABCDA, BCD, ACDAB.
Two graphical examples of sequences can be found in Figure 8. The
figure shows time series data that is represented as a sequence of
symbols. Such sequences will also be the input to the RTI+ tool. More
information on this tool can be found in Section 3.3.

As time is also included in the learning process, every symbol that
is being read and put into the tree comes with a time guard, i.e. (A,
10) , (B, 5), (C, 10) (Fig. 8). In order to learn the time guards for every
transition in a later stage, the initial guards for every transition are
set to the minimum and maximum values that were observed in the
timed data sequences. The minimum observed timeguard is 5 and
the maximum value is 15, as symbol D has a time guard of 15. That
is why in Figure 7 all transitions get initially time guard [5,15]. A
transition can be defined as < q,q ′,a, t >, where a state machine is
in state q, and moves to transition q’ after time t and after reading
symbol a.

Because all the data strings represent the normal behavior of a sys-
tem (e.g. positive data), the automaton tree does not contain any re-
jecting states. Also because the behavior is continuous, there are no
accepting states.

Figure 7. Prefix tree from data sequences.
The first phase of automata learning. All data sequences are put into the automaton
in the shape of a tree. A transition includes an input symbol and time frame. As
example it shows that sequence ABC and ACD are merged.
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2.3 automata learning 17

Figure 8. Two examples of time series data sequence.
Input examples for automata learning from time series data. Data will be
represented as a sequence of symbols with a timeframe. The second example shows
a small difference in the signal which leads to a slightly different sequence of
symbols, i.e. ABCDABC and ACDABCD.

2.3.2 State Merging

After the automaton tree is created from the data sequences, the ac-
tual learning will start. The learning algorithm will try to merge pairs
of states to make the state machine as small as possible. In the RTI+
tool the algorithm uses a evidence-based state merging approach to
decide whether to merge or not [22].

To decide if two states should be merged, two models will be con-
sidered. The automaton before the merging and the automaton after
the merging. By applying a likelihood-ratio test the tool can decide
if the new model with the merge scores better than the model with-
out the merge. Otherwise the merge will be undone. In this case the
likelihood-ratio test is used as the statistical evidence in this evidence-
based state merging algorithm.

2.3.3 Transition Splitting

Because of the use of a time values in the transitions, a transition
< q,q1,a, [5, 15] > can for example be split into two new transitions:
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< q,qs,a, [5, 9] > and < q,q ′s,a, [10, 15] >. The decision to split a
transition is made in the same way as the merging process, using a
likelihood-ratio test.
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M E T H O D O L O G Y

The different steps that are taken to achieve the objective of this thesis
are based on the proposed architecture by Caselli et al. [10]. Figure
9 shows an overview of these steps. In their study, Caselli et al. also
propose an approach for a sequence-aware intrusion detection system
(S-IDS) and focus on sequence attacks in ICS.

There are four different phases defined in the architecture. It starts
with the reader, which takes raw data from all the sensors and actu-
ators of the SWaT testbed as an input. This includes the time series
data that is used for learning the behaviour model, but also the time
series data that is used for testing this model. Finally, for real-time
use, this should be data of a certain time frame that will be added
continuously, which then can be tested for anomalies.

After collecting all the data, data streams per subprocess will be
input into the sequencer. For every subprocess the signals of the corre-
sponding devices are joined together as they will define the behaviour
of this subprocess. These joined input streams will be transformed

Figure 9. The four phases of this study.
Based on the architecture of the sequence-aware IDS proposed by Caselli et al. [10].
Historical data is used for the modelling. Monitored data or real-time data will go
directly from the sequencer phase to the detection phase.

19
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into the right representation such that the next phase can use the data
to learn the behavioural model. In able to learn, in our case, timed au-
tomata from time series data, the data will thus be transformed into
timed event sequences.

In the modeler phase an existing tool will be used that implements
an automata learning algorithm. More on this tool can be found in
Section 3.3.

Our detection phase differs from Caselli et al. where they explain
that the output from the model phase is a trained model and a de-
tection model, we only need a trained model. Instead the test data is
coming from the sequencer phase directly, where monitored signals
are transformed into timed event sequences. The detection phase is
explained in Section 3.4.

3.1 dataset

To perform this research, collected data from the Secure Water Treat-
ment (SWaT) testbed is used [21]. This Secure Water Treatment system
is an operational testbed which is similar to an actual water treatment
plant but in a smaller scale. A testbed is a good resemblance of a real-
life system in which security measures can be tested in an appropriate
way. SWaT is a hybrid system and is designed for doing research on
ICS cyber-attacks, detection techniques and ICS security [21].

Goh et al. [24] created a dataset for this purpose including 36 dif-
ferent attack scenarios. There were 11 days of data collection on the
SWaT testbed of which there were 6 days of collecting data of the
normal behaviour of the system, following with 5 days of behaviour
including the launched attacks on the system. The first 6 days will be
used as training data, to create the behaviour model of the normal
operations of the testbed. The other 5 days, including the attacks, can
then be used for testing.

The data was collected from 51 sensors and actuators, hence the
dataset holds physical properties of the SWaT testbed which can be
used to study the cyber-attacks. The dataset comprises 946,722 sam-
ples and 53 attributes. For 11 days, every second one data sample
was collected for each of the attributes. All data samples include a
timestamp and a label which is "Normal" or "Attack". Table 1 shows
an example of the dataset with the physical properties.
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3.2 data transformation 21

Timestamp FIT101 LIT101 MV101 P101 P102 AIT201 · · · Normal/Attack

28/12/2015 10:00:00 AM 2,427057 522,8467 2 2 1 262,0161 · · · Normal

28/12/2015 10:00:01 AM 2,446274 522,886 2 2 1 262,0161 · · · Normal

28/12/2015 10:00:02 AM 2,489191 522,8467 2 2 1 262,0161 · · · Normal

28/12/2015 10:00:03 AM 2,53435 522,9645 2 2 1 262,0161 · · · Normal

28/12/2015 10:00:04 AM 2,56926 523,4748 2 2 1 262,0161 · · · Normal

28/12/2015 10:00:05 AM 2,609294 523,8673 2 2 1 262,0161 · · · Normal

Table 1. Example of SWaT dataset.
In total there are 53 attributes and 946,722 samples. Every sample has a timestamp,
the values of the devices at that time, and a label which indicates if this is normal
behaviour or if an attack is happening.

3.2 data transformation

To be able to use the data as input to the learning algorithm and also
as input to the state machine itself for testing, we need to transform
the data into sequences. This is done in the sequencer phase. The data
signals will be made discrete, by splitting them into segments (e.g.
events), the segments will be grouped and every group is given a
symbolic representation. After the discretisation, timed event sequences
will be created in order to learn a Timed Mealy machine. Because for
every subprocess one Timed Mealy machine will be created, multiple
signals need to be combined which should result in a Timed MIMO
Mealy machine, i.e. a Mealy machine with multiple inputs and mul-
tiple outputs. This phase, the preprocessing of the data, is done in
Python.

3.2.1 Discretisation of Signals

The first step after reading the time series data from the Secure Wa-
ter Treatment plant is to discretise the sample signals. An example of
a signal received from the LIT101 sensor which measures the water
tank level in subprocess 1 can be found in Figure 10. As in a state ma-
chine a process will be represented as a sequence of multiple events,
it is essential to make a continuous signal discrete. This is necessary
to determine when a system is in a similar state. In Figure 11 a part
of the signal from an actuator (P101) is represented.

Before starting with the segmentation of the signals to create event
sequences, some signals need to be denoised. As can be seen in Figure
10, there is still some noise present in the signal, which will cause the
segmentation algorithm to create too many small segments. So to
improve the segmentation results we will first denoise some of the
signals by using a simple averaging filter. The signal after denoising
can be found in Figure 12. In this case, the averaging filter is applied
with a step of 70, which results in a decreased amount of samples
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Figure 10. Signal from LIT101 sensor.
LIT101 is a level transmitter that measure the level of the raw water tank.

Figure 11. Signal from P101 actuator.
P101 is a pump that pumps water from the raw water tank to the second stage. In
the plot ’2’ means on and ’1’ means off.

with factor 70. In the next stage the sample size will be set to normal
in order to align multiple signals with the right time frame.

Online Segmentation Algorithm

By using a segmentation algorithm the signal will be split into dif-
ferent segments. To determine the segments we will make use of
piecewise linear approximation (PLA). A sliding window approach
is used similar as in [19]. A window will slide over the data points
to apply linear interpolation, which represents the segments. The al-
gorithm applies the interpolation for two data points, and proceeds
by including the next data points until the calculated error of a po-
tential segment exceeds the threshold which is manually specified
beforehand and depends on the signal. This way the approximated
segments can be determined without knowing the size of a segment
beforehand. As this is an online algorithm it is not necessary to have
a complete dataset beforehand, and therefore this can in the end be
used for real-time attack detection. The used algorithm is based on
the algorithm described in Keogh et al. [29].
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Figure 12. Denoised signal from LIT101 sensor.
The signal is denoised using an averaging approach. In this case with a step of 70.

Symbolic Representation

After the segmentation of the signals, a quantile-based discretisation
function is used to group the segments into bins and give each bin
a symbol. The grouping of the segments is based on the differential
value of every segment. The amount of bins differ per signal and have
to be specified manually by considering the type of signal. The sym-
bols represent the events of a signal, with the final purpose of speci-
fying the relation between multiple signals at a certain time frame.

In Figure 13 and Figure 14 the LIT101 and P101 signals are again
visualised but this time they are represented with the segments and
their symbols. For the signal of the LIT101 sensor this results in the
following event sequence: 3 4 2 1 3 4 2 1 3. Such a string of symbols
can be read into a state machine.

Figure 13. Segmented signal from LIT101 sensor.
A symbolic representation is given to the similar events. This results in an event
sequence: 3 4 2 1 3 4 2 1 3. The grouping of the events is based on their differential
value.
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Figure 14. Segmented signal from P101 actuator.
A symbolic representation is given to the similar events. In the case of the pump
there are only 2 different events, i.e. on and off.

3.2.2 Timed Event Sequence

A timed string is constructed by adding a time value for every el-
ement (symbol) in the sequence. The time value represents a time
span, where a value ti εN for element ei, is the time in seconds of
the duration of an event (ei, ti).

The final result should be a timed string which we define as a se-
quence of events: (e1, t1)(e2, t2)(e3, t3)...(en, tn) where ei is an input
element and ti a time value. The learning algorithm then learns an
automaton from a set of these timed strings.

3.2.3 Alignment of Signals

In order to create a model of the behaviour of multiple signals, we
first need to align the signals together. When taking a look at the defi-
nition of the general Mealy machine, it takes a pair (i/o) to move from
one state to another. In this case it can also be a triple, quadruple etc.,
for example when aligning signals of four devices (e.g. D1/D2/D3/D4).
We define this as a MIMO Mealy machine, where instead of two tapes
and the relation between these two, there are in this case four differ-
ent tapes.

The following example shows the aligned segments of the four de-
vices in subprocess 1 for a part of the training data. See Table 9 in
Appendix A for a list of all the devices. The alphabet of deviceD0 con-
tains four different symbols, the other devicesD1,D2 andD3 have an
alphabet of two symbols. The different events in a signal were given
numbers starting from 1.
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The example also shows the time frame per event in seconds. As
can be seen, the process has two full cycles in 8400 seconds, which is
2 hour and 20 minutes.

[0, 2380] 3/1/1/1

[2380, 3010] 4/1/2/1

[3010, 3500] 2/2/2/2

[3500, 4130] 1/2/1/2

[4130, 6650] 3/1/1/1

[6650, 7210] 4/1/2/1

[7210, 7700] 2/2/2/2

[7700, 8400] 1/2/1/2

[8400, 10850] 3/1/1/1

As mentioned before, the final input to the modeler should be a
timed event sequence, so the last step here would be to transform the
output after the alignment into a timed event sequence in the form of
(d1/d2/d3/d4, t)1, (d1/d2/d3/d4, t)2, ...(d1/d2/d3/d4, t)n. The time
value t is in seconds and represents the duration of an event. This
results in the following.

(3/1/1/1, 2380), (4/1/2/1, 630), (2/2/2/2, 490), (1/2/1/2, 630),

(3/1/1/1, 2520), (4/1/2/1, 560), (2/2/2/2, 490), (1/2/1/2, 700),

(3/1/1/1, 2450)

3.2.4 Learning and Testing

As can be seen in Figure 9, the sequencer phase has two outputs,
of which one is acting as input to the modeler, and the other one is
going directly to the detection phase. Both the training data as testing
data are transformed into timed event sequences. The training data
is used to learn the behaviour models of the SWaT testbed and the
resulting sequences of the testing data are monitored for anomalies
in the detection phase.

3.3 automata learning

Automata learning can be seen as inferring state machines or automata
from data sequences. The models are created in two steps, first the
RTI+ tool learns real-time automata (RTA) from the sequences, sec-
ondly these automata are transformed into Timed MIMO Mealy Ma-
chines (TMMM). This transformation is necessary because one au-
tomaton represents a subprocess that includes multiple signals that
all need to be monitored for anomalous behaviour.

3.3.1 Indirect Learning with RTI+

The RTI+ tool that is used in this study stands for real-time identifica-
tion from positive data and is written in C++ [30]. This tool is able to
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identify a probabilistic deterministic real-time automaton (PDRTA) from
positive data, i.e. monitored data of normal behaviour [22]. The algo-
rithm is based on evidence-based state merging (EDSM). Statistical
evidence is collected to decide to merge a pair of states or split a
transition into two transitions. RTI+ is using a likelihood-ratio test as
evidence.

Verwer et al. [22] define a real-time automaton as follows:

Definition 3.1 (RTA) A real-time automaton is a 5-tupleA = 〈Q,Σ,∆,q0,
F〉, where Q is a finite set of states, Σ is a finite set of symbols, ∆ is a finite
set of transitions, q0 is the start state, and F ⊆ Q is a set of accepting states.
A transition δ ∈ ∆ in an RTA is a tuple 〈q,q ′,a, [n,n ′]〉, where q,q ′ ∈ Q
are the source and target states, a ∈ Σ is a symbol, and [n, n’] is a delay
guard.

A PDRTA is a RTA which is deterministic meaning that there is
only one transition given a symbol, source state and delay guard.
Another characteristic that was added in the RTI+ tool is probability.
Every transition will be assigned a probability, which is identified by
counting the frequency of a sequence of events. The probability is
used for classifying the test data. As previously mentioned, as only
positive data is used for identifying the automata, there will be no
accepting states in the PDRTA.

As in the end we want a Timed MIMO Mealy Machine of the nor-
mal behaviour of the SWaT testbed, this method can be seen as indi-
rect learning by first identifying a PDRTA with RTI+, and next trans-
form the PDRTA into a TMMM such that it can be used for anomaly
detection.

3.3.2 Algorithm RTI+

The algorithm used for RTI+ can be found below. The state merging
and transition splitting is using a red-blue framework. More informa-
tion on RTI+ tool and the used framework can be found in Verwer et
al. [22].
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Algorithm 1 Real-time identification from positive data: RTI+
Require: A set of timed strings S+
Ensure: The result is a DRTA A

Construct a timed prefix A tree from S+, color the start state q0 of A red
while A contains non-red states do

Color blue all non-red target states of transitions with red source states
Let δ =< qr,qb,a,g > be the most visited transition from a red to a blue state
if the lowest p-value of a split is less than 0.05 then

perform this split
else if the highest merge p-value is greater than 0.05 then

perform this merge
else

color qb red
end if

end while

3.3.3 Input to Modeler

Similar as in Lin et al. [19] we create timed event sequences with a
length of two full process cycles. This can be a different length of events
in a sequence per subprocess as every subprocess can have a different
amount of stages it goes through. All the testing data available is
divided in these sequences which is the final input to the RTI+ tool.
Every two successive sequences have an overlap of one cycle to make
it easier for the tool to learn the loops in the behaviour [19].

3.3.4 Output RTI+

The following is an example output of RTI+.

0 1 [0, 2400]->1 #30 p=0.3125

0 1 [2401, 2460]->-1 #19 p=0.197917

0 1 [2461, 2640]->-1 #12 p=0.125

0 2 [0, 2640]->-1 #15 p=0.15625

0 3 [0, 2640]->-1 #15 p=0.15625

0 4 [0, 2640]->-1 #3 p=0.03125

0 5 [0, 2640]->-1 #1 p=0.0104167

0 6 [0, 2640]->-1 #1 p=0.0104167

1 2 [0, 2640]->2 #52 p=0.928571

1 3 [0, 2640]->-1 #4 p=0.0714286

2 3 [0, 2640]->3 #51 p=0.980769

2 4 [0, 2640]->-1 #1 p=0.0192308

3 1 [0, 2640]->-1 #1 p=0.0196078

3 4 [0, 2640]->4 #50 p=0.980392

4 1 [0, 2640]->1 #50 p=1

The first line can be read as starting state 0, reading symbol 1 with
time guard [0, 2400]. These three values determine that the next state
is 1 and the probability is 0.3125 where 30 sequences were observed
that took this transition. The example shows that some transitions
move to a state −1, which is called a sink state. This happens when
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a sequence of events does not occur so often. Therefore a sinkstate
arises as it was not able to merge with another existing state.

This textual version of the identified automaton is used for the
anomaly detection, which is also done in C++. The tool also creates
a graphical representation of the automaton for visualization. All the
models can be found in Appendix B.

3.3.5 Transformation

As can be seen in the previous example, the symbol is just one value.
As the RTI+ is not able to learn an automaton with more than one
tape, i.e. a Mealy machine, it reads for example ’3/1/1/1’ as one
symbol. That is why we need to ’transform’ or basically decompose
the symbol such that all the values can be used for the next phase.

3.4 anomaly detection using automata

The final phase is the anomaly detection phase where the learned TM-
MMs are used as a one-class classifier to classify the testing data as
normal behaviour or anomalous behaviour.

3.4.1 Classification

In the detection phase the monitored sequences will be classified
as normal behaviour or as anomalous behaviour according to the
learned models. After creating an error scoring list for a monitored
sequence, threshold values are used to determine if an alarm will be
triggered, thus classified as anomalous, or not.

The error scoring list can be seen as prioritising the detected anoma-
lies. As there is still some noise in the signals it is not feasible to
trigger an alarm for every small anomaly that is observed. Therefore
every event in a sequence will be given an error score between 0 and
1. While running a sequence through the learned state machine, an
event is getting score 0 if the next transition can be fired perfectly
given the current state of the system, the symbols that are read, and the
right timing. If the next transition cannot be fired due to invalid sym-
bols, wrong timing or the next state is a sink state, then this event will
be given a score between 0 and 1 depending on the type and quantity
of anomalies.

In addition, we consider the probability of a transition. It is pre-
ferred to see behaviour that is most likely to happen according to the
model. When looking again at the output of RTI+ in Section 3.3.4, it
shows that often when the probability is lower than 0.2, the transition
moves to a sink state (−1). We use the probability in the transitions
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to check which behaviour is most likely to occur and only use the
transitions that have at least a probability of 0.2.

The error score is calculated by comparing what the sequence should
have looked like according to the model. This is different than in TA-
BOR [19], where as soon as a read symbol in the sequence could
not be fired for transition, the whole sequence was classified as an
anomaly. A model in TABOR represents the behaviour of a single
sensor, where our models represent the behaviour of a subprocess,
which can lead to more anomalies due the multiple devices that are
involved. In the end every sequence will have an error list with a
score between 0 and 1 for every event in this sequence.

3.4.2 Evaluating Performance

For evaluating the performance of the classification we need the ground
truth labels of the testing sequences. In the time series dataset every
sample is labeled as Attack or Normal. Whether the label of a sequence
is attack or normal, is determined by the events in this sequence. If
there is at least one attack sample present in an event, the whole
event is labeled as attack. This results in a list with labels for every
sequence, e.g. [000011100] where 0 means a normal event and 1 is an
attack event. Finally, a sequence gets the label attack if there is at least
one attack event (1) in the sequence. This is because the shortest at-
tack takes only 10 minutes, which means that the attack frame can fall
within a time frame of a single event. In the end, these ground truth
labels are used for the performance measurement and are compared
to the predicted labels which are the result of the classification, i.e. if
a sequence got rejected by the TMMM, check if the the sequence was
also labeled as ’Attack’.

See Table 2 for the confusion matrix that is used in this study. In an
early testing phase the results showed a lot of false positives, mean-
ing a lot of falsely detected anomalies, which makes an IDS less ef-
ficient for final use. An important objective when creating an attack
detection approach is to find the right balance between the false posi-
tives and the true positives. We want to minimize the amount of false
alarms but simultaneously also be able to detect actual anomalous
behaviour. For this purpose the thresholds are used as they are set to
determine whether a sequence will trigger an alarm.

The thresholds are set per model by having multiple iterations and
selecting the threshold that gives the best performance. More on the
thresholds can be found in Section 4.2.2. The following performance
metrics are used:

precision Amount of correctly detected anomalous behaviour
among all detected anomalous behaviour: TP

TP+FP
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recall Amount of correctly detected anomalous behaviour
among all anomalous behaviour: TP

TP+FN

f measure 2 · precision·recall
precision+recall

accuracy Percentage of correctly classified behaviour sequences:
TP+TN

TP+TN+FP+FN

Actual behaviour Detected behaviour

Normal Anomaly

Normal True Negative (TN) False Positive (FP)

Anomaly False Negative (FN) True Positive (TP)

Table 2. Confusion matrix.
Metrics used for the performance of a classification model. In this study we define
the positive data as the anomalous behaviour.
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L E A R N I N G B E H AV I O U R O F T H E S WAT T E S T B E D

This chapter shows the results of the model learning. As explained in
Chapter 3, the time series data that was collected from the testbed is
transformed into timed event sequences and subsequently, the signals
are put together per process. This chapter elaborates more on the
different type of signals in a model and the difficulties that arose from
those differences. It shows the input of the modelling tool which are
the aligned signals, and the output: the learned models. Lastly, the
performance of the model learning is discussed.

4.1 model learning

For the model-based anomaly detection approach six models of the
six subprocesses are learned. We include all the devices per subpro-
cess (see Table 3). All the devices with a description can be found in
Table 9 in Appendix A.

Model Included in automaton Only value
monitoring

Sensors Actuators

1 LIT101, FIT101 P101, MV101

2 FIT201

MV201, P201, P203,
P205

AIT201, AIT202,
AIT203

3

LIT301, FIT301,
DPIT301

P302, MV301-MV304

4 LIT401, FIT401 P402, P403, UV401 AIT401, AIT402

5 FIT501-FIT504 P501

AIT501-AIT504,
PIT501-PIT503

6 FIT601 P601, P602, P603

Table 3. Devices per model.
We define six models, one for every subprocess. As for some devices it is not
possible to identify a symbolic sequence of the signals, these are only checked if
they exceed the minimum and maximum threshold.

The water level sensors (LIT) and differential pressure sensors (DPIT)
show clear sequential behaviour, therefore they can easily be used
for creating the behaviour models (Fig. 15). Unlike the signals of the
AIT and PIT sensors, which are not showing any repetitive behaviour.

31
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Figure 15. Signal from LIT101 sensor.
The signal from LIT101 shows clear stationary behaviour.

Figure 16. Signal from AIT201 sensor.
This sensor shows non-stationary behaviour, which leads to difficulties when
segmenting the signal.

This makes it difficult to create a state machine of such a signal as in
the pre-processing phase of the data it is already hard to define the
signal as a sequence of events. An example of such a signal can be
found in Figure 16. Therefore, in addition to learning the sequence
behaviour, also the values of signals will be monitored. A minimum
and maximum threshold value for the signals is determined and used
for monitoring. Naturally, this is done for all the signals. Table 3

shows from which devices it was not possible to learn the sequence
behaviour and thus were only used for value monitoring.

4.1.1 Input of the Modeler

For the first learned model the behaviour of the devices of subpro-
cess 1 are included, which are: LIT101/FIT101/P101/MV101. All the
signals are transformed into timed event sequences. The four signals
including their segments can be found in Figure 17. All the signals of
subprocess 1 will be aligned to create the final event sequence which
is the input of the learning algorithm. As can be seen in Figure 18,
the segments of the last three signals are aligned with the segments
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Figure 17. Segmented signals from Model 1.
The signals of the four devices in subprocess 1, LIT101, FIT101, P101 and MV101,
are segmented. You can see that the LIT101 signal defines four different events. The
other three devices only differentiate between two events. For example pump P101

can be on or off.

of the first signal. Then the final step for creating the sequences is
to combine the symbols of the events together with the right time
frames.

Similarly this is done for subprocesses 2-4. However, subprocess
5 and 6 gave some issues. As can be seen in Table 3, subprocess 5

includes the behaviour of many devices. Due to FIT sensors in this
subprocess showing non-stationary behaviour and a lot of noise, the
segmentation of the signals was already a problem. Symbols could
not be correctly assigned to the segments and consequently, the sig-
nals could not be correctly aligned. A similar problem occurs in sub-
process 6. The system is not able to correctly create the timed event
sequences for this subprocess as all the signals of the pumps stay con-
stant and in addition, the flow meter (FIT601) shows non-stationary
behaviour.

For both subprocess 5 and 6 it was not possible to differentiate
between the events and thus not able to assign the symbols to the
segments. As a result, all events got the same symbol.
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Figure 18. Aligned signals from Model 1.
The events of the signals are aligned according to the first signal, i.e. the LIT101

signal. This is because this signal changes most often to a different event.

4.1.2 Output of the Modeler

The resulting state machine for subprocess 1 is represented in Figure
19. This state machine is used for classifying the data sequences as
normal behaviour or anomalous behaviour. All the learned models
can be found in Appendix B. A transition in the model shows the
symbols, timeframe, the probability and the amount of sequences that
used this transition.

As for subprocess 5 and 6 we were not able to identify the sequence
behaviour, all the events got the same symbol. The learned models of
these two subprocesses are shown in Figures 31 and 32 in the Ap-
pendix. Although the learning tool was still able to create the state
machines, they are probably not useful in detecting any sequence
related anomalies. However, it is still possible to detect some anoma-
lies in these processes as we also monitor the values of the signals
to check if any thresholds are exceeded. The results of the anomaly
detection can be found in Chapter 5.
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Figure 19. Trained model of subprocess 1.
Main loop according to the probabilities in the transitions: S0 - S1 - S2 - S3 - S4 - S1

etc. Transition shows symbols for all devices in subprocess, the time guard, the
probability and the amount of observed training sequences taking this transition.
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4.2 performance

This section discusses the performance of the model learning, i.e. the
training phase. This includes the runtime, the amount of data that
is necessary to create a behaviour model of a subprocess, and the
evaluation of classifying the training data itself using the models.

4.2.1 Computation

Table 4 shows the runtime of the total training phase: learning six
TMMMs. We compare this with three other studies that also used the
SWaT testbed for testing a model-based anomaly detection approach
[18], [19]. In addition, it took at average 28 seconds to read all the
data of the 11 days (i.e. the training data and the testing data). As can
be seen, the behaviour of the six subprocesses can be learned quite
fast.

Method DNN SVM TABOR TMMM

Training
runtime

2 weeks 30 min 214 s 41 s

Table 4. Runtime comparison of training phase.
Runtime comparison with studies from Inoue et al. [18] and Lin et al. [19].

4.2.2 Evaluating Model with Training Data

In a first testing phase, we see how the model performs on the train-
ing data itself. For this a procedure based on k-fold cross validation
is used. As in time series data there are the temporal dependencies,
it is not possible to create random sub training sets. In the original
dataset the split in train set and test set is static, as only the last five
days of the data contain the attacks.

For testing with the training data we can have multiple splits. In
this case we use three splits. First iteration the model will be learned
from the first 100.000 samples and is being tested with the next 100.000

samples. The next iteration the model is learned from the first 200.000

samples and tested with the next 100.000 samples etc. We calculate
the training error for every split. The training error is defined as the
percentage of sequences that are incorrectly classified.

The testing shows that when we do not use any threshold for the
error lists, the training error is close to 1 (i.e. the accuracy is close to
0), meaning that almost all ’normal behaviour’ training sequences are
incorrectly classified as anomalous.

The cause here is that there is a lot of noise available in the signals.
We observe that the RTI+ tool filters out the noise (the unlikely be-
haviour) by making use of sink states and probabilities, which makes
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the models quite inflexible, i.e. not much leeway. The timed event se-
quences that are run through the state machine for classification do
still contain some noise which results in error lists shown in the exam-
ple below. In an error list, values above 0 mean an anomalous event
(see Sec. 3.4.1). One error list belongs to one sequence:

[0.5, 0.5, 0.0, 0.0, 0.25, 0.25, 0.0, 0.0, 0.0]

[0.25, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.25, 0.0]

[0.0, 0.0, 0.25, 0.25, 0.0, 0.0, 0.0, 0.0, 0.25]

[0.0, 0.0, 0.0, 0.0, 0.25, 0.25, 0.0, 0.0, 0.0]

When considering the example above, which shows 5 error lists
as a result of classification, we observe that if all of these sequences
will trigger an alarm, it results in many false positives. We can say
that the learned models are underfitted. If every sequence containing
some anomalous events, is interpreted as not ’accepted’ by the model,
there will be too many alarms. Therefore the thresholds are used to
add some leeway to the models.

Thresholds

We specify the first threshold as p ∈ [0, 1] that defines the percentage of
anomalies in an error list. Figure 20 shows that when the threshold is
0, the accuracy is close to 0, which means that almost all sequences la-
beled as normal, will be classified as anomalous. When setting thresh-
old p to 1, all normal sequences are correctly classified as normal by
the model. Now it seems that the threshold p should be 1, as it results
in the highest accuracy. However, it does not say anything about de-
tecting anomalies as we do not have anomalous labeled behaviour in
the training data.

That is why we decided to do the same for the test data, which
contains both normal and anomalous labeled data. Figure 21 shows
the results for testing with the test data with all the thresholds (i.e. 0.1,
0.2 etc.). Now it is visible that if p is 0.6, most sequences are classified
correctly. Figure 21 shows the results for testing with model 1. Testing
the other models resulted in the same threshold.

In addition we used a threshold h to measure the severity of the
anomalies by counting the amount of ’high’ scored anomalies. In the
example of the error lists above that would be a score of 0.75. The
threshold h was determined per model and depends on the length of
the sequence (i.e. in this study h ∈ [2..4]).

With the thresholds we can basically prioritise how important an
anomaly is. For now we want that these sequences with a minimal
error list do not trigger an alarm and that normal behaviour data is
indeed classified as normal. The thresholds were used in the classifi-
cation phase as a minimum requirement to trigger an alarm.
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Although we already showed the accuracy of the test data of model
1 in Figure 21, the evaluation of the performance of the anomaly de-
tection can be found in Chapter 5.

Figure 20. Performance of training data with different thresholds.
The figure shows that if there is no threshold (i.e. p = 0), the accuracy is close to 0,
meaning that almost all normal sequences are classified as anomalous sequences.
When increasing p the accuracy also increases. However, this only shows the
performance for testing with a part of the training data itself.

Figure 21. Performance testing data with different thresholds.
The figure shows a best performance when p = 0.6. These are the results when
testing with model 1. The testdata includes both normal and attack behaviour.

March, 2020



4.2 performance 39

4.2.3 Minimum Input Size

We trained the models with different amount of samples, for which a
learning curve can be seen in Figure 22. The figure shows that at least
30.000 samples (∼ 8 hours) were necessary to train the models of the
SWaT testbed and get an acceptable performance. The performance is
visualised as the accuracy when trying to classify a part of the train-
ing data itself. The accuracy is the percentage of correctly classified
sequences.

We observed that, when training the model with 100.000, 200.000,
300.000 or 400.000 samples, there was a minimal to no difference in
the state machines. Note that the minimum amount of samples obvi-
ously depends on the type of process, and that the minimum amount
as shown in Figure 22 is specific to the SWaT testbed.

Figure 22. Learning curve for different amount of input samples.
The performance is defined as the percentage of correctly classified sequences. The
curve shows that there is not a big difference in performance as long as there are
more than 30.000 data samples used to learn the behaviour model. However, in this
example we only tested with the training data. This means that although the model
is able to classify normal behaviour correctly, we still do not know how it performs
on anomalous behaviour data.
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5
A N O M A LY D E T E C T I O N U S I N G B E H AV I O U R A L
M O D E L S

This chapter shows the results of the anomaly detection using the six
behaviour models that were identified from the SWaT testbed. First
we define the different types of anomalies, based on the study by Lin
et al. [19], that are used in the attack detection approach. We discuss
the performance of the anomaly detection and also the ability of this
approach to detect the 36 attacks that were launched on the testbed.

5.1 types of anomalies

The final anomaly-based attack detection differentiates between four types
of anomalies:

sequence anomaly According to the current state, invalid sym-
bols are read, meaning the state machine cannot move to the
next state;

state anomaly State machine reaches a sink state, meaning that it
is not possible to continue from this state on;

timing anomaly Given the current state, the duration of the event
is not within the corresponding time guard;

value anomaly When a signal is exceeding a certain threshold.

The first three types are all detected by the learned state machine.
In addition, the signals are monitored and checked if they do not
exceed any thresholds (i.e. value anomalies). Using these different
types of anomalies the final attack detection system can indicate what
is happening in the system during the time of an attack, e.g. which
devices are behaving anomalously, does the system stays in a state
too long or too short, or does the system ends in an unknown state.

5.2 detecting anomalous behaviour

The performance of the classification of the test data per model can be
found in Table 5. This table shows the results of detecting anomalies
only using the state machines, thus the monitoring of the values of
the signals - the value anomalies - is not included here. The test data
is transformed into sequences, and every sequence will be classified,
as it is not possible to check if a single data point or a single event is
part of the state machine.

41
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Model TP FP FN TN Precision Recall Accuracy F

1 13 6 35 42 0.684 0.271 0.572 0.388

2 2 4 45 55 0.333 0.043 0.538 0.075

3 6 2 32 27 0.75 0.158 0.493 0.261

4 7 0 41 81 1.0 0.146 0.717 0.254

5 0 0 9 0 - - - -

6 0 0 56 75 0.0 0.0 0.573 0.0

Table 5. Performance of the separate models.
This table shows the performance of classifying the test sequences using the
models. This means that test sequences created for subprocess 1, are classified
using model 1 etc. The results of subprocess 5 are not a good representation of the
performance, as there were already difficulties in the sequencer phase. The high FN
rates are due to every model only representing a part of the behaviour of a system,
and thus not every model is able to detect all anomalous behaviour.

The metrics that are used in Table 5 can be found in Section 3.4.2.
The metrics from the confusion matrix (Table 2) can be defined as:

tp Correctly classified anomalous sequence

fp Normal sequence classified as anomalous

fn Anomalous sequence classified as normal

tn Correctly classified normal sequence

When looking at the performance metrics per model, the recall
rates are quite low, i.e. low TP and high FN. The high false nega-
tive values make it seem that a lot of anomalous behaviour is not
detected.

The cause of the low recall values is the fact that every model only
represents a sub part of the behaviour of the system and thus every model
is able to detect different anomalous behaviour. Therefore, even if a
model is not able to detect an anomalous sequence, another model
might. See Tables 10 and 11 for the attack scenarios which cause the
anomalous behaviour. The tables show which devices and subpro-
cesses they affect.

We observe that when considering the definition of recall, in this
study, all anomalous behaviour is difficult to define per model. We can
say that the recall is this low because it does not take into account
that not all attacks can be identified in every model, as an attack on
the testbed not necessarily affects all the subprocesses.

Consequently, as the true positives (the correctly detected anoma-
lies) will not be high per separate model, the main objective here was
to minimize the amount of false positives to make the attack detection
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as effective as possible. As already mentioned before, false alarms in
industrial control systems come at great cost.

Using thresholds mentioned in the previous chapters, the aim per
model was to find the balance between TPs and FPs. As can be seen in
Table 5 the ratio is different per model. Although the separate models
do not have a good performance, the main goal is to identify the
attacks with as little FPs as possible when all the models are combined,
which can be found in Section 5.3.

The results of Model 5 are not really representative, which is partly
due to the learned model. As can be seen in Table 3 in Chapter 4,
Model 5 includes many devices, of which many do not have station-
ary behaviour. This makes it difficult to learn a model which is a good
representation of the process behaviour. In addition, it appears that
in the sequencer phase the test data was divided in only 9 sequences,
which all have as ground truth label Attack. This is because the di-
vision of the testdata in 9 subsequences makes each sequence cover
a large time frame, resulting in each sequence including at least one
attack scenario. All the sequences were finally classified as normal be-
haviour, which in this context can be considered more practical then
all of them causing an alarm. Although this model was unable to de-
tect any sequence, timing and state anomalies, for the final detection
it is still possible to detect some anomalies by monitoring the signals
in subprocess 5.

Model 6 was not able to detect any anomalous behaviour which
corresponds with the used dataset, as the authors mentioned they
did not launch any attack on the devices in subprocess 6.

5.3 detecting the attack scenarios

The final goal of the anomaly-based attack detection is to detect the
anomalous behaviour that was caused by the 36 attacks that were
launched during the collecting of the test data. A description of the
36 attack scenarios can be found in Table 10 in Appendix A. For the
end result all models are combined and the signals will be monitored
to check if they exceed any thresholds.

The evaluation of detecting the attack scenarios is done similarly as
in Lin et al. [19] using a window-based method. For this evaluation
the following metrics are defined:

tp A correctly detected ground-truth attack scenario;

fp A detection without an overlap with any ground-truth
attack scenario;

fn A ground-truth attack scenario that was not detected.

It is called a window-based evaluation since we consider if a de-
tection frame overlaps the actual attack frame. Therefore, similar as
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in Lin et al., we do not examine the true negatives as this evaluation
is about detecting the attack scenarios, even if it detects too late, too
early or with correct timing.

In total 28 of the 36 attack scenarios were detected, compared to
13, 20, and 24 scenarios for DNN, SVM [18] and TABOR [19], respec-
tively. Table 11 in Appendix A shows per model which scenarios it
can detect. The final evaluation can be found in Table 6 below.

Precision Recall F measure TP FP FN

0.84848 0.77778 0.81159 28 5 8

Table 6. Performance of attack detection.
The final evaluation of the detected scenarios. This table shows the results when all
the models are used for classification and also the signals are monitored using their
values and thresholds. This leads to the detection of 28 scenarios and 5 false
positives over 5 days.

After combining all the models, the attack detection triggers five
false alarms in 5 days, which can be considered acceptable for this
first proof of concept. With a precision of 0.84848 we could say that
of all the alarms that this approach will trigger, around 85 percent is
true positive.

Sometimes it appears that an attack is detected only after it already
ended, which causes a false positive, which - if there was a ground
truth scenario - can still help the human operator to find out what
happened in the system. Another possibility, which can also be seen
in the data, is that the system is still stabilising after an attack was
launched on the system. The results showed that a majority of the
models detect anomalous behaviour in similar time frames after at-
tack 9. This can mean that processes are still recovering from the
previous attacks.

A detection frame that already starts before the attack scenario it-
self does not mean that an attack is detected before it even started.
As for real-time use, which is a final goal for this approach, the physi-
cal data will be the input and then checked for anomalous behaviour.
Then a time frame will be given in which anomalous behaviour is
observed, including which process and devices were involved. As in
this study we check data from 5 days altogether, we see in the results
where in the data the attack detection observes anomalous behaviour.
However, when this should be used in real-time, and alarm will go
off at the start of such a time frame.

5.3.1 Examples of Detection Results

Figure 23 shows a big detection frame (in red) for scenario 7 until
9. However, scenario was detected by model 3 and scenario 8 and 9

by model 4. This corresponds to the given scenarios, which can be
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found in Table 10 in Appendix A. In scenario 7 the value of DPIT301

is changed, and in 8 and 9 the behaviour of FIT401 is altered.
The figure visualises the large frames because when a detected

anomaly is of high priority, the whole sequence will be classified as
anomalous. While there might be some normal events observed in
between the attack events, they are not showing in the graph.

Figure 23. Detection of attack scenarios 1 until 9.
The graph shows a large detection frame for attack 7, 8 and 9. However, they are
detected by different models. See Table 11 in Appendix A to see which model
detects which scenario and on which process the attack was launched.

Figure 24 shows an example of a large detection frame which ’de-
tects’ scenario 10 until 16. They were all detected due to observed
anomalous behaviour in subprocess 3. Although scenario 10-13 do
indeed influence devices in subprocess 3, the other scenarios (14-16)
are possibly detected ’by accident’ because anomalous behaviour was
observed due to recovery, or they indirectly also influence the third
subprocess. However, scenarios 14 until 16 were also detected due to
observed anomalous behaviour in subprocess 1. An issue here can be
that although anomalous behaviour is observed, it does not necessar-
ily give the right origin of the attack.
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Figure 24. Detection of attack scenarios 10 until 16.
The graph shows a large detection frame, meaning that in this time frame
continuous anomalous behaviour was observed.

Figure 25. Detection of attack scenario 17.
Correct detection of attack scenario 17 that was launched on subprocess 4 and 5

(see Table 10) and also detected by model 4 and 5 (see Table 11).

Attack scenario 23 has a duration of almost 10 hours and closes off
pump P302. Figure 26 illustrates the detection of this attack which is
a quite accurate detection. It also detects attack scenario 22 which is
also launched on the same device.
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Figure 26. Detection of attack scenario 22 and 23.
Scenario 23 closed off pump P302 and took almost 10 hours. This attack was
detected by almost all models (see Table 11).

5.4 comparison with related literature

When comparing the performance with TABOR [19], SVM and DNN
[18], our TMMM approach shows around the same performance. Sim-
ilar as TABOR this approach shows a few more false positives but also
a higher recall, meaning that more attack scenarios are detected. The
performance results can be found in Table 7.

Method Precision Recall F measure

TABOR 0.86171 0.78803 0.82322

DNN 0.98295 0.67847 0.80281

SVM 0.92500 0.69901 0.79628

TMMM 0.84848 0.77778 0.81159

Table 7. Evaluation comparison.
Comparison of final evaluation of the detection of the attack scenarios with studies
from Inoue et al. [18] and Lin et al. [19].

The runtime is a little slow compared to TABOR [19] (Table 8). This
is mainly due to the creation of the testing sequences, the compari-
son between the detection results and the ground-truth scenarios for
measuring the performance, and the checking of the values of the
signals. However, we observed that the classification phase, where

March, 2020



48 anomaly detection using behavioural models

all the testing sequences are run through the model, only takes 0.2
seconds. Which is quite fast for 5 days of data.

For the final attack detection approach the runtime should be faster,
as the testing will not be done for 5 days altogether.

Method DNN SVM TABOR TMMM

Testing
runtime

8 hours 10 min 33 s 86 s

Table 8. Runtime comparison of testing phase.
Runtime comparison with studies from Inoue et al. [18] and Lin et al. [19].
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This study shows the efficiency of an attack detection approach using
models of the normal behaviour of the physical process of an indus-
trial control system. The models were automatically identified with-
out needing expert knowledge on the system in less than a minute
time. Time series data of the sensors and actuators were combined
together per subprocess and used to identify a TMMM model. In the
end we had six TMMMs that represent the behaviour of the SWaT
testbed. The learned TMMMs are useful to get a better understand-
ing of the processes, as they give insight into the different stages of
a subprocess and their duration. By making use of the visualisation
and the prioritisation of anomalies, this approach also improves the
efficiency for an operator of a monitoring system. In the end we were
able to create four good models of the first four subprocesses. How-
ever, the last two models were not giving a good representation of the
subprocesses and were also not usable for anomaly detection. Overall
the models were still able to detect 28 out of 36 attack scenarios and
the performance showed a final precision rate of 0.85.

Compared to the study from Lin et al. [19], where they only create
timed automata of some of the sensors and in addition need to learn
the dependencies between devices, our created TMMMs give insight
into how the signals in a subprocess are behaving together without
the need of combining multiple types of models. For future purposes,
when being used in real-time, this approach is able to show in which
subprocess, which device including signal values and in which time
frame anomalous behaviour is present.

When considering our first sub research question, the feasibility to
map an ICS process to a single model, we observed that it depends a lot
on the type of devices and the noise in the signals. A few devices,
such as the pressure meters and sensors that analyse values such as
the pH level or NaCl level, do not show any repetitive behaviour in
the used dataset. It might be possible to learn trends in signals when
more data is available, i.e. observing the processes over a longer time.
However, as many attacks include spoofing the values of such sensors
it might be enough to just monitor these values instead of learning
the sequence behaviour.

Nevertheless, the models of the first four subprocesses were, with-
out any complications, automatically identified from the time series
data. As can also be seen in Section 2.1.1, these four subprocesses
have a clear and repeating task involving a few actuators and a few
sensors. As compared to subprocess 5, which includes mostly sensors

49
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operating in the RO unit, i.e. a purification process. This can explain
the difficulty to identify the TMMM of subprocess 5. Furthermore,
subprocess 6 involves the cleaning which seems to be not active dur-
ing the data collection, as the values of the pumps involved, stayed at
a constant level. Hence, model 6 was not usable in the end.

We observed that the difficulties with learning models 5 and 6

started with the pre-processing of the corresponding signals of sub-
processes 5 and 6. The sliding window algorithm for segmentation
was able to detect segments in the non-stationary time series data.
However for the next step, where similar segments are grouped to-
gether based on their differential value, it was not possible to detect
similar trends in the signals. Even for the stationary signals it some-
times occurred that symbols were assigned incorrectly. Although it
was not part of the scope of this study to improve the pre-processing
of the signals, it is an important research topic in related literature.
For future improvements there could be more focus on the signal
processing phase.

The results in Chapter 4 also showed that when too many de-
vices are involved in a subprocess - of which many also show non-
stationary behaviour - it becomes more difficult to learn an usable
model. In future research, it might be possible to subdivide the groups
of devices. This leads in the end to more models, but they would be
more simple and conceivably also better in identifying anomalous be-
haviour. However, such a decision should be made manually and will
also influence the visualisation of the complete behaviour.

A sub goal of this study was to learn the models without need-
ing expert knowledge. We did have the process overview (Fig. 6) of
the SWaT testbed of which we derived the six subprocesses, i.e. six
models. For now we still needed to specify a few parameters for the
segmentation and denoising of the signals. However, this can be auto-
mated in the future. In addition, we needed to set the thresholds for
the classification. To determine the optimal thresholds we observed
that it is necessary to have anomalous labeled data. For future and
other cases it is important to use real or artificial attack data to test
the models and set the optimal thresholds, which finally will result
in better detection rates and less false alarms.

This leads to our second sub research question, using the TMMMs
to monitor the behaviour of an ICS, where we looked at the capabil-
ity to detect anomalous behaviour in the testbed and then particu-
larly the anomalous behaviour that was caused by the 36 launched
attacks. By making use of the aforementioned thresholds for the er-
ror lists, we are basically able to prioritise anomalies and reduce the
amount of false positives. The separate TMMMs did not show a good
performance (i.e. high FN rate), as it is most probable that a model
only detects anomalous behaviour from the attacks launched on the
corresponding subprocess. However, overall the proposed approach
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showed a good performance. Of the 36 attacks scenarios, this ap-
proach detected 28 correctly and raised 5 false alarms in total spread
over 5 days. When looking at the final precision of the attack detec-
tion we can say that of all the alarms the models trigger, around 85

percent is relevant.
As could be seen in Chapter 5, the detection results show detection

frames in which more than one scenario was detected. Due to time
constraints we did not yet visualise where the anomalous behaviour
was exactly located when an alarm was triggered. However, in further
research we can simulate the anomalous behaviour using the models
to give more insights into the attacks. In this study we showed that
models on an ICS could be learned efficiently without needing ex-
pert knowledge and that the models were able to detect anomalous
behaviour caused by launched attacks. The proposed models can also
be of great use for analysing attacks on industrial control systems by
first modelling the complete behaviour, and then visualise the attack
and see how it can affect a system.
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No. Device Type Description

1 FIT101 Sensor Flow meter; Measures inflow into raw water tank

2 LIT101 Sensor Level Transmitter; Raw water tank level

3 MV101 Actuator Motorized valve; Controls water flow to the raw water tank

4 P101 Actuator Pump; Pumps water from raw water tank to second stage

5 P102 (backup) Actuator Pump; Pumps water from raw water tank to second stage

6 AIT201 Sensor Conductivity analyser; Measures NaCl level

7 AIT202 Sensor pH analyser; Measures HCl level

8 AIT203 Sensor ORP analyser; Measures NaOCl level

9 FIT201 Sensor Flow Transmitter; Control dosing pumps

10 MV201 Actuator Motorized valve; Controls water flow to the UF feed water tank

11 P201 Actuator Dosing pump; NaCl dosing pump

12 P202 (backup) Actuator Dosing pump; NaCl dosing pump

13 P203 Actuator Dosing pump; HCl dosing pump

14 P204 (backup) Actuator Dosing pump; HCl dosing pump

15 P205 Actuator Dosing pump; NaOCl dosing pump

16 P206 (backup) Actuator Dosing pump; NaOCl dosing pump

17 DPIT301 Sensor Differential pressure indicating transmitter; Controls the backwash process

18 FIT301 Sensor Flow meter; Measures the flow of water in the UF stage

19 LIT301 Sensor Level Transmitter; UF feed water tank level

20 MV301 Actuator Motorized Valve; Controls UF-Backwash process

21 MV302 Actuator Motorized Valve; Controls water from UF process to De-Chlorination unit

22 MV303 Actuator Motorized Valve; Controls UF-Backwash drain

23 MV304 Actuator Motorized Valve; Controls UF drain

24 P301 (backup) Actuator UF feed Pump; Pumps water from UF feed water tank to RO feed water
tank via UF filtration

25 P302 Actuator UF feed Pump; Pumps water from UF feed water tank to RO feed water
tank via UF filtration

26 AIT401 Sensor RO hardness meter of water

27 AIT402 Sensor ORP meter; Controls the NaHSO3dosing(P203), NaOCl dosing (P205)

28 FIT401 Sensor Flow Transmitter; Controls the UV dechlorinator

29 LIT401 Actuator Level Transmitter; RO feed water tank level

30 P401 (backup) Actuator Pump; Pumps water from RO feed tank to UV dechlorinator

31 P402 Actuator Pump; Pumps water from RO feed tank to UV dechlorinator

32 P403 Actuator Sodium bi-sulphate pump

33 P404 (backup) Actuator Sodium bi-sulphate pump

34 UV401 Actuator Dechlorinator; Removes chlorine from water

35 AIT501 Sensor RO pH analyser; Measures HCl level

36 AIT502 Sensor RO feed ORP analyser; Measures NaOCl level

37 AIT503 Sensor RO feed conductivity analyser; Measures NaCl level

38 AIT504 Sensor RO permeate conductivity analyser; Measures NaCl level

39 FIT501 Sensor Flow meter; RO membrane inlet flow meter

40 FIT502 Sensor Flow meter; RO Permeate flow meter

41 FIT503 Sensor Flow meter; RO Reject flow meter

42 FIT504 Sensor Flow meter; RO re-circulation flow meter

43 P501 Actuator Pump; Pumps dechlorinated water to RO

44 P502 (backup) Actuator Pump; Pumps dechlorinated water to RO

45 PIT501 Sensor Pressure meter; RO feed pressure

46 PIT502 Sensor Pressure meter; RO permeate pressure

47 PIT503 Sensor Pressure meter; RO reject pressure

48 FIT601 Sensor Flow meter; UF Backwash flow meter

49 P601 Actuator Pump; Pumps water from RO permeate tank to raw water tank

50 P602 Actuator Pump; Pumps water from UF back wash tank to UF filter to clean the
membrane

51 P603 Actuator Not implemented in SWaT yet

Table 9. Actuators and sensors of the SWaT testbed.
The 51 devices of the SWaT testbed with description [24].
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No. Attack description

1 Open MV101

2 Turn on P102

3 Increase LIT101 by 1mm every second

4 Open MV504

5 Set the of AIT202 to 6

6 Water level LIT301 increased above HH

7 Set value of DPIT301 as >40kpa

8 Set value of FIT401 as <0.7

9 Set value of FIT401 as 0

10 Close MV304

11 Do not let MV303 open

12 Decrease water level LIT301 by 1mm each second

13 Do not let MV303 open

14 Set value of AIT504 to 16 uS/cm

15 Set value of AIT504 to 255 uS/cm

16 Keep MV101 on continuously; Value of LIT101 set as 700mm

17 Stop UV401; Value of AIT502 set as 150; Force P501 to remain on

18 Value of DPIT301 set to >0.4 bar; Keep MV302 open; Keep P602

closed

19 Turn off P203 and P205

20 Set value of LIT401 as 1000; P402 is kept on

21 P101 is turned on continuously; Set value of LIT301 as 801mm

22 Keep P302 on continuously; Value of LIT401 set as 600mm till
1:26:01

23 Close P302

24 Turn on P201; Turn on P203; Turn on P205

25 Turn P101 on continuously; Turn MV101 on continuously; Set
value of LIT101 as 700mm; P102 started itself because LIT301

level became low

26 Set LIT401 to less than L

27 Set LIT301 to above HH

28 Set LIT101 to above H

29 Turn P101 off

30 Turn P101 off; Keep P-102 off

31 Set LIT101 to less than LL

32 Close P501; Set value of FIT502 to 1.29 at 11:18:36

33 Set value of AIT402 as 260; Set value of AIT502 to 260

34 Set value of FIT401 as 0.5; Set value of AIT502 as 140 mV

35 Set value of FIT401 as 0

36 Decrease LIT301 value by 0.5mm per second

Table 10. Description of attack scenarios.
The original dataset contains 41 attack scenarios, however only 36 have physical
impact on the testbed. This table gives a description of these 36 scenarios [24].
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Attack No. Affected process
Detection by model

1 2 3 4 5

1 1

2 1 x

3 1

4 5

5 2

6 3 x

7 3 x x

8 4 x x

9 4 x x

10 3 x x

11 3 x x

12 3 x

13 3 x

14 5 x x

15 5 x x

16 1 x x

17 4,5 x x

18 3,6 x x x

19 2 x x

20 4 x x

21 1,3 x x

22 3,4 x

23 3 x x x x

24 2

25 1,3 x x x

26 4

27 3 x x

28 1 x

29 1

30 1

31 1 x

32 5 x x

33 4,5 x x

34 4,5 x x x

35 4 x x x

36 3 x

True positives 14 6 13 10 11

False positives 4 3 3 0 0

Table 11. Final detection of attack scenarios.
Model 6 is not included in this table as this model did not detect any anomalous
behaviour. The table shows that most of the attacks were detected by the model of
the process of which the attack was launched on. Some attacks were also visible in
the following processes. Although model 5 did not detect any sequence anomalies,
it did observe many anomalous behaviour in the values of the signals.
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No. Data
No.

Start time End time Samples Type

1 1 28/12/2015 10:29:14 10:44:53 [1755, 2694] SSSP

2 2 28/12/2015 10:51:08 10:58:30 [3069, 3511] SSSP

3 3 28/12/2015 11:22:00 11:28:22 [4921, 5303] SSSP

4 4 28/12/2015 11:47:39 11:54:08 [6460, 6849] SSSP

5 28/12/2015 11:58:20 No Physical Impact Attack

5 6 28/12/2015 12:00:55 12:04:10 [7256, 7451] SSSP

6 7 28/12/2015 12:08:25 12:15:33 [7706, 8134] SSSP

7 8 28/12/2015 13:10:10 13:26:13 [11411, 12374] SSSP

- 9 28/12/2015 14:15:00 No Physical Impact Attack

8 10 28/12/2015 14:16:20 14:19:00 [15381, 15541] SSSP

9 11 28/12/2015 14:19:01 14:28:20 [15542, 16101] SSSP

- 12 29/12/2015 11:10:40 No Physical Impact Attack

10 13 29/12/2015 11:11:25 11:15:17 [90686, 90918] SSSP

11 14 29/12/2015 11:35:40 11:42:50 [92141, 92571] SSSP

- 15 29/12/2015 11:52:01 No Physical Impact Attack

12 16 29/12/2015 11:57:25 12:02:00 [93446, 93721] SSSP

13 17 29/12/2015 14:38:12 14:50:08 [103093, 103809] SSSP

- 18 29/12/2015 18:08:55 No Physical Impact Attack

14 19 29/12/2015 18:10:43 18:15:01 [115844, 116102] SSSP

15 20 29/12/2015 18:15:43 18:22:17 [116144, 116538] SSSP

16 21 29/12/2015 18:30:00 18:42:00 [117001, 117721] SSMP

17 22 29/12/2015 22:55:18 23:03:00 [132919, 133381] MSMP

18 23 30/12/2015 01:42:34 01:54:10 [142955, 143651] MSMP

19 24 30/12/2015 09:51:08 09:56:28 [172269, 172589] SSMP

20 25 30/12/2015 10:01:50 10:12:01 [172911, 173522] SSMP

21 26 30/12/2015 17:04:56 17:29:00 [198297, 199741] MSSP

22 27 31/12/2015 01:17:08 01:45:18 [227829, 229521] MSSP

23 28 31/12/2015 01:45:19 11:15:27 [229522, 263728] SSSP

24 29 31/12/2015 15:32:00 15:34:00 [279121, 279241] SSMP

25 30 31/12/2015 15:47:40 16:07:10 [280061, 281231] MSMP

26 31 31/12/2015 22:05:34 22:11:40 [302654, 303020] SSSP

27 32 1/01/2016 10:36:00 10:46:00 [347680, 348280] SSSP

28 33 1/01/2016 14:21:12 14:28:35 [361192, 361635] SSSP

29 34 1/01/2016 17:12:40 17:14:20 [371480, 371580] SSSP

30 35 1/01/2016 17:18:56 17:26:56 [371856, 372336] SSMP

31 36 1/01/2016 22:16:01 22:25:00 [389681, 390220] SSSP

32 37 2/01/2015 11:17:02 11:24:50 [436542, 437010] SSMP

33 38 2/01/2015 11:31:38 11:36:18 [437418, 437698] MSSP

34 39 2/01/2015 11:43:48 11:50:28 [438148, 438548] MSSP

35 40 2/01/2015 11:51:42 11:56:38 [438622, 438918] SSSP

36 41 2/01/2015 13:13:02 13:40:56 [443502, 445191] SSSP

Table 12. Attack Scenarios details.
The attack scenarios from the dataset including their duration and type. The second
column represents the original numbering of the scenarios. Five scenarios were
excluded from this research as they did not have any physical impact on the
testbed [24].
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Figure 27. Trained model of subprocess 1.
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Figure 28. Trained model of subprocess 2.
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Figure 29. Trained model of subprocess 3.
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Figure 31. Trained model of subprocess 5.
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Figure 32. Trained model of subprocess 6.
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