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Abstract

Efficient patient scheduling has significant operational, clinical and economical bene-
fits on health care systems by not only increasing the timely access of patients to care
but also reducing costs. However, patient scheduling is complex due to, among other
aspects, the existence of multiple priority levels, the presence of patient type-resource
compatibility constraints, (highly) variable demand and limited capacity. These aspects
of patient scheduling make it extremely difficult for a booking agent to manually assess
the impact of his/her decisions in order to more efficiently allocate capacity. We present a
near-online method to dynamically schedule patients with different access time targets
to one of the MRI scanners in hospital Rijnstate in Arnhem, taking into account patient
type-resource compatibility constraints and future appointment requests. The goal is to
identify effective ways of allocating available service capacity to incoming appointment
requests while minimizing the number of patients whose access time exceeds the prespec-
ified, priority-specific target in a cost-effective manner. We formulate this problem as a
discounted infinite-horizon Markov Decision Process (MDP). Because the state space is
too large for a direct solution, we solve the equivalent linear program through Approx-
imate Dynamic Programming (ADP) to obtain an Approximate Optimal Policy (AOP).
Here we use an affine architecture to approximate the value function of the MDP and
solve the equivalent linear program through column generation. Using simulation, we
compare the performance of the resulting AOP to both easy-to-use rule-based scheduling
approaches and approaches based on current patient scheduling practice in Rijnstate for
the practical example based on data provided by the Radiology department of Rijnstate.
The results indicate that the AOP outperforms the rule-based scheduling approaches in
several scenarios. At the same time we realize that, based on the results, the AOP may not
deliver the desired result in all scenarios. That is why we also present an extensions of
the MDP model.

Keywords: Advanced patient scheduling/Advanced capacity planning, Markov decision
process, Approximate dynamic programming, Linear programming, Column generation,
Simulation
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Samenvatting

Het efficient plannen van patiëntenafspraken heeft aanzienlijke voordelen voor de gezond-
heidszorg door niet alleen de tijdige toegang van patiënten tot goede zorg te verzorgen,
maar ook de kosten ervan te verlagen. Patiëntenplanning is echter complex vanwege het
bestaan van meerdere prioriteiten (in termen van acceptable toegangstijden) onder de
patiënten, (sterk) variabele vraag en beperkte capaciteit. Daarnaast heeft medische appa-
ratuur ook vaak compatibiliteitsbeperkingen: niet ieder type MRI onderzoek kan gedaan
worden op een willekeurige MRI scanner. Voor bepaalde types MRI onderzoeken is een
specifiek type MRI scanner nodig (gekenmerkt door de sterkte van het magneetveld dat
gegenereerd wordt door de MRI scanner). Deze aspecten van patiëntenplanning maken
het voor een planningsmedewerker uiterst moeilijk om beschikbare capaciteit efficiënt
toe wijzen aan patiëntgroepen en om de impact van zijn/haar beslissingen handmatig
te beoordelen. Het gedane scriptieonderzoek presenteert een methode om patiënten,
die verschillende toegangstijdnormen hebben, te plannen op één van de MRI-scanners
in ziekenhuis Rijnstate te Arnhem. Hierbij wordt rekening gehouden met de zojuist
uitgelegde compatibiliteitsbeperkingen en toekomstige afspraakverzoeken. Het doel is
om een effectieve manier te vinden om beschikbare MRI-capaciteit toe te wijzen aan
inkomende afspraakverzoeken, terwijl het aantal patiënten waarvan de toegangstijd de
vooraf gespecificeerde norm overschrijdt wordt geminimaliseerd. Het doel is om dit
op een kosteneffectieve manier te doen. Hiermee wordt bedoeld dat we het liefst zo
weining mogelijk overwerktijd voor personeel en MRI-scanner genereren en proberen de
bezettingsgraad van de MRI scanners te maximaliseren. We formuleren dit probleem als
een Markov Decision Process (Markov beslissingsprobleem) (MDP). Omdat de toestandsruimte
van dit MDP te groot is voor een directe oplossing, kiezen we een Approximate Dynamic
Programming (ADP) methode om planningsregels te vinden die bijna-optimaal zijn. Dit
wil zeggen: we zoeken planningsregels die mogelijkerwijs wel, maar misschien ook niet,
aan de wiskundige criteria voldoen om optimaal te zijn, maar hopelijk wel goed werken
in de praktijk. Of ze goed werken in de praktijk testen we met behulp van een compu-
tersimulatie. Hierin vergelijken we de prestaties van de gevonden planningsregels met
eenvoudig te gebruiken planningsregels (zoals iedere patiënt boeken in het eerstvolgende
beschikbare tijdslot) en de momenteel gebruikte aanpak op de afdeling Radiologie van
Rijnstate. De resultaten suggereren dat de planningsregels die we gevonden hebben met
het ADP algoritme beter presteren dan de eenvoudig te gebruiken planningsregels in
verschillende scenario’s. Tegelijkertijd realiseren we ons dat, op basis van de resultaten,
de ADP-planningsregels mogelijk niet in alle scenario’s het gewenste resultaat oplevert.
Daarom presenteren we ook een uitbreiding van het MDP-model.
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Glossary

The next list describes (technical) terms that will be later used throughout this thesis.

Access time/Indirect
waiting time

Time between when a patient requests an appointment
and the scheduled appointment time.

Access time window/target Period within which a patient preferably has (or must)
his/her (first) appointment scheduled.

Appointment day (Future) day that an individual patient is scheduled to
receive service.

Appointment time Start time that an individual patient is scheduled to re-
ceive service on the appointment day.

Appointment slot (time slot) Smallest time window in which one customer can be
scheduled.

Appointment system A system that plans and schedules appointment requests
to deliver timely and convenient access to health services
for all patients.

Booking horizon/
Appoint. scheduling window

Period how far into the future an appointment can be
scheduled.

Cancellation A situation where a patient cancels his/her appointment
far enough in advance to allow for a new appointment to
be substituted.

Consultation session The time period available for serving patients.
(Direct) waiting time The delay between a patient’s appointment time and

the start of service. Note that if service starts before the
scheduled appointment time, a waiting time of 0 time
units is counted.

Inpatient A patient who stays/lives in hospital while under exami-
nation or treatment.

No-show patient A patient who does not show up for his/her appointment
and does not give prior notice.

Offline scheduling approach Scheduling approach in which appointments are sched-
uled after all requests have arrived.

Online scheduling approach Scheduling approach in which patients are scheduled
immediately upon the arrival of their request.

Outpatient A patient who attends the hospital for examination or
treatment without staying there overnight.

vii



Outpatient clinic A health facility that provides care to patients that do not
need an overnight stay.

Overtime The positive difference between the desired completion
time of the clinic session and the actual end of the service
for the last patient.

Pre-scheduled patients Patients whose appointment is scheduled in advance of
their appointment days.

Regular walk-in patients Walk-in patients who do not require urgent treatment.
Response time Time it takes to respond to an appointment request, i.e.,

the time between the request is known to the booking
clerk and the moment the appointment is booked

Same-day patients Patients whose appointment is scheduled on the same
day that they call for an appointment.

Scheduled patients Patients who make an appointment before arriving at the
clinic.

Server idle time Part of the consultation session that the server is idle due
to lack of patient(s).

Urgent walk-in/
Emergency patient

Walk-in patients who need treatment as soon as possible
and take priority over other patient types.

Walk-in patients Patients who arrive at the clinic without an appointment
during the consultation session.
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1
Introduction

“Managers make resource allocation decisions, but doctors decide what the hospital
does with those resources” [8]. This statement is more then fifteen years old, but still
considered relevant in some hospitals nowadays. While doctors focus on treating each
individual patient as well as they possibly can, managers also focus on optimal usage
of resources. Dilemma’s such as what to do if the treatment of a single cancer patient
costs 60K Euros, while three other patients suffering from cardiovascular disease can
be treated for 20K Euros each? Or a more specific example that shows the difficulty of
resource allocation would be the distribution of operating room time between elective
and urgent (emergency) patients. It is however very common in hospitals to avoid
explicit decisions on such resource allocation and capacity distribution problems and
to react on ad-hoc basis to problems that occur, which may consequently result in very
undesirable system outcomes, (e.g., cancellations, long (indirect) waiting times, a low
utilization rate of expensive medical equipment).

An outpatient clinic is defined as a health facility that provides care to patients that do
not need an overnight stay [22]. In these clinics, distribution of available capacity also
occurs. For example, there is the question how to share the available capacity between
same-day and pre-scheduled appointments? In this outpatient setting, appointment
scheduling is an important topic that has gained increasing attention during the past
years, as the appointment system (AS) is one of the hospital’s tool to deal with capacity
allocation problems and also to establish their quality of service. This quality of service
can be increased by providing patients with quick responses to their appointment
requests; offering patients choice in the times at which they would prefer to have
their appointments, and enabling them to combine multiple appointments on a single
day. The appointment scheduling may also affect quality of care. Depending on their
condition, patients should receive their first consultation, examination, or treatment
within the appropriate access time, as the patient’s condition may deteriorate while
waiting. Although in some cases this may have little medical impact, in others, excessive
wait times can potentially impact health outcomes [25, 32].

Like outpatient clinics, the Radiology department of hospital Rijnstate operates an
AS in which they have to deal with limited capacity and medically acceptable wait-
times. In this research we focus the Rijnstate’s AS for MRI examinations. The capacity
for MRI is dictated by the available resources, e.g., the number of MRI scanners,
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Chapter 1. Introduction

radiologists and radiologic technologists (RTs). The department faces the challenge of
booking appointments, in real time, when demand comes from three patient groups:
inpatient (same-day) patients, emergency patients, and pre-scheduled (out)patients.
Based on the group to which a patient belongs and the type of MRI that is requested -
which in turn is determined by the underlying diagnostic question - patients may be
classified into priority categories with different medically acceptable wait times. For
example, some conditions may require immediate diagnostic examination, whereas
in other cases it may be medically acceptable to wait up to several days. Because
less-urgent patients are booked further into the future, this raises the question for the
hospital as to how much MRI capacity to reserve for later-arriving but higher-priority
demand? From the patient’s perspective it is not only very important that he/she can
visit the hospital within the medically acceptable wait time, but also that he/she is
quickly notified of his/her appointment.

Three aspects make scheduling of MRI appointments complex: patients can be classified
into multiple types; sessions do not necessarily have the same duration; and treatments
can typically be delivered on more than one MRI scanner but not on all. These aspects
of MRI scheduling, together with the presence of highly variable demand and limited
capacity, make it extremely difficult for a booking agent to manually assess the impact
of his/her decisions in order to more efficiently allocate capacity. This unintended lack
of foresight may result in several inefficiencies that typically translate into unnecessary
delays, a non-systematic prioritization of patients, unused appointment slots, and
excessive overtime.

This research addresses the question how to design the AS for MRI examinations in
Rijnstate such that available capacity is allocated effectively to incoming appointment
requests while minimizing the number of patients whose access time exceeds the pre-
specified access time target. To this end, we develop a discounted infinite-horizon
Markov Decision Process (MDP). This MDP provides a near-online, dynamic method
for advance capacity planning involving multiple resources (MRI scanners) with dif-
ferent capabilities and taking into account future appointment requests. Due to the
curse of dimensionality, the proposed MDP cannot be solved analytically even for
small instances of the problem. For this reason, we use an Approximate Dynamic
Programming (ADP) approach to approximately solve it. Here we use an affine archi-
tecture to approximate the value function of the MDP and solve an equivalent linear
programming model through column generation to obtain an approximate optimal
policy.

1.1 Structure of this thesis

In the next chapter, Chapter 2, we elaborate on the AS currently operated by the Radiol-
ogy department of Rijnstate. We explain how this AS works and what dissatisfaction it
causes. In this chapter we also explain what the requirements are for an alternative AS
and what options/freedoms (i.e., which decision variables) we have when designing
the alternative AS. Based on these design options, we will review available literature
in Chapter 3. We have structured our literature research in such a way that we start
from several literature reviews on the subject of (outpatient) appointment scheduling
and to find relevant research articles that can support us in designing the AS for MRI

2



1.1. Structure of this thesis

scans in Rijnstate, we perform a backward and forward search on these literature re-
views. In Chapter 4 we present the near-online, dynamic method for advance capacity
planning. We formulate this planning method as a discounted infinite-horizon Markov
Decision Process (MDP) by providing the decision epochs, state space, action sets,
transition probabilities and costs in Section 4.1. In Section 4.2 we present the (ADP)
approach where we solve an equivalent linear programming model through column
generation to obtain an approximate optimal policy. In Chapter 6 we evaluate the
performance of the resulting approximate optimal policy for a practical scale case study
at the Radiology department of Rijnstate using simulation. The performance results
are compared to the performance of benchmark policies that are commonly used in
practice as well as to the policy that comes closest to Rijnstate’s currently used AS.
The input parameters for this practical scale case study are determined in Chapter 5
using historical data. In Chapter 5 we also report on the results of a data analysis
we performed on a data set provided by the Radiology department of Rijnstate. The
purpose of this data analysis is to provide a quantitative (approximate) summary of
the current performances of the department. In the last chapter, Chapter ?? we state
our main conclusions, but before we elaborate on several further research directions
and suggest a possible extensions to our MDP scheduling model in more depth in
Chapter 7.
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2
The Radiology department of
Rijnstate

Rijnstate is a general hospital in Gelderland, the Netherlands. The hospital’s headquar-
ters are in Arnhem and additional sites are in Velp, Zevenaar and at another location in
Arnhem-South. Rijnstate performs approximately 500,000 outpatient consultations (in-
cluding follow-up appointments) and 63,000 admissions per year - both daycare and
clinical - and it has 766 registered beds [31]. Furthermore, Rijnstate’s catchment area
is approximately 450,000 inhabitants and, spread over the five locations, almost 5,000
people work at the hospital [31]. For the catchment area, Rijnstate serves as a gen-
eral hospital, providing regular care. In addition to their position as general hospital,
Rijnstate’s main location in Arnhem has assigned a number of top-clinical functions.
This means that as one of the 26 large training hospitals in the Netherlands, Rijnstate
provides some medical treatments and services that are only allocated to a limited
number of hospitals in view of the high costs and the required expertise1. Finally, an
average of 80 large medical-scientific studies with the intention to identify causes of
diseases and finding better treatments start every year in Rijnstate2.

The Radiology department of Rijnstate accommodates the medical specialty that uses
medical imaging techniques to diagnose and treat diseases within the human body.
All sorts of diagnostic examinations are carried out on various diagnostic facilities to
support other specialists in order to increase the quality of diagnosis and treatment.
The department itself also performs some treatments using the diagnostic facilities,
mainly under the name of interventional radiology, whereby, for example, constrictions
or blockages of a blood vessel are treated with stents. Physical exams are carried out
using X-rays (regular X-rays, mammography, fluoroscope or CT scan), sound waves
(sonograms) and magnetic fields (MRI).

The staff of the Radiology department consists of radiologists, radiologic technolo-
gists (RTs; sometimes also called radiographers), physician assistants (PAs), adminis-
trative and support staff and junior radiologists, junior PAs and junior RTs in training.
The RTs carry out most of the diagnostic examinations and thus make the majority of

1See http://www.rijnstate.nl/over-rijnstate/waar-staan-we-voor/topklinische-zorg/
2See http://www.rijnstate.nl/over-rijnstate/waar-staan-we-voor/

wetenschap-en-innovatie/over-onderzoek/
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2.1. The current MRI appointment system

the medical images. After the RT has finished the diagnostic examination, the images
taken are sent to a radiologist. The radiologist assesses the images and writes a radio-
logical report. In this report, the radiologist describes his/her findings and based on
the images he/she tries to answer the diagnostic question as good as possible.
Afterwards, the report is made available to other physicians in the patient’s electronic
health record.

One of the goals that Rijnstate has set itself for the coming years is to further optimize
the arrangement of the care activities for the patients [31]. With this goal in mind,
the Radiology department of Rijnstate is committed to improve the appointment
system (AS) for MRI examinations. In this chapter we describe how the currently
used MRI AS looks like, how this AS causes dissatisfaction among the hospital and its
patient, what the requirements for a new AS are, and what design options we have for
this new system. Based on the design options, we will review available literature in the
next chapter.

2.1 The current MRI appointment system

MRI (Magnetic Resonance Imaging) uses strong magnetic fields to align atomic nuclei
within body tissues, then uses a radio signal to disturb the axis of rotation of these
nuclei and observes the radio frequency signal generated as the nuclei return to their
baseline states. The radio signals are collected by small antennae placed near the area
of interest. An MRI examination is usually done by two radiologic technologist. Some
examinations needs to be done by a radiologist or PA. Because a patient will receive an
injection of a contrast medium for some MRI examinations, a radiologist must always
be present in the Radiology department when MRI examinations are done.

In the Radiology department there are three non-identical MRI scanners. The technical
difference is in the strength of the magnetic fields. The first scanner generates a
magnetic field of 3 Tesla (SI symbol T) and both others one of 1.5 T. The difference in
use that results from this is that a selection of examinations can only be done on one
of the MRI scanners. The regular times at which outpatient MRI is performed during
working days is between 8 a.m. and 6 p.m. Because the demand for MRI scans is high,
this period is regularly extended to 9 p.m. on Tuesdays, Wednesdays and Thursdays.
During the period that we had insight into the MRI agendas, that is from 2 January
2019 to 31 August 2019, this happened on average once every two weeks. Sometimes
examinations are also conducted on Saturdays. During the months just mentioned, this
happened on average once a month, usually on the second Saturday of the month.

In the appointment scheduling approach for MRI scans, patients always need an
appointment, except emergency patients of course. Based on the symptoms and the
clinical picture of the emergency patient, the radiologist determines the time-frame
within which an MRI must be made. This may imply that the emergency patient gets the
highest priority in queue for a scanner that is suitable for his type of MRI examination
and is examined as soon as the current service ends. However, if there is an idle period
in today’s planning it is also possible that the emergency patient is examined during
this period as long as it is within the time-frame determined by the radiologist. The
currently operating AS is based on a blueprint agenda. This means that it is determined
in advance when what type of examination (for example a brain MRI) can be done.
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Chapter 2. The Radiology department of Rijnstate

Time
MRI examinations that can be done
according to the blueprint agenda

08:00 - 08:30 3190, 3190D

08:30 - 08:30
1390, 1390D, 1390A, 1390E, 2090, 2290, 2990,
3090T, 3190, 3190D, 3190PB, 3290, 3390, 3390D,
3390P, 3490, 3690, 9090 L/R, 9491 L/R

09:30 - 10:10 NEURO (1390 - 1 day before)
10:10 - 10:30 TIA/TIAS (1390 - 1 day before)
10:30 - 10:50 3190, 3190D, 3390, 3390D, 3390P, 3490
10:50 - 12:30 Emergency patients or Same-day patients

12:30 - 13:00
2290, 2990, 3090T, 3690, 7090, 7490, 7690, 8490,
91900T, MWEKE

13:00 - 13:30 3190, 3190D, 3390, 3390D, 3390P, 3490
13:30 - 17:00 5190/5192, 5191/5191R
17:00 - 18:00 5190/5192, 5191/5191R

Figure 2.1: Example of a blueprint agenda. This blueprint agenda applies to the 3T MRI
scanner (the Radiology department of Rijnstate labels it as MRI scanner 2) and was used on
Thursdays during both weeks with odd week numbers and even weeks from 2 January 2019 to
26 April 2019.

If a request comes for a brain scan, the booking agent knows exactly where this can
be scheduled and where not and the only choice that must be made is to book the
patient into (one of) the suitable appointment slots. Figure 2.1 shows an example
of a blueprint agenda of one the MRI scanners. The coding used in Figure 2.1 for
the various MRI examinations comes from the currently used computer system HIX.
Table A.1 in Appendix A contains all the HIX codes and the corresponding MRI
examinations. This table also shows which MRI scanner/scanners is/are suitable for
each MRI examination. As you may have argued, these slots are defined with the
intention that emergency/same-day patients will not have to be squeezed into the
scheduled program in the manner that they get highest priority in queue for a scanner
that is suitable for his type of MRI scan.

As can be seen in Figure 2.1, the blueprint agenda can be specified up to different levels.
Some appointment slots are reserved for specific HIX codes and others for specific
classes of patients, for example the emergency/same-day slots. In these slots all types
of MRI scans that can feasibly be done on the specific MRI scanner can be booked,
as long as it is for an emergency or same-day patient. Same-day patients are usually
inpatients for whom an MRI scan is requested after an examination or a morning round
at the nursing ward, done by a physician.
Furthermore, as can also be seen in Figure 2.1, some of the HIX codes have the suffix D,
for example 1390D. Such a HIX code corresponds to the type of MRI scan with HIX
code 1390, but is booked decentrally. Decentralized appointment scheduling enables
other outpatient clinics in Rijnstate to autonomously book appointments for their
patients in the agenda of one of the MRI scanners. For example, the Neurology depart-
ment is authorized to schedule MRI examinations of the brain at free appointment slots
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2.1. The current MRI appointment system

for which the blueprint agenda dictates HIX code 1390D without the involvement of a
booking agent of the Radiology department.
Finally, Figure 2.1 also illustrates the protection of appointment slots for one-stop-shop
patients. For example, the slots reserved for MRI scans with HIX code NEURO. This
code corresponds to a brain scan identical to those specified by the HIX codes 1390
or 1390D. However, only one-stop-patients can be scheduled during the time slots men-
tioned. One-stop-shop means that patients who have to undergo various examinations,
for example blood tests, an electrocardiogram, and also an MRI, can undergo all of
this during the same day and therefore only have to visit the hospital once. The MRI
blueprint agenda protects specific time slots for these patients up to one or a few days
in advance. We take the following example to illustrate this. Assume all appointment
slots on Thursday morning are reserved for brain MRIs for one-stop-shop patients (that
means Thursday morning is reserved for HIX code NEURO) and the slots are protected
up to one day in advance. Then, up to Wednesday, booking agents of the Radiology
department can only schedule patients for which an MRI scan with the NEURO code
is requested on Thursday mornings. From Wednesday, the blueprint for Thursday
morning is updated and MRI examinations specified by this updated blueprint can
also be scheduled on Thursday morning. In the example of the one-stop-shop brain
scan, the updated blueprint now allows to schedule patients for which an MRI scan
with either the code NEURO or 1390 is requested.

There are several incentives for a blueprint agenda. The first is that there are time slots
for emergency/same-day patients with a high need for an MRI examination. Here,
however, the time during the day at which these blocks are placed is very important
for their success. Another reason for a blueprint agenda is to create convenience
for other departments within the hospital: some of them can book appointments
decentrally and others have the option of creating a one-stop shop for their patients.
For both aforementioned incentives, access times also play an important role: for the
emergency/same-day patients their access time target is within the current day. For
the one-stop-shop patients different access time targets have been agreed with the
departments involved, but the idea of the protected time slots in the blueprint calendar
is that these access time targets can be achieved for a larger group of patients that if the
blueprint agenda was to be absent. Finally, the blueprint agenda clusters MRI exams
with the same MRI scanner settings to save set-up periods between examinations.

Since the blueprint agenda determines the booking options for each MRI examination
request, the only choice that must be made is to book the patient into one or more the
suitable appointment slots. For patients who appear at the department’s desk with
an MRI appointment request, this is done in an online fashion as they immediately get
an appointment. For requests that arrive otherwise (via telephone or online in HIX) the
moment of booking has not been established according to a strict policy. Sometimes it
happens online, but more often not. Therefore, the current AS is not an fairly online
appointment system. However, it is also not a near-online system in the sense that it
has fixed decision moments during the day. It is totally up to the booking agent when
an appointment request is provided with an answer. The currently used assignment
rule is to book a patient into the first suitable available slot. Depending on a patient’s
condition, it may be decided, after consultation between a radiologist and the treating
physician, to deviate from the blueprint agenda if the next available suitable time slot
is too far into the future. In that case, a patient is either examined during a block that
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Chapter 2. The Radiology department of Rijnstate

is actually reserved for another type of MRI scan, or the patient is examined after the
regular program, i.e, in overtime.

2.2 Requirements to an alternative appointment system

The currently used AS for MRI scans is a fairly simplistic design: a static blueprint
calendar combined with an assignment rule and the flexibility to release the reservation
of appointment slots in the blueprint under certain circumstances. According to staff
members of the Radiology department this design of AS results in long access times
for patients. In addition, as may be clear from the introduction, the problem is that
the fraction of patients who are not examined within the desired access time window
is considered too large. With an alternative MRI AS, the Radiology department of
Rijnstate aims to examine more patients within their medically desired access time
window together with maximizing the MRI scanners’ utilization rates and minimizing
the overtime. Additionally, the AS must provide patients with quick responses to their
appointment requests. With a quick response it is meant that patients may experience
maximum of one day’s delay before receiving a response to their appointment request.

The radiologists of the Radiology department suggest dividing patients into four
priority classes. The first class consists of same-day patients and should be examined
today. The access time targets for the other patient classes are three days, one week
and two weeks, respectively. This access time applies to the number of calendar
days between the appointment request and the MRI scan and only future days are
counted (the remaining part of today does not count as day 1).

All together, this already gives us the following requirements to the AS: the model
must include multiple MRI scanners, multiple patient types and patient type-MRI
scanner compatibility constraints. Patient types are defined in terms of access time
target and capacity requirement. In addition, it must be possible to define different
working hours for the various MRI scanners.
A final, hard requirement for the new AS is that, if it is not an online AS, there are at
least two booking moments per day. We will explain why this is demanded. Part of
the MRI requests comes from inpatients. The wish with these requests is that they will
be seen the same day. If we define a booking moment at the end of the morning or
early afternoon, we have the option to book same-day inpatient demand during the
afternoon. If we also define a booking moment at the end of the afternoon, we can try
to book the inpatient demand that is submitted during the afternoon in the remaining
part of the working day. The same applies here for emergency requests coming from
other outpatient clinics. The other outpatient clinics close at five in the afternoon, while
the MRI scanners then operate for another hour. With a second decision moment at
five o’clock in the afternoon we can, if necessary, try to book this urgent demand in
the last hour of the day. In addition, if we, for example, make only booking decision
in the morning, it is difficult to schedule an outpatient today. However, if we had the
possibility to book this patient the previous afternoon, we might have the opportunity
to book him/her today.

Decisions made to design ASs can be subdivided into three hierarchical levels, as
it requires coordinated long-term, medium-term and short-term decisions. For the
hierarchical levels, [20] applies the well known breakdown of strategic, tactical and
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operational. Strategic (or design) decisions are the long-term decisions that determine
the main structure of an AS. Examples of strategic decisions include the number of
servers/resources and the type of scheduling (offline, online or near-online). Tactical
decisions are medium-term decisions related to how patients as a whole are scheduled,
or how groups of patients are processed. Examples are allocation of capacity to differ-
ent patient groups (probably with different priorities) or the length of appointment
intervals. Operational decisions are short-term and are concerned with efficiently
scheduling individual patients. Examples of operational decisions are the appointment
day and the appointment time.
In the MRI AS to be designed, we do not have the flexibility to make strategic decisions.
At the tactical level, our most influential decision is the allocation of available MRI-
capacity over the different patient types and whether or not we do fix some appointment
slots as emergency slots, or one-stop-shop appointment slots, or slots that could be
booked decentrally. However, this is not a hard requirement for the new AS. If we
want, we can undo the distinction between one-stop-shop patients, decentrally booked
patients and regular patients. In that case, every patient submits a request to the booking
clerks of the Radiology department and can be scheduled during every moment of the
booking horizon.
The operational decisions in our AS to be designed include the assignment of appoint-
ment day, appointment time and the assignment of a patient to a specific MRI-scanner.
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3
Literature study

This chapter provides the results from our literature study on operations research (OR)
related literature that can support us in designing the appointment system (AS) for MRI
scans in Rijnstate. In OR, appointment scheduling problems are an attractive research
area, having been studied for more than half a century (since the seminal paper [2]
by Bailey). The field of operations research provides numerous methodologies and
solution techniques to simultaneously reduce costs and improve access to healthcare
services.

In Chapter 2 we explained that the currently MRI AS in Rijnstate is based on a blueprint
calendar. This blueprint calendar reserves time slots for specific patient classes, spe-
cific MRI examinations and the combination of both. An obvious design for an AS
would again be a blueprint calendar, only a better functioning one. Such an AS design
would include the tactical decision of defining a blueprint calendar combined with an
assignment rule or algorithm at operational level. We reviewed some research articles
dealing with this approach after which we conclude there is another field within OR
that probably suits better for the problem at hand: advanced patient scheduling. The
large body of literature associated with patient scheduling can broadly be divided
into two streams: appointment (or allocation) scheduling and advance scheduling.
Appointment scheduling refers to the assignment of specific appointment times and
resources to patients but only once all patients for a given service day have been identi-
fied. Advance scheduling, on the other hand, refers to the allocation of future service
capacity to demand as it arrives. The model we present in the next chapter fits within
advance patient scheduling.
Before we elaborate on the related advance patient scheduling literature, we first turn
to literature reviews on the subject of appointment scheduling. These literature reviews
formed the starting point for our literature study.

3.1 Literature reviews on appointment scheduling

For literature reviews on appointment scheduling problems we refer to [1, 9, 18]. For
a review of literature on ASs in which each patient needs multiple appointments, we
refer to [24]. For an overview of the literature of the field of appointment scheduling
that is not restricted to healthcare applications, we refer to [7, Chapter 2].
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3.2. Literature on capacity allocation

The focus of [1] is on post-2003 articles which provide optimization-based decision
tools for AS decision makers. Literature is classified by the level of decision making:
strategic, tactical and operational; and is evaluated from four perspectives: problem
settings, environmental factors, modeling approaches and solution methods. The main
goal of Cayirli and Veral in [9] is to review pre-2003 papers based on formulations and
modeling considerations for ASs. In [18], Gupta and Denton focus on describing the
most common types of healthcare appointment systems. For an literature review of
articles from the field of OR that address the typical decisions to be made in resource
capacity planning and control in healthcare, we refer to [21]. This review does not only
include capacity allocation problems for outpatient clinics - or similar departments like
primary care or diagnostic facilities such as the Radiology department of Rijnstate -
but also discusses capacity planning and control in other services in healthcare such
as surgical care services, emergency care services and home care services. From the
perspective of resource capacity planning and control, different services may face
similar questions.

To find relevant research articles that can support us in designing the AS for MRI scans
in Rijnstate, we performed a backward and forward search on relevant articles cited
in [1] and [7, Chapter 2]. Whether or not an article cited in either [1] or [7, Chapter 2]
is relevant, is determined by the following criteria: the objective must be to minimize
the access time or to maximize the number of patients seen within their pre-specified
access time window; the model must include (or could (easily) be extended to) multiple
patient types; the model must include (or could (easily) be extended to) multiple,
heterogeneous resources and is able to deal with patient type-resource compatibility
constraints.

3.2 Literature on capacity allocation

In [10], Creemers, Beliën and Lambrecht face multiple patient classes and propose a
model for assigning server time slots to these classes that minimizes the total expected
weighted waiting time of a patient (where different patient classes may be assigned
different weights). They use a bulk service queueing model to obtain the expected
waiting time of a patient of a particular class, given a feasible allocation of service
time slots and use the output of this bulk service queueing model as the input of an
optimization procedure.
This distribution of service time slots across various patient types results in a static
blueprint for the complete booking horizon, something that offers little flexibility. To
have more flexibility, in [37], Vermeulen et. al present an adaptive approach to optimize
the allocation of CT scanners’ capacity to different patient groups. It is adaptive in the
sense that it takes into account the current and expected future situation. Upon his/her
appointment request, a patient is assigned to a time slot within his/her access time
window, randomly selected from all the free time slots that are suitable for the type of
service. If there are no such free time slots, the approach shifts capacity between the
different patients groups or it temporarily increases the number of appointment slots
by extending opening hours. The decisions made in their approach are rule-based and
simulation shows the impact of the decisions made.
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Another article that deals with blueprint alteration on the day of service is [19]. Here,
the dynamic uncertainty that arises from requests for appointments that arrive in real
time and uncertainty due to last minute scheduling changes is addressed. The authors
propose dynamic template scheduling for chemotherapy scheduling: a technique that
combines proactive and online optimization using a blueprint calendar. First, a static
blueprint agenda is created using a deterministic optimization model and a sample set
of appointments. As requests for appointments arrive, this blueprint calendar is used
to schedule them. When a request arrives that does not fit the template, the blueprint
calendar is updated online using the proposed optimization model and a revised
sample set of appointments. The goal is to minimize the possibly generated overtime
that is needed to schedule this/these request(s) that does not fit in the blueprint agenda
but must be served today.

If we want to keep time slots that are particularly blocked for patients with decentral-
ized bookings or one-stop-shop patients, an important question is: when will we cancel
this lock and will the slots be released for other types of patients. [16] addresses the
service capacity reservation for a given class of customers. The reservation process
is characterized by contracted time slots (CTS), reserved for the class of customers (in
our setting the one-stop-shop or decentrally scheduled patients), and two advance
cancellation modes to cancel CTSs either one period or two periods in advance. The
optimal control under a given contract is formulated as an average cost Markov Deci-
sion Process (MDP) in order to minimize customer access times (of all classes), unused
capacity and cancellation rate. Numerical results show that two-period advance CTS
cancellation can significantly improve the contract-based solution.

The aforementioned articles cannot be directly labeled as advance patient scheduling
and are not closely related to the approach we have chosen, as in our approach we say
goodbye to a blueprint calendar and the specially blocked appointment slots for one-
stop-shop patients. Nevertheless, we have come across the above articles in our search
for relevant literature. Because our approach is not the only one and the Radiology
department of Rijnstate might want to study the potency of a different approach than
ours in the future, we have included the articles in our literature review.

3.3 Literature on advance patient scheduling

Advance scheduling problems typically assume that patients can be classified into
multiple types according to their capacity requirements and urgency; resources have
fixed regular capacity and that there exists the possibility of using overtime or an
alternative source of surge capacity (see [27] for a more elaborate analysis of surge
capacity and its usage). The aim is to identify effective ways of allocating available
service capacity to incoming appointment requests while either maximizing the service
level, i.e., the number of patients booked within the prespecified access time windows
in a cost-effective manner or else maximizing revenue or throughput. Application areas
include the scheduling of diagnostic tests such as MRIs [35] or CT scans [28] as well as
radiation therapy treatments [34]. Papers in the area of advance scheduling mostly use
dynamic programming, or approximate dynamic programming, due to the sequential
nature of the scheduling decisions.
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We begin with the advance scheduling model provided in [28]. In [28], Patrick, Put-
erman, and Queyranne present an infinite-horizon MDP formulation to dynamically
allocate available daily CT scan capacity to incoming demand to achieve wait-time
targets in a cost-effective manner. Because their state space is too large for a direct
solution, approximate dynamic programming is used to find an approximate optimal
policy for the MDP.

In [14], Erdelyi and Topaloglu present a model to dynamically allocate capacity to jobs
of different priority by using stochastic approximation methods. In their paper they
focus on a class of policies that are characterized by a set of protection levels. The role
of these protection levels is to protect a portion of the daily capacity from the lower
priority jobs so as to make it available for the future higher priority jobs.
In [15], Erdelyi and Topaloglu, present a general dynamic capacity allocation problem
without an underlying healthcare related problem. There is a fixed amount of daily
processing capacity. On each day, jobs of different priorities arrive randomly and a
decision has to made about which jobs should be scheduled on which days. Waiting
jobs incur a holding cost that is a function of their priority levels. The objective is
to minimize the total expected cost over a finite planning horizon. The problem is
formulated as a dynamic program, but this formulation is computationally difficult.
Hence an approximate dynamic programming approach is used that decomposes the
original formulation. Their results show that the found policy performs significantly
better than a variety of benchmark strategies.

In both [14] and [28], the authors assume that each entity to be served consumes only
one unit of capacity. In [34], Sauré et al. extent the model from [28] by adding multiple
appointment requests that can have various capacity requirements. In their model, a
patient can request multiple appointments for a single day and/or a series of appoint-
ments on consecutive days. The formulated infinite-horizon MDP for (dynamically)
capacity allocation to various cancer treatments in radiation therapy units becomes
intractable for reasonable instances and an approximate optimal policy is found via an
equivalent linear programming model, which is solved through column generation.
In [6, Chapter 6] the model of Sauré et. al. in [34] is extended to include multiple
servers and patient type-server compatibility constraints. Because the number patient
types has tripled compared to [34], adding another approximation step in the solution
approach is needed. The MDP is rewritten as a set of weakly coupled sub-MDPs
and then Lagrangian relaxation is applied to the linking constraint. Afterwards, an
affine value function approximation is used to solve an equivalent linear programming
model through column generation to obtain an approximate optimal policy for the
original MDP.

In [28], Patrick, Puterman, and Queyranne aim to schedule patients in a particular
urgency class prior to a specific target date and the system is only penalized for lateness.
In [17], Cocgun and Puterman study a scheduling problem in which arriving patients
require appointments at specific future days within a treatment specific time window.
In this paper, the system is penalized when appointments are either early or late. By
varying the relative magnitude of penalty costs to diversion costs, this paper allows
tolerance limits to be relaxed. This is relevant to manufacturing settings where time
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windows are more flexible. Cocgun and Puterman also model the problem as an infinite-
horizon discounted MDP and find an approximate optimal policy via an equivalent
linear programming model, which is solved through column generation.

In advance scheduling problems, the assumption of deterministic service times is
largely made for convenience and in the general hope that, over time, average ser-
vice times will work fairly well as an approximation. The value of this simplifying
assumption is that the calculation of the performance metrics does not depend on the
sequencing of patients but only on their service times. It allows overtime or idle time
to be easily calculated as the number of appointments booked on a given day times
the appointment length minus the regular capacity. In [33], the authors adapt the MDP
from [28] to incorporate stochastic service times. They describe an enhanced version
of the former MDP that can be used to incorporate patient classes differentiated by
both priority and resource consumption as well as stochastic service times. They do
not include multiple servers and patient type-server compatibility constraints. The
calculation of the overtime or idle time is now based on a method described in [3]. The
formulated MDP is again computationally intractable and an approximate optimal
policy is found via an equivalent linear programming model, which is solved through
column generation.

Finally, we would like to mention the research paper of Parizi and Ghate, [26]. They
study an advance scheduling problem where appointment requests dynamically arrive
over time and can either be rejected or booked for future slots. Furthermore, customers
are heterogeneous in all problem parameters and may cancel an appointment or do not
show up. The booking agent may overbook appointments to mitigate the detrimental
effects of cancellations and no-shows. Parizi and Ghate provide a MDP formulation
of this problem where the system receives a reward for providing service and incur
costs for rejecting request, appointment delays and overtime. This MDP is intractable
to an exact solution and has a weakly coupled structure (similar as the model in [6,
Chapter 6]) that enables to apply the ADP method with Lagrangian relaxation.

The problem we face at the Radiology department of Rijnstate is closely related to
that in [34] and [6, Chapter 6]. We have also the need to allocate finite capacity to
different patient types with different access time targets; have multiple, heterogeneous
servers; and patient type-server compatibility constraints. Our research expands both
the MPDs from [34] and [6, Chapter 6] in the number of decision epochs each day
incorporates. The direct cost structure in our MDP comes closest to the deterministic
version of the MDP from [33].
Where the models in [34] and [6, Chapter 6] allow only to allocate available capacity
once a day, this is possible twice a day in our model. This modification to the model
allows more flexibility in responding to same-day (emergency) patients. Where emer-
gency patients in [34] and [6, Chapter 6] were ignored (the model was not capable of
preserving capacity for them), our model presented the following chapter does allow
it to protect capacity for them. Although going from one decision epoch each day to
two, we use the linear programming approach to ADP to find an approximate optimal
policy. The obtained linear program is also solved via column generation.
The extension of our model from Chapter 4 that we present in Chapter 7 can be seen as
the multiple server version of [33] with patient type-server compatibility restrictions.
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4
Near-online multipriority patient
scheduling with resource
compatibility restrictions

In this chapter, we present a near-online, dynamic method for advance capacity plan-
ning involving multiple resources (MRI scanners) with different capabilities and taking
into account future appointment requests. The goal is to identify effective ways of allo-
cating available service capacity to incoming appointment requests while minimizing
the number of patients whose access time exceeds the prespecified, priority-specific
target in a cost-effective manner. Here greater weight is given to any late bookings of
higher-priority demand. We formulate this planning method as a discounted infinite-
horizon Markov Decision Process (MDP) by providing the decision epochs, state space,
action sets, transition probabilities and costs in Section 4.1.

Due to the curse of dimensionality, the proposed MDP cannot be solved analytically
even for small instances of the problem. For this reason, we develop in Section 4.2
an Approximate Dynamic Programming (ADP) approach to approximately solve it.
Here we use an affine architecture to approximate the value function of the MDP and
solve an equivalent linear programming model through column generation to obtain
an approximate optimal policy.
In Chapter 6 we evaluate the performance of the resulting approximate optimal policy
for a practical scale case study at the Radiology department of Rijnstate using sim-
ulation. The input parameters for this practical scale case study are determined in
Chapter 5 using historical data.

4.1 The MDP formulation

In this section, we formulate a discounted infinite-horizon MDP model by providing
the decision epochs, state space, action sets, transition probabilities and costs. Table 4.1
summarizes the notation used. Throughout this chapter we denote a vector by bolding
it, such as s.

15



Chapter 4. Near-online multipriority patient scheduling model

Table 4.1: Notation of parameters used in the MDP model.

Set/Parameter(s) Description

Ñ length of the booking horizon in days

N = {0, 1, . . . , N} set of sessions in the booking horizon (indexed by n).

T = {1, . . . , T} set of patient types (indexed by t)

T ′ ⊂ T set of all outpatient types

AT(k, t) access time target for type t patients at decision epoch k (k = 1, 2),
expressed in number of sessions (that is AT(t) ∈ N )

M = {1, . . . , M} set of MRI scanners (indexed by m)

M(t) set of MRI scanners suitable for type t (defined as a subset ofM,
for all t ∈ T )

T (m) set of patient types that can be served by MRI scanner m (defined
as a subset of T , for all m ∈ M)

k ∈ {1, 2} label/number corresponding to the first and second decision
epoch on each day, respectively

CR,k
mn regular capacity of MRI-scanner m during session n expressed in

number of time slots as observed from decision epoch k in a day
(k ∈ {1, 2})

COT,k
mn overtime capacity of MRI-scanner m during session n expressed

in number of time slots as observed from decision epoch k in a
day (k ∈ {1, 2})

dt duration of a type t MRI-scan expressed in number of appointment
slots

xmn number of appointment slots booked/occupied on MRI-scanner
m during session n of the booking horizon

yt number of appointment requests of type t waiting to be scheduled

Q1
t , Q2

t maximum number of type t appointment requests that can be
observed at the first and second decision epoch of next day, re-
spectively

4.1.1 The decision epochs and the booking horizon

In the model we describe in this chapter we divide each day into three sessions: a
morning session, an afternoon session and an evening session. In the general case,
where we consider the hospital to have M MRI scanners (indexed by m), we assume
that the start times of the morning, afternoon and evening session are identical for
each MRI scanner and for each day, as the decision epochs in the MDP correspond to
the begin of the afternoon and evening session. The exact duration of the sessions are
hospital-specific and in particular the duration of the evening session can vary from
MRI scanner to MRI scanner. However, we assume the duration of the evening session
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of MRI scanner m to be identical for each day. In Chapter 6 we describe the duration
of the various sessions in Rijnstate. How the sessions’ duration are formulated in the
general model setting will become clear in the remainder of this section.

Throughout each day, requests for MRI examinations are submitted to the Radiology
department. At the two decision epochs, which correspond to the begin of the afternoon
and evening session (illustrated in Figure 4.1), the booking agent’s task is to book these
appointment requests into a future session. Usually, an outpatient clinic considers
a booking horizon of Ñ future days. As observed from the first decision epoch of
the day, the current day has two remaining sessions, which means that an Ñ-day
booking horizon corresponds to 3Ñ + 2 sessions. As observed from the second decision
epoch of the day, an Ñ-day booking horizon corresponds to 3Ñ + 1 sessions since
the current day has only one session left. We choose to define a booking horizon
of N := 3Ñ + 2 sessions. This implies that at the start of an afternoon session on a
specific day, the booking agent can book appointments into the afternoon and evening
session of the current day and into the morning, afternoon and evening sessions of
at most Ñ days in advance. At the start of an evening session, appointments can be
scheduled into the upcoming evening session, into the morning, afternoon and evening
sessions of the next Ñ days and into the morning session Ñ + 1 days from now. We
denote the booking horizon by the set N := {1, 2, . . . , N(= 3Ñ + 2)} (indexed by n).

Our model is complicated by the fact that the horizon is not static, but rolling. Thus,
session n of the booking horizon at the current decision epoch becomes session n− 1 at
the subsequent decision epoch. This implies that when we jump from the first decision
epoch on a day (shown in Figure 4.1a) to the second one (shown in Figure 4.1b),
the newly added last session of the booking horizon becomes a morning session and
no appointments have been booked into this session. Similarly, if we jump from a
second decision epoch on a day to the first decision moment on the successive day,
i.e., from the situation shown in Figure 4.1b to the situation shown in Figure 4.1a, no
appointments have been booked into the last two (new) sessions of the booking horizon.
These sessions correspond to an afternoon and evening session, respectively.

4.1.2 Patient types and MRI scanner compatibility

In the MDP model we define patient types by the set T = {1, . . . , T} (indexed by t)
based on their clinical status (in- or outpatient), the duration of the MRI scan that
they request, the compatibility of each MRI scanner with the requested MRI scan
and their access time target. Since the M MRI scanners are represented by the set
M = {1, . . . , M}, we can define the set M(t) ⊆M as the set of MRI scanners that
can feasibly serve a patient of type t. The set M(t) is thus defined for all t ∈ T .
Conversely, T (m) ⊆ T , defined for all m ∈ M, is the set of patient types t that can
feasibly receive service on MRI scanner m. Furthermore, for a reason that will become
clear in Section 4.1.4 on the possible actions, we define the set T ′ ⊂ T to contain all
outpatient types.

For all patient types t ∈ T we agree on an access time target (that is the medically
acceptable (indirect) waiting time) of AT(t) days. For the Radiology department it is
thus the goal to examine a type t patient within AT(t) days from the moment on the
request was received.
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(a) Booking horizon and as observed from the first decision epoch (corresponding to the start of the
afternoon session) on a given day.
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(b) Booking horizon as observed from the second decision epoch (corresponding to the start of the
evening session) on a given day.

Figure 4.1: The booking horizon as observed from (a) the first decision epoch on a day and (b)
the second decision epoch on a day. The dynamics of the MDP is going from (a) to (b) and then
back to (a).

Since our booking horizon is defined in terms of sessions, we need to translate the
access times from days into sessions. For example, take an appointment request with
original priority to be served within three days. If this request is known at the start of
the afternoon session, i.e., at the first decision epoch of a day, it translates to a priority
to be scanned within eight sessions. On the other hand, if the request is submitted
during the afternoon session and is observed at the second decision epoch of a day,
it translates to a priority to be scanned within seven sessions. One way to deal with
this, is to define the access time target AT(t) for patient type t as observed at the day’s
second decision epoch. For the precedent example, this means that the request that is
known at the first decision is also prioritized as to be scanned within seven sessions.
Another way is to define both as a different patient types. That is, we define patient
type t with access time target AT(t) = 8 sessions and type t′ with AT(t′) = 7 sessions.
Subsequently, type t MRI appointment requests only arrive at the first decision epoch
on a day and type t′ only at the second. As follows from the state vector definition in
Section 4.1.3, this is detrimental to the size of the state space and therefore we explain a
third way to deal with different access times at the two decision epochs on a day that
we will use in the sequel.
Note that besides different access times at the two decision epochs, type t patients do
have the same characteristics as type t′ patients.

18



4.1. The MDP formulation

Hence, for patient type t, we define an access time target AT(1, t) for appointment
requests that need to be booked at the first decision epoch on a day and an access
time target AT(2, t) for appointment requests that need to be booked at the second
decision epoch on a day. Now we only need to define the patient type t and we can
easily translate the access time expressed in days into the access time expressed in
sessions. Note that, for all t ∈ T , we have AT(1, t) = AT(2, t) + 1 and that we might
have AT(k, t) = AT(k, t′), for k = 1, 2, t 6= t′, t, t′ ∈ T .

4.1.3 The state space

At both decision epochs of a day, the number of time slots already booked on each MRI
scanner during all sessions of the booking horizon is known, as well as the number of
appointment requests from each patient type to be scheduled at the current decision
epoch. Thus, a typical state of the system, denoted by s, takes the form

s = (k, x, y) = (k, xmn, yt)m∈M,n∈N ;t∈T ,

where xmn is the number of slots already booked on MRI scanner m during session n of
the booking horizon and yt is the number of type t patients waiting to be booked. In
this state vector, k can take the value 1 or 2, corresponding to the decision epoch during
the day.

At each decision epoch, the decision to be made for each appointment request is the
assignment to a session and to an MRI scanner, or diversion to an alternative capacity
source at an additional cost. This is often referred to as surge capacity (see [27]). The
surge capacity in our model is overtime - alternatively it could be outsourcing. The
overtime is usually at the end of a day and limited to a number of overtime units.
However, we consider a system in which every session has limited overtime capacity
and motivate this with the following example. Assume the following: on a fixed day,
both the afternoon and evening session are fully booked and in the morning session
only one appointment slot of ten minutes is empty. Futhermore, an appointment
request with a duration of twenty minutes that must be booked into the fixed day is
waiting to be booked. Then, if we do not allow overtime during the morning session,
we know for sure that the MRI scanner will remain idle during the empty appointment
slot in the morning, which results in an idle period of ten minutes. We will book the
appointment request in the overtime of the fixed day, so after the regular program
in the evening session. This results in twenty minutes of overtime on this day. On
the other hand, if we allow overtime in the morning session, say an overtime of one
10-minute slot, we can book the appointment partly in the regular time of the morning
session and partly in the overtime of the morning session. The result: it only adds ten
minutes to the overtime of the day and we have no idle time. The disadvantage of this
decision could be an increase in patients’ waiting time.

In state s1 = (1, x, y), that is at the first decision epoch of a given day, sesion n = 1
corresponds to an afternoon session (see Figure 4.1a). During this afternoon session,
MRI scanner m has regular capacity of CR,1

m1 time slots and overtime capacity of COT,1
m1

time slots. At the next decision epoch of the given day, we observe some state s2 =
(2, x′, y′) and now session n = 1 corresponds to an evening session (see Figure 4.1b).
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During this evening session, MRI scanner m has regular capacity of CR,2
m1 time slots and

overtime capacity of COT,2
m1 time slots. Since evening sessions usually have different ca-

pacity than afternoon sessions, we have that CR,2
m1 6= CR,1

m1 and COT,2
m1 6= COT,1

m1 . However,
since the evening session of the given day corresponds to session n = 2 as observed
from the first decision epoch of the given day, we have CR,2

m1 = CR,1
m2 and COT,2

m1 = COT,1
m2

for all m ∈ M. In general we have

CR,2
mn = CR,1

m,n+1, for all m ∈ M and for all n = 1, 2, . . . , N − 1,

COT,2
mn = COT,1

m,n+1, for all m ∈ M and for all n = 1, 2, . . . , N − 1,

CR,2
mN = CR,1

m3 , for all m ∈ M,

COT,2
mN = COT,1

m3 , for all m ∈ M.

The last and second to last equation say, respectively, that the regular and overtime
capacity of the last session of the booking horizon, i.e., session N, as observed from
the second decision epoch on a day is equal to the regular and overtime capacity of
session 3 as observed from the first decision epoch on a day. This is because session N
as observed from the second decision epoch on a day is always a morning session
and the first morning session as observed from the first decision epoch on a day
corresponds to session 3 of the booking horizon.

For k ∈ {1, 2}, we define the sets

Sk =

(k, x, y)

∣∣∣∣∣∣∣∣
xmn ≤ CR,k

mn + COT,k
mn , for all m ∈ M and n ∈ N ;

yt ≤ Qk
t , for all t ∈ T ;

(x, y) ∈NMN
0 ×NT

0

 . (4.1)

Here we adopted the notation N0 = {0, 1, 2, 3, . . . } and let Nn
0 be its n-dimensional

extension. Qk
t is the maximum number of MRI appointment requests of type t present

in the system (and thus waiting to be booked) at decision epoch k of a day. That is,
Q1

t is the maximum number of type t appointment requests arrived between the two
decision epochs in the same day and Q2

t is the maximum number of type t appointment
requests arrived between the second decision epoch in a fixed day and its immediate
successor, which is the first decision epoch in the following day. Truncating arriving
demand is necessary to keep the state space finite, but the maximum number of arrivals
can be set sufficiently high as to be of little practical significance. Note here that we
implicitly assume that the number of appointment requests observed at a decision
epoch only concerns newly arrived requests. It is therefore not possible to postpone
booking decisions and all requests that are observed at the current decision epoch will
be scheduled at the current decision epoch.

Because we experience a rolling booking horizon, in state s1 = (1, x, y) there are no
appointments scheduled during sessions N − 1 and N, that is, xm,N−1 = xmN = 0, for
all m ∈ M. Similarly, in state s2 = (2, x, y) there are no bookings in session N, that
is xmN = 0, for all m ∈ M.
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The state space of the MDP is given by

S = S1 ∪ S2. (4.2)

4.1.4 The action sets

At each decision epoch, the booking agent’s task is to decide on which MRI scanner
and during which session to schedule each of the patients waiting to be booked. Thus,
a vector of possible actions can be written as a = (atmn)t∈T ,m∈M,n∈N , where atmn is the
number of type t patients to book on MRI scanner m during session n. Note that, once
a patient is assigned to a session, a second level of scheduling is needed which assigns
patients to specific appointment times. That goes beyond the scope of this MDP model.

Input parameters of the decision are yt, the number of type t patients to be booked,
and xmn, the number of time slots already occupied on MRI scanner m during session
n of the booking horizon. We experience a rolling horizon and have two decision
epochs in each day and hence we face different constraints for action a to be valid in
states s1 = (1, x, y) and s2 = (2, x, y). To be valid, any action in s1 must satisfy the
following constraints:

∑
n∈N

∑
m∈M(t)

atmn = yt, for all t ∈ T , (4.3)

xmn + ∑
t∈T (m)

dtatmn ≤ CR,1
mn + COT,1

mn , for all m ∈ M and n ∈ N , (4.4)

atmn = 0 for all t ∈ T , m 6∈ M(t) and n ∈ N , (4.5)

atm1 = atm2 = 0 for all t ∈ T ′ and for all m ∈ M(t), (4.6)

atmn ∈NTMN
0 (4.7)

Constraint (4.3) requires the number of bookings for each patient type to be equal to
the number of requests waiting to be booked. As we discussed earlier, all the demand
waiting to be booked is newly arrived demand and we do not have the possiblity the
postpone the booking decision. In Constraint (4.4), dt describes the duration of a type t
scan in number of time slots. Constraint (4.4) therefore restricts the total number of slots
booked on MRI scanner m during session n of the booking horizon to be less than or
equal to the number of available regular slots plus the overtime slots. Note that in this
constraint we only need to sum over T (m), i.e., we only sum over those patient types
who can be served by MRI scanner m. Constraint (4.5) ensures patients are only booked
on an MRI scanner suitable for their type of MRI scan. Recall that in Section 4.1.2 we
defined the set T ′ to contain all outpatient patient types. We do not allow outpatient
demand that does not have the priority to be scanned today to be booked into one of
today’s remaining sessions, because these patients are not necessarily already present in
the hospital and because we cannot control the appointment time with this MDP model,
we cannot be sure that the patients will be in the hospital on time. Hence we have
Constraint (7.6). Finally, all action variables are integer and non-negative (captured by
Constraint (4.7)).
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Similarly, to be valid, any action in s2 must satisfy the following constraints:

∑
n∈N

∑
m∈M(t)

atmn = yt, for all t ∈ T , (4.8)

xmn + ∑
t∈T (m)

dtatmn ≤ CR,2
mn + COT,2

mn , for all m ∈ M and n ∈ N , (4.9)

atmn = 0 for all t ∈ T , m 6∈ M(t) and n ∈ N , (4.10)

atm1 = 0 for all t ∈ T ′ and for all m ∈ M(t), (4.11)

atmn ∈NTMN
0 (4.12)

We define the action sets A (s1), for any given state s1 = (1, x, y) ∈ S1, as the set of
actions a satisfying Equations (4.3) to (4.7). We define the action sets A (s2), for any
given state s2 = (2, x, y) ∈ S2, as the set of actions a satisfying Equations (4.8) to (4.12).
In general we let A(s) denote the set of all feasible actions in state s ∈ S .

4.1.5 The transition probabilities

First consider the situation in which the system is at the first decision epoch of a
given day. That is, the system is in some state s1 = (1, x, y) ∈ S1. Once a decision is
made in this state, the system moves to a state corresponding to the second decision
epoch of the given day, i.e., the system moves to some state s2 = (2, x′, y′) ∈ S2.
The only source of uncertainty in this transition from s1 to s2 is the number of new
appointment requests of each patient type. The other parameters are updated based on
the capacity allocation to booked patients. Thus, as a result of choosing booking action
a in state s1 = (1, x, y), and having y′t new requests of type t, the state of the system the
next decision epoch, denoted by s2 = (2, x′, y′), will be determined by the following
probability distribution:

p(s2|s1, a) =

p2(y′) = ∏
t∈T

p2
(
y′t
)

, if s2 = (2, x′, y′) satisfies Eq. (4.14),

0 otherwise.
(4.13)

x′mn =

xm,n+1 + ∑
t∈T (m)

dtatm,n+1, for all m ∈ M and n = 1, 2, . . . , N − 1,

0, for all m ∈ M and n = N. (4.14)

We assume that demand for each patient type is independent and that the each day’s de-
mand at decision epoch 1 is independent as well. Because demand arises from multiple
independent sources (the nursing wards, other outpatient clinics within the hospi-
tal and specialists in the region serviced by the department), independence between
patient types seems a reasonable assumption. Note that we denote the probability
distribution of new appointment requests between the first and second decision epoch
on the same day by p2, because this implies that we can write the expected number
of appointment requests observed at the second decision epoch of the day as Ep2 [y],
which seems more logical than Ep1 [y].
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Similarly, if the system is at the second decision epoch on a given day, the system’s next
state is at the first decision epoch in the successive day. Thus, as a result of choosing
booking action a in state s2 = (2, x, y), and having y′t new requests of type t, the state
of the system the next decision epoch, denoted by s1 = (1, x′, y′), will be determined
by the following probability distribution:

p(s1|s2, a) =

p1(y′) = ∏
t∈T

p1
(
y′t
)

, if s1 = (1, x′, y′) satisfies Eq. (4.16),

0 otherwise.
(4.15)

x′mn =

xm,n+2 + ∑
t∈T (m)

dtatm,n+2, for all m ∈ M and n = 1, 2, . . . , N − 2,

0, for all m ∈ M and n = N − 1, N. (4.16)

In general we expect p1 6= p2.

4.1.6 The direct costs

The direct costs associated with state-action pair s ∈ S , a ∈ A(s) derives from two
sources: (i) a cost associated with booking patients beyond their priority-specific access
time targets; and (ii) a cost associated with the use of overtime.

c(s, a) = c(k, x, y, a) = ∑
n∈N

∑
t∈T

f AT(k, t, n)

[
∑

m∈M(t)
atmn

]
+ f AS(s, a). (4.17)

In Equation (4.17), f AT(k, t, n) is the cost associated with booking a type t patient into
session n of the booking horizon, at decision epoch k of a day. The cost associated with
overtime is f AS(s, a) (referring to the appointment schedule).

Recall that AT(k, t) represents the access time target for a type t patient at decision
epoch k of day. A suitable manner to determine the f AT(k, t, n), is to make use of the
penalties gtn, which are a penalty for each additional session of wait n before a type t
patient can be served. It is clearly reasonable to assume that f AT(t, n) should be zero if
n ≤ AT(t). Thus, a suitable form for the booking cost f AT(t, n) is

f AT(k, t, n) =


n−AT(k,t)

∑
j=1

γj−1gtn for all n > AT(t)

0 otherwise.

Here γ is the discount factor per session.
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The overtime costs at the first decision epoch of the day are defined as

f AS(s1, a) = ∑
m∈M

∑
n∈N

h

[
xmn + ∑

t∈T (m)

dtatmn − CR,1
mn

]+
− ∑

m∈M
∑

n∈N
h
[

xmn − CR,1
mn

]+
,

where h is the overtime cost per time slot and [z]+ = max{0, z}. Note that the overtime
cost h is to be assumed identical for all MRI scanners m ∈ M.
Note that the system only incurs overtime costs for overtime slots that are booked at the
current decision epoch. For the overtime slots that were already booked, costs will not
be charged again, since this has already happened at an earlier decision epoch. Finally,
note that this structure is not the easiest way to penalize the system for overtime, but
we believe it is a manner to keep the size of the state and action vector small.

Similarly, the overtime costs at the second decision epoch of the day are defined as

f AS(s2, a) = ∑
m∈M

∑
n∈N

h

[
xmn + ∑

t∈T (m)

dtatmn − CR,2
mn

]+
− ∑

m∈M
∑

n∈N
h
[

xmn − CR,2
mn

]+
.

4.1.7 The Bellman equations

The value function vπ
γ (s) of the MDP specifies the total expected discounted cost (dis-

count factor γ) over the infinite horizon for state s ∈ S under policy π. Of course, we
are not so much interested in determining the value function for a given policy π as in
finding an optimal policy π∗. To identify such a policy we need to solve the following
optimality equations for v(s) - also known as the Bellman equations:

v(s) = v(k, x, y) = min
a∈A(s)

{
c(s, a) + γ ∑

s′∈S
p(s′|s, a)v(s′)

}
, for all s ∈ S , (4.18)

where 0 ≤ γ < 1 is the discount factor per session. Note that, depending on the
decision epoch of the day the system is jumping to, k′, we always must have that

p(s′|s, a) = p((k′, x′, y′)|(k, x, y), a) = pk′(y′),

where y′ ∈ Yk and

Yk =
{

y = (y1, y2, . . . , yT)
∣∣∣ y ∈NT

0 , yt ≤ Qk
t , for all t = 1, 2, . . . , T

}
.

From its definition given by (4.2) we will determine the size of the state space, |S|,
in Section 4.1.8. However, we can already conclude that, although |S| may be very
large, the state space is finite. Also, from the action set definitions given by the
Eqs. (4.3)-(4.7) and Eqs (4.8)-(4.12) it follows that the action sets A(s) are finite for
each s ∈ S . The direct costs c(s, a), defined in (4.17), are bounded (for some Z we
have that |c(s, a)| ≤ Z < ∞, for all s ∈ S and a ∈ A(s)) and like the transition
probabilities p(s′|s, a) stationary, i.e., they do not vary from decision epoch to decision
epoch. Hence, it follows from the following theorem that there exists a unique solution
to the optimality equations (4.18).
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Theorem 4.1 (Theorem 6.2.5 of [30]). Suppose 0 ≤ γ < 1, S is finite and c(s, a) is
bounded for all s ∈ S , a ∈ A(s). Then there exists an unique solution v∗ = {v∗(s)}s∈S
to the optimality equations (4.18).

Proof. See the proof of Theorem 6.2.5 on p.151 of [30]. �

Existence of a deterministic stationary policy which is optimal

Under the assumptions prior to Theorem 4.1 it follows from [30, Theorem 6.2.10, p. 151]
that there exists an optimal deterministic stationary policy π∗ = (d, d, . . . ) = d∞ and
that the corresponding value function vd∞

γ (s) solves the optimality equations (4.18)
and thus equals v∗(s) from Theorem 4.1. Hence the optimal decision rule d is the
function d : S → A(s), given by

d(s) = a∗s ∈ arg min
a∈A(s)

{
c(s, a) + γ ∑

s′∈S
p(s′|s, a)v∗(s′)

}
.

4.1.8 The dimensions of the state space and actions sets

We consider two types of state variables: those that are feasible at the first decision
epochs on a day: s1 = (1, x, y) ∈ S1 and those feasible at the second decision epoch
s2 = (2, x, y) ∈ S2. Recall that S1 and S2 are defined in (7.1). Both types of state
variables have (1 + M × N + T) dimensions. For s1 = (1, x, y) ∈ S1, xmn can take
values 0, 1, 2, . . . , CR,1

mn + COT,1
mn , for all m ∈ M and n = 1, 2, . . . , N − 2 and yt can take

values 0, 1, 2, . . . , Q1
t . xm,N−1 and xmN are both restricted to be zero for all m ∈ M. Thus,

the number of feasible states at the first decision epoch of a day, denoted by |S1|, equals

|S1| =
M

∏
m=1

N−2

∏
n=1

(
1 + CR,1

mn + COT,1
mn

)
×

T

∏
t=1

(
1 + Q1

t

)
.

Similarly, for s2 = (2, x, y) ∈ S2, xmn can take values 0, 1, 2, . . . , CR,2
mn + COT,2

mn , for
all m ∈ M and n = 1, 2, . . . , N − 1 and yt can take values 0, 1, 2, . . . , Q2

t . xmN is restricted
to be zero for all m ∈ M. Thus, analogous to |S1|, we get

|S2| =
M

∏
m=1

N−1

∏
n=1

(
1 + CR,2

mn + COT,2
mn

)
×

T

∏
t=1

(
1 + Q2

t
)

.

From its definition, provided by Eq. (4.2), it follows that

|S| =
M

∏
m=1

N−2

∏
n=1

(
1 + CR,1

mn + COT,1
mn

)
×

T

∏
t=1

(
1 + Q1

t

)

+
M

∏
m=1

N−1

∏
n=1

(
1 + CR,2

mn + COT,2
mn

)
×

T

∏
t=1

(
1 + Q2

t
)

.
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The action variable a has (T ×M× N) dimensions. If |M(t)| denotes the cardinality
of the setM(t) of MRI scanners which are suitable for type t patients, we might have
up to

|A(s1)| =
T

∏
t=1

(
1 + Q1

t

)N×|M(t)|
,

different (not necessarily feasible) actions for states s1 = (1, x, y) ∈ S1. Similarly, for
states s2 = (2, x, y) ∈ S2, we might have up to

|A(s2)| =
T

∏
t=1

(
1 + Q2

t
)N×|M(t)|

,

different (not necessarily feasible) actions.

The challenge is that even for very small instances the size of the state space and the
size of the corresponding action sets become intractable, which makes a direct solution
to (4.18) impossible. This is the widely known curse of dimensionality of dynamic
programming and is the most often-cited reason why algorithms such as value iteration
will not find an optimal policy in reasonable time [29].

4.2 The solution approach

In order to deal with an intractable number of states and actions, we first transform
our MDP model into its equivalent linear programming form. The linear programming
approach to discounted infinite-horizon MDPs, initially presented in [11], is based on
writing the optimality equations in (4.18) as follows:

max
v ∑

s∈S
η(s)v(s), (4.19a)

s.t. c(s, a) + γ ∑
s′∈S

p(s′|s, a)v(s′) ≥ v(s), for all s ∈ S , a ∈ A(s), (4.19b)

v ∈ R|S|. (4.19c)

The value of η(s) represents the weight of state s ∈ S in the objective function. The
solution to this equivalent linear programming model (4.19a)-(4.19c) is the same as the
solution to the optimality equations (4.18) when η(s) is strictly positive for all s ∈ S [13,
23]. For the sake of completeness, we indicate that Rn is the n-dimensional real
space and consists of all n-tuples of real numbers, i.e., an element of Rn is a vector
z = (z1, z2, . . . , zn), where each zi ∈ R is a real number.

The equivalent linear program (LP), however, does not avoid the curse of dimension-
ality. The model in (4.19a)-(4.19c) has one variable for every state s ∈ S and one
constraint for every feasible state-action pair (s, a), s ∈ S , a ∈ A(s), making its solu-
tion impossible. Fortunately, a whole field of potential methods for dealing with the
curse of dimensionality, called Approximate Dynamic Programming (ADP), has been
developed in the last decade [4, 29]. The approach within this field that we consider
consists of using an approximation architecture to represent the value function in the
MDP formulation or, equivalently, the variables in the equivalent linear programming
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model. This approximate linear programming approach to ADP was initially introduced
in [36].

In the approximate linear programming (ALP) approach, we approximate the value
function
v(s), s ∈ S in the LP formulation by a linear superposition of fitting/basis func-
tions {φ f : f ∈ F}:

v(s) ≈ ∑
f∈F

θ f φ f (s), s ∈ S , (4.20)

where the fitting functions {φ f : f ∈ F} are given and the coefficients/weights
{θ f ∈ R : f ∈ F}must be chosen to give a good fit [29, p. 411]. The incentive for this
approximation approach is the reduction in problem dimensionality from |S| to |F |,
with significant savings in computation time if |F | is much smaller than the number of
states. A successful fit occurs if one can find a small set of fitting functions such that one
obtains both a good approximation to the value function and a good suboptimal policy
from this approximation to the value function [36]. The goal to find a good suboptimal
policy from the approximation to the value function goes hand in hand with the quality
of the approximation to the value function. After this approximation is found, it is
inserted into the optimality equations (4.18). To find the approximate optimal action,
these optimality equations, with the approximated value function at the place of the
real value function, are solved for a ∈ A(s). Hence, a bad quality approximation to the
value function leads to a bad quality approximate optimal action. The fitting functions
can be chosen in essentially any appropriate manner: polynomials, splines [12], etc.

To solve the MRI appointment scheduling problem we chose an affine approximation
to v(s), s ∈ S in Section 4.2.1. This affine approximation results in an ALP, whose dual
we solve using column generation. The column generation algorithm is explained in
Section 4.2.2. In Section 4.2.3 we use the solution of the ALP found by the column
generation algorithm to identify an approximate optimal policy. The affine approxi-
mation we introduce in Section 4.2.1 does not take the structure as in (4.20), because
this structure is less convenient than the one introduces in Section 4.2.1. However, the
structure in (4.20) allows us to prove that the LP and its dual that we eventually get in
Section 4.2.1 both have finite optima. After specifying the affine approximation adopt-
ing the structure of (4.20) and the resulting LP, we formally state this in Theorem 4.3
and conclude this section with its proof. This theorem and its proof, together with the
formulation of the ALP in Section 4.2.1 are technical and include many mathematical
manipulations. If, as a reader, you want to skip this technical part for whatever reason,
that is possible. Then read on from the ALP (4.27a)-(4.27d) on page 35. This is the final
LP whose solution will lead to an approximate optimal policy.

Define the index set as

F = {1, 2, (m, n), (m̃, ñ), t, t̃ | m, m̃ = 1, . . . , M, n, ñ = 1, . . . , N, t, t̃ = 1, . . . , T}.

That is, we use 2(1 + M× N + T) fitting functions. We define the fitting functions as

φ1(k, x, y) =

{
1 if k = 1,
0 if k = 2,

, φ2(k, x, y) =

{
0 if k = 1,
1 if k = 2,
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φ(m,n)(k, x, y) =

{
xmn if k = 1,
0 if k = 2,

, φ(m̃,ñ)(k, x, y) =

{
0 if k = 1,
xmn if k = 2,

(4.21)

φt(k, x, y) =

{
yt if k = 1,
0 if k = 2,

, φt̃(k, x, y) =

{
0 if k = 1,
yt if k = 2,

Finally, given the coefficients {θ f ∈ R : f ∈ F}, we introduce the functions ω(s, θ) =

∑ f∈F θ f φ f (s), for all s ∈ S , because this turns out to be convenient later.

If we now substitute the affine approximation into (4.19a)-(4.19c) and rearrange terms,
we get

max
θ

∑
s∈S

η(s)

[
∑
f∈F

θ f φ f (s)

]
, (4.22a)

s.t. ∑
f∈F

θ f

[
φ f (s)− γ ∑

s′∈S
p(s′|s, a)φ f (s′)

]
≤ c(s, a), for all s ∈ S , a ∈ A(s),

(4.22b)

θ ∈ R|F |. (4.22c)

We define V as the set of bounded, real valued functions on the state space S with
componentwise partial order and norm ‖v‖ = sups∈S |v(s)|. That is, v ∈ V if v : S →
R and there exists a Kv such that |v(s)| = |v(k, x, y)| ≤ Kv, for all s ∈ S . With partial
order it is meant that for u, v ∈ V , u ≥ v if u(s) ≥ v(s), for all s ∈ S . With this
definition in mind we point out the following lemma.

Lemma 4.2 (Theorem 6.2.2 of [30]). Suppose there exists a v ∈ V , for which

v(s) ≤ min
a∈A(s)

{
c(s, a) + γ ∑

s′∈S
p(s′|s, a)v(s′)

}
, for all s ∈ S ,

then v(s) ≤ v∗(s), for all s ∈ S .

Here v∗(s) is unique solution to the optimality equations (4.18) as defined in Theo-
rem 4.1.

Proof. See the proof of Theorem 6.2.2 on p.148 of [30] �

Theorem 4.3. The LP (4.22a)–(4.22c) and its dual both have finite optima for the fitting
functions defined in (4.21).

Proof. Strong duality tells us that if a linear programming problem has an optimal
solution, so does its dual, and the respective optimal costs are equal (see, e.g., [5,
Theorem 4.4]). Thus, it suffices to show that the LP (4.22a)-(4.22c) is feasible and
bounded, because then the LP satisfies strong duality and the statement to prove
follows from strong duality.
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To find a feasible solution θ, we set θ f = 0, for all f ∈ F\{1, 2}. Then, for s1 ∈ S1, a ∈
A(s1), it follows from the transition probabilities (4.13) that Constraint (4.22b) becomes

θ1

[
1− γ ∑

s2∈S2

p(s2|s1, a)

]
≤ c(s1, a),

θ1(1− γ) ≤ c(s1, a)

Similarly, for s2 ∈ S2, a ∈ A(s2), it follows from the transition probabilities (4.15) that
Constraint (4.22b) becomes

θ2(1− γ) ≤ c(s2, a).

Hence a feasible solution of (4.22a)-(4.22c) is given by

θ1 ≤ min
s1∈S1,

a∈A(s1)

c(s1, a)
(1− γ)

, θ2 ≤ min
s2∈S2,

a∈A(s2)

c(s2, a)
(1− γ)

and θ f = 0, for all other f ∈ F .

For any feasible θ, it follows from (4.22b) that

ω(s, θ) ≤ c(s, a) + γ ∑
s′∈S

p(s′|s, a)ω(s′, θ), for all s ∈ S , a ∈ A(s)

and thus

ω(s, θ) ≤ min
a∈A(s)

{
c(s, a) + γ ∑

s′∈S
p(s′|s, a)ω(s′, θ)

}
, for all s ∈ S . (4.23)

For fixed, feasible θ we have that ω(s, θ) is a real valued function of s. Moreover, it
follows from (7.1) that for every s = (k, x, y) ∈ S we have that all the components xmn,
m ∈ M, n ∈ N , and yt, t ∈ T , are finite (non-negative) integers. Hence, it follows
from (4.21) that for fixed θ, the function ω(s, θ) is bounded and ω(s, θ) ∈ V . We then
apply Lemma 4.2 to the inequality in (4.23) to conclude that ω(s, θ) ≤ v∗(s), for all
s ∈ S .

Since ω(s, θ) ≤ v∗(s), for all s ∈ S , the objective function in (4.22a) is bounded from
above for any feasible θ because we get

∑
s∈S

η(s)

[
∑
f∈F

θ f φ f (s)

]
= ∑

s∈S
η(s)ω(s, θ) ≤ ∑

s∈S
η(s)v∗(s)

�
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4.2.1 A further detailed presentation of the ALP and its dual

To solve the MRI appointment scheduling problem we chose the following affine
approximation to v(s), s ∈ S

v(s) = v(k, x, y) =


V0 +

M

∑
m=1

N

∑
n=1

Vmnxmn +
T

∑
t=1

Wtyt, if k = 1,

Ṽ0 +
M

∑
m=1

N

∑
n=1

Ṽmnxmn +
T

∑
t=1

W̃tyt if k = 2.

(4.24)

Here V0, Ṽ0 ∈ R, V = (Vmn)m∈M,n∈N , Ṽ = (Ṽmn)m∈M,n∈N ∈ RM×N
+ and W = (Wt)t∈T ,

W̃ = (W̃t)t∈T ∈ RT
+. Rn

+ is the space consisting of all n-tuples of non-negative real
numbers, i.e., an element of Rn

+ is a vector z = (z1, z2, . . . , zn), where each zi ∈ R and
satisfies zi ≥ 0.

The value of Vmn represents the marginal cost of having an additional appointment slot
occupied on MRI scanner m on day n if we are at the first decision epoch of the day and
the value of Wt represents the marginal cost of having one more appointment request
of type t waiting to be booked at the first decision epoch of the day. Similarly, the value
of Ṽmn represents the marginal cost of having an additional appointment slot occupied
on MRI scanner m on day n if we are at the second decision epoch of the day and the
value of W̃t represents the marginal cost of having one more appointment request of
type t waiting to be booked at the second decision epoch of the day.

Note that this is essentially the same approximation as using the architecture in (4.20)
combined with the coefficients {θ f ∈ R : f ∈ F} and the fitting functions given
in (4.21). However, in (4.24), we use V0, Ṽ0, V, Ṽ, W, W̃ as coefficients. A slight differ-
ence here is that elements of V, Ṽ, W, W̃ are restricted to be non-negative real numbers.
From the interpretation of these vectors as explained above, it may be clear that it
makes no sense if we allow the vector’s elements to be negative.

Before we substitute the affine approximation (4.24) into the LP (4.19a)-(4.19c), we first
rewrite the LP as this makes the substitution and further analysis easier. Since the state
space, defined by (4.2), can be partitioned into states s1 ∈ S1 corresponding to the
first decision epoch on a day and s2 ∈ S2 corresponding to the second decision epoch,
the constraints (4.19b) can be rewritten accordingly. To see this, fix s1 = (1, x, y) ∈ S1
and recall that a = (atmn), t ∈ T , m ∈ M, n ∈ N . It then follows from the transition
probabilities defined by (4.13) that for s1 ∈ S1 we can rewrite constraints (4.19b) as

c(s1, a) + γ ∑
y′∈Y2

p2(y′)v

{(
2,

(
x12 + ∑

t∈T (1)
dtat12, . . . , xMN + ∑

t∈T (M)

dtatMN , 0

)
, y′
)}
≥ v(s1),

for all a ∈ A(s1).
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Similarly, it follows from the transition probabilities defined by (4.15) that for
s2 = (2, x, y) ∈ S2 constraints (4.19b) can be rewritten as

c(s2, a) + γ ∑
y′∈Y1

p1(y′)v

{(
1,

(
x13 + ∑

t∈T (1)
dtat13, . . . , xM,N−2 + ∑

t∈T (M)

dtatM,N−2, 0, 0

)
, y′
)}
≥ v(s2),

for all a ∈ A(s2).

Also based on the definition of the state space (given in Eq. (4.2)), we can rewrite the
objective function (4.19a) as

max
v∈R|S|

∑
s1∈S1

α(s1)v(s1) + ∑
s2∈S2

β(s2)v(s2), α(s1) > 0, for all s1 ∈ S1, and

β(s2) > 0, for all s2 ∈ S2.

All together, by rearranging terms in the two preceding inequalities, we can rewrite the
LP (4.19a)-(4.19c) as

max
v ∑

s1∈S1

α(s1)v(s1) + ∑
s2∈S2

β(s2)v(s2), (4.25a)

s.t.

c(s1, a1) ≥ v(s1)− γ ∑
y′∈Y2

p2(y′)v

{(
2,

(
x12 + ∑

t∈T (1)
dtat12, . . . , xMN + ∑

t∈T (M)

dtatMN , 0

)
, y′
)}

,

for all s1 = (1, x, y) ∈ S1, a1 ∈ A(s1), (4.25b)

c(s2, a) ≥ v(s2)− γ ∑
y′∈Y1

p1(y′)v

{(
1,

(
x13 + ∑

t∈T (1)
dtat13, . . . , xM,N−2 + ∑

t∈T (M)

dtatM,N−2, 0, 0

)
, y′
)}

,

for all s2 = (2, x, y) ∈ S2, a2 ∈ A(s2), (4.25c)

v ∈ R|S| = R|S1∪S2|. (4.25d)

We normalize α and β to ∑s1∈S1
α(s1) = 1 and ∑s2∈S2

β(s2) = 1 and consider these as
exogenous probability distributions over the feasible states at the first and second
decision epoch on a day, respectively.

At this point, we substitute our affine approximation to v(s), given by (4.24), into the
LP (4.25a)-(4.25d). We first consider the objective function:

∑
s1∈S1

α(s1)v(s1) + ∑
s2∈S2

β(s2)v(s2) = ∑
s1∈S1

α(s1)

(
V0 +

M

∑
m=1

N

∑
n=1

Vmnxmn(s1) +
T

∑
t=1

Wtyt(s1)

)

+ ∑
s2∈S2

β(s2)

(
Ṽ0 +

M

∑
m=1

N

∑
n=1

Ṽmnxmn(s2) +
T

∑
t=1

W̃tyt(s2)

)
.
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Here xmn(s1) and xmn(s2) respectively denotes component xmn of state vector s1 ∈ S1
and s2 ∈ S2. Since we defined α and β as probability distributions, we can simplify the
right-hand side of expression above to

V0 + Ṽ0 +
M

∑
m=1

N

∑
n=1

{
VmnEα[xmn] + ṼmnEβ[xmn]

}
+

T

∑
t=1

{
WtEα[yt] + W̃tEβ[yt]

}
,

where

Eα[xmn] = ∑
s∈S

α(s)xmn(s), Eα[yt] = ∑
s∈S

α(s)yt(s),

Eβ[xmn] = ∑
s∈S

β(s)xmn(s), Eβ[yt] = ∑
s∈S

β(s)yt(s).

Next, fix s1 = (1, x, y) ∈ S1 and a ∈ A(s1). Then, for this specific state-action
pair (s1, a), we substitute the affine approximation into Constraint (4.25b) to obtain

c(s1, a) ≥ V0 +
M

∑
m=1

N

∑
n=1

Vmnxmn +
T

∑
t=1

Wtyt

− γ ∑
y′∈Y2

p2(y′)

(
Ṽ0 +

M

∑
m=1

N−1

∑
n=1

Ṽmn

[
xm,n+1 + ∑

t∈T (m)

dtatm,n+1

]
+

T

∑
t=1

W̃ty′t

)

= V0 +
M

∑
m=1

N

∑
n=1

Vmnxmn +
T

∑
t=1

Wtyt

− γ

(
Ṽ0 +

M

∑
m=1

N−1

∑
n=1

Ṽmn

[
xm,n+1 + ∑

t∈T (m)

dtatm,n+1

])
− γ

T

∑
t=1

W̃tEp1 [yt],

where we substituted the equality ∑y′∈Y2
p2(y′)∑T

t=1 W̃tyt = ∑T
t=1 WtEp2 [yt] into the

right-hand side of the last inequality. We show how to get this equality in the derivation
that leads to (4.26). We now proceed with rearranging terms in the above to get

c(s1, a) ≥ V0 − γṼ0 +
M

∑
m=1

N

∑
n=1

Vmnxmn − γ
M

∑
m=1

N−1

∑
n=1

Ṽmn

[
xm,n+1 + ∑

t∈T (m)

dtatm,n+1

]

+
T

∑
t=1

Wtyt − γ
T

∑
t=1

W̃tEp2 [yt]

= V0 − γṼ0 +
M

∑
m=1

N

∑
n=1

{
Vmnxmn − Ṽmnµmn(s1, a)

}
+

T

∑
t=1

{
Wtyt − W̃tλt

}
,
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where we defined

µmn(s1, a) =

γ(xm,n+1(s1) + ∑
t∈T (m)

dtatm,n+1) for all m = 1, , . . . , M, n = 1, . . . , N − 1,

0 for all m = 1, . . . , M and n = N,

and

λt = γEp2 [yt].

We proceed with the derivation of the equality ∑
y∈Y2

p2(y)
T

∑
t=1

W̃tyt =
T

∑
t=1

WtEp2 [yt]:

∑
y∈Y2

p2(y)
T

∑
t=1

W̃tyt =
Q1

1

∑
y′1=0

Q1
1

∑
y2=0
· · ·

Q1
T

∑
yT=0

p2(y1, y2, . . . , yT)
(

W̃1y1 + W̃2y2 + . . . W̃TyT

)

=
Q1

1

∑
y1=0

Q1
1

∑
y2=0
· · ·

Q1
T−1

∑
yT−1=0

W̃1y1

 Q1
T

∑
yT=0

p2(y1, y2, . . . , yT)

+

+ W̃2y2

 Q1
T

∑
yT=0

p2(y1, y2, . . . , yT)

+ · · ·

+ W̃T

 Q1
T

∑
y′T=0

yT p2(y1, y2, . . . , yT)


= W̃1

Q1
1

∑
y1=0

y1

 Q1

∑
y2=0
· · ·

Q1
T

∑
yT=0

p2(y1, y2, . . . , yT)



+ W̃2

Q1
1

∑
y1=0

Q1
2

∑
y2=0

y2

 Q1
3

∑
y3=0
· · ·

Q1
T

∑
yT=0

p2(y1, y2, . . . , yT)

 + · · ·

+ W̃T

Q1
1

∑
y1=0

Q1
1

∑
y2=0
· · ·

Q1
T

∑
yT=0

yT p2(y1, y2, . . . , yT).

Recognizing that p2(y1) =
Q1

1

∑
y2=0
· · ·

Q1
T

∑
yT=0

p2(y1, y2, . . . , yT) and in general
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p(yt) = ∑
y′t 6=yt

Q1
t

∑
y′t=0

p2(y1, y2, . . . , yT), we obtain

∑
y∈Y2

p2(y)
T

∑
t=1

W̃tyt = W̃1

Q1
1

∑
y′1=0

y1 p(y1) + W̃2

Q1
2

∑
y2=0

y2 p2(y2) + · · · W̃T

Q1
T

∑
yT=0

yT p2(yT)

=
T

∑
t=1

W̃tEp2 [yt]. (4.26)

Substituting the probability distribution p1 for p2 and Y1 for Y2 in the derivation that
led to (4.26), it follows that ∑y∈Y1

p1(y)∑T
t=1 Wtyt = ∑T

t=1 WtEp1 [yt].

Next, fix s2 = (2, x, y) ∈ S2 and a ∈ A(s2). Then, for this specific state-action
pair (s1, a), we substitute the affine approximation into Constraint (4.25c) to obtain

c(s2, a) ≥ Ṽ0 +
M

∑
m=1

N

∑
n=1

Ṽmnxmn +
T

∑
t=1

W̃tyt

− γ ∑
y′∈Y1

p1(y′)

(
V0 +

M

∑
m=1

N−2

∑
n=1

Vmn

[
xm,n+2 + ∑

t∈T (m)

dtatm,n+2

]
+

T

∑
t=1

Wty′t

)

= Ṽ0 − γV0 +
M

∑
m=1

N

∑
n=1

Ṽmnxmn − γ
M

∑
m=1

N−2

∑
n=1

Vmn

[
xm,n+2 + ∑

t∈T (m)

dtatm,n+2

]

+
T

∑
t=1

W̃tyt − γ
T

∑
t=1

WtEp1 [yt]

= Ṽ0 − γV0 +
M

∑
m=1

N

∑
n=1

{
Ṽmnxmn −Vmnµ̃mn(s2, a)

}
+

T

∑
t=1

{
W̃tyt −Wtλ̃t

}
,

where we defined

µ̃mn(s2, a) =

γ(xm,n+2(s2) + ∑
t∈T (m)

dtatm,n+2) for all m = 1, , . . . , M and n = 1, . . . , N − 2,

0 for all m = 1, . . . , M, n = N − 1, N,

and

λ̃t = γEp1 [yt].
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At this point, we substituted the affine approximation to v(s) given by (4.24) into all
parts of the LP (4.25a)-(4.25d). The result is the ALP in (4.27a)-(4.27d), whose solution
leads to an approximate optimal policy for the MRI scheduling MDP.

max
V0,Ṽ0,V,
Ṽ,W,W̃

V0 + Ṽ0 +
M

∑
m=1

N

∑
n=1

{
VmnEα[xmn] + ṼmnEβ[xmn]

}
+

T

∑
t=1

{
WtEα[yt] + W̃tEβ[yt]

}
,

(4.27a)

s.t. V0 − γṼ0 +
M

∑
m=1

N

∑
n=1

{
Vmnxmn − Ṽmnµmn(s1, a)

}
+

T

∑
t=1

{
Wtyt − W̃tλt

}
≤ c(s1, a),

for all s1 = (1, x, y) ∈ S1, a1 ∈ A(s1), (4.27b)

Ṽ0 − γV0 +
M

∑
m=1

N

∑
n=1

{
Ṽmnxmn −Vmnµ̃mn(s2, a)

}
+

T

∑
t=1

{
W̃tyt −Wtλ̃t

}
≤ c (s2, a) ,

for all s2 = (2, x, y) ∈ S2, a2 ∈ A(s2), (4.27c)

V0, Ṽ0 ∈ R, V, Ṽ ∈ RM×N
+ , W, W̃ ∈ RT

+, (4.27d)

where

Eα[xmn] = ∑
s∈S

α(s)xmn(s), Eα[yt] = ∑
s∈S

α(s)yt(s),

Eβ[xmn] = ∑
s∈S

β(s)xmn(s), Eβ[yt] = ∑
s∈S

β(s)yt(s),

λt = γEp2 [yt],

λ̃t = γEp1 [yt],

µmn(s1, a) =

γ(xm,n+1(s1) + ∑
t∈T (m)

dtatm,n+1), for all m = 1, , . . . , M andn = 1, . . . , N − 1,

0, for all m = 1, . . . , M and n = N,

µ̃mn(s2, a) =

γ(xm,n+2(s2) + ∑
t∈T (m)

dtatm,n+2), for all m = 1, . . . , M andn = 1, . . . , N − 2,

0, for all m = 1, . . . , M andn = N − 1, N.

The (approximate) linear programming model in (4.25a)-(4.25d) has a tractable number
of variables, 2(1 + M× N + T), but still an intractable number of constraints (one for
every state-action pair). For this reason, we solve its dual (4.28a)-(4.28h) using column
generation.
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min
X

∑
s∈S ,

a∈A(s)

c(s, a)X(s, a), (4.28a)

s.t. ∑
s1∈S1,

a1∈A(s1)

X(s1, a1) − γ ∑
s2∈S2,

a2∈A(s2)

X(s2, a2) = 1 (4.28b)

∑
s2∈S2,

a2∈A(s2)

X(s2, a2) − γ ∑
s1∈S1,

a1∈A(s1)

X(s1, a1) = 1 (4.28c)

∑
s1∈S1,

a1∈A(s1)

xmn(s1)X(s1, a1) − ∑
s2∈S2,

a2∈A(s2)

µ̃mn(s2, a2)X(s2, a2) ≥ Eα[xmn], ∀m ∈ M, ∀n ∈ N

(4.28d)

∑
s2∈S2,

a2∈A(s2)

xmn(s2)X(s2, a2) − ∑
s1∈S1,

a1∈A(s1)

µmn(s1, a1)X(s1, a1) ≥ Eβ[xmn], ∀m ∈ M, ∀n ∈ N

(4.28e)

∑
s1∈S1,

a1∈A(s1)

yt(s1)X(s1, a1) − λ̃t ∑
s2∈S2,

a2∈A(s2)

X(s2, a2) ≥ Eα[yt], ∀t ∈ T (4.28f)

∑
s2∈S2,

a2∈A(s2)

yt(s2)X(s2, a2) − λt ∑
s1∈S1,

a1∈A(s1)

X(s1, a1) ≥ Eβ[yt], ∀t ∈ T (4.28g)

X(s, a) ∈ R+, for all s ∈ S , a ∈ A(s). (4.28h)

The dual variable X(s, a) can be interpreted as the frequency of taking action a when
in state s.

4.2.2 Column generation

Column generation (sometimes also called delayed column generation) is a method for
dealing with LPs that have a huge number of variables compared to a moderate
number of constraints. For an introduction to column generation, we refer to [5,
Chapter 6]. Column generation finds the optimal solution to (4.28a)-(4.28h), the master
problem (MP), starting with a small set of feasible state-action pairs (or actually with
their corresponding variables X(s, a)) and then iteratively adding new state-action
pairs that lead to a better solution. The algorithm iterates until no such state-action
pairs can be found.

We introduce the subset of states S ′ ⊂ S and subsets of actionsA′(s) ⊆ A(s), for s ∈ S ′
and observe that, based on the definition of S (see (4.2)), we can define S ′1 and S ′2 and
let S ′ = S ′1 ∪ S ′2. Analogous to this we have A′(s1) ⊆ A(s1) and A′(s2) ⊆ A(s2)
as a subset of feasible actions for the states s1 ∈ S ′1 and s2 ∈ S ′2, respectively. We
then define the Restricted Master Problem (RMP) as the LP (4.28a)-(4.28h) with the
modification that in (4.28a)-(4.28h) we included the variables X(s, a) for all states s ∈ S
and feasible actions a ∈ A(s) and in the RMP we only include the variables X(s, a)
for the states s ∈ S ′ and the actions a ∈ A′(s). This RMP is solved in each iteration of
the column generation algorithm. After the RMP is solved, we look for a state-action
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pair (s, a) that, when we add the corresponding variable X(s, a) to the RMP, leads to
a better objective function value of the RMP. If such a state-action pair (s, a) exists,
the state is added to S ′ and the action to A′(s) and the algorithm proceeds to the
next iteration. In this next iteration, the RMP is solved again, only this time with the
updated S ′ and A′(s). If such a state-action pair does not exists, we conclude that the
objective function value of the RMP cannot be further improved and we found the
optimal solution to the MP (4.28a)-(4.28h) (which is equal to the solution of the RMP of
the current iteration).

The problem still faced is how to generate a state-action pair (s, a), that improve the
solution of the RMP. From column generation theory we know that we should generate
state-action pairs (s, a) for which the corresponding variables X(s, a) have negative
reduced costs. To generate such state-action pairs, we should not try all possible pairs
and compute the reduced costs of the corresponding variable X(s, a). First, because
there are many of them and second, and this is crucial, if we try all possible pairs
and compute the reduced costs of the corresponding variable, then we have not saved
anything compared to solving the whole LP with all variables. The idea is to find a new
variable by solving a second optimization problem, called the pricing problem. From the
dual perspective (that is from the perspective of (4.28a)-(4.28h)) we want to minimize
the reduced costs of the variables X(s, a). From a primal perspective (that is from the
perspective of (4.27a)-(4.27d)), this goal is equal to finding the most violated (primal)
constraint. (If we do not have generated all variables of the dual, we do not have all
constraints of the primal. If a solution is, though optimal for the (dual) RMP of the
current iteration, not an optimal solution for the MP, then there exist not-yet-generated
primal constraints that are violated by the (primal) solution of RMP of the current
iteration.)

Given the dual values associated with the solution of the current RMP, V0, Ṽ0, V, Ṽ W, W̃,
the pricing problem used to identify the state-action pair associated with the most
violated primal constraint is given by:

arg min
s1∈S1, a1∈A(s1),

s2∈S2, a2∈A(s2)

{g1(s1, a1), g2(s2, a2)} , (4.29)

where

g1(s1, a1) = c(s1, a1)−V0 + γṼ0 −
M

∑
m=1

N

∑
n=1

{
Vmnxmn(s1)− Ṽmnµmn(s1, a1)

}

−
T

∑
t=1

{
Wtyt(s1)− W̃tλt

}
,

g2(s2, a2) = c(s2, a2)− Ṽ0 + γV0 −
M

∑
m=1

N

∑
n=1

{
Ṽmnxmn(s2)−Vmnµ̃mn(s2, a2)

}

−
T

∑
t=1

{
W̃tyt(s2)−Wtλ̃t

}
.
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The column generation algorithm iterates until either no primal constraint is vio-
lated ore one is “close enough" to optimality to quit. Here, the first option is that
the algorithm iterates as long as we find solutions to the pricing problem with ob-
jective value strictly less than zero. The implementation of the pricing model in-
volves V0, Ṽ0, V, Ṽ W, W̃, which are the shadow prices corresponding to the constraints
of the dual given in (4.28a)-(4.28h). Since most LP solvers calculate the shadow prices
during each solve iteration, they can be directly accessed. However, it is important
to allow numerical inaccuracies in the computed shadow prices. For this reason, it is
generally advisable to use a small tolerance parameter δ < 0 when verifying whether
a new state-action pair will lead to improvement. The mathematical condition to be
verified for progress then becomes to check whether the objective value of the solution
of the pricing problem is greater than or equal to the tolerance δ. If this is the case, one
is “close enough" to optimality to stop iterating. The value of δ is typically in the order
of −10−4.

Reformulation of the pricing problem

The pricing problem in (4.29) suggests that we need to compute g1(s1, a1), for
all s1 ∈ S1 and a1 ∈ A(s1) and g2(s2, a2), for all s2 ∈ S2 and a2 ∈ A(s2). However, this
requires that much computation and storage capacity that we reformulate the pricing
problem (4.29) as two “actual” optimization problems. For this, we first define

g∗1 = min
s1∈S1,a1∈A(s1)

g1(s1, a1)

= min
(1,x,y)∈S1

a1∈A(1,x,y)

{
c((1, x, y), a1)−

M

∑
m=1

N

∑
n=1

{
Vmnxmn − Ṽmnµmn((1, x, y), a1)

}
−

T

∑
t=1

Wtyt

}
−U1,

(4.30)

where the constant U1 = V0 − γṼ0 −
T

∑
t=1

W̃tλt. Similarly, we define

g∗2 = min
(2,x,y)∈S2

a2∈A(2,x,y)

{
c((2, x, y), a2)−

M

∑
m=1

N

∑
n=1

{
Ṽmnxmn −Vmnµ̃mn((2, x, y), a2)

}
−

T

∑
t=1

W̃tyt

}
−U2,

(4.31)

where the constant U2 = Ṽ0 − γV0 −
T

∑
t=1

Wtλ̃t.

The optimization problem in (4.30) is almost an integer linear program (ILP) with
decision variables (x, y) ∈ S1 (as defined in (7.1)) and a1 ∈ A(1, x, y) (defined by the
constraints (4.3)-(4.7)), except that the direct costs incorporates the non-linear part f AS.
However, we can linearize f AS, and thereby the objective in (4.30), to create an ILP
that we can solve as the pricing problem corresponding to state-action pairs feasible at
the first decision epoch of a day. To do this, we first introduce the additional binary
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variables φmn and ξmn, for m ∈ M and n ∈ N , and the constraints:

xmn + ∑
t∈T (m)

dtatmn ≥ φmnCR,1
mn (4.32)

xmn + ∑
t∈T (m)

dtatmn ≤ (1− φmn)CR,1
mn + φmn(CR,1

mn + COT,1
mn ) (4.33)

xmn ≥ ξmnCR,1
mn (4.34)

xmn ≤ (1− ξmn)CR,1
mn + ξmn(CR,1

mn + COT,1
mn ) (4.35)

The introduced variables φm ∈ {0, 1} and ξmn ∈ {0, 1} function as indicators whether
or not xmn + ∑t∈T (m) dtatmn ≥ CR,1

mn and xmn ≥ CR,1
mn , respectively. Using these indicators,

we can rewrite f AS((1, x, y), a) now as

f AS((1, x, y), a) = ∑
m∈M

∑
n∈N

h

[
xmn + ∑

t∈T (m)

dtatmn − CR,1
mn

]+
− ∑

m∈M
∑

n∈N
h
[

xmn − CR,1
mn

]+

= ∑
m∈M

∑
n∈N

h

[(
xmn + ∑

t∈T (m)

dtatmn

)
φmn − xmnξmn + (ξmn − φmn)CR,1

mn

]
.

This is, however, still a non-linear function since it involves the multiplications of
the integer variables xmn + ∑t∈T (m) dtatm1 and the binary variables φmn and xmn and
ξmn. Fortunately, such a multiplication of variables can be linearized by introducing
additional integer variables θmn and κmn, for m ∈ M and n ∈ N . We then can express
the multiplication using the following conditions:

θmn ≤ φmn(CR,1
mn + COT,1

mn ) (4.36)

θmn ≤ xmn + ∑
t∈T (m)

dtatmn, (4.37)

θmn ≥ xmn + ∑
t∈T (m)

dtatmn − (CR,1
mn + COT,1

mn )(1− φmn), (4.38)

κmn ≤ ξmn(CR,1
mn + COT,1

mn ), (4.39)

κmn ≤ xmn, (4.40)

κmn ≥ xmn − (CR,1
mn + COT,1

mn )(1− ξmn), (4.41)

θmn ∈N0, (4.42)

κmn ∈N0, (4.43)
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and write

f AS(s1, a) = ∑
m∈M

∑
n∈N

h
[
θmn − κmn + (ξmn − φmn)CR,1

mn

]
. (4.44)

From the definition of φmn and ξmn it follows that if φmn = ξmn = 1 we should

incur ∑
m∈M

∑
n∈N

h

[
∑

t∈T (m)

dtatmn − xmn

]
overtime costs. Since (4.37) and (4.38) imply

that θmn = xmn + ∑
t∈T (m)

dtatmn and (4.40) and (4.41) imply that κmn = xmn, it follows

from (4.44) that

f AS(s1, a) = ∑
m∈M

∑
n∈N

h

[
∑

t∈T (m)

dtatmn − xmn

]
.

Similarly, using other combinations of constraints (4.36)-(4.43), we can observe
that (4.44) also gives the correct overtime costs for other possible combinations of φmn
and ξmn.

All together, we get an ILP that is equivalent to the optimization problem in (4.30).
In this ILP the constraints are given by the state space constraints, the action set
constraints (4.3)-(4.7) and the constraints needed to linearize f AS(s1, a), (4.32)-(4.43).
For the sake of completeness, we present this ILP in its completeness on the following
page.
The optimization problem in (4.31) can be linearized in a similar way. We present the
resulting ILP from this linearization in Appendix B.1.

Note that constraints (4.45c), (4.45g) and (4.45h) just fix action variables to be zero.
Hence these variables do not contribute to the objective value of the ILP. So, to limit
computation time, instead of implementing these constraints, we do not construct
the decision variables that do appear in these constraints. Afterwards, to generate
the state-action pair (s1, a1) that corresponds to the ILP solution (x, y, a), we fix the
not-generated variables to be zero.

40



4.2. The solution approach

min
x,y,a,

φ,θ,ξ,κ

N

∑
n=1

T

∑
t=1

∑
m∈M(t)

f AT(1, t, n)atmn +
N

∑
n=1

M

∑
m=1

h
[
θmn − κmn + (ξmn − φmn)CR,1

mn

]

−
M

∑
m=1

{
N

∑
n=1

Vmnxmn − γ
N−1

∑
n=1

Ṽmn(xm,n+1 + ∑
t∈T (m)

dtatm,n+1)

}
−

T

∑
t=1

Wtyt, (4.45a)

s.t. xmn ≤ CR,1
mn + COT,1

mn , ∀m ∈ M, ∀n = 1, 2, . . . , N − 2, (4.45b)

xmn = 0, ∀m ∈ M, n = N − 1, N, (4.45c)

yt ≤ Q1
t , ∀t ∈ T , (4.45d)

∑
n∈N

∑
m∈M(t)

atmn = yt, ∀t ∈ T , (4.45e)

xmn + ∑
t∈T (m)

dtatmn ≤ CR,1
mn + COT,1

mn , ∀m ∈ M, n ∈ N , (4.45f)

atmn = 0, ∀t ∈ T , m 6∈ M(t), n ∈ N , (4.45g)

atm1 = atm2 = 0, ∀t ∈ T ′, m ∈ M(t), (4.45h)

xmn + ∑
t∈T (m)

dtatmn ≥ φmnCR,1
mn , ∀m ∈ M, ∀n ∈ N (4.45i)

xmn + ∑
t∈T (m)

dtatmn ≤ (1− φmn)CR,1
mn + φmn(CR,1

mn + COT,1
mn ), ∀m ∈ M, n ∈ N ,

(4.45j)

xmn ≥ ξmnCR,1
mn , ∀m ∈ M, n ∈ N , (4.45k)

xmn ≤ (1− ξmn)CR,1
mn + ξmn(CR,1

mn + COT,1
mn ), ∀m ∈ M, n ∈ N , (4.45l)

θmn ≤ φmn(CR,1
m,1 + COT,1

m,1 ), ∀m ∈ M, n ∈ N , (4.45m)

θmn ≤ xmn + ∑
t∈T (m)

dtatmn, ∀m ∈ M, n ∈ N , (4.45n)

θmn ≥ xmn + ∑
t∈T (m)

dtatmn − (CR,1
mn + COT,1

mn )(1− φmn), ∀m ∈ M, n ∈ N ,
(4.45o)

κmn ≤ ξmn(CR,1
mn + COT,1

mn ), ∀m ∈ M, n ∈ N , (4.45p)

κmn ≤ xmn, ∀m ∈ M, n ∈ N , (4.45q)

κmn ≥ xmn − (CR,1
mn + COT,1

mn )(1− ξmn), ∀m ∈ M, n ∈ N , (4.45r)

x ∈NMN
0 , y ∈NT

0 , a ∈NTMN
+ , (4.45s)

φ ∈ {0, 1}MN , ξ ∈ {0, 1}MN , θ ∈NMN
0 , κ ∈NMN

0 . (4.45t)
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At this point, we have split the pricing problem (4.29) into two ILPs. It is evident
that g∗1 is the solution to the ILP (4.45a)-(4.45t) minus the constant U1 and g∗2 is the
solution to (B.1a)-(B.1t) minus the constant U2. In the classical column generation we
would now add the state-action pair associated with the most violated primal con-
straint. That is, if g∗1 < g∗2 and (s∗1 = (1, x∗, y∗), a∗) is the solution of (4.45a)-(4.45t), we
would add the state-action pair (s∗1 , a∗) to the RMP. If, instead, g∗2 < g∗1 , we would add
(s∗2 , a∗) to the RMP, where (s∗2 = (1, x∗, y∗), a∗) is the solution of (B.1a)-(B.1t). How-
ever, the idea behind column generation is to add variables with negative reduced
costs, since these variables may improve the solution. Thus, as long as g∗1 < 0, the
solution (s∗1 = (1, x∗, y∗), a∗) may improve the solution to the RMP and we should
add this state-action pair. Similarly, if g∗2 < 0 the solution (s∗2 = (2, x∗, y∗), a∗) may
improve the solution to the RMP and we should add this state-action pair. In conclu-
sion, there is no need to only add the state-action pair corresponding to min{g∗1 , g∗2},
but instead we could add both (s∗1 = (1, x∗, y∗), a∗) and (s∗2 = (2, x∗, y∗), a∗) simulta-
neously (in the same iteration) as long as both g∗1 , g∗2 are strictly less than zero. In
fact, this is probably advantageous for the computation time of the column generation
algorithm, since you need to solve both g∗1 , g∗2 in each iteration anyway, so by adding
both (s∗1 = (1, x∗, y∗), a∗) and (s∗2 = (2, x∗, y∗), a∗) to the RMP the number of iterations
is probably reduced. Algorithm 4.1 summarizes the column generation algorithm.

Algorithm 4.1: Column generation algorithm
Input : the MP(4.28a)-(4.28h) and

tolerance parameter δ

Output :Optimal solution to the MP (4.28a)-(4.28h)
1 Initialization: find initial S ′1 S ′2 (and set S ′ = S ′1 ∪ S ′2), and A′(s1), for s1 ∈ S ′1,

and A′(s2), for s2 ∈ S ′2, that satisfy the constraints (4.28b)-(4.28h) ;
2 while min{g∗1 , g∗2} < δ do
3 Solve the RMP with S ′1 S ′2 and A′(s1), for s1 ∈ S ′1, A′(s2), for s2 ∈ S ′2;
4 Solve the ILPs (4.45a)-(4.45t) and (B.1a)-(B.1t) and compute g∗1 and g∗2 ;
5 if g∗1 < 0 then
6 Set S ′1 := S ′1 ∪ {s∗1} and A′(s∗1) := A′(s∗1) ∪ {a∗1}, where

(s∗1 = (1, x∗, y∗), a∗1) is the solution to the ILP (4.45a)-(4.45t) ;
7 else if g∗2 < 0 then
8 Set S ′2 := S ′2 ∪ {s∗2} and A′(s∗2) := A′(s∗2) ∪ {a∗2}, where

(s∗2 = (2, x∗, y∗), a∗2) is the solution to the ILP (B.1a)-(B.1t) ;
9 end

Finding initial state-action pairs

The last issue to tackle arises from the initialization of Algorithm 4.1: we need to find
an initial set of state-action pairs. This set determines the RMP of the first iteration and
needs to satisfy the constraints of the MP (4.28a)-(4.28h). Unfortunately, there is no easy
way to identify an initial set of feasible state-action pairs. To find initial state-action
pairs, the right-hand sides (RHSs) of the constraints (4.28b)-(4.28h) play an important
role: the smaller these RHSs are, the easier it is to find feasible initial state-action pairs.
At least, that is what we have experienced during experiments. In Appendix B.2 we
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present a convenient way to determine the RHSs. The presented manner is not only
an easy way to determine them, but also offers the freedom to scale them to a certain
extent.

Next, we first find one state-action pair per patient type for both decision epochs. That
is, for all t ∈ T , we find s1(t) ∈ S1, a1(t) ∈ A(s1(t)) and s2(t) ∈ S2, a2(t) ∈ A(s2(t))
from

arg max
s1∈S1,a1∈A(s1)

s2∈S2,a2∈A(s2)

{
min {q1(s1, a), q2(s2, a)}

∣∣∣ yt(s1) = Q1
t , yt(s2) = Q2

t

}
,

where

q1(s1, a1) = ∑
m,n

xmn(s1)− µ̃mn(s2, a2) and

q2(s2, a2) = ∑
m,n

xmn(s2)− µmn(s1, a1).

Then we pass this initial state-action pairs, s1(t), a1(t), s2(t), a2(t) to the following
LP, which we solve iteratively until ψ = 0. In each iteration we add state-action pairs
based on the pricing problems (4.45a)-(4.45t) and (B.1a)-(B.1t), that are also used to
solve the RMP.

min
X, ψ

ψ,

s.t. ∑
s1∈S1,

a1∈A(s1)

X(s1, a1) − γ ∑
s2∈S2,

a2∈A(s2)

X(s2, a2) = 1

∑
s2∈S2,

a2∈A(s2)

X(s2, a2) − γ ∑
s1∈S1,

a1∈A(s1)

X(s1, a1) = 1

∑
s1∈S1,

a1∈A(s1)

xmn(s1)X(s1, a1) − ∑
s2∈S2,

a2∈A(s2)

µ̃mn(s2, a2)X(s2, a2) ≥ Eα[xmn]− ψ, ∀m ∈ M, ∀n ∈ N

∑
s2∈S2,

a2∈A(s2)

xmn(s2)X(s2, a2) − ∑
s1∈S1,

a1∈A(s1)

µmn(s1, a1)X(s1, a1) ≥ Eβ[xmn]− ψ, ∀m ∈ M, ∀n ∈ N

∑
s1∈S1,

a1∈A(s1)

yt(s1)X(s1, a1) − λ̃t ∑
s2∈S2,

a2∈A(s2)

X(s2, a2) ≥ Eα[yt]− ψ, ∀t ∈ T

∑
s2∈S2,

a2∈A(s2)

yt(s2)X(s2, a2) − λt ∑
s1∈S1,

a1∈A(s1)

X(s1, a1) ≥ Eβ[yt]− ψ, ∀t ∈ T

X(s, a) ∈ R+, for all s ∈ S , a ∈ A(s), ψ ≥ 0
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4.2.3 Approximate optimal policy

In this section, we discuss how to derive a policy from the solution to the(dual) ALP. We
refer to this policy as the approximate optimal policy (AOP). In traditional LP method
for directly solving the MDP, we would have solved the dual of (4.19a)-(4.19c), yielding
an optimal value X∗(s, a), for all states s ∈ S and for all actions a ∈ A(s). From this
we would be able to construct an optimal policy by setting the probability of using
action a in state s equal to the value of the dual variable, X∗(s, a), divided by the sum
of the dual variables over all possible actions in state s. The viability of this method
depends on the fact that a direct solution to the LP (4.19a)-(4.19c) will have at least
one positive variable, X∗(s, a), for all states s. In solving the ALP through column
generation, only a very small percentage of all possible states are evaluated, and thus
the traditional method for deriving a policy fails. Instead, in the ADP setting, we insert
the optimal values V∗0 , Ṽ∗0 , V∗, Ṽ∗ W∗, W̃∗ into the right-hand side of the optimality
equations (4.18) and then solve them for a ∈ A(s). For states s1 = (1, x, y) ∈ S1 this
gives the following optimization problem:

min
a∈A(s1)

{
c(s1, a) + γ ∑

s′∈S
p(s′|s, a)v(s′)

}
,

= min
a∈A(s1)


N

∑
n=1

T

∑
t=1

∑
m∈M(t)

f AT(t, n)atmn + f AS(s1, a)

+ γ ∑
y′∈Y1

p1(y′)

(
Ṽ∗0 +

M

∑
m=1

N−1

∑
n=1

Ṽ∗mn(xm,n+1 + ∑
t∈T (m)

dtatm,n+1) +
T

∑
t=1

W̃∗t y′t,

)
 ,

= min
a∈A(s1)

{
N

∑
n=1

T

∑
t=1

∑
m∈M(t)

f AT(t, n)atmn + f AS(s1, a) + γ
M

∑
m=1

N−1

∑
n=1

Ṽ∗mn

(
∑

t∈T (m)

dtatm,n+1

)}
+ Z1,

where the constant

Z1 = γ

(
Ṽ∗0 +

M

∑
m=1

N−1

∑
n=1

Ṽ∗mnxm,n+1

)
+

T

∑
t=1

W̃∗t λt.

Note that to determine the optimal action in state s1, the constant Z1 is of no importance.
To reformulate this optimization program into an equivalent ILP, we use the same
linearization of f AS as in (4.45a)-(4.45t):

min
a,φ,θ

ξ,κ

N

∑
n=1

T

∑
t=1

∑
m∈M(t)

f AT(1, t, n)atmn +
M

∑
m=1

N

∑
n=1

h
[
θmnκmn + (ξmn − φmn)CR,1

mn

]

+ γ
M

∑
m=1

N−1

∑
n=1

Ṽ∗mn

(
∑

t∈T (m)

dtatm,n+1

)
,

s.t. constraints (4.45b)-(4.45t).
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Note that, in constrast to (4.45a)-(4.45t), here the xmn’s are no decision variables but an
input parameter of the ILP.

Analogously, to determine the approximate optimal action a ∈ A(s2), for states
s2 = (2, x, y), we get

min
a∈A(s2)

{
N

∑
n=1

T

∑
t=1

∑
m∈M(t)

f AT(t, n)atmn + f AS(s2, a) + γ
M

∑
m=1

N−2

∑
n=1

V∗mn

(
∑

t∈T (m)

dtatm,n+2

)}
+ Z2,

where the constant

Z2 = γ

(
V∗0 +

M

∑
m=1

N−2

∑
n=1

V∗mnxm,n+2

)
+

T

∑
t=1

W∗t λ̃t.

Or, equivalently,

min
a,φ,θ

ξ,κ

N

∑
n=1

T

∑
t=1

∑
m∈M(t)

f AT(2, t, n)atmn +
M

∑
m=1

N

∑
n=1

h
[
θmnκmn + (ξmn − φmn)CR,2

mn

]

+ γ
M

∑
m=1

N−2

∑
n=1

V∗mn

(
∑

t∈T (m)

dtatm,n+2

)
,

s.t. constraints (B.1b)-(B.1t).

In practice, rather than computing and storing the approximate optimal actions for
each state, a resource-intensive task, we only compute them as needed.

The implementation of the column generation algorithm was performed in AIMMS 4.39
with CPLEX 12.7 as the solver.
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5
Data study

This chapter reports on the results of a data analysis we performed on a data set pro-
vided by the Radiology department of Rijnstate. The purpose of this data analysis
is twofold. Firstly, it provides a quantitative (approximate) summary of the perfor-
mances of the department during the period that is included in the data set. Secondly,
to evaluate the performance of the Markov decision process (MDP)-based MRI ap-
pointment system (AS) of Chapter 4, we need to derive statistical estimators for the
required parameters of this model. Section 5.1 is about the analysis of the current
performances and Section 5.2 about deriving the input for the MDP from the previous
chapter. In this latter section, we assume the reader to be familiar with the MDP and its
notation. The results in this chapter have been calculated using the statistical software
program IBM SPSS Statistics 23, because this was available at Rijnstate’s computers.
For easy reference, in the remaining chapters of this thesis, we will refer to the 1.5 Tesla
MRI scanner at location Arnhem as MRI scanner 1, the 3 Tesla MRI scanner at location
Arnhem as MRI scanner 2 and the 1.5 Tesla MRI scanner at location Zevenaar as MRI
scanner 3.

5.1 Data analysis of current performances of Rijnstate’s Radi-
ology department

The analyses in this section are based on a data set provided by the Radiology depart-
ment of Rijnstate. This data set initially consists of data on all MRI scans performed
on MRI scanner 2 and MRI scanner 3 from January 2, 2019 up to and including Au-
gust 30, 2019. This data comes from the department’s computer system HIX and initially
consisted of 7135 data points. However, we had to remove 75; 6 points because these
are maintenance visits to the MRI scanners (3 maintenance visits to each MRI scanner)
and another 69 data points because they are incorrect or incomplete. By incomplete
we mean that these data points could not be used to score any of the key performance
indicators (KPIs). By incorrect data points we mean any irregularities such as negative
service times. On some days, according to the data, three MRI scans take place simulta-
neously. Since there are only two MRI scanners in the data set, this is impossible. In
these cases there is always one MRI scan that is entirely within the service period of
one of the other two. We do not know how these irregularities ended up in the data,
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5.1. Data analysis of current performances of Rijnstate’s Radiology department

but we have removed these data points before doing any further analyses. At the end,
we have a data set of 7060 data points.

Based on the data set we evaluate the performance of Rijnstate’s Radiology department
on the following key performance indicators (KPIs): (direct) waiting time, access time,
average daily utilization and average daily overtime. Utilization is defined as the
percentage of available regular appointment slots used for delivering MRI examinations.
Note that utilization values different than 100% are associated with either overtime
or idle time and thus utilization values close to 100% are preferred. We calculate
the utilization and overtime on a daily basis, because this offers us the flexibility to
exclude days in the calculation if we observe any abnormalities in the data of this
day. Table 5.1 shows the scores on these KPIs. Apart from the response time and
the (direct) waiting time, all KPIs are blueprint dependent. During the time span of
the data, the department altered the blueprint calendars twice (and occasionally for a
single day). We observed the scores on the KPIs for all three periods and found that the
difference was very small. Hence we only report on the overall scores on the KPIs. In
the simulation model in the next period, we used the blueprint calendars used by the
department during the period from January 2, 2019 up to and including April 26, 2019.
The absolute difference between the score on a KPI during this specific period and
overall was at most 1. Besides the scores on the KPIs, Table 5.1 also shows the number
of data points these scores are based on. These numbers are included because not all
data points could be used to evaluate the score on a KPI. We will explain which data
points needed to be excluded for each KPI later on. Note the available data set does not
allow us to perform analyzes per individual MRI scanner.

Three important performance indicators for which the data set does not offer any
information are the no-show percentage and the cancellation percentage. We have
no information about the no-show percentage because we only have data available
from MRI scans that actually took place.
If a cancellation occurs where no alternative appointment is planned (immediately),
the same consequence as with a no-show applies and this appointment did not appear
in our data set. If today a cancellation occurs where an alternative appointment is
planned immediately, the HIX system works in such a way that the order date (the date
on which the MRI request was first submitted) is not adjusted. However, the original
booking date (the date on which the appointment was booked that is rescheduled
today) is adjusted to today’s date. If we include these MRI appointments in the data
set in this way (original order date and adjusted booking date), this has negative
influence on the response time and almost always negative influence on the access time
(almost always the alternative appointment is planned on a day further in the future
than the original appointment day). In addition, the access time for the alternative
appointment is determined by what the agenda looks like on the day the cancellation (of
the original appointment) takes place. Hence, because it gives a more realistic picture
of the response time and access time, we asked Rijnstate’s data specialist to adjust the
original order date to the booking date of the alternative appointment if a cancellation
has taken place. Due to the complexity of the HIX system, it was impossible for us
to do this ourselves. The price we pay for this is that we do not gain insight into the
cancellation percentage based on the given data set. A final comment on this data
adjustment is that it may incorrectly reduce the mean response time slightly.
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Chapter 5. Data study

Table 5.1: Current performances (mean and standard deviation) of the Radiology department
of Rijnstate. The mean and standard deviation calculations were made based on the number of
data points from the data set from as displayed in the last column of the table. Access times are
calculated in workdays instead of calendar days.

KPI mean std. dev. n

(Direct) waiting time 4.95 min. 23.40 min. 6971

Access time 22.9 days 18.5 days 7060

Daily utilization 83.10% 9.98% 173 days

Daily overtime 8.57 min. 21.79 min. 173 days

Theoretically it can happen that an alternative MRI appointment is not immediately
booked in the event of a cancellation, but this happens the following day. However, the
data adjustment ensures that the response time when booking an alternative appoint-
ment is always equal to zero days.
The service levels for patients, computed for each priority class as the percentage of pa-
tients booked within the corresponding access time target, can also not be determined
from the data set.

In the calculations for the average response time and its standard deviation, we have
omitted data points concerning emergency patients. This type patients randomly arrive
throughout the day (also after regular working hours and on weekend days) and for
their MRI examinations no appointment has been booked in advance. Hence, these
data points would reduce the response time in an unfair manner.
For the calculation of the mean (direct) waiting time we excluded the same MRI
examinations for which no appointment has been booked in advance and beside 20
more data points which we considered as outliers. Since the patients for which no
appointment has been booked in advance can be considered as emergency patients,
these patients are squeezed into the regular program (or arrive after the regular program)
and therefore have a different perception of waiting time than the other patients. The
outliers passed the test(s) to be irregularities but have a direct waiting time longer than
four hours. This seemed to be so unlikely to happen that we excluded them.
For the access time in Table 5.1 we included all patients. In Table 5.2 we recalculated the
mean access time without the emergency patients. Of course, this number is slightly
higher since we excluded data points concerning an access time of zero days. In
Table 5.2 we also calculate the mean access time without emergency patients and (half-)
yearly check-ups.

In Table 5.2 we also calculated the number of MRI scans done per day, taking into
account different types of days. The time span of the data set is 240 days. On 195 of
these 240 days at least one MRI scan is done, weekend days and holidays included.
According to the blueprint calendars used during the data period, there were 181
workdays during the time span of the data set. This means that there were 14 days on
which an extra shift was inserted, for example an extra Sunday shift, or on which at
least one MRI scan was performed without it being an (extra inserted) working day.
If we only consider weekdays, we end up with 173 days and on average 39.8 MRI
scans per day. That is on average 19.6 scans per MRI scanner per day. We used only
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Table 5.2: Other quantities calculated from the data set. The mean and standard deviation
calculations were made based on the number of data points as displayed in the last column of
the table.

Quantity mean Stand. dev. n

Number of MRI scans/examinations done per day;
all days

36.2 13.8 195 days

Number of MRI scans/examinations done per day;
workdays according to blueprint(s)

38.7 10.8 181 days

Number of MRI scans/examinations done per day;
only weekdays

39.8 10.4 173 days

Access time without emergency data points 23.2 days 17.8 days 6991
Access time without emergency & (half-)yearly
check-up data points

16.1 11.0 6729

weekdays in the calculation for the utilization and overtime, because the other days
deviated too much.

5.2 Obtaining model input parameters from the data

For the analyses in this section we used historical data from January 2, 2019 to
May 1, 2019. For this period we know how many MRI appointment requests ar-
rived every day, the time of arrival and the date time when the appointment is booked.
We only look at weekdays because MRI appointments are booked on weekdays. This
implies that the MRI requests that are submitted on Friday evening, Saturday or Sun-
day and do not have the priority to be scanned during the weekend occur in our data
on the following Monday and that we have 108 days in our data set. The average
response time in this data set is 0.19 days (≈ 4.5 hrs.), with an standard deviation
of 0.46 days (≈ 11 hrs.).

In the next chapter, we evaluate the performance of the approximate optimal pol-
icy (AOP) through simulation. One goal of this simulation is that we would like to
make statements about the access times obtained by the AOP if we would implement
this policy in practice in Rijnstate. Hence, we would like a valid simulation model. To
perform validation exercise(s), we need to code the current scheduling practice and
need the current blueprint calendars. In Section 5.2.1 we determine the input for the
validation of the simulation model. This model uses a subset of the currently defined
patient types (which are dictated by the current blueprint calendars). However, some
of these patient types are identical for the MDP (they have the same access time target,
capacity requirement and patient type-MRI scanner compatibility restrictions) and
hence we merge into one single patient type to keep the problem size small as possible.
In Section 5.2.2 we present the MDP patient types and their attributes, based on the
data set.

49



Chapter 5. Data study

5.2.1 Input parameters for validation of the simulation model

Since we only know the aggregated current performance of MRI scanner 2 and MRI
scanner 3, the validation of any simulation model must be done based on the results
presented in Section 5.1 (if we want to do validation exercise(s) based on data and not,
for instance, on expert opinion). Hence, we need a simulation model for the fictitious
Rijnstate situation with two MRI scanners, patient types and their arrival distribution
for this system and the blueprint calendars for the two MRI scanners.

If we consider the current real Rijnstate situation with all the three MRI scanners and
their blueprint calendars (the blueprint calendars used from January 2, 2019 up to and
including April 26, 2019), these blueprint calendars dictates patient types in the way
we illustrated in Figure2.1 in Chapter 2. Based on the blueprint calendars, we can
distinguish 51 different patient types, which are all listed in Table C.1 in Appendix C.1.
For the validation of our simulation model, we take the subset of all patient types
that can at least feasibly be served by either MRI scanner 2 or MRI scanner 3. The
characteristics of these patient types are shown in Table 5.3. Here patient types 1, 3-5
have an access time target of 0 days (that is they need to be examined in the remaining
part of today; access time target of 2 sessions observed from the first decision epoch of
the day and an access time target of 1 session observed from the second decision epoch
of the day); patient types 6-14 have an access time target of 3 (future) days (access time
target of 11 sessions observed from the first decision epoch of the day and an access
time target of 10 session observed from the second decision epoch of the day); patient
types 15-21, 24-29 haven an access time target of 5 (future) days (access time target
of 17 sessions observed from the first decision epoch of the day and an access time
target of 16 session observed from the second decision epoch of the day); and finally
patient types 30-39, 43-51 have an access time target of 10 (future) days (access time
target of 32 sessions observed from the first decision epoch of the day and an access
time target of 31 session observed from the second decision epoch of the day). For
simplicity we incorporated (half-)yearly check-up appointment requests into one of the
patient types 30-39, 43-51. All patient types with an access time target greater than 0
days are assumed to be outpatient and cannot be booked into the remaining part of
today, i.e. all patient types other than types 1, 3-5 cannot be booked into session 1 and 2
if are at the first decision epoch of the day and not into session 1 if we are at the second
decision epoch of the day.

Table 5.3: Characteristics of patient types in the simulation model validation instance. Here we
have only MRI scanner 2 and MRI scanner 3. The duration describes the capacity requirement
of each patient in number of 10-minute appointment slots. The third and fourth column show
whether a MRI scanner is suitable for the type of MRI examination (3) or not (7).

Patient
type

Duration
(# slots)

Compatibility
MRI scanner ...

Occurrence in
data at DE ...

(in %)

Arrival rate
(# reqs./day)

at DE ...

2 3 1 2 1 2

1 3 3 7 1.047 0.552 0.231 0.104

3 3 3 7 1.710 1.161 0.377 0.218

(Continued on next page)
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Table 5.3 – Continued

Patient
type

Duration
(# slots)

Compatibility
MRI scanner ...

Occurrence in
data at DE ...

(in %)

Arrival rate
(# reqs./day) at DE

...

2 3 1 2 1 2

4 6 3 7 0.281 0.244 0.062 0.046

5 3 7 3 1.680 0.464 0.370 0.087

6 2 3 3 3.784 2.931 0.835 0.552

7 3 3 3 4.722 3.728 1.041 0.701

8 3 3 3 0.847 1.054 0.187 0.198

9 3 3 7 0.961 1.017 0.212 0.191

10 3 3 3 4.545 4.235 1.002 0.797

11 3 3 3 4.914 3.357 1.084 0.632

12 3 3 3 2.276 2.621 0.502 0.493

13 3 3 7 1.967 1.234 0.434 0.232

14 2 7 3 0.836 1.361 0.184 0.256

15 3 3 3 3.818 5.346 0.842 1.006

16 3 3 3 3.988 3.718 0.880 0.700

17 2 3 3 0.405 0.594 0.089 0.112

18 3 3 7 0.899 1.516 0.198 0.285

19 2 3 7 0.416 0.262 0.092 0.049

20 2 3 7 0.199 0.428 0.044 0.080

21 2 7 3 1.315 1.501 0.290 0.283

24 3 3 3 4.660 5.411 1.028 1.018

25 4 3 7 1.353 1.197 0.298 0.225

26 3 7 3 1.422 1.964 0.314 0.370

27 2 7 3 0.516 0.221 0.114 0.042

28 2 7 3 0.984 0.584 0.217 0.110

29 2 7 3 1.241 0.548 0.274 0.103

30 2 3 3 2.398 1.776 0.529 0.334

31 2 3 3 4.457 5.110 0.983 0.962

32 3 3 3 4.010 5.376 0.884 1.012

33 3 3 3 4.319 4.942 0.953 0.930

34 3 3 3 2.405 2.046 0.530 0.385

35 3 3 3 1.056 1.298 0.233 0.244

36 3 3 3 1.229 1.720 0.271 0.324

37 3 3 7 1.252 0.689 0.276 0.130

38 3 3 7 1.835 1.517 0.405 0.285

39 4 3 7 1.273 1.561 0.281 0.294

43 3 3 3 3.660 5.843 0.807 1.100

(Continued on next page)
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Table 5.3 – Continued

Patient
type

Duration
(# slots)

Compatibility
MRI scanner ...

Occurrence in
data at DE ...

(in %)

Arrival rate
(# reqs./day) at DE

...

2 3 1 2 1 2

44 3 3 3 5.351 4.185 1.180 0.788

45 3 3 3 3.719 2.785 0.820 0.524

46 3 3 3 3.357 6.445 0.740 1.213

47 6 3 7 2.494 2.577 0.550 0.485

48 3 3 7 1.831 1.068 0.404 0.201

49 3 3 7 1.781 0.658 0.393 0.124

50 3 3 7 1.107 1.169 0.244 0.220

51 3 3 7 1.681 1.985 0.371 0.373

100.000 100.000 22.056 18.817

The MDP has two decision epochs every day. In the simulation model we present
in the next chapter, we also use these decision epochs. The first decision epoch on a
day will be at 12.30 p.m. and the second decision epoch of the day will be at 5 p.m.
At 5p.m. the other outpatient clinics of the hospital are closed and so all same-day
priority appointment requests are known. However, the MRI scanners still operate for
at least an hour and so we can try to book same-day priority patients in this last hour.
At 12.30 p.m., the morning session of outpatient clinics is finished, so the same-day
priority MRI requests emerging from these sessions is known. Also, the morning
rounds on the wards are completed, so the majority of inpatient same-day priority MRI
requests is known.

For all patient types in Table 5.3 we want the arrival rate for requests at both decision
epochs. However, we only want the arrival rates for the appointment requests submit-
ted to MRI scanner 2 or MRI scanner 3. Fortunately, for each data point in the data set
we know on which MRI scanner it was eventually booked. For instance, patient type 1
can be booked on both MRI scanner 1 and MRI scanner 2, but in the simulation model
of the fictitious situation with only MRI scanner 2 and MRI scanner 3, we only want
those requests from patient type 1 that eventually have been booked on MRI scanner 2.
In the data set we observe that appointment requests arrive at an average rate of 22.06
requests at the first decision epoch of a day, with a standard deviation of 5.45. At
the second decision epoch of a day, we observe requests to arrive at an average rate
of 18.82, with a standard deviation of 4.57. For simulation, it is necessary to model the
appointment request arrivals at both decision epochs by a probability distribution. To
this end, we first tried to fit Poisson distributions for all types separately. However, in
none of the cases we could find a satisfying fit. Instead we model the total number of
appointment requests at both decision epochs by a probability distribution and each
arriving patient in the simulation is randomly assigned to be one of the 45 patient
types, based on the empirically defined probability distribution in the sixth and seventh
column of Table 5.3.
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(a) Daily MRI appointment requests submitted to
MRI scanner 2 or MRI scanner 3 at the first decision
epoch plotted as a histogram along with
the Poisson (red) and negative binomial
(black) distribution curve fitted to this data.
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(b) Daily MRI appointment requests submitted to
MRI scanner 2 or MRI scanner 3 at the second
decision epoch plotted as a histogram along with
the Poisson (red) and negative binomial (black)
distribution curve fitted to this data.

Figure 5.1: MRI appointment requests submitted to MRI scanner 2 or MRI scanner 3 at the first
(a) and second (b) decision epoch of a day plotted as a histogram along with the Poisson (red)
and negative binomial (black) distribution curve fitted to this data.

In Figure 5.1a the number of MRI appointment requests observed at the first decision
epoch is plotted as a histogram along with the Poisson and negative binomial distribu-
tion curve fitted to it. In case of the negative binomial distribution, the random variable
models the number of ‘failures’ before a specified number of successes, rth, is reached
in a series of independent, identical trials. The parameter p is the probability of success
in a single trial. Both fitted distributions are found using the Maximum Likelihood
Estimator (MLE) method. From this it follows immediately that the Poisson distribution
fitted to the data has a mean λ = 22.06. The parameters for the negative binomial fitted
to the data are r = 64, p = 0.744. The fit of both distributions with respect to the data
is statistically tested using the Chi-squared goodness of fit test. For the Poisson dis-
tribution we found p-value = 0.232. For the negative binomial distribution we found
p-value = 0.943. Hence we model the total number of appointment requests at the first
decision epoch as a negative binomial distribution with parameters r = 64, p = 0.744.
Figure 5.1b shows the equivalent of Figure 5.1a for the second decision epoch. The Pois-
son distribution fitted to the data has a mean λ = 18.82. The parameters for the negative
binomial fitted to the data are r = 173, p = 0.902. For the Poisson distribution we found
p-value = 0.300. For the negative binomial distribution we found p-value = 0.535.
Hence we model the total number of appointment requests at the second decision
epoch as a negative binomial distribution with parameters r = 173, p = 0.902.

5.2.2 Patient types and the arrival distribution of appointment requests for
the MDP

In the next chapter, we eventually want to simulate various policies among which
the AOP for the complete system with all three MRI scanners. Hence for this system,
we also want to model the appointment request arrivals for all patient types at both
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decision epochs by a probability distribution. However, some of the patient types
in Table C.1 are identical to the MDP and we will explain why. The patient types in
this table are dictated by the blueprint calendars, i.e., every HIX code that has some
appointment slots uniquely reserved for it, yields as a patient type. The MDP cannot
distinguish different days in terms of total available capacity and it can also not reserve
appointment slots for specific HIX codes. Hence, all patient types from Table C.1
that have the same access time target, plus the same capacity requirement, plus the
same MRI scanner compatibility restrictions are identical to the MDP. Table C.2 shows
the MDP patient types and how they follow from the patient types dictated by the
blueprint calendars in Table C.1.

Table 5.5 shows the characteristics of the MDP patient types. Here patient types 1-5
have an access time target of 0 days (that is they need to be examined in the remaining
part of today; access time target of 2 sessions observed from the first decision epoch of
the day and an access time target of 1 session observed from the second decision epoch
of the day); patient types 6-11 have an access time target of 3 (future) days (access
time target of 11 sessions observed from the first decision epoch of the day and an
access time target of 10 session observed from the second decision epoch of the day);
patient types 12-19 haven an access time target of 5 (future) days (access time target
of 17 sessions observed from the first decision epoch of the day and an access time
target of 16 session observed from the second decision epoch of the day); and finally
patient types 20-27 have an access time target of 10 (future) days (access time target
of 32 sessions observed from the first decision epoch of the day and an access time
target of 31 session observed from the second decision epoch of the day). For simplicity
we incorporated (half-)yearly check-up appointment requests into one of the patient
types 20-27. All patient types with an access time target greater than 0 days are assumed
to be outpatient and cannot be booked into the remaining part of today, i.e. all patient
types other than types 1-5 cannot be booked into session 1 and 2 if are at the first
decision epoch of the day and not into session 1 if we are at the second decision epoch
of the day.

Table 5.5: Characteristics of the MDP patient types. The duration describes the capacity
requirement of each patient in number of 10-minute appointment slots. The third, fourth and
fifth column show whether a MRI scanner is suitable for the type of MRI examination (3) or
not (7).

Patient
type

Duration
(# slots)

Compatibility MRI
scanner ...

Occurrence in
data at DE ...

(in %)

Arrival rate
(# reqs./day)

at DE ...

1 2 3 1 2 1 2

1 3 3 3 7 1.612 0.109 0.495 0.030

2 3 3 7 7 1.284 0.414 0.394 0.115

3 3 7 3 7 1.462 0.520 0.449 0.144

4 6 7 3 7 0.240 0.211 0.074 0.059

5 3 7 7 3 1.436 0.401 0.441 0.111

(Continued on next page)
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Table 5.5 – Continued

Patient
type

Duration
(# slots)

Compatibility MRI
scanner ...

Occurrence in
data at DE ...

(in %)

Arrival rate
(# reqs./day)

at DE ...

1 2 3 1 2 1 2

6 2 3 3 3 3.236 2.531 0.994 0.702

7 3 3 3 3 4.763 4.129 1.463 1.145

8 3 3 3 3 1.929 1.398 0.592 0.388

9 3 3 3 3 10.036 8.818 3.082 2.445

10 3 7 3 7 1.682 1.066 0.516 0.295

11 2 7 7 3 0.715 1.175 0.220 0.326

12 3 3 3 3 6.676 7.826 2.050 2.170

13 2 3 3 7 2.475 3.037 0.760 0.842

14 3 3 3 7 1.273 1.427 0.391 0.396

15 3 3 7 7 2.983 2.963 0.916 0.822

16 3 7 3 3 3.986 4.672 1.224 1.295

17 4 7 3 7 1.157 1.033 0.355 0.287

18 3 7 7 3 1.216 1.696 0.373 0.470

19 2 7 7 3 2.344 1.168 0.720 0.324

20 2 3 3 3 5.862 5.945 1.800 1.648

21 3 3 3 3 11.134 15.281 3.419 4.237

22 3 3 3 7 4.716 4.098 1.448 1.136

23 4 3 3 3 2.152 2.239 0.661 0.621

24 3 3 7 7 4.265 3.931 1.310 1.090

25 3 7 3 3 13.757 16.628 4.225 4.611

26 6 7 3 7 2.133 2.225 0.655 0.617

27 3 3 3 7 5.474 5.060 1.681 1.403

100.000 100.000 30.709 27.728

In the data set we observe that appointment requests arrive at an average rate of 30.71
requests at the first decision epoch of a day, with a standard deviation of 6.92. At
the second decision epoch of a day, we observe requests to arrive at an average rate
of 27.73, with a standard deviation of 6.14. Again, it turned out to be impossible to fit
probability distributions for all types separately. Instead we model the total number of
appointment requests at both decision epochs by a probability distribution and each
arriving patient in the simulation is randomly assigned to be one of the 27 patient
types, based on the empirically defined probability distribution in the sixth and seventh
column of Table 5.5.
In Figure 5.2a the number of MRI appointment requests observed at the first decision
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(a) Daily MRI appointment requests at the first
decision epoch plotted as a histogram along
with the Poisson (red) and negative binomial
(black) distribution curve fitted to this data.
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(b) Daily MRI appointment requests at the second
decision epoch plotted as a histogram along
with the Poisson (red) and negative binomial
(black) distribution curve fitted to this data.

Figure 5.2: MRI appointment requests at the first (a) and second (b) decision epoch of a day
plotted as a histogram along with the Poisson (red) and negative binomial (black) distribution
curve fitted to this data.

epoch is plotted as a histogram along with the Poisson and negative binomial distribu-
tion curve fitted to it. The Poisson distribution fitted to the data has a mean λ = 30.71.
The parameters for the negative binomial fitted to the data are r = 56, p = 0.646. The
fit of both distributions with respect to the data is again statistically tested using the
Chi-squared goodness of fit test. For the Poisson distribution we found p-value = 0.134.
For the negative binomial distribution we found p-value = 0.792. Hence we model the
total number of appointment requests at the first decision epoch as a negative binomial
distribution with parameters r = 56, p = 0.646.
Figure 5.2b shows the equivalent of Figure 5.1a for the second decision epoch. The Pois-
son distribution fitted to the data has a mean λ = 27.73. The parameters for the negative
binomial fitted to the data are r = 84, p = 0.752. For the Poisson distribution we found
p-value = 0.753. For the negative binomial distribution we found p-value = 0.794.
Hence we model the total number of appointment requests at the second decision
epoch as a negative binomial distribution with parameters r = 84, p = 0.752.
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6
Results

In this chapter we present the results of the approximate optimal policy (AOP) found for
Rijnstate. Although the Markov Decision Process (MDP) model described in Chapter 4
is formulated in terms of the expected discounted costs over the infinite horizon, the
performance of the approximate optimal scheduling policy is evaluated in terms of
service levels, mean daily average capacity utilization, mean daily overtime slots used,
mean average access times and mean service levels. The service levels are computed for
each priority class as the percentage of patients booked within the corresponding access
time target. Utilization is defined as the percentage of available regular appointment
slots used for delivering MRI examinations and is calculated on a daily basis. Note that
utilization values different than 100% are associated with either overtime or idle time
and thus utilization values close to 100% are preferred. To measure the AOP in terms
of these performance measures, we use a simulation model. In Section 6.1 we shortly
explain the used simulation model.

We compare the AOP to the two other policies described below, which we both use
with and without blueprint calendars.

• First Available Slot (FAS): Patients are booked as soon as possible. The order in
which patients are booked is determined by their access time target. This policy
resorts to overtime only when there is no available regular capacity within the
booking horizon. Overtime is then booked starting with session 1 and working up
to session N of the booking horizon . If this policy is used with blueprint calendars,
we refer to the policy as FAS-wBC, and the blueprint calendar determines which
appointment slots are suitable for each patient type. Patients can only be booked
into slots feasible for their type. If we use this policy without a blueprint calendar,
we refer to the policy as FAS-nBC, and patients can be booked into every empty
slot.

• Myopic (M): Patients are booked as soon as possible. The order in which patients
are booked is determined by their access time target. Unlike the previous policy,
this policy resorts to overtime for patients of type t only when there is no avail-
able regular capacity within the first nt sessions of the booking horizon, where
nt = max{n : f AT(k, t, n) < h}. Overtime is then booked starting with session
1 and working up to session N. If this policy is used with blueprint calendars,
we refer to the policy as M-wBC, and the blueprint calendar determines which
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appointment slots are suitable for each patient type. Patients can only be booked
into slots feasible for their type. If we use this policy without a blueprint calendar,
we refer to the policy as M-nBC, and patients can be booked into every empty
slot.

The goal of simulating the FAS-wBC and M-wBC policies is to replicate the MRI ap-
pointment scheduling process at the Radiology department in Rijnstate. The simulation
must be validated to ensure that the coded policies replicate the actual performance
of the department. We report in the results of our validation run in Section 6.2. We
present the actual results of all the five policies for Rijnstate in Section 6.3.

6.1 Simulation model

In the simulation model we make booking decisions on the decision epochs as defined
in the MDP. That means that we make booking decisions at 12.30 p.m. and at 5 p.m.
and therefore deviate from the current practice in Rijnstate, since there patients are
booked at times decided by booking agents. It also implies that we book into the MDPs
sessions and not on days. As said, we can simulate the AOP policy and, besides, the
FAS and Myopic policy both with and without an underlying blueprint calendar. If we
choose to simulate a policy with an underlying blueprint calendar, we come across a
problem with the currently defined blueprint calendars in Rijnstate and the fact that
we use the decision epochs from the MDP.

As we illustrated Chapter 2, in the blueprint calendar time slots are reserved for patients
with a small access time target. In practice, these slots are accessible for patients with an
access time target of either zero days (same-day patients) or three days. For same-day
patients, MRI requests often come in by telephone and an attempt is made to book
them today. However, the combination when the request is submitted and the moment
on the day where the urgent patient slots are located determine whether this can be
achieved or not. In the original blueprint calendar of Rijnstate, the urgent patient slots
are located in the morning and afternoon. For a system with the first decision moment
at 12.30 p.m., urgent patient slots before this moment are useless. Also, if there are no
urgent patient slots after the second decision moment, patients with an access time
target of zero days that arrive between the first and second decision epoch on the day
will never booked within their access time target. Hence, we slightly adjust the original
blueprint calendars of Rijnstate. The total capacity dedicated to a patient type on a day
has not changed, but the location of the urgent patient slots has. All urgent patient
slots that were originally in the morning were moved to the afternoon on the same day.
In addition, we have the urgent patient slots distributed so that there are at least three
before 5 p.m. and three after 5 p.m. (which means that there are at least three in the
afternoon sessions of the MDP as well as in the evening session of the MDP).

As we explained in Section 5.2, the currently used blueprint calendars determine the
patient types that the Radiology department currently distinguishes. However, some
of these patient types are identical for the MDP and hence have been been merged into
one single patient type to keep the problem size small as possible. This implies that we
also need to adjust the blueprint calendars for the merged patient types. We did this
as follows. Suppose that patient type 1 and 2 are merged into the new (MDP) patient
type 1. Then, if an appointment slot in the original blueprint calendars was either
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6.1. Simulation model

suitable for patient type 1 or 2 (or both), then this appointment slot is now suitable for
the new (MDP) patient type 1.
This implies that we can never compare the service levels for patient types achieved
by the AOP to those achieved by the current way of scheduling MRI appointments,
simply because both scheduling policies distinguish other patient types. Hence, we
compare the performance of the AOP with the FAS-wB and M-wB policies where
we use the MDP patient types and the adjusted blueprint calendars. These blueprint
calendars can be found in Figure C.3-C.5 in Appendix C.4.
Nevertheless, we would like to make a statement about the access times obtained by
the AOP if we would implement this policy in practice in Rijnstate. Hence, we would
like a valid simulation model. We illustrate the process of validation and the condition
to be able to say something about the performance of the AOP in practice in Figure 6.1.

Data study MRI 
scanner 2 and 3 in 
Rijnstate

Simulation model A with:
- MRI scanner 2 and 3;
- Patient types dictated by the blueprint calendars of 

MRI scanner 2 and 3;
- Blueprint calendars in terms of these patient types 

(from the second bullet point);
- FAS-wB and M-wB policy

Valid 
simulation 

model
Simulation model B with:

- All three MRI scanners;
- Patient types dictated by the blueprint calendars of 

MRI scanner 1, 2 and 3;
- Blueprint calendars in terms of these patient types 

(from the second bullet point);
- FAS-wB and M-wB policy

Simulation model C with:
- All three MRI scanners;
- MDP patient types 
- Blueprint calendars in terms of these patient types 

(from the second bullet point)
- AOP, FAS-nB, M-nB, FAS-wB and M-wB policy

Figure 6.1: Simulation validation process to be able to say something about the performance of
the AOP if we would implement this policy in practice in Rijnstate.

We labeled the simulation model used for validation as simulation model A. Because
we have data available from MRI scanner 2 and MRI scanner 3, we will have to do
validation based on a simulation model in which only these two MRI scanners occur.
We can then compare the results of this simulation run with the results of our data
study in Section 5.1. As Figure 6.1 shows, Simulation model B extends model A by
including MRI scanner 1. Now, if model A turned out to be valid for the fictitious
Rijnstate situation with two MRI scanners, we may assume model B to be valid for the
real Rijnstate situation with three MRI scanners. Simulation model C uses the MDP
patient types and the corresponding adjusted blueprint calendars. Since these blueprint
calendars offer more flexibility than those used in simulation model B, it may be
assumed that the system performance in model C is better than in model B. Hence,
model C illustrates the advantages with respect to the system performance if more
flexibility is allowed in the blueprint calendars. In summary, if simulation model A is
considered to be valid, the access times obtained by the AOP in simulation model C and
other system performances may also be expected in practice if we would implement
this policy in practice in Rijnstate.

Since the simulation models includes an integer linear program to determine the AOP
at every decision epoch, we implemented the simulation model using AIMMS 4.39
and CPLEX 12.7. To run our simulations, we use a computer with a 2.60 gigahertz
Quad Core CPU with 16 gigabyte of RAM.
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6.2 Results of the validation run of the simulation model

For the validation of the simulation model (model A in Figure 6.1), we use the patient
types and their characteristics of Table 5.3 and the blueprint calendars are given by
Figure C.1-C.2 (we have 10 different blueprint days). We use a booking horizon of 25
future days, which is equal to a booking horizon of 77 sessions. Overtime is only
available in the evening sessions and is for both MRI scanners limited to 9 10-minute
slots at Day 1-6 and 10 of the blueprint cycle and 3 slots at Day 7-9.
MRI appointment requests arrive at an average of 22.06 requests at the first decision
epoch and another 18.82 requests at the second decision epoch. As said in the previous
chapter, the arrival process of MRI appointment requests follow a negative binomial dis-
tribution with parameters r = 64 and p = 0.744 at the first decision epoch and r = 173
and p = 0.902. Each arriving patient in the simulation is randomly assigned to be on of
the 45 patient types, based on the empirically defined probability distribution Table 5.3.
The upper bounds on the number of newly arriving appointment request of each type
is set at the ceil of three times the mean number of arriving requests at both decision
epochs. The access time penalties are defined in Table 6.1 and the overtime cost is 400.
The system load (average demand divided by average supply) is 0.98. Table 6.2 displays
the results of this simulation run.

Table 6.1: Access time penalties (in sessions) for the fictitious setting with only MRI scanner 2
and MRI scanner 3 present for validation of the simulation model.

Penalty per session within session interval at the first decision epoch of the day

Patient types [0, 2] [3, 5] [6, 11] [12, 14] [15, 17] [18, 20] [21, 32] [33, 35] [36, 38] [39, 77]

1, 3-5 0 100 250 250 250 250 250 250 250 250
6-14 0 0 0 80 100 150 150 150 150 150

15-21, 24-29 0 0 0 0 0 50 80 125 125 125
30-39, 43-51 0 0 0 0 0 0 0 40 90 100

Penalty per session within session interval at the second decision epoch of the day

Patient types [0, 1] [2, 4] [5, 10] [11, 13] [14, 16] [17, 19] [20, 31] [32, 34] [35, 37] [38, 77]

1, 3-5 0 100 250 250 250 250 250 250 250 250
6-14 0 0 0 80 100 150 150 150 150 150

15-21, 24-29 0 0 0 0 0 50 80 125 125 125
30-39, 43-51 0 0 0 0 0 0 0 40 90 100

Table 6.2: Results from the validation of the coded FAS-wBC and M-wBC policies (Simulation
model A from Figure 6.1). Simulation average is abbreviated to Sim. av. and absolute different
to Abs. dif.

Performance metric Data analysis FAS-wB M-wB

Sim. av. Abs. dif. Sim.av. Abs. dif.

Mean number of scans per day 39.80 40.87 1.07 41.42 1.62
Mean access time (in days) 16.1 3.53 12.57 2.76 13.34
Mean daily capacity utilization (in %) 83.10 93.10 10.00 93.17 10.17
Mean daily overtime (in min.) 8.57 0.00 8.57 20.49 11.92

In Table 6.2 we only included the performance indicators for which we were also able
to perform a data study. The absolute difference in the number of scans per day is
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small enough so that it may pass a validation exercise. On the other hand, the absolute
differences we observe for the other performance metrics are so large that with most
probably no known validation exercises will pass. Hence, to our regret, we need to
conclude the simulation model is not a valid representation of the current practice.
Consequently, we cannot draw conclusions about the access times obtained by the AOP
if we would implement this policy in practice in Rijnstate. Or at least we have to be
very careful about this. Nevertheless, we can compare the AOP to the other policies for
the case study obtained from the data provided by Rijnstate.

If we take a closer look to the results obtained in this simulation, we observe the mean
access time in the simulation to be much smaller than the mean access time from the
data study. Since the system load is less than one, requests received at either the first
or the second decision epoch of a specific day in the simulation, can be booked in the
near future because the system does not fill up, i.e., the daily demand is not structurally
higher than the available capacity which would have forced the system to book pa-
tients either further into the future or in overtime. We could not find a satisfactory
explanation why the average access time in the data is so high cannot be explained.
We have carefully examined the data and looked at whether there might have been a
backlog, so that the first available time slot is just very far in the future. If this were the
case, we would observe for a large part of the data points that access time would be
greater than a certain value, i.e., the 10th or 25th percentile would be large.
An explanation for the higher utilization in simulation may be partly due to the adjust-
ment of the blueprint calendars. The urgent patient slots can always be used in the
simulation because they are located after the decision moments. In reality, an urgent
patient slot may remain unused because the first urgent MRI request is only submitted
after the first urgent patient slot on the day. However, it is very doubtful whether this
can cause the big absolute difference that we observe.
The average overtime observed in the data is not that bad in itself. For the FAS-wB
it applies that it never books in overtime, because the regular capacity of the entire
booking horizon is never fully booked. In addition, the simulation is based on deter-
ministic service times, which implies that overtime is only induced (in the M-wB policy)
by patients who are booked in overtime due to their access time target restriction. In
reality, of course, there are many more factors that determine overtime. It is therefore
to be expected that the simulation model will not validate for this performance metric
because the factors that determine the overtime differ strongly.

6.3 Results for Rijnstate

We now evaluate the AOP by simulating its performance for a large scale case study at
the Radiology department of Rijnstate. The patient types, their capacity requirements
and the patient type-MRI scanner compatibility restrictions are displayed in Table 5.5 in
Chapter 5. Patients can receive treatment on three MRI scanners with on average 1.70
suitable MRI scanners per patient type.
The arrival process of MRI appointment requests follow a negative binomial distri-
bution with parameters r = 56 and p = 0.646 at the first decision epoch and r = 84
and p = 0.752. Each arriving patient in the simulation is randomly assigned to be on of
the 27 patient types, based on the empirically defined probability distribution Table 5.5.
The upper bounds on the number of newly arriving appointment request of each type
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is set at the ceil of three times the mean number of arriving requests at both decision
epochs. In total, the expected daily numbers of MRI requests consist of 3.0 patients
with an access time penalty from day 2 (1.9 at the first decision epoch and 1.1 at the
second), 12.2 patients with a penalty from day 4 (6.9 at the first decision epoch and
5.3 at the second), 13.4 with a penalty from day 6 (6.8 at the first decision epoch and
6.6 at the second) and 30.0 with a penalty from day 11 (15.2 at the first decision epoch
and 14.8 at the second). The access time penalties are defined in Table 6.3 and the
overtime cost is 400.

Table 6.3: Access time penalties (in sessions).

Penalty per session within session interval at the first decision epoch of the day

Patient types [0, 2] [3, 5] [6, 11] [12, 14] [15, 17] [18, 20] [21, 32] [33, 35] [36, 38] [39, 77]

1-5 0 100 250 250 250 250 250 250 250 250
6-11 0 0 0 80 100 150 150 150 150 150

12-19 0 0 0 0 0 50 80 125 125 125
20-27 0 0 0 0 0 0 0 40 90 100

Penalty per session within session interval at the second decision epoch of the day

Patient types [0, 1] [2, 4] [5, 10] [11, 13] [14, 16] [17, 19] [20, 31] [32, 34] [35, 37] [38, 77]

1-5 0 100 250 250 250 250 250 250 250 250
6-11 0 0 0 80 100 150 150 150 150 150

12-19 0 0 0 0 0 50 80 125 125 125
20-27 0 0 0 0 0 0 0 40 90 100

Table 6.4 displays the system configurations used to simulate the various policies. The
discount factor is 0.99. Note that the system load is different for the AOP, FAS-nB
and M-nB policies compared to the FAS-wB and M-wB policies because the average
regular capacity following from the blueprint calendars is slightly higher than in
the MDP. The number of states in the MDP model (and thus the number of variables
in the linear program) would be in the order of 10629 and the number state-action
combinations (which equals the number of constraints in the original linear program)
would even be more. All five policies were simulated for 1000 days with statistics
collected for each of 10 runs after a warm-up period of 500 days. The execution
time of the (column generation) algorithm used to obtain the AOP was around 10
hours. Additionally, the simulation took around 24 hours. These execution times
are satisfactory, considering that the coefficients defining the approximate optimal
policies only need to be redetermined when there is a significant change in the problem
parameters. It is also important to note that solving the integer linear programming
model used to identify the approximate optimal actions, which is done on twice a day,
takes less than two seconds.
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Table 6.4: System configurations for simulating the performance of the AOP, FAS-nB, M-nB,
FAS-wB and M-wB policies for a large scale case study at the Radiology department of
Rijnstate.

Configurations for the AOP, FAS-nB, M-nB, FAS-wB and M-wB policy:
Number of MRI scanners 3
Length of appointment slots 10 minutes
Length of booking horizon 77 sessions (5 weeks with 5 working days)
Overtime cost 400

Configurations for the AOP, FAS-nB and M-nB policy:
CR,1

mn = CR,2
m,n−1 27, for all m ∈ M, n = 3, 6, 9, . . . , 75

(duration of morning sessions in num. of slots.)

CR,1
mn = CR,2

m,n−1 27, for all m ∈ M, n = 1, 4, 7, . . . , 76
(duration of afternoon sessions in num. of slots.

Note that we always need to have n ≥ 1.)

CR,1
mn = CR,2

m,n−1 6, for all m ∈ M, n = 2, 5, 8, . . . , 77
(duration of evening sessions in num. of slots.)

COT,1
mn = COT,2

m,n−1 1, for all m ∈ M, n = 3, 6, 9, . . . , 75
(number of overtime slots in morning sessions.)

COT,1
mn = COT,2

m,n−1 1, for all m ∈ M, n = 1, 4, 7, . . . , 76
(number of overtime slots in morning sessions.

Note that we always need to have n ≥ 1.)

COT,1
mn = COT,2

m,n−1 9, for all m ∈ M, n = 2, 5, 8, . . . , 77
(number of overtime slots in evening sessions.)

System load 0.97
(average demand divided by average regular supply)

Configurations for the FAS-wB and M-wB policy:
Blueprints are given in Figure C.3-C.3 in Appendix C.4
Blueprint cycle length 10
Overtime slots Day 1-6 & 10 9
Overtime slots Day 7, 8, 9 3
System load 0.94
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0.00
4.83±

0.71

19
99.72±

0.16
4.79±

0.02
100.00±

0.00
1.04±

0.02
100.00±

0.00
1.04±

0.02
100.00±

0.00
4.71±

0.38
100.00±

0.00
4.71±

0.38

20
-27

100.00±
0.00

9.94±
0.04

100.00±
0.00

1.43±
0.04

100.00±
0.00

1.43±
0.04

100.00±
0.00

4.93±
0.91

100.00±
0.00

4.93±
0.91
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6.3. Results for Rijnstate

The results for this simulation are summarized in Table 6.5, Table 6.6 and Figure 6.2.
Table 6.5 shows the average service levels and the average access time for each patient
type and the corresponding 95%-confidence intervals. Table 6.6 shows the average daily
utilization of all MRI scanners for the five policies. Figure 6.2 shows the patient booking
distribution across MRI scanners. Additionally results can be found in Appendix D.1.
Here, Table D.1 shows the percentages of patients examined within a certain number
of days for patient types 1-5. Table D.3 shows the patient booking distribution, in
percentages, across MRI scanners that are graphically presented in Figure 6.2.

We first focus on the the service levels and access times. With respect to the service levels
for patient types with an access time target of 0 days (needs to be examined today),
the AOP obtains the best results and the FAS-nB policy performs worst. We observe
the following for the FAS-nB policy. Since the system load is less than one, requests
received at either the first or the second decision epoch of day k in the simulation, can
often be booked on day k + 1.Then, if the simulation proceeds to day k + 1, there is
not enough capacity available to serve patients whose request arrives at day k + 1 and
needs to be examined on the same day. Hence, the patients are all booked on the next
day (which would be day k + 2 in the simulation) and are one day late. For the majority
of patients with access time targets greater than 0 days, it applies that they are also
booked on day k + 2 of the simulation and if this is not possible anymore, they are
booked on day k + 3. However, for all patient types this is still within their access time
target and hence the FAS-nB policy always manage to schedule patient types with an
access time target greater than 0 days within their access time target.
The same applies to the M-nB policy, since the M-nB copies the action of the FAS-nB
policy for patient types with an access time target greater than 0 days. However, the
M-nB policy performs slightly better for patient types with an access time target of 0
days, since the policy resorts to overtime for these patient types. This results in more
overtime slots used for this policy, as Table 6.6 also displays.

Based on the values of V∗mn and Ṽ∗mn we would expect that the AOP obtains the best
results with respect to the service times for patient with an access time target of 0 days.
The values of V∗mn and Ṽ∗mn corresponding to sessions n today and tomorrow are much
larger than values of V∗mn and Ṽ∗mn corresponding to sessions n further into the future,
i.e., the AOP protects capacity in the sessions of today and tomorrow for same-day
patients. Furthermore, we observe that for fixed m, V∗mn and Ṽ∗mn decreases if n increases,
but only if n corresponds to a different day of the booking horizon. That is, if n1 < n2
are sessions both belonging to the same day of the booking horizon, then V∗mn1

= V∗mn2
,

but if n1 and n2 belong to consecutive days of the booking horizon, then V∗mn1
> V∗mn2

,
where still n1 < n2. Also, for fixed n there are small differences between the different
MRI scanners. The system prefers to first book patients on MRI scanner 3, followed
by MRI scanner 2 and MRI scanner 1.

For the FAS-wB and M-wB policy, the system performs excellently with respect to the
service levels for patient types 6-11. These are the types with an access time target of 3
days and have the most feasible time slots in the blueprint calendars. Regarding the
patient types with an access time target of 0 days, thanks to the blueprint calendars
there are slots reserved for this group of patients and the FAS-wB and M-wB policies
outperform the FAS-nB and M-nB, respectively, but the AOP still performs best. Finally,
after patient types 1-11 have been booked, there are always still enough suitable slots
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free within 5 days to book patient types 12-19 within their 5-day access time target.
Logically, for patient types 20-27, there are always enough suitable time slots within the
next 10 days to book these patient types within their access time target. The AOP books

Table 6.6: Average daily utilization of each MRI scanner in percentages and the average daily
overtime slots used, for all of the five policies. Note that utilization values greater than 100%
are associated with overtime.

MRI scanner Utilization

AOP FAS-nB M-nB FAS-wB M-wB

1 86.51± 0.37 98.18± 0.08 103.19± 0.08 92.82± 0.35 92.67± 0.34
2 99.37± 0.30 97.57± 0.15 103.57± 0.16 93.68± 0.22 94.00± 0.21
3 97.96± 0.20 88.16± 0.66 88.13± 0.65 90.15± 0.27 90.00± 0.27

Overall 94.61± 0.26 94.64± 0.29 97.63± 0.29 92.20± 0.23 92.20± 0.23

Overtime slots used

AOP FAS-nB M-nB FAS-wB M-wB

1 0.25± 0.01 0.00± 0.00 5.59± 0.20 0.00± 0.00 2.86± 0.20
2 1.30± 0.06 0.00± 0.00 6.51± 0.18 0.00± 0.00 3.18± 0.17
3 0.85± 0.08 0.00± 0.00 0.01± 0.00 0.00± 0.00 0.01± 0.00

Overall 2.40± 0.14 0.00± 0.00 12.10± 0.36 0.00± 0.00 6.05± 0.36

preferably on MRI scanner 3, followed by MRI scanner 2. This can also been observed
from Figure 6.2a. Apparently. the blueprint calendars divide the suitable slots of patient
types in such a way over all three MRI scanners that the booking distribution across
MRI scanners of the FAS-wB and M-wB policies is quite similar to that of the AOP. Since
the FAS-nB and M-wB policies always try to book on MRI scanner 1 first, followed by
MIR scanner 2, we observe the opposite of Figure 6.2a in Figure 6.2b.

Table 6.6 shows the average daily utilization per MRI scanner for all policies. As
expected, for MRI scanner 1 ,the utilization of the FAS-nB and M-nB policies are higher
than for the AOP and the opposite applies to MRI scanner 3. Furthermore, we observe
that the blueprint calendars reduce the utilization rate for both MRI scanner 1 and MRI
scanner 2. Most probably, in the blueprint calendars for these two MRI scanners, the
blueprint calendars dedicate more slots to one of the patient type than the demand of
this type. This causes the MRI scanners to be idle for some periods. Finally, we also
observe a slight difference in the overall system utilization. However, here we do have
to remind that the daily average capacity is slightly higher for the FAS-wB and M-wB
policies.
It is reasonable that the FAS-nB and FAS-wB policies do not generate overtime at all.
As we explained in Section 6.2, if the system’s load is strictly less than one, there is
no overflow of appointment requests. So, the system does not fill up, i.e., the daily
demand is not structurally higher than the available capacity which would have forced
the system to book patients either further into the future or in overtime. As the FAS-
nB and FAS-wB policies only book patients in overtime after all regular slots of the
complete booking horizon are filled, this will never happen. We observe the AOP to
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6.4. Results for a heavier loaded system

perform better than the M-nB and the M-wB policy as the AOP reserves capacity for
patient type1-5 tomorrow, whilst the M-nB tries to book tomorrow as full as possible
tomorrow, with the result that the system tomorrow needs to resort to overtime to
book patient types 1-5 within their access time target. The blueprint calendars do also
reserve some capacity for the urgent patient types. However, they cannot do this as
well as the AOP.
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(a) Booking distribution across MRI scanners per
patient type for the AOP.
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(b) Booking distribution across MRI scanners per
patient type for the FAS-nB policy.
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(c) Booking distribution across MRI scanners per patient type for the FAS-wB policy.

Figure 6.2: Booking distribution across MRI scanners per patient type. We only visualized the
distribution for the AOP, FAS-nB and Fas-wB policy, since the distributions for the M-nB and
M-wB policies are very similar to the distributions for the FAS-nB and Fas-wB policies,
respectively.

6.4 Results for a heavier loaded system

The results from the previous section show well what influence the AOP has on the
service levels of patient types 1-5. However, we are also curious about what service
levels the AOP can obtain for patient types with a larger access time target if the
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capacity is a binding factor (i.e. we have a system load greater than 1). Hence, in this
section, we study the performance of the AOP for the instance where we have the
same patient types and arrival processes as in Section 6.3, but instead we set the daily
available capacity of each MRI scanner equal to 9 hours (that is one hour less). Since
the booking horizon consists, again, of 77 sessions, this means that we have

CR,1
mn = CR,2

m,n−1 = 24, for all m ∈ M, n = 3, 6, 9, . . . , 75,

CR,1
mn = CR,2

m,n−1 = 24, for all m ∈ M, n = 1, 4, 7, . . . , 76,

CR,1
mn = CR,2

m,n−1 = 6, for all m ∈ M, n = 2, 5, 8, . . . , 77,

COT,1
mn = COT,2

m,n−1 = 1, for all m ∈ M, n = 3, 6, 9, . . . , 75,

COT,1
mn = COT,2

m,n−1 = 1, for all m ∈ M, n = 1, 4, 7, . . . , 76,

COT,1
mn = COT,2

m,n−1 = 9, for all m ∈ M, n = 2, 5, 8, . . . , 77,

The upper bounds on the number of newly arriving appointment request of each type is
again set at the ceil of three times the mean number of arriving requests at both decision
epochs. The access time penalties are already given in Table 6.3 and the overtime
cost is again 400. The discount factor is again 0.99. The system load for this instance
is 1.07. For this instance we compare the AOP only to the FAS-nB and M-nB policies
and not to the FAS-wB and M-wB policies, because the system load is so different (1.07
against 0.94) that it would be an unfair comparison.
The execution time of the (column generation) algorithm used to obtain the AOP was
again around 10 hours. Additionally, the simulation took around 21 hours.

The results for this simulation are summarized in Table 6.7, Table 6.8 and Figure 6.2.
Additionally results can be found in Appendix D.2. Here, Table D.4 shows the per-
centages of patients examined within a certain number of days for patient types 1-5.
Table D.2 shows the patient booking distribution, in percentages, across MRI scanners
that are graphically presented in Figure 6.3.

With respect to the service levels for patient types with an access time target of 0
days (needs to be examined today), the M-nB policy obtains the best results and
the FAS-nB policy performs worst. As follows from Table 6.8, the price the M-nB policy
pays for these service levels, is a lot of overtime. So, what probably happens is that
on the majority of simulation days the overtime limit of 9 appointment slots per MRI
scanner is large enough to book all demand from patient type 1-5 in. On the other side,
on approximately a quarter of the days, the AOP does not reserve enough capacity for
patient types 1-5. For patient types other than 1-5, the AOP and M-nB achieve similar
service levels. The FAS-nB policy achieves by far the worst performances.

As expected, the average daily utilization is more than 100%, since there is overflow
of demand. Opposite to the results from the previous section, now the FAS-nB policy
does generate overtime. Because of the overflow, all the regular appointment slots in
the booking horizon become occupied and hence the FAS-nB needs to resort overtime.
We observe the AOP to perform better than the FAS-nB and M-nB policy with respect
to the average daily overtime slots used. The patient booking distribution is similar to
the one in the previous section (compare Figure 6.3 to Figure 6.2).
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Table 6.7: Mean and 95%-confidence intervals of the service levels for each patient type,
defined as the percentages of patients examined within a certain number of days. Note that
today is defined as day 0, tomorrow day 1 and so on.

Patient type AOP FAS-nB M-nB

1 77.594± 1.976 0.000± 0.000 87.806± 2.105

2 76.283± 2.896 0.000± 0.000 74.909± 3.541

3 75.738± 1.597 0.000± 0.000 85.766± 1.710

4 44.808± 5.072 0.000± 0.000 69.169± 7.039

5 80.723± 1.433 0.000± 0.000 95.822± 1.648

6 99.878± 0.086 0.000± 0.000 75.913± 2.171

7 69.427± 1.809 0.000± 0.000 69.186± 0.513

8 72.206± 2.493 0.000± 0.000 66.413± 1.400

9 69.067± 1.118 0.000± 0.000 64.536± 1.805

10 73.042± 1.428 0.000± 0.000 63.055± 3.152

11 99.467± 0.268 0.000± 0.000 62.162± 3.313

12 99.668± 0.163 0.000± 0.000 100.000± 0.000

13 99.922± 0.082 0.000± 0.000 100.000± 0.000

14 99.151± 0.345 0.000± 0.000 100.000± 0.000

15 99.148± 0.260 3.539± 1.469 100.000± 0.000

16 97.507± 0.468 0.000± 0.000 100.000± 0.000

17 90.200± 0.566 0.271± 0.109 100.000± 0.000

18 93.950± 0.265 0.000± 0.000 100.000± 0.000

19 99.430± 0.163 0.000± 0.000 100.000± 0.000

20 100.000± 0.000 0.000± 0.000 100.000± 0.000

21 100.000± 0.000 0.162± 0.000 100.000± 0.000

22 100.000± 0.000 5.555± 0.000 100.000± 0.000

23 100.000± 0.000 0.599± 0.000 100.000± 0.000

24 100.000± 0.000 37.723± 2.402 100.000± 0.000

25 100.000± 0.000 2.5503± 0.257 100.000± 0.000

26 100.000± 0.000 39.832± 2.609 100.000± 0.000

27 100.000± 0.000 37.164± 1.512 100.000± 0.000
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Table 6.8: Average daily utilization of each MRI scanner in percentages and the average daily
overtime slots used, for all of the five policies. Note that utilization values greater than 100%
are associated with overtime.

MRI scanner Utilization

AOP FAS-nB M-nB

1 103.14± 0.68 108.39± 0.69 107.02± 0.66
2 107.48± 0.49 107.76± 0.75 106.22± 0.61
3 104.77± 0.37 99.237± 0.20 102.23± 0.41

Overall 105.13± 0.48 105.13± 0.53 105.16± 0.52

Overtime slots used

AOP FAS-nB M-nB

1 2.60± 0.24 4.77± 0.36 8.01± 0.33
2 3.31± 0.27 4.37± 0.38 8.44± 0.30
3 1.01± 0.16 0.38± 0.08 1.71± 0.18

Overall 6.93± 0.65 9.52± 0.79 18.16± 0.76
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(a) Booking distribution across MRI scanners per
patient type for the AOP.
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(b) Booking distribution across MRI scanners per
patient type for the FAS-nB policy.
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(c) Booking distribution across MRI scanners per patient type for the FAS-wB policy.

Figure 6.3: Booking distribution across MRI scanners per patient type for the AOP, FAS-nB and
M-nB policy.
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7
An extension to the near-online
multipriority patient scheduling
model

In this chapter, we present an extension to the near-online multipriority patient schedul-
ing model from Chapter 4. We assume the reader to be familiar with this Markov
Decision Process (MDP) and for a comprehensive overview of the notation used, we
refer to Table 4.1. This extension is based on observations on the values and structure
of the V∗mn’s and Ṽ∗mn’s observed for the instances in Chapter 6.

As we mentioned in Section 6.2, the values of V∗mn and Ṽ∗mn corresponding to sessions n
today and tomorrow are much larger than values of V∗mn and Ṽ∗mn corresponding to
sessions n further into the future, i.e., the AOP protects capacity in the sessions of today
and tomorrow for same-day patients. Furthermore, we observe that for fixed m, V∗mn
and Ṽ∗mn decreases if n increases, but only if n corresponds to a different day of the
booking horizon. That is, if n1 < n2 are sessions both belonging to the same day of
the booking horizon, then V∗mn1

= V∗mn2
, but if n1 and n2 belong to consecutive days

of the booking horizon, then V∗mn1
> V∗mn2

, where still n1 < n2. Also, for fixed n there
are small differences between the different MRI scanners. The system prefers to first
book patients on MRI scanner 3, followed by MRI scanner 2 and MRI scanner 1. Hence,
the AOP incorporates the following hierarchy. We assume the process to be at the
first decision epoch of a day and need to schedule a patient with an access time target
equal to 11 sessions. Then, we would first try to book this patient in the regular slots of
session 11 of MRI scanner 3, followed by the regular slots of session 11 of MRI scanner 2
and MRI scanner 1. If this is not possible, we try to book the patient, in the same order
of MRI scanner, into either session 10 or session 9. If this is not possible, we need to
determine the cheaper of the following three options: book the patient either in the
overtime of session 9, 10, or 11, or in a session prior to 9, or to violate the access time
target and book the patient later than session 11. Now, this hierarchy is independent
of the patient type, as Ṽ∗mn (we still assume to be at the first decision epoch of the day)
does not depend on the patient type. Hence, in this chapter we present an extension in
which the value associated with using capacity on a given day and MRI scanner does
depend on the treatment type. This model has a larger state space and larger action sets
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7.1. The MDP formulation

and so it is interesting to study what this does to the computation time of the column
generation algorithm. On the other side, it allows to define the direct costs in a more
elegant way.

7.1 The MDP formulation

7.1.1 The state space

In this extended model we again assume each day to be divided into three sessions: a
morning session, an afternoon session and an evening session. We also have a rolling
booking horizon.

At both decision epochs of a day, the number of time slots already booked on each MRI
scanner during all sessions of the booking horizon is known, as well as the number of
appointment requests from each patient type to be scheduled at the current decision
epoch. Thus, a typical state of the system, denoted by s, takes the form

s = (k, x, y) = (k, xtmn, yt) , t ∈ T , m ∈ M, n ∈ N ,

where xtmn is the number of appointment slots already reserved for patient type t
on MRI scanner m during session n of the booking horizon and yt is the number of
type t patients waiting to be booked. In this state vector, k can take the value 1 or 2,
corresponding to the decision epoch during the day.

Observed from the first decision epoch of the day, we have capacities CR,1
mn and lim-

ited overtime COT,1
mn . Observed from the second decision epoch of the day, we have

capacities CR,2
mn and COT,2

mn , for all m ∈ M, n ∈ N .

For k ∈ {1, 2}, we define the sets

Sk =

(k, x, y)

∣∣∣∣∣∣∣∣∣∣
∑

t∈T (m)

xtmn ≤ CR,k
mn + COT,k

mn , for all m ∈ M and n ∈ N ;

yt ≤ Qk
t , for all t ∈ T ;

(x, y) ∈NMN
0 ×NT

0

 . (7.1)

Here Qk
t is the maximum number of MRI appointment requests of type t present in

the system (and thus waiting to be booked) at decision epoch k of a day. Truncating
the maximum number of MRI appointment requests of each patient type waiting to be
booked is necessary to keep the state space finite, but the maximum number can be
set sufficiently high as to be of little practical significance. Note here that we here no
longer assume that the number of appointment requests observed at a decision epoch
only concerns newly arrived requests. It is therefore now possible to postpone booking
decisions. We will come back to this in Section 7.1.2.

Because we experience a rolling booking horizon, in state s1 = (1, x, y) there are no
appointments scheduled during sessions N − 1 and N, that is, xm,N−1 = xmN = 0, for
all m ∈ M. Similarly, in state s2 = (2, x, y) there are no bookings in session N, that
is xmN = 0, for all m ∈ M. Furthermore, if m 6∈ M(t), it is required that xtmn = 0, for
all n ∈ N .
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The state space of the MDP is given by

S = S1 ∪ S2. (7.2)

7.1.2 The action sets

At each decision epoch, the booking agent’s task is to decide on which MRI scanner
and during which session to schedule each of the patients waiting to be booked. Thus,
a vector of possible actions can be written as a = (atmn)t∈T ,m∈M,n∈N , where atmn is the
number of type t patients to book on MRI scanner m during session n. Note that, once
a patient is assigned to a session, a second level of scheduling is needed which assigns
patients to specific appointment times. That goes beyond the scope of this MDP model.

Input parameters of the decision are yt, the number of type t patients to be booked,
and ∑t∈T (m) xtmn, the number of time slots already occupied on MRI scanner m during
session n of the booking horizon. We experience a rolling horizon and have two
decision epochs in each day and hence we face different constraints for action a to be
valid in states s1 = (1, x, y) and s2 = (2, x, y). To be valid, any action in s1 must satisfy
the following constraints:

∑
n∈N

∑
m∈M(t)

atmn ≤ yt, for all t ∈ T , (7.3)

∑
t∈T (m)

xtmn + dtatmn ≤ CR,1
mn + COT,1

mn , for all m ∈ M and n ∈ N , (7.4)

atmn = 0 for all t ∈ T , m 6∈ M(t) and n ∈ N , (7.5)

atm1 = atm2 = 0 for all t ∈ T ′ and for all m ∈ M(t), (7.6)

atmn ∈NTMN
0 (7.7)

Constraint (7.3) requires the number of bookings for each patient type to be less than or
equal to the number of requests waiting to be booked. As we discussed earlier, in this
model postponement of booking decision is allowed, but only between the first and
second decision epoch of the same day. In Constraint (7.4), dt describes the duration
of a type t scan in number of time slots. Constraint (7.4) therefore restricts the total
number of slots booked on MRI scanner m during session n of the booking horizon to
be less than or equal to the number of available regular slots plus the overtime slots.
Constraint (7.5) ensures patients are only booked on an MRI scanner suitable for their
type of MRI scan. Recall that we defined the set T ′ to contain all outpatient patient
types. We do not allow outpatient demand that does not have the priority to be scanned
today to be booked into one of today’s remaining sessions, because these patients are
not necessarily already present in the hospital. Hence we have Constraint (7.6). Finally,
all action variables are integer and non-negative (captured by Constraint (4.7)).

Similarly, to be valid, any action in s2 must satisfy the following constraints:

∑
n∈N

∑
m∈M(t)

atmn = yt, for all t ∈ T , (7.8)
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∑
t∈T (m)

xtmn + dtatmn ≤ CR,2
mn + COT,2

mn , for all m ∈ M and n ∈ N , (7.9)

atmn = 0 for all t ∈ T , m 6∈ M(t) and n ∈ N , (7.10)

atm1 = 0 for all t ∈ T ′ and for all m ∈ M(t), (7.11)

atmn ∈NTMN
0 (7.12)

We define the action sets A (s1), for any given state s1 = (1, x, y) ∈ S1, as the set of
actions a satisfying Equations (7.3) to (7.7). We define the action sets A (s2), for any
given state s2 = (2, x, y) ∈ S2, as the set of actions a satisfying Equations (7.8) to (7.12).
In general we let A(s) denote the set of all feasible actions in state s ∈ S .

7.1.3 The transition probabilities

First consider the situation in which the system is at the first decision epoch of a
given day. That is, the system is in some state s1 = (1, x, y) ∈ S1. Once a decision is
made in this state, the system moves to a state corresponding to the second decision
epoch of the given day, i.e., the system moves to some state s2 = (2, x′, y′) ∈ S2.
The only source of uncertainty in this transition from s1 to s2 is the number of new
appointment requests of each patient type. The other parameters are updated based on
the capacity allocation to booked patients. Thus, as a result of choosing booking action
a in state s1 = (1, x, y), and having qt new requests of type t, the state of the system the
next decision epoch, denoted by s2 = (2, x′, y′), will be determined by the following
probability distribution:

p(s2|s1, a) =

p2(q) = ∏
t∈T

p2 (qt) , if s2 = (2, x′, y′) satisfies Eqs. (7.14) and (7.15),

0 otherwise.
(7.13)

x′tmn =

xtm,n+1 + ∑
t∈T (m)

dtatm,n+1, for all m ∈ M and n = 1, 2, . . . , N − 1,

0, for all m ∈ M and n = N,
(7.14)

y′t = qt + yt − ∑
n∈N

∑
m∈M

atmn, for all t ∈ T . (7.15)

Note that these specific system dynamics differ from the model in Chapter 4, described
by (4.13) and 4.14.
Similarly, if the system is at the second decision epoch on a given day, the system’s next
state is at the first decision epoch in the successive day. Thus, as a result of choosing
booking action a in state s2 = (2, x, y), and having qt new requests of type t, the state
of the system the next decision epoch, denoted by s1 = (1, x′, y′), will be determined
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by the following probability distribution:

p(s1|s2, a) =

p1(q) = ∏
t∈T

p1 (qt) , if s1 = (1, x′, y′) satisfies Eqs. (7.17) and (7.18),

0 otherwise.
(7.16)

x′tmn =

xtm,n+2 + ∑
t∈T (m)

dtatm,n+2, for all m ∈ M and n = 1, 2, . . . , N − 2,

0, for all m ∈ M and n = N − 1, N,
(7.17)

y′t = qt, for all t ∈ T . (7.18)

7.1.4 The direct costs

The direct costs associated with state-action pair s ∈ S , a ∈ A(s) derives from three
sources: (i) penalties associated with booking patients beyond their priority-specific
access time targets; (ii) a cost associated with the day of service, expressed by overtime
cost; and (iii) penalties associ- ated with delaying the booking decisions for some of the
waiting demand. . We write the costs as

c(s, a) = ∑
n∈N

∑
t∈T

f AT(k, t, n)

[
∑

m∈M(t)
atmn

]
+ f AS(s, a) (7.19)

+ ∑
t

f D(t)

(
yt −∑

m,n
atmn

)
. (7.20)

In Equation (7.20), f AT(k, t, n) is the cost associated with booking a type t patient into
session n of the booking horizon, at decision epoch k of a day. The cost associated with
the day of service is f AS(s, a) and f D(t) is the penalty associated with delaying the
booking of a type t patient from the first to the second decision epoch of the day 1.

It is clearly reasonable to assume that f AT(t, n) should be zero if n ≤ AT(t). Further-
more, it would seem advisable to ensure that the penalty associated with delaying the
booking of a patient, if possible, to the next decision epoch and then booking him/her
within the corresponding wait time target should be equal to the penalty associated
with booking the patient 1 session late initially. Thus, a natural form for the access time
penalty is

f AT(k, t, n) =


n−AT(k,t)

∑
j=1

γj−1 f D(t) for all n > AT(t)

0 otherwise.

The (direct) within-day costs are defined as a cost for overtime and because we jump
over one afternoon session if we jump from s1 = (1, x, y) to s2 = (2, x′, y′), the direct
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within-day costs for this session can be computed as

f AS(s1, a) = ∑
m∈M

h

[
xm1 + ∑

t∈T (m)

dtatm1 − CR,1
m1

]+
,

where h is the overtime cost per time slot and [z]+ = max{0, z}. Note that the overtime
and cost are identical for all the MRI scanners m ∈ M.

When we jump from s2 = (1, x, y) to s1 = (2, x′, y′), we jump over two sessions: the
evening session and the morning session of the upcoming day. Hence the direct
within-day costs for this jump can be computed as

f AS(s2, a) = ∑
m∈M

h

[
xm1 + ∑

t∈T (m)

dtatm1 − CR,2
m1

]+
+ h

[
xm2 + ∑

t∈T (m)

dtatm2 − CR,2
m2

]+
.

7.2 Solution Approach

We can use the same approximate linear programming approach to ADP as in Chapter 4.
That means that we use an affine architecture to approximate the value function v(s) of
the MDP. We suggest to use the following affine approximation

v(s) = v(k, x, y) =


V0 +

T

∑
t=1

M

∑
m=1

N

∑
n=1

Vtmnxtmn, if k = 1,

Ṽ0 +
T

∑
t=1

M

∑
m=1

N

∑
n=1

Ṽtmnxtmn +
T

∑
t=1

W̃tyt if k = 2.

(7.21)

Note that this affine approximation uses more variables than the one in Chapter 4,
given by (4.24). However, it enables us eventually to distinguish preferences between
booking a type t at MRI scanner m in session n and booking a type t′ at MRI scan-
ner m in session n. Since we can not postpone booking decisions from the second
decision epoch today to the first decision epoch tomorrow, we would like to study
the possibility to leave out the term ∑

t∈T
Wtyt in the approximation. After doing the

mathematical operations, we will end up again with a linear program with a reasonable
number of variables and constraints for every state-action combination, which dual we
hopefully (depending on the actual problem size) can solve with column generation.
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A
Configurations of MRI examinations
carried out in Rijnstate

Table A.1: HIX codes of the MRI examinations carried out in Rijnstate. The third column shows the
service time, in minutes, that is reserved for each MRI according to the currently used blueprint
schedule. The last columns show whether a MRI scanner is suitable for the type of MRI examination (3)
or not (7).

HIX code Description
Dura-
tion

Compatibility
MRI scanner ...

1 2 3

1390 MRI of the brain 20 3 3 3

1390A Carotid artery MRI 30 3 3 3

1390C MRI of the cholesteatoma 30 3 7 3

1390E
MRI to see if there is an (obvious) reason for
epileptic seizures

30 3 3 3

1390H MRI of the cranial nerves 30 3 7 7

1390K MRI of the brain under sedation 30 3 7 7

2090 MRI of the face and/or neck 30 3 3 3

2090A MRI of the neck 30 3 3 7

2290 MRI of the orbita 30 3 3 7

2990 MRI of the thyroid 30 3 3 7

3090T MRI of the spinal column 30 7 3 3

3190
MRI of the cervical spine (cervical
vertebrae)

30 7 3 3

3190PB
MRI of the brachial plexus (node of the
nerves above the collarbone)

30 3 3 3

(Continued on next page)
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Table A.1 – Continued

HIX code Description
Dura-
tion

Compatibility
MRI scanner ...

1 2 3

3290
MRI of the thoracic spine (thoracic
vertebrae)

30 7 3 3

3390 MRI of the lumbar spine (lumbar vertebrae) 30 7 3 3

3390P
MRI of the plexus lumbosacralis (spinal
nerves in the lower part of the back)

30 7 3 3

3490 MRI of the sacroiliac joints/the sacrum 30 7 3 3

3615
MRI with injection in joint(s) (usually only
done in combi with another MRI type)

10 3 3 3

3690 MRI of myelum (spinal cord) 30 7 3 7

4090 L/R
MRI of the upper extremities (shoulder,
elbow, hand, wrist); left or right

30 3 3 7

4090
AR/AL

MRI of hand/wrist combined with an
arthrogram; left or right

30 3 7 7

4292 L/R
MRI of shoulder combined with an
arthrogram; left or right

30 3 7 7

5090 MRI of the thorax (chest) 30 7 3 3

5190/5192
MRI of the heart (5192 is with intake of
Dobutamine)

60 7 3 7

5191/5191R
MRI of heart with intake of Androsine/MRI
of heart with intake of Regadenoson

60 7 3 7

6990 MRI of the breasts (MRI Mammae) 30 3 7 7

6990P
MRI of the breasts to take a biopsy (MRI
vacuum biopsy Mammae)

60 7 3 7

7090 MRI of the abdomen 30 7 3 3

7090A
MRA (Magnetic Resonance Angiography):
examination of blood vessel(s)/vascular
system

30 7 3 7

7091
CINE MRI of the abdomen; dynamic MRI
scan to detect adhesions

20 7 7 3

7490 MRI of the small intestine 30 7 3 3

7690 MRI of the liver/pancreas 30 7 3 3

7690P
MRI of the liver with intake of contrast
medium Primovist

40 7 3 7

7790 MRI of the bile duct/pancreas 30 7 3 3

(Continued on next page)
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Table A.1 – Continued

HIX code Description
Dura-
tion

Compatibility
MRI scanner ...

1 2 3

8490 MRI of the prostate 30 3 3 3

9090 L/R
MRI of lower extremities (ankle, foot); left
or right

30 3 3 3

9090
AL/AR

MRI of hip(s) combined with an arthrogram;
left or right

30 3 7 7

9090A
MRI scan of the basin/pelvis and/or the
upper legs (femur)

30 7 3 7

9190 MRI of the lower abdomen 30 3 3 3

9190E
MRI for determining or excluding
endometriosis

30 7 7 3

9290 MRI of the pelvis and/or hips 30 3 3 3

9491 L/R MRI of the knee; left or right 20 3 3 3

9491
EL/ER

MRI of the knee to study a (nerve)
entrapment

30 7 3 7

ARTI MRI scan of the brain (Prostate RTG) 30 3 3 7

ARTIP MRI scan of the prostate (Prostate RTG) 30 7 3 7

VITE MRI scan football players of Vitesse 30 3 3 3

MRV
MRV (Magnetic Resonance Venography):
examination of blood vessel(s)/vascular
system

30 7 3 7

MWEKE MRI of soft tissue 30 3 3 3

The HIX codes below correspond to MRI examinations that are booked decentrally.

1390D
MRI of the brain; booked decentrally, i.e.,
directly by another outpatient clinic

20 3 3 3

3190D
MRI of the cervical spine; booked
decentrally, i.e., directly by another
outpatient clinic

30 7 3 3

3390D
MRI of the lumbar spine; booked
decentrally, i.e., directly by another
outpatient clinic

30 7 3 3

The HIX codes below correspond to MRI examinations for one-stop-shop patients.

AKP L/R
MRI of the knee for one-stop-shop patients;
left or right

20 3 3 3

(Continued on next page)
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Table A.1 – Continued

HIX code Description
Dura-
tion

Compatibility
MRI scanner ...

1 2 3

DAG
MRI for one-stop-shop patients of the
geriatrics department

20 3 3 7

TIA/TIAS
MRI for one-stop-patients with
suspicion/symptoms of a TIA; location
Arnhem

20 3 3 7

TIAZ
MRI for one-stop-patients with
suspicion/symptoms of a TIA; location
Zevenaar

20 7 7 3

LWK
MRI of the lumbar spine (lumbar vertebrae)
for one-stop-shop patients; location
Zevenaar

20 7 7 3

CWK
MRI of the cervical spine (cervical vertebrae)
for one-stop-shop patients; location
Zevenaar

20 7 7 3

NEURO MRI of the brain for one-stop-shop patients 20 3 3 3

6990M
MRI of the breasts (MRI Mammae) for
one-stop-shop patients

30 3 7 7
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B
The second ILP and constraint-related
computations in the column generation
algorithm

B.1 Linearization of the optimization problem in (4.31)

min
x,y,a,

φ,θ,ξ,κ

N

∑
n=1

T

∑
t=1

∑
m∈M(t)

f AT(2, t, n)atmn +
N

∑
n=1

M

∑
m=1

h
[
θmn − κmn + (ξmn − φmn)CR,2

mn

]

−
M

∑
m=1

{
N

∑
n=1

Ṽmnxmn − γ
N−2

∑
n=1

Vmn(xm,n+2 + ∑
t∈T (m)

dtatm,n+2)

}
−

T

∑
t=1

W̃tyt, (B.1a)

s.t. xmn ≤ CR,2
mn + COT,2

mn , ∀m ∈ M, ∀n = 1, 2, . . . , N − 1, (B.1b)

xmn = 0, ∀m ∈ M, n = N, (B.1c)

yt ≤ Q2
t , ∀t ∈ T , (B.1d)

∑
n∈N

∑
m∈M(t)

atmn = yt, ∀t ∈ T , (B.1e)

xmn + ∑
t∈T (m)

dtatmn ≤ CR,2
mn + COT,2

mn , ∀m ∈ M, n ∈ N , (B.1f)

atmn = 0, ∀t ∈ T , m 6∈ M(t), n ∈ N , (B.1g)

atm1 == 0, ∀t ∈ T ′, m ∈ M(t), (B.1h)

xmn + ∑
t∈T (m)

dtatmn ≥ φmnCR,2
mn , ∀m ∈ M, ∀n ∈ N (B.1i)

xmn + ∑
t∈T (m)

dtatmn ≤ (1− φmn)CR,2
mn + φmn(CR,2

mn + COT,2
mn ), ∀m ∈ M, n ∈ N , (B.1j)
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xmn ≥ ξmnCR,2
mn , ∀m ∈ M, n ∈ N , (B.1k)

xmn ≤ (1− ξmn)CR,2
mn + ξmn(CR,2

mn + COT,2
mn ), ∀m ∈ M, n ∈ N , (B.1l)

θmn ≤ φmn(CR,2
m,1 + COT,2

m,1 ), ∀m ∈ M, n ∈ N , (B.1m)

θmn ≤ xmn + ∑
t∈T (m)

dtatmn, ∀m ∈ M, n ∈ N , (B.1n)

θmn ≥ xmn + ∑
t∈T (m)

dtatmn − (CR,2
mn + COT,2

mn )(1− φmn), ∀m ∈ M, n ∈ N , (B.1o)

κmn ≤ ξmn(CR,2
mn + COT,2

mn ), ∀m ∈ M, n ∈ N , (B.1p)

κmn ≤ xmn, ∀m ∈ M, n ∈ N , (B.1q)

κmn ≥ xmn − (CR,2
mn + COT,2

mn )(1− ξmn), ∀m ∈ M, n ∈ N , (B.1r)

x ∈NMN
0 , y ∈NT

0 , a ∈NTMN
+ , (B.1s)

φ ∈ {0, 1}MN , ξ ∈ {0, 1}MN , θ ∈NMN
0 , κ ∈NMN

0 . (B.1t)

B.2 Calculation of the right-hand side of the constraints in the
(restricted) master problem

For the constraints in the (restricted) master problem in (4.28a)-(4.28h) we need the quantities

Eα[xmn] = ∑
s1∈S1

α(s1)xmn(s1), Eα[yt] = ∑
s1∈S1

α(s1)yt(s1),

Eβ[xmn] = ∑
s2∈S2

β(s2)xmn(s2), Eβ[yt] = ∑
s2∈S2

β(s2)yt(s2).

Experiments suggests that the larger these quantities are, the shorter the calculation time of the
column generation becomes after feasible initial state-action pairs are found. Contradictory
to this is that the smaller these quantities are, the less iterations are needed in the described
procedure to find feasible initial state-action pairs (see Section 4.2.2). All together, we try to
find values for Eα[xmn], Eβ[xmn], Eα[yt], Eβ[yt] as large as possible that still makes sure that
finding feasible initial state-action pairs takes not too long.

We will show that for any ε > 0, we can define the right-hand sides of the (restricted) master
problem in (4.28a)-(4.28h) as

Eα[xmn] = ε · 1 + CR,1
mn + COT,1

mn

2
, ∀n = 1, . . . , N − 2, Eα[xmn] = 0, for n = N − 1, N,

Eα[yt] = ε · 1 + Q1
t

2
,

Eβ[xmn] = ε · 1 + CR,2
mn + COT,2

mn

2
, ∀n = 1, . . . , N − 1, Eβ[xmn] = 0, for n = N,
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Eβ[yt] = ε · 1 + Q2
t

2
.

To show this, we define support set Ω = {0, 1, 2, . . . , K} for the random variable X, defined
as X(ω) = ω. Furthermore, we let Y be a (discrete) uniformly distributed random variable
over the support set Ω\{0}. Finally, X has probability mass function pX defined as

pX(X = 0) = 1− ε, pX(X = x) =
ε

|Ω| − 1
=

ε

K
, for all x 6= 0.

Then the following equality holds

E[X] = 0 · (1− ε) +
K

∑
k=1

k · ε

K
=

ε

K
K(K + 1)

2
= ε

K + 1
2

= εE[Y].

Next, we define the random probability distribution α over the states s1 ∈ S1 by α(0) = 1− ε
and α(s1) = ε/(|S1| − 1), for all s1 6= 0. It then follows from the preceding that, for all
m ∈ M, n = 1, . . . , N − 2, Eα[xmn] = εEν[xmn(s1)], where ν is the uniform distribution over
the support set S1\{0}. It now suffices to observe that

Eν[xmn(s1)] =
1 + CR,1

mn + COT,1
mn

2
,

because ν is the (discrete) uniform distribution over the support set S1\{0}. Hence the ex-
pectation Eν[xmn(s1)] reduces to the expectation of a uniformly distributed random variable
over the support set {1, . . . , CR,1

mn + COT,1
mn }. Hence, as this derivations shows, if take α as the

uniform distribution, it turns out that Eα[xmn] is the uniform distribution over its support
set {0, 1, 2, . . . , CR,1

mn + COT,1
mn }. Similar results hold for the other expectation appearing in the

right-hand sides of the (4.28a)-(4.28h). Hence, we can calculate these as above.
We used ε = 0.5.
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C
Rijnstate’s patient types and blueprint
calendars used in the MDP and
simulation

C.1 Patient types definition based on the blueprint calendars for all
three MRI scanners used in Rijnstate

Table C.1: Patient types definition and some attributes. The second column shows the HIX codes
belonging the patient type. Note that a HIX code may belong to multiple patient types. In that case the
difference is in the access time target (abbreviated as AT in the header). Today is day 0 and tomorrow is
counted as day 1. The third column shows the service time, in minutes, that is reserved for each patient
type. The last columns shows whether a MRI scanner is suitable for the type of MRI examination (3) or
not (7).

Patient
type HIX code(s) AT

(in days)
Duration
(in min.)

Compatibility
MRI scanner ...

1 2 3

1

emergency; machine 1 & 2: 1390, 1390D,
1390A, 1390E, 2090, 2090A, 2990, 3190PB,
8490, 9090 L/R, 9190, 9290, 9491 L/R, ARTI,
MWEKE

0 30 3 3 7

2
emergency; only on machine 1: 1390C, 1390H,
1390K, 2290, 4090 L/R, 4090 AL/AR, 4292
L/R, 6990

0 30 3 7 7

3

emergency; only on machine 2: 3090T, 3190,
3190D, 3290, 3390, 3390D, 3390P, 3490, 3690,
5090, 6990P, 7090, 7090A, 7490, 7690, 7790,
9090A, 9491 EL/ER, MRV

0 30 7 3 7

4 emergency; only on machine 2: 5190/5192,
5191/5191R, 7690P 0 60 7 3 7

(Continued on next page)
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Table C.1 – Continued

Patient
type HIX code(s) AT

(in days)
Duration
(in min.)

Compatibility
MRI scanner ...

1 2 3

5

emergency; only machine 3: 3090T, 3190, 3290,
3390, 3390P, 3490, 5090, 7090, 7091, 7490, 7690,
7790, 8490, 9090 L/R, 9190, 9190E, 9290, 9491,
MWEKE

0 30 7 7 3

6 1390, 1390D 3 20 3 3 3

7 1390A, 2090, 3190PB; 3390P 3 30 3 3 3

8 8490, 9190 3 30 3 3 3

9 2290, 2990 3 30 3 3 7

10 3190, 3190D 3 30 7 3 3

11 3390, 3390D 3 30 7 3 3

12 5090, 7090, 7490, 7690, 7790 3 30 7 3 3

13 3690 3 30 7 3 7

14 7091 3 20 7 7 3

15 4090 L/R; 9090 L/R; 9290; MWEKE 5 30 3 3 3

16 9491 L/R 5 30 3 3 3

17 NEURO 5 20 3 3 3

18 2090A 5 30 3 3 7

19 DAG 5 20 3 3 7

20 TIA/TIAS 5 20 3 3 7

21 1390C 5 20 3 7 3

22 1390H 5 30 3 7 7

23 6990M 5 30 3 7 7

24 3090T, 3290, 3490 5 30 7 3 3

25 7690P 5 40 7 3 7

26 9190E 5 30 7 7 3

27 TIAZ 5 20 7 7 3

28 LWK 5 20 7 7 3

29 CWK 5 20 7 7 3

30 AKP L/R 10 20 3 3 3

31 1390, 1390D 10 20 3 3 3

32 4090 L/R; 9090 L/R; 9290; MWEKE 10 30 3 3 3

33 9491 L/R 10 30 3 3 3

34 1390A, 2090, 3190PB; 3390P 10 30 3 3 3

35 1390E 10 30 3 3 3

36 8490, 9190 10 30 3 3 3

37 2290, 2990 10 30 3 3 7

38 ARTI 10 30 3 3 7

(Continued on next page)
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Table C.1 – Continued

Patient
type HIX code(s) AT

(in days)
Duration
(in min.)

Compatibility
MRI scanner ...

1 2 3

39

1390-3190 combi; 1390D-3190D combi;
1390-3090T combi; 1390-3690 combi;
3190-3190 combi; 3190-3390 combi;
3190D-3390D combi; 3190-3190PB combi;
3290-3390 combi; 3390-3390P combi;
3090T-3490 combi; 7690-7790 combi

10 40 3 3 7

40 1390K 10 30 3 7 7

41 6990 10 30 3 7 7

42 4090 AR/AL, 9090 AL/AR, 4292 L/R 10 30 3 7 7

43 3190, 3190D 10 30 7 3 3

44 3390, 3390D 10 30 7 3 3

45 3090T, 3290, 3490 10 30 7 3 3

46 5090, 7090, 7490, 7690, 7790 10 30 7 3 3

47 5190/5192, 5191/5191R 10 60 7 3 7

48 6990P 10 30 7 3 7

49 7090A, 9090A, MRV 10 30 7 3 7

50 3690 10 30 7 3 7

51 ARTIP 10 30 7 3 7

C-3



C.2 Blueprint calendars used for validation of the simulation model

Monday (Day 1 and Day 6 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 08:30 3 10, 43

08:30 - 09:30 6
6, 7, 9, 10, 11, 13, 15, 16, 24, 31, 32, 33, 34, 

37, 39, 43, 44, 45, 50

09:30 - 10:10 4 17 (6, 31 / 1) one-stop-shop patient type

10:10 - 10:30 2 20 (6, 31 / 1) one-stop-shop patient type

10:30 - 11:00 3 7, 10, 11, 24, 34, 43, 44, 45

11:00 - 12:00 6 4, 47

12:00 - 12:30 3

6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 24, 25, 31, 

32, 33, 34, 35, 36, 37, 39,  43, 44, 45, 46, 

47, 49, 50, 51

Block for all types feasible on 

this MRI scanner

12:30 - 13:00 3 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days can be 

booked here

13:00 - 13:30 3 7, 10, 11, 24, 34, 43, 44, 45

13:30 - 16:30 18 4, 47

16:30 - 17:00 3

6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 24, 25, 31, 

32, 33, 34, 35, 36, 37, 39,  43, 44, 45, 46, 

47, 49, 50, 51

Block for all types feasible on 

this MRI scanner

17:00 - 18:00 6 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days can be 

booked here

Time

(a) Blueprint calendar for MRI scanner 2 for Day 1 and 6 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Mondays in weeks with odd and even week numbers, respectively.

Tuesday (Day 2 (till 18:00) and Day 7 (till 21:00) in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 08:30 3 10, 43

08:30 - 09:00 3
6, 7, 9, 10, 11, 13, 15, 16, 24, 31, 32, 33, 34, 

37, 39,  43, 44, 45, 50

09:00 - 09:40 4 20 (6, 31 / 1) one-stop-shop patient type

09:40 - 12:30 17 4, 47

12:30 - 15:30 18 4, 47

15:30 - 16:30 6 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days can be 

booked here

16:30 - 17:00 3 8, 9, 12, 13, 15, 32, 37, 46, 50

17:00 - 17:30 3 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days can be 

booked here

17:30 - 18:00 3 51

18:00 - 18:30 3 11, 24, 44, 45

18:30 - 19:30 6 8, 9, 12, 13, 15, 32, 37, 46, 50

19:30 - 20:30 6 7, 10, 11, 24, 34, 43, 44, 45

20:30 - 21:00 3 6, 10, 11, 24, 31, 39, 43, 44, 45

Time

(b) Blueprint calendar for MRI scanner 2 for Day 2 and 7 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Tuesdays in weeks with odd and even week numbers, respectively.
In the weeks with even week numbers, the MRI scanner is operated till 21.00 p.m. In our biweekly cycle that
is on Day 7.
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Wednesday (Day 3 (till 18:00) and Day 8 (till 21:00) in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 08:30 3 15, 32

08:30 - 09:10 4 30 (16, 33 / 1) one-stop-shop patient type

09:10 - 10:00 5

6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 24, 25, 

31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 

46, 47, 48, 49, 50, 51

Block for all types feasible on 

this MRI scanner

10:00 - 10:30 3 48

10:30 - 11:30 6 18

11:30 - 12:00 3 38

12:00 - 12:30 3 51

12:30 - 13:00 3 6, 7, 9, 31, 34, 35, 37

13:00 - 14:00 6 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days can be 

booked here

14:00 - 14:30 3 38

14:30 - 15:30 6 15, 32

15:30 - 16:00 3

6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 24, 25, 

31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 

46, 47, 48, 49, 50, 51

Block for all types feasible on 

this MRI scanner

16:00 - 16:30 3 16, 33

16:30 - 17:00 3 6, 31

17:00 - 17:30 3 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days can be 

booked here

17:30 - 18:00 3 51

18:00 - 18:30 3 11, 24, 44, 45

18:30 - 19:30 6 8, 9, 12, 13, 15, 32, 37, 46, 50

19:30 - 20:30 6 7, 10, 11, 24, 34, 43, 44, 45

20:30 - 21:00 3 6, 10, 11, 24, 31, 39, 43, 44, 45

Time

(c) Blueprint calendars for MRI scanner 2 for Day 3 and Day 8 in the biweekly cycle. Blueprints are based on
Rijnstate’s blueprint calendars for Wednesdays in weeks with odd and even week numbers, respectively. In
the weeks with even week numbers, the MRI scanner is operated till 21.00 p.m. In our biweekly cycle that is
on Day 8.

Thursday (Day 4 (till 18:00) and Day 9 (till 21:00) in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 08:30 3 10, 43

08:30 - 09:00 3
6, 7, 9, 10, 11, 13, 15, 16, 24, 31, 32, 33, 34, 

37, 39,  43, 44, 45, 50

09:00 - 10:00 6 20 (6, 31 / 1) one-stop-shop patient type

10:00 - 10:30 3 49

10:30 - 11:30 6 7, 10, 11, 24, 34, 43, 44, 45

11:30 - 12:30 6 8, 12, 25, 37, 46, 49, 51

12:30 - 13:10 4 19 (6, 31 / 1)

13:10 - 14:40 9 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days can be 

booked here

14:40 - 15:10 3

6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 24, 25, 

31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 

46, 47, 48, 49, 50, 51

Block for all types feasible on 

this MRI scanner

15:10 - 16:10 6 8, 12, 25, 37, 46, 49, 51

16:10 - 16:40 3 6, 7, 11, 31, 34, 44

16:40 - 17:00 2 6, 31

17:00 - 17:30 3 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days can be 

booked here

17:30 - 19:30 12 11, 24, 44, 45

19:30 - 20:30 6 7, 10, 11, 24, 34, 43, 44, 45

20:30 - 21:00 3 6, 10, 11, 24, 31, 39, 43, 44, 45

Time

(d) Blueprint calendar for MRI scanner 2 for Day 4 and 9 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Thursdays in weeks with odd and even week numbers,
respectively. In the weeks with even week numbers, the MRI scanner is operated till 21.00 p.m. In our
biweekly cycle that is on Day 9.
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Friday (Day 5 and Day 10 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 08:30 3 10, 43

08:30 - 09:30 6
6, 7, 9, 10, 11, 13, 15, 16, 24, 31, 32, 33, 34, 

37, 39,  43, 44, 45, 50

09:30 - 10:10 4 20 (6, 31 / 1) one-stop-shop patient type

10:10 - 11:10 6 8, 12, 25, 37, 46, 49

11:10 - 12:30 8

6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 24, 25, 

31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 

46, 47, 48, 49, 50, 51

Block for all types feasible on 

this MRI scanner

12:30 - 14:00 9 block 1

14:00 - 15:00 6 8, 12, 25, 37, 46, 49

15:00 - 15:30 3 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days can be 

booked here

15:30 - 17:00 9

6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 24, 25, 

31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 

46, 47, 48, 49, 50, 51

Block for all types feasible on 

this MRI scanner

17:00 - 17:30 3 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days can be 

booked here

17:30 - 18:00 3

6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 24, 25, 

31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 

46, 47, 48, 49, 50, 51

Block for all types feasible on 

this MRI scanner

Time

(e) Blueprint calendar for MRI scanner 2 for Day 5 and 10 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Fridays in weeks with odd and even week numbers, respectively.

Figure C.1: Blueprint calendars for MRI scanner 2 used for the validation of the simulation model.

Monday (Day 1 and Day 6 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 10:00 12
6, 7, 10, 11, 15, 16, 21, 24,

31, 32, 33, 34, 43, 44, 45

10:00 - 11:30 9 16, 33

11:30 - 12:30 6

6, 7, 8, 10, 11, 12, 14, 15, 16,

21, 24, 26, 31, 32, 33, 34,

35, 36, 43, 44, 45, 46

Block for all types feasible on 

this MRI scanner

12:30 - 13:00 3
6, 7, 10, 11, 15, 16, 21, 24,

31, 32, 33, 34, 43, 44, 45

13:00 - 14:00 6 5, 6, 7, 8, 10, 11, 12, 14

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days

can be booked here

14:00 - 17:00 18

6, 7, 8, 10, 11, 12, 14, 15, 16,

21, 24, 26, 31, 32, 33, 34,

35, 36, 43, 44, 45, 46

Block for all types feasible on 

this MRI scanner

17:00 - 18:00 6 5, 6, 7, 8, 10, 11, 12, 14

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days

can be booked here

Time

(a) Blueprint calendar for MRI scanner 3 for Day 1 and 6 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Mondays in weeks with odd and even week numbers, respectively.
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Tuesday (Day 2 and Day 7 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 09:30 9
6, 7, 10, 11, 15, 16, 21, 24,

31, 32, 33, 34, 43, 44, 45

09:30 - 10:50 8 28, 29 (10, 11, 43, 44 / 1) one-stop-shop patient types

10:50 - 11:10 2 27 (6, 31 / 1) one-stop-shop patient type

11:10 - 12:30 8

6, 7, 10, 11, 12, 14, 15, 16,

21, 24, 26, 31, 32, 33, 34,

35, 36, 43, 44, 45, 46

Block for all types feasible on 

this MRI scanner

12:30 - 13:30 6 5, 6, 7, 8, 10, 11, 12, 14

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days

can be booked here

13:30 - 15:00 9

6, 7, 8, 10, 11, 12, 14, 15, 16,

21, 24, 26, 31, 32, 33, 34,

35, 36, 43, 44, 45, 46

Block for all types feasible on 

this MRI scanner

15:00 - 16:30 9
6, 7, 10, 11, 15, 16, 21, 24,

31, 32, 33, 34, 43, 44, 45

16:30 - 17:00 3 16, 33

17:00 - 17:30 3 12, 35, 46

17:30 - 18:00 3 5, 6, 7, 8, 10, 11, 12, 14

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days

can be booked here

Time

(b) Blueprint calendar for MRI scanner 3 for Day 2 and 7 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Tuesdays in weeks with odd and even week numbers, respectively.
In the weeks with even week numbers, the MRI scanner is operated till 21.00 p.m. In our biweekly cycle that
is on Day 7.

Wednesday (Day 3 and Day 8 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 08:30 3
6, 7, 10, 11, 15, 16, 21, 24,

31, 32, 33, 34, 43, 44, 45

08:30 - 10:30 12

6, 7, 8, 10, 11, 12, 14, 15, 16,

21, 24, 26, 31, 32, 33, 34,

35, 36, 43, 44, 45, 46

Block for all types feasible on 

this MRI scanner

10:30 - 11:30 6 5, 6, 7, 8, 10, 11, 12, 14

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days

can be booked here

11:30 - 11:50 2 27 (6, 31 / 1) one-stop-shop patient type

11:50 - 12:30 4 17 (6, 31 / 1) one-stop-shop patient type

12:30 - 13:30 6 5, 6, 7, 8, 10, 11, 12, 14

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days

can be booked here

13:00 - 15:00 12

6, 7, 8, 10, 11, 12, 14, 15, 16,

21, 24, 26, 31, 32, 33, 34,

35, 36, 43, 44, 45, 46

Block for all types feasible on 

this MRI scanner

15:30 - 17:00 9 16, 33

17:00 - 18:00 6 5, 6, 7, 8, 10, 11, 12, 14

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days

can be booked here

Time

(c) Blueprint calendars for MRI scanner 2 for Day 3 and Day 8 in the biweekly cycle. Blueprints are based on
Rijnstate’s blueprint calendars for Wednesdays in weeks with odd and even week numbers, respectively. In
the weeks with even week numbers, the MRI scanner is operated till 21.00 p.m. In our biweekly cycle that is
on Day 8.
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Thursday (Day 4 and Day 9 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 09:00 6
6, 7, 10, 11, 15, 16, 21, 24,

31, 32, 33, 34, 43, 44, 45

09:00 - 09:40 4 27 (6, 31 / 1) one-stop-shop patient type

09:40 - 10:40 6 28, 29 (10, 11, 43, 44 / 1) one-stop-shop patient types

10:40 - 11:10 3 16, 33

11:10 - 11:50 4 17 (6, 31 / 1) one-stop-shop patient type

11:50 - 12:30 4

6, 7, 8, 10, 11, 12, 14, 15, 16,

21, 24, 26, 31, 32, 33, 34,

35, 36, 43, 44, 45, 46

Block for all types feasible on 

this MRI scanner

12:30 - 13:30 6 5, 6, 7, 8, 10, 11, 12, 14

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days

can be booked here

13:30 - 14:30 6 30 (16, 33 / 1) one-stop-shop patient type

14:30 - 17:00 15

6, 7, 8, 10, 11, 12, 14, 15, 16,

21, 24, 26, 31, 32, 33, 34,

35, 36, 43, 44, 45, 46

Block for all types feasible on 

this MRI scanner

17:00 - 18:00 6 5, 6, 7, 8, 10, 11, 12, 14

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days

can be booked here

Time

(d) Blueprint calendar for MRI scanner 3 for Day 4 and 9 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Thursdays in weeks with odd and even week numbers,
respectively. In the weeks with even week numbers, the MRI scanner is operated till 21.00 p.m. In our
biweekly cycle that is on Day 9.

Friday (Day 5 and Day 10 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 09:00 6
6, 7, 10, 11, 15, 16, 21, 24,

31, 32, 33, 34, 43, 44, 45

09:00 - 09:40 4 27 (6, 31 / 1) one-stop-shop patient type

09:40 - 10:40 6 28, 29 (10, 11, 43, 44 / 1) one-stop-shop patient types

10:40 - 11:10 3 16, 33

11:10 - 11:50 4 17 (6, 31 / 1) one-stop-shop patient type

11:50 - 12:30 4

6, 7, 8, 10, 11, 12, 14, 15, 16,

21, 24, 26, 31, 32, 33, 34,

35, 36, 43, 44, 45, 46

Block for all types feasible on 

this MRI scanner

12:30 - 14:00 9

14:00 - 15:00 6 5, 6, 7, 8, 10, 11, 12, 14

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days

can be booked here

15:00 - 16:00 6 30 (16, 33 / 1) one-stop-shop patient type

16:00 - 17:00 6

6, 7, 8, 10, 11, 12, 14, 15, 16,

21, 24, 26, 31, 32, 33, 34,

35, 36, 43, 44, 45, 46

Block for all types feasible on 

this MRI scanner

17:00 - 18:00 6 5, 6, 7, 8, 10, 11, 12, 14

Emergency block: patient types 

with acces time targets less than 

or equal to 3 days

can be booked here

Time

(e) Blueprint calendar for MRI scanner 3 for Day 5 and 10 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Fridays in weeks with odd and even week numbers, respectively.

Figure C.2: Blueprint calendars for MRI scanner 3 used for the validation of the simulation model.
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C.3 Patient types definition for the MDP

Table C.2: Patient types definition for the MDP and some attributes. The second column shows how we
have merged patient types based on the blueprint calendars (from Table C.1) into patient types for
the MDP. Note that a HIX code may belong to multiple patient types. In that case the difference is in the
access time target (abbreviated as AT in the header). Today is day 0 and tomorrow is counted as day 1.
The third column shows the service time, in minutes, that is reserved for each patient type. The last
columns shows whether a MRI scanner is suitable for the type of MRI examination (3) or not (7).

Patient
type

Patient
types

merged
HIX code(s) AT

(in days)
Duration
(in min.)

Compatibility
MRI scanner ...

1 2 3

1 1

emergency; machine 1 & 2: 1390,
1390D, 1390A, 1390E, 2090, 2090A,
2990, 3190PB, 8490, 9090 L/R, 9190,
9290, 9491 L/R, ARTI, MWEKE

0 30 3 3 7

2 2
emergency; only on machine 1:
1390C, 1390H, 1390K, 2290, 4090
L/R, 4090 AL/AR, 4292 L/R, 6990

0 30 3 7 7

3 3

emergency; only on machine 2:
3090T, 3190, 3190D, 3290, 3390,
3390D, 3390P, 3490, 3690, 5090,
6990P, 7090, 7090A, 7490, 7690, 7790,
9090A, 9491 EL/ER, MRV

0 30 7 3 7

4 4 emergency; only on machine 2:
5190/5192, 5191/5191R, 7690P 0 60 7 3 7

5 5

emergency; only machine 3: 3090T,
3190, 3290, 3390, 3390P, 3490, 5090,
7090, 7091, 7490, 7690, 7790, 8490,
9090 L/R, 9190, 9190E, 9290, 9491,
MWEKE

0 30 7 7 3

6 6 1390, 1390D 3 20 3 3 3

7 7 & 8 1390A, 2090, 3190PB; 3390P, 8490,
9190 3 30 3 3 3

8 9 2290, 2990 3 30 3 3 7

9 10 - 12 3190, 3190D, 3390, 3390D, 5090,
7090, 7490, 7690, 7790 3 30 7 3 3

10 13 3690 3 30 7 3 7

11 14 7091 3 20 7 7 3

12 15 & 16 4090 L/R; 9090 L/R; 9290; MWEKE,
9491 L/R 5 30 3 3 3

13 17 &
19 - 21 NEURO, DAG, TIA/TIAS, 1390C 5 20 3 3 7

14 18 2090A 5 30 3 3 7

15 22 & 23 1390H, 6990M 5 30 3 7 7

(Continued on next page)
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Table C.2 – Continued

Patient
type

Patient
types

merged
HIX code(s) AT

(in days)
Duration
(in min.)

Compatibility
MRI scanner ...

1 2 3

16 24 3090T, 3290, 3490 5 30 7 3 3

17 25 7690P 5 40 7 3 7

18 26 9190E 5 30 7 7 3

19 27 - 29 TIAZ, LWK, CWK 5 20 7 7 3

20 30 & 31 AKP L/R, 1390, 1390D 10 20 3 3 3

21 32 - 36
1390A, 1390E, 2090, 3190PB;
3390P,4090 L/R, 8490,9090 L/R,
9190, 9290, 9491 L/R, MWEKE

10 30 3 3 3

22 37 & 38 2290, 2990, ARTI 10 30 3 3 7

23 39

1390-3190 combi; 1390D-3190D
combi; 1390-3090T combi; 1390-3690
combi; 3190-3190 combi; 3190-3390
combi; 3190D-3390D combi;
3190-3190PB combi; 3290-3390
combi; 3390-3390P combi;
3090T-3490 combi; 7690-7790 combi

10 40 3 3 7

24 40 - 42 1390K, 4090 AR/AL, 6990, 9090
AL/AR, 4292 L/R 10 30 3 7 7

25 43 - 46
3090T, 3190, 3190D, 3290, 3390,
3390D, 3490, 5090, 7090, 7490, 7690,
7790

10 30 7 3 3

26 47 5190/5192, 5191/5191R 10 60 7 3 7

27 48 - 51 3690, 6990P, 7090A, 9090A, MRV,
ARTIP 10 30 7 3 7
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C.4 Blueprint calendars for MDP patient types

Monday (Day 1 and Day 6 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 09:10 7 12, 21

09:10 - 09:50 4 6, 20

09:50 - 10:20 3 7, 12, 12, 21, 

10:20 - 10:50 3 15

10:50 - 11:20 3 24

11:20 - 12:00 4 13

12:00 - 12:30 3 22

12:30 - 13:30 6 12, 21, 24

13:30 - 14:20 5 13

14:20 - 15:20 6 1, 2, 6, 7, 8

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

15:20 - 16:20 6 6, 7, 8, 12, 12, 13, 15, 20, 21, 22, 22, 24
Block for all types feasible on 

this MRI scanner

16:20 - 17:00 4 12, 21

17:00 - 18:00 6 1, 2, 6, 7, 8

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

Time

(a) Blueprint calendar for MRI scanner 1 for Day 1 and 6 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Mondays in weeks with odd and even week numbers, respectively.

Tuesday (Day 2 (till 18:00) and Day 7 (till 21:00) in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 08:30 3 12, 21

08:30 - 09:00 3 7, 12, 21 

09:00 - 10:00 6 15 (24 / 5)

10:00 - 10:30 3 24

10:30 - 11:00 3 1, 2, 6, 7, 8

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

11:00 - 12:30 9 6, 7, 8, 12, 13, 15, 20, 21, 22, 22, 24
Block for all types feasible on 

this MRI scanner

12:30 - 12:50 2 13

12:50 - 13:30 4 14

13:30 - 14:30 6 1, 2, 6, 7, 8

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

14:30 - 15:00 3 22

15:00 - 15:30 3 7, 15, 21

15:30 - 16:00 3 6, 20

16:00 - 16:30 3 7, 12, 21 

16:30 - 17:00 3 6, 7, 8, 12, 13, 15, 20, 21, 22, 22, 24
Block for all types feasible on 

this MRI scanner

17:00 - 18:00 6 1, 2, 6, 7, 8

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

18:00 - 19:30 9 6, 7, 8, 12, 20, 21, 22

19:30 - 21:00 9 6, 20

Time

(b) Blueprint calendar for MRI scanner 1 for Day 2 and 7 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Tuesdays in weeks with odd and even week numbers, respectively.
In the weeks with even week numbers, the MRI scanner is operated till 21.00 p.m. In our biweekly cycle that
is on Day 7.
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Wednesday (Day 3 (till 18:00) and Day 8 (till 21:00) in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 08:30 3 12, 21

08:30 - 09:10 4 20

09:10 - 10:10 6 15

10:10 - 10:40 3 24

10:40 - 11:40 6 13

11:40 - 12:10 3 22

11:50 - 12:30 4 6, 7, 8, 12, 12, 13, 15, 20, 21, 22, 22, 24
Block for all types feasible on 

this MRI scanner

12:30 - 13:00 3 6, 7, 8, 15, 20, 21, 22

13:00 - 13:30 3 1, 2, 6, 7, 8

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

13:30 - 15:00 9 6, 7, 8, 12, 12, 13, 15, 20, 21, 22, 22, 24
Block for all types feasible on 

this MRI scanner

15:00 - 16:30 9 12, 21, 24

16:30 - 17:00 3 12, 21

17:00 - 18:00 6 1, 2, 6, 7, 8

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

18:00 - 19:30 9 6, 7, 8, 12, 20, 21, 22

19:30 - 21:00 9 6, 12, 20, 21

Time

(c) Blueprint calendars for MRI scanner 1 for Day 3 and Day 8 in the biweekly cycle. Blueprints are based on
Rijnstate’s blueprint calendars for Wednesdays in weeks with odd and even week numbers, respectively. In
the weeks with even week numbers, the MRI scanner is operated till 21.00 p.m. In our biweekly cycle that is
on Day 8.

Thursday, odd weeknumbers (Day 4 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 08:30 3 12, 21

08:30 - 12:00 21 24

12:00 - 12:30 3 15

12:30 - 13:30 6 7, 12, 21 

13:30 - 14:00 3 1, 2, 6, 7, 8

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

14:00 - 15:00 6 6, 7, 8, 12, 20, 21, 22

15:00 - 15:30 3 7, 12, 21 

15:30 - 16:30 6 6, 7, 8, 12, 13, 15, 20, 21, 22, 22, 24
Block for all types feasible on 

this MRI scanner

16:30 - 17:00 3 12, 21

17:00 - 18:00 6 1, 2, 6, 7, 8

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

Time

(d) Blueprint calendar for MRI scanner 1 for Day 4 in the biweekly cycle. This blueprint calendar is based on
Rijnstate’s blueprint calendar for Thursdays in weeks with odd week numbers, respectively. In the weeks
with even week numbers, the MRI scanner is operated till 21.00 p.m. In our biweekly cycle that is on Day 9.
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Thursday, even weeknumbers (Day 9 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 08:30 3 12, 21

08:30 - 10:30 12 6, 7, 8, 15, 20, 21, 22

10:30 - 11:30 6 24

11:30 - 12:00 3 15 one-stop-shop patient type

12:00 - 12:30 3 7, 12, 12, 21, 

12:30 - 13:00 3 6, 7, 8, 12, 20, 21, 22

13:00 - 14:00 6 1, 2, 6, 7, 8

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

14:00 - 15:30 9 7, 12, 12, 21, 

15:30 - 16:30 6 6, 7, 8, 12, 12, 13, 15, 20, 21, 22, 22, 24
Block for all types feasible on 

this MRI scanner

16:30 - 17:00 3 6, 7, 8, 12, 20, 21, 22

17:00 - 18:00 6 1, 2, 6, 7, 8

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

18:00 - 19:30 9 6, 7, 8, 12, 20, 21, 22

19:30 - 21:00 9 12, 21

Time

(e) Blueprint calendar for MRI scanner 1 for Day 9 in the biweekly cycle. This blueprint calendar is based on
Rijnstate’s blueprint calendar for Thursdays in weeks with even week numbers.

Friday (Day 5 and Day 10 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 09:00 6 7, 12, 21 

09:00 - 10:00 6 13

10:00 - 10:30 3 24

10:30 - 11:00 3 15

11:00 - 11:30 3 6, 7, 8, 15, 20, 21, 22

11:30 - 12:00 3 13

12:00 - 12:30 3 6, 7, 8, 12, 13, 15, 20, 21, 22, 22, 24
Block for all types feasible on 

this MRI scanner

12:30 - 14:00 9

14:00 - 15:00 6 1, 2, 6, 7, 8

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

15:00 - 16:00 6 12, 21, 24

16:00 - 17:00 6 6, 7, 8, 12, 13, 15, 20, 21, 22, 22, 24
Block for all types feasible on 

this MRI scanner

17:00 - 18:00 6 1, 2, 6, 7, 8

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

Time

(f) Blueprint calendar for MRI scanner 1 for Day 5 and 10 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Fridays in weeks with odd and even week numbers, respectively.

Figure C.3: Blueprint calendars for MRI scanner 1 used for simulating the FAS-wB and M-wB policies
in the comparison to the AOP in Section 6.3.
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Monday (Day 1 and Day 6 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 08:30 3 9, 25

08:30 - 09:30 6 6, 7, 8, 9, 10, 12, 16, 20, 21, 22, 25, 27

09:30 - 10:30 6 13

10:30 - 11:00 3 7, 9, 16, 21, 25

11:00 - 12:00 6 4, 26

12:00 - 12:30 3
6, 7, 8, 9, 10, 12, 16, 17, 20, 21, 22,  25, 26, 

27

Block for all types feasible on 

this MRI scanner

12:30 - 13:00 3 1, 3, 4, 6, 7, 8, 9, 10

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

13:00 - 13:30 3 7, 9, 16, 21, 25

13:30 - 16:30 18 4, 26

16:30 - 17:00 3
6, 7, 8, 9, 10, 12, 16, 17, 20, 21, 22,  25, 26, 

27

Block for all types feasible on 

this MRI scanner

17:00 - 18:00 6 1, 3, 4, 6, 7, 8, 9, 10

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

Time

(a) Blueprint calendar for MRI scanner 2 for Day 1 and 6 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Mondays in weeks with odd and even week numbers, respectively.

Tuesday (Day 2 (till 18:00) and Day 7 (till 21:00) in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 08:30 3 9, 25

08:30 - 09:00 3 6, 7, 8, 9, 10, 12, 16, 20, 21, 22,  25, 27

09:00 - 09:40 4 13

09:40 - 12:30 17 4, 26

12:30 - 15:30 18 4, 26

15:30 - 16:30 6 1, 3, 4, 6, 7, 8, 9, 10

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

16:30 - 17:00 3 7, 8, 9, 10, 12, 21, 22, 25, 27

17:00 - 17:30 3 1, 3, 4, 6, 7, 8, 9, 10

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

17:30 - 18:00 3 27

18:00 - 18:30 3 9, 16, 25

18:30 - 19:30 6 7, 8, 9, 10, 12, 21, 22, 25, 27

19:30 - 20:30 6 7, 9, 16, 21, 25

20:30 - 21:00 3 6, 9, 16, 20, 22, 25

Time

(b) Blueprint calendar for MRI scanner 2 for Day 2 and 7 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Tuesdays in weeks with odd and even week numbers, respectively.
In the weeks with even week numbers, the MRI scanner is operated till 21.00 p.m. In our biweekly cycle that
is on Day 7.
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Wednesday (Day 3 (till 18:00) and Day 8 (till 21:00) in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 08:30 3 12, 21

08:30 - 09:10 4 20

09:10 - 10:00 5
6, 7, 8, 9, 10, 12, 13, 16, 17, 20, 21, 22, 22, 

25, 26, 26, 27

Block for all types feasible on 

this MRI scanner

10:00 - 10:30 3 26

10:30 - 11:30 6 13

11:30 - 12:00 3 22

12:00 - 12:30 3 27

12:30 - 13:00 3 6, 7, 8, 20, 21, 22

13:00 - 14:00 6 1, 3, 4, 6, 7, 8, 9, 10

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

14:00 - 14:30 3 22

14:30 - 16:00 9 12, 21

16:00 - 16:30 3
6, 7, 8, 9, 10, 12, 13, 16, 17, 20, 21, 22, 22, 

25, 26, 26, 27

Block for all types feasible on 

this MRI scanner

16:30 - 17:00 3 6, 20

17:00 - 17:30 3 1, 3, 4, 6, 7, 8, 9, 10

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

17:30 - 18:00 3 27

18:00 - 18:30 3 9, 16, 25

18:30 - 19:30 6 7, 8, 9, 10, 12, 21, 22, 25, 27

19:30 - 20:30 6 7, 9, 16, 21, 25

20:30 - 21:00 3 6, 9, 16, 20, 22, 25

Time

(c) Blueprint calendars for MRI scanner 2 for Day 3 and Day 8 in the biweekly cycle. Blueprints are based on
Rijnstate’s blueprint calendars for Wednesdays in weeks with odd and even week numbers, respectively. In
the weeks with even week numbers, the MRI scanner is operated till 21.00 p.m. In our biweekly cycle that is
on Day 8.

Thursday (Day 4 (till 18:00) and Day 9 (till 21:00) in the biweekly cycle)
#Slots Feasible patient types Remarks

08:00 - 08:30 3 9, 25

08:30 - 09:00 3 6, 7, 8, 9, 10, 12, 16, 20, 21, 22,  25, 27

09:00 - 10:00 6 13 one-stop-shop patient type

10:00 - 10:30 3 27

10:30 - 11:30 6 7, 9, 16, 21, 25

11:30 - 12:30 6 7, 9, 17, 22, 25, 27

12:30 - 13:10 4 14

13:10 - 14:40 9 1, 3, 4, 6, 7, 8, 9, 10

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

14:40 - 15:10 3
6, 7, 8, 9, 10, 12, 13, 16, 17, 20, 21, 22, 22, 

25, 26, 26, 27

Block for all types feasible on 

this MRI scanner

15:10 - 16:10 6 7, 9, 17, 22, 25, 27

16:10 - 16:40 3 6, 7, 9, 20, 21, 25

16:40 - 17:00 2 6, 20

17:00 - 17:30 3 1, 3, 4, 6, 7, 8, 9, 10

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

17:30 - 19:30 12 9, 16, 25

19:30 - 20:30 6 7, 9, 16, 21, 25

20:30 - 21:00 3 6, 9, 16, 20, 22, 25

Time

(d) Blueprint calendar for MRI scanner 2 for Day 4 and Day 9 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Thursdays in weeks with odd and even week numbers,
respectively. In the weeks with even week numbers, the MRI scanner is operated till 21.00 p.m. In our
biweekly cycle that is on Day 9.
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Friday (Day 5 and Day 10 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 08:30 3 9, 25

08:30 - 09:30 6 6, 7, 8, 9, 10, 12, 16, 20, 21, 22,  25, 27

09:30 - 10:10 4 13

10:10 - 11:10 6 7, 9, 17, 22, 25, 27

11:10 - 12:30 8
6, 7, 8, 9, 10, 12, 13, 16, 17, 20, 21, 22, 22, 

25, 26, 26, 27

Block for all types feasible on 

this MRI scanner

12:30 - 14:00 9 block 1

14:00 - 15:00 6 7, 9, 17, 22, 25, 27

15:00 - 15:30 3 1, 3, 4, 6, 7, 8, 9, 10

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

15:30 - 17:00 9
6, 7, 8, 9, 10, 12, 13, 16, 17, 20, 21, 22, 22, 

25, 26, 26, 27

Block for all types feasible on 

this MRI scanner

17:00 - 17:30 3 1, 3, 4, 6, 7, 8, 9, 10

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days can be 

booked here

17:30 - 18:00 3
6, 7, 8, 9, 10, 12, 13, 16, 17, 20, 21, 22, 22, 

25, 26, 26, 27

Block for all types feasible on 

this MRI scanner

Time

(e) Blueprint calendar for MRI scanner 2 for Day 5 and 10 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Fridays in weeks with odd and even week numbers, respectively.

Figure C.4: Blueprint calendars for MRI scanner 2 used for simulating the FAS-wB and M-wB policies
in the comparison to the AOP in Section 6.3.

Monday (Day 1 and Day 6 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 10:00 12 6, 7, 9, 12, 13, 16, 20, 21, 25

10:00 - 11:30 9 12, 21

11:30 - 12:30 6 6, 7, 9, 11, 12, 13, 16, 18, 20, 21, 25
Block for all types feasible on 

this MRI scanner

12:30 - 13:00 3 6, 7, 9, 12, 13, 16, 20, 21, 25

13:00 - 14:00 6 5, 6, 7, 9, 11

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days

can be booked here

14:00 - 17:00 18 6, 7, 9, 11, 12, 13, 16, 18, 20, 21, 25
Block for all types feasible on 

this MRI scanner

17:00 - 18:00 6 5, 6, 7, 9, 11

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days

can be booked here

Time

(a) Blueprint calendar for MRI scanner 3 for Day 1 and 6 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Mondays in weeks with odd and even week numbers, respectively.
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Tuesday (Day 2 and Day 7 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 09:30 9 6, 7, 9, 12, 13, 16, 20, 21, 25

09:30 - 11:10 10 19

11:10 - 12:30 8 6, 7, 9, 11, 12, 13, 16, 18, 20, 21, 25
Block for all types feasible on 

this MRI scanner

12:30 - 13:30 6 5, 6, 7, 9, 11

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days

can be booked here

13:30 - 15:00 9 6, 7, 9, 11, 12, 13, 16, 18, 20, 21, 25
Block for all types feasible on 

this MRI scanner

15:00 - 16:30 9 6, 7, 9, 12, 13, 16, 20, 21, 25

16:30 - 17:00 3 12, 21

17:00 - 17:30 3 9, 21, 25

17:30 - 18:00 3 5, 6, 7, 9, 11

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days

can be booked here

Time

(b) Blueprint calendar for MRI scanner 3 for Day 2 and 7 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Tuesdays in weeks with odd and even week numbers, respectively.

Wednesday (Day 3 and Day 8 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 08:30 3
6, 7, 9, 12, 13, 16,

20, 21, 25

08:30 - 10:30 12 6, 7, 9, 11, 12, 13, 16, 18, 20, 21, 25
Block for all types feasible on 

this MRI scanner

10:30 - 11:30 6 5, 6, 7, 9, 11

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days

can be booked here

11:30 - 11:50 2 19

11:50 - 12:30 4 13

12:30 - 13:30 6 5, 6, 7, 9, 11

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days

can be booked here

13:00 - 15:00 12 6, 7, 9, 11, 12, 13, 16, 18, 20, 21, 25
Block for all types feasible on 

this MRI scanner

15:30 - 17:00 9 12, 21

17:00 - 18:00 6 5, 6, 7, 9, 11

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days

can be booked here

Time

(c) Blueprint calendar for MRI scanner 3 for Day 3 and 8 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Wednesdays in weeks with odd and even week numbers,
respectively.
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Thursday (Day 4 and Day 9 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 09:00 6 6, 7, 9, 12, 13, 16, 20, 21, 25

09:00 - 10:40 10 19

10:40 - 11:10 3 12, 21

11:10 - 11:50 4 13

11:50 - 12:30 4 6, 7, 9, 11, 12, 13, 16, 18, 20, 21, 25
Block for all types feasible on 

this MRI scanner

12:30 - 13:30 6 5, 6, 7, 9, 11

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days

can be booked here

13:30 - 14:30 6 20

14:30 - 17:00 15 6, 7, 9, 11, 12, 13, 16, 18, 20, 21, 25
Block for all types feasible on 

this MRI scanner

17:00 - 18:00 6 5, 6, 7, 9, 11

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days

can be booked here

Time

(d) Blueprint calendar for MRI scanner 3 for Day 4 and 9 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Thursdays in weeks with odd and even week numbers,
respectively.

Friday (Day 5 and Day 10 in the biweekly cycle)

#Slots Feasible patient types Remarks

08:00 - 09:00 6
6, 7, 9, 12, 13, 16,

20, 21, 25

09:00 - 10:40 10 19

10:40 - 11:10 3 12, 21

11:10 - 11:50 4 13

11:50 - 12:30 4 6, 7, 9, 11, 12, 13, 16, 18, 20, 21, 25
Block for all types feasible on 

this MRI scanner

12:30 - 14:00 9

14:00 - 15:00 6 5, 6, 7, 9, 11

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days

can be booked here

15:00 - 16:00 6 20

16:00 - 17:00 6 6, 7, 9, 11, 12, 13, 16, 18, 20, 21, 25
Block for all types feasible on 

this MRI scanner

17:00 - 18:00 6 5, 6, 7, 9, 11

Emergency block: patient types 

with acces time targets less 

than or equal to 3 days

can be booked here

Time

(e) Blueprint calendar for MRI scanner 3 for Day 5 and 10 in the biweekly cycle. This blueprint calendar is
based on Rijnstate’s blueprint calendar for Fridays in weeks with odd and even week numbers, respectively.

Figure C.5: Blueprint calendars for MRI scanner 3 used for simulating the FAS-wB and M-wB policies
in the comparison to the AOP in Section 6.3.
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D
Additional results

D.1 Additional results for Rijnstate

Table D.1: Percentages of patients of patient types 1-5 (access time target of 0 days) examined within a
certain number of days in the Rijnstate instance of Section 6.3.

AOP

Patient Type (cumulative) % examined on day ...

0 1 3 5 10

1 80.25± 1.36 96.47± 0.61 100.00± 0.00 100.00± 0.00 100.00± 0.00

2 83.81± 2.53 98, 34± 1.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

3 73.50± 1.83 94.05± 2.32 100.00± 0.00 100.00± 0.00 100.00± 0.00

4 47.61± 3.96 60.33± 0.67 100.00± 0.00 100.00± 0.00 100.00± 0.00

5 79.69± 1.44 95.87± 0.83 100.00± 0.00 100.00± 0.00 100.00± 0.00

FAS-nB

Patient Type (cumulative) % examined on day ...

0 1 3 5 10

1 17.52± 2.55 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

2 6.33± 0.84 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

3 10.88± 1.63 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

4 4.31± 2.55 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

5 42.66± 5.76 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

(Continued on next page)
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Table D.1 – Continued

M-nB

Patient Type (cumulative) % examined on day ...

0 1 3 5 10

1 17.68± 0.76 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

2 6.79± 0.18 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

3 11.02± 0.51 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

4 5.83± 0.59 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

5 42.82± 1.78 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

FAS-wB

Patient Type (cumulative) % examined on day ...

0 1 3 5 10

1 66.59± 1.96 93.97± 0.28 100.00± 0.00 100.00± 0.00 100.00± 0.00

2 46.25± 3.70 97.69± 1.48 100.00± 0.00 100.00± 0.00 100.00± 0.00

3 53.03± 1.00 97.33± 0.32 100.00± 0.00 100.00± 0.00 100.00± 0.00

4 15.43± 1.76 44.44± 0.34 100.00± 0.00 100.00± 0.00 100.00± 0.00

5 61.29± 2.42 92.96± 2.43 100.00± 0.00 100.00± 0.00 100.00± 0.00

M-nB

Patient Type (cumulative) % examined on day ...

0 1 3 5 10

1 68.75± 0.79 93.97± 0.82 100.00± 0.00 100.00± 0.00 100.00± 0.00

2 48.77± 2.91 97.69± 0.81 100.00± 0.00 100.00± 0.00 100.00± 0.00

3 56.17± 1.10 97.74± 0.32 100.00± 0.00 100.00± 0.00 100.00± 0.00

4 15.80± 1.02 95.49± 1.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

5 68.27± 0.88 92.96± 0.95 100.00± 0.00 100.00± 0.00 100.00± 0.00
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D.2 Additional results for the heavier loaded system

Table D.4: Percentages of patients of patient types 1-5 (access time target of 0 days) examined within a
certain number of days in the heavier loaded system of Section 6.4.

AOP

Patient Type (cumulative) % examined on day ...

1 2 5 7 23 25

1 92.18± 0.93 98.13± 0.72 100.00± 0.00 100.00± 0.00 100.00± 1.50 100.00± 0.00

2 92.00± 1.40 97.45± 0.94 99.92± 0.12 100.00± 0.00 100.00± 0.52 100.00± 0.00

3 91.61± 1.33 96.11± 1.02 99.93± 0.10 100.00± 0.00 100.00± 0.35 100.00± 0.00

4 59.99± 4.19 65.63± 3.77 96.38± 0.32 100.00± 0.00 100.00± 0.71 100.00± 0.00

5 93.85± 0.86 97.39± 1.19 100.00± 0.00 100.00± 0.00 100.00± 1.43 100.00± 0.00

FAS-nB

Patient Type (cumulative) % examined on day ...

1 2 5 7 23 25

1 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 37.62± 0.00 100.00± 0.00

2 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.97± 0.00 100.00± 0.00

3 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.88± 0.00 100.00± 0.00

4 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.72± 0.00 100.00± 0.00

5 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 71.31± 0.00 100.00± 0.00

M-nB

Patient Type (cumulative) % examined on day ...

1 2 5 7 23 25

1 99.92± 0.12 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

2 99.13± 0.45 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

3 99.65± 0.17 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

4 97.46± 1.39 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

5 99.92± 0.13 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
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Table D.2: Booking distribution across MRI scanners per patient type in the heavier loaded system of
Section 6.3.

AOP

Patient Type % booked on MRI scanner ...

1 2 3

1 42.58± 4.30 57.42± 4.30 0.00± 0.00

6 43.53± 1.41 26.28± 1.08 30.19± 1.07

7 62.30± 1.28 16.49± 0.74 21.21± 0.57

8 80.36± 1.17 19.64± 0.66 0.00± 1.40

9 0.00± 1.48 40.88± 0.49 59.12± 0.83

12 29.78± 0.71 31.36± 1.06 38.86± 0.77

13 44.79± 0.66 55.21± 0.66 0.00± 0.00

14 39.41± 1.98 60.59± 1.98 0.00± 0.00

16 0.00± 0.00 56.44± 0.52 43.56± 0.52

20 29.73± 1.30 8.08± 0.30 62.20± 0.85

21 31.46± 1.34 16.90± 0.41 51.64± 0.86

22 34.19± 1.60 65.81± 1.60 0.00± 0.00

23 53.28± 0.78 46.72± 1.65 0.00± 2.38

25 0.00± 0.00 39.48± 0.66 60.52± 0.66

FAS-nB

Patient Type % booked on MRI scanner ...

1 2 3

1 84.76± 2.66 15.24± 2.66 0.00± 0.00

6 30.46± 0.61 25.11± 0.84 44.43± 1.31

7 27.41± 0.98 11.83± 1.17 60.76± 1.23

8 69.44± 1.86 30.56± 1.63 0.00± 1.05

9 0.00± 1.63 17.81± 0.30 82.19± 1.38

12 41.87± 1.99 13.99± 0.51 44.14± 1.91

13 72.62± 1.52 27.38± 1.52 0.00± 0.00

14 79.38± 1.44 20.62± 1.44 0.00± 0.00

16 0.00± 0.00 58.82± 2.36 41.18± 2.36

20 46.46± 1.52 23.32± 1.47 30.22± 1.91

21 44.75± 2.01 29.19± 1.82 26.06± 1.08

22 56.98± 1.31 43.02± 1.31 0.00± 0.00

23 40.93± 1.85 59.07± 1.78 0.00± 3.18

25 0.00± 0.00 57.86± 1.78 42.14± 1.78

(Continued on next page)
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Table D.2 – Continued

M-nB

textbfPatient Type % booked on MRI scanner ...

1 2 3

1 89.20± 1.34 10.80± 1.34 0.00± 0.00

6 31.50± 0.75 23.06± 1.28 45.44± 1.57

7 33.15± 1.49 13.38± 0.85 53.47± 2.02

8 69.08± 1.21 30.92± 1.37 0.00± 1.96

9 0.00± 0.62 28.06± 0.67 71.94± 1.01

12 39.07± 1.11 19.62± 0.41 41.30± 1.03

13 67.34± 1.10 32.66± 1.10 0.00± 0.00

14 72.36± 1.93 27.64± 1.93 0.00± 0.00

16 0.00± 0.00 57.32± 2.03 42.68± 2.03

20 37.98± 0.36 26.84± 1.41 35.18± 1.25

21 34.47± 1.37 29.02± 0.83 36.51± 1.09

22 64.44± 0.77 35.56± 0.77 0.00± 0.00

23 40.26± 2.25 59.74± 2.89 0.00± 1.74

25 0.00± 0.00 55.38± 0.83 44.62± 0.83
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