

PRIORITIZING REQUESTS FOR
QUOTATION ON SALES POTENTIAL

A machine learning case study

PRIORITIZING REQUESTS FOR
QUOTATION ON SALES POTENTIAL

A machine learning case study

Author
D. Rohaan (David) s1596721

March 2020

Examination committee
Dr. Engin Topan University of Twente
Dr. C.G.M. Groothuis – Oudshoorn University of Twente
Supervisor X Company X

Educational Institution
University of Twente
Faculty of Behavioral Management and Social Sciences
Department of Industrial Engineering and Business Information Systems

Educational Program
Msc. Industrial Engineering and Management
Specialisation: Production and Logistics Management
Orientation: Service Logistics

PUBLIC VERSION

1

Preface

Dear reader,

This thesis is the result of my master graduation project for the Production & Logistics
Management specialization of the Industrial Engineering and Management Master’s degree
at the University of Twente. Carrying out the research of this thesis has been a tremendous
learning curve in which I got the opportunity to deep dive into the fields of Machine Learning
and Natural Language Processing and learn how to program in Python, which I had never done
before. In this preface I would like to take the opportunity to express my gratitude to the
people who helped me with the realization of this thesis.

First, I would like to thank Supervisor X for both allowing me to carry out my master
graduation assignment at Company X and for his guidance and feedback throughout.

Second, I would like to thank Dr. Engin Topan and Dr. C.G.M. Groothuis-Oudshoorn for their
support, valuable input and feedback on my draft reports.

Finally, I want to thank family and friends for their support and help.

David Rohaan
Amsterdam, The Netherlands
23-03-2020

2

Management summary

The research of this master thesis has been carried out to enable Company X to prioritize
requests for quotation (RFQs), which are noncommittal requests from customers for a quote
of spare parts and/or exchange of parts, on sales potential. Currently, Company X receives a
large number of RFQs exceeding the capacity of the Customer Support Department, which is
responsible for responding to the RFQs. In addition, the Customer Support Department
handles many RFQs that have little/no chance of converting into a sale. Company X has
already taken some initiative to address these issues by developing a tool in Python which
supposedly prioritizes RFQs on sales potential (binary). Yet, this tool, to which will be referred
as the concept prioritization tool, has not been implemented in day-to-day operations, nor
has its performance been determined and more importantly, Company X has expressed to
seriously question its validity. Moreover, even if the prioritization tool would adequately
perform, the input data required by the (concept) prioritization tool currently has to be
entered manually. Company X has asked for this to be automated through the development
of a tool that can autonomously recognize- and extract relevant RFQ data on a selected
number of features, to which will be referred as the information extraction module. The
research carried out in this thesis has addressed the above by answering the main research
seen below.

“How can Company X be enabled to have their incoming RFQs automatically,

autonomously and (more) accurately prioritized on their sales potential?”

The main research question, due to its complexity, was split in the following sub-questions:

1) What tools and/or models are available in literature?
2) How does the concept prioritization tool work/perform?
3) How does the prototype prioritization tool work/perform?
4) How does the operational prioritization tool work/perform?
5) How does the information extraction module work/perform?

RQ1 was answered with a literature review which focused on finding information on both
verification/validation and improvement of the prioritization tool, measuring tool
performance and automatic/autonomous information extraction. The results of the literature
review have been discussed in chapter 2, i.a. a B2B sales potential prediction methodology
(Bohanec, et al., 2015), performance metrics and information extraction methods such as
Named Entity Recognition (NER), pattern search and vocabulary matching.

RQ2 entailed a current system analysis, which has been discussed in chapter 3. There, a global
description of the concept prioritization tool was given, whereas the code and a technical
description can be found in Appendix B and C respectively. Analysis of the code behind the
concept prioritization tool revealed many defects were present, amongst which data leakage
which caused the model to “predict” solely on the presence of certain features rather than
the intrinsic information of the data itself, resulting in a (unjust) near perfect performance.

RQ3 was answered in chapter 4 by implementing verification/validation changes addressing
the defects of the concept prioritization tool which resulted in the prototype prioritization
tool. This part of the research consisted in essence of re-designing and re-building the concept

3

prioritization tool from scratch, addressing e.g. missing functions, unrepresentative data,
unrepresentative quote line-sales order linking, double weighting of features, inability to
handle features with a large number of categorial values, faulty data splitting method, etc. In
chapter 4, a description of- and arguments for the implemented changes are given, whereas
the changes in code can be found in Appendix D.

RQ4 was answered in chapter 5 in which an attempt was made to improve prediction
performance of the prototype prioritization tool through application of the B2B sales
potential prediction methodology by Bohanec et al. (2015), resulting in the operational
prioritization tool. From this chapter followed that the operational prioritization tool is a 13-
feature Random Forest model with hyper parameter configuration {'n_estimators': 400,
'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 13, 'max_depth': None,
'criterion': 'gini', 'bootstrap': False} and an (optimal) classification threshold of 0.62.

Compared to the historical 17% quote-to-sales order conversion rate of Company X, resulting
from the mental decision models of the Customer Support Department, the operational
prioritization tool predicts 48.5% correctly to be a sale, which is an increase of !.#$%&!.'(!

!.'(!
∗

100% = 185.3%. The need for the operational prioritization tool sprung, amongst other
things, from the fact that the Customer Support Department receives more RFQs than they
can process. Therefore, use of the operational prioritization tool in the future will allow the
Customer Support Department to respond to more RFQs and, under assumption of the same
distribution of “Sales”/“No sales” amongst the RFQs that previously could not be processed,
generate more sales. In addition, the research carried out in this thesis also contributes to
theory by giving an indication of the improvement that can be gained through incorporation
of machine learning over manual handling in B2B sales forecasting.

RQ5 was answered in chapter 6 where a description is given of the information extraction
module (the code can be found in Appendix F). The information extraction module accesses
the Company X RFQ inbox (Exchange outlook) and extracts the part number(s) and partial
customer email address from RFQs using an Entity Ruler combined with custom tokenizer and
function respectively. This extracted information can theoretically be linked to master part-
and master customer data and therefore used to create the machine learning data set
required as input for the operational prioritization tool. However, in practice partial customer
email address cannot be linked to master customer data due to non-existence of (partial)
customer email address data. Consequently, until Company X creates (partial) customer email
address data, prioritization of RFQs on sales potential cannot happen automatically and
autonomously.

Performance evaluation (manually) of the information extraction module on 100 historical
RFQs revealed that part number(s) and partial customer email address were always correctly
identified. In addition, besides recognizing the correct part numbers, the information
extraction module also recognizes numbers occurring in the RFQs falsely to be part numbers.
These numbers are in fact existing part numbers but not in the context of the RFQ. To tackle
this issue an array has been created in which frequently falsely identified (part) numbers can
be stated which will then not be given to the Entity Ruler and therefore no longer (falsely)
recognized.

4

Finally, chapter 7 addresses the conclusion, limitations and recommendations of this
research. Here, it follows that the answer to the main research question is sequential
application of the information extraction module and operational prioritization tool, as
illustrated in Figure 2. Yet, prioritization cannot happen automatically and autonomously until
Company X creates (partial) customer email address data which, given the time saving
potential for the Customer Support department, is highly recommended.

Moreover, the following recommendations are made:

• Improve data handling/storage. In Section 7.2 examples of current bad practices are
given regarding data handling/storage because of which data products such as the
operational prioritization tool suffer (“Garbage in, garbage out”). Concrete
recommendations to improve data handling/storage are stated in Section 7.3.

• Re-train the prioritization tool regularly using the most recent available data. The
machine learning data set of the operational prioritization tool contains multiple ABC
classified features whose top contributing categories (to the total sales order revenue)
are not encoded. Thus, if a shift in top contributing categories would occur over time,
the model would raise an error as it has not seen these categories (during training)
before. This can simply be solved by regularly re-training the model using the most
recent available data.

• Investigate different recall-precision trade-offs. In this research, improvement of the
prioritization tool focussed on metric F1 score, in which precision and recall have equal
weighting, whereas the “optimal” weights are subjective. Therefore, it is
recommended to have a decision maker investigate the consequence of different
trade-off weightings and determine “optimality”.

• Prioritize on sales potential and -value. Currently, prioritization happens solely on
sales potential and therefore a low-value screw could theoretically be prioritized over
a high-value engine with neglectable difference in probability of sale. It is
recommended to repeat the research carried out in this thesis where the target
feature represents a trade-off between sales potential and -value.

• Investigate information extraction module trade-off between false positives and false
negatives. This recommendation more specifically regards the array created to
diminish the extend of numbers often falsely recognized to-be part numbers.
Elements specified in this array will no longer be (falsely) recognized. Therefore, it is
recommended to investigate the consequence of excluding a (part) number and the
circumstances (e.g. part number demand rate/part number value) under which it can
be justified.

5

Table of Contents

Preface .. 1

Management summary ... 2

1. Introduction ... 7

1.1 Company description .. 7

1.2 Problem description .. 7

1.3 Research objective .. 8

1.4 Research questions ... 9

1.5 Structure of the report .. 11

2. Literature review ... 12

2.1 Machine learning .. 12

2.2 Predicting sales potential .. 13
2.2.1 Sales opportunity representation .. 14
2.2.2 Data preparation ... 14
2.2.3 Machine learning techniques .. 19
2.2.4 Learning from ML visualizations .. 24

2.3 Information extraction module ... 27
2.3.1 Natural language processing ... 27
2.3.2 Python vs R .. 27
2.3.3 NLP Python libraries .. 28
2.3.4 NLP methods in Python ... 30

2.4 Summary .. 32

3. Current system analysis ... 33

3.1 Machine learning data set ... 33

3.2 Concept prioritization tool .. 34
3.2.1 Front-end concept prioritization tool .. 34
3.2.2 Back-end concept prioritization tool ... 35

3.3 Performance concept prioritization tool ... 38

3.4 Conclusion .. 40

4. Verification/validation of the concept prioritization tool ... 41

4.1 Verification/validation changes .. 41
4.1.1 Data Acquisition ... 41
4.1.2 Data Cleaning ... 43
4.1.3 Data Splitting ... 49
4.1.4 Model Training & Building ... 49
4.1.5 Model Testing .. 51

4.2 Performance prototype prioritization tool .. 52

4.3 Conclusion .. 54

5. Improving the prototype prioritization tool ... 55

5.1 B2B sales potential prediction methodology ... 55
5.1.1 Sales opportunity representation .. 55

6

5.1.2 Data preparation ... 56
5.1.3 Machine learning techniques .. 56
5.1.4 Data insights .. 64

5.2 Performance ... 68

5.3 Conclusion .. 69

6. Creation of the Information Extraction module .. 71

6.1 Discrepancy between RFQ and -Master Customer data ... 71

6.2 Information extraction module ... 71

6.3 Performance ... 72

6.4 Conclusion .. 73

7. Conclusion, limitations and recommendations ... 74

7.1 Conclusion .. 74
7.1.1 Information extraction module ... 74
7.1.2 Operational prioritization tool ... 74

7.2 Limitations .. 75

7.3 Practical recommendations ... 77

7.4 Further research recommendations .. 77

8. References ... 79

Appendix A – Feature overview ... 84

Appendix B – Concept prioritization tool .. 86

Appendix C – Technical description concept prioritization tool ... 87

Appendix D – Validation/verification concept prioritization tool. 88

Appendix E – Improving the prototype prioritization tool .. 89

Appendix F – Information Extraction module. .. 94

7

1. Introduction
In this chapter background information about Company X, for whom the research of this
thesis has been carried out, is provided in Section 1.1. In addition, a description of the
problem (context) is given in Section 1.2, the research objective is stated in relation to the
problem definition in Section 1.3, the research questions are listed in Section 1.4 and finally
a table containing an outline for the remainder of this thesis is provided in Section 1.5.

1.1 Company description
This section is left out because of confidentiality reasons.

1.2 Problem description
The problem that Company X currently faces, and that this master thesis aims to solve, is that
Company X believes it is missing out on sales. Currently Company X receives a large number
of requests for quotation (RFQs). RFQs are noncommitted requests for a quote of spare parts
and/or exchange of parts that do not necessarily result in a sale. In fact, the current RFQ to
sale conversion rate is about 17%, which is the average ratio that an RFQ ever becomes a sale.
Due to the large amount of incoming RFQs compared to the number of employees in the
Customer Support Department, which is responsible for responding to the RFQs, the respond
time of Company X to an RFQ is relatively long. As a consequence, customers are complaining
and gradually moving to competitors whom already process their RFQs in a ‘smart’ manner.
In addition, the Customer Support Department also picks up RFQs that have less chance of
converting into a sale and therefore part of these efforts, which are expensive and scarce (the
number of employees in the Customer Support Department), is wasted as well. These
problems are visualized in the problem cluster below.

Figure 1: Problem cluster Company X.

The problem of Company X missing out on sales cannot be addressed directly and is therefore
indirectly addressed in this master thesis by identifying the core problem and tackling it. The
core problem is a problem from the problem cluster that can be influenced and is not the
consequence of another problem (Heerkens & Van Winden, 2012). The core problem can thus
be found at the most left side of the problem cluster for which in this case there are two
candidates, namely “Large number of RFQs to the number of employees in the Customer
Support Department” and “Customer Support Department picks up RFQs that have small
chance of converting to a sale”. Here “Customer Support Department picks up RFQs that have
small chance of converting to a sale” is chosen to be the core problem as it can clearly be
influenced, while the number of RFQs nor the number of employees in the Customer Support
Department can be influenced. The latter renders the candidate “Large number of RFQs to
the number of employees in the Customer Support Department” infeasible to be a core
problem.

8

1.3 Research objective
The objective of this research, which tackles the core problem defined in Section 1.2, is to
enable Company X to prioritize RFQs such that it can select RFQs that are most likely to
convert into a sale, and in that way, use its limited resources (number of employees in the
Customer Support Department) in the best way to generate maximum sales. Company X has
already taken some initiative to prioritize RFQs on sales potential by developing a tool in
Phyton that, using RFQ data on a selected number of features, is supposed to binary classify
RFQs reflecting their likelihood to convert into a sale. Here, a feature is defined as a
measurable property or characteristic of a phenomenon being observed/analyzed
(Datarobot, sd). However, this tool, to which will be referred throughout the rest of this thesis
as the concept prioritization tool, is not yet deployed in day to day operations nor has its
performance been determined. In addition, and more importantly, Company X has expressed
to seriously question the validity of the predictions of the concept prioritization tool and thus
its current performance. The latter due to, amongst other things, the fact that the creation of
the concept prioritization tool had to be rushed since its creator resigned during its
development.

Therefore, the first component of the research objective mentioned above is to
verify/validate the concept prioritization tool, resulting in a prototype prioritization tool. Next,
an attempt will be made to both improve the prediction performance of the prototype
prioritization tool as well as enable Company X to prioritize within classes, resulting in an
operational prioritization tool. Further, the input data for the concept prioritization tool, data
of the RFQs on a selected number of features, currently has to be entered manually. Company
X has asked for this to be automated through development of a tool that can autonomously
recognize- and extract RFQ data on the selected number of features. Therefore, the second
component of the research objective is the creation of a tool that can perform Information
Extraction (IE), which is defined as the automated retrieval of specific information; usually in
Natural Language Processing (NLP) to extract structured- from unstructured text (Rouse,
2018). Throughout the rest of this thesis there will be referred to this tool as the information
extraction module.

At the end of this thesis, after achieving both research objective components, the goal is to
create the process as visualized in Figure 2 for Company X. In this process incoming RFQs are
read in by the information extraction module from the RFQ inbox. Then, the information
extraction module recognizes- and extracts RFQ data which will be used to create the machine
learning data set required as input by the operational prioritization tool. Next, the operational
prioritization tool will prioritize the RFQs according to their likelihood to convert into a sale.

Figure 2: To-be process for Company X.

9

1.4 Research questions
To address the research objective, the following main research question is formulated:

“How can Company X be enabled to have their incoming RFQs automatically,
autonomously and (more) accurately prioritized on their sales potential?”

The main research question is split up into the following research questions:

RQ1. What tools and/or models are available in literature to…
 1.1 Verify/validate the concept prioritization tool?

1.2 Improve prediction performance of the prototype prioritization tool?
1.3 Measure tool performance?
1.4 Automate data recognition and -extraction?

The answers to these sub-questions will provide a solution framework.

RQ2. How does the concept prioritization tool work/perform?
 2.1 How is the concept prioritization tool build?

2.2 How is the performance of the concept prioritization tool?

The objective of sub-question 2.1 is two-fold; it contributes to the understanding of the
concept prioritization tool and serves as a starting point for verification/validation which is
addressed more elaborately in Chapter 4. Next, sub-question 2.2 gives insight in the
performance of the concept prioritization tool.

RQ3. How does the prototype prioritization tool work/perform?

3.1 What changes in the concept prioritization tool are necessary for the purpose of
verification/validation?
3.2 How is the performance of the prototype prioritization tool?

Sub-question 3.1 has the objective to identify- and implement changes in the concept
prioritization tool which are necessary for the purpose of verification/validation, resulting in
the prototype prioritization tool. Sub-question 3.2 gives insight in the performance of the
prototype prioritization tool.
RQ4. How does the operational prioritization tool work/perform?
 4.1 What historical sales data is available?

4.2 What data- and algorithm combination yields the best prediction performance?
 4.3 What data insights can be used for organizational learning?

4.4 How is the performance of the operational prioritization tool?

First, sub-question 4.1 entails an investigation of the available historical sales data and
potential creation of additional custom features. Second, sub-question 4.2 has the objective
of improving the prediction performance of the prototype prioritization tool. Third, sub-
question 4.3 will provide visualizations of data insights which can be used for organizational
learning. Finally, sub-question 4.4 will give insight in the performance of the operational
prioritization tool.

10

RQ5. How does the information extraction module work/perform?
 5.1 How is the information extraction module build?

5.2 How is the performance of the information extraction module?

The answer to sub-question 5.1 will be the creation of the information extraction module.
Next, sub-question 5.2 will provide insight in the quality of the information extraction module.

11

1.5 Structure of the report
Report structure

Chapter RQ Short description chapter content
2. Literature review. 1 Relevant literature for achieving the research

objective is discussed. Verification/validation and
improvement of the prioritization tool, performance
metrics and feature recognition/extraction are
addressed.

3. Current system analysis. 2 Analysis of the concept prioritization tool.
Descriptions of the machine learning data, front
end-, back end- and performance of the concept
prioritization tool are given in this chapter.

4. Verification/validation of the
concept prioritization tool.

3 In this chapter changes necessary for
verification/validation of the concept prioritization
tool are identified and implemented, resulting in the
prototype prioritization tool. In addition, the
performance of the prototype prioritization tool is
evaluated.

5. Improving the prototype
prioritization tool.

4 In this chapter an attempt is made to improve the
prediction performance of the prototype
prioritization, resulting in the operational
prioritization tool. This improvement attempt is
made using the methodology by Bohanec et al.
(2015). Here, i.a. feature selection, hyper parameter
tuning and threshold optimization are carried out.

6. Creation of the information
extraction module.

5 The information extraction module is created,
analyzed and evaluated performance wise.

7. Conclusion,
recommendations and
limitations.

- Self- explanatory.

8. References - Self- explanatory.
Appendix A - Explanation/description for each feature.
Appendix B - The code from the concept prioritization tool is

shown. In addition, explanation of code is provided
in blue text.

Appendix C - Technical description of the concept prioritization
tool is provided.

Appendix D - Verification/validation changes in concept
prioritization tool code, resulting in the prototype
prioritization tool, are shown.

Appendix E - Tables corresponding to feature selection and hyper
parameter tuning are shown here.

Appendix F - The code behind the Information Extraction module
with corresponding explanation is shown here.

Table 1: Structure report.

12

2. Literature review
This chapter contains a solution framework to the research objective as seen in Section 1.3.
It comprises an introduction to (the variations of) machine learning, a methodology to predict
B2B sales potential using supervised machine learning and a guide to autonomous data
extraction using Natural Language Processing (NLP). Due to the size of this chapter a
conclusion is given at the end of each section and a summary at the end of the chapter.

2.1 Machine learning
The concept prioritization tool has been created using Machine Learning (ML), which is
defined as an application of artificial intelligence that provides systems the ability to
automatically learn and improve from experience without being explicitly programmed
(Expert System, sd). ML differs from traditional programming in the required input and
resulting output as seen in Figure 3.

Figure 3: Machine Learning and traditional programming (MIT, 2016).

The basic paradigm for machine learning consists of three steps; observe instances, infer on
the process that generated the instances and use inference to predict on previously unseen
cases (MIT, 2016). There are two variations on this paradigm: supervised- and unsupervised
learning, of which the former yields slightly better results for a two class prediction problem
(Kaggle, 2018) (MIT, 2016).

Unsupervised ML
Unsupervised learning tries to infer latent features by clustering training instances into nearby
groups (MIT, 2016). Clustering is an optimization problem in which the dissimilarity of all
clusters (C) is minimized. In the formula’s below c represents a single cluster and e represents
a single instance within a cluster (MIT, 2016).

𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑐) = 	2𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑒𝑎𝑛(𝑐), 𝑒))
*∈,

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐶) = 	2𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑐)
,∈-

s.t Minimum distance between clusters or minimum number of clusters

Note that without the constraints the optimization problem is fairly easy; each single instance
would be its own cluster as then the variability(c) and dissimilarity(C) would be zero.

13

Supervised ML
Supervised machine learning, visualized in Figure 4, starts by collecting historical labelled data
(data whose class is known) of instances, reflecting features (that could be) of importance in
predicting class label. Then, data cleaning takes place after which the cleaned data is split into
a training- and testing data set (usually 70/30 or 80/20). Next, different classifiers are trained
on different feature subsets of the training data. A classifier is defined as an algorithm that
identifies to which sub-population an observation belongs, on the basis of a training data set
containing observations whose sub-population memberships are known (Aggarwal, 2014).
After, these trained classifiers are applied to the testing data and their predicted class labels
are compared to the known true class labels, with which the prediction performance of the
feature subset- and classifier combination can be determined. The prediction performance is
determined using the measure most appropriate for the task at hand (Section 2.2.3.2). Finally,
the combination of feature subset and classifier that yields the best prediction performance
is adopted and applied to future/unseen cases.

Figure 4: Supervised machine learning process (Udemy, 2019).

Conclusion
From this section it can be concluded that the concept prioritization tool is created using
supervised machine learning; it is a classifier trained on historical quote data (of a selected
number of features) and their corresponding label (whether the quote converted to a sale or
not). Here, the supervised machine learning framework, shown in Figure 4, can be used to
verify/validate the concept prioritization tool.

2.2 Predicting sales potential
This section of the literature review is structured according to a methodology from Bohanec
et al. (2015) specifically designed for forecasting B2B sales potential using supervised machine
learning, which is shown in Figure 5. The methodology yields a heuristic operational solution
to the problem as it cannot be solved to optimality without an exhaustive search, which in
practice is often impossible due to time constraints.

Figure 5: Predicting B2B sales potential methodology (Bohanec, et al., 2015).

14

2.2.1 Sales opportunity representation
The first step in this methodology is to create a sales opportunity representation, based on
historical sales cases, in terms of features. Besides using the available data for feature
representation, example cases of B2B sales prediction with machine learning have shown that
the introduction of additional custom features (so called ‘meta variables’) can potentially
capture influence which the default features do not, and can be significant predictors
(Mortensen, et al., 2019). Examples of such meta variables are:

• Fields Completed — Count of the number of fields completed in one record.
• Task Count — Count of the number of tasks for the customer account associated with

a sales opportunity.
• Age-related variables — Analyzes the impact from the age of opportunities.

• Open Time — The duration that a sales opportunity remained open in the
system.

• Last Action time — The duration from when an opportunity was created to the
time of last activity on that sales opportunity.

• Valid Open Time — A Boolean variable that equals 1 for sales opportunities
with positive Open Time and 0 for the remaining sales opportunities.

In addition, in this phase the sales department should be interviewed about the features they
deem most important in predicting sales potential, which should then be included in the sales
opportunity representation. Based on the selected features, real world cases reflecting sales
history need to be described with values for these features (Figure 6).

Figure 6: Transforming historical cases into a learning data set.

2.2.2 Data preparation
The second phase is the data preparation which is said to be highly depending on the specific
problem at hand (Bohanec, et al., 2015) but if not done properly it can lead to “Garbage in,
Garbage out”, e.g. incorrect or poor-quality input will produce faulty output and therefore
severely impact the validity of the results as the machine learning data set would not
accurately reflect the population of interest. During this phase the data that resulted from
the sales opportunity representation phase is investigated, potentially cleaned/transformed
into a (high-quality) learning set and afterwards split into a train- and test set.

2.2.2.1 Data cleaning
Outlier detection
Outlier detection is the process of finding data instances whose behaviors present significant
deviations from the majority patterns (García, et al., 2015). Two methods for detecting
outliers in are:

15

• The unsupervised learning algorithm isolation forest (IF) (Medium, 2019). Isolation
forest starts by sampling data for training a model (training data set). Then, a binary
decision tree is created for one of the features with a random value for that feature
between its minimum and maximum. Next, the last step is repeated for both sub-data
sets that resulted from the binary tree split, until all data points are captured. Each
data point gets an anomality score [0,1] based on how fast it has been captured. The
idea behind the algorithm is that the “fewer” and “different” data points are isolated
quicker because of which their anomality score will lie closer to 1 (Medium, 2019).
Figure 7 shows the IF algorithm applied to a data set with two features.

Figure 7: Visualization isolation forest.

• Z-scoring. The Z-score of an instance is calculated as ./0*1234567&8*37
9437:31:	:*2534567

 and represents
the number of standard deviations an observation is away from its mean. For normally
distributed data, Z-scores less than -3 and more than 3 are considered to be outliers.

Handling of missing data
Usually the treatment of missing data can be handled in one of the following ways (García, et
al., 2015):

• The first approach is to discard instances containing missing values (MVs) for their
features. It should be noted that this approach can only be safely adopted when data
is Missing Completely At Random (MCAR), otherwise bias will be induced. This
category of handling missing data also includes deleting features entirely, when their
levels of MVs are considered to be too high (rule of thumb is 60-70%+ missing).

• The second approach is to retain- and encode instances with MVs; e.g. for numerical
features that are positive in nature ‘-1’ and for categorial features ‘other’ (Medium,
2019). Note that the former only works well with tree-based models.

• The third approach is the use of maximum likelihood procedures, where the
parameters of a model for the complete portion of the data are estimated, and later
used for imputation by means of sampling (García, et al., 2015).

• Last, multiple imputation by identifying the relationships between features and
estimating the missing values (García, et al., 2015). Here it is important that multiple
values are estimated for the missing fields to account for the uncertainty in these
fields due to missingness. In this way a number of different complete datasets are
formed and the results on these datasets should be pooled to obtain the final results.

16

Noise reduction
Statistical noise is defined as “unexplained variability within a data sample” and is especially
relevant in supervised problems, where it alters the relationship between the informative-
and dependent feature (Rouse, 2017) (García, et al., 2015). There are three types of noise
(Medium, 2018):

• Noisy data items, which entails anomality’s in the features and the target. This type
of noise can be addressed with outlier detection.

• Noisy features, which entail weak/irrelevant features. This type of noise can be
addressed with feature selection, on which is elaborated in more detail in Sections
2.2.3.1 and 2.2.3.3.

• Noisy records, which entail records (entire instances) that do not follow the
form/relation which other records do. This type of noise can be addressed with cross
validation by analyzing the folds with poor scores.

Figure 8: Types of noise.

2.2.2.2 Data transformation
Data normalization
Data normalization is the process of expressing all features in the same measurement units
and use a common scale or range (García, et al., 2015). Data normalization has the objective
to give all features equal weight to prevent features from intrinsically influencing the result
more/less due to their larger/smaller value (Medium, 2018). Three common normalization
techniques for numerical features are:

• Min-Max Normalization normalizes value v (into 𝑣<) by applying the following
formula: 𝑣< = 2&857!

83=!&857!
(𝑁𝑒𝑤𝑀𝑎𝑥> − 𝑁𝑒𝑤𝑀𝑖𝑛>) + 𝑁𝑒𝑤𝑀𝑖𝑛>, in

which	𝑀𝑎𝑥>/𝑀𝑖𝑛> represent the original maximum- and minimum feature values
respectively (García, et al., 2015).

• Z-score normalization normalizes value v (into 𝑣<) by applying the following formula:
𝑣< = 2&>̅

@!
, in which �̅�/𝜎> represent the mean- and standard deviation of values of

feature A respectively (García, et al., 2015).
• Decimal Scaling Normalization normalizes value v (into 𝑣<) by applying the following

formula:	𝑣< = 2
'!"

, in which j is the smallest integer such that New𝑀𝑎𝑥> < 1.

17

Encoding categorial features
Categorial features can be encoded using Label encoding and One Hot Encoding (OHE). First,
Label encoding ‘translates’ each category of a categorial feature into a number. The example
in Figure 9 shows how “Apple”, “Chicken” and “Broccoli” are translated into label 1,2,3
respectively. However, the downside of this approach is that when dealing with more than
two categories the model will misunderstand the data to be in some kind of order, e.g. 0 < 1
<2 in Figure 9, which is not the case (Medium, 2018). To overcome this, OHE can be used
which transforms the original categorial feature data into a number of columns equal to the
number of categories within the original categorial feature (dummy features). Here, each
category is represented by its own column containing 0/1 entries depending on the presence
of the category (Figure 9). However, one should be aware of the dummy feature trap when
using OHE, also known as perfect multicollinearity, which is automatically induced. Perfect
multicollinearity occurs when two or more independent features exhibit a perfect linear
relationship. OHE automatically induces perfect multicollinearity because only one of the
resulting dummy features will have value 1 while the rest will always have value 0. Therefore,
when the values of k-1 dummy features are known, the last 𝑘4A	feature value will also be
known; e.g. for the example in Figure 9, when 𝐹𝑜𝑜𝑑>BBC* = 0 and 𝐹𝑜𝑜𝑑-A5,D*7 = 0 then
𝐹𝑜𝑜𝑑E16,6CC5 = 1. The consequence of the dummy feature trap is that a single redundant
dummy feature will be incorporated in the ML model which takes computational time and
power but does not add value. Yet, the dummy feature trap can be easily avoided by simply
excluding a single dummy feature for each one hot encoded feature.

Figure 9: Label Encoding and One Hot Encoding example.

Data reduction
Data reduction comprises the set of techniques that, in one way or another, obtain a reduced
representation of the original data (García, et al., 2015). The three forms of data reduction,
as shown in Figure 10, are feature selection, instance selection and discretization.

Figure 10: Forms of data reduction (García, et al., 2015).

First, feature selection is explained in more detail in Sections 2.2.3.1 and 2.2.3.3. Second, for
instance selection, also known as data sampling, there are multiple methods:

• Simple random sample with(out) replacement (SRSWOR) of size s. This method
draws s of the N tuples from T (s < N), where the probability of drawing any tuple in T
depends on whether sampling is with- or without replacement (García, et al., 2015).

18

Without replacement means all samples have equal probability to be drawn whereas
with replacement means that an instance may be drawn again.

• Balanced sample. This method creates a sample that is designed according to the
target feature and is forced to have a certain composition according to a predefined
criterion (García, et al., 2015). Two balanced sampling sub-methods are oversampling
and under-sampling. Oversampling entails the replication/creation of new instances
(usually minority class) from existing ones and under-sampling the exclusion of
instances (usually majority class). It has been shown for multiple imbalanced data sets,
which are data sets whose instances are not evenly distributed amongst classes, that
both oversampling and under-sampling increase classification performance. Between
the two balanced sampling sub-methods oversampling yields the highest increase as
it increases the minority class recognition rate without sacrificing the majority class
recognition rate (Batuwita & Palade, 2010).

Figure 11: Under-sampling and oversampling.

• Cluster sample. If the tuples in T are grouped into G mutually disjointed groups or
clusters, then a simple random sample (SRS) of s clusters can be obtained, where s<G
(García, et al., 2015).

• Stratified sample. If T is divided into mutually disjointed parts called strata, a stratified
sample of T is generated by obtaining a SRS at each stratum. This assists in ensuring a
representative sample and is frequently used in classification tasks where class
imbalance (unequal distribution of instances amongst classes) is present. This method
differs from balanced sample in the composition of the sample according to the target
feature; rather than on a predefined criterion in now depends on the natural
distribution of the target feature (García, et al., 2015).

Last, data discretization transforms quantitative data into qualitative data, that is, numerical
features into discrete or nominal features with a finite number of intervals, obtaining a non-
overlapping partition of a continuous domain (García, et al., 2015). Discretization can be
viewed as a data reduction method since it maps data from a huge spectrum of numeric
values to a greatly reduced subset of discrete values. Yet, data discretization of a numerical
feature (into k categories) comes with cost of an increased number of features (k-1 dummies)
that take computational time and power.

2.2.2.3 Data splitting
After the data is cleaned, it is split into a training- and test data set. This by means of e.g.:

• Repeat random sampling is randomly splitting the data set into a train- and test set,
usually 80/20 or 70/30 (MIT, 2016). However, this approach can be problematic when
dealing with imbalanced data (Kuhn & Johnson, 2019).	

19

• Stratified random split. See Section 2.2.2.2 for explanation. This splitting method is
useful when dealing with imbalanced data as it ensures equal frequency distribution
of classes in the train- and test data sets (Kuhn & Johnson, 2019).

• Leave One Out is used when there is little data; it uses all instances minus one to train
on, saves the resulting model and repeats this process for different instances until all
instances have been excluded once. The final resulting model is than the average of
all saved models (MIT, 2016).

• K-fold Cross Validation divides the data into a training and testing set. After, the
training set is divided into k folds (Figure 12). The model is trained on k-1 folds and
tested on the remaining 𝑘4A fold. This process is repeated for multiple splits, in which
the training/testing fold allocation differ. The final performance estimation is the
average performance estimation of all k testing folds over all splits.

Figure 12: K-fold cross validation.

2.2.3 Machine learning techniques
In the third phase feature- and classifier selection and hyper parameter tuning are addressed.
It should be noted that feature- and classifier selection entails two different problems, but
are, depending on the feature selection technique addressed either sequentially or
simultaneously. In addition, a methodology for feature- and classifier selection is provided
that yields a heuristic operational solution. The objective of this phase is to identify the model
that is best in predicting sales potential.

2.2.3.1 Feature selection
The feature selection problem is the problem of selecting the most informative feature subset
in predicting the dependent feature (label). It arises because not all features are informative
in predicting the dependent feature; features can be classified as relevant, irrelevant or
redundant. Irrelevant features contain no information about the dependent (to-be predicted)
feature, e.g. using someone’s hair color to predict the weather. Redundant features provide
information for the dependent feature that can be extracted from other features included in
the feature subset used for the prediction problem. Redundant features may be relevant on
their own but are redundant in the presence of another relevant feature, e.g. “the amount

20

VAT paid for a product” may be redundant in the presence of “product price” and “percentage
VAT”. The feature selection problem is therefore about finding an optimal balance between
selecting a subset of features that are most relevant to the predictive modeling problem and
performance of the machine learning (ML) model trained on the selected subset (Bohanec,
et al., 2015).

Feature selection techniques
There are three major techniques in solving the feature selection problem; filter-, wrapper-
and embedded methods.

• Filter methods try to extract general characteristics of training data and rank features
on their relevance to the dependent feature in a pre-processing step without
interacting with classification models. The advantage of this approach is that it allows
for independence from classifiers and compare performance of different classification
models using top ranked features. The downside of this approach is that it is incapable
of detecting redundant features as these are likely to have similar rankings.

• Wrapper methods take a particular classification model as a part of the feature
selection process. The contribution of a feature is determined with the performance
of the model for different subsets of features. This approach is computationally
expensive as it requires a training re-run for each feature subset; however, it has an
advantage of being able to expose low performing- and redundant/noisy features. A
wrapper method evaluates each combination of p out of n possible features and
stores the best combination (called model(p)) (Analytics University , 2017). Next, this
step is repeated for all smaller subset sizes 1,…,p resulting in best combinations
model(1),…,model(p) from which again the best performing subset is chosen. The
latter is done to detect potential redundancies as smaller subsets with similar
performance indicate redundancy.

It should be noted that for identification of the optimal set of size p, 2Bof its subsets
have to be evaluated and that this thus, due to its exponential size, is impossible for
large p. Ways of working around the exponential size problem are forward selection,
backward elimination and recursive feature elimination (Kaushik, 2016). First, forward
selection starts with a null model after which in each iteration the feature that
improves the model most is added until an addition of a new feature does not improve
performance. Next, backward elimination starts with all the features and removes the
least significant feature in each iteration improving the performance of the model.
This is repeated until no more improvement is observed after removal of features.
Last, recursive feature elimination is a greedy optimization algorithm aiming at finding
the best performing feature subset. It repeatedly creates models and keeps aside the
best or the worst performing feature at each iteration. It constructs the next model
with the left features until all the features are exhausted. It then ranks the features
based on the order of their elimination.

• Embedded methods are integrated into a specific classifier and evaluate/select
features during the training process. Further, embedded methods may achieve a
solution faster by avoiding the re-training of a classifier for each feature subset
explored (García, et al., 2015).

21

Figure 13: Filter-, wrapper- and embedded method.

2.2.3.2 Classifier selection
Classifier selection, depending on the feature selection method, takes place either before-
(wrapper- and embedded method) or after (filter method) feature selection. A few examples
of classifiers are the following:

• RF (Random Forest) creates a large number of decision trees (specified in the
classifier), each having access to a random subset of features and instances, which
increases diversity in the forest leading to more robust predictions. An instance is
classified after a majority vote on the label by the forest (Medium, 2017).

• Logistic regression, similar to other types of regression, describes the relationships
between one dependent (categorial) feature and one or more nominal, ordinal,
interval or ratio-level predictor features (StatisticsSolutions, sd). A logistic regression
model assigns, after being given a training data set, weights to features. Then, the
logistic regression model uses these weights to predict a probability for an unseen
case which is labelled according to the class thresholds that this probability lies in.

• Gradient Boosting Classifier (GBC) is a technique that generates (weak) classification
models sequentially, where each model focusses on correcting its predecessor’s
errors. The final output is a combination of the results of all (weak) sequential models.

Metrics to evaluate and/or compare classifier performance on a selected feature subset are
the following:

• Accuracy—The percentage of correctly predicted opportunities over the total number
of opportunities (F1G*	B605452*HF1G*	7*I3452*

F643C	B6BGC34567
). This metric is unsuitable for imbalanced

data sets since it represents the total percentage correctly classified instances of all
classes and does not give information about the percentage correctly classified
instances per class; a low performance in a minority class easily goes unnoticed.

• Precision — The percentage of correctly predicted won opportunities over the
total number of predicted won opportunities (F1G*	B605452*

F1G*	B605452*HJ3C0*	B605452*
).

• Recall — The percentage of correctly predicted won opportunities over the
total number of actual won opportunities (F1G*	B605452*

F1G*	B605452*HJ3C0*	7*I3452*
).

• F1 Score – This metric entails the harmonic mean of precision and recall and is
calculated with the following formula: 𝐹' = 2 ∗ B1*,50567∗1*,3CC

B1*,50567H1*,3CC
. The F1 score is

introduced as there is often a trade-off to be made between precision and
recall; the F1 score “punishes” extreme values for both.

• Access to feature importance — Certain algorithms provide information to evaluate
the importance of features included in the model, e.g. Percentage increased Mean-
squared-error which implies the loss of accuracy if a certain feature is missing in the
model.

22

• Confusion matrix – A confusion matrix summarizes the performance of a classifier with
respect to test data. It is a two-dimensional matrix, indexed in one dimension by the
true class of an instance and in the other by the class that the classifier assigns.

• Efficiency — Resources used to build the model including time, memory, and
complexity.

• AUC – This stands for Area Under the ROC (Receiver Operating Characteristics) Curve.
The ROC curve shows the trade-off between true positives and false positives where
AUC indicates the extent to which the ML model can distinguish between classes. An
AUC score of 1 means the ML model can perfectly distinguish between classes and an
AUC score of 0.5 means the ML model cannot differentiate between classes.

2.2.3.3 Feature selection methodology
Unfortunately, as explained in Section 2.2.3.1, when addressing the feature- and classifier
selection problem sequentially (filter method), noise and/or redundancies are not detected.
Yet, on the other hand, an exhaustive search through all possible feature subsets applied to
a single classifier (wrapper method), which does eliminate noise and redundancies, is often
impossible in practice due to time constraints. Therefore, Bohanec et al. constructed a three
step feature selection sub-methodology for B2B sales forecasting that does not require an
exhaustive search through all possible feature subsets while still being able to detect and
remove redundancies (Bohanec, et al., 2015):

1. Rank features according to relevance using filter methods.
In this step features are ranked using multiple filter methods. A useful tool for testing the
significance of- and ranking features is the orange data mining suite which contains the
following filter methods (Orange, 2015):

• ReliefF: the ability of an attribute to distinguish between classes on similar data
instances.

• Inf. Gain: reduction of entropy. Entropy is a probability-based measure used to
calculate the amount of uncertainty. The downside of Inf. Gain is that it prefers
features with more values, while these are not necessarily more informative.

• Gain Ratio: a ratio of the Inf. Gain and the attribute’s intrinsic information, which
reduces the bias towards multivalued features that occurs in Inf. Gain.

• Gini: the inequality among values of a frequency distribution.
• FCBF: entropy-based measure, which also identifies redundancy due to pairwise

correlations between features.
• χ): dependence between the feature and the class as measure by the chi-square

statistic.
• ANOVA: the difference between average values of the feature in different classes.

Figure 14 below shows an example of testing the significance of features using different
techniques in the orange data mining suite as described above. The example shows that there
are approximately 5 informative- out of the 16 features. Once the features are ranked the
results should be discussed with the sales department. Surprising results should be
thoroughly analyzed and eventually the learning data set can be updated with additional

23

cases and/or different features can be added. Alternatively, the sales department can view
this as a learning opportunity and update their mental decision models.

Figure 14: Testing feature significance in orange data mining suite.

2. Build ML model by incrementally adding ranked features, monitoring maximal
performance to detect the cut-off point.
In this step the best ranked features are added one-by-one to the training of the machine
learning model and performance is measured each time a feature is added. The number of
best ranked features that yields the highest performance is added. The graph below shows
an example of how the effect on performance for multiple classifiers may look when
incrementally adding features (filter method ReliefF used).

Figure 15: Monitoring CA when adding top ranked features one-by-one.

3. Eliminate noisy and redundant features with wrapper method.
Figure 15 showed it is possible to get negative- or no difference in performance when adding
additional features which is an indication of noisy- and/or redundant features. A wrapper
method can be used to eliminate such features; features are excluded one-by-one (top down)
and performance is monitored. If exclusion of a feature increases performance, it is
permanently excluded from the list. After this a minimum feature list for the data set is left.

24

2.2.3.4 Hyper parameter tuning
Hyper-parameters are the intrinsic parameters of a (machine learning) model which are set
before- and used to control learning (TowardsDataScience, 2019). Therefore, hyper-
parameter tuning is the problem of choosing a set of hyper-parameter values that yields the
best (generalizable) performance improvement.

The most widely used strategies for hyper-parameter optimization are manual- and grid
search. In manual search, the operator adjusts the parameters, possibly incorporating
knowledge about how those adjustments will influence the behavior of the model and
estimation procedure. Next, Grid search is an exhaustive search over a pre-defined grid,
returning the best configuration. However, literature rather urges the use of random search,
which evaluates a number of random configurations of a pre-defined grid, as it has shown
that random search yields equally good or better configurations than grid search in a fraction
of the computational time (Bergstra & Bengio, 2012). The idea behind this phenomenon is
that not all hyper-parameters are equally important and grid search allocates too many
experiments to the exploration of dimensions that do not matter and suffer from poor
coverage in important dimensions. Whereas random search has the same efficiency in
important dimensions as if it had been used to only search the relevant dimensions,
illustrated in Figure 16.

Figure 16: Grid search vs. Random search (Bergstra & Bengio, 2012).

2.2.4 Learning from ML visualizations
Last, in the fourth phase ML techniques and visualizations are used to gain/emphasize insights
that the sales department can use to adjust their mental decision models, such as:

• Association rules are if-then statements that help show the probability of relationships
between items in a dataset and can be used to reveal “preconditions” for class
outcomes (Rouse, 2018). Each association rule is represented with three standard
evaluation metrics: support, confidence and lift. The support measures the proportion
of cases in the training data set which contain the left side of a rule. The confidence
reflects the proportion of the cases in which the left- and right side are satisfied. The
lift reports the ratio of the observed support to the expected lhs and rhs being
independent (Witten et al., 2011).

25

• The Sieve multigram (Figure 17) shows correlations between features. A red/blue
coloured line indicates negative/positive correlation and the thicker a line, the
stronger the correlation.	

Figure 17: Sieve multigram.

• A classification tree is a structural mapping of decisions that lead to a decision about
the class of an object. A classification tree is composed of branches that represent
attributes, while the leaves represent decisions (Clark University, sd).

Figure 18: Example classification tree.

• A scatter plot is a graph of plotted points that shows the relationship between two
features.

26

Conclusion
In this section the methodology by Bohanec et al. (2015) was shown for predicting B2B sales
potential using supervised machine learning. This methodology can be used to both
verify/validate the concept prioritization tool as well as to improve the prototype
prioritization tool.

Verification/validation can be performed by retracing the steps in the creation of the concept
prioritization tool and comparing these to those of the methodology. Here, especially the
sales opportunity- and data preparation phase are useful. First, within the sales opportunity
phase, the correct description of historical sales cases should be verified; e.g. quote line-sales
order linking, properly merging of data frames, etc. Next, within the data preparation phase
it should be verified whether data cleaning, data transformation and data splitting are carried
out (correctly).

Attempting to improve the prediction performance of the prototype prioritization tool can be
done in multiple ways for the different phases. First, in the sales opportunity phase
improvement can be achieved by considering additional features/meta-variables. Second, in
the data preparation phase, over-/under-sampling can be incorporated as this has shown to
improve prediction performance for imbalanced data. Third, in the machine learning
techniques phase, the sub-methodology on feature- and classifier selection (Section 2.2.3.3)
and hyper-parameter tuning should be executed in an attempt to improve prediction
performance. Last, in the fourth phase, to increase understanding rather than prediction
performance, data visualizations can be created to show relationships between features
and/or emphasize insights.

Last, multiple metrics for measuring tool performance were shown in Section 2.2.3.2. From
this section it followed that, when dealing with imbalanced data, metrics F1 score, confusion
matrix and AUC fit best for evaluating tool performance.

27

2.3 Information extraction module
This part of the literature review has the objective of finding out how the information
extraction module, introduced in Section 1.3, can be built.

2.3.1 Natural language processing
In the present era big data is a booming topic. Big data refers to large volumes of data that
have the potential to be mined for valuable insights and/or can be used for advanced analytics
applications, e.g. machine learning (Rouse, 2019). The majority, an estimated 80-90%, of big
data is unstructured data (e.g. emails), which is growing faster than any other type of data (i-
scoop, sd). Unstructured data is information that does not have a recognizable structure; it
comes in many forms and thus is not a good fit for a mainstream database (Rouse, 2018). A
solution to analyzing such big unstructured data is Natural Language Processing (NLP). NLP is
defined as a field of Artificial Intelligence that gives machines the ability to read, understand
and derive meaning from human languages (Yse, 2019). The solution to the creation of the
information extraction module lies in this field as NLP is said to have the ability to automate
data extraction from large volumes of unstructured text (Li & Elliot, 2019).

2.3.2 Python vs R
Two programming languages that perform well in both fields of NLP and machine learning are
Python and R, of which the best is said to be depending on the task at hand (Wu, 2019).

Python is an open source, object-oriented, high-level programming language with dynamic
semantics. Its high-level built in data structures, combined with dynamic typing and dynamic
binding, make it very attractive for Rapid Application Development, as well as for use as a
scripting or glue language to connect existing components together. Python's simple, easy to
learn syntax emphasizes readability and therefore reduces the cost of program maintenance.
Python supports modules and packages, which encourages program modularity and code
reuse. The Python interpreter and the extensive standard library are available in source for
all major platforms and can be freely distributed (Python, sd).

R is an open source programming language and software environment for statistical
computing and graphics. It provides a wide variety of statistical (linear and nonlinear
modelling, classical statistical tests, time-series analysis, classification, clustering, …) and
graphical techniques, and is highly extensible. The R language is primarily used amongst
statisticians and data miners. One of R’s strengths is the ease with which well-designed
publication-quality plots can be produced, including mathematical symbols and formulas
where needed.

To choose between Python and R, both languages are compared on a set of criteria which are
deemed important for the task at hand, shown in Table 2 (Medium, 2018) (Ven, 2018). In
Table 2 Big data handling represents how data is stored in system memory (memory
constraints), Prototyping refers to the ease of building a digital product, Machine learning to
the languages its capabilities in this field, Syntax difficulty represents the degree in which a
language is similar to other programming languages, Flexibility refers to the ease of re-using
blocks of code and/or the ability to (inter)connect other software programs/components,
Integration represents the ease of adopting the language for Company X and/or the ease of

28

connecting with other existing tools, Speed refers to the efficiency of large computations and
Visualizations refers to the quality and options for creating plots.

Table 2: Python vs R comparison.

It should be noted that Table 2 only shows which language performs better for each criterion
(awarded a plus sign) but not the extent to which the winner performs better. Moreover, the
assumption is made that all criteria are equally important. From Table 2 it can be concluded
that Python should be used for the creation of the information extraction module as it
received a higher overall score.

2.3.3 NLP Python libraries
In this section the top NLP packages for Python are briefly described and compared (Table 3)
on a set of criteria deemed important for the creation of the information extraction module
(Elite Data Science, sd) (sunscrapers, 2018).

Natural Language Toolkit (NLTK)
NLTK is a leading platform for building Python programs to work with human language data.
NLTK provides easy-to-use interfaces to over 50 corpora (collections of documents) and
lexical resources such as WordNet, along with a suite of text processing libraries for
classification, tokenization, stemming, tagging, parsing, and semantic reasoning and
wrappers for industrial-strength NLP libraries (nltk.org, sd). Downsides of NLTK are its steep
learning curve, its speed and it is said to be not production-ready (Elite Data Science, sd).

TextBlob
TextBlob is a Python library for processing textual data. It provides a simple API for common
natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase
extraction, sentiment analysis, classification, translation, and more (TextBlob, sd). Downsides
of TextBlob are its speed (sunscrapers, 2018) and its lack of relevant features (e.g. does not
include vocabulary matching nor an entity recognizer).

CoreNLP
Stanford CoreNLP provides a set of human language technology tools. It is able to return the
base form of words, their parts of speech, recognize entities, normalize dates, times, and
numeric quantities, mark up the structure of sentences in terms of phrases and syntactic
dependencies, indicate which noun phrases refer to the same entities, indicate sentiment,

29

extract particular or open-class relations between entity mentions, get the quotes people
said, etc. CoreNLP is written in Java but can be used in Python using a wrapper.

Gensim
Gensim is a well-optimized Python library for topic modelling, document
indexing and similarity retrieval with large corpora (pypi.org, 2019). It is the most specialized
library listed in this section but unfortunately not relevant for the information extraction- and
prioritization tool.

Spacy
Spacy is a free, open-source library for advanced NLP in Python. Spacy forms together with
NLTK the most popular NLP libraries. The main difference between Spacy and NLTK is that
NLTK offers a wide range of algorithms for a certain problem, whereas Spacy only offers one:
the state-of-the-art (Stack Abuse, 2019). Spacy is designed specifically for production use and
helps build applications that process and “understand” large volumes of text. It can be used
to build information extraction or natural language understanding systems, or to pre-process
text for deep learning (spaCy, sd). Spacy has the advantage over NLTK and CoreNLP that its
speed is much faster (spaCy, sd).

Polyglot
Polyglot is a natural language pipeline that supports massive multilingual applications. It is
said to be similar to Spacy and an excellent choice for projects involving a language Spacy
does not support. The only disadvantage compared to Spacy is that polyglot does not support
vocabulary matching.

To choose between the top NLP packages, all packages are assigned scores on a set of criteria
deemed (equally) important for the creation of the information extraction module, as shown
in Table 3. Here, Relevant methods refers to the methods the package contains that can be
used to recognize/extract data (e.g. entity recognizer, pattern search, vocabulary matching,
etc.), User-friendliness refers to the ease of working with the package (number of algorithms
per problem, documentation, interface, etc.), Learning curve refers to the ease of learning to
use the package, Speed refers to the processing time of functionalities and Production ready
refers to the ease of building a tool with the package.

In Table 3 each package has been assigned a score 1-3, relative to the best performing
package, for each criterion: 1=bad, 2=average and 3=good. From Table 3 it follows that Spacy
should be used for the creation of the information extraction module as it got awarded the
highest overall score.

Table 3: Overview comparison top NLP Python packages.

30

2.3.4 NLP methods in Python
In this section Python NLP methods are described that are relevant for autonomous data
recognition and -extraction.

Tokenization
Tokenization is the segmentation of a text into basic units - or tokens - such as words and
punctuation, which can then be used as input for other processes, e.g. Named Entity
Recognition. Spacy contains a tokenizer whose process is visualized below in Figure 18. Here,
prefix means characters at the beginning of a sentence (such as $ (“), suffix characters at the
end (such as km , . ! “) and exception means that punctation as part of a known abbreviation
will be kept as part of the token, e.g., St. or U.S. (Udemy, 2019).

Figure 19: Tokenization process in Spacy visualized.

Spacy will isolate punctuation that does not form an integral part of a word. Quotation marks,
commas, and punctuation at the end of a sentence will be assigned their own token. However,
punctuation that exists as part of an email address, website or numerical value will be kept
as part of the token (Udemy, 2019).

Lemmatization
Lemmatization is a method to reduce words to their root that takes the context of the
sentence into account. Lemmatization looks beyond word reduction and considers a
language’s full vocabulary to apply a morphological analysis to words (Udemy, 2019).

Stop words
Stop words are frequently occurring words containing little information, which usually are
filtered out of the text to be processed. The Spacy package contains 326 stop words.

31

Pattern searching
Pattern searching is a method for finding parts of a document with an upfront known pattern,
e.g. a phone number or email address. Pattern searching can be carried out using the Python
package re.

Vocabulary matching
Vocabulary matching is a method in which a matcher object is created containing patterns. A
matcher can then be applied to a document and will return the found matches. Vocabulary
matching differs from pattern searching as it requires the to-be matched vocabulary to be
known upfront, while pattern searching can find any pattern for which the structure is known.
Vocabulary matching can be carried out by importing the Matcher from the Spacy package.

Part of Speech tagging (POS)
Part of Speech (POS) is defined as the grammatical class to which a word (token) belongs
(Collins Dictionary, sd). Spacy can not only recognize the coarse-grained POS tag per token
(grammatical class) but also a fine-grained POS tag (sub-class) within the coarse-grained class.

Named Entity Recognition (NER)
Named-entity recognition (NER) refers to a data extraction task that is responsible for finding,
storing and sorting textual content into default categories such as the names of persons,
organizations, locations, expressions of times, quantities, monetary values and percentages
(Techopedia, sd). The Spacy package contains such an entity recognizer.

Conclusion
From this section can be concluded that the solution to the creation of the information
extraction module lies in the field of Natural Language Processing (NLP). Moreover, it
followed that in this field, Python- (Table 2), and within, library Spacy (Table 3) fit best for the
development of the information extraction module. The NLP methods in Python that are
especially relevant for autonomous recognition and -extraction of features are Named Entity
Recognition, pattern search and vocabulary matching.

32

2.4 Summary
First, Section 2.1 gives an introduction to Machine Learning (ML). Machine learning is defined
as an application of artificial intelligence (AI) that provides systems the ability to automatically
learn and improve from experience without being explicitly programmed (Expert System, sd).
The basic paradigm for machine learning consists of three steps; observe instances, infer the
on process that generated the instances and use inference to predict on previously unseen
cases (MIT, 2016). This section concluded that the concept prioritization tool has been
created using the supervised machine learning variation, whose framework (illustrated in
Figure 4) can be used to verify/validate the concept prioritization tool

Next, in Section 2.2 a methodology is shown for predicting B2B sales potential (Figure 5),
which can be used to both verify/validate the concept prioritization tool as well as improve
the prototype prioritization tool. The methodology consists of the following phases; sales
opportunity representation, data preparation, machine learning techniques and learning
from ML insights. First, in the sales opportunity representation phase, real world cases
reflecting sales history are described with values for their features; both existing- and
additional custom features. Second, in the data preparation phase, data cleaning (outlier
detection, handling of missing data and noise reduction), data transformation (data
normalization and -reduction) and data splitting takes place. Third, in the machine learning
techniques phase, feature- and classifier selection take place, which should be noted are two
separate problems, but are, depending on the feature selection technique (Section 2.2.3.1)
addressed either sequentially or simultaneously. Moreover, in this phase performance
metrics-, a feature selection sub-methodology (Section 2.2.3.3) and hyper-parameter tuning
are discussed. Fourth, in the learning from ML insights phase, ML visualizations are created
to gain/emphasize data insights which the sales department can use to adjust their mental
decision models; e.g. association rules, decision tree visualization and scatter plots.

Last, in Section 2.3 was shown that the solution to the creation of the information extraction
module lies in the field of NLP, which is defined as a field of Artificial Intelligence that gives
machines the ability to read, understand and derive meaning from human languages (Yse,
2019). Further, in this section Python and R have been compared on a number of criteria
deemed import for the development of the information extraction module from which it
followed that Python fits best (Table 2). Similarly, a comparison of top NLP Python packages
(Table 3) has been made from which it followed that Spacy fits best. Last, NLP methods
relevant for autonomous information extraction and recognition are described in Section
2.3.4, e.g. Named Entity Recognition (NER), vocabulary matching and pattern search.

33

3. Current system analysis
The concept prioritization tool is an initiative by Company X to enable the Customer Support
Department to respond more effectively and efficiently to RFQs through (supposedly) binary
classification of RFQs on their sales potential. Concluded in Section 2.1, the concept
prioritization tool is part of the supervised machine learning variation and in basis a classifier,
specifically Gradient Boosting Classifier, trained- and evaluated with historical labelled data.
In this chapter a description of the training- and evaluation data is given in Section 3.1. Next,
Section 3.2 entails a description/analysis of the concept prioritization tool. Finally, the
performance of the concept prioritization tool is evaluated in Section 3.3.

3.1 Machine learning data set
In this section a description of the machine learning data is provided, which is defined in this
research as the historical labelled quote line data used for training and evaluating the
prioritization tool. Here, a quote is the response to an RFQ containing the offer (price, lead-
time, etc.) by Company X for the given request (Figure 20). A quote may contain multiple
(quote) lines, each representing the requested quantity for a specific part (number).
Consequently, a sale is defined as a line, within a quote, converting into a sales order.

Figure 20: From RFQ to sales order.

The machine learning data set is derived from multiple data sources in preprocessing steps
and comprises, in case of the concept prioritization tool, data of 326.429 quote lines with
observations for the features shown in Table 4 over the period 2012-01-01 to 2019-01-01. An
explanation of each feature can be found in Appendix A.

Machine Learning Data Set

Column name Feature name Data type % Missing- and
Zero values

Data Source

Quote Customer Part

ACCTNO Account number Categorial 0.00% X
ACCOUNT_RATE Account rate N/A 100.00% X
ACCOUNT_TYPE Account type Categorial 0.06% X
ATA2 Airplane layout Categorial 46.86% X
COND Condition Categorial 88.20% X
COUNTRY Country Categorial 0.00% X
ALT3_CODE_C Customer type Categorial 1.47% X

34

RNG Delivery window time unit Categorial 0.00030% X
DLV Delivery window width Numerical 13.67% X
MSLP_PRICE Main Supplier List Price Numerical 18.70% X
PARTNUMBER Part number Categorial 0.00% X
CAPABILITY Repair capability Categorial 75.47% X
ROTABLE Rotable part Categorial 18.70% X
REGION Sales manager Categorial 0.00% X
LINE_TYPE Sales type Categorial 0.00% X
STD_PART Standard part Categorial 18.70% X
STK_TYPE Stock type Categorial 18.70% X
SUBC Sub account number Categorial 0.00% X
SUBP Sub part number Categorial 0.00% X
TOTAL_REVENUE Revenue Numerical 88.57% X

Table 4: Machine learning data set used by the concept prioritization tool.

The fact that the concept prioritization tool has been trained and evaluated on quote line
data introduces bias when applying the prioritization tool to RFQs. This because an RFQ only
becomes a quote when the Customer Support Department deems it has potential to convert
into a sale, based on their own mental decision models. It could thus be that the prioritization
tool will not perform well on RFQs that would previously not have been selected by the
Customer Support Department. However, this bias is unavoidable as it cannot be said for
unquoted RFQs whether they would have converted into a sale.

3.2 Concept prioritization tool
In this section a description will be given of the concept prioritization tool, whose code
together with a ‘translation’ can be found in Appendix B.

3.2.1 Front-end concept prioritization tool
The concept prioritization tool comes in a folder “RFQ_api”, which contains the sub-
folders/files shown in Figure 21.

Figure 21: Folder contents concept prioritization tool.

The interface of the concept prioritization tool can be activated by opening the command
prompt, specifying the path of the file app.py and then typing “python app.py”. The command
prompt will then return a local host address which, when pasted in an internet browser,
brings the user to the interface as seen in Figure 22. It is intended that the user, within this
interface, can add /list, /train or /run behind the local host address, press enter and get a list
of saved models, train a new model or apply an existing model respectively.

35

Figure 22: Interface concept prioritization tool.

3.2.2 Back-end concept prioritization tool
Within the concept prioritization tool, a user can specify whether a new model should be
trained, an existing model should be run or a list of existing models should be returned. In
addition, the user can specify multiple optional variables, e.g. start date, end date, split date,
token to be added to the filename, location of the CSV file used for training the model, which
model should be run and whether detailed output should be shown on the screen.

In the sub-sections below, a global description is provided for each of the functionalities of
the concept prioritization tool in which variables have been made italic. Moreover, a detailed
technical description for each functionality can be found in Appendix C.

3.2.2.1 Train new model
Training a new model takes the input variables filename_train, start_date, end_date,
train_test_splitdate and filename (an optional additional filename token). The function starts
by creating data frame df_quote, containing quote data from the file specified in
filename_train for the period [start_date, end_date).

Next, arrays are created containing the unique account- and part numbers appearing in
df_quote. Then, data frame df_so is created and filled with sales order data retrieved from
the Company X SQL server for the period [start_date, end_date) in which the unique account-
and part numbers from df_quote occur.

Afterwards, df_quote and df_so are linked. Here, a distinction is made between quotes/sales
orders with account- and part number value combinations occurring only once and multiple
times. First, data frames df_quote1 and df_so1 are created containing account- and part

36

number value combinations occurring only once in the quote and sales order data
respectively. Then, df_quote1 and df_so1 are merged by means of a left merge after which a
boolean mask is applied so that only quote-sales order matches with a difference in days less
than 366 or null (no match) remain. Second, data frames df_quote1plus and df_so1plus are
created containing account- and part number value combinations occurring multiple times in
the quote and sales order data respectively. Here, sales orders are linked to their closest past
quote with replacement. Afterwards, a boolean mask is applied so that only quote-sales order
matches with a difference in days less than 366 or null remain. Finally, the linked quote-sales
order data frames are concatenated, resulting in df_quote_so.

Next, arrays are created containing the unique account- and part numbers occurring in
df_quote_so. Using these arrays, master customer and master part number data is retrieved
from the Company X SQL server and put in data frames df_mc and df_mpn respectively. These
data frames are then (left) merged with df_quote_so, resulting in df_quote_so_mc_mpn.

Then, an additional column is created for df_quote_so_mc_mpn, indicating whether the
difference in days between the quote and sales order of a match is less than or equal to
variable TARGETDURATION (equal to 180). Rows whose difference is less than or equal to
variable TARGETDURATION get value 1 assigned, rows whose value is more than
TARGETDURATION or null get value 0 assigned. Note that this is an implicit definition of a sale.

After, df_quote_so_mc_mpn is encoded such that machine learning algorithms can be
applied. The encoding depends on the columns type for which a distinction is made between
label-, categorial-, binary- and numerical columns. Binary/numerical columns, stored in
df_bool and df_num respectively, remain as they originally were, except that missing values
are replaced with ‘-1’. Categorial columns are one hot encoded, meaning that each category
of the original feature is replaced by a dummy (variable) column with only 0/1 entries
depending on the presence of the category in a row, resulting in df_ohe. Label columns are
label encoded, meaning that each category of the original feature is replaced by an integer,
resulting in df_label. Missing values for both categorial- and label columns are replaced by
‘unknown’. In addition, df_date and df_y are created as subsets of df_quote_so_mc_mpn
containing columns QUOTE_DATE_COL and Y_COL respectively. Finally, df_label, df_ohe,
df_bool, df_num, df_date and df_y are concatenated column-wise, resulting in df_tot.

Next, df_tot is split into a training- and testing data set. Training data df_train is the subset of
df_tot containing all rows whose value for columns QUOTE_DATE_COL is lower than variable
train_test_splitdate. Further, testing data df_test is the subset of df_tot containing all rows
whose value for column QUOTE_DATE_COL is equal to or more than variable
train_test_splitdate. Then, data frames X_train/X_test are created equal to df_train/df_test
respectively without columns QUOTE_DATE_COL and YCOL. In addition, data frames
Y_train/Y_test are created equal to column YCOL in df_train/df_test respectively.

Afterwards, variable clf is created equal to classifier ‘Gradient Boosting Classifier’, which
generates weak classification models sequentially, where each model focuses on correcting
the errors from its predecessor and the final output is a combination of the results from all
models. Next, Gradient Boosting Classifier is fit to X_train and Y_train. Then, arrays
y_train_pred and y_test_pred are created, containing the predictions of classifier clf on data

37

frames X_train and X_test respectively. Next, accuracy and F1 score of the classifier are stored
in variable test_score and f1_score_test respectively.

Finally, variable xcols, created as an array containing the column names of the X_train data
frame, and the classifier are saved.

3.2.2.2 Run new model
Running an existing model takes as input variables run_data and filename. It starts by creating
data frame df_quote by loading (quote) data from the file specified in run_data (by default
RFQ_run in CSV_FOLDER).

After, arrays are created containing the unique account- and part numbers occurring in
df_quote. Next, df_mc and df_mpn are created and filled with master customer and master
part number data respectively in which the account- and part numbers from df_quote occur,
retrieved from the Company X SQL server. Then, df_mc and df_mpn are sequentially (left)
merged with df_quote, resulting in df_quote_mc_mpn.

Further, variables clf and dict_encoders are created corresponding to the last saved file in the
directory behind MODEL_FOLDER. Here, xcols, label_encoders and ohe_encoders are created
as subsets of dict_encoders.

Afterwards, df_quote_mc_mpn is encoded. Binary/numerical columns, stored in df_bool and
df_num respectively, remain as they originally were, except that missing values are replaced
with ‘-1’. Categorial columns are one hot encoded, meaning that each category of the original
feature is replaced by a dummy (feature) column with only 0/1 entries depending on the
presence of the category in a row, resulting in df_ohe. Label columns are label encoded,
meaning that each category of the original feature is replaced by an integer, resulting in
df_label. Missing values for both categorial- and label columns are replaced by ‘unknown’.

Then, data frame df_x is created by concatenating the data frames df_ohe, df_labels, df_bool
and df_num column wise (along the x-axis). After, all columns in xcols (the columns the model
was trained on) but not in df_x are added to df_x and filled with value -1. Next, df_x is set
equal to a subset of its former self containing the columns in xcols (df_x thus contains its own
rows but the columns of xcols).

Last, the trained classifier clf is applied to df_x, resulting in array y_pred containing the sales
potential predictions.

3.2.2.3 List saved models
The function which returns a list of existing models creates an array containing the items from
the directory stored in variable MODEL_FOLDER that contain ‘.pickle’.

38

3.3 Performance concept prioritization tool
Before the performance of the concept prioritization tool could be determined, bugs were to
be eliminated and missing functions to be created (Section 4.1.5.1). Afterwards, performance
of the concept prioritization tool was evaluated under the following conditions:

1) Subset of the machine learning data set from 2012-01-01 until 2018-01-01 was used
for training the concept prioritization tool.

2) Subset of the machine learning data set from 2018-01-01 until 2019-01-01 was used
for evaluating the concept prioritization tool.

From this it followed that the performance of the concept prioritization tool seemed to be
98.87% for the F1 score, 100% for the AUC and following from the confusion matrix a total
misclassification rate of 0.24% (Figure 23).

Figure 23: Confusion matrix and ROC curve concept prioritization tool.

However, after analyzing the percentage of missing- and zero values per feature of the
machine learning data set (Table 4), it was discovered that the to-be predicted feature class,
whether a quote converts into a sale or not, was being leaked, resulting in an overly optimistic
performance estimation.

The class distribution of the machine learning data set is 291.322/35.107 for “No sale”/“Sale”
respectively, which means that 89.25% (L%.'!(

(L%.'!(H)N'.L)))
∗ 100%) of the quote lines do not

convert into a sale. The percentage of missing- and zero values per feature (Table 4) revealed
that features revenue and condition have 88.57% and 88.20% missing- and zero values
respectively. Since these percentages lie very close to the percentage of quote lines that do
not convert into a sale, the question arose whether there was a connection between missing
entries for both these features and a quote line not converting into a sale. Therefore,
investigation was conducted into the class distribution of the machine learning data subset
for which both features revenue and condition did not have missing values. From this
followed a class distribution 3401/35.107 for “No sale”/“Sale” respectively. This means that
all quote lines from the machine learning data set that convert into a sale are present in the
machine learning data subset for which features revenue and condition do not have a missing
value; approximately 12% of the entire machine learning data set.

The latter represents a serious data leak since it causes the concept prioritization tool to
“predict” solely on the presence of both features revenue and condition rather than the

39

intrinsic information of the machine learning data set, resulting in a (unjust) near perfect
performance. After all, approximately 88% of the machine learning data can be correctly
classified “No sale” solely on missingness for features revenue and condition, whereas for the
remaining approximate 12% machine learning data there is a 91.17% chance (L%.'!(

(L%.'!(HL#!')
) of

an instance being “Sale”. After fixing the data leak, through exclusion of features revenue and
condition, the true performance estimation of the concept prioritization tool, a significant
decrease, appeared to be an F1 score of 6.8%, AUC of 0.52 and a total misclassification rate
of 10.55% (96% misclassification in class “Sale”).

Figure 24: Confusion matrix and ROC curve actual performance concept prioritization tool.

40

3.4 Conclusion
In this chapter research sub-questions 2.1-2.2 were answered. First, RQ 2.1 “How is the
concept prioritization tool build?” was addressed in Sections 3.1 and 3.2, in which the machine
learning data, front end- and back-end of the concept prioritization tool were described. From
this it followed that the concept prioritization tool derives the machine learning data set, the
historical labelled quote line data used for training- and evaluating the prioritization tool, in
preprocessing steps (Section 3.2) from multiple data sources. The machine learning data set,
in case of the concept prioritization tool, consists of 20 features which can be seen in Table 4
and are used to train- and evaluate Gradient Boosting Classifier.

Next, RQ 2.2 “How is the performance of the concept prioritization tool?” was addressed in
Section 3.3. Here, it was shown that the performance of the concept prioritization tool is
significantly lower than initially thought of, due to information leakage of the to-be predicted
feature class. The performance of the concept prioritization tool, after fixing the data leak,
decreased significantly to an F1 score of 6.8%, AUC of 0.52 and a total misclassification rate
of 96% in class “Sale”. For the period 2018-01-01 to 2019-01-01, the concept prioritization
tool predicted only 148 quote lines correctly to result in a sale out of the 3766 quote lines
that actually did. Further, for this period the concept prioritization tool predicted only 238
quote lines to result in a sale from which 148 correctly so. This means that the concept
prioritization tool, if it were to be implemented in practice, would only be able to identify a
fraction of sales and corresponding revenue/profit. It should be noted that this is only an
indication of the concept prioritization tool performance as many more errors, other than the
identified data leak, are present which are addressed in chapter 4.

41

4. Verification/validation of the concept prioritization tool
In the previous chapter the concept prioritization tool was described/analyzed. In this
chapter, changes are proposed with regard to verification/validation of the concept
prioritization tool, resulting in the prototype prioritization tool. Section 4.1 contains a
description of- and arguments for the proposed changes. Next, in Section 4.2 the
performance of the prototype prioritization tool is evaluated.

4.1 Verification/validation changes
This section contains the proposed changes with regard to verification/validation of the
concept prioritization tool and is structured according to the supervised machine learning
framework shown in Figure 4. Changes in Python code corresponding to the proposed
changes can be found in Appendix D.

4.1.1 Data Acquisition
In Section 3.3 it was revealed that information about the to-be predicted class (feature target)
was being leaked to the classifier behind the concept prioritization tool by features revenue
and condition. Both these features always had an entry when a quote line converted into a
sales order and rarely when a quote line did not; when these features had an entry there was
a 91.17% probability of the quote line converting into a sale.

In addition, it was shown in Table 4, that the machine learning data set contained high
percentages of missing- and zero values for certain features which should not be possible in
reality. Section 3.1 explained that a quote is an offer by Company X for a customer request
(RFQ) containing price, lead-time, etc. and becomes a sales order if the customer accepts the
offer. Therefore, for certain features (e.g. revenue/condition) it should not be possible in
reality and thus in the quote line- and sales order data to have missing entries, giving rise to
the question whether the data is representative. Therefore, in this section, the data sources
used by the concept prioritization tool are examined one-by-one.

First, the concept prioritization tool acquires quote line data from CSV file RFQ_train, which
can be found in the concept prioritization tool folder. The data from this file is described
below in Table 5.

Quote Line Data

Features Type % Missing
values

Account number Categorial 0%
Part number Categorial 0%
Sub account number Categorial 0%
Sub part number Categorial 0%
Delivery window width Numerical 56.7%
Delivery window time
unit

Categorial 0%

Sales type Categorial 0%
Quote date Date 0%
Revenue Numerical 90.8%
Condition Categorial 90.5%

Table 5: CSV file "RFQ_train".

 Sales Order schema

Features Type % Missing
values

Account
number

Categorial 0%

Part number Categorial 0%
Sales order date Date 0%

Table 6: SQL server Sales_Order schema.

42

Master Customer schema

Features Type % Missing
values

Account number Categorial 0%
Sub account number Categorial 0%
Country Categorial 0%
Sales manager Categorial 0.1%
Customer type Categorial 8.4%
Account type Categorial 5.3%
Account rate N/A 100%

Table 7: SQL server Master Customer schema.

Table 8: SQL server Master Part Number schema.

Master Part Number schema

Features Type % Missing
values

Part number Categorial 0%
Sub part number Categorial 0%
Stock type Categorial 0%
Airplane layout Categorial 43.3%
Repair capability Categorial 96.8%
Rotable part Categorial 0%
Standard part Categorial 0%
Main supplier list price Numerical 0%

The other data sources, the sales order data and the master customer- and the master part
number schema (Table 6 - Table 8), are accessed by the concept prioritization tool on the
Company X SQL server. Below tables are provided describing the sales order-, master
customer- and master part number schema.

From the data sources the following stands out:

• In the quote line data source, CSV file RFQ_train, features delivery window width,
revenue and condition have 56.7%, 90.8% and 90.5% missing values respectively
which should not be possible due to the nature of a quote.

• In the customer data source (Master Customer schema) feature account rate has
100% missing data and will therefore not be included in the machine learning data set
of the prototype prioritization tool.

• In the part number data source (Master Part Number schema) features airplane layout
and repair capability stand out with 43.3% and 96.8% missing values respectively.

Based on analysis of the data sources above, it has been decided to discard RFQ_train as
quote line data source and instead use a newly obtained (valid) quote line data set from the
Company X SQL Server. In addition, the following restrictions are imposed on the new quote
line data:

• Only sales types 1, 14 and 17 are considered, where 1=Direct sale and
14&17=Exchange. The quote line data has been limited to these sales types since
these follow the same RFQ process, which can be seen in Figure 20. The concept
prioritization tool included additional sales types which follow different processes, e.g.
for sales type 4 a sales order is issued before a quote. Inclusion of different sales types
(RFQ processes) will distort both the representativeness of the machine learning data
set (quote-sales order matching only considers quotes created before sales orders)
and the inferences obtained by the machine learning model (feature informativeness
might differ for the different RFQ processes).

• Account numbers starting with “XX” and account numbers CL002 and AO002 are
excluded. These accounts are excluded because they follow a different RFQ process
than seen in Figure 20; these accounts can order according to agreed-upon pricelists
and do not require a quote.

• Quotes with status “no bid” are excluded because these were not sent to the
customer and hence no corresponding sales orders exist.

43

Renewed Quote Data

Features Type % MV
Account number Categorial 0%
Part number Categorial 0%
Sub account number Categorial 0%
Sub part number Categorial 0%
Delivery window width Numerical 6.9%
Delivery window time unit Categorial 0%
Sales type Categorial 0%
Quote line date Date 0%
Revenue Numerical 0%
Condition Categorial 0.1%

Table 9: Quote data Company X SQL Server.

Table 10: Sales order data Company X SQL server.

Renewed Sales Order Schema

Features Type % MV
Account number Categorial 0%
Part number Categorial 0%
Sub account number Categorial 0%
Sub part number Categorial 0%
Sales type Categorial 0%
Sales order date Date 0%
Sales order revenue Numerical 0%

The sales order data has also been “renewed” with the quote line restrictions above to make
sure that it is not possible for sales orders outside these restrictions to match the renewed
quote line data. In addition, sales orders with value zero for both features quantity ordered
and sales order revenue are excluded as these were sales orders were cancelled and therefore
should not be linked to a quote line.

Further, features sub account number, sub part number, sales type and sales order revenue
have been added to the sales order data source to decrease mismatching probability and
enable ABC classification, upon which will be further elaborated in Section 4.1.2.

4.1.2 Data Cleaning

4.1.2.1 Data source linking
In Section 3.2.2.1 the code behind training a new model in the concept prioritization tool was
described, including the preprocessing steps that resulted in the machine learning data set.
In Section 4.1.1 the different data sources, which contributed to the creation of the machine
learning data set, were described. These data sources are, in the basis, linked together as
shown in Figure 25.

Figure 25: Data source linking concept prioritization tool.

44

Linking customer- and part number data to quotes
From Figure 25 it can be seen that both the Master Customer and Master Part Number
schema are linked to the quote lines with relation one to one-or-more. This relationship is
possible because account number combined with sub account number and part number
combined with sub part number represent a unique customer and part number respectively
and will therefore present no duplicate issues.

Yet, this data source link is only valid when customers and part numbers are recognized in the
Master Customer and Master Part Number schema respectively. The Master Customer- and
Master Part Number schema contain information about customers and parts respectively that
have been sold at least once in the past. Therefore, when a quote (line) in the machine
learning data set has missing values for all features of the Master Customer and/or Master
Part Number data source, it means by definition of the Master Customer- and Master Part
Number schema, that the quote (line) did not convert into a sales order. Missing values for
all features of the Master Customer and/or Master Part Number data source thus leak the to-
be predicted feature class.

It has been decided to discard data of quote lines whose customer- and/or part data is not
recognized in the Master Customer- and Master Part Number schema, rather than to impute
the missing values. The reason being that even a sophisticated imputation method, modeling
each feature with missing values as a function of other features, would mean that the missing
customer/part data is imputed based on data which contains very little information about the
to-be imputed customer/part. Further, the true inferences of the machine learning model for
the features in the Master Customer- and/or Master Part Number schema would get
distorted since imputation induces uncertainty.

Linking sales orders to quotes
Next, Figure 25 shows that in the concept prioritization tool, the sales order- and quote line
data sources are linked on features account number and part number with relation one-or-
many to one-or-many. This relation is in line with reality because a quote may be ordered
multiple times by the customer within a certain time frame in which the quote is (still) valid.
Hence, a quote line can be linked to 0, 1 or 1+ sales order(s) although rare cases exist in which
a sales order is created without a quote line. Yet, the problem with linking quote lines to sales
orders is that there exists no unique identifier which a quote line and sales order have in
common.

In the concept prioritization tool, when linking quote lines to sales orders, a distinction is
made between account number- and part number feature value combinations occurring once
and account number- and part number feature value combinations occurring multiple times:

• Quote lines with account number- and part number feature value combinations
occurring once are linked to sales orders with account number- and part number
feature value combinations occurring once by means of a left merge. This link assumes
that for every account number- and part number feature value combination in the
quote lines either 0 or 1 sales order exist. Yet, it could be possible that there are
multiple sales orders for an account number- and part number feature value

45

combination occurring once in the quote lines, which is currently not considered for
matching.

• Quotes with account number- and part number feature value combinations that occur
multiple times in the quote lines are linked to account number- and part number
feature value combinations that occur multiple times in the sales orders. For each
account number- and part number feature value combination, a quote date- and sales
order date list is created. After, the matching quote line is calculated for each sales
order, being the quote line whose quote date is closest and prior to the sales order
date. This linking method allows for 0, 1 or 1+ sales orders to be linked to a single
quote line, which corresponds to reality, but assumes that for every account number-
and part number feature value combination occurring multiple times in the quote line
data, multiple sales orders exist, while this can also be 1.

The following changes are proposed with regard to linking the quote lines and sales orders:

1) The sales order- and quote line data sources will be linked on features account
number, part number, sub account number, sub part number and sales type in the
prototype prioritization tool. Sub account number and sub part number are included
because these, combined with account number and part number, represent a unique
customer and part number respectively. In addition, increasing the number of
features that quote lines and sales orders have to match on decreases the
mismatching probability, hence inclusion of sales type.

2) The quote line subset with account number-, part number-, sub account number-, sub
part number- and sales type feature value combinations occurring only once are linked
in the prototype prioritization tool to a subset of the sales order data in which these
exact account number-, part number-, sub account number-, sub part number- and
sales type feature value combinations occur. This allows 0, 1 or 1+ sales orders to be
linked to a quote line with an account number-, part number-, sub account number-,
sub part number- and sales type feature value combination occurring only once.

3) The quote line subset with account number-, part number- sub account number-, sub
part number- and sales type feature value combinations occurring multiple times are
linked in the prototype prioritization tool to a subset of the sales order data in which
these exact account number-, part number-, sub account number-, sub part number-
and sales type feature value combinations occur. After, the matching quote line is
calculated for each sales order, (still) being the quote line whose quote date is closest
and prior to the sales order date. Therefore, in the prototype prioritization tool quote
lines with account number-, part number- sub account number-, sub part number-
and sales type feature value combinations occurring multiple times can be linked to
0,1 or 1+ sales orders.

46

Figure 26: Data source linking prototype prioritization tool.

Definition of sale
As mentioned in Section 3.1, the machine learning data set consists of quote lines, each
representing the requested amount for a specific part by a customer. There, a sale was
defined as a line, within a quote, converting into a sales order. This definition translates in the
concept prioritization tool to a quote line which is linked to a sales order, using the linking
procedure described in Section 3.2.2.1, and has a difference in days between the quote date
and sales order date of at maximum 180 days. This thus implies that the period in which a
quote (line) is valid on average is 180 days, while this is in reality usually a month.

In the prototype prioritization tool, a sale is defined as a quote line which is linked to a sales
order, using the linking procedure as described above, and has a difference in quote- and
sales order date within the period in which a quote is still valid. For the period in which a
quote is valid a distinction is made between regular customers and governments. For regular
customers, the period in which a quote is valid is set equal to 30 days. For governments, which
are known to take significant time between a quote and sales order (due to bureaucracy
and/or approvals required), the period in which a quote is valid is changed to a year.

4.1.2.2 Merge feature pairs
Currently the features delivery window width and delivery window time unit combined
represent the allowed delivery window, which means that the delivery window is weighted
twice in classifying instances. Therefore, it is proposed to merge these two features into
feature delivery window. This by translating the categories of feature delivery window time
unit {Y,M,W,D,H} into a corresponding number of days and multiplying this with the value for
feature delivery window width.

Similarly, account number and sub account number and part number and sub part number
are merged so that they represent a unique account number and part number respectively.

47

4.1.2.3 Handling large number of categorial values
The concept prioritization tool encodes categorial features using either label- or one hot
encoder (Section 2.2.2.2). The categorial features account number and part number, which
both have a large number of categorial values, are currently label encoded. However, when
applying label encoding to a non-binary feature, the machine learning model will have a false
sense of order amongst the categories (0<1<2<etc.). In addition, label encoder cannot handle
data it has never seen before, thus if a category occurs in the test data which did not occur in
the train data, an error will be raised. On the other hand, when applying One Hot Encoding to
account number and part number, python raises a memory error due to the large resulting
(sparse) matrix.

Thus, for features account number and part number, a sweet spot is sought between the
(number of) categories to include, to avoid a memory error, and capturing as much of the
information the features entail as possible. Therefore, it is proposed to apply a form of ABC
classification to merged features account number and sub account number and part number
and sub account number, which represent a unique customer and part respectively.

First, for each customer/part the sum of the sales order revenue of all individual sales orders
corresponding to that customer/part was calculated. Then, the total sales order revenue of
all sales orders for all customers/parts was calculated and the sales order revenue for a
specific customer/part was expressed as a percentage of the total sales order revenue. This
list was then sorted (descending) after which the cumulative contribution to the total sales
order revenue was calculated for each customer/part. Afterwards, customers/parts were
assigned a bin corresponding to their cumulative contribution, which can be seen in Figure 27
together with a count per bin.

Figure 27: Number of accounts (left) and -parts (right) per corresponding cumulative contribution to the total sales order
revenue.

Based on Figure 27, it was decided to not encode the top 40% and 20% customers and parts
respectively, contributing the most to the total sales order revenue. The remaining
customers/parts were encoded by being assigned a bin corresponding to their cumulative
contribution to the total sales order revenue. This reduces the number of categories of
features account number merged with sub account number and part number merged with
sub part number from 1288 and 47131 to 14 and 29 respectively. Customers/parts which
never converted to a sale were assigned bin (80, 100]. Now, One Hot Encoding can be applied
to these features without resulting in a memory issue.

48

4.1.2.4 Handling of missing values
Investigation into feature missingness of the prototype prioritization tool machine learning
data set (Table 11) revealed that features repair capability, airplane layout, delivery window,
customer type, condition, and account type have missing values (MVs).

Missingness Machine Learning Data

Feature Type Missing values % MV
Repair capability Categorial 134769 71.3%
Airplane layout Categorial 64529 34.1%
Delivery window Numerical 6628 3.5%
Customer type Categorial 1328 0.7%
Condition Categorial 110 0.1%
Account type Categorial 91 0%
Account Categorial 0 0%
Part Categorial 0 0%
Standard part Categorial 0 0%
Rotable part Categorial 0 0%
Main supplier list price Numerical 0 0%
Revenue Numerical 0 0%
Sales type Categorial 0 0%
Country Categorial 0 0%
Sales manager Categorial 0 0%
Stock type Categorial 0 0%

Table 11: Missing values machine learning data set.

For features repair capability and airplane layout, missing values are either truly missing or
imply that the part cannot be repaired and/or that the part has no airplane layout code (e.g.
does not belong to an aircraft). For these features missing values are thus a combination of
Missing Not At Random and Missing (Completely) at Random. On one side, Missing Not At
Random data, which is the case when data is missing because of its own value, should not be
discarded as it would introduce bias into the model. On the other hand, imputing values
would also not be wise because missingness can imply two categories; truly missing or non-
existing.

Therefore, it has been decided to replace missing values for repair capability and airplane
layout with ‘unknown’ and remove instances with missing values for features delivery
window, customer type, account type and condition, which are Missing (Completely) At
Random.

4.1.2.5 Dummy feature trap
In the concept prioritization tool perfect multicollinearity is induced after applying One Hot
Encoding to categorial features. This perfect multicollinearity introduces a redundant dummy
feature for each OHE encoded categorial feature, which takes computational time and power
without adding value to the model. This is in the prototype prioritization tool eliminated by
dropping the first dummy feature for every OHE encoded feature.

49

4.1.3 Data Splitting
The concept prioritization tool splits the machine learning data set into a train- and test set
using a split date variable. Data from [start date, split date) is used as train data and the data
from [split date, end date] as test data. Thus, both the train- and test data set consists of
consecutive instances. However, literature revealed that taking consecutive instances
severely impacts the validity of the results as the population of interest is not reflected
accurately enough as consecutive instances may contain events such as promotions,
seasonality, etc. that distort the weights that the machine learning model assigns to features.

In Section 1.3 it was mentioned that historically only 17% of all quotes convert into a sale,
which in the train data set is approximately 19%, confirming that the issue of data imbalance
is present. According to literature, when dealing with imbalanced data, a stratified random
split should be used. Moreover, literature recommends in general the use of (k-fold) cross
validation to prevent overfitting. Therefore, a k-fold stratified split is incorporated in the
prototype prioritization tool rather than splitting the machine learning data based on a date.

4.1.4 Model Training & Building

4.1.4.1 Outlier detection
Outliers only exist by definition in non-categorial features (Medium, 2018). The concept
prioritization tool machine learning data set, shown in Table 4, contains three numerical
features, namely; revenue, delivery window and main supplier list price. Values for these
features takes significant ranges due to the nature of the data, e.g. the spare part data
includes both bolts and engines.

Box-plots were created for the numerical features of the machine learning data set, shown
on the left-side of Figure 28, Figure 29 and Figure 30, which reveal that few instances take
extreme values. Investigation of these instances in the ERP system revealed that these
extreme values are due to human error; e.g. a quote line exists with value of 800 million for
feature revenue but is due to an accidental quantity times 1000. Such human errors should
be removed by means of outlier detection before training the machine learning model since
they greatly affect normalization.

Therefore, it is proposed to apply the outlier detection method Z-scoring to the training data,
which represents the number of standard deviations a feature observation is away from its
mean. Numerical feature values with a Z-score of less than -3 or more than 3 are considered
to be an outlier. Table 12 below shows per numerical feature the mean, standard deviation,
threshold for exclusion and the number of records that are excluded by using this method of
outlier detection. Next, the right-side of Figure 28, Figure 29 and Figure 30 show the box-plots
of the numerical features after outlier detection for the train data.

Numerical features outliers

Feature Mean Std deviation Excluded from Records excluded
Revenue 5539.64 49014.40 152582.84 Euro 648
Delivery window 23.65 507.22 1545.31 days 9
Main supplier list price 14527.71 62231.21 201221.34 Euro 2450
Total 2755

Table 12: Numerical features outlier detection.

50

Figure 28: Boxplot feature delivery window before (left) and after (right) outlier detection.

Figure 29: Boxplot feature main supplier list price before (left) and after (right) outlier detection.

Figure 30:Boxplot feature revenue before (left) and after (right) outlier detection.

4.1.4.2 Under-sampling
From Section 2.2.2.2 it followed that for imbalanced datasets under-sampling can improve
classifier performance by increasing the minority class recognition rate. Within under-
sampling, a distinction can be made between instance generating- and instance selecting
algorithms (Imbalanced-Learn, sd). Further, within instance selecting algorithms, a distinction
can be made between controlled- and cleaning algorithms. Controlled algorithms allow the
number of samples to be specified by the user while cleaning algorithms do not allow this
specification and are meant for cleaning the feature space. An overview of existing under-
sampling algorithms is given below (TowardsDataScience, 2018):

51

Instance generating algorithms:
• Cluster Centroids, which applies the k-means method to obtain the class centroids

after which it synthesizes instances for each class instead of using the original samples.
This method requires data to be grouped in clusters and the number of centroids to
be set such that the under sampled clusters are representative of the original data.

Instance selecting algorithms:
• Controlled algorithms:

• Random under-sampling, which under samples the majority class randomly
and uniformly. This method can lead to potential loss of information.

• NearMiss, which under samples using heuristic rules based on the nearest
neighbor algorithm. This method is sensitive to noise.

• Cleaning algorithms:
• Tomek’s links, which detects- and removes Tomek’s links. A Tomek’s link is

defined as two instances, x and y, of different class such that for any sample z:
d(x,y)<d(x,z) and d(x,y)<d(y,z) holds where d() is the distance between two
instances. This thus means that Tomek’s links are nearest neighbors of
different classes.

• Edited Nearest Neighbors, which applies the nearest-neighbors algorithm to
instances of the to-be under sampled class and removes those which do not
agree “enough” with the neighborhood (majority or all neighbors).

• Condensed Nearest Neighbors, which uses a 1 nearest-neighbor rule to
iteratively decide whether a sample should be removed or not. This method
starts by putting all minority instances in set A and all majority instances in set
B. Then, one instances from B is added to A after which instances in B are
classified using 1 nearest neighbor. Instances which are classified wrong are
moved to A and this is repeated until no more instances are moved. This
method is sensitive to noise and will by definition add noisy samples.

It is decided to consider instance selecting algorithms only since generation of data, when
plenty of data is available, can only lead to a less representative sample. Within instance
selecting algorithms, only the controlled under-sampling techniques are considered. This
because data preparation has already been carried out and an equal recognition rate for both
classes is desired. Here, random under-sampling is preferred over NearMiss because it is less
influenced by noise. Oversampling techniques have also been considered but use significantly
more computation time while yielding similar performance.

4.1.5 Model Testing

4.1.5.1 Missing function
The concept prioritization tool, when training a new model, calls upon a function that
supposedly plots a confusion matrix, yet has not been defined. Now, this function has been
created and plots a confusion matrix using the predicted- and true labels, which it then saves
as .png file. In addition, this function now also plots a ROC curve and displays performance
metric AUC in the legend of the graph. Examples of the confusion matrix and ROC curve,
created by the newly defined function, can be seen in Figure 23.

52

4.1.5.2 Noise reduction
In the literature review three types of noise were identified; noisy data items, noisy features
and noisy records. Noisy data items were addressed with outlier detection. Next, Noisy
features will be addressed in chapter 5 by means of feature selection. Finally, the
performance of the prototype prioritization tool, shown in Section 4.2, was ran using 5-fold
cross validation, from which the different fold scores (Table 14) did not differ significantly,
indicating that noisy records do not influence the results.

4.2 Performance prototype prioritization tool
The performance of the prototype prioritization tool has been evaluated after incorporating
all the changes proposed in this chapter. The order in which certain algorithms/preprocessing
steps, proposed in the aforementioned changes, are applied in the machine learning model
is crucial for its validation/verification. For example, if under-sampling were to be carried out
before data splitting, the class distribution of testing data would be 50/50 “No sale”/”Sale”
rather than the (approximate) true class distribution 83/17 for “No sale”/”Sale” and therefore
no longer accurately reflect reality. In the prototype prioritization tool the order of such
algorithms/preprocessing steps, whose order of application could potentially affect
verification/validation, is the following: handling missing values, data encoding, splitting data,
detecting- and removal of outliers and under-sampling.

The performance of the prototype prioritization tool was evaluated using 5-fold stratified
cross validation with (machine learning) data from the period 2012-01-01 to 2019-01-01,
where 80%/20% was allocated for training- and evaluation respectively. The prototype
prioritization tool machine learning data set consisted of features country, sales manager,
customer type, account type, stock type, airplane layout, account, part, repair capability, sales
type, condition, standard part, rotable part, main supplier list price, delivery window and
revenue. From this follows that the performance of the prototype prioritization tool is 48.6%
for the F1 score, 80% for the AUC and, following from the confusion matrix, a total
misclassification rate of 31.61%.

Figure 31: Confusion matrix and ROC curve prototype prioritization tool, including quote features.

53

 Accuracy Precision Recall F1-score

Fold 1 0.685 0.354 0.785 0.488
Fold 2 0.678 0.348 0.788 0.483
Fold 3 0.683 0.353 0.792 0.488
Fold 4 0.683 0.351 0.775 0.483
Fold 5 0.684 0.353 0.791 0.489

Average 0.683 0.352 0.786 0.486
Max D fold 0.007 0.006 0.016 0.006

Table 13: 5-fold cross validation prototype prioritization tool, including quote features.

However, the objective of the prioritization tool is to prioritize RFQs on sales potential. Yet,
its machine learning data set contains features from data source quote; revenue, condition,
sales type and delivery window. These features are only known after customer
negotiation/consultation (Figure 20) and thus not present in RFQs. Consequently, these
features should be excluded from the prototype prioritization tool machine learning data set,
resulting in 45.5% for the F1 score, 77% for the AUC and, following from the confusion matrix,
a total misclassification rate of 34.51%.

Figure 32: Confusion matrix and ROC curve prototype prioritization tool.

 Accuracy Precision Recall F1-score
Fold 1 0.650 0.318 0.768 0.450
Fold 2 0.655 0.322 0.771 0.454
Fold 3 0.661 0.326 0.774 0.459
Fold 4 0.660 0.323 0.756 0.453
Fold 5 0.655 0.324 0.783 0.458

Average 0.656 0.323 0.770 0.455
Max D fold 0.011 0.008 0.027 0.009

Table 14: 5-fold cross validation prototype prioritization tool.

54

4.3 Conclusion
In this chapter research sub-questions 3.1-3.2 were answered. First, RQ 3.1 “What changes in
the concept prioritization tool are necessary for the purpose of verification/validation?” was
addressed in Section 4.1. Here, according to the supervised machine learning framework
shown in Figure 4, the following changes were proposed; renew quote line- and sales order
data, remove customers and parts that do not occur in the master customer- and master part
schema respectively (data leak), change quote line-sales order matching and the definition of
a sale, merge features to prevent double weighting, use ABC classification for features with
large number of categories, remove instances with missing values (MCAR/MAR), eliminate
the dummy feature trap, change the data splitting method from date based to stratified k-
fold cross validation, incorporate outlier detection and under-sampling and create a function
which plots a confusion matrix and ROC curve.

Next, RQ 3.1 “How is the performance of the prototype prioritization tool?” was answered in
Section 4.2. Here, it was shown that the performance of the prototype was 45.5% for the F1
score, 77% for the AUC and, following from the confusion matrix, a total misclassification rate
of 34.51%. Figure 32 revealed that the prototype prioritization tool predicted 5469 quote lines
correctly to result in a sale out of the 7013 quote lines that actually did. Further, the prototype
prioritization tool predicted 16.900 quote lines to result in a sale from which only 5469
correctly so. This performance is not bad considering approximately 80% of actual sales were
identified, yet this through falsely predicting a large number of quote lines to result in a sale.
Consequently, an attempt will be made to improve the performance of the prototype
prioritization tool in chapter 5.

55

5. Improving the prototype prioritization tool
This chapter entails an attempt to improve the performance of the prototype prioritization
tool by following (the structure of) the B2B sales potential prediction methodology shown in
Figure 5, resulting in the operational prioritization tool. In Section 5.1 the phases of the
aforementioned methodology are carried out; sales opportunity representation, data
preparation, machine learning techniques and data insights. Next, in Section 5.2 the
performance of the operational prioritization tool is evaluated.

5.1 B2B sales potential prediction methodology
In this section the B2B sales potential prediction methodology by Bohanec et al. (2015) is
carried out. Here, improvement focus is on metric F1 score (Section 2.2.3.2) since both
wrongly predicted sales (concerning precision), which waste time, and wrongly predicted
non-sales (concerning recall), which cause sales to be missed, ought to be minimized. The F1
score metric represents an equally weighted precision-recall trade-off, for which is deliberatly
chosen as “optimal” weights are merely subjective and would require additional research to
be quantified.

5.1.1 Sales opportunity representation
The B2B sales potential prediction methodology starts with the sales opportunity
representation phase. In this phase, available historical (quote line) data is collected that
could potentially contribute to predicting sales potential. Rather, since chapter 4 already
concluded with a working prototype prioritization tool, in this phase additional features are
considered. The additional features have been incorporated in consultation with the product
management department, whom are considered to be experts on the RFQ process (Figure 20)
and quote line data itself.

Next, literature revealed that meta variables can also capture information which the default
features do not, and can be significant predictors. In the context of this assignment, meta
features stock, hit rate account, hit rate part, frequency account and frequency part were
created and incorporated as they were believed to be potential contributors. An overview of
the additional (meta) features can be seen in Table 15, whereas an explanation/description
per (meta) feature can be found in Appendix A.

Additional (meta) features machine learning data set

Column name Feature name Data type % Missing
values

Data Source

 Customer Part Vendor Meta
ALT3_CODE_V Supplier type Categorial 65.4% X
STOCK Stock Categorial 3.5% X
TERM_CODE Credit period Categorial 0% X
COMPANYNO Company number Categorial 0% X
EXCH_CORE_RETURN Exchange return period Numerical 0% X
MFG Part manufacturer Categorial 0% X
MFG_SUBC Part manufacturer sub code Categorial 0% X
PIECEPART_SUBASSY Piece part Categorial 0% X
PN_PROGRAM Aircraft type Categorial 0% X
AUTO_VENDOR Default supplier Categorial 0% X
AUTO_VENDOR_SUBC Default supplier sub code Categorial 0% X
SELL_TYPE Mark-up Categorial 0% X

56

AUTO_PRICE_ENABLED Fixed vendor price Categorial 0% X
ONCONDITION Obligatory safety check Categorial 0% X
HIT_RATE_ACCT Hit rate account Numerical 0% X
HIT_RATE_PN Hit rate part Numerical 0% X
FREQ_ACCT Frequency account Numerical 0% X
FREQ_PN Frequency part Numerical 0% X

Table 15: Additional (meta) features machine learning data set.

Considering the additional (meta) features, data sources are now linked as shown in Figure
33.

Figure 33: Data source linking machine learning data set.

5.1.2 Data preparation
The second phase of the B2B sales potential prediction methodology is the data preparation
phase. This phase has already been carried out- and described in chapter 4. The additional
(meta) features resulting from the sales opportunity representation phase are prepared
similarly.

5.1.3 Machine learning techniques
The third phase of the B2B sales potential prediction methodology is the machine learning
techniques phase. In this phase the feature selection, hyper-parameter tuning and
classification threshold optimization are carried out.

57

5.1.3.1 Feature selection sub-methodology
A major problem for large data sets, in which many potential predictor features are present,
is the curse of dimensionality. The curse of dimensionality is the consequence of high
dimensionality of the input, which increases both the size of the search space in an
exponential manner as well as the chance to obtain invalid models. In this sub-section the
curse of dimensionality will be addressed via feature selection, which will speed up
computation time, improve input data quality, and potentially increase model performance
while simultaneously decreasing model complexity. Feature selection is carried out according
to the sub-methodology of Bohanec et al. (2015) shown in Section 2.2.3.3, and consists of the
following (sequential) steps:

1) Ranking feature importance.
2) Monitoring model performance when incrementally adding top ranked features to

detect the optimal cut-off point.
3) Eliminating noise/redundancy using a wrapper method.

It should be noted that literature recommends feature selection to be carried out only if the
number of events per variable (EPV), which is the smallest of the number of positive/negative
cases divided by the number of independent variables, is at least 50 (Heinze & Dunkler, 2016).
In the training data, used below for feature selection, the EPV =)(#L(

)$
= 979.89 which

justifies its use.

Feature importance
Feature ranking is carried out using the Orange datamining suite, of which the workflow can
be seen in Figure 34. Here, data is loaded into Orange via the File widget. The data used to
rank features is the training data, except that now it is not dummy-encoded. The latter
because the interest is in the overall most important features rather than the most important
categories within features. Test data is not included in feature ranking as it would introduce
bias in the performance estimators.

Next, the File widget is connected to the Rank widget, in which multiple filter methods are
applied (Figure 56). It should be noted that these filter methods require categorial features
and that Orange datamining suite by default applies equal-frequency discretization (4
intervals) to numerical features. Besides standard filter methods from the Rank widget,
classifiers Random Forest and Logistic Regression were also used to rank the data by
connecting their widgets to the Rank widget.

Figure 34: Workflow Orange datamining suite filter methods.

58

Following Figure 56, shown in Appendix D, the top 15 features were further investigated in
the second- and third step of the feature selection sub-methodology.

Monitoring performance to detect optimal cut-off point
Next, the top ranked features, different for each filter method, are added one-by-one from
highest- to lowest ranked and F1 score performance of multiple classifiers on the test data
was monitored, resulting in Figure 35-Figure 37 (corresponding to Table 22-Table 24 in
Appendix D). In this phase filter methods Information gain, Gain ratio, Logistic Regression,
Chi-square and Random Forest were considered and classifiers Gradient Boosting Classifier
(used in the concept- and prototype prioritization tool), Random Forest and Logistic
Regression.

Figure 35: Monitoring F1 score performance Gradient Boosting Classifier using multiple filter methods.

Figure 36: Monitoring F1 score performance Random Forest using multiple filter methods.

8,00%

13,00%

18,00%

23,00%

28,00%

33,00%

38,00%

43,00%

48,00%

53,00%

0 2 4 6 8 10 12 14

F1
 sc

or
e

No. Features

Gradient boosting classifier

Inf Gain

Gain Ratio

Logistic Regression

Chi-square

Random Forest

8,00%

13,00%

18,00%

23,00%

28,00%

33,00%

38,00%

43,00%

48,00%

53,00%

0 2 4 6 8 10 12 14

F1
 sc

or
e

No. Features

Random Forest

Inf Gain

Gain Ratio

Logistic Regression

Chi-square

Random Forest

59

Figure 37: Monitoring F1 score performance Logistic Regression using multiple filter methods.

From these figures, it followed that the optimal cut-off point for each classifier, being the
combination of ranking method and the number of top ranked features that yields the highest
overall F1-score, were the following:

• For Gradient Boosting Classifier the optimal cut-off point is at the top 13 ranked
features using filter method Random Forest with an F1 score of 48.84%.

• For Random Forest the optimal cut-off point is at the top 14 ranked features using
filter method Random Forest with an F1 score of 53.82%.

• For Logistic Regression the optimal cut-off point is at the top 15 ranked features using
filter method Logistic Regression with an F1 score of 46.05%.

Eliminating noise and redundancy
Figure 35-Figure 37 above showed negative or no difference in F1 score during incremental
addition of certain features, which indicates the presence of noisy and/or redundant features.
In the final step of the feature selection sub-methodology these noisy and/or redundant
features are eliminated using a wrapper method.

For the optimal cut-off point per classifier, features were excluded one-by-one from highest-
to lowest ranked and permanently excluded when exclusion increased F1 score performance,
resulting in a minimum list of features. The results can be found in Table 25-Table 27 in
Appendix D, from which followed:

• For gradient boosting classifier the top 13 features all remain, resulting in an F1-score
of 48.84%.

• For Random Forest feature hit rate part is excluded and the remaining 13 features
result in an F1-score of 54.26%.

• For Logistic Regression, features aircraft type, sales manager and mark-up are
excluded and the remaining 12 features result in an F1-score of 46.69%.

8,00%

13,00%

18,00%

23,00%

28,00%

33,00%

38,00%

43,00%

48,00%

53,00%

0 2 4 6 8 10 12 14

F1
 sc

or
e

No. Features

Logistic Regression

Inf Gain

Gain Ratio

Logistic Regression

Chi-square

Random Forest

60

5.1.3.2 Comparing classifier performance
In this section the performance of the best models following the feature selection sub-
methodology are compared using a k-fold cross validation approach (Tan, et al., 2006).

Let 𝑀5P denote the classification model using classification technique 𝑇5 during the 𝑗4A fold.
Let 𝑝'P and 𝑝)P be the respective performance estimations of the models in the jth fold. The
difference between these performance estimations in the 𝑗4A fold can be written as 𝑑P =
𝑝'P −	𝑝)P. Then, if k is sufficiently large, 𝑑P	is normally distributed with mean 𝑑41G*-Q , which is
the true difference in performance estimation, and standard deviation 𝜎-Q. The variance of

the observed differences is estimated using 𝜎-Q) =	
∑ (:"&:S)#
$
"%&

D(D&')
, where �̅� is the average

difference in performance estimations of all folds. Then, a confidence interval can be
calculated for the true difference in performance estimation between the two models:
𝑑41G*-Q =	 �̅� ± 𝜎-Q ∗ 𝑡('&3)(D&'). , where 𝑡('&3)(D&') can be obtained from the probability table
of the t-distribution.

Comparing the 13-feature random forest, 13-feature gradient boosting classifier and 12-
feature logistic regression model, Table 16 and Table 17 show that for confidence levels 80-
99% zero does not lie in the confidence intervals [Lower bound (LB), Upper bound (UB)] of
the mean difference between folds. Therefore, it can be concluded that all three models
statistically differ in performance and that the 13-feature Random Forest model performs
best.

Table 16: 13-feature Random Forest versus 13-feature Gradient Boosting Classifier.

Table 17: 13-feature Gradient Boosting Classifier versus 12-feature Logistic Regression.

Fold Difference per fold
1
2 CI Mean ± Std*t(1-a)(k-1) LB UB
3 99% 0,0540 ± 0,00126 0,0527 0,0552
4 98% 0,0540 ± 0,00175 0,0522 0,0557
5 95% 0,0540 ± 0,00229 0,0517 0,0563

Average 90% 0,0540 ± 0,00308 0,0509 0,0571
Variance 80% 0,0540 ± 0,00378 0,0502 0,0578

5,40%
0,000068%

5,18%
5,58%
5,42%

5,24%
5,57%

Fold Difference per fold
1
2 CI Mean ± Std*t(1-a)(k-1) LB UB
3 99% 0,0218 ± 0,00292 0,0188 0,0247
4 98% 0,0218 ± 0,00406 0,0177 0,0258
5 95% 0,0218 ± 0,00530 0,0165 0,0271

Average 90% 0,0218 ± 0,00716 0,0146 0,0289
Variance 80% 0,0218 ± 0,00878 0,0130 0,0305

2,18%
0,000364%

2,82%
1,64%
2,15%

2,25%
2,03%

61

5.1.3.3 Hyper-parameter tuning
As mentioned in Section 2.2.3.4, hyper-parameter tuning is the problem of choosing a set of
hyper-parameter values that yields the best generalizable performance improvement. To
obtain a generalizable performance improvement an additional (stratified) split, resulting in
a validation data set, is required. If hyper-parameter tuning would be conducted using solely
a train- and test set, there would be a risk of overfitting since parameters can be tweaked
until the model performs optimally on the test set. That way, knowledge about the test set
leaks and consequently evaluation metrics do no longer report on general performance
(Jordan, 2017). Therefore, the objective of this section is to find the hyper-parameter
configuration that yields the best performance on the validation set performance metric
(TowardsDataScience, 2018).

Hyper-parameter tuning is carried out for the 13-feature Random Forest model resulting from
Section 5.1.3.1, of which the to-be tuned hyper-parameters are shown in Table 18, together
with a description and their default value (TowardsDataScience, 2018) (Medium, 2017).

Hyper-parameter Explanation

Default value

Criterion Function to measure the quality of a split. ‘Gini’
N_estimators The number of trees in the forest. 100
Max_depth The maximum depth of the tree. None
Min_samples_split The minimum number of samples required to split a node. 2
Min_samples_leaf The minimum number of samples required to be at a leaf node. 1
Max_features The number of features to consider when looking for the best split. √max	features
Bootstrap Whether bootstrap samples are used when building trees. True

Table 18: Hyper-parameters Random Forest classifier.

It has been decided to carry hyper-parameter tuning out using random search with cross
validation. In addition, validation curves (Figure 38-Figure 44) are plotted, which show the
effect of different values for a single hyper-parameter on classification performance on both
the train- and validation data set*, allowing a more promising hyper-parameter grid to be
identified (TowardsDataScience, 2019). Moreover, the validation curves reveal that the
model overfits as there exists a large gap between train- and validation set performance. Yet,
the latter is not a problem since overfitting is prevented by measuring (generalizable)
performance on a kept-aside test set combined with k-fold cross validation.

Figure 38: Validation curve min_samples_leaf.

Figure 39: Validation curve min_samples_split.

62

Figure 40: Validation curve max_depth.

Figure 41: Validation curve max_features.

Figure 42: Validation plot criterion.

Figure 43: Validation plot bootstrap.

Figure 44: Validation curve n_estimators.

*The maximum F1 score in the validation curves seems to be below the performance shown
during feature selection. The reason for this is that under-sampling was temporarily turned
off during hyper-parameter tuning as the class distribution of the train-, validation- and test
set have to match in order for the improvement in validation set performance, due to hyper-
parameter tuning, to be generalizable to that of the test set.

Although the validation curves show promising areas per hyper-parameter, they do not
account for sequential effects, differences due to the order of hyper-parameter tuning.
Therefore, an exploratory random search with cross validation is ran over the entire grid
shown in Figure 38-Figure 44. The top 20 configurations resulting from the exploratory
random search can be seen in Table 28 (Appendix D) and confirm the promising areas per
hyper-parameter seen in the validation curves. Moreover, Figure 45, in which the average F1
score is plotted against the number of iterations, confirms the need of an initial exploratory

63

random search as it shows a steep improvement curve, meaning a lot of “bad” configurations
were explored.

Figure 45: Exploratory random search 3-fold CV for 250 iterations.

Next, using the results of the exploratory search, the grid search space is narrowed down as
shown in Table 19. Here, hyper-parameter values were excluded that appeared ≤ 2 in the
top 20 configurations of the exploratory search, resulting in a targeted grid.

Hyper-parameter Grid values

Excluded

Criterion ['Gini', 'Entropy'] []
N_estimators [75, 100, 150, 200, 300, 400, 500] [600,700,800]
Max_depth [None, 40, 50] [10,20,30]
Min_samples_split [2, 5, 10] [15,20]
Min_samples_leaf [1] [2,5,10,15,20]
Max_features [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] [1,2,3]
Bootstrap [True,False] []

Table 19: Targeted grid random search with cross validation (k=3) of 500 configurations.

Running random search with cross validation (k=3) for 500 iterations over the targeted grid
resulted in the top 20 configurations as seen in Table 29 in Appendix D. From this followed
that configuration {'n_estimators': 400, 'min_samples_split': 2, 'min_samples_leaf': 1,
'max_features': 13, 'max_depth': None, 'criterion': 'gini', 'bootstrap': False} yields the best F1-
score performance on the validation set. Moreover, the plot of the average F1 score against
the number of iterations of the random search over the targeted grid (Figure 46) shows a flat
improvement curve, implying that increasing the number of iterations is not likely to result in
a (much) better configuration.

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

0,5

0 50 100 150 200 250

F1
 sc

or
e

Number of iterations

Random search 3-fold CV hyper parameter tuning

64

Figure 46: Targeted random search 3-fold CV for 500 iterations.

5.1.3.4 Classification threshold optimization
Classification is based on a probability that the classifier assigns to an observation using the
inferences learned from the training data set. By default, this probability is set to 0.5 meaning
in this case, that an observation with a predicted probability >0.5 is classified as “Sale” and ≤
0.5 as “No sale”. Yet, this classification threshold can be varied, and therefore optimized. The
classification threshold can be perceived as a hyper-parameter and should be treated
accordingly although it cannot be set within the classifier itself and is rather manually coded.
Below, in Figure 47 the effect of different thresholds on the train- and validation set is shown.
From Figure 47 it follows that the validation set F1 score performance is optimal in the area
of [0.55,0.65]. Zooming-in on this area (Figure 48), it is shown that the optimal threshold on
the validation set is 0.62.

Figure 47: Validation curve classification threshold.

Figure 48: Classification threshold optimization zoom-in.

5.1.4 Data insights
In this section insights are given into the operational prioritization tool and machine learning
data set via feature distributions (frequency/probability), association rules and a classification
tree visualization. First, Figure 49 shows the number of quote lines that converted to sales
orders per (anonymized) sales manager. From this it becomes clear that there are significant
differences in sales performance; not only in sales conversion rate but also in frequency. From
this stands out that quotes from sales manager 3, 5, 7, 8, 9, 11, 14, 15, 16 and 17 are more

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

0,5

0 100 200 300 400 500

F1
 sc

or
e

Number of iterations

Random search 3-fold CV hyper parameter tuning

65

likely to miss, whereas sales manager 2 and 13 are best performers in both frequency and
conversion rate.

Figure 49: Frequency (not) sold per sales manager.

Next, Figure 50 shows the probability of a quote line converting into a sale per account (ABC
classified account number). From this can be seen that the lower the bin range, the higher
the probability of sale, as is expected. Moreover, we see that although GL0021 is one of the
top contributors, it has low probability of sale, indicating that this customer has bought
expensive parts and/or frequently requests quotations.

Figure 50: Probability of (no) sale per account.

66

Further, association rules (Section 2.4) have been derived regarding feature class, whether a
quote converts into a sales order (or not). The association rules can be seen in Figure 51 and
were extracted under restriction of ≥10% and ≥60% for minimal support and minimal
confidence respectively. Support represents the fraction of the data set that contains the
association rule and confidence the probability of occurrence of the consequent given the
antecedent.

Figure 51: Association rules.

From Figure 51 some intuitive relations follow, e.g. when features account and/or part have
value (80,100] as (part of) antecedent, often (part of) the consequent is feature class to be
“No sale”. This makes sense since features account and part are ABC classified on contribution
to the total sales order revenue where (80,100] is the lowest contributing bin. On the other
hand, it also follows that e.g. selling low contributing non-rotable parts to defense and selling
non-rotable parts from stock to airlines often result in a sale.

Finally, insight into how the operational prioritization tool predicts sales potential is given
through visualization of a single random tree from the Random Forest (Figure 52), upon which
is zoomed-in on levels 1-3 (Figure 53). Giving this insight into what most will perceive to be a
“black-box” is expected to foster adoption in practice. The operational prioritization tool
consists of 400 trees similar to the one shown in Figure 52, from which the majority vote
determines the prediction outcome.

67

Figure 52: Single tree from Random Forest.

Figure 53: Single (random) tree from Random Forest, restricted max_depth =2.

68

5.2 Performance
In this section the performance of the operational prioritization tool has been evaluated,
resulting from application of the B2B sales potential prediction methodology (Bohanec, et al.,
2015) to the prototype prioritization tool. From this followed that the operational
prioritization tool is a Random Forest model with hyper-parameter configuration
{'n_estimators': 400, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 13,
'max_depth': None, 'criterion': 'gini', 'bootstrap': False} and optimal classification threshold
0.62.

The performance of was evaluated using 5-fold stratified cross validation with (machine
learning) data from the period 2012-01-01 to 2019-01-01, where 80%/20% was allocated for
training- and evaluation respectively. The operational prioritization tool machine learning
data set consists of features; hit rate account, frequency account, main supplier list price,
frequency part, account, customer type, stock, part, default supplier, part manufacturer,
rotable part, sales manager and supplier type. From this follows that the performance of the
prototype prioritization tool is 56.24% for the F1 score, 83% for the AUC and, following from
the confusion matrix, a total misclassification rate of 19.77%.

Figure 54: Confusion matrix and ROC curve operational prioritization tool*.

 Accuracy Precision Recall F1-score
Fold 1 0.802 0.487 0.672 0.565
Fold 2 0.802 0.486 0.670 0.563
Fold 3 0.801 0.485 0.670 0.563
Fold 4 0.801 0.484 0.670 0.562
Fold 5 0.800 0.483 0.665 0.559

Average 0.801 0.485 0.669 0.562
Max D fold 0.002 0.004 0.007 0.006

Table 20: 5-fold cross validation operational prioritization tool.

*It might strike that the numbers in the confusion matrices of the prototype- and operational
prioritization tool do not amount to the same. This is because, as part of data preparation,
quotes containing missing values (MAR/MCAR) are excluded (Section 4.1.2.4). The prototype
prioritization tool did not include feature delivery window width (Section 4.2) which had 3.5%
missing values (Table 11) whereas feature stock, a meta feature based on delivery window
width (which therefore also has 3.5% missing values), is included in the operational
prioritization tool.

69

5.3 Conclusion
In this chapter research sub-questions 4.1 to 4.4 were answered. RQ 4.1 “What historical sales
data is available?” was answered in Section 5.1.1. There, additional (meta) features were
shown in Table 15 that have been added to the machine learning data set in consultation with
the product management department, whom are considered to be experts on the RFQ
process and quote data itself.

RQ 4.2 “What data- and algorithm combination yields the best prediction performance?” was
addressed in Section 5.1.3 Here, feature selection, hyper-parameter tuning and classification
threshold optimization were carried out. Feature selection was carried out according to the
sub-methodology by Bohanec et al. (2015). First, features were ranked according to multiple
filter methods (and classifiers) using Orange datamining suite. Next, for classifiers Random
Forest, Gradient Boosting Classifier and Logistic Regression, top ranked features were added
one-by-one and F1 score performance on the test set was monitored. This, to detect the
optimal cut-off point, being the combination of classifier and number of top ranked features
that yields the highest overall F1 score performance. Next, for these three classifiers and their
corresponding optimal cut-off points, features were excluded one-by-one from highest to
lowest ranked. When exclusion increased performance, the concerned feature was
permanently excluded, resulting in a minimum list of features. Executing the feature selection
methodology resulted in an optimal model for each classifier. After feature selection, a
performance comparison of the optimal models was carried out using a k-fold cross validation
approach, from which followed that the 13-feature Random Forest model performed best.

Next, hyper-parameter tuning was carried out for the 13-feature Random Forest model.
Validation curves per hyper-parameter were plotted, showing promising areas per hyper-
parameter, yet not accounting for sequential effects. Therefore, an initial random search 3-
fold of 250 configurations was executed. Using these results, a targeted grid was identified
and further explored with an additional random search 3-fold of 500 configurations. From this
additional search followed that configuration {'n_estimators': 400, 'min_samples_split': 2,
'min_samples_leaf': 1, 'max_features': 13, 'max_depth': None, 'criterion': 'gini', 'bootstrap':
False} yields the highest generalizable F1 score performance improvement.

Last, classification threshold optimization was carried out for the 13-feature Random Forest
model with the best hyper-parameter configuration. The classification threshold can be seen
as a hyper-parameter and should be treated accordingly, although it cannot be set within the
classifier and rather has to be coded manually. From Figure 47 and Figure 48 followed that
classification threshold that yields the best F1 score on the validation set (3-fold CV) is 0.62.

RQ 4.3 “What data insights can be used for organizational learning?” was answered in Section
5.1.4 where feature distributions, association rules and a classification tree visualization were
shown.

70

RQ 4.4 “How is the performance of the operational prioritization tool?” was answered in
Section 5.2. From this followed that the performance of the operational prioritization tool is
56.24% for the F1 score, 83% for the AUC and, following from the confusion matrix, a total
misclassification rate of 19.77%.

Comparing the operational prioritization tool (Figure 54) to the prototype prioritization tool
(Figure 32), it might strike that the number of quote lines correctly predicted to result in a
sale decreased after improvement. The reason for this is that in improving the prototype
prioritization tool, focus was on metric F1 score, which represents the trade-off between
recall, the percentage of actual sales correctly predicted to be a sale, and precision, the
percentage of predicted sales that is an actual sale, both weighted equally. The improvement
of the operational- over the prototype prioritization tool is made by sacrificing little recall for
a significant increase in precision. This means, that the operational prioritization tool now
predicts approximately 50/50 correctly to be a sale, compared to the historical 17% quote-to-
sales order conversion rate resulting from the mental decision models of the Customer
Support Department (increase of !.#$%&!.'(

!.'(
∗ 100% = 185.29%). The need for the operational

prioritization tool sprung, amongst other things, from the fact that the Customer Support
Department receives more RFQs than they can process (Figure 1). Using the operational
prioritization tool in the future will allow the Customer Support Department to respond to
more RFQs and, assuming the same distribution of “Sales”/“No sales” amongst the RFQs that
previously could not be processed, generate more sales.

Besides a clear practical contribution, the research carried out in this thesis also contributes
to theory. This by giving an indication of the improvement that can be gained through
incorporation of machine learning over manual handling in B2B sales forecasting.

71

6. Creation of the Information Extraction module
The operational prioritization tool has proven to more accurately- and efficiently predict
which RFQs have the potential to convert into a sale. Yet, the RFQs still have to be manually
described in terms of the features used by the operational prioritization tool to predict sales
potential (Table 26). In this chapter an attempt is made to automate this process through the
creation of the Information Extraction module, which theoretically, in combination with the
RFQ inbox and operational prioritization tool allows RFQs to be prioritized on sales potential
without the need of human input. In Section 6.1 a discrepancy between RFQ data and the
customer data source is described due to which prioritization currently cannot happen
automatically and autonomously. Next, Section 6.2 contains a description of the Information
Extraction module, whose code with “translation” can be seen in Appendix F. Finally, in
Section 6.3 the performance of the Information Extraction module is evaluated.

6.1 Discrepancy between RFQ and -Master Customer data
The operational prioritization tool takes input features shown in Table 26 which can all be
gathered if features account- and part number are known. Each RFQ contains, amongst other
things, the requested part number(s), the name of the requesting company and the customer
email address of which the latter two both theoretically can be linked to feature account
number.

However, in reality there appears to be a significant discrepancy between customer names as
they occur in the master customer schema and as they occur in the RFQs consisting of
different wording rather than punctuation, capital letters, etc. Moreover, customer email
address data is currently not available. Consequently, both customer company name and
customer email address cannot be used to retrieve the feature account number and
corresponding (customer) features due to which the operational prioritization tool cannot
automatically and autonomously be applied to RFQs.

After consulting with Company X on this limitation, which is due to unavailability/non-
existence of the required data, it was decided to still create the information extraction
module but hold-off implementation of the flow depicted in Figure 2 until Company X in the
future resolves the discrepancy. Further, Company X expressed preference for use of partial
customer email address, from “@” until the end of the email address which (usually) contains
the company name, to retrieve customer account number and corresponding features. Here,
the argument is that customers may spell their company name differently in RFQs whereas
their partial email address will always remain the exact same.

6.2 Information extraction module
The Company X RFQ inbox (Exchange outlook) can be accessed in python using the package
ExchangeLib (Medium, 2019). Once connection has been established the X most recent emails
are retrieved for which a data frame is created containing their corresponding text bodies,
sender email addresses and conversation ids.

Next, the part number(s) and partial customer email address are extracted from RFQ text
bodies. First, part numbers are extracted using an Entity Ruler, which is a matcher based on a
dictionary of patterns and corresponding (entity) labels. The Entity Ruler identifies entities in

72

texts which can be called upon per label. In the case of Company X, the Entity Ruler is given a
dictionary of all part numbers (approximately 1 million) as seen in the Master Part schema
with label “PART”. Now, when the Entity Ruler is applied to historical and/or future RFQs, it
will find any part number in the RFQ that also occurs in the Master Part schema. Note that a
custom tokenizer had to be defined to extract part numbers as the (spacy) default tokenizer
interprets “-“ to be an infix and as a consequence splits part numbers, which often contain
multiple ‘-‘ symbols, into multiple tokens allowing the entity ruler to falsely identify part
numbers within the requested part number(s) (Longest, 2018).

Second, partial customer email addresses are recognized at the moment using a function but
can, once Company X creates customer email address data, be recognized similarly to part
number(s) by applying this function to the customer email address data and feeding the
resulting partial customer email addresses into the Entity Ruler with label
“CUSTOMER_EMAIL”. In addition, in extraction of partial customer email addresses a
distinction is made between direct- and indirect customer RFQs, the latter entailing (online)
spare part marketplaces. For the direct RFQs the partial customer email address is extracted
from the sender email address and for the indirect RFQs the partial customer email address
is extracted from the RFQ text body.

6.3 Performance
Performance of the information extraction module has been manually evaluated on 100
random historical RFQs (due to time constraints), from which followed:

• For 100/100 RFQs the correct part number(s) are recognized.
• For 99/100 RFQs a single correct partial customer email address has been recognized.

For 1/100 RFQs two partial customer email addresses have been recognized, the
reason being that the customer stated two different email addresses, yet still
correctly.

However, besides identifying the correct part number(s), the entity ruler also falsely identifies
other numbers occurring in the RFQs to be part numbers. These wrongly identified part
numbers are in fact existing part numbers but not in the context of the RFQ, e.g. street
number, tracking number, quantity required, etc. This behavior is expected for the Entity
Ruler as it doesn’t account for context. Still, the Entity Ruler remains the best choice for the
task at hand due to its high accuracy performance. This is desired because the extracted part
number(s) and partial customer email address will serve as input for the operational
prioritization tool in a fully autonomous/automated flow, meaning that any unrecognized
part number by definition will never become a sale.

To diminish the issue of falsely identified part numbers, an array has been created in which
such frequently wrongly identified (part) numbers can be specified. The elements of this array
will not be given to the Entity Ruler and will therefore no longer be (falsely) recognized. It
should be noted that this is a trade-off between falsely identified (part) numbers and not
recognizing a requested (part) number, into which further research is recommended.

73

6.4 Conclusion
In this chapter the information extraction module has been addressed, which has the
objective of extracting part number(s) and partial customer email address from RFQs. Then,
using the extracted information, features from the machine learning data set can be gathered
after which the operational prioritization tool can be applied to predict the sales potential of
the concerned RFQs (illustrated in Figure 55). In this chapter research sub-questions 5.1 and
5.2 have been answered.

Figure 55:Illustration theoretical flow Information Extraction module combined with the operational prioritization tool.

RQ 5.1 “How is the information extraction module build?” has been answered in Section 6.2.
The Company X RFQ inbox (Exchange Outlook) is accessed using package ExchangeLib. After,
a data frame is created in which the text bodies, sender email addresses and conversation ids
of the X most recent emails are stored. Next, part number(s) and partial customer email
address are extracted from RFQ text bodies using an Entity Ruler combined with custom
tokenizer and function respectively. Currently, due to a discrepancy between RFQ data and
master customer data and/or non-existence of data, prioritization of RFQs on sales potential
cannot happen automatically and autonomously.

RQ 5.2 “How is the performance of the information extraction module?” was answered in
Section 6.3. There, performance was manually evaluated on 100 historical RFQs from which
followed that all requested part numbers- and the correct partial customer email address
were extracted. It was also revealed that Entity Ruler, besides recognizing the requested
(correct) part numbers, falsely identifies numbers occurring in the RFQs to be part numbers.
The reason for this is that these falsely identified (part) numbers are in fact existing part
numbers but not in the context of the RFQ, for which the Entity Ruler cannot account. To
diminish this issue, an array has been created in which frequently wrongly identified (part)
numbers can be specified which will no longer (falsely) be recognized.

74

7. Conclusion, limitations and recommendations

7.1 Conclusion
In this section focus is on answering the main research question “How can Company X be
enabled to have their incoming RFQs automatically, autonomously and (more) accurately
prioritized on their sales potential?”. From the research carried out in this thesis followed that
the answer to the main research question is sequential application of the information
extraction module and operational prioritization tool, as illustrated in Figure 2. Yet,
prioritization cannot happen automatically and autonomously until Company X creates
(partial) customer email address data (Section 6.1).

7.1.1 Information extraction module
The Company X RFQ inbox (Exchange Outlook) is accessed by the information extraction
module. After this, a data frame is created in which text bodies, sender email addresses and
conversation ids of the X most recent emails are stored.

Next, part number(s) and partial customer email address are extracted from RFQ text bodies
using an Entity Ruler combined with custom tokenizer and function respectively. This
extracted information can then theoretically be linked to master part- and master customer
data and therefore used to create the machine learning data set required as input for the
operational prioritization tool. However, in practice partial customer email address cannot be
linked to master customer data due to non-existence of (partial) customer email address data.
Consequently, until Company X creates this data, prioritization of RFQs on sales potential
cannot happen automatically and autonomously.

Performance evaluation (manually) of the information extraction module on 100 historical
RFQs proved that all requested part numbers and correct partial customer email addresses
were recognized. However, in addition, “other” numbers occurring in the RFQs were falsely
recognized as part numbers. These numbers are in fact existing part numbers but not in the
context of the RFQ. This issue is addressed via an array in which frequently falsely identified
(part) numbers can be stated which will then not be given to the Entity Ruler and therefore
no longer (falsely) recognized.

7.1.2 Operational prioritization tool
At the start of this research Company X had already created a tool in Python which supposedly
would (binary) prioritize RFQs on sales potential. Yet, this tool, to which is referred as the
concept prioritization tool, had not been implemented in day-to-day operations, nor had its
performance been determined and more importantly, Company X had expressed to seriously
question its validity. The latter justly so, as analysis of the code behind the concept
prioritization tool revealed many defects to be present, amongst which data leakage caused
by features revenue and condition. All quotes with missing values for both features revenue
and condition would not convert into a sale, causing the model to “predict” solely on the
presence of these features rather than the intrinsic information of the data, resulting in an
(unjust) near perfect performance. After fixing this data leak, the concept prioritization tool
performance significantly dropped from previously assumed 98.87% F1-score and 100% AUC
to merely 6.8% F1-score and 52% AUC (Figure 24).

75

Afterwards, validation/verification changes were implemented addressing the identified
defects in the concept prioritization tool, resulting in the prototype prioritization tool. This
part of the research consisted in essence of re-designing and re-building the concept
prioritization tool from scratch, addressing e.g. missing functions, unrepresentative data,
unrepresentative linking of quotes to sales orders, double weighting of features, inability to
handle features with a large number of categorial values, faulty data splitting method, etc.
Performance evaluation of the prototype prioritization tool revealed an F1-score of 45.5%
and AUC of 77% (Figure 32).

Finally, an attempt was made to improve prediction performance of the prototype
prioritization tool through through application of a B2B sales potential prediction
methodology (Bohanec, et al., 2015), resulting in the operational prioritization tool. From this
followed that the operational prioritization tool is a 13-feature Random Forest model (Table
26) with hyper parameter configuration shown in Section 5.1.3.3 and (optimal) classification
threshold 0.62. Performance evaluation of the operational prioritization tool revealed an F1-
score of 56.24% and AUC of 83% (Figure 54).

Compared to the historical 17% quote-to-sales order conversion rate of Company X, resulting
from the mental decision models of the Customer Support Department, the operational
prioritization tool predicts 48.5% correctly to be a sale, which is an increase of !.#$%&!.'(!

!.'(!
∗

100% = 185.3%. The need for the operational prioritization tool sprung, amongst other
things, from the fact that the Customer Support Department receives more RFQs than they
can process. Therefore, use of the operational prioritization tool in the future will allow the
Customer Support Department to respond to more RFQs and, under assumption of the same
distribution of “No sale”/“Sale” amongst the RFQs that previously could not be processed,
generate more sales. In addition, the research carried out in this thesis also contributed to
theory. This by giving an indication of the improvement that can be gained through
incorporation of machine learning over manual handling in B2B sales forecasting.

7.2 Limitations
In this section the research limitations, in (chronological) order of occurrence, are discussed.

Data bias
The first limitation of the research described in this thesis is (historical) data bias. The data
used for training- and evaluating the prioritization tool is that of quotes while the desired
application is RFQs. Figure 20 shows that a quote is the response of Company X to an RFQ,
containing price, lead-time, documentation, etc. and is thus one step ahead in the process.
The RFQs prior to the quotes, whose data is used to train- and evaluate the prioritization tool,
were thus deemed to have sales potential by the Customer Support Department. Therefore,
the inferences which the prioritization tool picks up from the training data and uses to make
predictions thus also contain this bias.

Data quality issues
The second limitation of this research regards data quality issues, of which the following
forms occurred:

76

• Data dispersion. Quotes and corresponding sales orders are created separately,
although best practice would be to create a sales order from the prior quote, due to
which their linkage is now approximated.

• Data categorization is not standardized. Different employees categorize observations
differently (subjectively), causing affected features to be “contaminated”. As a
consequence, the potential predictive power of these contaminated features is
diminished.

Existing customers/parts only
The third limitation is that the prioritization tool can only be applied to existing customers
and parts. The reason for this is that the prioritization tool predicts using features that are
linked to the customer account- and part number. As a result, when either the customer
account- and/or part number is missing, all corresponding features are missing as well.
Consequently, the operational prioritization tool cannot be applied to new customers which
therefore have to be handled manually instead. If not, no sales would be made anymore
outside the current customer base. Regarding parts this limitation is not an issue since
Company X only sells parts occurring in the master part number schema.

Direct sales and exchanges only
The fourth limitation is that the prioritization tool should only be used to predict sales
potential of RFQs regarding a direct sale or exchange. The reason for this is that the
prioritization tool has been trained solely on historical quote data regarding direct
sales/exchanges because these follow the same process (Figure 20). Therefore, the inferences
picked up by the prioritization tool from the training data apply to direct sales/exchanges but
may not be generalizable to other sales types.

Interaction effects
The fifth limitation is the failure to account for potential interaction effects of feature
selection, hyper-parameter tuning and classification threshold optimization, which are
executed sequentially (in that order), each taking input from its predecessor. A logical
“solution” would seem to be an additional iteration of the concerned sequential steps, yet
this is not possible in practice due to hyper-parameter restrictions. Hyper parameter
max_features does not allow the feature selection methodology to be executed for the best
configuration resulting from hyper-parameter tuning. Specifically, adding top ranked features
one-by-one and monitoring performance cannot be carried out when the number of features
in the machine learning data set is below max_features, thus making it impossible to measure
the true potential interaction effects.

Information extraction module recognizes without context
The final limitation is that the information extraction module, besides recognizing the correct
part number(s), also falsely identifies other numbers occurring in the RFQs to be part
numbers. These wrongly identified part numbers are in fact existing part numbers but not in
the context of the RFQ, e.g. street number, tracking number, quantity required, etc. This
behavior is expected for the Entity Ruler as it doesn’t account for context. Yet, the Entity Ruler
remains the best choice for the task at hand due to its high accuracy performance, which is
desired as the extracted part number(s) and partial customer email address serve as input for

77

the operational prioritization tool in a fully autonomous/automated flow, meaning that any
unrecognized part number by definition will never become a sale.

Moreover, training a NER model (Section 2.3.4), which does account for context, was also
attempted but has shown high losses during training indicating, and following from
performance, that the NER model was unable to learn properly and thus unsuitable for the
task at hand.

7.3 Practical recommendations

Improve data handling/storage
As mentioned in the limitations, current practice involves data dispersion and subjective data
categorization. Consequently, data products, such as the operational prioritization tool, suffer
as the quality of output information cannot be better than the input information (“Garbage
in, garbage out”).

To improve data handling and -storage I would suggest standardizing data logging processes:

• Enforce sales orders to-be created from its preceding quote, tackling data dispersion.
• Standardize data categorization via e.g. categorization rules, tackling subjective data

categorization and consequently “contamination” of features.

Re-train the prioritization tool regularly
Features account, part, part manufacturer and default supplier from the operational
prioritization tool machine learning data set are all encoded using ABC classification (Section
4.1.5). This means, that the categories within these features that contribute the most to the
total sales order revenue are not encoded and others are assigned a bin according to their
contribution. Thus, if over time a shift would occur in the top contributing categories, the
prioritization tool would not be able to recognize the category (as it has not seen it during
training) and raise an error. To prevent this, the model should be re-trained regularly using
the most recent available data (when re-training the prioritization tool set input parameter
end_date = dt.datetime.today())

7.4 Further research recommendations

Investigate different recall-precision trade-offs
In this thesis the focus was on improving the F1 score metric of the prioritization tool. The F1
score metric represents the trade-off between recall, the percentage of actual sales correctly
predicted to be a sale, and precision, the percentage of predicted sales that is an actual sale,
both weighted equally (Section 2.2.3.2). This because both wrongly predicted sales
(concerning precision), which waste time, and wrongly predicted non-sales (concerning
recall), which cause sales to be missed, ought to be minimized. Within this trade-off equal
weight was chosen, as “optimal” weights are merely subjective. I would recommend
Company X to repeat the research in this thesis for different trade-off weightings, so that the
effect of different trade-off weightings on the confusion matrix distribution can be
understood and an (subjective) optimal trade-off weighting can be found.

78

Prioritization on sales potential and -value
Currently, the operational prioritization tool solely predicts sales potential and disregards the
value corresponding to a sale. In practice this means that, for example, a bolt (low-value) with
a predicted sales probability of 0.95 would be prioritized over an engine (high-value) with
predicted sales probability of 0.94, which is not desired as the engine obviously would make
significantly more profit for a neglectable difference in sales potential. Therefore, I would
recommend Company X to establish a feature which represents a desired the trade-off
between sales potential and -value and repeat the research from this thesis on this feature.

Investigate trade-off false positive and false negative
The information extraction tool, besides recognizing the correct part number(s), also falsely
recognizes numbers occurring in the RFQs to be part numbers. The reason being that an Entity
Ruler was used, which doesn’t account for context, and that these numbers are in fact existing
part numbers. Still, the Entity Ruler remains the best choice for the task at hand due to its
high accuracy performance. This is desired because the extracted part number(s) and partial
customer email address will serve as input for the operational prioritization tool in a fully
autonomous/automated flow, meaning that any unrecognized part number by definition will
never become a sale.

To diminish the extend of this issue an array has been created in which frequently falsely
identified (part) numbers can be specified, which will then not be fed to the Entity Ruler and
therefore no longer (falsely) recognized. However, this is a trade-off between false positives
(falsely recognized (part) numbers) and false negatives (part numbers in the array will no
longer be recognized).

79

8. References

Yse, D. L., 2019. Your Guide to Natural Language Processing (NLP). [Online]
Available at: https://towardsdatascience.com/your-guide-to-natural-language-processing-
nlp-48ea2511f6e1
[Accessed 20 08 2019].
Bohanec, M., Borštnar, M. K. & Robnik - Šikonja, M., 2015. Integration of machine learning
insights into organizational learning: a case of B2B sales forecasting. Bled, s.n.
Rouse, M., 2018. Association rules (in data mining). [Online]
Available at: https://searchbusinessanalytics.techtarget.com/definition/association-rules-in-
data-mining
[Accessed 23 08 2019].
Clark University, n.d. Classification Tree Analysis. [Online]
Available at: https://clarklabs.org/classification-tree-analysis/
[Accessed 23 08 2019].
Bohanec, M., Borštnar, M. K. & Robnik-Šikonja, M., 2015. Feature subset selection for b2b
sales forecasting. Bled, The 13th International Symposium on Operations Research.
Mortensen, S. et al., 2019. Predicting and Defining B2B Sales Success with Machine Learning.
Charlottesville, IEEE.
Analytics University , 2017. Feature Selection in Machine learning| Variable selection|
Dimension Reduction. [Online]
Available at: https://www.youtube.com/watch?v=TsqTuwTKFSs
[Accessed 28 08 2019].
Udemy, 2019. NLP - Natural Language Processing with Python. [Online]
Available at: https://www.udemy.com/nlp-natural-language-processing-with-python/
[Accessed 6 09 2019].
Techopedia, n.d. Named-Entity Recognition (NER). [Online]
Available at: https://www.techopedia.com/definition/13825/named-entity-recognition-ner
[Accessed 10 9 2019].
Heerkens, H. & Van Winden, A., 2012. De probleemidentificatie. In: Geen probleem.
Nieuwegein: Van Winden Communicatie, pp. 44-55.
Expert System, n.d. What is Machine Learning? A definition. [Online]
Available at: https://www.expertsystem.com/machine-learning-definition/
[Accessed 13 9 2019].
MIT, 2016. Lecture 11: Introduction to Machine Learning. [Online]
Available at: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-
0002-introduction-to-computational-thinking-and-data-science-fall-2016/lecture-
videos/lecture-11-introduction-to-machine-learning/
[Accessed 13 9 2019].
Elite Data Science, n.d. 5 Heroic Python NLP Libraries. [Online]
Available at: https://elitedatascience.com/python-nlp-libraries
[Accessed 16 09 2019].
sunscrapers, 2018. 6 best Python Natural Language Processing (NLP) libraries. [Online]
Available at: https://sunscrapers.com/blog/6-best-python-natural-language-processing-nlp-
libraries/
[Accessed 16 09 2019].

80

nltk.org, n.d. Natural Language Toolkit. [Online]
Available at: http://www.nltk.org
[Accessed 16 09 2019].
TextBlob, n.d. TextBlob: Simplified Text Processing. [Online]
Available at: https://textblob.readthedocs.io/en/dev/
[Accessed 16 09 2019].
pypi.org, 2019. gensim 3.8.0. [Online]
Available at: https://pypi.org/project/gensim/
[Accessed 16 09 2019].
spaCy, n.d. spaCy 101: Everything you need to know. [Online]
Available at: https://spacy.io/usage/spacy-101
[Accessed 16 09 2019].
Stack Abuse, 2019. Python for NLP: Tokenization, Stemming, and Lemmatization with SpaCy
Library. [Online]
Available at: https://stackabuse.com/python-for-nlp-tokenization-stemming-and-
lemmatization-with-spacy-library/
[Accessed 16 09 2019].
spaCy, n.d. Detailed speed comparison. [Online]
Available at: https://spacy.io/usage/facts-figures
[Accessed 16 09 2019].
MIT, 2016. Lecture 13: Classification. [Online]
Available at: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-
0002-introduction-to-computational-thinking-and-data-science-fall-2016/lecture-slides-and-
files/MIT6_0002F16_lec13.pdf
[Accessed 17 09 2019].
MIT, 2016. Lecture 12: Clustering. [Online]
Available at: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-
0002-introduction-to-computational-thinking-and-data-science-fall-2016/lecture-slides-and-
files/MIT6_0002F16_lec12.pdf
[Accessed 17 09 2019].
Kaggle, 2018. K-Means Clustering vs. Logistic Regression. [Online]
Available at: https://www.kaggle.com/minc33/k-means-clustering-vs-logistic-regression
[Accessed 18 09 2019].
Li, A. Y. & Elliot, N., 2019. Natural language processing to identify ureteric stones inradiology
reports. Journal of Medical Imaging and Radiation Oncology, Volume 63, p. 307–310.
Rouse, M., 2019. Big data. [Online]
Available at: https://searchdatamanagement.techtarget.com/definition/big-data
[Accessed 18 09 2019].
i-scoop, n.d. Unstructured data: turning data into actionable intelligence. [Online]
Available at: https://www.i-scoop.eu/big-data-action-value-context/unstructured-
data/#Unstructured_data_the_untapped_majority_of_data_which_grows_faster_than_any
_other_type_of_data
[Accessed 18 09 2019].
Rouse, M., 2018. Unstructured data. [Online]
Available at: https://searchbusinessanalytics.techtarget.com/definition/unstructured-data
[Accessed 18 09 2019].

81

Python, n.d. What is Python? Executive Summary. [Online]
Available at: https://www.python.org/doc/essays/blurb/
[Accessed 19 09 2019].
Wu, J., 2019. Python vs. R — Choosing the Best Programming Language for Data Science.
[Online]
Available at: https://towardsdatascience.com/python-vs-r-choosing-the-best-programming-
languages-for-data-science-b1327f01f6bf
[Accessed 19 09 2019].
Medium, 2018. Python vs R for Data Science: And the winner is... [Online]
Available at: https://medium.com/@data_driven/python-vs-r-for-data-science-and-the-
winner-is-3ebb1a968197
[Accessed 19 09 2019].
Ven, R., 2018. Python vs. R: Which Should You Choose For Your Next ML Project?. [Online]
Available at: https://dzone.com/articles/python-or-r-which-should-you-choose-for-your-
next
[Accessed 19 09 2019].
Medium, 2017. Random Forest Simple Explanation. [Online]
Available at: https://medium.com/@williamkoehrsen/random-forest-simple-explanation-
377895a60d2d
[Accessed 21 09 2019].
StatisticsSolutions, n.d. What is Logistic Regression?. [Online]
Available at: https://www.statisticssolutions.com/what-is-logistic-regression/
[Accessed 21 09 2019].
Orange, 2015. Rank. [Online]
Available at: https://docs.biolab.si//3/visual-programming/widgets/data/rank.html
[Accessed 22 09 2019].
Kaushik, S., 2016. Introduction to Feature Selection methods with an example (or how to select
the right variables?). [Online]
Available at: https://www.analyticsvidhya.com/blog/2016/12/introduction-to-feature-
selection-methods-with-an-example-or-how-to-select-the-right-variables/
[Accessed 22 09 2019].
Aggarwal, C. C., 2014. Data Classification: Algorithms and Applications. New York, USA: CRC
Press.
García, S., Luengo, J. & Herrera, F., 2015. Data Preprocessing in Data Mining. s.l.:Springer.
Medium, 2018. Label Encoder vs. One Hot Encoder in Machine Learning. [Online]
Available at: https://medium.com/@contactsunny/label-encoder-vs-one-hot-encoder-in-
machine-learning-3fc273365621
[Accessed 21 10 2019].
Medium, 2019. 5 Ways to Detect Outliers/Anomalies That Every Data Scientist Should Know.
[Online]
Available at: https://towardsdatascience.com/5-ways-to-detect-outliers-that-every-data-
scientist-should-know-python-code-70a54335a623
[Accessed 21 10 2019].
Medium, 2019. Dealing with Missing Data. [Online]
Available at: https://medium.com/@danberdov/dealing-with-missing-data-8b71cd819501
[Accessed 21 10 2019].

82

Rouse, M., 2017. statistical noise. [Online]
Available at: https://whatis.techtarget.com/definition/statistical-noise
[Accessed 21 10 2019].
Medium, 2019. Isolation Forest Step by Step. [Online]
Available at: https://medium.com/@hyunsukim_9320/isolation-forest-step-by-step-
341b82923168
[Accessed 21 10 2019].
Batuwita, R. & Palade, V., 2010. Efficient resampling methods for training support vector
machines with imbalanced datasets. Barcelona, IEEE.
Kuhn, M. & Johnson, K., 2019. Feature Engineering and Selection: A Practical Approach for
Predictive Models. 1 ed. s.l.:CRC press.
Medium, 2018. Why Data Normalization is necessary for Machine Learning models. [Online]
Available at: https://medium.com/@urvashilluniya/why-data-normalization-is-necessary-
for-machine-learning-models-681b65a05029
[Accessed 11 11 2019].
Datarobot, n.d. What is a Feature Variable in Machine Learning?. [Online]
Available at: https://www.datarobot.com/wiki/feature/
[Accessed 11 11 2019].
Rouse, M., 2018. information extraction (IE). [Online]
Available at: https://whatis.techtarget.com/definition/information-extraction-IE
[Accessed 11 11 2019].
Medium, 2018. Dealing with Noisy Data in Data Science. [Online]
Available at: https://medium.com/analytics-vidhya/dealing-with-noisy-data-in-data-science-
e177a4e32621
[Accessed 5 12 2019].
Medium, 2018. Categorical Outliers Don’t Exist. [Online]
Available at: https://medium.com/owl-analytics/categorical-outliers-dont-exist-
8f4e82070cb2
[Accessed 7 12 2019].
Imbalanced-Learn, n.d. Under-sampling. [Online]
Available at: https://imbalanced-learn.readthedocs.io/en/stable/under_sampling.html
[Accessed 17 12 2019].
TowardsDataScience, 2018. Using Under-Sampling Techniques for Extremely Imbalanced
Data. [Online]
Available at: https://towardsdatascience.com/sampling-techniques-for-extremely-
imbalanced-data-part-i-under-sampling-a8dbc3d8d6d8
[Accessed 17 12 2019].
Medium, 2018. Why Data Normalization is necessary for Machine Learning models. [Online]
Available at: https://medium.com/@urvashilluniya/why-data-normalization-is-necessary-
for-machine-learning-models-681b65a05029
[Accessed 6 1 2020].
Tan, P.-N., Steinbach, M. & Kumar, V., 2006. Classification: Basic Concepts, Decision Trees,
and Model Evaluation. In: Introduction to Data Mining. s.l.:Pearson Addison-Wesley, pp. 25-
44.
TowardsDataScience, 2019. Hyperparameter Tuning. [Online]
Available at: https://towardsdatascience.com/hyperparameter-tuning-c5619e7e6624
[Accessed 15 1 2020].

83

Jordan, J., 2017. Hyperparameter tuning for machine learning models.. [Online]
Available at: https://www.jeremyjordan.me/hyperparameter-tuning/
[Accessed 15 1 2020].
TowardsDataScience, 2018. A Conceptual Explanation of Bayesian Hyperparameter
Optimization for Machine Learning. [Online]
Available at: https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-
based-hyperparameter-optimization-for-machine-learning-b8172278050f
[Accessed 15 1 2020].
Medium, 2018. Hyperparameter Tuning the Random Forest in Python. [Online]
Available at: https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-
in-python-using-scikit-learn-28d2aa77dd74
[Accessed 19 1 2020].
Bergstra, J. & Bengio, Y., 2012. Random Search for Hyper-Parameter Optimization. Journal of
Machine Learning Research , Volume 13, pp. 1-25.
TowardsDataScience, 2019. Optimizing Hyperparameters in Random Forest Classification.
[Online]
Available at: https://towardsdatascience.com/optimizing-hyperparameters-in-random-
forest-classification-ec7741f9d3f6
[Accessed 21 1 2020].
Heinze, G. & Dunkler, D., 2016. Five myths about variable selection. Transplant International,
30(1), pp. 1-6.
TowardsDataScience, 2018. Hyperparameter Tuning the Random Forest in Python. [Online]
Available at: https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-
in-python-using-scikit-learn-28d2aa77dd74
[Accessed 25 1 2020].
Medium, 2017. In Depth: Parameter tuning for Random Forest. [Online]
Available at: https://medium.com/all-things-ai/in-depth-parameter-tuning-for-random-
forest-d67bb7e920d
[Accessed 25 1 2020].
Longest, D., 2018. Adding Custom Tokenization Rules to spaCy. [Online]
Available at: http://www.longest.io/2018/01/27/spacy-custom-tokenization.html
[Accessed 31 1 2020].
Medium, 2019. You’ve Got Mail: Email analytics with Python and Exchange. [Online]
Available at: https://medium.com/thg-tech-blog/youve-got-mail-email-analytics-with-
python-and-exchange-7ae152443957
[Accessed 11 2 2020].

84

Appendix A – Feature overview

Description/explanation features

Column name Feature name Feature description
ACCT Account This feature represents ABC classified feature account number.
ACCTNO

Account number Internal account number that Company X creates for customers.

Customers can have multiple accounts corresponding to their
account number (e.g. when they are both supplier and customer)
which are distinguished via a sub-customer code (SUBC).

ACCOUNT_RATE Account rate All entries for this feature are “Unknown”.
ACCOUNT_TYPE Account type Company X may employ different prices (markups) for different

customers. This feature determines the price (markup) for a (new)
part for a customer. Note: for secondhand parts the part price is
equal to its day value and equal for all customers.

PN_PROGRAM Aircraft type Aircraft type to which a part belongs.
ATA2 Airplane layout Number corresponding to the area in an airplane layout where the

part belongs (e.g. 52 = doors).
Y_COL, target Class This feature entails a binary representation of the class, where

0=”No sale” and 1=“Sale”.
COMPANYNO Company number The regarding branch of Company X.
COND Condition Condition of the part.
COUNTRY Country The country in which the customer resides.
TERM_CODE Credit period Customer specific credit period; the number of days a customer is

allowed to wait before paying an invoice.
ALT3_CODE_C Customer type The customer company type, e.g. airline, defense, OEM, etc. Note:

different sales managers might categorize customers differently
as there are no categorization rules because of which the feature
might be distorted.

AUTO_VENDOR Default supplier Default (part) supplier account number.
AUTO_VENDOR_SUBC Default supplier

sub code
Default (part) supplier sub account number.

DLV+RNG Delivery window The delivery window in days (see Section 4.1.2.2).
RNG Delivery window

time unit
The delivery window time unit; hours, days, weeks, months or
years.

DLV Delivery window
width

The number of time units (days, weeks, etc.) allowed for delivery.

EXCH_CORE_RETURN Exchange return
period

Period (part specific) in which a broken part, in case of an
exchange, needs to be delivered at Company X (by default 15
days).

AUTO_PRICE_ENABLED Fixed vendor price Binary, whether the vendor part price is fixed.
FREQ_ACCT Frequency

account
Frequency count of an account number, and thus customer, in the
sales order data at the moment in time that the quote was issued.

FREQ_PN Frequency part Frequency count of a part number, and thus part, in the sales
order data at the moment in time that the quote was issued.

HIT_RATE_ACCT Hit rate account The percentage of the total quoted value for an account that
converted to a sale at the moment in time that the quote was
issued.

HIT_RATE_PN Hit rate part The percentage of the total quoted value for a part that converted
to a sale at the moment in time that the quote was issued.

MSLP_PRICE Main Supplier List
Price

Unnegotiated supplier part price which is visible to the entire
world. This feature is an indication of the purchase/sales price as
Company X can sometimes negotiate a better price.

SELL_TYPE Mark-up Type of part linked to mark-up structure.
ONCONDITION Obligatory safety

check
Binary, whether the manufacturer demands the part to be
subjected to a safety check after certain time/usage.

85

PN Part This feature represents ABC classified feature part number.
MFG Part manufacturer Part manufacturer account number.
MFG_SUBC Part manufacturer

sub code
Part manufacturer sub account number.

PARTNUMBER Part number The part number requested by the customer in the quote.
Generally, a part number represents a unique part although it is
possible for multiple parts to have the same part number which
are then distinguished via a sub part number code (SUBP).

PIECEPART_SUBASSY Piece part Binary whether a part belongs to another (larger) part.
QUOTE_DATE_COL,
ENTER_DATE

Quote date This feature represents the date and time at which the quote (line)
was issued.

CAPABILITY Repair capability The repair capability represents which party is able to perform a
repair.

ROTABLE Rotable part Binary feature representing whether the part is a rotable or not.
Rotable parts are parts that can be repaired (second-hand).

REGION Sales manager The regional sales manager.
DOC_DATE Sales order date This feature represents the date and time at which the sales order

was issued.
LINE_TYPE Sales type Type of sale (e.g. direct sale, repair, exchange, etc.).
STD_PART Standard part Binary feature representing whether the part is standardized.

Standardized parts are parts that are not system specific.
STOCK Stock Whether the requested part was on stock; approximated under

assumption that if a part was on stock, the quote feature
DLV+RNG would be ≤	7 days.

STK_TYPE Stock type Type of part; e.g. proprietary part, vendor part, standard part, etc.
SUBC Sub account

number
Used to distinguish between multiple accounts corresponding to
the same customer.

SUBP Sub part number Used to distinguish between multiple parts having the same part
number.

ALT3_CODE_V Supplier type The type of supplier.
TOTAL_REVENUE Total revenue The revenue corresponding to the quote.

Table 21: Feature description overview.

86

Appendix B – Concept prioritization tool

This Appendix is left out because of confidentiality reasons.

87

Appendix C – Technical description concept prioritization tool

This Appendix is left out because of confidentiality reasons.

88

Appendix D – Validation/verification concept prioritization tool.

This Appendix is left out because of confidentiality reasons.

89

Appendix E – Improving the prototype prioritization tool

E.1 Feature selection sub-methodology
The feature ranking results of the machine learning data set are shown below in Figure 56,
from which further investigation of the top 15 features for each filter method/classifier
followed.

Figure 56: Feature ranking using Orange datamining suite.

90

Next, Table 22-Table 24 show the F1 performance of different classifiers when top ranked
features, according to multiple (different) filter methods, are incrementally added.

Table 22: Monitoring performance (F1 score) when incrementally adding top ranked features according to different filter

methods for Gradient Boosting classifier.

Table 23: Monitoring performance (F1 score) when incrementally adding top ranked features according to different filter

methods for Random Forest classifier.

Features Inf Gain Gain ratio Log reg Chi-square Random Forest
28 48,89% 48,89% 48,89% 48,89% 48,89%

15 46,27% 46,56% 46,18% 46,87% 48,72%

14 46,27% 46,56% 43,96% 46,87% 48,75%

13 46,06% 46,05% 43,72% 46,39% 48,84%

12 45,96% 46,03% 43,98% 45,99% 48,57%

11 45,62% 45,97% 43,86% 46,20% 48,62%

10 45,70% 46,17% 44,15% 45,85% 48,63%

9 45,64% 46,00% 44,04% 46,07% 48,52%

8 45,79% 45,87% 43,74% 45,85% 48,09%

7 45,74% 45,48% 42,58% 45,84% 46,37%

6 45,29% 45,05% 42,58% 45,46% 46,31%

5 45,45% 45,20% 42,62% 45,53% 45,85%

4 45,03% 44,74% 41,95% 45,27% 45,21%

3 44,77% 44,74% 41,98% 44,88% 44,48%

2 43,60% 43,60% 35,85% 44,63% 44,48%

1 42,91% 42,91% 8,26% 38,77% 42,91%

Gradient boosting classifier F1

Features Inf Gain Gain ratio Log reg Chi-square Random Forest
28 54,14% 54,14% 54,14% 54,14% 54,14%

15 52,82% 52,78% 49,76% 53,31% 53,48%

14 52,64% 52,02% 47,80% 53,42% 53,82%

13 53,01% 52,46% 46,75% 52,55% 53,55%

12 52,53% 52,53% 46,39% 52,13% 52,60%

11 51,87% 53,01% 46,22% 52,75% 52,57%

10 51,96% 52,41% 46,03% 52,42% 52,51%

9 52,22% 52,44% 45,69% 51,73% 52,91%

8 52,03% 51,81% 44,67% 51,67% 52,64%

7 52,15% 50,63% 43,96% 51,42% 50,87%

6 51,67% 50,98% 43,96% 51,63% 49,44%

5 51,52% 50,38% 43,51% 51,60% 47,68%

4 51,61% 49,48% 42,33% 52,03% 48,38%

3 45,70% 49,43% 41,83% 46,41% 46,88%

2 43,66% 43,66% 35,60% 42,72% 46,11%

1 37,09% 37,09% 18,28% 39,34% 37,09%

Random Forest F1

91

Table 24: Monitoring performance (F1 score) when incrementally adding top ranked features according to different filter

methods for Logistic Regression classifier.

Finally, for the optimal cut-off point per classifier, features were excluded one-by-one from
highest to lowest ranked and permanently excluded when exclusion increased performance,
thereby eliminating redundancy/noise.

Table 25: Eliminating noise/redundancy by excluding features one-by-one from highest- to lowest rank for the optimal cut-

off point of Gradient Boosting classifier.

Features Inf Gain Gain ratio Log reg Chi-square Random Forest
28 46,80% 46,80% 46,80% 46,80% 46,80%

15 43,92% 44,32% 46,05% 44,15% 44,75%

14 43,84% 44,13% 43,98% 44,15% 44,77%

13 44,03% 44,06% 43,77% 43,05% 44,84%

12 43,49% 44,05% 44,43% 43,02% 44,84%

11 43,33% 44,08% 44,29% 43,19% 44,52%

10 43,33% 44,10% 44,18% 42,46% 44,32%

9 43,23% 43,15% 43,62% 42,37% 43,74%

8 43,44% 42,98% 43,26% 41,99% 43,74%

7 43,22% 40,71% 42,40% 42,60% 41,90%

6 43,22% 40,71% 42,40% 42,63% 41,40%

5 42,81% 39,55% 42,24% 42,35% 41,47%

4 42,08% 39,46% 41,55% 42,36% 40,82%

3 41,61% 39,40% 41,11% 41,28% 40,82%

2 38,93% 38,93% 33,29% 40,29% 40,03%

1 42,16% 42,16% 22,51% 39,32% 42,16%

Logistic regression F1

Feature Rank F1 score all features F1 score feature excluded Difference
HITRATE_ACCT 1 48,84% 47,61% -1,23%

FREQ_ACCT 2 48,84% 48,42% -0,42%

MSLP_PRICE 3 48,84% 48,06% -0,78%

HITRATE_PN 4 48,84% 48,74% -0,10%

FREQ_PN 5 48,84% 48,62% -0,22%

ACCT 6 48,84% 48,72% -0,12%

ALT3_CODE_C 7 48,84% 48,30% -0,54%

STOCK 8 48,84% 47,52% -1,32%

PN 9 48,84% 48,56% -0,28%

AUTO_VENDOR_ABC 10 48,84% 48,73% -0,11%

MFG_ABC 11 48,84% 48,66% -0,18%

ROTABLE 12 48,84% 48,82% -0,02%

REGION 13 48,84% 48,57% -0,27%

Gradient Boosting Classifier - Ranked by Random Forest

92

Table 26: Eliminating noise/redundancy by excluding features one-by-one from highest- to lowest rank for the optimal cut-

off point of Random Forest classifier.

Table 27: Eliminating noise/redundancy by excluding features one-by-one from highest- to lowest rank for the optimal cut-

off point of Logistic Regression classifier.

Feature Rank F1 score all features F1 score feature excluded Difference
HITRATE_ACCT 1 53,82% 51,37% -2,46%

FREQ_ACCT 2 53,82% 51,37% -2,45%

MSLP_PRICE 3 53,82% 53,00% -0,82%

HITRATE_PN 4 53,82% 54,26% 0,44%

FREQ_PN 5 54,26% 54,03% -0,23%

ACCT 6 54,26% 53,62% -0,64%

ALT3_CODE_C 7 54,26% 53,33% -0,93%

STOCK 8 54,26% 52,01% -2,25%

PN 9 54,26% 53,98% -0,28%

AUTO_VENDOR_ABC 10 54,26% 53,62% -0,64%

MFG_ABC 11 54,26% 54,07% -0,20%

ROTABLE 12 54,26% 53,85% -0,42%

REGION 13 54,26% 53,08% -1,18%
ALT3_CODE_V 14 54,26% 54,25% -0,01%

Random Forest Classifier - Ranked by Random Forest

Feature Rank F1 score all features F1 score feature excluded Difference
HITRATE_PN 1 46,05% 46,05% 0,00%

ACCOUNT_TYPE 2 46,05% 45,85% -0,20%

COUNTRY 3 46,05% 45,38% -0,67%

ACCT 4 46,05% 45,78% -0,27%

STK_TYPE 5 46,05% 46,04% -0,01%

PN_PROGRAM 6 46,05% 46,12% 0,07%

COMPANYNO 7 46,12% 46,11% -0,01%

ALT3_CODE_C 8 46,12% 45,52% -0,60%

ATA2 9 46,12% 45,63% -0,50%

PN 10 46,12% 45,70% -0,43%

REGION 11 46,12% 46,14% 0,01%

TERM_CODE 12 46,14% 46,05% -0,09%

SELL_TYPE 13 46,14% 46,69% 0,55%
AUTO_VENDOR_ABC 14 46,69% 46,31% -0,38%
STOCK 15 46,69% 44,34% -2,35%

Logistic Regression Classifier - Ranked by Logistic Regression

93

E.2 Hyper-parameter tuning

Table 28: Top 20 configurations resulting from exploratory random search cross validation (k=3) of 250 iterations.

Table 29: Top 20 configurations resulting from targeted random search cross validation (k=3) of 500 iterations.

param_n_estimators param_min_samples_split param_min_samples_leaf param_max_features param_max_depth param_criterion param_bootstrap rank_test_score
300 5 1 11 gini FALSE 1
300 5 1 10 entropy FALSE 2
400 5 1 8 50 entropy FALSE 3
150 2 1 12 40 gini TRUE 4
500 2 1 9 entropy TRUE 5
700 2 1 4 entropy TRUE 6
100 2 1 4 50 gini TRUE 7
75 10 1 12 40 entropy FALSE 8
600 10 1 12 40 gini FALSE 9
400 10 1 11 40 entropy FALSE 10
150 2 1 11 30 gini TRUE 11
200 5 1 7 50 entropy TRUE 12
100 10 1 4 50 entropy FALSE 13
400 10 1 2 entropy FALSE 14
75 15 1 12 50 gini FALSE 15
75 15 1 11 50 entropy FALSE 16
400 2 2 12 50 gini FALSE 17
500 20 1 13 entropy FALSE 18
150 5 1 1 40 gini FALSE 19
600 10 1 8 40 gini TRUE 20

param_n_estimators param_min_samples_split param_min_samples_leaf param_max_features param_max_depth param_criterion param_bootstrap rank_test_score
400 2 1 13 gini FALSE 1
150 2 1 13 50 gini FALSE 2
300 2 1 13 entropy FALSE 3
75 2 1 13 entropy FALSE 4
150 2 1 13 40 gini FALSE 5
100 2 1 12 40 gini FALSE 6
400 2 1 13 entropy FALSE 7
200 2 1 13 entropy FALSE 8
300 2 1 13 40 entropy FALSE 9
400 2 1 12 gini FALSE 10
150 2 1 13 50 entropy FALSE 11
200 2 1 12 50 gini FALSE 12
75 2 1 13 40 entropy FALSE 13
75 2 1 12 50 gini FALSE 14
300 2 1 11 40 gini FALSE 15
150 2 1 11 50 entropy FALSE 16
75 2 1 11 gini FALSE 17
100 2 1 13 entropy FALSE 18
150 2 1 10 gini FALSE 19
75 2 1 12 entropy FALSE 20
200 2 1 12 40 entropy FALSE 21

94

Appendix F – Information Extraction module.

This Appendix is left out because of confidentiality reasons.

