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Preface 
In this thesis, ‘Automated robust treatment planning for IMPT in oropharyngeal cancer patients using 

machine learning’, I will present the results of using machine learning for robust proton therapy 

treatment planning in oropharyngeal cancer patients. I have been working on this project the past 

year at the radiotherapy department of the University Medical Center Groningen (UMCG). This thesis 

was written to obtain the master’s degree of Technical Medicine at the University of Twente.  

In Chapter 1, background information is given about head and neck cancer, (proton) radiotherapy 

and machine learning. The main set up and final results of this study are described in Chapter 2. An 

overview of the development process which have led to the final results of this thesis and further 

recommendations are given in Chapter 3. The references are listed in Chapter 4.  

I hope you enjoy reading this thesis. 

Merle Huiskes  
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Chapter 1 Background 

1.1 Head and neck cancer 
Head and neck cancer (HNC) consists of a heterogeneous group of cancers where the affected 

anatomical regions reach from the skull base to the clavicles. Cancer in the head and neck area can 

give rise to serious complaints due to involvement in important functions such as breathing, eating, 

drinking and speaking.[1][2] The annual incidence of HNC is approximately 3000 in the Netherlands, 

resulting in an mortality of 700 per year.[1] Males are more often diagnosed with HNC than females 

with a ratio of 2:1 and the most common age at time of diagnosis is between 60-80 years.[1][3] 

1.1.1 Functional anatomy of the head and neck 

Different anatomical structures are located in the head and neck region. The paranasal sinuses are a 

group of different air-filled sinuses located within the bones of the skull and face. The largest 

paranasal sinuses are the maxillary sinuses, which are located under the eyes. Within the frontal 

bone and above the eyes, the frontal sinuses are positioned. The ethmoid sinuses are located within 

the ethmoid bones between the nose and the eyes. In the center of the skull base, the sphenoid 

sinuses are positioned superior to the nasopharynx and inferior-medial to the cavernous sinuses. The 

cavernous sinuses contain several important structures such as cranial nerves. The function of the 

paranasal sinuses is debated; however they are implicated in several roles. They decrease the weight 

of the skull and can absorb shocks from outside in order to protect structures such as the brain and 

eyes. Also, they humidify and heat inspired air and increase the resonance of the voice.[4][5] 

The oral cavity is separated from the nasal cavity by the hard palate.[4] The primary function of the 

oral cavity is to serve as an entrance of the alimentary tract where it initiates the digestive 

process.[6] Besides, it serves as a secondary respiration conduit and speech articulation. The lips 

form the anterior part of the oral cavity and the palate tonsils the posterior part. The floor of the oral 

cavity is formed by the lower gingiva and the anterior two thirds of the tongue. The mandible, the 

teeth and the retromolar trigone are also located in the oral cavity.[4]  

 

Figure 1  Anatomical structures in the head and neck [3] 



10 
 

The pharynx is part of the respiratory as well the digestive system. The pharynx can be divided into 

three parts: the nasopharynx, oropharynx and hypopharynx. The nasopharynx reaches from the skull 

base to the junction of the hard and soft palates. The nasopharynx allows conducting air through the 

nose. The pharyngeal tonsils are located in the posterior wall of the nasopharynx. The superior wall 

of the oropharynx is partly formed by the superior surface of the soft palate and the uvula. The 

anterior wall is formed by the base of the tongue and glossoepilottic folds and the lateral wall by the 

tonsils. The oropharynx continues inferiorly into the hypopharynx. The hypopharynx consists of three 

areas: the paired pyriform sinuses, the posterior pharyngeal wall and the post cricoid area. Both 

oropharynx and hypopharynx serve as a passageway for food and air.[4][7] 

The larynx is a hollow muscular organ which is part of the respiratory system. The area of the larynx 

can be divided into the supraglottis, glottis and subglottis. In the supraglottis larynx, the epiglottis 

and false vocal cords are located. The epiglottis closes during swallowing to prevent aspiration and 

forcing the food to the esophagus. The true vocal cords are located in the glottis and are involved by 

the speech.[4][7] An overview of the structures mentioned above is given in figure 1.  

The salivary glands are exocrine glands that secrete saliva. The sublingual glands are located 

underneath the mucosa of the anterior floor of the oral cavity. The submandibular glands are 

positioned in the upper neck and the parotic glands are located in the subcutaneous tissue of the 

face, anterior inferior to the external ear.[4]  

The lymph nodes responsible for the lymphatic drainage of the mucosal surfaces of the head and 

neck are located in the fibro adipose tissues in the neck. These are the submandibular and submental 

nodes at level I, the upper, middle and lower jugular nodes at levels II, II and IV respectively, the 

posterior triangle nodes at level V, and the anterior neck nodes at level VI.[4] For an overview of 

these nodes, see figure 2. 

 

Figure 2  The different anatomical levels of the lymph nodes in the neck[4] 
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1.1.2 Pathophysiology  

More than 90% of all HNC cases are squamous cell carcinomas (SCC) that arise from the mucosal 

surfaces of the head and neck area.[8] The tumor sites in decreasing incidence in The Netherlands 

includes; the oral cavity, larynx, oropharynx, salivary glands, hypopharynx, paranasal sinuses and 

nasopharynx.[1]  

The main risk factors for development of SCC are smoking, alcohol use and the presence of human 

papilloma virus (HPV). The combination of smoking and alcohol use has synergistic effect. Overall, 

HPV positive patients have better prognosis.[9] Other contributing risk factors are exposure to 

ultraviolet light for the development of SCC of the lips, diets deficient in antioxidants, age and family 

history of SCC.[8]  

Patients with HNC present with a variety of symptoms, mostly referable loco regional at the affected 

site. Examples of commonly symptoms are an ulceration, pain, bleeding, dysphagia, odynophagia, 

changes in articulation, otalgia, hoarseness, nasal of ear congestion, epistaxis, diplopia or a lump in 

the neck.[4] The curative rate for early stage HNC is high. However, two-third of the patients present 

with locally advanced disease.[10] 

1.1.3 Diagnosis and staging 

The first step to diagnosis of HNC is physical examination of clinical site, often followed by an 

endoscopy of the head and neck region. Histological examination is needed for confirming the 

diagnosis of HNC, after tissue is obtained by a biopsy. The tumor extent and eventual metastatic 

spread is determined by (contrast enhanced) computed tomography (CT) and magnetic resonance 

imaging (MRI). Positron emission tomography (PET) gives functional added information about the 

tumor and eventual affected lymph nodes.[4] 

The tumor-node-metastasis (TNM) classification is used to assess the extent of disease. The tumor 

stage is specific to the different anatomical sites in the head in neck, while the nodule stage is 

common to all head and neck sites except the nasopharynx. For a detailed description of the TNM 

staging for HNC, see [11]. 

1.1.4 Treatment  

The aim of treatment in HNC patients is to maximize loco regional control while minimizing 

functional loss and negative cosmetic effects. Depending on the type and TNM-stage of HNC, for 

patients without distant metastasis, curative treatment options are surgery and radiotherapy, 

possibly combined with systemic therapy.[12][13]  

In surgical resection of the tumor, the overarching goal is to obtain pathologically negative margins. If 

this is not achieved, postoperative chemoradiotherapy (CRT) or radiation therapy (RT) is indicated. In 

early stage (I or II) HNC, either resection or RT alone provides effective treatment. In more advanced 

stages, a multimodality approach, e.g. concurrent or CRT is indicated.[12][13]  
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1.2 Radiation therapy 
In RT, a specific amount of radiation dose is delivered to the tumor and causes DNA damage, 

resulting in cell apoptosis. The aim is to deliver enough radiation dose to the target to achieve a high 

probability of tumor control; the tumor control probability (TCP), while sparing the normal tissue to 

achieve a low risk of normal tissue complications; the normal tissue complication probability 

(NTCP).[14] RT is based on the concept that the DNA repair capacity in healthy cells is generally larger 

than in cancerous cells.[15]  

In HNC, a curative treatment dose of 70 Gy is delivered in 35 daily fractions of 2 Gy to the primary 

tumor and the eventual affected lymph nodes. For the low risk lymph nodes, an amount of 54.25 Gy 

is given in daily fractions of 1.55 Gy. The daily fractions are given five or six days a week and the total 

radiation treatment has a duration of several weeks, where the radiation effect continues several 

weeks after the last treatment.[16]  

1.2.1 Treatment planning 

Prior to radiation treatment of HNC, a radiotherapy plan of the dose distribution is made based on a 

CT scan of the patient, where needed with additional information from the MRI and PET scan. During 

these scan acquisitions, a patient specific head neck mask is used to provide immobilization, to limit 

day to day position changes during treatment.  

CT is the imaging modality which is the gold standard for the initial delineation of the tumor and 

eventual lymph nodes. The CT offers inherent information of the electron density, which is used for 

photon and proton dose calculation. The use of an iodinated contrast CT for the delineation increases 

the sensitivity, where the use of MRI can give more details of the soft tissues. PET gives additional 

metabolic information of the tumor and lymph nodes.[17][18]  

The visible target volume (i.e. primary tumor or lymph nodes) is delineated as the gross tumor 

volume (GTV). This GTV is expanded with a margin of five millimeters accounting for microscopic 

extensions, which will form the clinical target volume (CTV). Next to this, an extra margin of three 

millimeters is added to correct for geometrical errors such as variability in in tissue positions, sizes, 

and shapes, as well as for variations in patient position and beam geometries, resulting in the 

planning target volume (PTV). The PTV concept will make sure that 95% of the prescribed dose is as 

least delivered to the CTV in 90% of the patients.[19] 

1.2.2 OARs 

Due to the delineation margins and the inherent lateral penumbra of photon and proton beams, the 

surrounding healthy tissue will receive also substantial radiation dose. Damage to certain organs can 

cause side-effects. These organs are called organs at risks (OARs) and specific dose limits are 

described for these organs. The OARs in the head neck region include the spinal cord, submandibular 

and parotic glands, oral cavity, swallowing muscles, brain(stem), eyes and the cochlea. The incidence 

of complications is related to the dose delivered to these organs.[20] 

Dose delivery to the OARs is aimed to be as low as possible. Constraints are established as allowed 

doses delivered to the OARs. Serial organs, such as the spinal cord, can lose their functionality if only 

a small volume of the organ receives a dose above the tolerance limit. A maximal dose (Dmax) 

delivered in one voxel of the OAR is defined as constraint for serial organs. So-called ‘parallel’ organs, 

such as the parotic glands, are damaged only if a larger volume is included in the irradiation. For 
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parallel organs, a mean dose (Dmean) delivered in the total volume of the OAR is defined as 

constraint. An overview of the OARs in HNC and their dose constraints is given in table 1.  

Table 1 Organs at risk and their corresponding dose constraint [21] 

OAR Dose constraint (Gy) 

Spinal cord Dmax = 54.25 

Parotic glands Dmean = ALARA* 

Submandibular glands Dmean = ALARA* 

Brain Dmax = 60.00 

Brainstem Dmax = 63.00 

Optic nerve, optic chiasm, retina Dmax = 60.00 

Eyes Dmax = 5.00 

Cochlea Dmax = 52.50  

* As low as reasonably achievable 

1.2.3 Complications 

During and after RT treatment, patients can suffer from different complications. These complications 

can be subdivided into acute complications, which can be present during and a 3-6 months after the 

treatment, and late complications, which will be present 6 months and later after the treatment. 

Complication rates increase in case of concurrent chemotherapy is given. The RT related 

complications include mucositis of the throat or mouth, dermatitis, xerostomia, alternation in taste, 

dysphagia, hypothyroidism, aspiration, pain and hoarseness. Xerostomia is the most common 

radiation-related complication and still persists after completion of the treatment.[16]  

1.2.4 Treatment delivery 

For radiation therapy in HNC, the radiation type can be photons or protons. The most common type 

of radiotherapy used is photons, while a part of the HNC patients are eligible for proton therapy.[22] 

In the past decades, several advances are made in the RT delivery techniques. In earlier times,  three-

dimensional conformal radiation therapy (3D-CRT) was used, where beams were shaped around the 

tumor using multi-leaf collimators.[23]  

A more advanced form of 3D-CRT is intensity modulated radiotherapy (IMRT), which was introduced 

in 1998 in the Netherlands.[24] In IMRT, a computer-optimized inverse treatment planning and a 

computer-controlled multi-leaf collimator are used to determine the optimal fluency of each field. 

With these techniques, the intensity of the beams can be modulated so that a higher dose can be 

delivered to the target with a conformal target volume coverage, while the dose to the surrounding 

normal tissues is reduced.[16][23]  

Later, volumetric arc therapy (VMAT) was developed in addition to IMRT, which uses a 360 degrees 

continuously rotating intensity modulated beam around the patient. Compared to IMRT, VMAT has a 

reduced delivery time and improved target volume coverage and healthy tissue sparing.[23] At the 

moment, in the UMCG, VMAT technique is used for photon therapy delivery in HNC. Intensity 

modulated proton therapy (IMPT) is the current state-of-the-art treatment modality in the UMCG 

available for proton therapy.  
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1.2.5 Proton therapy 

Opposite to photons, protons are heavy particles that will stop after travelling a specific distance. 

Depending on the energy of the proton beam, the particles deposit their energy at a specific depth, 

which is characterized by the Bragg peak. After the Bragg peak, there is a steep dose gradient, 

resulting in practically no exit dose.[25] 

Due to this Bragg peak, a high dose can be delivered very precisely in the target volume and very low 

doses are delivered in the surrounded tissues. However, the characteristic Bragg peak is too narrow 

for practical clinical applications. Therefore, the beam energy is modulated and the different proton 

beams will result in spread-out Bragg peaks (SOBP) to encompass the entire target. In figure 3, the 

Bragg peak, SOBP and photon dose-depth relation graphs are shown.  

Proton therapy delivery is performed with pencil beam scanning (PBS) proton therapy. With PBS, a 

small pencil beam of protons is scanned across the predefined target volume, which allows for 

IMPT.[25] 

Due to proton therapy is more expensive and not broad spread available, it is necessary to select 

which patients are likely to have significant clinical benefit from proton therapy relative to photon 

therapy. The clinically relevant benefit of proton therapy has still not been demonstrated 

consistently due to limited resource.[26] Therefore, in the Netherlands, before patients are eligible 

for proton therapy, a radiotherapy plan for both photons as well as protons is made and compared. 

The target coverage and NTCP reduction are calculated, which forms the basis for the decision for 

proton therapy. If a minimal amount of NTCP reduction is achieved, e.g. a delta NTCP of 10% for 

grade 2 complications and 5% for grade 3 complications, the patient will be eligible for proton 

therapy. The first version of this Dutch National Indication Protocol for Proton therapy (LIPP 1) for 

this procedure can be found in [27]. Since August 2019, an updated version of the indication protocol 

for protons (LIPP 2) is used, see [28]. The main changes between those versions are that more 

weights are given to the oral cavity in the calculation of the NTCPs. Also, for the calculation of the 

NTCP for xerostomia, the submandibular glands and ipsilateral parotid are included.   

 

Figure 3  Dose-depth curves for photons and protons.[29] 
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1.2.6 CTV robustness 

Different to the treatment planning of photons, in proton therapy the concept of a robust dose 

distribution of the CTV against geometric uncertainty is applied, because for protons the additional 

margin from CTV to PTV is not suitable. In photon therapy this concept works well because dose 

distributions of photons are relatively insensitive to density changes in the beam path. These density 

changes are the result of patient set-up or anatomy differences, and an extra marge will solve these 

mentioned geometrical errors.[30][31] 

However, in proton therapy, the proton depth range is dependent of the stopping power, and thus of 

the beam path density changes. This makes the additional marge from CTV to PTV not suitable for 

proton therapy. Instead of this, a robust optimization principle is used.[31]  

In robust optimization, multiple dose distributions are simulated for different scenarios of range and 

set-up uncertainties. Different methods for robust optimization are possible. Nowadays, in the 

UMCG planning software of RaySearch, a minimax optimization approach is applied. In this method, 

the worst-case dose distribution is one of 21 perturbed scenario dose distributions with the worst 

value of a certain dosimetric parameter, e.g. lowest near minimum dose in the CTV. Then, this worst-

case scenario is optimized until it fulfills the predefined criteria. With this method, it is assured that 

even in the worst case scenario, adequate dose (D98>94%) is delivered to the target, and also OAR 

sparing is achieved.[30][31][32] Also, other mimicking strategies are possible, i.e. a more stochastic 

approach than minimax approach. A stochastic robust optimization approach optimizes the expected 

plan quality more than taking the plan quality for the worst error into account.[30]  

Due to the competition between target coverage and OAR sparing, after a CTV robustness 

optimization it is necessary to perform a robustness evaluation. This evaluation quantifies whether 

coverage criteria have been satisfied under the specified uncertainty conditions for even more error 

scenarios than used in the optimization step. In the robustness evaluation, a voxel-wise-minimum 

and -maximum dose is constructed from all evaluation dose distributions. This represents the worst-

case dose distribution by the minimum of each voxel inside the CTV and the maximum of each voxel 

outside the CTV taken from all evaluated dose distribution scenario.[31] 
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1.3 Machine learning 
In machine learning (ML), algorithms implement a mathematical model based on training data to 

make predictions or decisions. In supervised learning, the mathematical model is built from a set of 

data that contains both the input and the desired output.[33] ML has promising applications in the 

workflow of RT, for example in the treatment planning.[34]  

Manual clinical RT planning is a time-consuming process, which takes hours to days for one patient. 

In addition, manually created plans are susceptible for inter-observer plan quality variability, due to 

the skills, experience and time investment in one plan of the planners. ML is an option to overcome 

these shortcomings by automatically generating RT plans.[34] Previous studies on in the 

incorporation of ML for (semi-)automatic generation of treatment plans has already shown 

successful for different cancer types, also for head and neck cancer.[35] Currently, in RayStation 

(RaySearch Laboratories AB), a ML method is available which is based on the approach of McIntosh, 

see [35]. The ML method consists of different steps; a training, prediction and mimicking 

optimization. An overview of these different steps is given in figure 4, which will be explained in 

more detail in the next sections. 

 

Figure 4  Overview of the different steps of the Machine Learning method, which consist of a training and a prediction 
part.[36]  

1.3.1 Machine learning training 

In the first phase of the ML model shown in figure 4, a training based on the input is performed, 

which can be subdivided into four steps. In step 1a, the planning CT including the delineated target 

and OAR structures and the clinical dose distribution are added. In the second step, the voxel-wise 

features are extracted by convolution with 3D-Gauission filters. Region of interest (ROI) specific 

features are extracted by calculating the distance of an OAR to the nearest target ROI. In step 3a, for 

every input CT of each patient, an atlas regression forest (ARF) training is performed. This is followed 

with step 4a, where a prediction random forest (pRF) is trained based on atlas selection accuracy 

measures from the predicted features densities of the other trained ARFs.[36] 
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1.3.2 Machine learning prediction 

In the second phase of the ML model shown in figure 4, a dose prediction is made. Step 1b and 2 are 

similar to these steps in the ML training phase. This is followed by step 3b, where the feature density 

in new patients is predicted from the ARF trees in the training. Thereafter, the pRF trees are used to 

predict the accuracy of an ARF by selection of the closest ARF for dose prediction (4b). Then, in step 

3c, the dose in a voxel is predicted by dose votes. Each voxel has a predicted dose distribution and 

the highest dose vote of five selected ARFs is selected (3c). In the conditional random field (CRF) 

selection in step 4c, the ARF is selected based on the mean dose error prediction with the dose 

volume histogram (DVH) of all ROIs. Then, CRF optimization is applied in step five to calculate the 

final dose where it fulfills the predefined clinical criteria.[36] 

1.3.3 Machine learning mimicking 

The final step of the ML model (step 6), is mimicking the predicted dose to create a deliverable 

treatment plan. For photon plans, this mimicking step was already available. However, for protons, a 

mimicking step has been become available in the RayStation development version 9A, to be able 

perform a robust optimization mimicking.[36] 
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Chapter 2 Automated robust treatment 
planning for IMPT in oropharyngeal 

cancer patients using machine learning 

Merle Huiskes1,3, Roel G.J. Kierkels1, Erik W. Korevaar1, Roel J.H.M. Steenbakkers1, Mats Holmström2, Hanna 
Gruselius2, David Andersson2, Albin Fredriksson2, Karl Berggren2, Cornelis H. Slump3, Stefan Both1, Johannes A. 
Langendijk1, Fredrik Löfman2. 
1University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands. 
2RaySearch Laboratories AB, Machine Learning Department, Stockholm, Sweden. 
3University of Twente, Enschede, The Netherlands. 

2.1 Abstract 
Background: Radiotherapy treatment planning is a complex and time-consuming process. In intensity 

modulated proton therapy (IMPT) treatment planning steep in-field dose gradients are used, which allows for 

dosimetric benefits, but making IMPT also sensitive for density- and set-up errors. Robust planning methods 

have been developed to account for these errors, but robust treatment planning is even more time consuming. 

In this study, we combined a robust dose mimicking optimization with a machine learning based dose 

prediction (machine learning optimization (MLO)) to automatically generate robust IMPT plans. We aimed to 

automatically generate robust IMPT plans for oropharyngeal cancer patients with similar quality as clinically 

available plans. 

Methods and materials: A total of 79 robust IMPT plans of oropharyngeal cancer patients were included. 

Dose distributions, contours and CT image features of 66 patients were used to train a model to predict dose 

distributions for novel patients.  The target coverage during training was based on primary and elective clinical 

target volume (CTV). Dose prediction was based on a random forest model. Hence, the predicted dose was 

converted into a deliverable plan using robust voxel-wise dose mimicking optimization, including 21 perturbed 

dose scenarios with 3 mm isocenter shifts and ±3% density uncertainty. IMPT plans from 8 patients were used 

for (cross)-validation, and subsequently testing was performed with 9 patients. Targets were assessed in terms 

of robust target coverage (voxel-wise minimum D98>94%), conformity and homogeneity indices. Organ at risk 

(OAR) dose was assessed by Dmax, Dmean and (sum) normal tissue complication probability (NTCP)s. All 

parameters were compared to the clinical plan.  

Results: Robust target coverage was achieved in 8/9 MLO plans (89%) and voxel-wise minimum dose (D98) 

was statistically significant higher in the high dose CTV compared to the clinical plans. The sum NTCP was lower 

or did not increase >2% compared to the clinical plans in 8 of the 9 MLO plans (89%) for xerostomia and in 5 of 

the 9 MLO plans (56%) for dysphagia. The Dmax constraints to the brain, brainstem, spinal cord and eyes were 

not exceeded in the MLO plans and comparable to the clinical plan. The mean dose to the parotids, right 

submandibular and pharyngeal constrictor muscles (PCMs) were on average comparable to the clinical plans, 

i.e. differences were <1Gy. The average Dmean in the oral cavity was statistically significant higher in the MLO 

plans (3402±1504 cGy) compared to the clinical plans (3102±1515 cGy) with a p-value of 0.008.  

Conclusion: The MLO algorithm was able to generate robust IMPT plans for oropharyngeal cancer patients 

with clinically acceptable robust target coverage, and with similar dose to most OARs as compared to the 

clinical plans. Further reduction of the dose to specific OARs and improvement of the plan consistency between 

patients have to be investigated.    

Key words: Automated Treatment Planning, IMPT, Head and Neck Cancer, Machine Learning  
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2.2 Introduction 
Radiation therapy (RT) is one of the main curative treatment options for head and neck cancer (HNC) 

patients without distance metastasis, possibly combined with surgery or concurrent chemotherapy. 

[12][13] The aim of RT is to deliver enough radiation dose to the target to achieve a high probability 

of tumor control; the tumor control probability (TCP), while sparing the normal tissues to achieve a 

low risk of normal tissue complications; the normal tissue complication probability (NTCP).[14] 

Intensity modulated proton therapy (IMPT) has shown lower dose to normal tissue compared to 

photon therapy while preserving target coverage.[37] 

Especially in HNC, where multiple target dose levels are defined close to organs at risk (OARs), 

compromising between target coverage and OAR sparing makes RT treatment planning complex. In 

manual RT treatment planning, many steps are involved, and multiple iterations are required for plan 

optimization, making it a time-consuming process which takes up to two days for an IMPT plan. Also, 

manual RT treatment planning is susceptible for inter-observer plan quality variability, due to the 

skills, experience and time investment of the radiation therapy technician.[10][11] 

In addition to this, IMPT uses multiple beams with steep in-field dose gradients, which allows for 

dosimetric benefits i.e. sparing surrounded healthy tissue whilst preserving target coverage. 

However, due to the steep in-field dose gradients, IMPT becomes sensitive for CT-density and setup 

errors. Mathematical robust planning methods, such as stochastic programming and minimax 

optimization, have been developed to account for these errors. Robust planning methods take 

multiple scenario dose distributions into account during the optimization process, which makes 

robust planning time consuming in comparison with traditional margin-based planning methods.[30]  

In order to decrease the time required for RT treatment planning and to improve the overall plan 

quality and consistency, semi-automated planning algorithms have been developed.[10][11] With a 

machine learning (ML) approach, an algorithm can learn how features are related to and predictive 

for the outcomes from a training dataset. Previous studies on the incorporation of ML for (semi-) 

automatic generation of RT treatment plans have already shown successful for different cancer 

types, including HNC.[34][35][38][39][40]–[43]  

McIntosh et al. have developed a method for multi-patient atlas-based dose prediction based on the 

assumption that patients with identical geometry and appearance should be treated in the same 

way.[35][44][45] A model is trained with features from a data set of computed tomography (CT) 

images with delineated regions of interest (ROIs) which are related to the spatial dose distribution. 

For a novel patient, most similar patients from this model are automatically selected with ML and 

used to predict the desired dose per voxel.[13][19][20] This atlas-based dose prediction was 

extended by applying a dose mimicking optimization, to create deliverable intensity modulated 

radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans. Subsequently testing 

in 12 right sided oropharyngeal patients resulted in fully automated generated IMRT or VMAT 

treatment plans with better target coverage and OAR sparing compared to manual optimized 

plans.[35]  

In the treatment planning software system of RayStation (RaySearch Laboratories AB, Stockholm, 

Sweden) a machine learning optimization (MLO) method was implemented based on the method of 

McIntosh et al. Early institutional investigation of the application of this MLO method in photons 

showed promising results for automatically generating VMAT plans for oropharyngeal cancer.[46] 
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However, for IMPT this approach is not directly applicable, since a robust mimicking optimization 

step has to be performed to simulate a deliverable dose which is robust against certain set-up and 

range errors. Therefore, in the present study, a ML based dose prediction is combined with a robust 

mimicking optimization algorithm to automatically generate robust IMPT plans. The aim of this study 

is to automatically generate IMPT plans for oropharyngeal patients with at least comparable target 

coverage robustness as clinically optimized robust IMPT plans. The second goal is to reduce the dose 

to the OARs to achieve IMPT plans with at least similar quality as clinically available plans. 

2.3 Methods and materials 

2.3.1 Study population 

A total of 79 oropharyngeal HNC patients planned for IMPT between January 2018 and December 

2019 were included in this study. All patients were treated with curative intention and a prescribed 

dose of 7000 cGy (relative biological effectiveness (RBE)) to the primary tumor and 5425 cGy (RBE) to 

the bilateral elective lymph node regions. Clinical target volumes (CTVs) were delineated on the CT 

scan by the radiation oncologist and OARs were delineated by the treatment planners. After this, 

dose distributions were robustly optimized by the treatment planners to cover the CTVs robust for 

0.5 cm isotropic position uncertainty and 3% density uncertainty for plans made in 2018. For plans 

made since the beginning of 2019, dose distributions were planned robust to cover the CTV for 0.3 

cm isotropic position uncertainty and 3% density uncertainty.[47] Plans were optimized until they 

fulfilled the voxel-wise minimum (vw-min) criterion of D98>94% and minimizing dose on NTCP organs 

according to the Dutch National Indication Protocol for Proton therapy (LIPP) version 2 (since August 

2019) or LIPP version 1 (before August 2019). An overview of the patients and plan characteristics is 

given in table 2. Treatment plans were generated with the RayStation version 8B clinical treatment 

planning system. In total, 4 beam directions with a range shifter of 4 cm were used. The dose grid 

was 0.3 × 0.3 × 0.3 cm3 for all plans and final dose was computed using Monte Carlo simulations with 

1.0% uncertainty.[48] The final IMPT dose distributions were deliverable with the IBA ProteusPlus 

(Ion Beam Applications SA, Louvain-la-Neuve, Belgium) treatment machine. 

2.3.2 Model training 

For the training of a ML model, input data consisted of CT scans, delineated ROIs and the dose 

distribution of each treatment plan. ROIs included in the training were the planning target volumes 

(PTVs), CTVs, brain, brainstem, spinal cord, parotid and submandibular glands, oral cavity, larynx, 

cricopharyngeal muscle, pharyngeal constrictor muscles (PCMs), cervical esophagus, mandible and 

thyroid. From the CT images and these ROIs, voxel-wise features that characterize patient geometry, 

ROI shape, and image appearances, such as gradient and texture, were extracted with first- and 

second order 3D Gaussian filters. This resulted in a total of 88 image features, and per patient, one 

atlas regression forest (ARF) was trained to relate the features in a voxel to the corresponding 

dose.[5][13] The ARF consisted of 96 trees with a maximum depth of 10 node levels for each tree. 

The classifier was trained starting from each node with a random subset of features with 

replacement. For each set of features used in a split node, the information gain was calculated. Then, 

the features in the nodes with the highest information gain were used for the final ARF.[36] 

With the trained ARFs, a prediction random forest (pRF) model of 96 trees with a maximal depth of 

10 node levels was trained to predict the dose accuracy of an ARF. For all trained ARFs, leave-one-out 

cross-validation with given feature density differences between the ARFs were used to train the pRF, 
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resulting in a dose prediction accuracy. The Bhattacharyya distances of the ARFs were calculated 

from the feature values for each node in level 7 of the ARF. Using node level 7 instead of level 10 was 

a good trade-off between calculation time and information gain.[36] This distance was related to the 

dose prediction accuracy to train the pRF. Then, the pRF was able to predict the ARFs with the 

highest accuracy for a novel image, only based on image features and thus without knowing the dose 

distribution of the novel CT image.[35] 

2.3.3 Dose prediction 

For the prediction of the dose distribution for a novel CT image, first voxel-wise features were 

extracted from the CT and ROIs. For each ARF in the training, the Bhattacharyya distances from the 

novel feature values at node level 7 were calculated. Subsequently, the pRF could select the ARFs 

with the highest dose accuracy based on the novel image features, and thus the best matching ARFs 

from the training. It is recommended to not select more ARFs than 10% of the number of patients in 

the training set, to prevent overfitting.[49][50] So, depending on the size of the trained model in this 

study, three or five best matching ARFs were selected. The selected ARFs were used to predict a joint 

probability per voxel. So far, each voxel was treated independently and finally, a conditional random 

field (CRF) was added to the predicted dose. This CRF was able to find the most likely spatial dose 

distribution to each voxel that adheres to the dose prior, and generated the final predicted dose 

distribution.[36][35] 

Figure 5  Overview of the different steps of the MLO to create a robust deliverable dose for a novel patient, divided into 
the prediction and mimicking part.   
 

2.3.4 Robust mimicking optimization 

To generate actual deliverable treatment plans, a robust dose mimicking optimization approach was 

applied to the predicted dose distributions. The dose mimicking could be voxel-based or dose volume 

histogram (DVH)-based. In voxel-based mimicking, the mimicking equals or improves the predicted 

dose at each voxel. In DVH-based mimicking, the dose as a distribution per ROI is taken into 

consideration and spatial dose information is lost.[35] In our method, a voxel-based mimicking 

method was applied.  

The predicted dose distributions were mimicked by taking the beam geometry, scatter and 

attenuation into considering, and final dose calculations were performed using a Monte Carlo dose 

engine. The same beam arrangement as the clinical plans were used for the dose mimicking 
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optimization step. For the robustness optimization, 21 scenarios were taken into account where the 

same density- and position uncertainty parameters as in the clinical robustly optimized plans were 

used. With these settings, a total of three rounds with 60 iterations were used for the robust 

mimicking optimization. A schematic overview of the input and output of the prediction and robust 

mimicking steps is shown in figure 5.  

2.3.5 MLO tuning 

During the prediction and mimicking steps, various settings (as described in Chapter 3) could be 

added and tuned which would be taken into consideration while expressing the voxel dose value. In 

the prediction, based on the selected ARFs, for each voxel the dose value with the highest probability 

was selected. But in addition to this, each voxel had more possible values, which were less likely 

based on the pRF. The selection of a dose value for each voxel could be influenced by adjustments of 

the settings in the prediction phase, i.e. by adding ROI goals. 

Also, in the mimicking step it was possible to influence the optimization process. Adjustments in the 

mimicking settings would consider to maintain the predicted dose in the voxels or to adjust the dose 

value, i.e. due to robustness parameters or settings which involve reduce dose to OARs. By the 

combination of tuning the settings in the prediction and mimicking optimization, it was possible to 

generate a MLO dose distribution with a specific strategy, for example a strategy with more sparing 

in specific OARs. In this study, the main focus was to tune on robust target coverage. An overview of 

the main development steps to achieve this goal is described in Chapter 3. When this goal was 

achieved, an OAR dose reduction step was added as a second goal next to robust target coverage.   

2.3.6 Trained models 

A total of 6 ML models with different amount of atlas patients or plan characteristics were trained for 

development purposes during this study. The final model used in this study consists of 66 treatment 

plans, further referred as Model-66. Four plans were used for initial tuning until robust target 

coverage was achieved. Cross-validation was performed by training a second model consisting of 66 

treatment plans, including the 4 initial tuning plans of Model-66 and excluding 4 training plans, which 

were now used for tuning this new model. The remaining 9 plans formed the independent test 

group. More information about the size and plan characteristics in these models can be found in 

table 2. 

2.3.7 Evaluation 

To evaluate the performance of the ML models, the mimicked MLO plans were compared to the 

clinical optimized plans. To evaluate target coverage robustness, a multi-scenario plan evaluation 

method comprising 16 dose recalculations with 8 positional isocenter shifts of 0.3 cm and a ±3% 

density uncertainty was performed. The scenario dose distributions were combined into a vw-min 

dose distribution, and targets were considered robust if the D98 was at least 94% of the prescribed 

dose, i.e. 5100 cGy for the CTV5425 and 6580 cGy for the CTV7000.[51] Also, the conformity index 

(CI) and homogeneity index (HI) were calculated as:  

𝐶𝐼 =  
𝑇𝑉95

𝑉95
  

where TV95 is the part of the target volume which receives 95% of the prescribed dose, and V95 is the 

total volume which receives 95% of the prescribed dose, and:  
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𝐻𝐼 =  
𝐷2 −  𝐷98

𝐷50
 

where D2, D98 and D50 are the doses received by 2%, 98% and 50% of the target volume respectively.  

The dose to the OARs in the MLO plans was assessed by the Dmean or Dmax and compared to the 

clinical plans. Also, the sum of the NTCPs for xerostomia grade 2 and xerostomia grade 3 (sum 

xerostomia) and dysphagia grade 2 and dysphagia grade 3 (sum dysphagia), were determined 

according the LIPP2 for both the clinical as well as the MLO plans. All dosimetric parameters were 

extracted from RayStation and visualization was done in Tableau (Tableau Software Inc., Seattle, 

Washington).  

To asses if differences between the generated MLO plans and clinical plans were statistically 

significant (p<0.05), a Wilcoxon signed rank test was performed in SPSS (IBM SPSS Statistics 23, 

Armonk, New York, United States). 

Next to this, also the time to train a model and to create a MLO dose distribution was recorded.  

Table 2  Overview of the patient and plan characteristics per model. 

 
 

Total 
(n=79) 

Model-66 Model-66 
Cross 

Indepen- 
dent 

test set 
(n=9) 

Train 
(n=66) 

Tune 
(n=4) 

Train 
(n=66) 

Tune 
(n=4) 

Tumor 
Location 

Oro-
pharynx 

51 42 3 43 2 6 

Base of 
tongue 

15 13 1 12 1 2 

Tonsil 13 11 - 11 1 1 
T-stage T1 15 12 1 12 1 2 

T2 11 11 - 11 - - 
T3 14 11 2 12 1 1 

T4* 39 32 1 31 2 6 
N-stage N0 11 9 - 8 1 2 

N1 17 15 1 16 - 1 
    N2** 37 28 3 28 3 6 

N3*** 14 14 - 14 - - 
LIPP version 1 66 60 2 60 2 4 

2 13 6 2 6 2 5 
Robustness 

position 
uncertainty 

(cm) 

0.3 36 23 4 23 4 9 

0.5 43 43 - 43 - - 

*T4a, T4b, T4NOS  

** N2a, N2b, N2c, N2NOS 

***N3a, N3b 

  



25 
 

2.4 Results 
The time it took to train a model depended on the size and was increased by including more plans. 

For the model with 66 plans, the training had a duration of 78 hours, and for the model with 32 

plans, it took 28 hours to train the model. Prediction of a dose distribution for a novel image took 

approximately 15 minutes. The duration of a creating a deliverable treatment plan from the 

predicted dose distribution was dependent of the mimicking settings and had a duration of 

approximately 75 minutes. The MLO method was thus able to create a deliverable plan in roughly 1.5 

hours,      offline time. An example of a clinical, predicted and mimicked dose distribution for one patient 

is shown in figure 6. It can be seen that the ML predicted and mimicked dose distributions were very 

similar to each other and also show very similar dose to the targets compared to the clinical plan, but 

increased dose to the spinal cord in the prediction and oral cavity in the mimicked plan.  

 
Figure 6  Transversal (row above) and sagittal (row below) images of the spatial dose distribution of a clinical deliverable 
plan, predicted ML plan and mimicked deliverable ML plan for one patient, respectively. Also, the CTV7000 (light pink) 
and CTV5425 (light blue) are shown. 

Initial tuning  

In figure 7, the resulting mean DVHs of the targets and several OARs from the initial tuning on 4 

patients which has led to robust target coverage and of the according clinical plans are shown. Here, 

it can be seen that the DVHs of the CTVs of the MLO plans were nearly the same as the clinical plans. 

The average DVH of the CTV5425 of the MLO plans was higher compared to the clinical plans, with a 

D50 of 5752 cGy in the MLO and 5590 cGy in the clinical plans respectively. For the OARs it can be 

seen that the dose to the OARs in the MLO plans was lower than or very similar to the clinical plans.  

A boxplot from the result of the robustness evaluation for these 4 patients is shown in figure 8. All 

MLO plans achieved robust target coverage since the D98 is above the threshold of 94% of the 

prescribed dose. In patient 1 and patient 3, for the CTV7000 it is striking that the scenario doses and 

vw-min were all above the scenario doses and vw-min of the clinical plan.  
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Figure 7  The mean DVH of 4 patients of the clinical plan and the MLO plan where initial tuning was performed on. 
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Figure 8  Boxplot of the 16 scenario doses from the robustness evaluation (orange), nominal dose (blue) and vw-min 
(red) of 4 initial tune patients of the CTV7000 (above) and CTV5425 (below). The green line indicates the threshold for 
94% of the prescribed dose. 

  



28 
 

 

Cross-validation 

To evaluate if the strategy used for the initial tuning would also perform well in another set of novel 

images, cross-validation was performed. In figure 9 the mean DVHs of the 4 cross-validation patients 

for the targets and several OARs from the MLO and according clinical plans are shown. It can be seen 

that on average the DVHs of the CTVs were nearly the same, but the DVH of the CTV5425 was 

somewhat higher in the MLO plans (D50 of 5709 cGy in the clinical plans and 5871 cGy in the MLO 

plans). The dose to the OARs was higher in the MLO plans compared to the clinical plans, except for 

the spinal cord which dose was on average lower in the MLO plans.  

In figure 10, the result of the robustness evaluation is shown. It can be seen that for the CTV7000, 

the D98 of the vw-min in the MLO plans were higher compared to the clinical plans, and all were 

above the 94% threshold. Also, the distribution of the perturbed scenarios doses was smaller 

compared to the clinical plans. For the CTV5425, all plans were above the threshold of 94% of the 

prescribed dose.  

 

 

 

Figure 9  The mean DVH of 4 patients of the clinical plan and the MLO plan where cross-validation was performed on. 
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Figure 10  Boxplot of the 16 scenario doses from the robustness evaluation (orange), nominal dose (blue) and vw-min 
(red) of 4 cross-validation patients of the CTV7000 (above) and CTV5425 (below). The green line indicates the threshold 
for 94% of the prescribed dose. 
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Test set 

Since the cross-validation test showed robust target coverage, this strategy was tested on an 

independent test set consisting of 9 treatment plans. In table 3, the results of D98 in the CTVs from 

the vw-min of the robustness evaluation are shown. Also, the target evaluation criteria CI and HI are 

shown, as well as the sum NTCPs for xerostomia and dysphagia. The Dmean and Dmax to the OARs 

can be found in Appendix A, table 10 and 11 respectively. 

In the MLO plans, 8/9 generated plans fulfilled the D98>94% of the prescribed dose criterion in the 

vw-min. The vw-min D98 in CTV7000 in the MLO plans was on average 0.7 Gy higher in comparison 

to the clinical plans, this difference was statistically significant (p=0.015). Conformity in the PTV7000 

was in the MLO plans statistically significant lower (p=0.013) compared to the clinical plan.  

The sum NTCP for xerostomia was acceptable, i.e. was lower or did not increase >2% compared to 

the clinical plans, in 8 of the 9 mimicked MLO plans (89%) and for dysphagia in 5 of the 9 mimicked 

MLO plans (56%). The sum NTCP for dysphagia in the MLO plans was statistically significant higher as 

compared to the clinical plans. The Dmax constraints to the brain, brainstem, spinal cord and eyes 

were not exceeded in the MLO plans and no statistically significant differences were found compared 

to the clinical plans. The mean dose to the parotids, right submandibular and PCMs were on average 

comparable to the clinical plans, i.e. differences were <1 Gy. The average Dmean in the oral cavity 

was statistically significant higher (3 Gy) in the MLO plans compared to the clinical plans.  

In figure 11, the mean DVHs of the 9 test patients is shown for the targets and several OARs. It can be 

seen that the DVH of the CTV7000 from the MLO plans was very similar to the clinical plans. For the 

CTV5425, the DVH of the MLO plan was somewhat higher compared to the clinical plan, e.g. a higher 

dose was given to a higher amount of volume in the MLO plans (D50 of 5775 cGy in the MLO plans 

and 5596 cGy in the clinical plans). For the OARs it can be seen that the dose was lower in the clinical 

plans compared to the MLO plans.  
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Figure 11  The mean DVH of 9 patients of the clinical plan and the MLO plan used for independent testing. 
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Table 3  The D98 in the voxel-wise minimum, conformity index and homogeneity index of the targets and sum NTCP of the clinical and MLO plans of the 9 independent test patients, and 
mean ± SD. The result of the Wilcoxon signed rank test is shown in the last row.   

 D98 vw-min (cGy) Conformity index Homogeneity index Sum NTCP (%) 

 Clinical 
plan 

MLO 
plan 

Clinical 
plan 

MLO 
plan 

Clinical 
plan 

MLO 
plan 

Clinical 
plan 

MLO 
plan 

Test 
Patient 

CTV 
7000 

CTV 
5425 

CTV 
7000 

CTV 
5425 

PTV 
7000 

PTV 
5425 

PTV 
7000 

PTV 
5425 

PTV 
7000 

PTV 
5425 

PTV 
7000 

PTV 
5425 

Xero-
stomia 

Dys-
phagia 

Xero-
stomia 

Dys-
phagia 

1 6668 5125 6644 5045^ 0.819 0.801 0.800 0.749 0.076 0.351 0.071 0.351 49.7 14.9 46.0 14.7 

2 6663 5135 6760 5155 0.804 0.824 0.776 0.822 0.071 0.357 0.067 0.365 47.1 19.3 44.5 24.5 

3 6708 5204 6726 5194 0.739 0.692 0.748 0.708 0.080 0.362 0.084 0.367 37.1 5.1 37.9 5.5 

4 6650 5153 6763 5128 0.651 0.717 0.642 0.803 0.065 0.349 0.069 0.374 32.0 14.4 32.2 16.9 

5 6737 5160 6790 5128 0.733 0.871 0.683 0.825 0.074 0.364 0.071 0.362 39.0 5.4 38.5 6.1 

6 6673 5251 6776 5136 0.756 0.832 0.692 0.857 0.072 0.355 0.070 0.374 60.9 12.9 63.6 14.8 

7 6720 5147 6778 5236 0.776 0.769 0.739 0.675 0.068 0.358 0.068 0.338 56.7 12.8 52.2 12.3 

8 6700 5189 6725 5263 0.857 0.942 0.830 0.928 0.086 0.321 0.075 0.296 70.8 38.3 70.5 43.5 

9 6623 5177 6841 5160 0.827 0.925 0.790 0.868 0.092 0.355 0.077 0.348 49.4 18.4 46.5 22.8 

Mean ± 
SD 

6682 ± 
36 

5171 ± 
39 

6756* 
± 54 

5161 ± 
65 

0.774 ± 
0.062 

0.819 ± 
0.086 

0.744* 
± 0.062 

0.804 ± 
0.081 

0.076 ± 
0.009 

0.352 ± 
0.013 

0.072 ± 
0.005 

0.353 ± 
0.025 

49.2 ± 
12.3 

15.7 ± 
9.8 

48.0 ± 
12.4 

17.9* 
± 11.6 

p-value   0.015 0.515   0.013 0.374   0.159 0.944   0.173 0.028 

*=statistically significant difference (p<0.05) compared to clinical plan 

^= lower than the threshold of 94% of the prescribed dose, but will be clinical acceptable
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2.5 Discussion 
In this study, we described a MLO method that automatically can generate robust IMPT plans for 

oropharyngeal patients with clinically acceptable robust target coverage, with reduced planning time 

up to 1.5 hours. As reflected in the test set, the dosimetric parameters between the MLO and 

manually generated clinical plans were overall comparable. No statistically significant differences 

were observed between the MLO plans and clinical plans, except for the D98 vw-min in the CTV7000 

and oral cavity mean dose. The dose constraints to the serial organs were never exceeded in the 

MLO generated plans and were comparable to the clinical plans.  

The mean DVH of the CTV7000 in the nominal MLO plan was very similar to the clinical plan. 

However, the vw-min D98 was statistically significant higher as compared to the clinical plans. This 

can be explained by the smaller distribution of the scenario doses in the MLO plans, as was seen in 

the validation set. The statistically significant lower CI of this target in the MLO plans compared to 

the clinical plans suggests that a higher V95 resulted in a more robust CTV7000.  

In the nominal plan, the dose to the CTV5425 was higher compared to the clinical plans, as can be 

seen in the mean DVHs, but did not always result in a higher D98 in the vw-min. An explanation for 

this is that the robustness evaluations showed a wider distribution range of the scenario doses, as 

shown in the boxplots of the robustness evaluation of the initial- and cross-validation plans. 

However, when lower doses were achieved in the nominal plan, this may result in target coverage 

below the minimal threshold for robust plans.  

The sum NTCP for dysphagia showed a statistically significant higher dose in the MLO plans 

compared to the clinical plans. This is in accordance with the statistically significant higher mean 

dose to the oral cavity, which has an essential contribution to the NTCPs for dysphagia. Therefore, 

the dose to the oral cavity has to be reduced further in the MLO plans to reach clinical plan quality. 

This was as expected since most time investment during this study was given to target coverage 

robustness, and then some first attempts to reduce the dose to the OARs were performed. 

In the four initial tune patients, the dose to the OARs in the MLO plans was lower or very similar to 

the clinical plans. However, the cross-validation and independent test showed increased mean dose 

compared to the initial tuning, for example in the oral cavity. Also, the mean dose to the PCM 

superior was lower compared to the clinical plans in the validation set, but in the test set this was not 

the case anymore. Our MLO approach is based on the method used in the study of McIntosh, which 

is based on the assumption that patient with identical geometry and appearance should be treated in 

the same way.[13][19][20] However, the mentioned differences between validation and test set 

indicates that it may be necessary to develop different strategies for specific patient(groups) 

regarding sparing the dose to the OARs. 

To our knowledge, this was the first study which combined a robust optimization method with a 

machine learning optimization to automatically generate deliverable IMPT plans. Despite the limited 

institutional amount of available IMPT plans for oropharyngeal cancer, we were able to train a model 

and could perform initial- and cross-validation and testing subsequent on an independent test set. In 

addition, a strength of our study is that a voxel-based prediction and mimicking method was applied, 

which means that no spatial information was lost, which would be the case in DVH-based 

approaches.  
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Delaney et al. have investigated also an automatic planning method for IMPT plans, which resulted in 

comparable plan quality to clinical plans. However, in contrast to our study, they performed a non-

robust DVH-based optimization method.[52] Later, they extended their approach with a robust 

optimization method, and have shown preliminary potential of automated robustly optimized IMPT 

head-neck plans.[53] However, this was only tested in three head-neck plans and comprised a DVH-

based prediction and mimicking. In accordance with our study, they also showed automated plans 

with comparable OAR doses as in the clinical plans, except for the oral cavity where increased mean 

dose was found.  

In our study, it was necessary to tune settings in the prediction and mimicking part to achieve MLO 

plans with adequate robust target coverage and comparable plan quality to clinical plans. Bijman et 

al. used an automatic planning approach to investigate differences between model selection for 

IMPT in oropharyngeal cancer based on manually or automatically planned IMPT.[54] In the study of 

Hennings et al., an automatic tool to pre-calculate planning solutions was developed for uveal 

melanomas.[55] In both studies such tuning as used in our study was incorporated by a predefined 

list of constraints and objectives. While in the study of Delaney et al., giving additional objectives was 

not necessary to achieve adequate plan quality. 

In our study, the field set up of the clinical plans was copied and used to perform mimicking of the 

MLO prediction. However, an automated robust beam orientation optimization method of Gu et al. 

has shown better target coverage under simulated uncertainties while reduced dose to the OARs 

compared to plans with manual beam selection.[56] In future research, an automatic robust beam 

orientation optimization method could be combined with a MLO method to compare alternative 

beam arrangements.   

It is often seen that even each physician has its own preferences regarding the evaluation of an IMPT 

plan, which makes it difficult to have one MLO strategy which will be accepted by all the assessing 

doctors. A study with knowledge based planning in pancreatic cancer has shown that training 

separate models for each dedicated physician resulted in the dose distribution desired by a given 

physician.[57] Also, the implementation in other radiotherapy institutes has to be investigated, since 

they have different planning aims. Hopefully, with different strategies MLO is also able to generate 

IMPT plans with adequate clinical plan quality in other centers. 

The automated MLO method in our study is a promising method which has numerous potential 

advantages in clinical practice. It is able to generate robust IMPT dose distributions with reduced 

workload. When our method is further developed, and consistent plan quality is achieved, MLO will 

be suitable for fast radiotherapy planning in daily practice. Next to this, MLO can be used in photon 

to proton plan comparison, to automatically select which patients are suitable for proton therapy 

based on NTCPs. Also, in adaptive radiotherapy, where fast planning is required to not delay any 

adaptations to the day-to-day variation inaccuracies seen in the dose distribution, MLO will have 

great potency, since manual plan adaptations are time consuming.  
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2.6 Conclusion 
The MLO method presented in this study is able to automatically generate robust IMPT plans for 

oropharyngeal cancer patients with higher target coverage robustness in the high CTV and similar 

target coverage robustness in the low CTV compared to the clinical plans. Furthermore, the MLO 

method is also able to achieve OAR doses similar to the OAR doses in the clinical plans. Further 

reduction of the dose to specific OARs, i.e. oral cavity, and improvement of the plan consistency 

between patients is part of future investigation.   
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Chapter 3 Development 

3.1 Introduction 
The results described in Chapter 2 were the final product of this thesis. Before these results were 

achieved, different development steps were involved. The main goal of these development steps was 

to achieve robust target coverage. When this goal was achieved, also some first attempts to reduce 

the dose to the organs at risk (OARs), while maintaining robust target coverage were performed.  

The resulting machine learning optimization (MLO) dose distribution is highly dependent of the 

various steps prior in the training, prediction and mimicking phase. Adjustments to the steps prior 

will lead to different outcomes and can be made in four different manners. First, the trained model 

can be changed by making adjustments in the training settings, such as on which target regions of 

interest (ROIs) is trained. Also, it is possible to change the model size, e.g. train on a larger set of 

input data. Next to this, the settings in de prediction and mimicking optimization can be adjusted to 

create a new strategy. Furthermore, it is possible to make small changes in in the MLO function by 

change of some functions in the scripting environment. And finally, RaySearch can add whole new 

functionalities by updating a newer version of the RayStation treatment planning system.  

During this study, various changes in different ways are made, which resulted in 6 different models, 

and a total of 70 strategies which are used to find a strategy which fulfills the plan requirements. This 

chapter will elaborate on the main steps involved (summarized in 15 strategies) which have led to 

the final results described in Chapter 2. First the requirements for a clinical acceptable plan will be 

described in section 3.2. After that, the parameters which could be adjusted are described in section 

3.3.  

In section 3.4, a selection of the main strategies per model are shown and discussed. Strategies 

‘Standard’ and ‘Strategy 1’ were prediction strategies, and therefore were evaluated on the 

predicted dose distribution. Since ‘Strategy 2’, the mimicking functionality in the RayStation 

treatment planning system was available. From ‘Strategy 2’ till ‘Strategy 14’ tuning was focused on 

achieving robust target coverage. Until ‘Strategy 8’, target coverage evaluation was done on the 

planning target volumes (PTVs). From Strategy 8 until Strategy 15, target robustness evaluation was 

performed in the clinical target volumes (CTVs). Finally, in ‘Strategy 15’, a first attempt to reduce the 

dose to the OARs was performed. At the end of this chapter, a general discussion and 

recommendations for further improvement are given.  

3.2 Requirements 
The first goal in this study was to achieve enough target coverage which is robust for a certain range- 

and setup uncertainty. For the mimicked plans, this was evaluated by the voxel wise minimum (vw-

min) for each plan, where the D98 in the CTVs has to be at least 94% of the clinically prescribed dose. 

Since robustness evaluation can only be performed on a mimicked plan, for the prediction, target 

coverage was evaluated by the D98>95% in the PTV, i.e. 6650 cGy for the PTV7000 and 5154 cGy for 

the PTV5425. For the mimicked plans, when a robustness evaluation is performed, the targets must 

receive at least 94% of the prescribed dose in the D98 of the vw-min, see table 4.   
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Table 4  Clinical goals for different regions of interest (ROIs)  

ROI Clinical goal (cGy) 

PTV7000* D98 ≥ 6650 

PTV5425* D98 ≥ 5154 

CTV7000 D98 vw-min ≥ 6580 

CTV5425 D98 vw-min ≥ 5100 

Spinal cord Dmax ≤ 5425 

Parotid glands Dmean = ALARA^ 

Submandibular glands Dmean = ALARA^ 

Brain Dmax ≤ 6000 

Brainstem Dmax ≤ 6300 

Eyes Dmax ≤ 500 
*PTV goals are not applied in robust IMPT planning, but is in this development part used as initial evaluation 
criteria.  
^ As low as reasonably achievable 

 
The second goal in this study was to reduce the dose to the OARs, while maintaining robust target 

coverage. An overview of the constraints to these OARs are also given in table 4 and has to be as low 

as reasonably achievable. Dose to the other normal tissue complication probability (NTCP) related 

organs with no specific constraints (oral cavity, PCMs) had the objective to be as low as reasonably 

achievable.  

3.3 Parameters 
A short explanation of the main prediction and mimicking settings which were adjusted during this 

study is given in this section. The functionalities are shown in italics, but not all options were 

available yet since the start of this study. An overview of these settings and when these settings 

became available is given in Appendix C, table 13. An example of a settings file is shown in Appendix 

B, where the final settings are presented. 

For the prediction, with EnsembleSize the number of atlas regression forests (ARFs) could be 

selected. In ROIGoals, it was possible to give goals to steer to predicted dose for specific ROIs, such as 

a minimal dose to a certain volume within that ROI. Within this setting, different sub-settings could 

be adjusted, i.e. choose minimal or maximal dose, to which ROI it concerns, and which dose has to be 

achieved by a chosen percentage of volume.  

In ReduceOAR, when stated to true, the function would reduce the dose to all OARs, or per separate 

OAR, with a certain reduction level between 1-10. With PriorMethod, the predicted dose would 

adhere to the overall dose of the chosen ensemble plans. When “avg” was set, the dose would be 

similar to the average dose of the ensemble patients in that ROI. If “min” or “max” was set, the dose 

would adhere to the minimum or maximum dose level in that ROI of the ensemble plans 

respectively. The same setting was applicable for areas with overlap between target and OAR with 

function PriorMethodInsideTarget.[36][49] 

In the mimicking settings, with VoxelCTVMim could be chosen for a voxel-based mimicking of the 

CTVs when stated to “true” or for a dose volume histogram (DVH)-based mimicking optimization 

when stated “false”. The same setting was available for the OARs; VoxelOARMim. In 

RobustMimickCTVs the CTVs which have to be robustly optimized had to be listed. Ideally, with 

additional minimal and maximal dose goals, but unfortunately this functionality was not yet 
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available. With AddTargetsNtimes it was possible to add the CTVs to the optimization function a 

certain number of times. In Strategy_ROIs it was possible to create new ROIs, for example by the 

expansion or subtraction of two ROIs. The NonRobustMimickOARs had to be a list with all the OARs 

which did not have to be robustly optimized. Within this function, the objective of a respective OAR 

could be added a certain number of times in the optimization function with add_ntimes. With 

reduce_dose stated on true the dose would be further reduced if possible, and when stated on false, 

the predicted dose would be maintained. At the end of the mimicker optimization function, the 

RobustnessParameters had to be defined, with position and density uncertainty parameters.[36][49]  

3.4 Iterations of adjustments 
In this part, the different adjustments which were involved to achieve the final model and settings 

are described. An overview of the different trained models used during these steps can be found in 

Appendix C, table 12. Furthermore, an overview of the different strategies and their according 

settings are given in Appendix C, table 14.  

3.4.1 Tune prediction: Model-60 

At the start of this study, no mimicking functionality for protons was available in RayStation 

development version 8b. Therefore, the first goal was generating predicted plans which fulfill the 

target coverage criteria. A model of 60 patients, with 40 clinical planned patients and 20 plans which 

were planned for research purposes was trained: Model-60. This model was trained based on PTV 

target structures, in order to already have a margin around the CTV in the prediction, and to be able 

to evaluate PTV coverage in the predicted plan. See Appendix C, table 12 for further characteristics of 

the included patients in this trained model. 

Standard Strategy 

Initial testing was performed on 5 patients. First, a strategy for prediction was tried without any 

additional settings to see if and where tuning in the settings is necessary. In table 5, the D98 of this 

Standard MLO strategy is given. It can be seen that the D98 requirements for both PTVs were not 

fulfilled for this strategy, and the sum of the NTCP for xerostomia and dysphagia was higher 

compared to the clinical plan. Therefore, different ROIGoals settings for the PTVs in the prediction 

were added. 

Strategy 1 

Also, it was investigated what the impact was of the ReduceOar functionality, and the function 

ReduceOar was set to true in order to reduce the sum NTCP. The results of the D98 and SUM NTCP of 

these adjustments, Strategy 1, are shown in Table 6. It seemed promising that in the prediction it was 

relatively easy to fulfill the target coverage requirements by adding ROIGoals for the PTVs and to 

reduce the NTCP by set ReduceOar to true.   

3.4.2 Tune mimicking: Model-60 

With the update to RayStation development version 9A in September 2019, the MLO mimicking 

functionality for protons became available. In this version of the scripting environment (2.2), the 

dose to the OARs would be reduced in the mimicker by default. The first goal of testing this mimicker 

functionality, was to achieve robust target coverage. To have a quick initial evaluation method, target 

coverage of each plan was accessed by the D98 criteria in the PTVs, until this goal was fulfilled.  
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Strategy 2 

Initial testing was performed on 5 plans which were clinical robustly optimized for 0.5 cm position- 

and 3% density uncertainty. The same prediction settings as for the ‘Strategy 1’ were applied, but 

now also ROI goals for the CTV were added in order to be included in the robust mimicker 

optimization. In the mimicking settings, DVH based mimicking was used as default. Robustness 

uncertainty settings according to the clinical plans were used.  

In table 5, the result to the target coverage of this strategy (‘Strategy 2’) is shown and in table 6, the 

sum NTCP can be found. It can be seen that the MLO mimicked plans did not fulfill the target 

coverage criteria in all five patients. Unfortunately, it was found out that setting ‘weights’ for a 

specific ‘dose_level’ in ROI goals for the targets in the mimicker had zero effect; this functionality was 

not available in RayStation version 9A. So, there were less options in the mimicker than in the 

prediction settings to tune to preserve enough target coverage in the mimicked plans.  

Strategy 3, Scripting environment version 2.3  

Because of the low target coverage in the MLO mimicked plans, the scripting environment 

functionality was adjusted. In the previous version (2.2), the dose to the OARs was reduced in the 

MLO mimicker by default. Now, this functionality was adjusted to maintain the predicted dose to the 

OARs. Also, in the prediction, the function ReduceOar was set to false, since the first priority was to 

achieve enough target coverage. After this has been achieved in a later stadium, we could focus on 

reducing the dose to the OARs. Also, in the prediction settings, only CTVs were included instead of 

both CTVs and PTV, because in manual intensity modulated proton therapy (IMPT) planning there is 

optimized on CTVs and the intention is that they will be robustly optimized by the mimicker. This has 

led to ‘Strategy 3’, and the D98 to the PTVs of this strategy are shown in table 5. 

On average, the predicted D98 dose to the PTV7000 was slightly increased and the D98 to the 

PTV5425 was slightly reduced by excluding the PTVs from the ROI goals and setting the function 

ReduceOar to false. With excluding the PTVs from the prediction settings, as in ‘Strategy 3’, the D98 

in the PTVs still got enough target coverage. Despite the lower predicted dose in the PTV5425, the 

target coverage in the MLO mimicked plans was improved. However, for 4 out the 5 patients the 

PTV7000 did not achieve enough target coverage. Also, for the PTV5425, not enough target coverage 

was achieved. In table 6 the result of the sum of the NTCPs is shown. It can be seen that with the new 

functionality in the scripting environment, the sum NTCP was increased. This was as expected since 

now the predicted dose to the OARs was set to maintain instead of further reduce.  
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Table 5  The resulting target coverage per patient of the different strategies compared to the predicted and clinical dose. 

  Clinical plan Standard  
MLO 

Strategy 1 
MLO 

Strategy 2  
MLO 

Strategy 3 
MLO 

 D98 (cGy)  Predicted Predicted Predicted Mimicked Predicted Mimicked 

Patient 1 PTV7000 
PTV5425 

6804 
5260 

6560 
5168 

6673 
5234 

6694 
5236 

6123 
4548 

6739 
5219 

6637 
5323 

Patient 2 PTV7000 
PTV5425 

6390 
5089 

6530 
5164 

6625 
5236 

6699 
5234 

5869 
4718 

6716 
5237 

6577 
5146 

Patient 3 PTV7000 
PTV5425 

6593 
5113 

6549 
4983 

6608 
5158 

6690 
5197 

6328 
4570 

6643 
4943 

6592 
4837 

Patient 4 PTV7000 
PTV5425 

6662 
5240 

6676 
5122 

6678 
5141 

6701 
5221 

6116 
4749 

6763 
5162 

6594 
5194 

Patient 5 PTV7000 
PTV5425 

6655 
5091 

6599 
5082 

6623 
5178 

6714 
5244 

6317 
4593 

6722 
4884 

6641 
4994 

Mean ± SD 
Mean ± SD 

PTV7000 
PTV5425 

6621 ± 150 
5159 ± 84 

6583 ± 58 
5104 ± 76 

6641 ± 32 
5189 ± 44 

6700 ± 9 
5222 ± 16 

6151 ± 187 
4636 ± 92 

6716 ± 45 
5089 ± 164 

6608 ± 29 
5099 ± 188 

 

Table 6  The resulting sum NTCP of per patient of the different strategies compared to the predicted and clinical plan. 

 
Sum NTCP (%) 

Clinical plan Standard 
MLO 

Strategy 1 
MLO 

Strategy 2  
MLO 

Strategy 3 
MLO 

  Predicted Predicted Predicted Mimicked Predicted Mimicked 

Patient 1 97.6 94.3 79.5 81.2 78.5 105.2 123.6 

Patient 2 102.3 97.4 80.4 83.7 75.5 109.0 119.1 

Patient 3 66.6 75.5 63.3 64.0 62.3 89.1 84.8 

Patient 4 88.2 92.5 78.6 80.3 78.0 104.0 96.2 

Patient 5 54.9 59.5 47.0 48.4 47.7 76.6 73.0 

Mean ± SD 81.9 ± 20.4 83.9 ± 16.1 69.7 ± 14.5 71.0 ± 15.1 67.9 ± 13.3 96.0 ± 12.2 98.3 ± 21.8 
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Strategy 3; AddTargetsNtimes 

As a next step, it was tried to include the targets several times in the optimizer. However, when we 

included the function add_ntimes in the RobustMimickCTVs, no effect was seen in the mimicked 

plans, and it worked out that this functionality only could be applied to the NonRobustMimickOars. 

Therefore, a function which could add the targets multiple times to the optimizer, 

AddTargetsNtimes, was created. However, if this was applied to the CTVs with their minimal and 

maximal dose as well, this probably will not improve the minimal dose since the minimal and 

maximal dose will counteract each other. Therefore, a copy of the CTVs was made and only their 

minimal goals were included. Then, AddTargetsNtimes was applied to the minimal dose to the CTVs, 

repetitively with increasing number of times when using Strategy 3. Values between 1 and 10000 

were tried. It was investigated whether there was a number of times the CTVs had to be included to 

achieve enough target coverage, evaluated by the D98 in the PTV7000 and PTV5425.  

The time required to complete the MLO plans was increased by the number of times the CTVs were 

included in the optimizer, e.g. it took several hours to generate a plan with the CTVs added 250 

times. For adding the CTVs 10.000 times, generating one plan was not finished within a day, and 

therefore the MLO was stopped manually. In figure 12, the D98 in the PTV7000 (above) and PTV5425 

(below) of each patient and the average is shown. It can be seen that for the PTV7000 the D98 was 

increased by adding this CTV multiple times. Also, the distribution of the D98 in this PTV became 

smaller and was comparable to the clinical plan when this CTV is added ≥100 times.  

For the PTV5425, adding the CTV multiple times did not have as much effect on the D98 as for the 

PTV7000; the differences were all <0.5 Gy. Adding the CTVs more than 100 times, led to a larger 

distribution of the D98, which was not as expected. Also, on average, a slightly increasing effect on 

the target coverage was seen when the target was added ≥100 times, but then the time to finish a 

plan was increased. So, we decided that when setting the addTargetsNtimes to 100, the agreement 

between time and target coverage was acceptable.   
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Figure 12  D98 in the PTV7000 (above) and PTV5425 (below) per patient of strategies when adding the CTVs different 
times compared to the clinical plan. The grey lines and displayed value represent the average D98 of the 5 patients.     
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Strategy 4 and 5; DVH- vs voxel-based mimicking 

Next to this, also the effect of DVH-based mimicking instead of voxel-based mimicking on the target 

coverage was investigated. This was performed on the strategy where he CTVs were added 500 times 

in the optimizer. In table 8, the results of both mimicking strategies can be found, where ‘Strategy 4’ 

represents voxel-based mimicking and in ‘Strategy 5’ the mimicker is based on DVHs. It can be seen 

that on average, the DVH-based mimicking D98 in the PTV7000 and PTV5425 was slightly higher, but 

this difference is almost negligible since the difference is <0.5 Gy. In patient 3 a drop down was seen 

in the D98 for PTV7000 of nearly 3 Gy, which resulted in a non-acceptable target coverage. 

Therefore, at this point it was chosen to continue with voxel-based mimicking.  

Strategy 6 and 7; robustness uncertainty settings 

Furthermore, it was investigated if increasing the robustness settings also would lead to a higher D98 

in the PTVs. Therefore, ‘Strategy 7’ with robustness position uncertainty of 0.8 was compared to 

‘Strategy 6’ with a position uncertainty of 0.5, both strategies were planned with the CTVs included 

1000 times. It was expected that this adjustment would improve the mimicked dose to at least the 

95% criterion of the prescribed dose. The results are shown in table 8, where it can be seen that on 

average the D98 in the PTVs did improve, but not as much as expected. In the PTV5425 the 95% 

criterion was achieved on average, but in the PTV7000 this was not the case.  

Since the ‘Strategy 3’ was applied, it can be seen that for patient 3 and 5 the predicted and mimicked 

dose was lower compared to the clinical plan. Therefore, a strategy with a higher predicted dose 

would maybe result in a higher mimicked dose, so this was investigated in a next step (Strategy 8). 

3.4.3 Mixed vs. homogenous model 

Plans included in the training which were made in 2018, were robustly optimized with 0.5 cm 

position uncertainty and 3% density uncertainty, and differed from plans made since the beginning of 

2019, where 0.3 cm position uncertainty was taken into consideration.  

Until December 2019, a total of 35 dose distributions planned with 0.3 cm position uncertainty were 

available. To investigate whether there was a difference in performance regarding target coverage 

and sum NTCP due to the different robustness settings in the trained models, a mixed model (both 

0.3 and 0.5 cm position uncertainty optimized plans included) and a homogeneous model (only 0.3 

cm position uncertainty optimized plans included) were compared. Therefore, a separate model with 

exclusively plans which were robustly optimized for 0.3 cm position uncertainty was trained: Model-

0.3. This model was trained with 32 plans and subsequently tested on 3 novel patients, see Appendix 

C, table 12. The same 3 patients were also tested on Model-66 with the same settings. An ensemble 

size of 3 ARFs was used for both predictions. To assess target coverage, robustness evaluation was 

performed with 0.3 cm set-up and ±3 % range uncertainty and assessed by the vw-min D98>94% 

criterion.  

In table 7, the results of the D98 in the vw-min in the CTVs are shown. It can be seen that for the 

three patients tested on, two of them showed robust D98 in the CTVs in both the mixed as well as 

the homogeneous model. On average, the homogeneous model showed a higher D98 in the vw-min, 

of approximately 0.2 Gy for the CTV5425 and 0.3 Gy for the CTV7000. Next to this, the sum NTCP 

between the two models was similar. Since the homogeneous model had very small effect on the 

target coverage and sum NTCP, we have chosen to continue with the mixed model because this 

consists of more patients.   
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Table 7  The result of the voxel-wise minimum in D98 in the targets per patient of the mixed and homogeneous model. Also, the sum NTCP is shown. 

 Mixed model Homogeneous model 

 Vw-min 
D98 

CTV5425 
(cGy) 

Vw-min  
D98 

CTV7000 
(cGy) 

Sum NTCP 
(%) 

Vw-min 
D98 

CTV5425 
(cGy) 

Vw-min 
D98 

CTV7000 
(cGy) 

Sum NTCP 
(%) 

Patient 1 5161 6685 60.4 5198 6761 58.6 

Patient 2 5127 6559* 57.9 5136 6564* 58.7 

Patient 3 5239 6775 63.9 5259 6785 65.1 

Mean ± SD 5176 ± 47  6673 ± 89  60.7 ± 3.0 5198 ± 50  6703 ± 99  60.8 ± 3.7 

          * Below the threshold of 94% of the prescribed dose 
 

 
Table 8  The D98 in the PTVs per patient of the different strategies compared to the prediction and clinical plan. 

  Clinical 
plan 

Strategies 
4-7 

MLO  

Strategy 4 
MLO 

Strategy 5 
MLO 

Strategy 6 
MLO 

Strategy 7 
MLO 

Strategy 8 
MLO 

 D98 
(cGy) 

 Predicted Mimicked Mimicked Mimicked Mimicked Predicted Mimicked 

Patient 1 PTV7000 
PTV5425 

6804 
5260 

6736 
5259 

6631 
5319 

6675 
5350 

6639 
5323 

6653 
5351 

6767 
5001 

6694 
5062 

Patient 2 PTV7000 
PTV5425 

6390 
5089 

6716 
5237 

6576 
5136 

6285 
5266 

6577 
5146 

6596 
5236 

6750 
5240 

6690 
5292 

Patient 3 PTV7000 
PTV5425 

6593 
5113 

6643 
4943 

6600 
4832 

6696 
4949 

6592 
4837 

6649 
4934 

6801 
5176 

6640 
5069 

Patient 4 PTV7000 
PTV5425 

6622 
5240 

6763 
5162 

6592 
5191 

6641 
5192 

6534 
5194 

6649 
5246 

6808 
5213 

6716 
5083 

Patient 5 PTV7000 
PTV5425 

6655 
5092 

6722 
4884 

6638 
4992 

6789 
4899 

6641 
4994 

6663 
5058 

6731 
5022 

6634 
4847 

Mean ± SD 
Mean ± SD 

PTV7000 
PTV5425 

6621 ± 150 
5159 ± 84 

6716 ± 45 
5089 ± 164 

6607 ± 26 
5094 ± 188 

6617 ± 194 
5131 ± 198 

6597 ± 45 
5099 ± 188    

6642 ± 26 
5165 ± 167 

6771 ± 33 
5130 ± 111 

6675 ± 36 
5071 ± 158 
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3.4.4 Tune mimicking: Model-40 and Model-40.1 

The research patients included in Model-60 had plans which were not clinically reviewed. In the test 

patients, it was noticed that the research plans were planned in a different way than conventionally 

in clinical patients. The goal of this study was to generate plans with clinical accepted plan quality. 

Therefore, we continued with a model which consists of clinically accepted plans, and thus excluded 

the plans which were planned for research purposes. For model characteristics, see table 12, 

Appendix C.  

This model was tested again on 5 patients, but not the same patients where previous tests were 

performed on, due to some test patients were research patients. All 5 patients were clinical robustly 

optimized for 0.5 cm position uncertainty and 3% density uncertainty, so these settings were also 

used in the robust mimicking optimization. Evaluation of the MLO plans was done by assessment of 

the D98 in PTV7000 and PTV5425 until the goal of 95% of the prescribed dose was achieved. From 

that point, we continued by assessing the robustness by the D98 of the vw-min in the CTV7000 and 

CTV5425.  

Strategy 8 

Testing this model was started with a new strategy; ‘Strategy 8’, where higher ROI goals were given 

to the CTV5425 compared to the ‘Strategy 3’. With Strategy 8, for the PTV7000 the D98 goal of 95% 

of the prescribed dose, i.e. 6650 cGy, was achieved, see table 8. Therefore, from this moment, a 

robustness evaluation for 16 perturbed dose scenarios was performed to access robust target 

coverage.  

The results of the D98 of the vw-min in the CTV5425 and CTV7000 for plans made with Strategy 8, 

are shown in table 9. It can be seen that robust target coverage was achieved in 2 out the 5 patients. 

Three plans were not robust in the D98 of the CTV5425.  

Strategy 9 

In the settings of ‘Strategy 8’, the EnsembleSize; the number of ARFs that were selected for the 

prediction, was set at 5. However, it is advised to include maximal 10% of model size, so in the model 

size of 40, an ensemble size of 5 was a somewhat large. Therefore, the same strategy was applied, 

but now with an ensemble size of 3; represented by ‘Strategy 9’. This resulted in robust target 

coverage in all patients, see table 9. 

Model-40.1: Strategy 10 

As a next step, a new model was trained with the same patients included as previous, but now the 

training was also performed on CTVs next to PTVs, Model-40.1. It is expected that training the model 

on the CTVs too, will improve target coverage in the CTVs because it is learnt what dose value the 

voxels inside the CTVs and around the CTVs have. The same settings as in Strategy 9 were applied 

again, now named ‘Strategy 10’. In table 9 it can be seen that now the plans were not robust 

anymore for 2 out the 5 patients; the vw-min of the D98 in the CTV 5425 was below the goal of 94%, 

and in one plan the CTV7000 did not fulfill the robustness criterion. So, with the current strategy, it 

was more difficult to achieve robust target coverage when CTVs are included in the training.  
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Table 9  Results of the voxel-wise minimum D98 per patient of the different strategies compared to the clinical plan. 

Vw-min 
D98 

(cGy) 

Clinical plan Strategy 8 Strategy 9 Strategy 10 

 Mimicked Mimicked Mimicked 

CTV 
7000 

CTV 
5425 

CTV 
7000 

CTV 
5425 

CTV 
7000 

CTV 
5425 

CTV 
7000 

CTV 
5425 

Patient 1 6674 5172 6716 5022 6683 5204 6515 5154 

Patient 2 6691 5146 6769 5230 6770 5210 6730 5234 

Patient 3 6457 5122 6737 5093 6715 5124 6623 5082 

Patient 4 6675 5154 6789 5139 6756 5103 6744 5155 

Patient 5 6664 5139 6733 4976 6688 5107 6643 5089 

Mean ± 
SD 

6632 ± 
98 

5147 ± 
18 

6749 ± 
30 

5092 ± 
100 

6722 ± 
39 

5150 ± 
53 

6651 ± 
93 

5143 ± 
62 

 

3.4.5 Tune mimicking: Model-66 

A new model was trained with all the clinical IMPT oropharyngeal plans available at that moment. 

Also, in this model plans planned according to the Dutch National Indication Protocol for Proton 

therapy (LIPP) 2 were included. The model was tested on 4 patients, all with robustness parameters 

of 0.3 cm set up and 3% range uncertainty, and thus differ from the patients were tests were 

performed at earlier. Two of them had clinically LIPP 1 planned plans and the other two patients had 

LIPP 2 planned plans. Evaluation was done by assessment of the D98 in the vw-min in the CTV7000 

and CTV5425, which has to be at least 94% of the prescribed dose, i.e. 6580 cGy for CTV7000 and 

5100 cGy for CTV5425.  

Strategy 11 

The same strategy as used in Model-40.1 (‘Strategy 10’) was applied to this new trained model, but 

with an ensemble size of 5 since the new trained model consists of more patients and names 

‘Stratgey 11’. The results of the robustness evaluation are shown in figure 13, as n=100. It can be 

seen that for patient 3, the CTV7000 was not robust and in patient 4, the D98 in the vw-min for the 

CTV5425 was not robust. Therefore, again the addTargetNtimes setting was set to a higher value, 

250 and 500 respectively, to see if this would result in a higher robustness. The results of these 

adjustment on the vw-min are shown in figure 13. It can be seen that adding the targets multiple 

times to the optimizer did not result in achieving robust target coverage in the D98 of the vw-min; in 

patient 3 and 4 the vw-min is below the clinical goal.  

Strategy 12 and 13 

In a next step, some higher ROIGoals in prediction settings were added; ‘Strategy 12’. This resulted in 

robust target coverage in all 4 test patients, see figure 14. Therefore, cross-validation was performed 

in a new set of 4 test patients, and a new model was trained with the same number of patients and 

settings. The same strategy was applied, and subsequently robustness evaluation was performed. 

However, as can be seen in figure 14, for tune patient 1 and 2, this strategy did not result in robust 

target coverage.  

As a next step, a DVH-based mimicking strategy was applied (‘Strategy 13’) to see if this would result 

in robust target coverage. However, in figure 14 it can be seen that this resulted in no robust target 

coverage in cross-tune patient 1 and 2 regarding the CTV5425.  
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Figure 13  Results of the voxel-wise minimum D98 per patient in the CTVs of Strategy 11 (n=100) and when the CTVs are 
added more times compared to the clinical plan. The grey lines and displayed value represent the average D98 of the 5 
patients. The green line indicates the threshold for 94% of the prescribed dose.         
 

Strategy 14 

Then, the same settings as in Strategy 12, but again with somewhat higher ROIGoals were given to 

the CTV7000 and CTV5425, named ‘Strategy 14’. Higher ROIGoals were given because in Strategy 12 

this had demonstrated an improvement in the D98 of the vw-min in the CTVs.  

Applying Strategy 14 resulted in robust target coverage in all 4 patients, see figure 14. As a next step, 

cross-validation with Strategy 14 was performed on the initial tune patients. Also, in these 4 patients, 

this strategy resulted in robust target coverage, see figure 14. The results of the perturbed scenarios 

of robustness evaluation in the cross-validation patients is shown in figure 15. It can be seen, that for 

the CTV7000 the vw-min in the MLO plans were higher compared to the clinical plans and were all 

above the 94% threshold. Also, the distribution of the of the perturbed scenarios doses was smaller 

compared to the clinical plans. For the CTV5425 all plans were above the threshold of 94% of the 

prescribed dose. In figure 16, the mean DVHs of the targets and OARs of this strategy in the cross-

validation patients are shown compared to the clinical plan. It can be seen that on average the DVHs 

of the CTVs were nearly the same, the DVH of the CTV5425 is somewhat higher. The dose to the 

OARs was higher in the MLO plans compared to the clinical plans, except for the spinal cord which 

dose was on average lower in the MLO plans.  
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Figure 14  Results of the voxel-wise minimum D98 per tune- and cross-patient of strategies 11-14 compared to the clinical 
plan. The grey lines and displayed value represent the average D98 of the 5 patients. The green line indicates the 
threshold for 94% of the prescribed dose.     
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Figure 15  Boxplot of the 16 scenario doses for Strategy 14 from the robustness evaluation (orange), nominal dose (blue) 
and vw-min (red) of 4 cross-validation patients of the CTV7000 (above) and CTV5425 (below). The green line indicates the 
threshold for 94% of the prescribed dose. 
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Figure 16  The mean DVH of 4 patients of the clinical plan and the MLO plan of Strategy 14 where cross-validation was 
performed on. 

 

Strategy 15, Reduce OAR dose 

Since the goal of robust target coverage was achieved now, a strategy to reduce the dose to the 

OARs was applied. In this strategy, ‘Strategy 15’, the ReduceOAR was set to true per OAR with a 

ReduceOARLevel of 0.25 in ROIGoals. Also, the PriorMethod was set to ‘avg’ instead of ‘max’. This 

resulted in robust target coverage and less dose to the OARs as compared to Strategy 14. The same 

results were seen in the cross-validation which was performed subsequently. After that, this strategy 

was tested on an independent test set of 9 patients. Next to this, also the setting reduce_dose in the 

NonRobustMimickOARs function was set to true, to test if this would even more reduce the dose to 

the OARs. However, with this setting, the MLO plan generation was not competed within 24 hours, 

and thus was stopped manually. Due to time, Strategy 15 was the endpoint of the development part 

for this study. The final results were presented and discussed in detail in Chapter 2.  
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3.5 Discussion and future recommendations 
In this first application of MLO for robust mimicking of IMPT plans, we found out that achieving 

robust target coverage was hard, and a lot of tuning in the settings was necessary to find a strategy 

which fulfills the clinical goals regarding target coverage. Therefore, initially we have chosen to 

exclude the goals for the OARs. When a strategy was found which could achieve robust target 

coverage, some first attempts to reduce to dose to the OARs while maintain the robust target 

coverage were performed.  

The difference between DVH and voxel-based mimicking was not always clear, and had in some 

patients improving effect on target coverage, while decreasing effect in others. In the final strategy 

of our study, a voxel-based mimicking method was used, which has the advantage of preserving 

spatial information. It may be that DVH-based mimicking could lead to less target homogeneity, 

however this was not investigated in our study since the main goal was to achieve robust target 

coverage.  

The functionality addTargetsNtimes was a cumbersome way to influence the weight of the CTV goals, 

and increased the time to generate a MLO plan. It has been shown that adding the CTVs 100 times 

was a good agreement between target coverage and the time it took to optimize the plan. However, 

only adjustments of this function were made for both CTVs simultaneous. When treating the 

CTV7000 and CTV5425 separately, so that different ‘weights’ are given for each CTV, this could 

influence the target coverage in both CTVs. So, this functionality could be further investigated in the 

future. Also, in a future version of RayStation, it is advised to include the ‘weights’ functionality for 

the ‘RobustMimickCTVs’ because then it probably will be easier to steer the dose in the targets.    

Next to this, in the mimicking optimization there is optimized for different scenario doses regarding 

the robustness for a certain setup- and density error. However, the evaluation criteria are based on 

the vw-min D98. It may be an improvement to include this evaluation criterion also as a goal in the 

robustness optimizer. 

In testing the difference in target coverage between the mixed and the homogeneous model, testing 

was only performed in three patients. To be able to train a model of a certain size, as much as 

possible plans which were planned since 2019 were included in the training of the homogeneous 

model. Therefore, only 3 patients were left to perform testing on. However, since more plans were 

available to train the mixed model, the model size of the mixed model was larger than the 

homogeneous model. Therefore, an ensemble size of 3 was used in the test strategy for both the 

mixed and the homogeneous model, to exclude the eventual benefit of more similar ARFs available 

in the larger model size.  

There were only small differences found between the homogeneous and mixed model regarding the 

target coverage vw-min D98 and sum NTCP. This indicates that for the number of patients which 

were available, using a mixed model instead of a homogeneous model would not result in much 

difference in target robustness. Therefore, in this study we continued the use of a heterogeneous 

model. However, when a larger number of patients planned with 0.3 cm robustness uncertainty is 

available, it will be advised to investigate if a homogeneous model with a similar model size as the 

mixed model will result in more difference between these modes. Next to this, it will be interesting 

to see if the same ARFs are selected in both models, this can be performed in the future.   
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Since August 2019, clinical plans were optimized according to LIPP2. In this study, only 13 plans were 

available which were planned according to this protocol. When more patients are available, it has to 

be investigated if it is necessary to train a new model for LIPP2 planned plans or that tuning the 

settings will be able to generate plans with comparable plan quality to the clinical plans.  

The final strategy found in this study provides robust target coverage with similar target coverage to 

most OARs as compared to the clinical plans. However, the mean dose to the oral cavity was higher 

in the MLO plans compared to the clinical plans. So, in a next step, the first focus in tuning has to be 

to reduce the dose to the oral cavity. Also, it has to be investigated if the dose to all OARs can be 

further reduced, while maintaining robust target coverage. Since the reduce_dose mimicking setting 

was very time consuming to generate a MLO plan, it is advised to tune the ReduceOAR settings in the 

prediction to reduce the dose to the OARs.  
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Appendix A  

 
Table 10  Maximal doses to the serial OARs per patient in the MLO plans and clinical plans.  

Dmax 

(cGy) 
Brain Brainstem Spinal cord Left lens Right lens Left eye Right eye 

Test 

patient 

Clinical 

plan 

MLO 

plan 

Clinical 

plan 

MLO 

plan 

Clinical 

plan 

MLO 

plan 

Clinical 

plan 

MLO 

plan 

Clinical 

plan 

MLO 

plan 

Clinical 

plan 

MLO 

plan 

Clinical 

plan 

MLO 

plan 

1 5025 5057 2739 2003 4312 4304 13 21 19 23 16 23 28 29 

2 2998 3731 3216 3127 4286 4392 12 16 12 16 12 17 20 24 

3 540 780 21 17 4274 3359 4 5 11 8 8 8 11 10 

4 3060 2914 2601 3045 4538 373 14 13 14 19 17 19 22 21 

5 2464 2048 1250 1092 1907 1626 10 16 18 20 17 24 30 28 

6 2098 3091 1623 2598 3158 3222 22 22 21 15 35 31 24 24 

7 2995 4461 1611 1765 3975 3742 16 18 17 13 25 19 17 19 

8 4951 4678 1964 1625 3193 3532 27 25 19 23 27 28 26 30 

9 1984 2751 1996 2494 4355 4502 28 23 13 17 32 25 16 16 

Mean ± 

SD 

2902 ± 

1415 

3201 ± 

1536 

1891 ± 

939 

1974 ± 

994 

3778 ± 

864 

3601 ± 

871 
16 ± 8 18 ± 6 16 ± 4 17 ± 5 21 ± 9 22 ± 7 22 ± 6 22 ± 7 

p-value  0.314  0.767  0.441  0.326  0.433  0.673  0.347 
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Table 11  Mean doses to the parallel OARs per patient in the MLO plans and clinical plans. 

*=statistically significant difference (p<0.05) compared to clinical plan 

PCM = Pharyngeal constrictor muscle 

Dmean 

(cGy) 
Oral cavity Left parotid Right parotid 

Left 

submandibular 

Right 

submandibular 
PCM inferior PCM medial PCM superior 

Test 

patient 

Clinical 

plan 

MLO 

plan 

Clinical 

plan 

MLO 

plan 

Clinical 

plan 

MLO 

plan 

Clinical 

plan 

MLO 

plan 

Clinical 

plan 

MLO 

plan 

Clinical 

plan 

MLO 

plan 

Clinical 

plan 

MLO 

plan 

Clinical 

plan 

MLO 

plan 

1 3018 3372 1257 1255 3657 3524 2946 2392 6713 6621 1775 1598 4532 4145 5062 4896 

2 4348 4814 963 1322 1720 1619 3032 2632 6302 6210 877 1474 3527 3964 5817 5865 

3 1069 1244 620 738 859 945 1722 2117 5816 5558 1789 1969 4249 4113 2720 2782 

4 2077 2376 1090 1165 1113 1240 4312 4083 2070 2324 2718 2767 3711 3925 5876 6120 

5 1551 2107 1211 1197 1490 1568 2140 1891 5676 5815 2390 2071 2893 2550 2653 2847 

6 3559 3968 1404 1459 851 872 5996 6138 5661 5941 1772 1998 2681 2513 4671 4724 

7 2533 2630 1641 1522 2153 2059 4001 3308 6884 6849 2360 2249 5441 5238 4020 3896 

8 5969 6133 2321 2395 1220 1640 6456 6463 6633 6539 1792 2214 6011 6116 5474 5616 

9 3790 3976 2090 2009 1207 1196 6445 6304 3261 2891 1652 2251 4997 5368 4960 5171 

Mean 

±SD 

3102 ± 

1515 

3402* 

± 1504 

1400 ± 

540 

1451 ± 

490 

1586 ± 

881 

1629 ± 

803 

4117 ± 

1826 

3925 ± 

1898 

5446 ± 

1667 

5416 ± 

1650 

1902 ± 

534 

2066 ± 

382 

4227 ± 

1133 

4215 ± 

1216 

4584 ± 

1219 

4657 ± 

1236 

p-value  0.008  0.515  0.767  0.139  0.678  0.173  0.953  0.139 
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Appendix B 
{ 
    "ModelName": "HN-Proton-New_66", 
    "BeamSetsDefaults": [ 
        { 
            "SpatialMetric" : "p-prior&&gamma20", 
            "EnsembleSize": 5, 
            "PriorMetric" : "simplified-prior", 
            "TreatmentMachine": "RSL_VersaHD", 
            "BeamListTemplate": "1 Arc", 
      "IsocenterType": "CenterOfRoi", 
            "IsocenterRegionAlias": ["PTV5425","PTV54.25","PTV5425total","ptv5425", 
    "ptv54.25", "PTV_5425"], 
         "TreatmentTechnique": "ProtonPencilBeamScanning" 
        } 
    ], 
  "RoiNameAlias" :  {"PTV70" : ["A1 PTV_7000", "PTV_7000-A1", "PTV_7000", "PTV7000"], 
                "PTV54.25" : ["A1 PTV_5425", "PTV_5425-A1", "PTV_5425", "PTV5425"], 
                 "CTV70": ["A1 CTV_7000", "CTV_7000_A1", "CTV_7000-A1", "CTV7000",  
      "CTV70", "CTV_7000"], 
                "CTV54.25": ["A1 CTV_5425", "CTV_5425_A1", "CTV_5425-A1", "CTV5425", 
                                 "CTV54.25", "CTV_5425"], 
                    "Brain" : ["Brain"], 
                    "BrainStem" : ["BrainStem"], 
                    "SpinalCord" : ["SpinalCord", "myelum"], 
                    "Parotid_L" : ["Parotid_L"], 
                    "Parotid_R" : ["Parotid_R"], 
                    "Submandibular_L" : ["Submandibular_L"], 
                    "Submandibular_R" : ["Submandibular_R"], 
                    "Mandible" : ["Mandible", "Mandibula"], 
                    "OralCavity_Ext" : ["OralCavity_Ext","OralCavityExtended"], 
                    "GlotticArea" :["GlotticArea", "GloticArea"], 
                    "Supraglottic" : ["Supraglottic", "SupraglotticLarynx"], 
                    "Thyroid" : ["Thyroid"], 
                    "PCM_Inf" : ["PCM_Inf", "PharynxConst_Inf"], 
                    "PCM_Med" : ["PCM_Med", "PharynxConst_Med"], 
                    "PCM_Sup" : ["PCM_Sup", "PharynxConst_Sup"], 
                    "Crico" : ["Crico","Cricopharyngeus", "CricoPharyngeal_Inlet"], 
                    "Esophagus_Cerv" : ["Esophagus_Cerv", "CervicalEsophagus"], 
                    "Eye_Ant_L": ["Eye_Ant_L","Lens_L"], 
                    "Eye_Ant_R": ["Eye_Ant_R","Lens_R"], 
                    "Eye_Post_L": ["Eye_Post_L","Eye_L"], 
                    "Eye_Post_R": ["Eye_Post_R","Eye_R"] 
            }, 
    "MultiPlanSettings" : [ 
{ 
  "StrategyName" : "Strategy 15", 
      "PredictSettings": { 
            "RoiGoals": [ 
                     { "GoalType" : "max_dose",  "ROI" : "CTV70", "Volume" : 50, "Value" :   
                        7000, "ValueType" : "abs"}, 
                     { "GoalType" : "min_dose",  "ROI" : "CTV70", "Volume" : 98, "Value" :   
                        6950, "ValueType" : "abs"}, 
                     { "GoalType" : "max_dose_serial",  "ROI" : "CTV70", "Volume" : 0.0,   
                       "Value" : 104, "ValueType" : "prc"}, 
 
                     { "GoalType" : "min_dose",  "ROI" : "CTV54.25", "Volume" : 100,   
                       "Value" : 5425, "ValueType" : "abs"}, 
                     { "GoalType" : "min_dose",  "ROI" : "CTV54.25", "Volume" : 100, 
                       "Value" : 5289, "ValueType" : "abs"}, 
                     { "GoalType" : "min_dose",  "ROI" : "CTV54.25", "ExcludeRoi" :  
                       "CTV70", "Volume" : 100, "Value" : 5425, "ValueType" : "abs"}, 
 
                     { "GoalType" : "max_dose_serial",  "ExcludeRoi" : "PTV70", "ROI" :   
                       "PTV54.25&&Parotid_L", "Volume" : 0.00, "Value" : 5425, "ValueType"   
                       : "abs"}, 
 
                     { "GoalType" : "max_dose_serial",  "ExcludeRoi" : "PTV70", "ROI" :  
                       "PTV54.25&&Parotid_R", "Volume" : 0.00, "Value" : 5425, "ValueType"  
                       : "abs"}, 
                     { "GoalType" : "max_dose_serial",  "ROI" : "SpinalCord","Volume" : 1,  
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                       "Value" : 5000, "ValueType" : "abs"}, 
                     { "GoalType" : "max_dose_serial",  "ROI" : "BrainStem", "Volume" : 1,  
                       "Value" : 6000, "ValueType" : "abs"} 
                     ], 
            "Functions":[ 
                     {"ROI": "ANY", "ReduceOar": false, "PriorMethod": "avg", 
                             "PriorMethodInsideTarget": "avg"}, 
                     {"ROI": "CTV70", "ReduceOar": false, "ReduceOarLevel": 0.25, 
                             "PriorMethod": "max", "PriorMethodInsideTarget": "avg"}, 
                     {"ROI": "CTV54.25", "ReduceOar": false, "ReduceOarLevel": 0.25, 
                             "PriorMethod": "max", "PriorMethodInsideTarget": "avg"}, 
 
                     {"ROI": "OralCavity_Ext", "ReduceOar": true, "ReduceOarLevel": 0.25, 
                             "PriorMethod": "avg", "PriorMethodInsideTarget": "avg"}, 
                     {"ROI": "Parotid_R", "ReduceOar": true, "ReduceOarLevel": 0.25, 
                             "PriorMethod": "avg", "PriorMethodInsideTarget": "avg"}, 
                     {"ROI": "Parotid_L", "ReduceOar": true, "ReduceOarLevel": 0.25, 
                             "PriorMethod": "avg", "PriorMethodInsideTarget": "avg"}, 
                     {"ROI": "PCM_Sup", "ReduceOar": true, "ReduceOarLevel": 0.25, 
                             "PriorMethod": "avg", "PriorMethodInsideTarget": "avg"}, 
                     {"ROI": "PCM_Med", "ReduceOar": true, "ReduceOarLevel": 0.25, 
                             "PriorMethod": "avg", "PriorMethodInsideTarget": "avg"}, 
                     {"ROI": "PCM_Inf", "ReduceOar": true, "ReduceOarLevel": 0.25, 
                             "PriorMethod": "avg", "PriorMethodInsideTarget": "avg"}, 
                     {"ROI": "Submandibular_R", "ReduceOar": true, "ReduceOarLevel": 0.25, 
                             "PriorMethod": "avg", "PriorMethodInsideTarget": "avg"}, 
                     {"ROI": "Submandibular_L", "ReduceOar": true, "ReduceOarLevel": 0.25, 
                             "PriorMethod": "avg", "PriorMethodInsideTarget": "avg"}, 
                     {"ROI": "Supraglottic", "ReduceOar": true, "ReduceOarLevel": 0.25, 
                             "PriorMethod": "avg", "PriorMethodInsideTarget": "avg"}, 
                     {"ROI": "GlotticArea", "ReduceOar": true, "ReduceOarLevel": 0.25, 
                             "PriorMethod": "avg", "PriorMethodInsideTarget": "avg"}, 
                     {"ROI": "Crico", "ReduceOar": true, "ReduceOarLevel": 0.25, 
                             "PriorMethod": "avg", "PriorMethodInsideTarget": "avg"}, 
                     {"ROI": "Esophagus_Cerv", "ReduceOar": true, "ReduceOarLevel": 0.25, 
                             "PriorMethod": "avg", "PriorMethodInsideTarget": "avg"} 
                     ] 
         }, 
            "MimickSettings":{ 
            "VoxelCTVMim": true, 
            "VoxelOARMim": true, 
            "MimicNominalScenarioDoseInAllScenarios": true, 
            "RobustMimickCTVs" : {"CTV70": [{"FunctionType": "MinDose"}, 
                                            {"FunctionType": "MaxDose"}], 
                                  "CTV_7000_copy": [{"FunctionType": "MinDose"}], 
                                  "CTV54.25": [{"FunctionType": "MinDose"}, 
                                               {"FunctionType": "MaxDose"}], 
                                    "CTV_5425_copy": [{"FunctionType": "MinDose"}], 
                                      "CTV_L-CTV_H": [{"FunctionType": "MinDose"}, 
                                                      {"FunctionType": "MaxDose"}]}, 
 
            "AddTargetsNtimes": {"CTV70": 1, "CTV_7000_copy": 100, "CTV54.25": 1, 
                                 "CTV_5425_copy": 100, "CTV_L-CTV_H": 1}, 
 
            "Strategy_ROIs": [{"roi_name": "CTV_7000_copy", "algebra_type": "Expand", 
                               "expand_from": "CTV70", "expand_cm": 0, "roi_type": "CTV"}, 
                              {"roi_name": "CTV_5425_copy", "algebra_type": "Expand", 
                                "expand_from": "CTV54.25", "expand_cm": 0, "roi_type":  
                                               "CTV"}, 
                             {"roi_name": "CTV_L-CTV_H", "algebra_type": "Subtract", 
                                "outer_roi": "CTV54.25", "subtract_roi": "CTV70",  
       "roi_type": "CTV"}], 
 
            "NonRobustMimickOARs": {"Brain": {"FunctionType": "MaxDose", "add_ntimes": 1, 
                                    "reduce_dose": false}, 
                                    "BrainStem": {"FunctionType": "MaxDose", "add_ntimes":   
                                                   1, "reduce_dose": false}, 
                                    "SpinalCord": {"FunctionType": "MaxDose", add_ntimes":  
           1, "reduce_dose": false}, 
                                    "Parotid_L": {"FunctionType": "MaxDose", "add_ntimes":   
                                                   1, "reduce_dose": false}, 
                                    "Parotid_R": {"FunctionType": "MaxDose", "add_ntimes":   
                                                  1, "reduce_dose": false}, 
                                    "Submandibular_L": {"FunctionType": "MaxDose",   
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                                                        "add_ntimes": 1,"reduce_dose":  
                                                        false}, 
                                    "Submandibular_R": {"FunctionType": "MaxDose",  
                                                        "add_ntimes": 1, "reduce_dose":  
                                                         false}, 
                                    "Mandible": {"FunctionType": "MaxDose", "add_ntimes":  
                                                 1, "reduce_dose": false}, 
                                    "OralCavity_Ext": {"FunctionType": "MaxDose",  
                                                       "add_ntimes": 1, "reduce_dose":  
                                                       false}, 
                                    "Thyroid": {"FunctionType": "MaxDose", "add_ntimes": 1, 
                                                "reduce_dose": false}, 
                                    "Esophagus_Cerv": {"FunctionType": "MaxDose",   
                                                       "add_ntimes": 1, "reduce_dose":   
                                                        false}, 
                                    "PCM_Inf": {"FunctionType": "MaxDose", "add_ntimes": 1, 
                                                "reduce_dose": false}, 
                                    "PCM_Med": {"FunctionType": "MaxDose", "add_ntimes": 1, 
                                                "reduce_dose": false}, 
                                    "PCM_Sup": {"FunctionType": "MaxDose", "add_ntimes": 1, 
                                                "reduce_dose": false}, 
                                    "Crico": {"FunctionType": "MaxDose", "add_ntimes": 1, 
                                              "reduce_dose": false}, 
                                    "Eye_Ant_L": {"FunctionType": "MaxDose", "add_ntimes":   
                                                  1, "reduce_dose": false}, 
                                    "Eye_Ant_R": {"FunctionType": "MaxDose", "add_ntimes":  
                                                  1, "reduce_dose": false}, 
                                    "Eye_Post_L": {"FunctionType": "MaxDose", "add_ntimes":  
                                                   1, "reduce_dose": false}, 
                                    "Eye_Post_R": {"FunctionType": "MaxDose","add_ntimes":   
                                                   1, "reduce_dose": false} 
                                    }, 
 
            "RobustenessParameters": {"PositionUncertaintyAnterior": 0.3, 
                                     "PositionUncertaintyPosterior": 0.3, 
                                     "PositionUncertaintySuperior": 0.3, 
                                     "PositionUncertaintyInferior": 0.3, 
                                     "PositionUncertaintyLeft": 0.3, 
                                     "PositionUncertaintyRight": 0.3, 
                                     "DensityUncertainty": 0.03 
                                     }, 
            "NumberOfMimicOptimizations": 3, 
            "MachineSetup" : [] 
            } 
         } 
        ], 
    
"OptimzationDefaults" : { 
        "Runs": [{ "Iterations" : 60, "FinalDose" : true, "OptimalityTolerance" : 1e-6 ,   
                 "FinalCheck" : false}, 
                 { "Iterations" : 60, "FinalDose" : true, "OptimalityTolerance" : 1e-6 ,   
                   "FinalCheck" : true}, 
                 { "Iterations" : 60, "FinalDose" : true, "OptimalityTolerance" : 1e-6 ,  
                   "FinalCheck" : true} 
                  ], 
        "SegmentationSettingsDefaults":{ 
            "ArcDefaults":{ 
                "UseMaxLeafTravelDistancePerDegree" : false, 
                "FinalArcGantrySpacing" : 2 
            } 
        }, 
        "OptimizationsSettingsDefaults":{ 
            "IterationsBeforeConversion" : 20 
        } 
    } 
} 
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Appendix C 
 

Table 12  Overview of the patient and plan characteristics per model. 

 
 Model-

60 
(n=60) 

Model-
40 

(n=40) 

Model-
40.1 

(n=40) 

Model-
66 

(n=66) 

Model-
66 

Cross 
(n=66) 

Model-
0.3 

(n=32) 

Tumor 
Location 

Oro-
pharynx 

31 23 23 42 43 22 

Base of 
tongue 

17 10 10 13 12 4 

Tonsil 12 7 7 11 11 6 
T-stage T1 7 5 5 12 12 3 

T2 9 8 8 11 11 1 
T3 9 6 6 11 12 7 

T4* 35 21 21 32 31 21 
N-stage N0 7 8 8 9 8 7 

N1 11 10 10 15 16 4 
N2** 31 13 13 28 28 20 

N3*** 11 9 9 14 14 1 
Plan Clinical 35 40 40 66 66 32 

Research 25 - - - - - 
Targets trained on 

PTVs PTVs 
PTVs & 

CTVs 
PTVs & 

CTVs 
PTVs & 

CTVs 
PTVs & 

CTVs 
LIPP version 1 60 40 40 60 60 22 

2 - - - 6 6 10 
Robustness 

position 
uncertainty 

(cm) 

0.3 4 8 8 23 23 32 

0.5 56 32 32 43 43 - 

*T4a, T4b, T4NOS  

** N2a, N2b, N2c, N2NOS 

***N3a, N3b 
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Table 13  Description of the prediction and mimicking settings and availability.   

 
 
 

 Parameter Desciption Additional settings Availability 

Prediction EnsembleSize Selection of a number of ARFs - Since start 
 ROIGoals Give goals to specific ROIs Goaltype: minimal/maximal dose;  

ROI or ExcludeROI: a specified ROI; 
Volume: an amount of the ROI volume; 
Value: a dose value 
ValueType: absolute or percentage 

Since start 

 ReduceOAR If stated to true, it will reduce 
the OAR dose 

ROI: a specified ROI; 
ReduceOARlevel: a reduction level between 1-10; 
PriorMethod: choose if dose in OAR will be based 
on the minimal/average/maximal dose of the 
ensemble patients; 
PriorMethodInsideTarget: same as PiorMethod 
but for ROIs which have target and OAR overlap 

Since start 

Mimicking VoxelCTVMim If stated to true, it will perform 
voxel-wise mimicking 

- Since start 

 VoxelOARMim If stated to true, it will perform 
voxel-wise mimicking 

- Since start 

 RobustMimickCTVs Robustly optimizes the CTVs 
specified 

FunctionType: minimal/maximal dose; 
Weight: 
Dose_level: specify the desired dose level 

Weight and Dose_level not 
available in RayStation version 9A 

 AddTargetsNtimes The number of times 
RobustMimickCTVs can be 
added to the optimizer 

 Since scripting environment v2.3 

 Strategy_ROIs Can create new ROIs ROI_name: new ROI name; 
Algebra_type: expand or substract; 
Expand_cm: value in cm 

Since scripting environment v2.3 

 NonRobustMimick
OARs 

Non-robustly optimizes the 
OARs specified 

add_ntimes: number of times the OAR is added 
to the optimized; 
reduce_dose: choose true for further dose 
reduction, otherwise false.  

Reduce_dose since scripting 
environment v2.3 available to set 
to false.  
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Table 14  Overview of the different strategies and their according prediction and mimicking settings, and in which model and scripting environment they were applied.  

  Prediction settings  Mimicking settings  

Strategy Model 
Ensemble 

size 
MLRoi-
Goals 

Reduce-
Oar 

Reduce-
OarLevel 

Prior-
Method 

Voxel-
CTV-Mim 

Voxel-
OAR-Mim 

AddTargets-
Ntimes 

Robustness 
parameters 

Scripting 
Environ-

ment 

Standard 60 5 - False - - - - - - 1.1 

Strategy 1 60 5 PTVs True - - - - - - 1.1 

Strategy 2 60 5 
PTVs & 

CTVs 
Per organ 

true 
1.5 min False False - 0.5 cm/3% 2.2 

Strategy 3 60 5 CTV False - max True True 1000 0.8 cm/3% 2.3 

Strategy 4 60 5 CTV False - max True True 500 0.5 cm/3% " 

Strategy 5 60 5 CTV False - max False False 500 0.5 cm/3% " 

Strategy 6 60 5 CTV False - max False False 1 0.5 cm/3% " 

Strategy 7 60 5 CTV False - max True True 100 0.5 cm/3% " 

Strategy 8 40 5 CTV False - max True True 100 0.5 cm/3% " 

Strategy 9 40 3 CTV False - max True True 100 0.5 cm/3% " 

Strategy 10 40.1 3 CTV False - max True True 100 0.5 cm/3% " 

Strategy 11 66 5 CTV False - max True True 100 0.3 cm/3% " 

Strategy 12 66 5 CTV* False - max True True 100 0.3 cm/3% " 

Strategy 13 66 5 CTV False - max False False 100 0.3 cm/3% " 

Strategy 14 66 5 CTV* False - max True True 100 0.3 cm/3% " 

Strategy 15 66 5 CTV 
Per organ 

true 
0.25 avg True True 100 0.3 cm/3% " 

*Within this setting, different ROI goals were adjusted
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Appendix D 
import logging 
from raylearner.data.patient.raystation.patient_data import read_patient_data_file 
from raylearner.data.patient.raystation.patient_data import get_plan, get_examination 
from raylearner.data.patient.raystation.patient_data import check_patient_plan_presence 
from raylearner.data.patient.raystation.patient_data import read_raystation_patient_from_db 
import os 
import sys 
logger = logging.getLogger("Extracting scenario doses for robust evaluation") 
import connect 
 
# Configure paths to meta file and patient-plan file 
patient_plan_file = r"\\zkh\appdata\Raystation\Research\ML\raylearner\ML Planning 9A 
(v2.2)\RobustnessEvaluation\patients_plans_to_auto_RE_0.3.txt" 
patient_db = connect.get_current("PatientDB") 
patient_plan_list = read_patient_data_file(patient_plan_file) 
patient_plan_list = check_patient_plan_presence(patient_db, patient_plan_list) 
 
# define robust eval parameters 
robust_eval_name = 'auto_RE_0.3/3' 
uncentainty_cm = 0.3 
uncertainty_density_perc = 3 
num_dens_discret_points = 2 
 
for patient_id, baseplan_name in patient_plan_list: 
    try: 
        patient = read_raystation_patient_from_db(patient_db, patient_id) 
        case = patient.Cases[0] 
        case.SetCurrent() 
        plan = get_plan(case, baseplan_name) 
        plan.SetCurrent() 
        treatment_delivery = case.TreatmentDelivery 
        patient_name = patient.Name 
        examination = get_examination(plan) 
        beam_set = connect.get_current("BeamSet") 
         
        retval_0 = beam_set.CreateRadiationSetScenarioGroup(Name=robust_eval_name,                                                            
     UseIsotropicPositionUncertainty=False,                                                             
     PositionUncertaintySuperior=uncentainty_cm,                                                         
     PositionUncertaintyInferior=uncentainty_cm,                                                             
     PositionUncertaintyPosterior=uncentainty_cm,                                                            
     PositionUncertaintyAnterior=uncentainty_cm,                                                             
     PositionUncertaintyLeft=uncentainty_cm,                                                             
     PositionUncertaintyRight=uncentainty_cm,                                                             
     PositionUncertaintyFormation="DiagonalEndPoints", 
     PositionUncertaintyList=None, 
     DensityUncertainty=uncertainty_density_perc, 
     NumberOfDensityDiscretizationPoints=num_dens_discret_points, 
     ComputeScenarioDosesAfterGroupCreation=False) 
 
        retval_0.ComputeScenarioGroupDoseValues() 
         
        
plan.TreatmentCourse.EvaluationSetup.ApplyClinicalGoalTemplate(Template=root.TemplateTreat 
mentOptimizations['HN_ML_Proton_Merle']) 
         
    except: 
        logger.exception('uncaught exception for patient {:}'.format(patient_id)) 
         
        patient.Save() 
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