

1

Decreasing the computation time that’s used for saving
data in the DEMKit simulator

Birte Brunt
University of Twente

PO Box 217, 7500 AE Enschede
The Netherlands

b.w.brunt@student.utwente.nl

ABSTRACT

The DEMKit simulator used too much computation time for
saving data instead of calculating and controlling actions. This
paper focusses on how the DEMKit simulator can be

improved so that the computation time used for saving data is
reduced. Related work suggested that other databases perform
worse for the DEMKit simulator, so the implementation was
adapted to improve the simulator. A new approach for saving

data locally was implemented, together with an optimization
of the maximum buffer size. The computation time for saving
data was reduced to 23% of the original time. The optimal
buffer size appeared to be 40.000 datapoints, unless more real

time updates are preferred.

Keywords

Optimization, Timeseries Database, Smart Grids, Simulator

1. INTRODUCTION
The University of Twente developed a simulation tool to
simulate smart grids, the DEMKit simulator [9]. This DEMKit

simulator is, among others, used by one of the departments of

this University, namely the Computer Architecture for
Embedded Systems (CAES) group [8]. With the future in
mind, they are trying to optimize the energy balance in smart

grids in order to make it more accessible to use sustainable
energy to a greater extent.

Up to now, communication between the power generator and

the power consumer has always been one way. The
information went from power generating units and utilities to
the consumers. This was fine as long as the power was

generated at a central point and was distributed from there to
the consumers. With sustainable energy, consumers can also
generate power by using decentralized methods, such as solar
panels or windmills. When the line between consumer and

generator fades, grids have to support two way
communication so that every part of the network can receive
and send information. Smart grids support this function and

are therefore necessary to implement sustainable energy to a

greater extent. [6]

To optimize these energy balances in smart grids, the CAES

group runs various simulations. Each simulation contains
different compositions of different households and each
household consists of multiple devices, which all have their

own components. So, to get an accurate analysis about what

happened during a simulation, a lot of data needs to be saved
about all these different elements. When saving the data
generated during these simulations takes a long time, this

process becomes unnecessarily time-consuming.
Unfortunately, that is exactly the problem the CAES group is
struggling with at the moment.

In order to solve this problem we have to ask ourselves the
question: “How can the DEMKit simulator be improved so

that the computation time used for saving data is reduced?”.
Broadly, there are two sub-questions that result from the main

research question, namely: “Can the computation time for

saving data be reduced by using another database?” and “Can
the computation time for saving data be reduced by adapting
the implementation of the DEMKit simulator?”

2. BACKGROUND

2.1 State of the art
The DEMKit simulator is an application which is written in
Python. During a simulation, a loop of three different steps is
running, namely the preTick the timeTick and the logValue.
The simulator uses a synchronized clock with a fixed discrete

time step to simulate the time progress. For each timestamp,

one iteration of the loop runs. [2]

The three different phases all have their own tasks. The
preTick phase makes sure all entities update their current
state, all the calculations and controlling of actions take place
within the timeTick phase and the logValue phase logs all

data. This last phase is the most important one when talking

about saving data.

The logValue phase consists of two parts. The first thing (Part
1 in Figure 1) this function does is saving all the statistics
about the different components and the overall statistics

locally. The function goes over every single component of the
simulation and adds its statistics one by one to a shared string.
Thereafter (Part 2 in Figure 1), it has to be decided whether
this data has to be saved in the database yet or that it can be

done in a later stage in the simulation. This decision depends
on how much data is being stored locally at that moment.

When the amount of data is more than the initialized buffer
can handle, the data has to be written to the database and the

shared string is emptied. If not, the locally saved data passes

on to the next iteration of the loop. There is also the
possibility to force writing data to the database after each
iteration.

Figure 1: logValue phase

2

2.2 Related work
The DEMKit simulator uses an Influxdb [5] as database. This
is a timeseries database which means that it is optimized for

saving lots of values indexed by time. The CAES group is
using Grafana [3] as an interface to analyze all the data saved
in the database. Grafana takes queries as input to show the

right values in one of the many visualizations offered. The

combination of the database and the visualization makes it
easy to save and analyze data generated by the DEMKit
simulator.

According to Di Martino et al.[7], timeseries databases (in
particular Influxdb) perform better at ingestion, retrieval and

disk performances. The only test where the Influxdb was not
the best performer (but was still working), was at the
execution time of queries by non-temporal attribute filtering.
For the DEMKit simulator, this test is not relevant, as it only

uses temporal attributes. In addition, the only test that is truly
relevant for the computation time used during a simulation, is
the ingestion performance. This shows that it is a reasonable

choice to use a timeseries database for the DEMKit simulator.

But Influxdb is not the only timeseries database out there.

DB-Engines [1] has made a ranking of different timeseries

databases based on popularity. Of the 32 databases, the
Influxdb is in the first place. This comparison does not
directly say anything about the performances of these

databases. Yet, the Influxdb is four times as popular as the
second most popular database, which is probably not without
any reason.

Influxdata wrote some tutorial code [4] to get used to python
in combination with the Influxdb. In this code there is one
main client object and different classes which extend this

class. These children are different examples on how to use the
parent class. There is one important difference between the
code of Influxdata and the code of the DEMKit simulator,
namely the way of saving data locally. In the DEMKit

simulator there is only the possibility to save this data in one
big string. Influxdata on the other hand has two possibilities,
namely by a list of JSON objects or as a list of string objects.
These lists are being translated to one big string just before

communication with the database takes place.

3. METHOD
Since related work suggests that other databases perform
worse for the DEMKit simulator, we focus on adapting the

implementation of the DEMKit simulator rather than

searching for another database.

The following steps need to be taken:

1. Finding the bottlenecks in the existing

implementation.

2. Searching for new approaches to achieve the same
result, but with less computation time.

3. Integrating these new approaches into the old
implementation.

4. Testing whether the new implementation takes less
computation time.

To find the bottlenecks in the existing implementation we
investigate the time needed for the different parts in the

logValue phase. This is done by using the datetime module.

With this module, the current timestamp can be obtained.
Subtracting the timestamps before and after the execution of a

part of the code gives us the time that was needed for this part
during one iteration. The aggregate time of all the time
intervals for the same part of the code, is the time that was

needed for this part during the entire simulation. The parts
that take the most time are seen as the bottlenecks.

To search for new approaches we explore the Influxdata’s
implementations for more specific objectives than before. If
this does not give the desired outcome, more sources should

be checked to see if a solution can be found.

To integrate these new approaches we adapt the

implementation of the DEMKit simulator according to the
findings of the step before.

To test whether the new implementation takes less

computation time, we run the same simulation with the old
implementation as well as with the new implementation. The

computation time is measured in the same way as mentioned
in the first step.

To perform steps one and four we use two simulations. These
are already written by the CAES group and are included in the
example simulations of the DEMKit simulator. One of them

is a simulation about just one household (demohouse), this
one is suitable to find the bottlenecks. To compare the two
implementations, we also use the simulation about a street of
households (demostreet). In this way, we can see the result in

a smaller and a bigger simulation.

4. ANALYSIS
The logValue phase is broken down to seven different parts .
The total time of these different parts are measured and
printed at the end of each simulation. The results in Table 1

are an average of three runs of the demohouse simulation. The
results per run can be found in Appendix A.

Function Time in sec

Log devices 15,920182

Log meters 4,027849

Log controllers 11,358850

Log flow 0,022013

Networkmaster 0,017027

Log overall stats 5,682247

Time to write to database 8,054594

Table 1: Average computation time per function of the

logValue phase, running demohouse

As shown in the Table 1, logging statistics about the devices

and the controllers is taking the most time and can be seen as

the bottlenecks of the current simulator. Taking a closer look
at these functions, it becomes clear that the main functionality
of these functions is to save data locally. Or in other words,

extending the shared string takes too much computation time.

5. NEW IMPLEMENTATION

To improve the old implementation, a new approach for
saving data locally should be implemented. As noticed before,

Influxdata saves local data as a list of strings or JSON objects

instead of one big string. When taking a closer look at this
implementation, the difference with the DEMKit simulator
code is in the used operator. The DEMKit simulator uses the

plus operator to extend the string, where Influxdata’s
implementation uses the append operator to add new values to

3

the list. The difference between these two is that the plus
operator has to create a new object to save the result, whereas
the append operator adapts the first given object. So instead of

saving both strings again, the append operator only saves the
additional string once more. Because the first string becomes
larger each time a new part of the data is added, it is highly
beneficial when this string does not need to be saved over and

over again. In order to reduce the computation time, the

shared string is replaced by a list of strings, so that the append
operator can be used instead of the plus operator.

During the implementation of this new approach, another
aspect showed up, namely the buffer size. This buffer size
determines how many times, and how much data is sent to the

database. When the buffer size decreases, more queries need

to be sent to the database. When the buffer size increases, the
queries become larger and the lists that need to be parsed into
strings are longer. To see if it makes a difference in the

overall time, several buffer sizes are tested. The buffer size
cannot increase endlessly when using the default maximum
body size (25.000.000 bytes) for a query.

6. RESULTS
Both the simulations demohouse and demostreet have
simulated a period of seven days. The demohouse simulation

was simulating just one household, the demostreet simulation
was simulating ten households.

In Graph 1 and Graph 2, the results of the new
implementation with a buffer size of 100.000 datapoints are
shown. These are the rounded averages of three runs of the

simulations. In Appendices B, C and D all individual results
are shown.

Graph 1: Average computation time of the old and the

new implementation, running demohouse

Graph 2: Average computation time of the old and the

new implementation, running demostreet

In Graph 3, the results of the new implementation with
different buffer sizes are shown. The computation time on the
y-axis is the computation time needed to write data to the

database since this in the only function affected by the buffer
size. In Appendix E all individual results are shown.

Graph 3: Computation time needed for writing to the

database with different buffer sizes, running demostreet

7. DISCUSSION
As shown in the first two graphs, the computation time for
saving data decreased significantly. Not only the functions
that were defined as the bottlenecks decreased in time, but

most other functions in the logValue phase as well. Based on

the results in Graph 2, the total computation time for saving
data is reduced to only 23% of the initial computation time.
For the functions that were defined as the bottlenecks, these

percentages are even more consequential. The computation
time for logging devices is reduced to 21% and the
computation time for logging controllers is reduced to 12%.

The networkmaster is the only part that did not decrease in
computation time. This can be easily clarified, since this is the

only part that does not save data locally and therefore does not

benefit from the new approach to save data.

The different buffer sizes also affect the computation time f or
saving data. The part where data is written to the database
decreases in computation time when the buffer size increases.
These factors are exponentially related with a horizontal

asymptote around the 30 seconds. At a buffer size of 40.000
datapoints, a computation time of 33,508435 seconds is

already obtained. Increasing the buffer size even more does
not have significant beneficial effect anymore and only results

in less real time updates. The optimal buffer size therefore is

around 40.000 datapoints, unless more real time updates are
preferred.

Further research on this topic should start at reducing the

founded asymptote of 30 seconds for writing data to the

database. This is now the function that takes the most
computation time for saving data, namely 41%.

8. CONCLUSION
So to get back to the research question, we succeeded in
adapting the implementation of the DEMKit simulator in such

a way that the new implementation takes only 23% of the
initial computation time for saving data. The optimal buffer
size to use is around the 40.000 datapoints. A new database
was not the best solution since the Influxdb is already a good

functioning database.

For future research, writing the data to the database is thought

to play an important role. For now, the minimal time this

4

takes is around 30 seconds, what comes down to 41% of the
total computation time needed for saving data. Different
versions of the Influxdb can be compared to see if this affects

the computation time.

9. REFERENCES
[1] DB-Engines. DB-Engines Ranking of Time Series DBMS ,

Jan. 2020. Accessed on: Jan. 26, 2020. [Online]

Available: https://db-

engines.com/en/ranking/time+series+dbms

[2] G. Hoogsteen, J. L. Hurink and G. J. M. Smit, "DEMKit: a
Decentralized Energy Management Simulation and
Demonstration Toolkit," 2019 IEEE PES Innovative
Smart Grid Technologies Europe (ISGT-Europe),

Bucharest, Romania, 2019, pp. 1-5.

[3] Grafana Labs. The open observalibility platform, 2020.
Accessed on: Jan. 26, 2020. [Online] Available:
https://grafana.com/

[4] InfluxData. Python client for InfluxDB, Dec. 5, 2019.
Accessed on: Jan. 26, 2020. [Online] Available:
https://github.com/influxdata/influxdb-python

[5] InfluxData. Real-time visibility into stacks, sensors and

systems, 2020. Accessed on: Jan. 26, 2020. [Online]
Available: https://www.influxdata.com/

[6] P. Bansal and A. Singh, "Smart metering in smart grid
framework: A review," 2016 Fourth International
Conference on Parallel, Distributed and Grid

Computing (PDGC), Waknaghat, 2016, pp. 174-
176.

[7] S. Di Martino, L. Fiadone, A. Peron, A. Riccabone and V.
N. Vitale, "Industrial Internet of Things: Persistence
for Time Series with NoSQL Databases," 2019
IEEE 28th International Conference on Enabling

Technologies: Infrastructure for Collaborative
Enterprises (WETICE), Napoli, Italy, 2019, pp. 340-
345.

[8] University of Twente. Computer Architecture for
Embedded Systems, May 28, 2019. Accessed on:

Jan. 26, 2020 [Online] Available:

https://www.utwente.nl/en/eemcs/caes/

[9] University of Twente. DEMKIT, Apr. 5, 2019. Accessed
on: Jan. 26, 2020 [Online] Available:

https://www.utwente.nl/en/eemcs/energy/demkit/

5

10. APPENDICES

A. Old implementation, demohouse

Function Time in sec per run Average time

in sec

Log devices 15,579139 16,178368 16,003038 15,920182

Log meters 3,925075 4,102371 4,056101 4,027849

Log

controllers

11,169033 11,527038 11,380480 11,358850

Log flow 0,022032 0,019988 0,024020 0,022013

Network

master

0,016010 0,015012 0,020058 0,017027

Log overall

stats

5,535880 5,786798 5,724063 5,682247

Time to

write to

database

7,834503 8,136058 8,193222 8,054594

Total

execution

time of the

simulation

69,459577 71,895333 71,421037 70,925316

B. New implementation, demohouse

Function Time in sec per run Average time

in sec

Log devices 3,836833 3,701561 3,636695 3,725030

Log meters 0,933531 0,922622 0,931586 0,929246

Log

controllers

2,947401 2,789468 2,829963 2,855611

Log flow 0,016043 0,013050 0,018023 0,015705

Network

master

0,017976 0,019011 0,017992 0,018326

Log overall

stats

1,347923 1,313996 1,253081 1,305000

Time to

write to

database

2,519025 2,587528 2,488507 2,531687

Total

execution

time of the

simulation

38,069910 37,222012 36,863541 37,385154

C. Old implementation, demostreet

Function Time in sec per run Average time

in sec

Log devices 84,608669 88,712221 91,318820 88,213237

Log meters 44,416374 47,112617 47,264375 46,264455

Log

controllers

136,37830

3

140,03325

4

139,75089

4

138,720817

Log flow 0,024020 0,040020 0,031021 0,031687

Network

master

0,024017 0,021017 0,028025 0,024521

Log overall

stats

18,705274 19,325533 19,075414 19,035407

Time to

write to

database

50,196540 53,448676 51,308209 51,651142

Total

execution

time of the

simulation

477,59522

0

495,84384

3

490,94972

3

488,129595

D. New implementation, demostreet

Function Time in sec per run

Buffer size of 100.000 datapoints

Average

time in sec

Log

devices

18,167656 18,507509 19,055039 18,576735

Log

meters

8,707016 8,827776 9,044233 8,859675

Log

controllers

16,747438 17,093942 17,566794 17,136058

Log flow 0,023989 0,024015 0,027022 0,025008

Network

master

0,026022 0,017989 0,030022 0,024678

Log

overall

stats

2,271807 2,305772 2,428685 2,335421

Time to

write to

database

31,907216 31,926355 32,920332 32,251301

Total

execution

time of the

simulation

207,11382

0

210,46860

0

215,20978

8

210,930736

E. New implementation with different

buffer sizes, demostreet

Function Buffer =

1.000

datapoints

Buffer =

5.000

datapoints

Buffer =

10.000

datapoints

Buffer =

20.000

datapoints

Time to

write to

database

58,766383

44,639182

37,671154 35,088432

Function Buffer =

30.000

datapoints

Buffer =

40.000

datapoints

Buffer =

50.000

datapoints

Buffer =

60.000

datapoints

Time to

write to

database

34,178852 33,508435 33,475678 33,274320

Function Buffer =

70.000

datapoints

Buffer =

80.000

datapoints

Buffer =

90.000

datapoints

Buffer =

100.000

datapoints

Time to

write to

database

33,128551 32,837697 32,766992 32,251301

