
Automated discovery of BACnet relations
from bus traffic

Melcher Stikkelorum

Master Thesis Cyber Security
January 2020

Supervisors
Dr.-Ing. E. Tews
Dr. A. Peter

University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

Table of Contents
1. Introduction..4

2. BACnet...6

2.1 Network layer..7

2.2 Application layer...7

2.3 Services...9

2.4 BACnet device programming and specification..9

3. Definitions...11

3.1 Software modules..11

3.2 Allocation of objects..11

3.3 Object identifiers...12

3.4 Object relationships...12

4. Environment description...12

4.1 Network model..12

4.2 Traffic features...13

4.3 Controller inspection...15

4.3.1 Logging server (network historian)..15

4.3.2 Inter-controller traffic...15

5. Problem statement...17

6. Establishing a ground truth of object relations (RQ-I)...18

6.1 Source of the ground truth..18

6.2 Reverse engineering the project file...18

6.3 Complementing the database...20

6.4 Ground truth in practice...21

6.5 Results...22

7. Discovery of object relations from bus traffic (RQ-II)..23

7.1 Clustering: a naive approach to object relations...23

7.1.1 Selection..25

2

7.1.2 Preprocessing...25

7.1.3 Transformation..25

7.1.4 Model creation..27

7.2 Results...29

7.3 Discussion...31

8. Limitations..32

8.1 Ground truth..32

8.2 Clustering...32

9. Conclusion...34

10. Further research..34

11. References...35

12. Appendices..36

Appendix A. Results...36

Appendix B. Evaluation score and cluster amount plots..44

3

1. Introduction
A building management system (BMS) is a type of control system used to manage a
building’s systems and services, such as heating, ventilation and air conditioning
(HVAC). Nowadays, it is common practice to include, among others, lighting, sun blind
control and various security facilities into the automation system [1].

A BMS integrates all the functionality of building equipment into one centralized
system and provides building operators with the tools to manage a building’s energy
efficiency by regular measuring and monitoring of all of the building equipment [2].
Whereas BMSs used to be analog-based, they were first computerized in the 1950s
when analog systems (e.g. electrical, pneumatic or hydraulic controllers) were
monitored by computers for the first time [3]. After the introduction of
Programmable Logic Controllers (PLCs) in 1971, BMSs increasingly became computer
controlled.

A modern BMS consists of an intricate mix of various components such as controllers,
sensors and actuators, each of which performs a part of the automation. In general
there are three layers that can be distinguished in a traditional BMS. The layers are
shown in Figure 1. Starting at the bottom there are the sensors and actuators. These
are devices that are in direct contact with the environment and/or the end-user. As
such this layer is called the field layer. On the next layer up any input from the field
layer is gathered and used to make automation decisions. This automation layers
contains all processing and infrastructural hardware such as controllers, gateways
and routers. The top layer provides management functionality. Management of a BMS
can also often be done remotely over the internet.

It is apparent that components in the BMS need to communicate status and control
information to other components to enable them to make automation decisions.
Communication happens over a network or “bus”. To illustrate this, the reading from
a temperature sensor in the field layer will, for example, be used by a controller in
the automation layer to decide that a heat valve must be opened or closed.

Components on different levels of the automation system often have different
requirements about latency and bandwidth. To cut on cost, it was common practice
for different layers to use a bus which met the minimum network requirements.
Different buses would typically also require their own communication protocol.
Although a large variety of communications protocols exists for BMSs, in this thesis
the focus is on the BACnet (Building Automation and Control network) protocol,
which is one of the most widespread building automation and control network
protocols and currently holds a market share of about 60%.

Because of the different requirements at each level of the BMS, the usage of IP
networks in combination with Ethernet, was regarded as unnecessary and costly.
Nowadays, the widespread adoption of IP-based technologies has caused modern
office buildings to be completed with an Ethernet IP backbone built-in. This allows
BMSs to readily plug into the existing infrastructure and take advantage of the “free
wiring” [4].

4

Figure 1: Various layers involved
within a building automation

system.

The move to IP-based networks for BMSs was supported by the introduction of
BACnet/IP and allows BACnet to run over an IP network alongside other IP based
technologies [5]. This ability of BMSs to communicate over IP has thus resulted in
their connection to the corporate intranet which often also provides connections to
the internet to allow the BMS to be operated remotely [6].

BACnet itself was designed to run on an isolated network and thus no direct attention
was paid to security issues that may surface in such an environment. Only in 2008 a
security extension was added to the BACnet standard called BACnet Security Services
(BSS). According to the chairman of the BACnet no building automation device
vendors had yet implemented the security extension into any commercial product as
late as 2013 [7]. BSS is due to be replaced by BACnet Secure Connect which integrates
current IT industry security standards into BACnet by the use of TLS [8].

With the limited implementation of security measures, BACnet has a large attack
surface and a BACnet BMS is susceptible to attacks like snooping, spoofing and denial
of service attacks [9]. Without any security having been implemented in many BACnet
BMSs, an attacker can easily tap into the building intranet and monitor and/or alter
the information sent by automation devices.

In contrast to a full blown disruptive attack on a BMS (e.g. DoS, flooding), which may
severely hamper the functioning of said BMS, the goal of a targeted attack could be to
gain undetected access to a target network for extended periods of time. Its focus is
on high impact with minimal interference of the system.

It is argued that such a targeted attack can only successfully be performed by an
advanced persistent threat (APT). Presumably, such an attack is very resource
intensive and is executed over an extended amount of time. APTs are often associated
with government actors, which are able to invest large amounts of resources to make
a long term attack possible.

5

A targeted attack on a BMS is one where the threat agent’s ambition is to infiltrate the
BMS and influence automation in a building. Such an attack may, for example, aim to
change a room's temperature to a certain limit, but not more than needed, to cause an
adverse effect in the environment such as productivity loss or damage in raw
materials. For the threat agent to succeed, a high-level of coordination and extended
knowledge of the BMS under attack are required. Therefore, an important phase of a
targeted attack is intelligence gathering [10].

2. BACnet
First conceived in 1987, BACnet is an open and free to use communication protocol
for – like its name suggests – building automation and control networks. It enables
automation devices from different BMS vendors to interface with each other in a
streamlined and standardized way. The BACnet stack was designed to support a large
variety of physical mediums and data link technologies (e.g. Ethernet and LonTalk).
In 1995 the BACnet standard was adopted by ASHRAE and in 2001 it was also
standardized in ISO 16484-5.

In short, BACnet standardized the way of sending messages in BMSs with the help of a
common network and application layer (see Figure 2). Both layers will be discussed in
more detail below.

BACnet Applicatin Layer (APDU)

Application (7)

Preseotation (7)

Sessiion 57)

BACnet Netwirk Layer (NPDU)
Traospirtn 47)

Netwirkn 37)

ISOn8802-02
Typen1

IP
MSTP PTP Data-Liokn 27)

UDP/IP

ARCNET ISOn8802-3
 Etheroet7)

IPnSuppirton
Data-Liok

EIAn485 EIAn232
 RS2327)

Physicaln 17)

Figure 2: BACnet network layers and the OSI model. Emphasized layers in blue are part of
BACnet.

6

2.1 Network layer

In the past, proprietary bus solutions were common in building automation networks,
but the preference is shifting to an IP-based bus. Modern buildings are often built
with integrated data wiring in the form of Ethernet backbones with IP capable
network equipment. As such the BMS can conveniently plug in into the backbone and
use it as a bus running along IP-based technologies [11].

To support the seamless move of the BACnet to an IP-based environments BACnet/IP
(B/IP) was introduced in Annex J of the BACnet standard in 2004. B/IP consists of BVLL
(BACnet Virtual Link Layer) as well as UDP/IP at the data link. By default UDP port
0xBAC0 (47808) is used for all communication. The BACnet network and application
data units, NPDU and APDU respectively, are encapsulated within the UDP datagram
as a BVLL which indicates the function of the packet [12]. BACnet devices are
addressed through IP and Ethernet MAC addresses like other UDP/IP devices.

Other data links such as Master-Slave/Token-Passing (MS/TP) can still function within
a B/IP network by the use of a BACnet MS/TP to B/IP router. Since devices using other
data link do not have an IP address of their own (i.e. routed MS/TP traffic is identified
by the IP of the router), each device is identified by a unique BACnet address [12].

2.2 Application layer

In BACnet BMS devices are modeled in an object-oriented manner (see Figure 3). Part
of the object-oriented structure which BACnet uses are: Objects, Properties and
Services. Each BACnet device is represented using a collection of objects each of
which has a collection of attributes called properties. Through these objects the
internal state of a given device can be observed over the network. Each device
features at least the “Device” object. The device object contains information about the
device’s operational status as well as vendor and firmware information.

7

Figure 3: An example of a device modeled using BACnet objects.

A collection of common high-level object types has been standardized as part of
BACnet. Each object type is identified by a number (see Table 1 for a list of examples).
Vendors can implement additional proprietary object types to support additional
device capabilities or functionality.

Table 1: A selection of common BACnet object names and their identifier.

Object name Id Object name Id Object name Id

Analog input 0 Binary value 5 NotificationClass 15

Analog output 1 Calendar 6 Schedule 17

Analog value 2 Device 8 TrendLog 20

Binary input 3 EventEnrollment 9 EventLog 25

Binary output 4 Loop 12 Timer 31

Each BACnet device (e.g. controller) maintains a set of objects for the functionality
that it can provide. These objects are always instances of a BACnet object type. Each
object instance for a device is uniquely identified by its instance number. Device
objects are an exception to this rule as their instance number must be unique across
the entire local network. Device instance numbers are often chosen strategically such
that they convey extra meaning like the building, floor and/or room that they are
installed at [13].

While the names of most objects in Table 1 are self-explanatory, a few will be
discussed here in more detail. The EventEnrollment object represents an event and
defines the criteria for an event. The object references an object property for which
an event can be generated. The EventEnrollment can be used in combination with a
NotificationClass. Once an event is triggered, the NotificationClass will send event

8

notifications to its recipients. The event can be sent to one or more objects or
broadcasted. The TrendLog object reads the present value of a monitored object
periodically. Each time the present value is read, it is saved into a buffer which can be
queried by other objects.

2.3 Services

In BACnet, services are a means for a controller to request information from another
controller. Two groups of services can be distinguished: those that need confirmation
and those that do not. A confirmed service always requires an acknowledgment to be
sent in return.

Services can provide, among others, the following types functionality: alarm and
events, object access, and device management. An example of an event service is the
Change Of Value (COV) service through which a client can subscribe to an object’s
value and receive a notification upon change (SubscribeCOV and COVNotification).
Examples of services providing object access are the ReadProperty and WriteProperty
services which perform self-explanatory functions. These services also have a
‘Multiple’ variant which allows reading and writing of multiple object properties at
once, respectively.

2.4 BACnet device programming and specification

The aim of BACnet is to provide a common and standardized protocol for BMS devices
to communicate. Something not included in BACnet is the definition of a control
language. The lack of a control language means that proprietary solutions still reign
in the area of control logic creation. In this thesis, BACnet devices by the Dutch
vendor Priva are analyzed. Priva supplies installation firms with a software
application called ‘TC Select’ to allow their devices to be programmed. An installation
firm is the party that configures and installs the devices as part of a complete BMS. TC
Select does not directly show any BACnet constructs, but instead uses generic
proprietary components and elements from which a BMS can be constructed. In this
way, TC Select can also be used to program non-BACnet devices.

Components and elements are placed in graphically represented connection schemas
via a drag-and-drop editor as shown in Figure 4. Once a BMS project is finished, the
project is converted into firmware images and flashed to the devices.

TC Select uses a hierarchical structure to manage the objects in the BMS. It logically
starts at the Building level and progresses down through building section, controller,
subsystem, module. Each module’s components and elements are laid out in a
graphical schema. This exact hierarchy can also be seen in the left pane in Figure 4
(Verlichting groep 1 is the selected Module).

For the purpose of engineering a BMS where solutions of multiple vendors interact,
the Engineering Data Exchange (EDE) file template was created. EDE is not widely
adopted as it is not part of the ASHRAE BACnet standard, but, instead, was introduced
by BACnet Interest Group Europe [14]. An EDE file gives engineers quick insight in
what BACnet objects are available and what functionality and property values are

9

used in a BMS.

Files adhering to the EDE templates include a set of spreadsheet files, representing a
view of BACnet object instances and their respective properties [15]. The standard
attributes present in an EDE file can also be extracted from a live BMS. In the view of
engineering it might sometimes be convenient or necessary to have an offline copy of
this data in the form of an EDE file. Some proprietary control software solutions allow
EDE files to be exported from the project. Similarly, BACnet ‘explorers’ allow the
creation of EDE files for explored BACnet devices on the BMS. A BACnet explorer is a
software application that runs on a computer connected to the BMS and can actively
scan the network for BACnet devices and their objects. EDE files exported from a
proprietary software tool may sometimes contain additional, non-standard, EDE
attributes.

Figure 4: TC Select interface showing the graphical schema editor (middle), the project
hierarchy (left), and all elements (bottom).

10

3. Definitions
3.1 Software modules

As discussed above, each controller in a BMS needs to be programmed. For this
purpose specialized software tools, supplied by the controller’s vendor, are used. The
specific options of project organization in each tool differs greatly from vendor to
vendor. Oftentimes, at least some modularization of the software project is possible
by subdividing parts of the program. Once a software project is finalized, it can be
uploaded to the controller(s).

The term software module comes from the software engineering domain. A
monolithic application is impractical to maintain and difficult to understand.
Therefore, programmers apply modularization techniques to split an application into
logical chunks of functionality. Yourdon and Constantine [16] give the following
definition: “A module is a lexically contiguous sequence of program statements,
bounded by boundary elements, having an aggregate identifier.” Boundary elements
are, for example, curly braces in languages like C# and Java. This definition captures
functions and classes as software modules. It is thus clear that software modules can
be defined at varying granularities.

The above definition of a software module is stated very broadly. In the BMS domain
different software tools allow for drastically different partitioning of a software
project. Moreover, some of these applications abstract away the coding aspect of the
BMS entirely. As an example, in CodeSys, a development environment for PLCs, the
user must write each new function or program in a new file, whereas Priva’s TC
Select allows the creation of complicated modularization in the project. For this
research it is assumed that two or more software modules at the same level in the
hierarchy are mutually exclusive. That is, these software modules do not share any of
their (lower-level) sub-modules.

3.2 Allocation of objects

In a BACnet powered software project, object instances are created to enable
functionality and interoperability, i.e. if a REAL value is used in the program, a
BACnet Analog Value object instance is instantiated to store this value in. This object
can then be manipulated both locally and via the BACnet bus, if so desired. Depending
on the software tool, the instantiation of object instances can happen in two different
ways.

Explicitly: the programmer defines new instances and refers to these in his code.

Implicitly: the programmer uses high-level programming constructs – which are not
BACnet specific – and the software tool translates these to object instances when
necessary.

11

3.3 Object identifiers

The BACnet Object Identifier tuple (T, i) is the unique identifier for an object of type T
with instance number i. An instance number is a 22-bit number. This number is often
automatically allocated by the software tool starting at 0, but in some cases can be
assigned manually. It must be noted that object identifiers are only unique in the
scope of a given device. A special case are Device object identifiers “(8, i)” as these
must be unique in the scope of the entire BMS with a view to message routing.

3.4 Object relationships

Using the definition of a software module above, the definition of what it means for
BACnet objects to be related can be constructed. An object relationship is defined to
exist among the objects which are part of the same software module. The objects in a
software module work together to achieve the functionality of said module. Since the
definition of software modules allows for different levels of granularity, so does the
definition of object relationships. On a coarse level (e.g. the software project),
naturally all objects are related. Moving down the ladder of granularity, objects will
be subdivided into groups of related functionality and finally, at the most granular
level, by subroutine.

4. Environment description
During this thesis bus traffic captures originating from a switch within a building on
university campus are used. Along with bus traffic captures, the software project
describing the controller programming is used. The software project describes the
configuration and programming of the controllers and as such these are the main
focus of this thesis. The remainder of this section will further discuss the network
environment as perceived through the given traffic captures as well as the software
project.

4.1 Network model

The traffic captures were created by placing a tap in the building’s core
communications switch. By analyzing the bus traffic captures, a network model is
established as shown in Figure 5. The controllers described by the software project
are encircled by a red line in the Figure. In total there are five controllers in the
software project with instance numbers: 1, 2, 3, 4, 5. All traffic coming from or going
to these controllers is routed through a single IP-address, 10.0.0.1, the Priva Router.
The router is configured to operate in “BACnet visualization” mode; it routes all
BACnet/IP traffic for the five Priva Comforte HX controllers behind it and makes them
visible to the rest of the network. The router routes controllers 1, 2, 3, 4 and 5 on
BACnet virtual network number 1000. Communication between the router and
controllers does not have to occur strictly using BACnet/IP, but could also use
different protocols.

12

4.2 Traffic features

Numerous features are available for each packet captured from the bus. An overview
of a number of features is presented in Table 2 with a focus on BACnet related
features originating from BACnet’s Virtual Link Control, Network and Application
layers. Each feature is listed together with its Wireshark key.

13

Figure 5: Network model.

Controller

Controller
RouterSwitch

5

4

3

2

1

Building

Software project

10.0.0.1

Logging server

Table 2: Traffic features.

Feature name Feature key

Time epoch
Destination MAC
Source MAC
Destination IP
Destination port
Source IP
Source port

frame.time_epoch
eth.dst
eth.src
ip.dst
ip.src
udp.srcport
udp.dstport

BVLC BACnet type
BVLC Function

bvlc.type
bvlc.function

BACnet version
Destination network
Source network
Destination address
Source address
Control
Message type
Hop Count

bacnet.version
bacnet.dnet
bacnet.snet
bacnet.dadr_eth
bacnet.sadr_eth
bacnet.control
bacnet.mesgtyp
bacnet.hopc

PDU type
Invoke ID
Service Choice
Unconfirmed Service Choice
Object type
Object instance
Properties
Vendor

bacapp.type
bacapp.invoke_id
bacapp.confirmed_service
bacapp.unconfirmed_service
bacapp.objectType
bacapp.instance_number
bacapp.property_identifier
bacapp.vendor_identifier

14

4.3 Controller inspection

By inspecting traffic sent to the campus building controllers, the purpose of the
sending controller can be determined by studying the types and patterns of messages
sent.

4.3.1 Logging server (network historian)

On the university campus a dedicated logging server logs information for all BMSs.
The historian’s traffic is distinguishable by the fact that it exclusively reads TrengLog
objects, as shown in Figure 6. For controllers 4 and 5 logs are kept by the historian.
TrengLog properties are requested every hour of the day. At the end of each day at
23:00, the historian reads the TrendLog Logbuffer of each object – via the ReadRange
service. The Logbuffer contain a list of periodic value changes with a timestamp (in
the network capture, each time component was found to be all zero). The object’s
properties always return a ‘Property Access Error’. Additionally, all TrendLog objects
lack a monitored object reference.

4.3.2 Inter-controller traffic

There is at least one identifiable non-Priva BACnet controller active in the network.
This device generates traffic of ReadPropertyMultiple to request the system-status
property of many objects.

15

Figure 6: Outgoing traffic from logging server to
BACnet Router at 10.0.0.1 towards device instance 4.

16

5. Problem statement
Preceding a targeted attack on a BMS, the threat agent will need to have sufficient
knowledge about the BMS under attack. During his intelligence gathering phase, the
agent will learn specifics of the BMS before creating an attack plan. In this thesis the
focus is on this intelligence gathering phase, at which time an attacker has (limited)
access to a BMS and wishes to get more details. The aim is to identify BACnet objects
that together provide some functionality such that these can be carefully targeted.

Specifically, the goal is to find out what BACnet objects are related. It is assumed that
the threat agent’s only capability during the intelligence gathering phase is to
passively monitor bus traffic in a stealthy manner to gather intelligence about the
BMS.

Based on the problem statement, the following research questions come forward:

RQ How can functional relations among BACnet objects be identified from the bus
traffic?

To answer the main research question the following sub-questions should be
answered:

RQ-I How can a ground truth of all relations among object be established?
RQ-II How can object relations be extracted from bus traffic captured from a

communications switch?

17

6. Establishing a ground truth of object relations (RQ-I)
For the purpose of evaluation a ground truth of all object relationships is necessary.
The ground truth will define the de facto relationships among all objects at any
software module level.

6.1 Source of the ground truth

For the creation of a ground truth a mapping must be made from objects identifiers to
software modules. If multiple levels of subdivision are possible in the software tool, a
clear definition of this hierarchy structure of subdivisions is required too. A logical
place to look for this information is the software project file created by a software tool
that was used to create and commission a BMS.

The BMS software project concerns itself with the building on the university campus.
The part of the BMS described by this software project exists solely of Priva
controllers and hence uses the same vendor’s software tool ‘TC Select’. The software
tool utilizes ‘PPF’ files to store project data.

6.2 Reverse engineering the project file

All names in the database, tables and columns, are defined in Dutch. Column names
follow a naming scheme from which it is easy to determine their type: the first
character of a type is prefixed to the column name. Prefixes used are ‘L’ for long, ‘B’
for boolean, ‘S’ for string and ‘M’ for memo. Textual descriptions are stored in a
separate table ‘Teksten’ each identified with its own id ‘Lomschrid’ and columns for
multiple display languages.

To establish an initial understanding of the relation of tables to elements in the TC
Select user interface, textual descriptions in the database tables have been cross
referenced with textual descriptions found in the TC Select interface. Due to the
absence of foreign keys in the database, table relations were determined manually by
finding columns with names corresponding to a table’s primary key. The foreign keys
were either never defined or the database viewer did not display them.

After this a database structure could be created with all tables and relations relevant
for understanding the software module hierarchy. Figure 7 shows all table names and
primary keys as they were found in the project database. Each of the ElementTypen
entries derives from a parent entry contained in an external “library” table, which
has been omitted for simplicity.

18

Each ‘Onderstation’ represent a controller which has its own unique controller id
“Londerstationid”. Based on their descriptions a mapping from controller id to the
Device instance number was made (See Table 3). Each of these controllers is
subordinated to controller id ‘31’ which identifies itself as “BACnet Router”. This is in
accordance with the network environment as described in Section 4.1.

Table 3: Mapping from controller id to Device instance.

Londerstationid
(Controller id)

Device
instance

Description

1 1 RK1 (verlichting)

4 3 Lab RK2

10 4 Verwarming

12 2 RK2 TR

30 5 RK2 TCM

There is a clear hierarchical structure in the project database as shown in Figure 8.
The hierarchy shows that a Priva BMS can contain multiple buildings which are
subdivided into multiple sections, each of which has one or more controllers.

19

Figure 7: TC Select database structure.

Gebouwdelen

 Lgebouwdeelid

Onderstations Teksten

 Lomschrid

Installatiedelen

 Linstdeelid

Modulen

 Lprjmodid

ElementTypen

 Lprjelmtypeid

ElementTypenPootjes

 Lprjelmtypepootjeid

1
*

1
*

1
*

1
*

1
*

A controller manages one or more subsystems, each containing one or more modules.
Finally, a module is made up of a multitude of elements. A group of elements of the
same type work together to provide some kind of functionality. To facilitate talking
about such groups of elements they are referred to as “component”.

Elements are high-level constructs designed by Priva. More elements can be added to
the software tool by installing additionally element libraries if desired. Not all
elements necessarily map to one BACnet object: some map to none, some to one or
more. Figure 9 shows an example for a given component ‘Tijdprogramma
hoofdtrappenhuis hoogbouw’. This component can be seen in the graphical schema
editor (Figure 4), but is broken down internally in many elements.

The information relevant for the ground truth, i.e. to what controller, subsystem and
module an element belongs, is stored in a lookup table. Each entry in the lookup table
is identified by a unique key composed of the controller id and the descriptions of the
subsystem and controller as well as the description of the element. For the element
“Tijdpr hoofdtrph hgbw” in Figure 9 the lookup key thus is “1-Verlichting/Verlichting
groep 1/Tijdpr hoofdtrph hgbw”. The practical use of this lookup table is further
discussed in Section 6.4.

6.3 Complementing the database

The Priva project database alone is not enough to create a ground truth. The database
only shows how the software project is subdivided and where components reside in
the project hierarchy. To learn what object identifiers are associated with what
elements the Engineering Data Exchange (EDE) file for the project is to be consulted.

20

Building
● Building section (Gebouwdelen)

○ Controllers (Onderstations)
■ Subsystems (Installatiedelen)

● Modules (Modulen)
○ “Components”

■ Elements (ElementTypen)

Figure 8: Hierarchical structure in which elements are ordered.

Building
● Building section

○ RK1 (verlichting)
■ Verlichting

● Verlichting groep 1
○ Tijdprogramma hoofdtrappenhuis hoogbouw

■ Tijdpr hoofdtrph hgbw
■ Overwerk
■ Optim. start blokkeren
■ Vakantieperiodes/dagen
■ Instellingen
■ Optimalisering

Figure 9: Hierarchical structure in which elements are ordered.

A plugin in TC Select is used to produce the needed EDE spreadsheet files. It should be
noted that some of the columns in said EDE files are non-standard (e.g. they have not
been adapted into the official EDE standard). The non-standard columns conveniently
indicate the name of hierarchy levels “part of installation”, “module” and “element”.
Using these non-standard columns an object identifier can be mapped to information
from the project database and the ground truth is finished. Not all objects could be
mapped. Two objects have been discarded because no suitable match was made (see
Table 4 for precise statistics).

6.4 Ground truth in practice

For each incoming BACnet message the sending or receiving device instance
(controller) is determined. Subsequently, all objects identifiers are extracted. Using
the object identifier the EDE files are consulted for the names of each object’s
corresponding “part of installation”, “module” and “element”. These names are used
to query the lookup table created earlier from the project database. Once the lookup
returns an entry the following properties are known for the given object:

● Device instance
● Object type
● Object instance number
● Subsystem name + unique id
● Module name + unique id
● Element identifiers

Table 4 shows a number of statistics for the devices in the BMS extracted from the
ground truth. Some devices appear to have much more BACnet objects than others.
The number of software modules (subsystems and modules) varies greatly among the
controllers. For device instance 1 the two Device objects could not be mapped as such
objects are not defined in the software project.

Table 4: Statistics extracted from the ground truth.

Device
instance

of Objects
(EDE)

of objects
(Mapped)

of
Subsystems

of Modules

1 232 230 7 18

2 1654 1654 12 44

3 1005 1005 18 27

4 499 499 8 12

5 1665 1665 9 30

21

6.5 Results

It has been shown that a ground truth containing object relations can be established
based on the available BMS project file and EDE file. Using the database contained in
the project file, software modules can be extracted for each element. Combining this
information with data available in the EDE files yields a complete ground truth
describing the software modules for each BACnet object in the project.

22

7. Discovery of object relations from bus traffic (RQ-II)
The goal of this step is to gather BACnet objects from the bus traffic and group them
into their respective software modules. As per the definition of object relations,
objects in the same software module are related. Note that the aim is not to record
directional inter-object relations, but rather a high-level grouping of related objects
into software modules. For the method to be successful, a threat agent should
ultimately be able to perform the chosen method using unknown bus traffic.
Therefore, it is deemed important for the method to be repeatable and generic in
nature (i.e. not specifically trained for use on a single data set).

In the field of data mining there are many methods concerned with the extraction of
knowledge from data. Similarly, there are methods providing insight into
relationships between data points. The following two steps can be distinguished when
using a data mining method:

1) Learning and training stage. At this time all access to information about the
BMS is warranted for the sake of model creation.

2) Testing stage. The created model is applied on a new and unknown (part of a)
BMS. The result should give insight into how objects are related.

To achieve the desired repeatability and generality an appropriate method should
satisfy the following requirements:

● Division of related data points into logical groups.

● Classification of data into relative groups (i.e. it should not assign – previously
learned – absolute class labels to data points).

7.1 Clustering: a naive approach to object relations

Unsupervised data mining algorithms fulfill the requirements listed in the previous
section and as a result clustering was selected as the method of choice. Clustering
divides a set of points into some number of clusters of which all members are similar
in some sense and where members of different clusters are dissimilar. The similarity
between members of a cluster is based on the distance between them. There are at
least a number of clustering algorithms that can deal with categorical variables such
as k-modes, k-medoids and DBSCAN (Density Based Spatial Clustering of Applications
with Noise).

Inherent to unsupervised algorithms is the fact that data is unlabeled and the process
of classification is performed without human interference. It is, however, often the
case that there is indeed some prior knowledge available about the input data. In the
context of this research, there is prior knowledge about relations that are present
based on the protocol semantics. To encode this knowledge into the clustering
algorithm, meaningful distance measures are introduced for the data set. The ideal
distance measure must incorporate detailed knowledge about protocol semantics to
establish point locations in space. An implementation of the DBSCAN algorithm with

23

support for variable type distance metrics called ‘TypeCluster’ is available. DBSCAN is
density-based and therefore, in contrast to k-medoids, there is no need to specify the
number of clusters beforehand. Additionally, DBSCAN allows the grouping of data
into arbitrarily shaped clusters. Therefore DBSCAN will be used as clustering
algorithm in the upcoming steps. To evaluate the partitions made by the clustering
algorithm, the true labels from the ground truth are used. It should be clear that these
true labels are not used as feature.

Table 5 shows a road map containing all steps that are needed for this approach
based on the unified framework for knowledge discovery in databases (KDD) by
Fayyad et al. [17]. Fayyad et al. describe the KDD process as a set of activities of which
data mining is a crucial part. The process includes the enumeration of patterns
(model creation) and the evaluation of these patterns to find a subset of patterns
deemed “knowledge”. It is emphasized that the KDD process is iterative in nature and
there may be loops between any steps. The steps will be further discussed in the
remainder of this section.

Table 5: Clustering road map.

Step Activity Output

1 Selection – selecting a subset of the data
set and variables that are available

Target data

2 Pre-processing – remove noise and
handling of incomplete/missing
variables and creation of composite
variables

Pre-processed data

3 Transformation – data dimensionality
reduction through feature selection

Transformed data

4 Model creation -
iterative mining
and evaluation to
select optimal
parameterization
of method

4a Data mining –
application of
model and
parameters

Clustered data

Clustering
model

4b Evaluation –
evaluation of the
clustering result

Evaluation
score

24

7.1.1 Selection

The supplied BMS bus traffic captures contain all traffic going through the building’s
core switch. Since only a ground truth is available for a selection of the BMS, the
captures are filtered to only contain traffic going from and to this part of the BMS.
The selection encompasses traffic starting at 14:22, 19 October 2018 through 11:20, 24
October 2018. A first feature selection is made which includes time related as well as
many NPDU and APDU features.

7.1.2 Preprocessing

The traffic capture is first preprocessed to extract all BACnet objects. This step is
implemented in the form of a Java application. The application takes the selected data
from the previous step and carries out the following steps in sequence:

● Assign each packet with its corresponding device instance based on observed
“I-am” packets (this allows unique mapping from a BACnet address to a device
instance) based on the method described by Caselli et al. [18].

● Assign each packet with its corresponding controller id (extracted from project
database) based on its device instance. This process is based on a prior-
knowledge of the mapping from device instance numbers to controllers in the
ground truth.

● Set missing feature values to 0.
● Assign each packet with the following evaluation labels from the ground truth

based on its controller id and object identifier:
a. Subsystem id.
b. Module id.

● For each packet extract all object identifiers and save them.
● Objects are split into different output files based on controller id. By doing so

the objects are grouped into their corresponding software module on a coarse
level.

Any objects for which the ground truth is unavailable are discarded from the data set.
For example, when a packet’s controller id is unknown or there is are no suitable
mappings to entries in the ground truth for the objects contained in said packet, it will
be removed. From a total of 5229 unique objects extracted from the bus traffic, 209
were discarded.

7.1.3 Transformation

The processed data from step 2 is used to carry out feature selection. Two feature
selection algorithms were used and their output was compared as to rule out any
noticeable discrepancies.

The information gain ratio algorithm from the ‘R’ FSelectorRcpp package is used to
determine information gain ratio for features in the data set in correlation to each of
the possible response variable vectors. The response variable vectors are taken from
the ground truth directly and correspond to the different software modules
subsystem and module.

The second feature selection algorithm used is Boruta from the eponymous R
package. Boruta is a so called wrapper algorithm which derives its core functionality

25

from random forest classification. Boruta uses an all-relevant feature selection
algorithm as opposed to many other feature selection algorithms which use a
minimal-optimal method. This means that Boruta aims to find all features important
for the classification instead of a more compact set carrying just enough information
to perform an optimal classification. Boruta selects features by adding more
randomness into the system. Each iteration, a copy of part of the original feature
space is merged with randomized shadow variables after which a random forest
classifier is trained on the system. For each of the features in the trained random
forest models the Z-score (dividing average accuracy loss by its standard deviation) is
calculated. Boruta uses the Z-score as importance measure. Using these Z-scores for
both the real and shadow features, each of the real features can be tagged as either
important or unimportant. There is closure as soon as all features have been tagged.

Table 6 shows the features that are deemed important by both information gain as
well as Boruta.

Table 6: Features deemed important by
Boruta and information gain ratio.

Feature

Time epoch

Service Choice

Unconfirmed Service Choice

Object type

Object instance

Invoke ID

Properties

PDU type

Control

Destination MAC

Destination IP

Table 7: Features after feature reduction

Feature

Time epoch

Object type

Object instance

Properties

After test runs of the DBSCAN algorithm with these features more of the features in
Table 6 are discarded. A heavy emphasis is laid on timing as this is believed to play a
key role in finding relationships. The remaining features are shown in Table 7.

26

7.1.4 Model creation

For model creation a Python application was developed using TypeCluster in
combination with the DBSCAN implementation of Scikit learn1. The DBSCAN
algorithm has several parameters that control the clustering operation. DBSCAN
determines clusters based on epsilon ‘ ’ and n, where is the maximum distance Ɛ Ɛ
between two points in the same cluster and n the minimum number of points in a
single cluster. During model creation the goal is to find a parameterization of the
DBSCAN algorithm for which it is able to group BACnet objects into software modules.

7.1.4.1 Distance metrics
In practice, TypeCluster acts as a DBSCAN wrapper with the ability to compute
distance matrices for a wide variety of weighted distance functions using the
Minkowski distance. The Minkowski distance between points x and y is defined as:

d (x , y)=(∑
i=1

n

|xi− y i|
p)
1
p

The Minkowski distance is a metric in a normed vector space (i.e. distances are
defined using vectors with certain length) which generalizes Manhattan (p = 1),
Euclidean (p = 2) and Chebyshev (p = ∞) distances. This allows many different
distance metrics to be plugged-in into TypeCluster, which on its turn generates the
necessary distance matrix for the clustering algorithm.

To compute the distance between two data rows, in this case being BACnet objects
with the selected features, each feature’s distance metric is invoked and the weighted
distance of each features counts towards the final distance (i.e. the distance between
the object). A distance metric takes two arguments, u and v, and calculates the
distance between them based on its implementation. Four different distance metrics
are used:

1) Discrete, binary Y/N decisions.
2) Jaccard, array comparison.
3) Levenshtein, string comparison.
4) Object distance, object identifier comparison.

In Table 8 an overview is given of all features and their corresponding distance
metric. Each feature has been assigned to one of three categories indicating its type. A
distinction between object properties, traffic behavior and external properties is
made. The first two features are decidedly very objective properties of a BACnet
object. The next four features describe how the object behaves in the bus traffic. The
last feature, ‘Graph id’ is categorized as external property, as it was derived from an
external source, i.e. previous research.

1 https://scikit-learn.org/0.17/modules/generated/sklearn.cluster.DBSCAN.html

27

https://scikit-learn.org/0.17/modules/generated/sklearn.cluster.DBSCAN.html

Table 8: Features and their distance metrics.

Feature Distance metric Category

Object identifier
(composite of object type
and instance number)

“Object distance” (if equal type,
distance is set to 0 otherwise take
difference of instance number)

BACnet object
property

Description Levenshtein

Property identifier array Jaccard

Object traffic
behavior

Epoch difference array Jaccard

Time of day array Jaccard

Packet common objects Jaccard

Graph id Discrete External object
property

7.1.4.2 Evaluation criteria
A clustering result is evaluated based on three criteria. The main criterium is an
information theoretic measure called Adjusted Mutual Information (AMI) score. AMI
is a normalization of Mutual Information (MI) and set to be 0 when two partitions of a
set, the clustering and the set of true labels, are distributed randomly. Similarly, AMI
is 1 when the distributions of partitions are identical. Furthermore, for each
clustering the Homogeneity (Hg) and Completeness (Cp) are calculated. Homogeneity
is satisfied when all clusters contain only data point from a single software module.
Completeness is satisfied when all data points from a single software module are
contained in the same cluster. All scores have positive values between 0 and 1.0,
larger values indicate a better result.

7.1.4.3 Python program
The Python code for model creation performs the following steps:

1) Initialize index i to 0, Initialize weight vector Vw to all ones.
2) Calculate the distance matrix with the Vw.
3) Use distance matrix as input for DBSCAN and repeat with parameter ranging Ɛ

from -min through -max. Return the parameterization of the clustering with Ɛ Ɛ
highest AMI score.

4) Compare the returned score to that of the last:
a) If current is better: increase the weight of Vw[i] by 10.
b) If equal: do nothing.
c) Else: decrease weight of Vw[i] with 5.

5) Increase i with 1 (modulo the amount of features) and repeat from step 2.

28

7.2 Results

In this section a summary of the results of the model creation step in Section 7.1.4 is
shown. Table 9 lists the clustering results of the first ten runs of the model creation
algorithm for device instance 2. For each run the model parameterization (and Ɛ
corresponding weight vector) is shown together with evaluation criteria AMI,
Homogeneity (Hg) and Completeness (Cp). Finally, the number of clusters estimated
by the clustering algorithm is given. A column for the amount of noise points has
been omitted as this was recorded to be zero in all cases. For each controller, the first
runs with the lowest and highest AMI score have been emphasized.

The algorithm has been run for 55 iterations for each device instance. Please refer to
Appendix A for the unsummarized results in Tables A-1 through A-5 showing results
for device instances 1 through 5 respectively. For a discussion of the results, see
Section 7.3.

Table 9: First ten clustering results for controller with device instance 2.

run Ɛ clusters AMI Hg Cp Vw

1 17 178 .094 .287 .199 [1, 1, 1, 1, 1, 1, 1]

2 15 247 .086 .386 .195 [11, 1, 1, 1, 1, 1, 1]

3 45 292 .095 .443 .211 [6, 11, 1, 1, 1, 1, 1]

4 64 282 .098 .437 .212 [6, 21, 1, 1, 1, 1, 1]

5 75 281 .098 .437 .212 [6, 31, 1, 1, 1, 1, 1]

6 89 278 .099 .437 .212 [6, 41, 1, 1, 1, 1, 1]

7 99 274 .100 .434 .211 [6, 51, 1, 1, 1, 1, 1]

8 108 270 .101 .434 .212 [6, 61, 1, 1, 1, 1, 1]

9 116 269 .101 .433 .211 [6, 71, 1, 1, 1, 1, 1]

10 122 268 .101 .432 .211 [6, 81, 1, 1, 1, 1, 1]

Figures 10 and 11 show a graphical representation of the results for device instance 2.
Figure 10 shows the three evaluation criteria AMI, Hg and Cp plotted against
parameter . In this plot more than one point may appear on the Y-axis for the same Ɛ
value of on the X-axis. Ɛ Figure 11 shows the amount of clusters plotted against . The Ɛ
Figures for each device instance can be found in Appendix A. Results. In Table 10 a
summary of a selected statistics and evaluation criteria is presented for each
controller’s best scoring run.

29

Controller 2

30

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0

50

100

150

200

250

300

350

400

clusters

Figure 11: Amount of clusters against for controller with device instance 2.Ɛ

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0

0.1

0.2

0.3

0.4

0.5

0.6

AMI Hg Cp

Figure 10: AMI, Homogeneity and Completeness against for controller with device instance 2.Ɛ

Table 10: Summary of controller statistics and “best run” evaluation criteria

Device
instanc
e

of
Objects

of
Subsystems

Ɛ AMI
score

of
 clusters

Vw

1 231 7 25 .448 14 [31, 1, 1, 1, 1, 1, 1]

2 1654 12 116 .101 269 [6, 71, 1, 1, 1, 1, 1]

3 1005 18 119 .111 167 [6, 51, 1, 1, 1, 1, 1]

4 498 8 109 .223 76 [11, 41, 11, 11, 11, 21, 16]

5 1665 9 61 .117 46 [6, 11, 1, 1, 1, 1, 1]

7.3 Discussion

Comparing the scores of the controllers among each other, the best scoring controller
is 1 (See Table 10). The controllers with fewer objects, 1 and 4, outperformed the
controllers with a large number of objects (over 1000). For the latter group of
controllers scores range from 0.101 to 0.117. The estimated number of clusters for
controller 1, 14, is very close to the actual number of subsystems in the ground truth:
7. For the remaining controllers, the discrepancy between estimated clusters and
actual amount of subsystems is far larger.

In Figures B-1 through B-5 it can be seen that the shape of the homogeneity (Hg) curve
roughly follows the shape of the curve of the amount of clusters. A greater amount of
clusters positively influences homogeneity as a single cluster will contain fewer
points of which more are of the same software module.

Looking at AMI and completeness (Cp), in Figure A-1, there is a relatively large change
for both the completeness and AMI score accompanied by a steep drop in the number
of clusters at values between 10 and 30. In Figure B-3 there are clear value changes Ɛ
for the evaluation criteria as well, for between 90 and 120. As the number of Ɛ
clusters increases dramatically, so do Hg and Cp, but the AMI score drops. The
increase of Hg is directly tied to the increased number of clusters. The improved Cp is
caused by an increased number of clusters with more objects belonging to the same
software module (i.e. objects in the same software module are spread among less
clusters). Surprisingly, the lower AMI score means that the overall distribution of
objects over clusters cannot be distinguished from a random distribution any better.
In fact it is even slightly harder to tell apart.

Interestingly, in Figures B-2, B-4 and B-5, AMI and Cp follow a very flat trajectory for
all other controllers. There is no visible improvement or deterioration of both scores.

31

From the results as shown in the tables in Appendix A and Figures in Appendix B it
can be observed that the evaluation criteria for a given together with different Ɛ
weight vectors Vw do not yield very different results. In most cases, the evaluation
criteria even stay exactly the same. This illustrates the limited effect the weighted
distance metrics have on the final results.

Looking at features and distance metrics that have been used, it is noticeable that
features in the category object properties are generally weighed higher than others.
Only controller 4 differentiates itself from the rest; all features are weighed higher
and Description and Packet common objects being outliers. The resulting AMI score
for 4 is nevertheless very low so this does hardly say anything about the actual
usefulness of said features. In practice the graph id features turns out to be of less for
some controllers as many objects could not be assigned a meaningful graph id.

Studying the results leads to believe that the metrics for features in the BACnet object
property category indeed are more suited to controllers 1 and 4. The assumption for
the description’s distance metric is that objects in different modules have a unique
name or include an identifier indicating the module they are in. This assumption does
not hold for many modules in the other controllers as many modules are reused
without any change to their object description. Based on the description metric, these
objects would all belong to the same module. These kinds of differences in controller
implementation make it very difficult to fit a single model that works well on all
controllers.

8. Limitations

8.1 Ground truth

When it comes to the ground truth that was established, it should be noted that this
method is only applicable to BMSs that were constructed using Priva’s TC Select
application. The non-standard EDE files generated by the same application
contributed to the success of creating the ground truth. It cannot be expected that
other application similarly include the names of software module in their EDE export.
Although similar methods may exist to create a ground truth for other vendor’s
software applications these are not covered in this thesis.

8.2 Clustering

Key points during the thesis were the availability of captured network bus traffic for
a BMS as well as the software project describing the same BMS. While bus traffic and
a software project are both available, a limiting factor is the fact that the building’s
switch with the network tap, mainly captured inter-building traffic and did not show
any inter-controller traffic among the controllers defined in the software project. The
network model as seen in Figure 5 shows very clearly that all inter-controller traffic
for these controllers is handled by another device, a router. Had the tap been placed
in the router, if possible at all, the method presented in this thesis might have been
more effective. The desired network model is depicted in Figure 12. In this case, all
inter-controller traffic can be captured. It is though that as all Priva controllers are

32

defined in the same software project they all have exact knowledge of each other
functions and tasks. Considering this, the network traffic between these controllers is
likely to convey more information about software modules in the software project. In
the current situation, controllers have limited knowledge about the object present in
the Priva controllers and mostly perform read actions or subscribe to value changes.
The traffic generated from these actions does not convey much meaning about the
software modules, as the results show.

33

Controller

Controller
Switch

Software project

Logging server

Figure 12: Desired network model.

9. Conclusion
In this paper a method is presented to create a ground truth from a BMS and extract
BACnet object relations from bus traffic. A ground truth was successfully created
from a software project that was used to commission a BMS. The method for object
relations extraction uses unsupervised machine learning techniques, specifically the
DBSCAN clustering algorithm. The clustering algorithm is so far unable to create
satisfactory clusterings as evaluated using the AMI score. The results can partly be
explained by the lack of good distance metrics. On the other hand, the data made
available is captured in a less than favorable network setup. Gathering information
about building specific controllers and their objects was perceived to be very difficult
from the supplied data. Further research should focus on the creation of more
suitable distance metrics that are able to capture object relations better. Ideally, such
research should be performed in a BMS or experimental setup adhering to the
desired network model. The usage of TrendLog objects looks promising and should be
used as prior knowledge that could strengthen the clustering operation.

10. Further research
An interesting research direction for future work is on the subject of BACnet
TrendLog objects. TrendLog objects reference an object for which trend logs are
collected. The TrendLog object can be configured to subscribe to or poll said object for
value changes are set intervals and stores the values in an internal record buffer. As
TrendLogs store referenced values, upon collection of enough of these values one
might be able to tell which of the objects monitored in trend logs are related based on
value changes. To test this hypothesis an experimental setup modeling several
software modules would need to be constructed. Using a method to find relations in
multivariate time series data, related object should be able to be identified. Using this
limited set of related objects, the method using a clustering algorithm should be
enforced to improve results.

34

11. References
 1. Hicks, Art. “Understanding Building Automation and Control Systems.” KMC Controls,
web.archive.org/web/20130519124213/http://www.kmccontrols.com/products/
Understanding_Building_Automation_and_Control_Systems.aspx.
 2. Smith, A. “Building Management Systems (BMS), Seminar 1 - The Basics Explained.” City of
Melbourne
 3. GICSP, CISSP, CEH , Ernie Hayden, et al. “An Abbreviated Histor-357,-31y of Automation &
Industrial Controls Systems and Cybersecurity.” Aug. 2014.
 4. Contemporary Controls, George Thomas. “Raising BACnet® to the Next Level.” 2009,
www.ccontrols.com/pdf/RaisingBACnetWP.pdf.
 5. Hollinger, Christopher A. “Strategies for Using BACnet®/IP.” ASHRAE Journal, Oct. 2004, pp.
S10–S12.
 6. Michael Phillips. “Understanding Networks in Modern Building Automation Systems.” HPAC
Engineering, 31 Oct. 2017, www.hpac.com/managing-facilities/understanding-networks-modern-
building-automation-systems.
 7. Peacock, Matthew, Michael N. Johnstone, and Craig Valli. "An exploration of some security issues
within the BACnet protocol." International Conference on Information Systems Security and Privacy.
Springer, Cham, 2017.
 8. Fisher D, Isler B. and Osborne M. “BACnet Secure Connect - A Secure Infrastructure for Building
Automation” AHRAE BACnet whitepaper. 21 May 2019.
 9. SANS ICS Amsterdam Summit & Training 2014 (September 2014) Steffen Wendzel Newman, H.
Michael. BACnet: the Global Standard for Building Automation and Control Networks. Momentum
Press, 2013.
 10. “Targeted Attacks.” Definition - Trend Micro USA,
www.trendmicro.com/vinfo/us/security/definition/targeted-attacks.
 11. Contemporary Controls, George Thomas. “Raising BACnet® to the Next Level.” 2009,
www.ccontrols.com/pdf/RaisingBACnetWP.pdf.
 12. BACnet/IP. http://www.bacnet.org/Tutorial/BACnetIP/index.html.
 13. Merz, Hermann, Thomas Hansemann, and Christof Hübner. Building automation. Springer, 2009.
 14. Schneider Electric, David Fisher. Capability to Import a BACnet Device Objects via an EDE File?
17 Sept. 2018, community.exchange.se.com/t5/Knowledge-Base/Capability-to-import-a-BACnet-
device-objects-via-an-EDE-file/ta-p/3189.
 15. BACnet Interest Group Europe. “Engineering Data Exchange Template for BACnet Systems
‘Description of the EDE Data Fields‘ Version of Layout: 2.3.” 16 Jan. 2017.
16. Yourdon E. and Constatine L. “Structured Design: Fundamentals of a Discipline of Computer
Program and Systems Design” Prentice Hall. 1979.
 17. Fayyad, Usama M., Gregory Piatetsky-Shapiro, and Padhraic Smyth. "Knowledge Discovery and
Data Mining: Towards a Unifying Framework." KDD. Vol. 96. 1996.
 18. Caselli, Marco, et al. "Specification mining for intrusion detection in networked control systems."
25th {USENIX} Security Symposium ({USENIX} Security 16). 2016.

35

12. Appendices
Appendix A. Results

Table A-1: Clustering results for controller with device instance 1.

run Ɛ clusters AMI Hg Cp Vw

1 19 28 .362 .734 .428 [1, 1, 1, 1, 1, 1, 1]

2 23 15 .373 .540 .422 [11, 1, 1, 1, 1, 1, 1]

3 24 14 .448 .540 .492 [21, 1, 1, 1, 1, 1, 1]

4 25 13 .484 .524 .534 [31, 1, 1, 1, 1, 1, 1]

5 25 13 .484 .524 .534 [41, 1, 1, 1, 1, 1, 1]

6 73 15 .373 .540 .422 [36, 11, 1, 1, 1, 1, 1]

7 54 15 .373 .540 .422 [36, 6, 11, 1, 1, 1, 1]

8 54 15 .373 .540 .422 [36, 6, 6, 11, 1, 1, 1]

9 54 15 .373 .540 .422 [36, 6, 6, 6, 11, 1, 1]

10 54 15 .373 .540 .422 [36, 6, 6, 6, 6, 11, 1]

11 54 15 .373 .540 .422 [36, 6, 6, 6, 6, 6, 11]

12 54 15 .373 .540 .422 [46, 6, 6, 6, 6, 6, 6]

13 81 23 .360 .660 .421 [41, 16, 6, 6, 6, 6, 6]

14 74 15 .373 .540 .422 [41, 11, 16, 6, 6, 6, 6]

15 74 15 .373 .540 .422 [41, 11, 26, 6, 6, 6, 6]

16 74 15 .373 .540 .422 [41, 11, 21, 16, 6, 6, 6]

17 74 15 .373 .540 .422 [41, 11, 21, 11, 16, 6, 6]

18 74 15 .373 .540 .422 [41, 11, 21, 11, 11, 16, 6]

19 74 15 .373 .540 .422 [41, 11, 21, 11, 11, 11, 16]

20 74 15 .373 .540 .422 [51, 11, 21, 11, 11, 11, 11]

21 78 33 .362 .807 .432 [46, 21, 21, 11, 11, 11, 11]

22 81 23 .360 .660 .421 [46, 16, 31, 11, 11, 11, 11]

23 81 23 .360 .660 .421 [46, 16, 26, 21, 11, 11, 11]

24 81 23 .360 .660 .421 [46, 16, 26, 16, 21, 11, 11]

25 81 23 .360 .660 .421 [46, 16, 26, 16, 16, 21, 11]

26 81 23 .360 .660 .421 [46, 16, 26, 16, 16, 16, 21]

27 89 15 .373 .540 .422 [56, 16, 26, 16, 16, 16, 16]

28 89 15 .373 .540 .422 [66, 16, 26, 16, 16, 16, 16]

29 103 23 .360 .660 .421 [61, 26, 26, 16, 16, 16, 16]

30 92 23 .360 .660 .421 [61, 21, 36, 16, 16, 16, 16]

31 92 23 .360 .660 .421 [61, 21, 31, 26, 16, 16, 16]

32 92 23 .360 .660 .421 [61, 21, 31, 21, 26, 16, 16]

33 92 23 .360 .660 .421 [61, 21, 31, 21, 21, 26, 16]

34 92 23 .360 .660 .421 [61, 21, 31, 21, 21, 21, 26]

35 101 15 .373 .540 .422 [71, 21, 31, 21, 21, 21, 21]

36 101 15 .373 .540 .422 [81, 21, 31, 21, 21, 21, 21]

37 117 22 .365 .658 .424 [76, 31, 31, 21, 21, 21, 21]

36

38 87 33 .362 .807 .432 [76, 26, 41, 21, 21, 21, 21]

39 87 33 .362 .807 .432 [76, 26, 36, 31, 21, 21, 21]

40 87 33 .362 .807 .432 [76, 26, 36, 26, 31, 21, 21]

41 87 33 .362 .807 .432 [76, 26, 36, 26, 26, 31, 21]

42 87 33 .362 .807 .432 [76, 26, 36, 26, 26, 26, 31]

43 103 24 .365 .681 .426 [86, 26, 36, 26, 26, 26, 26]

44 113 15 .373 .540 .422 [96, 26, 36, 26, 26, 26, 26]

45 113 15 .373 .540 .422 [106, 26, 36, 26, 26, 26, 26]

46 121 23 .360 .660 .421 [101, 36, 36, 26, 26, 26, 26]

47 117 22 .365 .658 .424 [101, 31, 46, 26, 26, 26, 26]

48 117 22 .365 .658 .424 [101, 31, 56, 26, 26, 26, 26]

49 117 22 .365 .658 .424 [101, 31, 51, 36, 26, 26, 26]

50 117 22 .365 .658 .424 [101, 31, 51, 31, 36, 26, 26]

51 117 22 .365 .658 .424 [101, 31, 51, 31, 31, 36, 26]

52 117 22 .365 .658 .424 [101, 31, 51, 31, 31, 31, 36]

53 123 15 .373 .540 .422 [111, 31, 51, 31, 31, 31, 31]

54 123 15 .373 .540 .422 [121, 31, 51, 31, 31, 31, 31]

55 109 33 .362 .807 .432 [116, 41, 51, 31, 31, 31, 31]

Table A-2: Clustering results for controller with device instance 2.

run Ɛ clusters AMI Hg Cp Vw

1 17 178 .094 .287 .199 [1, 1, 1, 1, 1, 1, 1]

2 15 247 .086 .386 .195 [11, 1, 1, 1, 1, 1, 1]

3 45 292 .095 .443 .211 [6, 11, 1, 1, 1, 1, 1]

4 64 282 .098 .437 .212 [6, 21, 1, 1, 1, 1, 1]

5 75 281 .098 .437 .212 [6, 31, 1, 1, 1, 1, 1]

6 89 278 .099 .437 .212 [6, 41, 1, 1, 1, 1, 1]

7 99 274 .100 .434 .211 [6, 51, 1, 1, 1, 1, 1]

8 108 270 .101 .434 .212 [6, 61, 1, 1, 1, 1, 1]

9 116 269 .101 .433 .211 [6, 71, 1, 1, 1, 1, 1]

10 122 268 .101 .432 .211 [6, 81, 1, 1, 1, 1, 1]

11 118 269 .101 .433 .211 [6, 76, 11, 1, 1, 1, 1]

12 118 269 .101 .433 .211 [6, 76, 21, 1, 1, 1, 1]

13 118 269 .101 .433 .211 [6, 76, 16, 11, 1, 1, 1]

14 118 269 .101 .433 .211 [6, 76, 16, 6, 11, 1, 1]

15 118 269 .101 .433 .211 [6, 76, 16, 6, 6, 11, 1]

16 118 269 .101 .433 .211 [6, 76, 16, 6, 6, 6, 11]

17 121 281 .098 .437 .212 [16, 76, 16, 6, 6, 6, 6]

18 139 210 .099 .371 .197 [11, 86, 16, 6, 6, 6, 6]

19 135 274 .100 .434 .211 [11, 96, 16, 6, 6, 6, 6]

20 144 270 .101 .434 .212 [11, 106, 16, 6, 6, 6, 6]

37

21 147 270 .101 .434 .212 [11, 116, 16, 6, 6, 6, 6]

22 146 270 .101 .434 .212 [11, 111, 26, 6, 6, 6, 6]

23 146 270 .101 .434 .212 [11, 111, 21, 16, 6, 6, 6]

24 146 270 .101 .434 .212 [11, 111, 21, 11, 16, 6, 6]

25 146 270 .101 .434 .212 [11, 111, 21, 11, 11, 16, 6]

26 146 270 .101 .434 .212 [11, 111, 21, 11, 11, 11, 16]

27 141 281 .098 .437 .212 [21, 111, 21, 11, 11, 11, 11]

28 146 279 .099 .437 .212 [16, 121, 21, 11, 11, 11, 11]

29 149 281 .098 .438 .212 [16, 131, 21, 11, 11, 11, 11]

30 146 282 .101 .444 .214 [16, 126, 31, 11, 11, 11, 11]

31 146 282 .101 .444 .214 [16, 126, 41, 11, 11, 11, 11]

32 146 282 .101 .444 .214 [16, 126, 36, 21, 11, 11, 11]

33 146 282 .101 .444 .214 [16, 126, 36, 16, 21, 11, 11]

34 146 285 .100 .446 .214 [16, 126, 36, 16, 16, 21, 11]

35 146 285 .100 .446 .214 [16, 126, 36, 16, 16, 16, 21]

36 149 285 .096 .438 .211 [26, 126, 36, 16, 16, 16, 16]

37 141 312 .095 .462 .216 [21, 136, 36, 16, 16, 16, 16]

38 149 285 .096 .438 .211 [21, 131, 46, 16, 16, 16, 16]

39 149 285 .096 .438 .211 [21, 131, 56, 16, 16, 16, 16]

40 149 285 .096 .438 .211 [21, 131, 51, 26, 16, 16, 16]

41 149 285 .096 .438 .211 [21, 131, 51, 21, 26, 16, 16]

42 149 285 .096 .438 .211 [21, 131, 51, 21, 21, 26, 16]

43 149 285 .096 .438 .211 [21, 131, 51, 21, 21, 21, 26]

44 143 312 .095 .462 .216 [31, 131, 51, 21, 21, 21, 21]

45 145 312 .095 .462 .216 [26, 141, 51, 21, 21, 21, 21]

46 143 312 .095 .462 .216 [26, 136, 61, 21, 21, 21, 21]

47 143 312 .095 .462 .216 [26, 136, 56, 31, 21, 21, 21]

48 143 312 .095 .462 .216 [26, 136, 56, 26, 31, 21, 21]

49 143 312 .095 .462 .216 [26, 136, 56, 26, 26, 31, 21]

50 143 312 .095 .462 .216 [26, 136, 56, 26, 26, 26, 31]

51 148 313 .095 .462 .216 [36, 136, 56, 26, 26, 26, 26]

52 149 312 .095 .462 .216 [31, 146, 56, 26, 26, 26, 26]

53 147 337 .093 .480 .218 [31, 156, 56, 26, 26, 26, 26]

54 148 313 .095 .462 .216 [31, 151, 66, 26, 26, 26, 26]

55 148 313 .095 .462 .216 [31, 151, 76, 26, 26, 26, 26]

Table A-3: Clustering results for controller with device instance 3.

run Ɛ clusters AMI Hg Cp Vw

1 19 129 .105 .271 .264 [1, 1, 1, 1, 1, 1, 1]

2 20 129 .093 .260 .255 [11, 1, 1, 1, 1, 1, 1]

3 60 128 .104 .269 .263 [6, 11, 1, 1, 1, 1, 1]

38

4 77 177 .105 .385 .263 [6, 21, 1, 1, 1, 1, 1]

5 92 173 .107 .384 .263 [6, 31, 1, 1, 1, 1, 1]

6 107 170 .110 .381 .264 [6, 41, 1, 1, 1, 1, 1]

7 119 167 .111 .377 .263 [6, 51, 1, 1, 1, 1, 1]

8 127 162 .109 .363 .260 [6, 61, 1, 1, 1, 1, 1]

9 122 167 .111 .377 .263 [6, 56, 11, 1, 1, 1, 1]

10 122 167 .111 .377 .263 [6, 56, 21, 1, 1, 1, 1]

11 122 167 .111 .377 .263 [6, 56, 16, 11, 1, 1, 1]

12 122 167 .111 .377 .263 [6, 56, 16, 6, 11, 1, 1]

13 122 167 .111 .377 .263 [6, 56, 16, 6, 6, 11, 1]

14 122 167 .111 .377 .263 [6, 56, 16, 6, 6, 6, 11]

15 126 177 .105 .385 .263 [16, 56, 16, 6, 6, 6, 6]

16 138 171 .108 .381 .263 [11, 66, 16, 6, 6, 6, 6]

17 148 168 .111 .378 .264 [11, 76, 16, 6, 6, 6, 6]

18 149 173 .107 .383 .263 [11, 86, 16, 6, 6, 6, 6]

19 147 171 .109 .383 .263 [11, 81, 26, 6, 6, 6, 6]

20 147 171 .109 .383 .263 [11, 81, 36, 6, 6, 6, 6]

21 147 171 .109 .383 .263 [11, 81, 31, 16, 6, 6, 6]

22 147 171 .109 .383 .263 [11, 81, 31, 11, 16, 6, 6]

23 147 171 .109 .383 .263 [11, 81, 31, 11, 11, 16, 6]

24 147 171 .109 .383 .263 [11, 81, 31, 11, 11, 11, 16]

25 149 178 .104 .385 .263 [21, 81, 31, 11, 11, 11, 11]

26 149 194 .092 .399 .258 [16, 91, 31, 11, 11, 11, 11]

27 149 176 .105 .384 .262 [16, 86, 41, 11, 11, 11, 11]

28 149 176 .105 .384 .262 [16, 86, 51, 11, 11, 11, 11]

29 149 176 .105 .384 .262 [16, 86, 46, 21, 11, 11, 11]

30 149 176 .105 .384 .262 [16, 86, 46, 16, 21, 11, 11]

31 149 176 .105 .384 .262 [16, 86, 46, 16, 16, 21, 11]

32 149 176 .105 .384 .262 [16, 86, 46, 16, 16, 16, 21]

33 149 185 .097 .386 .259 [26, 86, 46, 16, 16, 16, 16]

34 107 358 .090 .624 .296 [21, 96, 46, 16, 16, 16, 16]

35 97 363 .089 .630 .297 [21, 91, 56, 16, 16, 16, 16]

36 97 363 .089 .630 .297 [21, 91, 51, 26, 16, 16, 16]

37 97 363 .089 .630 .297 [21, 91, 51, 21, 26, 16, 16]

38 97 363 .089 .630 .297 [21, 91, 51, 21, 21, 26, 16]

39 97 363 .089 .630 .297 [21, 91, 51, 21, 21, 21, 26]

40 100 364 .089 .630 .297 [31, 91, 51, 21, 21, 21, 21]

41 102 364 .089 .630 .297 [26, 101, 51, 21, 21, 21, 21]

42 100 364 .089 .630 .297 [26, 96, 61, 21, 21, 21, 21]

43 100 364 .089 .630 .297 [26, 96, 56, 31, 21, 21, 21]

44 100 364 .089 .630 .297 [26, 96, 56, 26, 31, 21, 21]

45 100 364 .089 .630 .297 [26, 96, 56, 26, 26, 31, 21]

46 100 364 .089 .630 .297 [26, 96, 56, 26, 26, 26, 31]

39

47 104 365 .089 .631 .297 [36, 96, 56, 26, 26, 26, 26]

48 103 368 .088 .631 .297 [46, 96, 56, 26, 26, 26, 26]

49 110 365 .089 .631 .297 [41, 106, 56, 26, 26, 26, 26]

50 113 364 .089 .630 .297 [41, 116, 56, 26, 26, 26, 26]

51 112 364 .089 .630 .297 [41, 111, 66, 26, 26, 26, 26]

52 112 364 .089 .630 .297 [41, 111, 61, 36, 26, 26, 26]

53 112 364 .089 .630 .297 [41, 111, 61, 31, 36, 26, 26]

54 112 364 .089 .630 .297 [41, 111, 61, 31, 31, 36, 26]

55 112 364 .089 .630 .297 [41, 111, 61, 31, 31, 31, 36]

Table A-4: Clustering results for controller with device instance 4.

run Ɛ clusters AMI Hg Cp Vw

1 18 80 .197 .468 .309 [1, 1, 1, 1, 1, 1, 1]

2 18 95 .182 .504 .305 [11, 1, 1, 1, 1, 1, 1]

3 57 78 .205 .479 .314 [6, 11, 1, 1, 1, 1, 1]

4 78 72 .216 .477 .319 [6, 21, 1, 1, 1, 1, 1]

5 95 72 .216 .477 .319 [6, 31, 1, 1, 1, 1, 1]

6 87 72 .216 .477 .319 [6, 26, 11, 1, 1, 1, 1]

7 87 72 .216 .477 .319 [6, 26, 6, 11, 1, 1, 1]

8 87 72 .216 .477 .319 [6, 26, 6, 6, 11, 1, 1]

9 87 72 .216 .477 .319 [6, 26, 6, 6, 6, 11, 1]

10 87 72 .216 .477 .319 [6, 26, 6, 6, 6, 6, 11]

11 88 78 .205 .479 .314 [16, 26, 6, 6, 6, 6, 6]

12 103 72 .216 .477 .319 [11, 36, 6, 6, 6, 6, 6]

13 116 72 .216 .477 .319 [11, 46, 6, 6, 6, 6, 6]

14 109 72 .216 .477 .319 [11, 41, 16, 6, 6, 6, 6]

15 109 72 .216 .477 .319 [11, 41, 11, 16, 6, 6, 6]

16 109 72 .216 .477 .319 [11, 41, 11, 11, 16, 6, 6]

17 109 73 .217 .481 .320 [11, 41, 11, 11, 11, 16, 6]

18 109 73 .217 .481 .320 [11, 41, 11, 11, 11, 26, 6]

19 109 76 .223 .519 .322 [11, 41, 11, 11, 11, 21, 16]

20 109 76 .223 .519 .322 [11, 41, 11, 11, 11, 21, 26]

21 109 82 .212 .521 .317 [21, 41, 11, 11, 11, 21, 21]

22 122 72 .216 .477 .319 [16, 51, 11, 11, 11, 21, 21]

23 133 72 .216 .477 .319 [16, 61, 11, 11, 11, 21, 21]

24 128 72 .216 .477 .319 [16, 56, 21, 11, 11, 21, 21]

25 128 72 .216 .477 .319 [16, 56, 16, 21, 11, 21, 21]

26 128 72 .216 .477 .319 [16, 56, 16, 16, 21, 21, 21]

27 128 72 .216 .477 .319 [16, 56, 16, 16, 16, 31, 21]

28 128 72 .216 .477 .319 [16, 56, 16, 16, 16, 26, 31]

29 128 75 .211 .477 .317 [26, 56, 16, 16, 16, 26, 26]

40

30 139 72 .216 .477 .319 [21, 66, 16, 16, 16, 26, 26]

31 149 72 .216 .477 .319 [21, 76, 16, 16, 16, 26, 26]

32 144 72 .216 .477 .319 [21, 71, 26, 16, 16, 26, 26]

33 144 72 .216 .477 .319 [21, 71, 21, 26, 16, 26, 26]

34 144 72 .216 .477 .319 [21, 71, 21, 21, 26, 26, 26]

35 144 72 .216 .477 .319 [21, 71, 21, 21, 21, 36, 26]

36 144 72 .216 .477 .319 [21, 71, 21, 21, 21, 31, 36]

37 144 75 .211 .477 .317 [31, 71, 21, 21, 21, 31, 31]

38 149 89 .213 .548 .322 [26, 81, 21, 21, 21, 31, 31]

39 146 99 .203 .579 .321 [26, 91, 21, 21, 21, 31, 31]

40 149 91 .209 .550 .320 [26, 86, 31, 21, 21, 31, 31]

41 149 91 .209 .550 .320 [26, 86, 41, 21, 21, 31, 31]

42 149 91 .209 .550 .320 [26, 86, 36, 31, 21, 31, 31]

43 149 91 .209 .550 .320 [26, 86, 36, 26, 31, 31, 31]

44 149 91 .209 .550 .320 [26, 86, 36, 26, 26, 41, 31]

45 149 91 .209 .550 .320 [26, 86, 36, 26, 26, 36, 41]

46 149 95 .202 .552 .317 [36, 86, 36, 26, 26, 36, 36]

47 148 104 .191 .580 .313 [31, 96, 36, 26, 26, 36, 36]

48 148 101 .200 .579 .319 [31, 91, 46, 26, 26, 36, 36]

49 148 101 .200 .579 .319 [31, 91, 56, 26, 26, 36, 36]

50 148 101 .200 .579 .319 [31, 91, 51, 36, 26, 36, 36]

51 148 101 .200 .579 .319 [31, 91, 51, 31, 36, 36, 36]

52 148 101 .200 .579 .319 [31, 91, 51, 31, 31, 46, 36]

53 148 101 .200 .579 .319 [31, 91, 51, 31, 31, 41, 46]

54 147 105 .191 .580 .313 [41, 91, 51, 31, 31, 41, 41]

55 149 121 .170 .615 .303 [36, 101, 51, 31, 31, 41, 41]

41

Table A-5: Clustering results for controller with device instance 5.

run Ɛ clusters AMI Hg Cp Vw

1 19 47 .115 .160 .156 [1, 1, 1, 1, 1, 1, 1]

2 19 57 .102 .161 .149 [11, 1, 1, 1, 1, 1, 1]

3 61 46 .117 .159 .157 [6, 11, 1, 1, 1, 1, 1]

4 83 46 .117 .159 .157 [6, 21, 1, 1, 1, 1, 1]

5 73 46 .117 .159 .157 [6, 16, 11, 1, 1, 1, 1]

6 73 46 .117 .159 .157 [6, 16, 6, 11, 1, 1, 1]

7 73 46 .117 .159 .157 [6, 16, 6, 6, 11, 1, 1]

8 73 46 .117 .159 .157 [6, 16, 6, 6, 6, 11, 1]

9 73 46 .117 .159 .157 [6, 16, 6, 6, 6, 6, 11]

10 76 47 .115 .160 .156 [16, 16, 6, 6, 6, 6, 6]

11 93 46 .117 .159 .157 [11, 26, 6, 6, 6, 6, 6]

12 109 46 .117 .159 .157 [11, 36, 6, 6, 6, 6, 6]

13 101 46 .117 .159 .157 [11, 31, 16, 6, 6, 6, 6]

14 101 46 .117 .159 .157 [11, 31, 11, 16, 6, 6, 6]

15 101 46 .117 .159 .157 [11, 31, 11, 11, 16, 6, 6]

16 101 46 .117 .159 .157 [11, 31, 11, 11, 11, 16, 6]

17 101 46 .117 .159 .157 [11, 31, 11, 11, 11, 11, 16]

18 104 46 .117 .159 .157 [21, 31, 11, 11, 11, 11, 11]

19 116 46 .117 .159 .157 [16, 41, 11, 11, 11, 11, 11]

20 109 46 .117 .159 .157 [16, 36, 21, 11, 11, 11, 11]

21 109 46 .117 .159 .157 [16, 36, 16, 21, 11, 11, 11]

22 109 46 .117 .159 .157 [16, 36, 16, 16, 21, 11, 11]

23 109 46 .117 .159 .157 [16, 36, 16, 16, 16, 21, 11]

24 109 46 .117 .159 .157 [16, 36, 16, 16, 16, 16, 21]

25 112 46 .117 .159 .157 [26, 36, 16, 16, 16, 16, 16]

26 123 46 .117 .159 .157 [21, 46, 16, 16, 16, 16, 16]

27 117 46 .117 .159 .157 [21, 41, 26, 16, 16, 16, 16]

28 117 46 .117 .159 .157 [21, 41, 21, 26, 16, 16, 16]

29 117 46 .117 .159 .157 [21, 41, 21, 21, 26, 16, 16]

30 117 46 .117 .159 .157 [21, 41, 21, 21, 21, 26, 16]

31 117 46 .117 .159 .157 [21, 41, 21, 21, 21, 21, 26]

32 121 46 .117 .159 .157 [31, 41, 21, 21, 21, 21, 21]

33 130 46 .117 .159 .157 [26, 51, 21, 21, 21, 21, 21]

34 125 46 .117 .159 .157 [26, 46, 31, 21, 21, 21, 21]

35 125 46 .117 .159 .157 [26, 46, 26, 31, 21, 21, 21]

36 125 46 .117 .159 .157 [26, 46, 26, 26, 31, 21, 21]

37 125 46 .117 .159 .157 [26, 46, 26, 26, 26, 31, 21]

38 125 46 .117 .159 .157 [26, 46, 26, 26, 26, 26, 31]

39 128 46 .117 .159 .157 [36, 46, 26, 26, 26, 26, 26]

40 137 46 .117 .159 .157 [31, 56, 26, 26, 26, 26, 26]

42

41 132 46 .117 .159 .157 [31, 51, 36, 26, 26, 26, 26]

42 132 46 .117 .159 .157 [31, 51, 31, 36, 26, 26, 26]

43 132 46 .117 .159 .157 [31, 51, 31, 31, 36, 26, 26]

44 132 46 .117 .159 .157 [31, 51, 31, 31, 31, 36, 26]

45 132 46 .117 .159 .157 [31, 51, 31, 31, 31, 31, 36]

46 135 46 .117 .159 .157 [41, 51, 31, 31, 31, 31, 31]

47 144 46 .117 .159 .157 [36, 61, 31, 31, 31, 31, 31]

48 139 46 .117 .159 .157 [36, 56, 41, 31, 31, 31, 31]

49 139 46 .117 .159 .157 [36, 56, 36, 41, 31, 31, 31]

50 139 46 .117 .159 .157 [36, 56, 36, 36, 41, 31, 31]

51 139 46 .117 .159 .157 [36, 56, 36, 36, 36, 41, 31]

52 139 46 .117 .159 .157 [36, 56, 36, 36, 36, 36, 41]

53 142 46 .117 .159 .157 [46, 56, 36, 36, 36, 36, 36]

54 148 47 .115 .160 .156 [41, 66, 36, 36, 36, 36, 36]

55 145 46 .117 .159 .157 [41, 61, 46, 36, 36, 36, 36]

43

Appendix B. Evaluation score and cluster amount plots.

Controller 1

Figure B-1a: AMI, Homogeneity and Completeness against .Ɛ

Figure B-1b: Amount of clusters against .Ɛ

44

10 20 30 40 50 60 70 80 90 100 110 120 130
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AMI Hg Cp

10 20 30 40 50 60 70 80 90 100 110 120 130
0

5

10

15

20

25

30

35

clusters

Controller 2

Figure B-2a: AMI, Homogeneity and Completeness against .Ɛ

Figure B-2b: Amount of clusters against .Ɛ

45

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0

0.1

0.2

0.3

0.4

0.5

0.6

AMI Hg Cp

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0

50

100

150

200

250

300

350

400

clusters

Controller 3

Figure B-3a: AMI, Homogeneity and Completeness against .Ɛ

Figure B-3b: Amount of clusters against .Ɛ

46

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AMI Hg Cp

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0

50

100

150

200

250

300

350

400

clusters

Controller 4

Figure B-4a: AMI, Homogeneity and Completeness against .Ɛ

Figure B-4b: Amount of clusters against .Ɛ

47

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AMI Hg Cp

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0

20

40

60

80

100

120

140

clusters

Controller 5

Figure B-5a: AMI, Homogeneity and Completeness against .Ɛ

Figure B-5b: Amount of clusters against .Ɛ

48

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0.05

0.07

0.09

0.11

0.13

0.15

0.17

AMI Hg Cp

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0

10

20

30

40

50

60

clusters

	1. Introduction
	2. BACnet
	2.1 Network layer
	2.2 Application layer
	2.3 Services
	2.4 BACnet device programming and specification

	3. Definitions
	3.1 Software modules
	3.2 Allocation of objects
	3.3 Object identifiers
	3.4 Object relationships

	4. Environment description
	4.1 Network model
	4.2 Traffic features
	4.3 Controller inspection
	4.3.1 Logging server (network historian)
	4.3.2 Inter-controller traffic

	5. Problem statement
	6. Establishing a ground truth of object relations (RQ-I)
	6.1 Source of the ground truth
	6.2 Reverse engineering the project file
	6.3 Complementing the database
	6.4 Ground truth in practice
	6.5 Results

	7. Discovery of object relations from bus traffic (RQ-II)
	7.1 Clustering: a naive approach to object relations
	7.1.1 Selection
	7.1.2 Preprocessing
	7.1.3 Transformation
	7.1.4 Model creation
	7.1.4.1 Distance metrics
	7.1.4.2 Evaluation criteria
	7.1.4.3 Python program

	7.2 Results
	7.3 Discussion

	8. Limitations
	8.1 Ground truth
	8.2 Clustering

	9. Conclusion
	10. Further research
	11. References
	12. Appendices
	Appendix A. Results
	Appendix B. Evaluation score and cluster amount plots.

