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ABSTRACT 

The DEMKit simulator used too much computation time for 
saving data instead of calculating and controlling actions. This 
paper focusses on how the DEMKit simulator can be 

improved so that the computation time used for saving data is 
reduced. Related work suggested that other databases perform 
worse for the DEMKit simulator, so the implementation was 
adapted to improve the simulator. A new approach for saving 

data locally was implemented, together with an optimization 
of the maximum buffer size. The computation time for saving 
data was reduced to 23% of the original time. The optimal 
buffer size appeared to be 40.000 datapoints, unless more real 

time updates are preferred.   
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1. INTRODUCTION 
The University of Twente developed a simulation tool to 
simulate smart grids, the DEMKit simulator [9]. This DEMKit 

simulator is, among others, used by one of the departments of 

this University, namely the Computer Architecture for 
Embedded Systems (CAES) group [8]. With the future in 
mind, they are trying to optimize the energy balance in  smart 

grids in order to make it more accessible to use sustainable 
energy to a greater extent. 

Up to now, communication between the power generator and 

the power consumer has always been one way. The 
information went from power generating units and utilities to  
the consumers. This was fine as long as the power was 

generated at a central point and was distributed from there to  
the consumers. With sustainable energy, consumers can also 
generate power by using decentralized methods, such as solar 
panels or windmills. When the line between consumer and 

generator fades, grids have to support two way 
communication so that every part of the network can receive 
and send information. Smart grids support this function and 

are therefore necessary to implement sustainable energy to  a 

greater extent. [6] 

To optimize these energy balances in smart grids, the CAES 

group runs various simulations. Each simulation contains 
different compositions of different households and each 
household consists of multiple devices, which all have their 

own components. So, to get an accurate analysis about what 

happened during a simulation, a lot of data needs to be saved 
about all these different elements. When saving the data 
generated during these simulations takes a long time, this 

process becomes unnecessarily time-consuming. 
Unfortunately, that is exactly the problem the CAES group is 
struggling with at the moment. 

In order to solve this problem we have to ask ourselves the 
question: “How can the DEMKit simulator be improved so 

that the computation time used for saving data is reduced?”. 
Broadly, there are two sub-questions that result from the main 

research question, namely: “Can the computation time for 

saving data be reduced by using another database?” and “Can 
the computation time for saving data be reduced by adapting 
the implementation of the DEMKit simulator?”  

 

2. BACKGROUND 

2.1 State of the art 
The DEMKit simulator is an application which is written in 
Python. During a simulation, a loop of three different steps is 
running, namely the preTick the timeTick and the logValue. 
The simulator uses a synchronized clock with a fixed discrete 

time step to simulate the time progress. For each timestamp, 

one iteration of the loop runs. [2]  

The three different phases all have their own tasks. The 
preTick phase makes sure all entities update their current 
state, all the calculations and controlling of actions take place 
within the timeTick phase and the logValue phase logs all 

data. This last phase is the most important one when talking 

about saving data.  

The logValue phase consists of two parts. The first thing (Part 
1 in Figure 1) this function does is saving all the statistics 
about the different components and the overall statistics 

locally. The function goes over every single component of the 
simulation and adds its statistics one by one to a shared string. 
Thereafter (Part 2 in Figure 1), it has to be decided whether 
this data has to be saved in the database yet or that it can be 

done in a later stage in the simulation. This decision depends 
on how much data is being stored locally at that moment. 

When the amount of data is more than the initialized buffer 
can handle, the data has to be written to the database and the 

shared string is emptied. If not, the locally saved data passes 

on to the next iteration of the loop. There is also the 
possibility to force writing data to the database after each 
iteration.  

 

 
 

Figure 1: logValue phase 
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2.2 Related work  
The DEMKit simulator uses an Influxdb [5] as database. This 
is a timeseries database which means that it is optimized for 

saving lots of values indexed by time. The CAES group is 
using Grafana [3] as an interface to analyze all the data saved 
in the database. Grafana takes queries as input to show the 

right values in one of the many visualizations offered. The 

combination of the database and the visualization makes it 
easy to save and analyze data generated by the DEMKit 
simulator.  

According to Di Martino et al.[7], timeseries databases (in 
particular Influxdb) perform better at ingestion, retrieval and 

disk performances. The only test where the Influxdb was not 
the best performer (but was still working), was at the 
execution time of queries by non-temporal attribute filtering. 
For the DEMKit simulator, this test is not relevant, as it only 

uses temporal attributes. In addition, the only test that is truly  
relevant for the computation time used during a simulation, is 
the ingestion performance. This shows that it is a reasonable  

choice to use a timeseries database for the DEMKit simulator.  

But Influxdb is not the only timeseries database out there. 

DB-Engines [1] has made a ranking of different timeseries 

databases based on popularity. Of the 32 databases, the 
Influxdb is in the first place. This comparison does not 
directly say anything about the performances of these 

databases. Yet, the Influxdb is four times as popular as the 
second most popular database, which is probably not without 
any reason.  

Influxdata wrote some tutorial code [4] to get used to  python 
in combination with the Influxdb. In this code there is one 
main client object and different classes which extend this 

class. These children are different examples on how to use the 
parent class. There is one important difference between the 
code of Influxdata and the code of the DEMKit simulator, 
namely the way of saving data locally. In the DEMKit 

simulator there is only the possibility to save this data in  one 
big string. Influxdata on the other hand has two possibilities, 
namely by a list of JSON objects or as a list of string objects.  
These lists are being translated to one big string just before 

communication with the database takes place.  

 

3. METHOD 
Since related work suggests that other databases perform 
worse for the DEMKit simulator, we focus on adapting the 

implementation of the DEMKit simulator rather than 

searching for another database.  

The following steps need to be taken: 

1. Finding the bottlenecks in the existing 

implementation. 

2. Searching for new approaches to achieve the same 
result, but with less computation time. 

3. Integrating these new approaches into the old 
implementation. 

4. Testing whether the new implementation takes less 
computation time. 

To find the bottlenecks in the existing implementation we 
investigate the time needed for the different parts in the 

logValue phase. This is done by using the datetime module. 

With this module, the current timestamp can be obtained. 
Subtracting the timestamps before and after the execution of a 

part of the code gives us the time that was needed for this part 
during one iteration. The aggregate time of all the time 
intervals for the same part of the code, is the time that was 

needed for this part during the entire simulation. The parts 
that take the most time are seen as the bottlenecks. 

To search for new approaches we explore the Influxdata’s 
implementations for more specific objectives than before. If  
this does not give the desired outcome, more sources should 

be checked to see if a solution can be found. 

To integrate these new approaches we adapt the 

implementation of the DEMKit simulator according to the 
findings of the step before.  

To test whether the new implementation takes less 

computation time, we run the same simulation with the old 
implementation as well as with the new implementation. The 

computation time is measured in the same way as mentioned 
in the first step.  

To perform steps one and four we use two simulations. These 
are already written by the CAES group and are included in the 
example simulations of the DEMKit simulator.  One of them 

is a simulation about just one household (demohouse), this 
one is suitable to find the bottlenecks. To compare the two 
implementations, we also use the simulation about a street of  
households (demostreet). In this way, we can see the result in  

a smaller and a bigger simulation.  

 

4. ANALYSIS 
The logValue phase is broken down to seven different parts . 
The total time of these different parts are measured and 
printed at the end of each simulation. The results in Table 1 

are an average of three runs of the demohouse simulation. The 
results per run can be found in Appendix A. 

Function Time in sec 

Log devices  15,920182 

Log meters 4,027849 

Log controllers 11,358850 

Log flow 0,022013 

Networkmaster 0,017027 

Log overall stats 5,682247 

Time to write to database 8,054594 

Table 1: Average computation time per function of the 

logValue phase, running demohouse 

As shown in the Table 1, logging statistics about the devices 

and the controllers is taking the most time and can be seen as 

the bottlenecks of the current simulator. Taking a closer look 
at these functions, it becomes clear that the main functionality  
of these functions is to save data locally. Or in other words, 

extending the shared string takes too much computation time.   

 

5. NEW IMPLEMENTATION 

To improve the old implementation, a new approach for 
saving data locally should be implemented. As noticed before, 

Influxdata saves local data as a list of strings or JSON objects 

instead of one big string. When taking a closer look at this 
implementation, the difference with the DEMKit simulator 
code is in the used operator. The DEMKit simulator uses the 

plus operator to extend the string, where Influxdata’s 
implementation uses the append operator to add new values to 
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the list. The difference between these two is that the plus 
operator has to create a new object to save the result, whereas 
the append operator adapts the first given object. So instead of 

saving both strings again, the append operator only saves the 
additional string once more. Because the first string becomes 
larger each time a new part of the data is added, it is highly 
beneficial when this string does not need to be saved over and 

over again. In order to reduce the computation time, the 

shared string is replaced by a list of strings, so that the append 
operator can be used instead of the plus operator. 

During the implementation of this new approach, another 
aspect showed up, namely the buffer size. This buffer size 
determines how many times, and how much data is sent to the 

database. When the buffer size decreases, more queries need 

to be sent to the database. When the buffer size increases, the 
queries become larger and the lists that need to be parsed into 
strings are longer. To see if it makes a difference in the 

overall time, several buffer sizes are tested. The buffer size 
cannot increase endlessly when using the default maximum 
body size (25.000.000 bytes) for a query. 

 

6. RESULTS 
Both the simulations demohouse and demostreet have 
simulated a period of seven days. The demohouse simulation 

was simulating just one household, the demostreet simulation 
was simulating ten households.  

In Graph 1 and Graph 2, the results of the new 
implementation with a buffer size of 100.000 datapoints are 
shown. These are the rounded averages of three runs of the 

simulations. In Appendices B, C and D all individual results 
are shown. 

 

 

Graph 1: Average computation time of the old and the 

new implementation, running demohouse 

 

 

Graph 2: Average computation time of the old and the 

new implementation, running demostreet 

 

In Graph 3, the results of the new implementation with 
different buffer sizes are shown. The computation time on the 
y-axis is the computation time needed to write data to the 

database since this in the only function affected by the buffer 
size. In Appendix E all individual results are shown. 

 

Graph 3: Computation time needed for writing to the 

database with different buffer sizes, running demostreet 

 

7. DISCUSSION 
As shown in the first two graphs, the computation time for 
saving data decreased significantly. Not only the functions 
that were defined as the bottlenecks decreased in time, but 

most other functions in the logValue phase as well. Based on 

the results in Graph 2, the total computation time for saving 
data is reduced to only 23% of the initial computation time. 
For the functions that were defined as the bottlenecks, these 

percentages are even more consequential. The computation 
time for logging devices is reduced to 21% and the 
computation time for logging controllers is reduced to 12%.   

The networkmaster is the only part that did not decrease in 
computation time. This can be easily clarified, since this is the 

only part that does not save data locally and therefore does not 

benefit from the new approach to save data. 

The different buffer sizes also affect the computation time f or 
saving data. The part where data is written to the database 
decreases in computation time when the buffer size increases.  
These factors are exponentially related with a horizontal 

asymptote around the 30 seconds. At a buffer size of  40.000 
datapoints, a computation time of  33,508435 seconds is 

already obtained. Increasing the buffer size even more does 
not have significant beneficial effect anymore and only results 

in less real time updates. The optimal buffer size therefore is  

around 40.000 datapoints, unless more real time updates are 
preferred.   

Further research on this topic should start at reducing the 

founded asymptote of 30 seconds for writing data to the 

database. This is now the function that takes the most 
computation time for saving data, namely 41%. 

 

8. CONCLUSION 
So to get back to the research question, we succeeded in 
adapting the implementation of the DEMKit simulator in such 

a way that the new implementation takes only 23% of the 
initial computation time for saving data. The optimal buffer 
size to use is around the 40.000 datapoints. A new database 
was not the best solution since the Influxdb is already a good 

functioning database.  

For future research, writing the data to the database is thought 

to play an important role. For now, the minimal time this 
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takes is around 30 seconds, what comes down to  41% of  the 
total computation time needed for saving data. Different 
versions of the Influxdb can be compared to see if this affects 

the computation time.  
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10. APPENDICES 
 

A. Old implementation, demohouse 
 

Function Time in sec per run Average time 

in sec 

Log devices  15,579139 16,178368 16,003038 15,920182 

Log meters 3,925075 4,102371 4,056101 4,027849 

Log 

controllers 

11,169033 11,527038 11,380480 11,358850 

Log flow 0,022032 0,019988 0,024020 0,022013 

Network 

master 

0,016010 0,015012 0,020058 0,017027 

Log overall 

stats 

5,535880 5,786798 5,724063 5,682247 

Time to 

write to 

database 

7,834503 8,136058 8,193222 8,054594 

Total 

execution 

time of the 

simulation 

69,459577 71,895333 71,421037 70,925316 

 

B. New implementation, demohouse 
 

Function Time in sec per run Average time 

in sec 

Log devices  3,836833 3,701561 3,636695 3,725030 

Log meters 0,933531 0,922622 0,931586 0,929246 

Log 

controllers 

2,947401 2,789468 2,829963 2,855611 

Log flow 0,016043 0,013050 0,018023 0,015705 

Network 

master 

0,017976 0,019011 0,017992 0,018326 

Log overall 

stats 

1,347923 1,313996 1,253081 1,305000 

Time to 

write to 

database 

2,519025 2,587528 2,488507 2,531687 

Total 

execution 

time of the 

simulation 

38,069910 37,222012 36,863541 37,385154 

 

C. Old implementation, demostreet 
 

Function Time in sec per run Average time 

in sec 

Log devices  84,608669 88,712221 91,318820 88,213237 

Log meters 44,416374 47,112617 47,264375 46,264455 

Log 

controllers 

136,37830

3 

140,03325

4 

139,75089

4 

138,720817 

Log flow 0,024020 0,040020 0,031021 0,031687 

Network 

master 

0,024017 0,021017 0,028025 0,024521 

 

Log overall 

stats 

18,705274 19,325533 19,075414 19,035407 

Time to 

write to 

database 

50,196540 53,448676 51,308209 51,651142 

Total 

execution 

time of the 

simulation 

477,59522

0 

495,84384

3 

490,94972

3 

488,129595 

 

D. New implementation, demostreet 
 

Function Time in sec per run 

Buffer size of 100.000 datapoints 

Average 

time in sec 

Log 

devices  

18,167656 18,507509 19,055039 18,576735 

Log 

meters 

8,707016 8,827776 9,044233 8,859675 

Log 

controllers 

16,747438 17,093942 17,566794 17,136058 

Log flow 0,023989 0,024015 0,027022 0,025008 

Network 

master 

0,026022 0,017989 0,030022 0,024678 

Log 

overall 

stats 

2,271807 2,305772 2,428685 2,335421 

Time to 

write to 

database 

31,907216 31,926355 32,920332 32,251301 

Total 

execution 

time of the 

simulation 

207,11382

0 

210,46860

0 

215,20978

8 

210,930736 

 

E. New implementation with different 

buffer sizes, demostreet 
 

Function Buffer = 

1.000 

datapoints 

Buffer = 

5.000 

datapoints 

Buffer = 

10.000 

datapoints 

Buffer = 

20.000 

datapoints 

Time to 

write to 

database 

58,766383 

 

44,639182 

 

37,671154 35,088432 

 

Function Buffer = 

30.000 

datapoints 

Buffer = 

40.000 

datapoints 

Buffer = 

50.000 

datapoints 

Buffer = 

60.000 

datapoints 

Time to 

write to 

database 

34,178852 33,508435 33,475678 33,274320 

 

Function Buffer = 

70.000 

datapoints 

Buffer = 

80.000 

datapoints 

Buffer = 

90.000 

datapoints 

Buffer = 

100.000 

datapoints 

Time to 

write to 

database 

33,128551 32,837697 32,766992 32,251301 

 

 


