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Summary

Autonomous exploration has gained remarkable attention among robotics researchers because
of its application in automating various tasks such as search and rescue, mapping of under-
ground tunnels, and space exploration.
Similarly, exploration can be used to automate the process of indoor mapping, which includes
three-dimensional reconstruction of the houses and virtual reality imaging of each room. How-
ever, traditional exploration algorithms based on 2D LIDAR do not explicitly determine loca-
tions within an environment that is suitable for scanning the surrounding.
Inspired by humans, A novel algorithm capable of modeling spatial relation of points in a two-
dimensional plane to its boundaries is developed in this research. This design models the
boundaries by a polygon map approximated from the two-dimensional point cloud created
by a laser range scanner. Then it relates the polygon to the points inside it, to develop a two-
dimensional function representing the visibility of the environment. To develop this algorithm,
a Gaussian process model is actively trained with the spatial relation between the polygon map
and the points within. The trained model is then used to detect the points to visit while per-
forming mapping. To develop an exploration framework around point detection, the research
proposes two approaches. The first hypothesis, a novel exploration strategy by remembering
the past visited regions, and the second adapts a traditional approach of exploration by locating
the unknown regions. Further, for optimizing the sequence of visiting these points, a traveling
salesman framework, is used along with an ant colony optimization algorithm.
On verification, it was seen that the algorithm was capable of predicting the points to visit in
an unknown indoor environment with an average prediction error of 1m, using both the pro-
posed methods. Further, on comparing the algorithm with traditional approaches, an equiva-
lent performance was observed by the proposed exploration framework that maintains a mem-
ory. However, both the algorithms were capable of exploring 90% of the area on an average in
the five test environment.

Robotics and Mechatronics Atul Hari
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1 Introduction

1.1 Context and problem description

Maps have been one of the greatest human inventions for centuries. Earlier, people explored
the world and represented their understanding in the form of maps, which allowed people to
plan and navigate to unknown places. Nowadays, there are maps developed by Google that
even allows the user to experience a 360-degree 3D view of places on a cellphone. Google maps
are manually built by driving a mapping vehicle equipped with cameras and LIDAR (Light de-
tection and ranging), and soon self-driving cars will be used to update the map regularly.
Similarly, to navigate in an indoor environment having access to digitized maps is beneficial.
Current indoor mapping methods can successfully generate precise 3D maps, which are suit-
able for indoor navigation.
From the last couple of years, the real-estate industry has been reconstructing the 3D models
of houses and providing users with virtual reality (VR) tours of the properties listed. In applica-
tion, these maps are constructed manually by an operator using user-mounted or user-driven
devices equipped with cameras and (or) LIDAR.
While mapping an unknown environment, the operator determines the points at which the
scanning should be performed and plans a sequence to visit them. This process by which the
operator determines the scanning-points and plans the path is called exploration. An explo-
ration process is completed when the operator visits all the points and scans the entire house.
However, this process is tiresome for an operator, especially with an increase in the size of
the houses. Moreover, when there is no complete visualization available during mapping, the
operators are more prone to miss certain regions to be mapped. Hence, this research aims
to develop an exploration algorithm by which the process of indoor mapping can be done au-
tonomously without a human operator. Furthermore, it is believed that automating the process
of mapping could be convenient and scalable with the increasing demand for digitized maps.
The algorithm will be developed using measurements from a 360-degree 2D LIDAR made by a
mobile robot. Further, the mapping devices can be mounted on the robot to construct high-
definition maps. However, this work covers the development of the algorithm to generate map-
ping decisions and not map construction and accuracy.

To perform autonomous indoor exploration, first, the robot has to determine its location and
create a map† of the environment using its onboard 360-degree 2D LIDAR. This process is
called simultaneous localization and mapping (SLAM) (Thrun et al.,2005, Mahrami et al.,2013,
Cadena et al.,2016). Further, the viewpoints‡ at which the scanning has to be performed should
be detected, and an optimal sequence needs to be planned to visit the points.
However, the following are the challenges to detect the points and to find the sequence.

• Comprehending geometric structure: Given an area visible to the sensor, locating the vi-
sually centered region, which contains the candidate viewpoints.

• Identification of viewpoints in an environment that is unknown: The robot has to detect
viewpoints and make decisions based on partial maps generated by the SLAM algorithm.

• Selecting the sequence of exploration action: Given a set of viewpoints, it is challenging
to determine a sequence by which they should be visited to generate a globally optimal
trajectory that reduces travel distance during mapping an unknown environment.

†This is a 2D map used by the algorithm internally for planning and is not related to 3D maps discussed earlier.
‡Viewpoints are indoor locations that provide an excellent 360-degree view of the surroundings

Robotics and Mechatronics Atul Hari
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However, several existing algorithms can be used to explore indoor environments au-
tonomously.

1.2 Related work

In this section, previous research aiming to achieve indoor exploration using different map rep-
resentations is described.
Autonomous exploration problems have been studied for more than 20 years from now. Ya-
mauchi (1997) introduced a method that could explore a generic 2D environment. In his algo-
rithm, the frontiers are considered as the separation between the known and unknown regions.
The exploration was achieved by sequentially navigating to the nearest frontiers. Holz et al.
(2010) used a similar technique, but repeatedly observed the frontiers during exploration, to
update the decision when the area near the frontier is completely mapped.
Further, the concepts of frontier based exploration were adopted for autonomous 3D struc-
ture reconstruction by Prieto et al. (2017), Kurazume et al. (2017), and Meng et al. (2017).
Prieto et al. (2017), developed the next Best Scan (NBS) algorithm for automatic 3D scanning
of furnished buildings by exploring each room separately and then combining the 3D mod-
els. However, the frontier-based algorithms do not account for the quality of data acquired,
and hence the scanning performed can be close to obstacles. To detect the regions with higher
visibility Iocchi and Pellegrini (2009) and Prieto et al. (2017) used stereo vision to identify the
structural elements like doors, walls, roof, stairs, etc. These semantic structural elements were
used to plan the scanning order. Most of the researches use both 2D and 3D range finders to
explore a building and perform scanning. However, the selection of sensors is based on the
specific purpose of each research. Along with 3D LIDAR, Borrmann et al. (2014) used addi-
tional temperature sensors to develop a thermal model of indoor environments and perform
exploration to inspect temperature distribution systems. Considering indoor mapping, scans
must be taken from points with higher visibility of the surrounding. Kim et al. (2018) developed
an algorithm to scan indoor sites by identifying points on the planned trajectory that maximize
the visibility of the surroundings. Even though Kim’s approach succeeded in performing scans
at locations with higher visibility, they used 2D, 3D LIDAR, and camera sensors.
A different approach to formulating the exploration problem was using an information-
theoretic framework. The concept of entropy, first coined by Shannon (1948) is used to quantify
the information available on the map. The uncertainty of the map signifies the unavailability of
information. The robot performs exploration by visiting the uncertain regions of the map using
2D LIDAR, in an information-theoretic exploration model pioneered by Bourgault et al. (2002).
Further, Stachniss et al. (2005) used Rao-Blackwellized particle filter (Murphy, 2000) to increase
the accuracy of mapping. Charrow et al. (2015) developed 3D reconstruction of long corridors
by finding trajectories that maximize information-theoretic objective. Exploration algorithms
considering 2D measurements mostly solve the problem considering an occupancy grid (OG)
map (Elfes, 1989, Thrun et al.[p. 281-308], 2005), which is a discrete map representation made
of independent grid cells. The OG map provide occupancy information of individual cells and
do not contain any collective structural information about the building.
A continuous occupancy map representation, which, unlike the OG map, spatially relates
neighboring points to a continuous surface occupancy function. A predominant method used
for continuous map representation is Gaussian processes (GP). Yang et al., (2013) used rapidly
exploring random tree (RRT) to sample paths for continuous GP map. Jadidi et al., (2014), Jadidi
et al., (2016) constructed a GP map by performing regression on occupancy probabilities ob-
tained from sparse sensor measurement. The informative areas of GP map were used for greedy
exploration that maximizes information gained. The research done on indoor exploration for
mapping along with the approach, sensors and environmental representations utilized is visu-
alized in Figure 1.1.

Atul Hari University of Twente
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The traditional 2D exploration approaches do not define behavior that explicitly identifies the
location to be scanned during mapping. State of the art algorithms for autonomous indoor
scanning uses 3D point cloud matching and semantic structural element modeling along with
2D measurement to detect points at which scanning has to be performed, which makes it ex-
pensive. The concept of maximizing visibility used by Kim et al. (2018) is suitable for selecting
scan points effectively. However, he found visible regions only along the planned trajectories.
Hence, this research will focus on developing an exploration algorithm that models the visibil-
ity of the entire explorable regions by using only a 2D LIDAR.

1.3 Research questions

Considering the problem description and various related work, the research can be formulated
into three questions:

1. How to develop an algorithm to detect viewpoint within the rooms using geometric rela-
tionships, considering a complete map of the house?

2. Given a partial map from the SLAM algorithm, how accurately can viewpoint be pre-
dicted during the exploration?

3. How does optimizing the route between the viewpoints affect exploration compared to
heuristics used by baseline methods?

1.4 Assumptions

In an approach to solve the problem, five assumptions were made regarding the environment
and the robot’s abilities.

1. Zero elevation: The exploration is assumed to be performed on a plane without inclina-
tion. Hence any inclination above the ground is considered as obstacles.

2. Sensors: The robot is supposed to be equipped with a 360-degree, 2D Light detection and
ranging (LIDAR) sensor along with dead-reckoning.

3. Static obstacles: The environment is simplified to a case with objects that remain station-
ary throughout the exploration.

4. Concave polygon map: The house like environments considered as the use-case for the
research is assumed to have a floor plan such that its inner perimeter forms a closed
concave polygon.

5. Discrete goals to navigate: Discrete goals are selected and the shortest path is used to nav-
igate between the selected locations. The action execution package in Robotic Operating
System (ROS)* called move_base** is used to provide control input.

1.5 Approach

An exploration algorithm suitable to develop a digitized map autonomously should necessarily
detect viewpoints in every room of a house. Then a sequence to visit them should be planned
to explore further using the local observations (map of the region that was explored).
In this thesis, to detect the viewpoints, the 2D LIDAR measurements are used to approximate
a concave polygon boundary model, which will be used to develop a novel surface model that
defines the visibility of the surrounding at every point in the environment. To develop this

*ROS https://www.ros.org/.
**move_base http://wiki.ros.org/move_base.

Atul Hari University of Twente
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model, the structural arrangement of the environment should be comprehended. An opera-
tor performing the mapping, on a high level, uses his spatial cognition to identify the view-
points. Spatial cognition (Colby,2009) is concerned with acquiring knowledge about the spatial
arrangement of objects in the surrounding. Inspired by this ability, a model will be developed
to detect points that maximize the visibility of the surrounding, considering the polygon map
of the building. This model is obtained by performing non-linear regression using Gaussian
processes.
Further, to get the sequence by which the points has to be visited, two exploration frame-
works will be constructed. The first framework will develop a novel approach of exploration,
which only maximizes visibility, and the other will additionally adopt traditional concepts from
information-based exploration. The decisions made on the sequence of visiting the viewpoints
will aim to optimize complete travel during mapping by formulating a traveling-salesman
problem (TSP) framework. Figure 1.2 shows a flowchart describing the approach that will be
developed. After developing the algorithm, the viewpoint detection will be studied on a full

Figure 1.2: Flowchart describing the algorithm framework

map of the house, and it will be extended to a case while only the local (partial) map is available.
The exploration performed by the algorithm will be compared to the traditional algorithms to
evaluate the accomplishment.

1.6 Report organization

The rest of the chapters in the thesis are organized as follows. The background information on
the concepts of SLAM, with detailing on different map representations and concepts of explo-
ration, are introduced in Chapter 2.
The analysis and design of the proposed algorithm are organized in Chapter 3, which includes
the design of a Gaussian process model to detect viewpoints and design of the exploration
framework. Further, the planning module to determine the sequence of visiting the viewpoints
is also designed in the chapter.
The experiments designed for validating the designed algorithm is described in Chapter 4. Fur-
ther, various parameters involved in the development of the proposed algorithm are also de-
scribed.
After conducting the experiments, the results obtained are shown in Chapter 5.
Finally, the conclusions drawn from the research and ideas for possible future directions are
presented in Chapter 6.

Robotics and Mechatronics Atul Hari
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2 Background

Developing a system that can autonomously navigate in an unknown environment requires
ability to localize itself and construct a map of the surrounding. In this chapter, an overview of
how the robot perceives the environment and estimates its position relative to its surroundings
is provided. Further, discussion on discrete and continuous map representations are used to
explain the classical exploration approaches.

2.1 State estimation

Before performing exploration, the robot should acquire information about its state. The state
of a robot describes its motion in time using a set of quantities such as position, orientation,
and velocity. In general, the robot uses sensors to perceive the environment and estimates
its state from the noisy measurements. However, due to the noise, the states are expressed
in terms of its probability called belief. The estimation of the robot’s belief can be obtained
using a Bayes filter algorithm. The belief bel, is the probability about the current state xt , of the
robot given the current sensor measurements zt . Further, using the prior belief xt−1, the sensor
measurement zt and the control action ut the Bayes filter updates the belief of the current state
recursively as given in Equation 2.1.

bel (xt ) = ηP (zt |xt )
∫

P (xt |ut −1)bel (xt−1)d xt−1 (2.1)

An important requirement for such an estimation is a motion model and a measurement model.
The motion model defines the motion control actions performed by the robot. These actions
are used as input to the Markovian model to predict the current states given the prior belief and
measurement likelihood. Now considering the exploration problem description in Section 1.1,
the robot needs to identify its location in the environment to plan the control input. Hence, the
robot uses motion made to reach the current position and the measurements made from the
current location to estimate its current position.

2.1.1 Motion model

The motion model uses the translation and angular velocity by which the robot should move
and maps them into the velocity of each wheel using the robot’s design parameters like the
wheel dimension and wheel separation (Ben-Ari and Mondada, 2018). Considering the differ-
ential drive robot used in this research, the kinematic model of the robot’s motion can be used
to relate the robot’s translation (v) and rotational (ω) velocity to individual wheel velocities vr

and vl for right and left wheels respectively using Equation 2.2.

vr = 2v +ωL

2R
(2.2)

vl =
2v −ωL

2R

Where R is the wheel radius, and L is the wheelbase. The velocity of individual wheels allows
computing the position of the robot from the kinematic model. However, due to noise, the
position computed using the motion model needs to be corrected using the measurements to
estimate the position of the robot better.

2.1.2 Measurement model

To obtain the measurement, the robot considers its on-board sensors. The wheel odometry
data of the robot is acquired using a dead reckoning model. The dead reckoning model incre-
mentally evaluates the measurement and is used as the primary global measurement source.

Robotics and Mechatronics Atul Hari
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However, to perform better state estimation, a range sensor has to be used, which in this re-
search is a LIDAR (light detection and ranging). A LIDAR sensor transmits an array of laser
beams and measures the echoed rays. Even though the LIDAR sensor provides sufficiently ac-
curate measurement, it is difficult to develop an accurate model because of the uncertainties
in the internal physical system. This restricts modeling of the sensor as a deterministic system
defined by zt = f (xt ). To take the uncertainty into account, a probabilistic model is considered
by applying conditional probability. This defines measurement by p(zt |xt ). The measurement
probability is the product of the likelihood of each beam, given in Equation 2.3.

p(zt |xt ,m) =
K∏

k=1
p(zk

t |xt , ) (2.3)

Where, p(zt |xt ,m) is the conditional probability of each zt given xt and map m, where map is
considered as an instance of the environmental model. To obtain the probability of measure-
ment, various models can be constructed by evaluating the log-likelihood.

2.1.3 Environmental model

In the measurement model, the probability is evaluated on the current robot state xt and the
map m, where a map is an instance of the environmental representation. A map is generated
using the measurement data obtained from the sensors and contains the information about
the occupancy of observable subspace. The robot has to build a map of the surrounding and
localize itself using the same measurements.

2.2 Simultaneous localization and mapping

SLAM could be framed as a scenario in which the robot is uncertain about both its position
and the environment. The task of the robot is to simultaneously create a map representation
of the environment using its measurement model and determine its states based on the ob-
servations. This can be stated as a joint-estimation problem. The Simultaneous localization
and mapping (SLAM) problem can be visualized from the Figure 2.1. The figure represents the
robot state x at various instances of its motion denoted by k and various observations z, of the
environment. This demonstration is a rather simple case of the SLAM representation that con-
siders landmarks m as map instances. The drift observed in the estimate of the robot states is
due to the accumulated measurement error called dead-reckoning.

2.2.1 SLAM formulation

From the SLAM problem observed previously, a mathematical model can be obtained. The
model has the control input ut and measurement zt as the initial input and an estimation of
the environmental map m and robot position xt needs to be made. The problem can now be
represented as in Equation 2.4:

p(x0:T ,m|z1:T ,u1:T ) (2.4)

Where the equation is represented in discrete-time instances ranging from 0 to T . This is a
general model to estimate the map and pose of the robot over the entire trajectory, generally
called full SLAM. However, a more interesting expression would be to consider only the current
estimate of the robot and map. This is known as online SLAM and can be formulated, as shown
in Equation 2.5.

p(xt ,m|z1:t ,u1:t ) (2.5)

where, the Equation 2.6 can be obtained by eliminating past states from Equation 2.4 by inte-
gration.

p(xt ,m|z1:t ,u1:t ) =
∫

x0

...
∫

xt−1

p(x0:t ,m|z1:t ,u1:t )d xt−1...d x0 (2.6)

Atul Hari University of Twente
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Figure 2.1: Demonstration of the SLAM problem (Khairuddin et al., 2015).

The past states are eliminated to make the solution computationally tractable. There are sev-
eral techniques to solve these equations, depending on the applications. In work by Cadena
et al. (2016) various SLAM approaches and some open problems are discussed.

2.3 Mapping

The exploration problems consider that prior knowledge about the map representation is not
available. To obtain knowledge about the map, the robot has to gather information from the
surrounding. However, it is not possible to predetermine the complete sequence of control
inputs to navigate. Therefore the inputs required for navigation is decided based on the obser-
vations made by the robot.
The measurement data acquired by the robot could be used to create an environmental model.
This process of developing such a model from the available sensor data is called mapping, and
the resultant representation is called a map. The map is an occupancy likelihood representa-
tion of the environment and can be a discrete or continuous model.

2.3.1 Discrete map

A discrete map representation is not defined at all points in the exploration space. However,
they represent distinct occupancy information in observed regions of the environment. Two
common approaches to model using discrete maps are using landmarks and an occupancy
grid map or OG map (Elfes, 1989).

landmark-based map

A landmark-based map in generally are used by extended Kalman filter(EKF)-based SLAM (Dis-
sanayake et al., 2001). The landmark-based points identify distinct features from the environ-
ment. The robot uses the location of features to estimate its state. A continuous correlation
between the landmarks and the pose can lead to a complete estimation of the trajectory. How-
ever, there will still be noise which could be filtered using popular methods like EKF. Figure 2.2,
visualizes an implementation of landmark-based method by Newman et al. (2002). He con-
ducted an experiment called explore and return. Where the robot was teleoperated to explore

Robotics and Mechatronics Atul Hari
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Figure 2.2: A feature-based SLAM, using concurrent mapping and localization algorithm by
Newman et al. (2002). Grey dots: saved position, obstacle planes: observed landmark.

and save the landmark as feature planes and then return to the home autonomously assisted
by the landmarks.

Occupancy grid map

The occupancy grid map, initially introduced by Elfes (1989) is a standard grid, which repre-
sents the occupancy of a location in the environment. The occupancy of the environment is
generally identified as free, occupied or unknown and are indicated using a cell, where cell is
an unit grid. Considering a range measurement sensor (LIDAR), the free cells are identified as
those which allow the laser to pass through. An occupied cell is identified by the cell, which un-
dergoes multiple hits from the laser. The occupied cells represent the obstacles or hindrances
in the environment. The unknown cells are unobserved or unexplored; hence, no conclusion
about the occupancy can be made with the available observation. A visualization of an occu-
pancy grid map is visualized in Figure 2.4.

Considering the map m, which is a collection of cells identified by its location coordinates.

Figure 2.3: Robot’s perception represented on a 2D occupancy grid. The red arrow indicates
the laser beam.

Every cell in the map is identified as 1, for a hit of the laser and 0, for no occlusion. Based on
the measurement the cells are classified as occupied, unknown and free. considering the prob-
abilities, the probability of free cell will always be less than one and hence the total probability
of the cell converges to zero. To avoid this, the log probabilities are considered. Although the
cell values are obtained, the evaluation is not completely certain. Hence, all the measurements
made by a particular cell are summed to obtain the confidence of occupancy. This generates a
probabilistic model of the map shown in Figure 2.3.

Finally, the expected log-likelihood is maximized to obtain a map estimate. The work done by
Thrun (2003) demonstrates the occupancy grid map formulation using a forward model. The
classical inverse model-based method (Elfes, 1989) considers the occupancy of each grid inde-
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pendently; hence, there can be conflict when measurements of the same cell are made from
different locations. However, the forward model (Thrun, 2003) populates the log-probabilities
to obtain cell values, which can result in consistent occupancy values. The OG map discussed
in the coming chapters assumes a forward model. More detailed understanding can be ob-
tained from the works by Elfes (1989) and Thrun (2003).

2.3.2 Continuous map

Continuous maps, as the name suggests, are defined for all points in the observable space.
This also means that the map is not a representation of independent random variables, but are
correlated to each other. The continuous occupancy probability distribution provided by these
maps is more suitable for continuous control decisions. Two most popularly used continuous
map representations are:

Gaussian process maps

The Gaussian process (GP) maps (Yang et al., 2013), (Jadidi et al., 2014), (Jadidi et al., 2016) in
general are trained based on occupancy probabilities to generate a multi-variant Gaussian dis-
tribution. These distributions hugely benefit from the fact that the GP relates various cells in
the observable space, used for training. This relation inherently gathers structural data about
the occupancy. Figure 2.4 shows a GP representation of an environment. The GP maps can

Figure 2.4: Left: Occupancy grid map representation using the Intel dataset. Right: Gaussian
process map using the occupancy grid map as demonstrated by Jadidi et al. (2016)

account for sparse measurements or information since they approximate a continuous distri-
bution over the available sparse data.

Hilbert maps

Hilbert map is a continuous map representation similar to GP maps, demonstrated by Ramos
and Ott (2016), Francis et al. (2018). Given the occupancy at a point obtained using the laser
measurement, a set of samples can be drawn from the observable region. Further, a conditional
model p(z|x, w) depending on a vector w can be learned using logistic regression classifier (LR)
(Brzezinski and Knafl, 1999). The parameter w , is obtained by performing stochastic gradient
descent (Kiefer and Wolfowitz, 1952). So the occupancy is visualized as projections of a linear
discriminative model on a reproducing kernel Hilbert spaces (RKHS) (Shin and Lee, 2016). Sim-
ilar to GP maps the Hilbert map also captures spatial correlations and show robustness towards
outliers. A visualization of a Hilbert map is shown in Figure 2.5.

2.4 Exploration

In this section, the discussions made previously are used to define the exploration problem.
The robot estimates its pose and builds the map using the SLAM algorithm discussed in Sec-
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Figure 2.5: A sparse Hilbert map using the Intel dataset. The sharpness of the map increases
with an increase in the number of samples as shown by Ramos and Ott (2016)

tion 2.2. Further, different types of map constructed from the robot’s LIDAR data is discussed in
Section 2.3. During exploration, the robot’s observable region is restricted. The measurements
obtained from the sensors along with observable environment representation is used to decide
the control inputs. Making the robot autonomously navigate.
The classic approaches for exploration in a generic 2D environment are frontier based and
information-theoretic and serve as the foundation for more complex algorithms. The explo-
ration problem is hard to make optimal navigation decisions. The classic approaches make
decisions based on simple heuristics that tend to maximize information about the robot’s en-
vironment. Hence the robot decides to navigate to the uncertain regions of the environment.

2.4.1 Frontier based approach

Yamauchi (1997) ideated that:"To gain the newest information about the world, move to the
boundary between open space and uncharted territory." According to Yamauchi, frontiers are
these boundaries. Considering an occupancy grid framework, these frontiers are represented
as the boundary between the free and unknown areas, as shown in Figure 2.6.

Figure 2.6: An occupancy grid map with free cells (white), occupied (black), unknown (grey),
and frontier (red).

Nearest frontier based exploration

The nearest frontier exploration proposed by Yamauchi identifies the frontiers and uses a
distance-based heuristic to select the action to execute. Considering the illustration shown
in Figure 2.6, suppose the frontier A is the nearest, then the robot sends a goal to either the
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mid-point or the nearest cell of the frontier. This process is iterated until no more frontiers are
available.

2.4.2 Information theoretic approach

According to Shannon (1948), entropy is defined as a measure of the average information of a
cell, knowing its probability. A Bernoulli random number represents the occupancy probability
of each grid cell. Now considering the map, highly informative regions are the space near the
frontiers because of the uncertain occupancy probability at that point.
To explore the environment, the robot should maximize the information about its surround-
ings. The information gain in general can be calculated based on Shannon entropy given by
Equation 2.7 or 2.8.

Hp (x) =−
∫

p(x)log p(x)dx (2.7)

Hp (x) =−∑
x

p(x)log p(x) (2.8)

The Equation 2.7 calculates entropy which represents uncertainty of the map. Considering a
robot with pose x, the map (grid cell) m, z as the measurements and control input u, the SLAM
posterior can be represented as in Equation 2.9,

p(x1:t ,m|z1:t ,u1:t ) = p(x1:t |z1:t ,u1,t ).p(m|x1:t , z1:t , t1:t ) (2.9)

For readability considering (x1:t |z1:t ,u1,t ) as x and (m|x1:t , z1:t , t1:t ) as m. The entropy of p(x,m)
can be written as in Equation 2.10:

H(p(x,m)) = H(p(x))+
∫

x
p(x)H(p(m|x)).d x (2.10)

The information greedy exploration approach selects frontiers, that if visited has the highest
gain in information(I (ẑ, at )). The information gain can be computed by measuring the differ-
ence between the entropy of the current state of the robot and the estimated entropy following
an action at and obtaining the measurement ˆzt+1:T , given by Equation 2.11.

I (ẑ, at ) = H(p(m, x))−H(p(m, x, x̂)) (2.11)

The implementation of above-mentioned exploration approaches will be further evaluated.

2.5 Summarizing the concepts

In this chapter, the concept of SLAM and various map representation obtained using them are
discussed. Further, the concept of exploration is introduced, and popular approaches are dis-
cussed.
Considering exploration in general, the robot has uncertainty about its position as well as a
map. The robot makes a representation of the environment as a continuous or discrete func-
tion capturing its occupancy state. These representations are used to identify highly uncertain
regions, i.e., regions with high entropy. The robot then executes an exploitative action towards
the uncertain region that maximizes the knowledge about its environment. In the approach
used by this research, a discrete occupancy representation, as well as a polygonal approxima-
tion of the visible region, are used to design the exploration algorithm.
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3 Analysis and design of the proposed algorithm

The mapping of an unknown indoor environment is attempted to be automated using the algo-
rithm proposed in this chapter. In the real-estate based applications, a visual walk through of
the property is provided to a distant customer, using different environmental representations.
These representations can be as simple as a 2D floorplan or detailed as 3D reconstruction or
virtual-reality (VR) imaging. High-definition maps have also shown to be beneficial for aug-
mented reality (AR) navigation and semantic representation. The appropriate location (view-
points) for scanning is identified by the operator who walks around the house. Therefore, the
detection of viewpoints is integrated with an exploration problem, in the process of mapping a
house.
Autonomously detecting points suitable for scanning is not straight forward, and this becomes
even more challenging in complex environments with higher occlusion. Previously, Prieto et al.
(2017), Iocchi and Pellegrini (2009) have used methods like semantic segmentation to identify
structural elements (SE) of a building like doors, windows, etc. However, such an approach re-
quires multiple sensors and hence adds to the overall expense. An approach that can be used
in 2D is maximizing visibility as used by Kim et al. (2018). However, Kim first planned a path to
the detected frontiers and then evaluated every point in the trajectory to find points with high
visibility. However, this method locates scan points on a planned trajectory only.
Therefore, in this research, a novel method that models the visibility at every point in the en-
vironment is designed. The complete algorithm for autonomously scanning the environment
can be developed as three modules. The first for detecting the viewpoints (Section 3.1), the sec-
ond module determines the regions that have to be explored (Section 3.2) and the third module
makes a decision on which region has to be explored first (Section 3.3). The block diagram of
the system illustrating the different modules is shown in Figure 3.1.

Figure 3.1: System block diagram.

The input and output data for each module is arranged along with the algorithm references in
Table 3.1. Further, the design of each of the modules will be discussed in detail in the remaining
parts of the chapter.

3.1 Detecting viewpoints

Viewpoints are regions with higher visibility of the surroundings and are suitable to perform
scanning. However, to detect those points in 2D, a representation of the environment is gen-
erally modelled, which specifies the occupancy state based on the measurements made by the
range-sensors. The occupancy grid (OG) map discussed in Section 2.3 is a grid-based map
representation where each grid is an independent or unrelated cell. However, to achieve the
primary intention of the research, it is essential to understand the spatial relation between free
and occupied regions.
The first research question intends "to locate the viewpoint within the rooms using geometric
relationships, provided a complete house map". Hence for the detection of viewpoints, a new
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Input data Module Output data Reference Algorithm
Wheel odometry,
2D LIDAR scan

ICP SLAM
Aligned 2D point cloud,
OG map, Pose estimate

MRPT toolbox (Icp, 2013)
Appendix C

(Segal et al.,
2009)

Aligned 2D Point cloud Viewpoint detection module (M1) Viewpoints Section 3.1 Algorithm 1,2,6
Aligned 2D Point cloud Scan to polygon converter Polygon map Section: 3.1.1, Appendix B Algorithm 6

Polygon map,
Training samples

+ Visibility function
+ Construct GP
+ Perform regression

Visibility mesh (VM) Section 3.1.2

Visibility mesh Detect viewpoints Viewpoints Section 3.1.2 Algorithm 2

Polygon map Viewpoint exploration module (M2) Viewpoints Section 3.2 Algorithm 3, 4
Hypothesis 1:
SCAEM algorithm

Aligned point cloud
viewpoints, pose estimate

+ Viewpoint detection module
+ Remove visited viewpoints

Viewpoints
Unvisited viewpoints

Section 3.2.1 Algorithm 3

Hypothesis 2:
iSCEAM algorithm

OG map
VM,IM
Combined mesh
Viewpoints, pose estimate

+ Informative GP
+ Combine VM and IM
+ Detect viewpoints
+ Remove visited viewpoints

informative mesh (IM)
Combined mesh
Viewpoints
Unvisited viewpoints

Section 3.2.1 Algorithm 4

Viewpoints Decision making module (M3) Navigation goal Section 3.3 Algorithm 5
+ Ant colony optimization Section 3.3.1 Gupta (2019)

Navigation goal ROS navigation Velocity commands Section 3.3.2
+ Move base ROS movebase*

Table 3.1: Algorithm design overview

environmental representation is designed by developing a polygonal map and then for every
point inside the polygon, the visibility is modelled geometrically using Gaussian process re-
gression.

3.1.1 2D scan to polygon map

The 2D LIDAR sensor generates range measurements to the obstacle to obtain a 2D scan. The
endpoints of each laser beam can be connected to form a closed concave polygon. Further,
the polygons obtained for each measurement are combined to construct a polygon map. How-
ever, each scan of the 2D LIDAR used contains 720 points equally spread out in 360-degree,
and hence it is not feasible to combine all the scans into one single map. Therefore, the scans
should be first filtered and down-sampled such that the noisy scans points are removed, and
structural features are intact.
The measurement Z made by the 2D LIDAR is a vector representing the distance of the ob-
stacles from the sensor mounted on the robot. The range {z1, z2...zn} ∈ Rn and orientation
{θ1,θ2...θn} ∈ R3n of n laser beams is represented in the sensor frame, and the robot’s position
(rx ,ry ,rz ) ∈ R3n is in the global frame M . Transformation, B

S T from sensor frame S to robot-
based frame B , is known. The robot-base frame is defined at the midpoint of the line joining
the wheels. The sensor frame is fixed at a point that emits the beams. The odometry measure-
ment of the robot gives the transformation M

B T between the robot-base frame and the global
frame. The n scan points can be expressed in the sensor frame S as a point cloud P given by the
Equation 3.1,

SP = {p1, p2...pn} ∈R2n , p = (px , py )T (3.1)

where, pxi = zi cosθi , pyi = zi si nθi , i ∈ (0,n)

For a point cloud Pt obtained at time step t , a line connecting all these points p will result
in a closed polygon P̄ . Since the polygon mapping algorithm is an additional contribution to
the research the complete design of the algorithm including the point cloud filtering, down-
sampling and method used for updating new measurements to the map will be described in
Appendix B.
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Representing the wall boundaries of a house in the form of a polygon makes it easier to evaluate
the relationship between the polygon and the points enclosed by it using geometric techniques.
The developed polygon map is a tool that will be used to comprehend spatial relations to detect
the viewpoints.

3.1.2 Modelling visibility using Gaussian process regression

The points inside the polygon map carries the information regarding the spatial arrangement
of structural elements of the building. Which is represented in terms of the surrounding visibil-
ity at the point. Hence, to extract this information, it is essential to formulate a mathematical
model that can learn the relationship between the points contained by the polygon and its
boundary.
To model the relationships, the first module of the proposed algorithm proceeds by designing a
visibility function that models the spatial depth property, which is part of the human cognitive
system. The minimum distance to an object from the point it is viewed describes the depth
property. In a 2D space, the distance will be calculated along a plane parallel to the ground.
The depth property should be defined at every point inside the polygon for the detection of
viewpoints in a given environment. However, it is not feasible to calculate the depth at ev-
ery point. A better approach can be to observe how the property changes along the plane
by understanding the relationship between the contained points. However, the depth varies
non-linearly, considering the complexity of house-like environments. Hence, a non-linear re-
gression is performed to learn the relation between the points. Therefore, a non-parametric
Bayesian approach of regression called Gaussian process regression is used to model the visibil-
ity at every point in the environment.
Gaussian processes (GPs) are popularly considered as a powerful tool in machine learning (Ras-
mussen, 2004). GPs can be used to predict the value of a function given some prior training.
Hence, it can capture the spatial data to predict a function by performing regression. Besides
regression, GPs are used for clustering (Kim and Lee, 2007) and classification (Kapoor et al.,
2010) tasks. While predicting a function from data, there are infinitely many possibilities. How-
ever, using a Gaussian process, this infinite number of solutions are probabilistically weighted
to converge into a single prediction based on the training, using Bayes rule. Hence the visibility
function is used to train a Gaussian process to predict the depth property at any point in the
given environment.
Further, the design of the visibility function, training, and regression of GP are discussed in this
section to develop the viewpoint detection module.
Note: It is important to note that the geometric center might be the same as the viewpoint con-
sidering a convex polygon, but for a concave polygon like in the map of a house, the geometric
center can even be outside the polygon. Therefore, identifying the viewpoints is challenging using
general geometric methods.

Design of the visibility function

The visibility function computes the surrounding visibility from a point inside the polygon.
Formulating the function requires an introduction to two terms, the field of view (FOV), φ,
and depth δ. The FOV at a point is the angular range of the sensor. In this case, it is a 360-
degree LIDAR and is constant for every point. The depth δ ∈R is the minimum 2D LIDAR range
measurement obtained at that point. A generalization of the function can be represented as
the smallest circle with center xc ∈ R2 contained by the polygon. This generalization describes
depth as a property associated with the location xc and hence captures the spatial element of
the algorithm. The Figure 3.2 provides a visualization of generalized FOV and depth at a point
xc. In Figure 3.2, it can be observed that circles with the center near the middle region of the
’L’ shape are bigger than the circles with the center closer to the walls and corners. Therefore,
it is clear that there exists a continuous correlation between the points inside the polygon map
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Figure 3.2: Left: an ’L’ shaped environment and an arbitrary circle with depth as the radius.
Right: 25 random points inside the ’L’ shaped region, the biggest circle marked in a thicker
circumference.

when evaluated on the depth property.
Considering the set of points p making the polygon map P̄ , and an arbitrary point xc contained
by the polygon. The depth δ at point xc can be computed using Equation 3.2.

δ= mi n{ ∥ p −xc ∥ } : ∀ p ∈ P̄ (3.2)

On a practical note, point p is identified using the nearest neighbor search. A k-d tree-based
search algorithm (Maneewongvatana and Mount (1999)) that has only O(log n) computation,
is used to find the nearest point of xc in P̄ . Hence, the visibility function computes the depth as
a Euclidean distance between the point sampled within the polygon and the nearest neighbor
on the polygon, as shown in Algorithm 1.

Algorithm 1: Visibility

This algorithm calculates visibility at a given point inside the polygon map
Input: Xc: {xc

1,xc
2..xc

m} ; // Training sample points inside the polygon
P̄ : {p1, p2..pnp } ; // Polygon map (see Appendix B Algorithm 6)

Output: ∆: {δ1,δ2..δm} ; // Depth at the training points
for i ← 1to m do

p(i )
∗ = nearest Neighbour(P̄ ,x(i)

c ) ; // kd-tree search algorithm (see
Maneewongvatana and Mount (1999))

δ(i ) = distanceEuclidean(p(i )
∗ , x(i )

c ) ; // Distance between training point
and nearest point on polygon

end

Design of Gaussian process model

The Gaussian process model is trained with the visibility computed at random locations inside
the polygon. The trained GP can be used to predict the visibility at any point in the environ-
ment, by learning a mapping from input space X : R2 of points inside the polygon to an output
space Y : R of real-valued depth.
A GP is a distribution over functions. Hence, for any subset of functions f ∈ F such that F is
a set of functions mapping from X →Y , then there exists a multivariate Gaussian distribution
(see Appendix A.1) over F . Therefore GP is a distribution with mean (m) and covariance (k)
as functions of xc ∈X . Hence for an infinite number of points in X contained by the polygon
map, there exists a finite set of training sample points U : {u1,u2 . . .um} ∈ X . The associated
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finite set of random variables f (u1), f (u2) · · · f (um) have a distribution given by Equations 3.3
and 3.4.  f (u1)

...
f (um)

∼N


 m(u1)

...
m(um)

 ,

 k(u1,u1) · · · k(u1,um)
...

. . .
...

k(um ,u1) · · · k(um ,um


 (3.3)

i.e,
f (·) ∼GP (m(·),k(·, ·)) (3.4)

Where m(u) is the mean function, which in this case is the visibility function that evaluates the
visibility at u. And k(u,u′) is the covariance function for any u,u′ ∈U . A covariance function or
kernels are positive semi-definite matrix used to define the correlation between the different
samples.
Figure 3.3 shows m random training samples and their evaluated depth in the ’L’ shaped envi-
ronment.

Figure 3.3: Random training samples inside the polygon and their depth evaluation.
Note: The figure intends to provide visualization of the concept and hence the scale is not main-
tained.

Covariance function (Kernels)

To capture the relation between points inside the polygon there are several kernels avail-
able. However, only a radial basis function kernel (RBF) (Rasmussen and Williams, 2006) and
Matern52 (Stein, 2015) kernel will be evaluated in this research. An RBF kernel given by Equa-
tion 3.5 is a popularly used kernel that correlates nearby points more compared to the farther.

kRBF (u,u′) = exp

(
−∥ u −u′2||

2l 2

)
=

{
0, if ||u −u′||→∞
1, if u = u′ ∀u,u′ ∈U (3.5)

Where the length scale l defines how far apart, the points should be correlated. Moreover, the
functions drawn from a GP that uses an RBF kernel will be smooth because the RBF is infinitely
differentiable.
The Matern kernel was used by (Jadidi et al., 2014, 2016) to construct continuous GP maps, due
to its capability to model structural correlation of complex environments. Compared to an RBF
kernel, the Matern covariance function contains a term ν, such that the covariance function is
[ν−1] times differentiable. Hence the Matern covariance function can correlate more complex
distribution by controlling the degree of smoothness with finite differentiability. A Matern52
kernel with ν= 5/2 is two times differentiable and is given by the Equation 3.6.

kM ater n_ν=5/2(u,u′) =
(
1+

p
5|u −u′|

l
+ 5|u −u′|2

3l 2

)
exp

(−p
5|u −u′|

l

) ∀u,u′ ∈U (3.6)

Further, both the kernels will be tested in Section 5.1 to identify its suitability for this applica-
tion. The work by Rasmussen and Williams (2006) is a good reference for further details into
kernels.
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Regression model

Considering a set of samples Str ai n = {
(
u(i ), y (i )

)
}m
i=1 from an unknown distribution, it is possi-

ble to consider a GP regression model given by Equation 3.7,

y (i ) = f (u(i )), i = 1. . .m (3.7)

A prior distribution over functions f (·) can be assumed to be a GP defined in Equation 3.3.
The prior distribution can be used to evaluate the posterior for a set of test samples Stest =
{
(
u(i )
∗ , y (i )

∗
)
}m∗
i=1 from same unknown distribution by applying Bayes rule, assuming that Str ai n

and Stest are mutually independent. However, for a GP, the posterior can be conveniently eval-
uated by performing a conditioning operation (see Appendix A).
The function f (·) drawn from a multivariate Gaussian process prior, will belong to a joint dis-
tribution which holds for both the training and testing samples, given by the Equation 3.8[

~f
~f∗

]
|U ,U∗ ∼N

([
M(U )
M(U∗)

]
,

[
K (U ,U ) K (U ,U∗)
K (U∗,U ) K (U∗,U∗)

])
, (3.8)

where,

~f = [ f (u(1)), f (u(2)) . . . f (u(m))]T ∈Rm , ~f∗ = [ f (u(1)
∗ ), f (u(2)

∗ ) . . . f (u(m∗)
∗ )]T ∈Rm∗ ,

M(U ) = [m(u(1)),m(u(2)) . . .m(u(m))]T ∈Rm , M(U∗) = [m(u(1)
∗ ),m(u(2)

∗ ) . . .m(u(m∗)
∗ )]T ∈Rm∗ ,

K (U ,U )i j = k(u(i ),u( j )) ∈Rm×m , K (U ,U∗)i j = k(u(i ),u( j )
∗ ) ∈Rm×m∗ ,

K (U∗,U )i j = k(u(i )
∗ ,u( j )) ∈Rm∗×m , K (U∗,U∗)i j = k(u(i )

∗ ,u( j )
∗ ) ∈Rm∗×m∗

The conditioning operation on GP is shown in Equation 3.9,

~y∗|~y ,U ,U∗ ∼N (~µ∗, ~Σ∗) (3.9)

where, the posterior distribution with mean ~µ∗ and variance ~Σ∗ is the predicted model.
Therefore, this results in a continuous model such that at any point, the predicted depth
∆̃={δ̃1, δ̃2 . . . δ̃m∗} is the mean ~µ∗, and the confidence of the prediction is given by variance ~Σ∗.
This can be calculated using Equations 3.10 and 3.11.

∆̃= ~µ∗ = K (U∗,U )K (U ,U )−1~y (3.10)

~Σ∗ = K (U∗,U∗)−K (U∗,U )K (U ,U )−1K (U ,U∗) (3.11)

In a GP, a careful arrangement of samples can ensure low prediction uncertainty. Arranging the
test samples U∗ in a m∗×m∗ ∈ R2m∗×2m∗ grid ensures a uniform spread of samples. This grid
generated is termed as visibility mesh (VM). Hence every point in the mesh has a mean and
covariance obtained using Equation 3.9.
The mesh has its x-axis, and the y-axis limits identical to that of the polygon map, hence, a
higher number of test samples increases the resolution of the GP model. Therefore, in prac-
tice, the number of training samples used to model the GP is sufficiently less compared to the
number of test samples, i.e., m << m∗, for efficient computation load.

The scale of the predicted depth δ̃ depends on the size of the environment or, more precisely,
the size of the free space. Hence, to further operate upon the mesh, the mean value of each
point in the mesh is normalized. The normalized depth δ̃nor mali zed remains between range
[0,1] and is calculated using Equation 3.12.

δ̃
(i , j )
nor mali zed = δ̃(i , j ) − ∆̃mi n

∆̃max − ∆̃mi n
, i , j ∈ 1,2. . .m∗ (3.12)
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Figure 3.4: GP posterior (visibility mesh) trained with 700 samples, using a Matern52 kernel on
a 100×100 mesh of test samples for a house model in Gazebo simulator. White outline is the
polygon map.

The steps followed by the proposed method to correlate the points inside the polygon with its
boundaries results in a posterior prediction of visibility, which is visualized using a contour plot
in the Figure 3.4.
From Figure 3.4, it can be observed that the multivariate distribution has high means towards

the central region of the rooms. However, the effect of inaccuracies in the polygon map is also
visible on the GP model.
It is important to note that the GP model is dependent on the number of samples, the kernel
function used, and the resolution of the mesh. Hence the effect of each of the parameters will
be evaluated in Section 5.1, intending to obtain suitable value of parameters with least resource
utilization.

Detecting viewpoints

So far, in the algorithms, a visibility function is used to train a GP model. Further, a mesh of pre-
dicted depth (visibility) had been obtained by performing GP regression on the trained model.
From the GP posterior, it is possible to identify subregions that have high visibility. However, to
detect the specific viewpoint, the local maximums, or the peaks of the predicted function, f∗ is
detected.
The peak is detected using image-processing toolkit called scikit-image (van der Walt et al.
(2014)) by defining a minimum threshold and a minimum peak to peak distance. Where the
minimum threshold defines the minimum visibility and the peak to peak distance signifies the
minimum distance between two viewpoints. The viewpoints V : {v (1), v (2) . . . v (r )} ∈ R2r are de-
tected using Algorithm 2. The output after detecting the peaks is shown in Figure 3.5.
The figure shows that the robot successfully detects the viewpoint inside the rooms; however,

the robot fails to detect four viewpoints. Hence more experiments are done in Section 5.1 to
determine the suitable parameters.
First research question aimed at developing an algorithm to locate viewpoints within a room,
given the point cloud of the environment. The viewpoints detected in the given point cloud is
used as ground truth for evaluating the prediction made using partial maps during exploration.
The algorithm contains different parameters that can drastically affect the GP model, like the
kernel and its length scale, the number of training, and testing samples. Therefore in Section
4.1, a set of experiments will be designed that can be used to evaluate how successfully the al-
gorithm detects viewpoints for different combinations of parameters.
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Algorithm 2: detectViewpoints

This algorithm detects the viewpoints
Input: U : {u(1),u(2) . . .u(m)} ; // Random training samples

U∗: {u(1)
∗ ,u(2)

∗ . . .u(m∗)
∗ } ; // Testing sample mesh

P̄ : {p(1), p(2)...p(np )} ; // Polygon map (see Appendix B Algorithm 6)
Output: V : {v (1), v (2) . . . v (r )}; // Detected viewpoints
εi : Min peak intensity,
εδ: Min peak to peak distance
∆ = visibilty(U , P̄ ); // See Algorithm 1
GPmodel = modelGP(∆,kmater n52); // See Equation 3.4
vi si bi l i t y_mesh = grid(m∗,m∗);
for i , j ← 1to m∗ do

µ
(i , j )
∗ = predictGP(GPmodel , vi si bi l i t y_meshi , j ) ; // See Equation 3.10

end

∆̃nor mali zed = normalize(µ(i , j )
∗ ; // See Equation 3.12

∆̃mesh = reshape(∆̃nor mali zed ,m∗,m∗); // 1D depth vector to 2D grid
V = detectPeak(∆̃mesh ,εi ,εδ); // Scikit-image:van der Walt et al. (2014)

Figure 3.5: Black dots: viewpoints detected by the proposed algorithm. White outline: the
polygon map. Red dots: corresponding location in the simulation environment. Blue dots:
viewpoints that are not detected.

Until now, the algorithm has been designed considering the availability of a complete point
cloud. However, in an unknown environment, the robot has to explore and built the map based
on the measurements obtained. Consequently, the prediction of viewpoints is made based on
this partial observation.
Therefore, to allow the robot to predict the viewpoints simultaneously, and detect the travel
direction, an viewpoint exploration module is designed.

3.2 Detecting explorable viewpoints

In the exploration problem, a complete map is not available, besides a map is partially built
during each step of exploration. Solving the exploration problem requires the robot to estimate
its position, construct a local map, and navigate to all the viewpoints in the given environment.
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However, the robot has to perform this action using the measurements from the 2D LIDAR and
wheel encoders. Therefore, to estimate the position and construct the map during navigation,
a SLAM algorithm is required.
The robot’s odometry measurement is a global source for a position estimate. However, in re-
ality, this model can drift over time due to mechanical design errors and slippage. Hence, a
SLAM algorithm finds a transformation that corrects this drift using the LIDAR measurements.
The transformation is obtained by aligning the point clouds measured at each time step with
the previous. An approach called iterative closest point (ICP) (Segal et al., 2009) algorithm is
commonly used to obtain transformations, which can be used to correct the robot’s pose esti-
mate made by odometry. Further, the polygon mapping module uses the aligned point cloud
to update the polygon for each new measurement made.
The ICP is an iterative algorithm used to find the transformation between scans. The ICP exe-
cutes in 3 steps (see Appendix B Table B.1), association, transformation, and error evaluation.
The algorithm repeats the three steps until the error between the two scans is minimum.
The output of an ICP process is a matched scan, which can be used further to build a map repre-
sentation. The ICP SLAM algorithm created by the mobile robot programming toolkit (MRPT)
(Icp, 2013) is applied, taking into account the implementation aspect. The detailed formulation
of the SLAM algorithm is given in Appendix C. The MRPT’s ICP package is a suitable design se-
lection due to its low computational requirement. Therefore, the probabilistic occupancy grid
map and point cloud representations generated as outputs are used by the designed algorithm.
The next step after obtaining the robot’s pose estimate and the map is to explore, by detecting
regions in the environment that leads to unvisited viewpoints.

3.2.1 Design of exploration framework

At the first step of exploration, the robot has only a partial map of the unknown environment to
detect the viewpoints. The exploration module is developed to recognize regions that can lead
to more information about the environment and detect new viewpoints.
The second research question investigates "how accurately the viewpoints can be predicted dur-
ing the exploration, given a partial map from the SLAM algorithm." In the proposed algorithm,
the GP predicts the visibility at every point within the polygon map to identify the viewpoints.
However, it is crucial to note that the visibility model is independent of the map uncertainties
since the polygonal map does not model uncertainty.
The author believes that the exploration problem can be modeled using two hypotheses:

1. It is possible to determine explorable regions by remembering the areas explored
in the past.

2. It is possible to decide on explorable regions by identifying regions that can provide
more information about the surroundings.

Hypothesis 1 is a novel approach proposed in this research, and the second hypothesis addi-
tionally adapts the traditional information-theoretic concepts to perform exploration.

Hypothesis 1: Remembering the explored

Hypothesis 1 (3.2.1) aims at extending the viewpoint identification algorithm directly to the ex-
ploration framework by remembering the past states of the robot, hence resulting in an affinity
towards unknown regions.
During the mapping process, the viewpoints should be detected in the regions that have not
been visited already. Hence, it is essential to distinguish unvisited viewpoints from the visited
in a visibility mesh. A possible method is to augment the robot’s state vector x∗ to obtain the
travel trajectory. Therefore, the trajectory node is a register that remembers all the visited view-
points, and the robot’s past pose. Further, the viewpoints in the unvisited regions of the map
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are prioritized. In the proposed approach, this is achieved by removing viewpoints detected
within a defined neighborhood of equidistant samples from the robot’s trajectory. Further, the
detected viewpoints in explorable regions are passed to the decision-making module (see Sec-
tion 3.3) to plan the travel between them. The proposed approach is developed to obtain a
spatial cognitive exploration and mapping (SCEAM) algorithm (see Algorithm 3).
In the algorithm, a search radius sear chmax is defined around every trajectory node sample

Algorithm 3: SCEAM Algorithm

Input: V : {v (1), v (2) . . . v (r )}; // Detected viewpoints

x∗: {s(1)
∗ , s(2)

∗ . . . }; // State vector (trajectory nodes)

Output: Ve : {v (1)
e , v (2)

e . . . v (re )
e }; // Unvisited viewpoints

// Initialize
τ, k, λ; // Trajectory sampling rate, time step, Decay rate
sear chmi n , sear chmax ; // Min search distance, max search distance
step ← 0
Xe ← 0
while k > 0 do

if k − step > τ then
Xs.append(x∗[step]); // Sampling trajectory nodes

for i ← 1to r do
x(i)

nearest ←nearestNeighbor(Xs, v (i ))// Nearest trajectory node to a
viewpoint (see Maneewongvatana and Mount (1999))

if distanceEuclidean(x(i )
near est , v i ) < sear chmax then

Ve.append(v (i ))// Append viewpoints if no trajectory node
in searchmax

if Ve ← 0 then
if sear chmax < sear chmi n then

print Exploration completed; // Exploration completed if no
viewpoints left in min radius search

break;

else
sear chmax = sear chmax −λ.sear chmax ; // Decay searchmax in
steps till searchmi n if no viewpoint found

else
sear chmax = sear chmax ; // Restore value of searchmax if
viewpoints are found

step = step +k; // Increment the steps

k = k +1

(Green markers in Figure 3.6) to check if the viewpoints are in the traversed region. However,
to prevent the robot from getting stuck in a local exploration, the search radius is decayed till
a minimum search radius of sear chmi n with a decay rate of λ. When no viewpoints are found
even with a minimum search radius, the exploration is assumed to be completed. An example
exploration sequence achieved using the SCEAM algorithm is shown in Figure 3.6.

Hypothesis 2: Detecting the unexplored

Hypothesis 2 (3.2.1) aims at extending the viewpoint identification algorithm by considering
the environmental uncertainty.
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Figure 3.6: Exploration sequence using SCEAM algorithm. Green node are samples from the
trajectory, and red marker is the robot’s starting position.

Section 2.3 introduces various map representations, and each of them quantifies the occu-
pancy probability of different spaces in the environment. It is visible from such representa-
tions that the robot is certain about regions that are entirely observable and uncertain about
which are not. Therefore robot has low uncertainty about the regions already visited and high
uncertainty about regions that need exploration. Hence occupancy probability can be defined
as the property that models the robot’s uncertainty about its surroundings. Further, the sec-
ond algorithm uses map uncertainty to identify viewpoints near uncertain regions. Classical
approaches mentioned in Section 2.4 primarily use frontier detection or information-theoretic
approaches to detect uncertain regions. Traditional methods like wavefront frontier detection,
fast frontier detection, and information-based detection used to detect uncertain regions are
mentioned in Appendix D.
From the literature, Bai et al.(2016), in his work on exploration using Bayesian optimization
(BO), generated a map representation used for BO based exploration. He used the occupancy
probability of the grids to develop a continuous occupancy map using GP. The posterior GP
map defines the occupancy probability of every point, and can be adapted to the previously
developed visibility GP to perform exploration.

Design of informative GP model
The frontier based approaches detect edges between observed and unobserved regions. Even
though such approaches provide a distinct detection of an exploration target, there are no mea-
sures of visibility at the selected goal. Moreover, a line segment representing the explorable re-
gion fails to capture planar properties, as discussed previously.
Considering the information-theoretic map representation used by Bai et al.(2016), it is possi-
ble to model a continuous representation that captures map uncertainty. Such a representation
also allows easy adaptation to the proposed exploration framework.
Adapting the concept used by Bai et al., the proposed algorithm develops an informative mesh
with a procedure similar to Section 3.1.2. The informative Gaussian process model is devel-
oped by sampling cells from the occupancy grid map M , and using the occupancy probability
p(c) as the mean of the GP for each cell c. Therefore, the GP model trained using m cell samples
is given by Equations 3.13 and 3.14. f (c1)

...
f (cm)

∼N


 p(c1)

...
p(cm)

 ,

 k(c1,c1) · · · k(c1,cm)
...

. . .
...

k(cm ,c1) · · · k(cm ,cm


 , {c1,c2 . . .cm} ∈M (3.13)
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i.e,
f (·) ∼GP (p(·),k(·, ·)) (3.14)

However, the remaining part of the algorithm follows the same steps to develop a continuous
representation by predicting the occupancy probability at any queried point.
The testing samples are in the form of a mesh called informative mesh (IM) that spreads be-
tween the x and y-axis bounds of the polygon map. Figure 3.7 illustrates the informative layer
formed during an exploration sequence. While sampling the cells for training, cells with oc-

Figure 3.7: Right: probabilistic grid map (RGB). Orange line: polygon map, and green: polygon
of current laser scan. Left: GP posterior (informative mesh) trained with 80% of the population
(All colored grids on the right) for detailed visualization of occupancy.

cupancy probability in the range (0.3, 0.5) are selected to ensure that the cells are informative
and are computationally feasible. The test samples used to generate the informative mesh
follows the same structure as that in Section 3.1.2. However, it is essential to note that both
the Gaussian processes models are independent. The proposed algorithm uses the generated
informative layer to extract the explorable regions.

Integrating visibility mesh with the informative mesh
The informative mesh highlights regions that have high uncertainty. Moreover, following such
regions, it should be possible to discover unknown regions of the map. However, to detect view-
points, visibility mesh is combined with the informative mesh.
Hence the informative-SCEAM algorithm (iSCEAM) is developed, which is designed to find the
local maximum in VM that is in the vicinity of high uncertainty regions in the IM. The addition
of IM to VM amplifies the region in VM, which is in the high uncertainty regions of the map. A
thresholding operation is performed to round-off means below a threshold ζ to zero, for better
detection of the local maximum. Hence the peaks of the combined mesh are selected as view-
points.
However, the number of informative cells degrades as the exploration progresses. The robot
should be prevented from getting stuck in the local exploration. Hence, the viewpoints in the
neighborhood of peaks in the combined mesh are selected as viewpoints for exploration. The
proposed iSCEAM algorithm adapting the traditional information-theoretic approach is de-
scribed in Algorithm 4. Figure 3.8 demonstrates the design of the combined mesh.
The research question two intends to investigate the prediction accuracy to judge how well the
algorithm can work with partial measurement. The prediction of viewpoints during exploration
is evaluated by comparing each decision to the prediction given a complete map (used as a
ground truth model) developed in Section 3.1. The experiments set up for the verification will
be discussed in Section 4.2.
Based on the hypothesis, both SCEAM and iSCEAM algorithms produce a different list of view-

points. However, to determine which viewpoint has to be visited first, the last part of the algo-
rithm is designed to make decisions by generating a sequence of the navigation goals from the
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Algorithm 4: iSCEAM Algorithm

Input: Vmeash ; // Visibility mesh: Algorithm 2
Imesh ; // Informative mesh: informative GP posterior

Output: Ve : {v (1)
e , v (2)

e . . . v (re )
e }; // Unvisited viewpoints

ζ, k; // Mean threshold, time step
while k > 0 do

meshnor mali zed = normalize(Vmesh + Imesh); // Combined mesh (Eq 3.12)
meshthr esh = thresholding(meshnor mali zed ,ζ)// Round values below ζ to 0
// Detect peak: scikit-image (van der Walt et al., 2014)
Vδ=detectPeak(Vmesh ,εi ,εδ)
VI =detectPeak(Imesh ,εi ,εI )
VC =detectPeak(meshnor mali zed ,εi ,εC )
if VC ← 0 then

for i ← 1to r do
if distanceEuclidean(Vc , v (i )

δ
)< sear chmi n then

Ve.append(v (i )
δ

); // Select viewpoints near to peaks in

combined mesh when no unvisited combined peaks

else
Ve ←Vc ; // Select peaks of combined mesh as viewpoints

if Ve ← 0 then
if sear chmax < sear chmi n then

print Exploration completed; // Exploration completed if no
viewpoints left in max radius search

break;

else
sear chmi n = sear chmi n +λ.sear chmi n ; // Extend searchmi n in
steps till searchmax if no viewpoint found

else
sear chmi n = sear chmi n ; // Restore value of searchmi n

k = k +1; // Update the step

Figure 3.8: Left: visibility mesh. Middle: informative mesh. Right: combined mesh after thresh-
olding and normalization. Black dots: detected viewpoints. White: polygon map.
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suggested viewpoints. Note that the decision-making module is independent of the algorithm
that generates the list of viewpoints.

3.3 Decision-making

Decision-making in the exploration problem deals with the heuristics or cost function used
to prioritize one action over the other. In Section 1.2, various approaches used in literature to
make exploration decisions are discussed. These approaches are generally either continuous
or discrete. In literature, authors Jadidi et al. (2014, 2016) and Francis et al. (2018) implemented
continuous motion controls. These types of motion planning generally use information gradi-
ent to generate motion controls. However, such approaches lack a planning layer because of
continuous decisions. The second and more commonly used method involves discrete actions
done by Yamauchi (1997), Stachniss et al. (2005) and Holz et al. (2010). These approaches
identify locations that are explorable and then select one location to execute an exploration
action.
Most works in the literature use cost-functions to determine the cost of executing each action,
and few others also consider the profit. The goal is selected by either minimizing the cost or
maximizing the profit. The cost evaluated in general is the distance the robot has to travel to
reach the desired location. The nearest frontier approach by Yamauchi and Holz et al. explores
by traveling to the frontier, which minimizes the distance-cost. The profit is the information
gained by the robot on visiting the location. Methods in the literature either approximate in-
formation gained by calculating the entropy of uncertain cells on the frontiers, or simulate the
observations on traveling to the frontier to compute the gain as done by Stachniss et al.. The
profit is maximized by traveling to the frontier with the highest information gain irrespective
of the distance. Some approaches combine both cost and profit for making these decisions.
These methods are compared with the proposed algorithms in Section 5.3.
Even though there are several techniques for decision-making that reduce the cost of individual
decisions, only a few works focus on optimizing the cost over a sequence of decisions (see Zhu
et al., (2018)). In this work, the sequence of goals is optimized to minimize the total path cost,
rather than minimizing the cost of a single step. Therefore in this research, "How optimizing
the route between the viewpoints affects exploration compared to heuristics used by baseline
methods" is investigated. Formulating the decision-making problem requires discussion on
the requirements and challenges in the context of this research.

Requirements

• All the viewpoints selected should be visited. Hence, all points have the same preference.

• The sequence of decisions needs optimization, intending to reduce the total travel cost
during exploration.

Challenges

• All the points between which the cost has to be optimized are not visible at once. Hence
it is hard to find the shortest route for the entire exploration.

• The decisions taken cannot be reversed when a better decision is available later.

3.3.1 Proposed heuristics

All explorable candidate viewpoints Ve ∈ R2re have an equal probability of being selected as a
goal V̄g oal ∈R2, and there is no contribution by the profit term since all the viewpoints have to
be visited. Hence the only cost incurred is of traversing between the goals.
The following statement describes the approach used to optimize the trajectory:
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If visiting all the available goals lead to complete exploration, then it is possible to determine a
sub-optimal sequence that minimizes the cost of the entire exploration.
However, this is not the case in reality. Nevertheless, it is possible to approach the problem with
such a heuristic. During exploration, the robot determines such a sequence and then starts to
visit the first. However, in most of the cases, the robot ends up discovering more goals that were
not initially observable in a partial SLAM map available during exploration. The next iteration
is performed, believing that visiting the new set of goals will lead to complete exploration. The
robot repeats the strategy until the exploration is complete. However, optimizing each step
does not lead to a globally optimal result. Besides, it is itself the definition of a greedy opti-
mization. However, considering the stochasticity of the environment, the proposed approach
considers beyond minimizing the cost of a single action.

Traveling salesman problem

Finding the sub-optimal route between the available targets can be formulated as a traveling
salesman problem (Htun and Thi, 2018). A traveling salesman problem (TSP) is an NP-hard
(Woeginger, 2001) problem used to determine the shortest route between the candidates. The
problem initially ideated by Menger et al., (1998) was an inspiration for the various derivations
of TSP. Even though there several methods that solve the TSP problem, it is hard to converge to
an optimal solution for a large number of nodes. However, for this thesis, the number of tar-
gets available at any instance is small and hence can provide near-optimal results. Due to the
small number of targets, the thesis implements a combinatorial-optimization algorithm called
ant colony optimization (ACO) (Gupta (2019), Khatri, (2014), Htun and Thi, (2018)) to find the
shortest path between the viewpoints available at any instance.
ACO mimics the behavior of ants to develop a probabilistic technique that finds the short-
est path through graphs. Ants, during its quest for food, leaves behind a chemical called
pheromone, which can be sensed by other ants. The pheromone has a property by which it
evaporates in time. Hence the path taken by the ant, which could fetch food and reach back in
minimum time, has the highest pheromone deposits. The ants sensing the pheromone, guide
themselves to the path with the highest concentration and hence tends to the shortest path.
The ACO algorithm generates a sequence of viewpoints that are evaluated using the Euclidean
distance between them, graphically. Using Euclidean distance has an evident shortcoming
because the actual trajectory length between the viewpoints might be different from the Eu-
clidean. However, the graph-based Euclidean distance calculation is used in this work for sim-
plicity. After executing the first goal in the sequence, the algorithm repeats the search for a new
sequence based on the new observations. The procedure repeats until the end of the last se-
quence to complete the exploration, as shown in Algorithm 5.

Algorithm 5: makeDecision

Input: Ve : {v (1)
e , v (2)

e . . . v (re )
e }; // Explorable viewpoints, given by

Algorithms 3 and 4
Output: ṽg oal ; // Target viewpoint to visit
// Initialize the parameters
si zecolony , i ter , k ; // Colony size, maximum iteration, time step
while k > 0 do

Ṽseq = ACO(Ve , si zecolony , i ter ); // Route optimization (Gupta, 2019)
ṽg oal = Ṽseq [1] ; // Select first viewpoint in the sequence as goal

k = k +1 ; // Update the time step

In the proposed approach, optimization is done to minimize the total route cost between all
the available viewpoints compared to the baseline methods that minimize the cost of only a
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single action. The third research question intends to compare the performance of the proposed
algorithm with the baseline methods. The comparison includes methods that minimize the
cost and maximize the profit for better evaluation. The exploration can be compared by quan-
titatively analyzing the area explored, the time taken for exploration, and the length of the tra-
jectory. Further, qualitative analysis, including the path repetition and the quality of the goals
generated, can help in making conclusive remarks on the decisions made. Section 4.3 will de-
scribe a structured procedure to perform the comparison study.

3.3.2 Navigation

The decisions made by the decision-making module are in the form of x and y coordinates
defining a point inside the polygon map. Navigating the robot to the selected goal coordinates
involves two steps,

• Planning a path from the robot’s current position to the goal

• Sending velocity commands to the controller to ensure the path is followed

A global planner uses Dijkstra’s (Javaid, (2013)) algorithm to achieve the former, and a local
planner archives the later. The global planner performs path planning using a global navi-
gation cost. The local planner considers the robot’s dimension to avoid collisions with the
obstacles and uses the motion model to determine the control inputs to the actuators. The
motion planning is done by a local map representation that defines the navigational cost.
The navigation cost maps is implemented using the costmap† ROS package. Further, the
local planner also performs recovery procedures like rotation and oscillation when the robot’s
global planner fails to produce a safe trajectory. Both global planner and local planner is part
of in-built navigation toolbox of ROS called move_base ‡, which directly generates velocity
commands for navigating to the desired goal.

†costmap:http://wiki.ros.org/costmap_2d
‡move_base: http://wiki.ros.org/move_base
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4 Experimental design

The algorithm designed in the previous chapter consists of modules that need to be tested and
verified. The tests are performed in a simulated environment, and the experiments involved
are designed in this chapter. The chapter begins with a short description of the software setup.
In later sections of the chapter is the design of three experiments that address the research
questions referred to in Section 1.3. The parameters used for the development of each module
are described along with the design. The supplementary research goals, simulation setup, and
verification approach is also defined for each experiment.
The development uses the ROS (Robotic Operating System) framework and script the algo-
rithms in Python for easy integration with the simulation and visualization modules. Moreover,
Python is selected for scripting because of the vast library support. The software setup along
with the robot and sensor description is summarized in Table 4.1.

Platform Software stack
Robot
Simulation model

Sensors
Simulation model

Simulation &
Visualization

+ Intel core 17-7700HQ
processor

+Framework: ROS *

+ Language:
Python 2.7‡

Jackal §

+ Developed by
Clearpath robotics

RP-LIDAR †

+ Developed by Slamtec
+ 2D, 360-degree FOV

+ Gazebo 7.0.0††

Simulator
+ Rviz visualizer

+ 2.8 GHz base
processing frequency + Libraries:

+ ROS APIs and
drivers available

+ Range [0.15, 18] m
+ Angular resolution 0.9o

+ 8GB Nvidia
GTX 1050 GPU

Gaussian processes
+ gpflow0.5¶,
+ Tensorflow 1.12.0||

+ Max speed 2.0 m/s
+ 4 Wheel
Differential drive

+ 10Hz scan rate
+ 720 samples/scan
+ 600 rpm motor

+ 12 GB RAM
Polygon mapping
+ Shapely 1.6.4** Wheel encoders

+ Ubuntu 16.04 LTS OS
+ Quadrature encoders
+ 78000 pulses/m

Table 4.1: Development and test setup

The verification of the developed algorithm is done by setting up experiments, as described in
the following sections. An overview of the experiments designed and the modules tested are
described in Table 4.2.

Exp Test module Aim Measured quantity

1
Viewpoint detection

(M1)
Study the effect of GP parameters
on viewpoint prediction

Viewpoint prediction score
(complete map)

2
Explore viewpoints

(M2)
Prediction of viewpoint during
exploration

Viewpoint prediction error
(partial map)

3
Complete algorithm

(M1, M2, M3)
Comparing exploration with
the baseline approaches

Area explored,
exploration time, path length,
goal quality, path repetition

Table 4.2: Overview of experimental design

*ROS: https://www.ros.org/
‡Python2.7: https://www.python.org/
§Jackal: https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
†RP LIDAR: https://www.slamtec.com/en/Lidar/A2
¶gpflow: https://pypi.org/project/gpflow/
||TensorFlow: https://www.tensorflow.org/

**Shapely: https://pypi.org/project/Shapely/
††Gazebo: http://gazebosim.org/
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4.1 Experimental 1: Detection of viewpoints

The viewpoints are local maximum detected from the GP posterior mesh representing the visi-
bility. However, to approximate the underlying visibility function effectively, the GP parameter
has to be carefully studied. The algorithm setup for detecting viewpoints has a number of pa-
rameters in different functional modules. The important parameters are shortly described in
Table 4.3.

Function Parameters Libraries Description

Simplification factor simplification 0.4.2‡‡ + A simplification parameter used by the Ramer-Douglas-Peucker
algorithm for filtering and down-sampling the point cloud to a polygon.

Polygon
mapper

Polygon buffer Shapely 1.6.4 **
+ Length in meters the polygon’s boundary should be compressed
to avoid erosion.

Num. training
samples

+ The number of random location samples within the polygon,
used for training the GP.

Kernel
+ The covariance function used to define the correlation between
different training samples.

Num. testing samples + The number of (testing) samples in the meshgrid used for regression.
Visibility
GP

Length scale gpflow 0.5¶ + Spatial distance between the training samples that the selected
kernel should relate.

Min intensity of peaks + Intensity above which a point can be considered as a peak.
Peak
detection

Min peak to peak
distance

scikit-image§§ + The minimum distance between points to be considered as
distinct peaks.

Table 4.3: Parameters used in viewpoint detection module

4.1.1 Aim

In this experiment, the first research question is addressed by achieving the following research
goals.

• Study the effect of the parameters on the Gaussian process model.

• Quantify the observations to evaluate the detection capability.

• Infer an adequate combination of these parameters for further use.

4.1.2 Experiment description

An intuitive understanding of the influence of various parameters of the GP model can help
capture the spatial features and to locate viewpoints within the rooms. The kernel function
correlates every training sample provided to obtain the GP posterior. Therefore, a higher num-
ber of training samples indicate a better understanding of spatial relations. However, a higher
number of samples also increases the computation requirement. An estimation of the mini-
mal number of training samples that can be correlated to make a sound prediction is essential.
However, a low number of samples are more complicated to correlate; hence the complexity a
kernel can handle also makes an influence. While defining the kernel, it is also essential to de-
fine the minimum distance between the points that can be correlated. Hence a lower number
of samples would need a suitable length scale to ensure the smoothness of the kernel function.
The modeled information is extracted using the mesh grid by predicting the mean and vari-
ance using Gaussian process regression. The number of testing samples defines the resolution
of this grid. Identifying the local maximum in the grid, which serves as the detected viewpoint,
implements a peak detection which defines the neighborhood of a local maximum. Ideally, a
fine resolution increases the number of testing samples and should improve the results of the
peak detection.

‡‡simplification: https://pypi.org/project/simplification/
§§scikits-image: https://scikit-image.org/docs/0.7.0/api/skimage.feature.peak.html
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Simulation setup

The designed viewpoint detection algorithm requires a complete polygon map (obtained from
scanned point cloud) of the environment as input. Therefore, for simulation, a Dutch house
floor plan that contains rooms of different sizes was built into a 3D Gazebo model, as shown in
Figure 4.1. The rooms of different sizes in the environment allows evaluating the adaptability
of the algorithm towards structural variations. A 2D point cloud was recorded manually for the
complete house shown in Figure 4.1, and the polygon map of which was used by the algorithm
to locate the viewpoints.

Figure 4.1: Gazebo model of Dutch house with rooms of varying sizes, indicating viewpoints
located manually in blue dots.

Verification setup

The gazebo model in Figure 4.1 was manually analyzed to locate r viewpoints within the rooms.
In total, 12 viewpoints are selected. The experiment is repeated for a different combination of
parameters, as shown in Table 4.4. Each correct prediction of the viewpoints is evaluated as
true positive (TP) and every incorrect prediction as False positive (FP). The viewpoints that the
algorithm failed to predict does not contribute to the score. Hence the ratio of the difference
between the correct and incorrect predictions, and the total viewpoints, evaluates the total
prediction score. The prediction score is given by Equation 4.1.

Pr edi ct i on scor e = T P −F P

n
(4.1)

Each prediction is manually evaluated qualitatively by human verification. The results ob-
tained after conduction the experiment are shown in Section 5.1.

Table 4.4: Experimental parameters and their ranges

Parameter Experimental range

Num training samples 50-1000
Kernel RBF, Matern52
Length scale 1-3
Num testing samples (mesh) 100x100, 500x500

4.2 Experiment 2: Detection of explorable viewpoints

According to the previous experiment designed, the viewpoint detection algorithm assumes a
known environment with map available in the form of aligned point cloud. However, in reality,
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there is no point cloud beforehand. Hence the robot has only partial visibility of viewpoints.
The designed algorithm enables the robot to detect regions where it has to travel to locate
more viewpoints in a partial map. Further, to detect regions to explore, two approaches are
designed, each of which hypothesis the problem differently. The important parameters used in
the SCEAM and iSCEAM algorithms are described in Table 4.5.

Function Parameters Description

Trajectory sampling rate
+ The minimum distance travelled by the robot before which a sample
is recorded from the robot’s estimated pose.

Max search distance
+ The maximum search distance around the path taken by the robot,
inside which the goals will be eliminated.

Decay rate
+ The factor by which the search distance is decayed when no goals
are found, to ensure that small regions are not missed.

Navigation
history
register

Min search distance
+ The minimum search distance until which the decay can continue.
A minimum range of zero detects goals visited points.

Informative
GP module

Sampling threshold
+ The minimum threshold of occupancy probability sampled for
training informative GP. A value closer to 0.5 ensures that it captures
a highly informative cell.

Table 4.5: Parameters used in viewpoint exploration module

4.2.1 Aim

In the second experiment, the performance of the proposed viewpoint detection algorithms
during exploration is evaluated by addressing the following research goals.

• Quantitatively examines the performance of SCEAM algorithm.

• Quantitatively examines the performance of iSCEAM algorithm.

4.2.2 Experiment description

Exploration is used to visit all unknown viewpoints present in a given unknown environment
in the least possible time. However, detecting accurate viewpoints is tricky, considering the
occluded vision of the robot. Therefore this experiment is designed to evaluate the accuracy
by which the algorithm can detect viewpoints with a partial map. The prediction error of each
viewpoint is recorded in comparison to the viewpoints detected with a complete map in Exper-
iment 4.1.

Simulation setup

The SCEAM algorithm requires the point cloud measurements to make the polygon map, and
the robot’s pose estimate to sample the trajectory followed. The iSCEAM algorithm requires the
polygon map and also an occupancy grid map provided by the SLAM algorithm to sample the
cell occupancy. At the beginning of the exploration, the robot is placed at an arbitrary position
inside the house in a Gazebo simulated environment shown in Figure 4.1. The robot is made to
explore the environment autonomously to test the proposed algorithms. Every goal point the
robot selects during exploration is recorded for calculating the error in prediction.

Verification setup

The viewpoints recorded during exploration is compared with the viewpoints detected using a
complete map (ground truth). The error between each selected goal and the ground truth view-
point is used to evaluate the accuracy of the predictions made during the exploration, given by
the Equation 4.2.

pr edi ci ton er r or = v̂i − vi , i ∈ [1,r ] (4.2)
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Where v̂ is the predicted viewpoints and v is the ground truth of the r viewpoints.
Experiment 1[4.1] is performed to identify the right combination of the parameters that can
detect all viewpoints. Hence, the results of Experiment 1[4.1] is used as ground truth for the
second experiment. The ground truth viewpoints resembles Figure 4.1.
The results obtained during the exploration of both the proposed algorithms are shown in Sec-
tion 5.2.

4.3 Experiment 3: Decision making and exploration

In the final step of the algorithm, a viewpoint is selected to navigate from a list of detected
viewpoints. This selection is made in a TSP setting using an ant colony optimization algorithm
(ACO) that optimizes the sequence of visiting the viewpoints using a Euclidean distance heuris-
tic. The ACO algorithm depends on the parameters described in Table 4.6.

Function Parameters Reference Description

Colony size
+ Each colony denote a unit of ants, and the size represents the combinations
executed to optimize the trajectory. Larger colony size tends to optimality
faster but at the cost of computation.

Decision
making
module

Maximum
iteration

aco_tsp¶¶ + The maximum number of iterations available for optimization. A higher num-
ber of iterations has a greater convergence towards the global optimum.

Table 4.6: Parameters used in decision making module

4.3.1 Aim

The previous two experiments focus on observing the accuracy of viewpoint detection in a
known and, then, in an unknown environment, respectively. In this section, an experiment is
designed to evaluate the performance of the exploration compared to popular methods in the
literature to accomplish the following research goals.

• Observe the performance of the proposed method of route optimization compared to
the nearest frontier method.

• Investigate the performance of the algorithm in comparison with an information-greedy
heuristic.

• Analyse the changes in comparison with the combination of distance and information-
based methods.

• Evaluate the decision and trajectory of each method qualitatively.

4.3.2 Experiment description

From the literature, the nearest frontier approach, selects the mid-point of the frontier segment
that has the least distance cost. The proposed method also uses distance cost heuristic. How-
ever, it evaluates the distance between all the available viewpoints to select the first viewpoint
of the sequence that minimizes the distance of the complete tour.

An information-greedy approach selects the frontier with maximum uncertainty or entropy. On
a practical note, this is the widest frontier segment.
Further, combining both the heuristics by weighting distance and information gain by a param-
eterα, three hybrid exploration algorithm are also defined for comparison. The cost function C
used is shown in Equation 4.3, which combines both the distance-cost D and the Information
gain Ig .

C = D −αIg (4.3)

¶¶aco_tcp: https://github.com/rochakgupta/aco-tsp
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A frontier with the least cost is selected as the exploration goal. This Experiment proceeds by
selecting these methods as a baseline for comparing the performance of the proposed method.

Simulation setup

The exploration by the proposed algorithm is evaluated by performing autonomous explo-
ration in complex simulated environments modeled in the Gazebo simulator and will be com-
pared with the baseline algorithms.

Baseline setup: The baseline exploration algorithms are adapted from the frontier detection
based exploration package for ROS developed by Hörner (2016) called explore_lite. Further,
by improvising the cost function used in the package, a baseline of five methods was created,
as described in Table 4.7.

Methods Experiment code

Nearest frontier D
Information greedy I
Nearest frontier and information greedy, α= 0.25 D25I
Nearest frontier and information greedy, α= 0.50 D50I
Nearest frontier and information greedy, α= 0.75 D75I

Table 4.7: Baseline methods for comparison

Environment setup: The environments used for testing are Dutch houses models with just the
walls. The environments selected has different floor area and different configurations. The
varying complexity allows observing diverse exploration behavior. The floorplans obtained
from funda.nl* were modeled using Gazebo’s building editor, as in Figure 4.2. In this experi-
ment, exploration by the baseline methods and the two proposed methods are simulated on all
the five house models.

Figure 4.2: Gazebo simulation environments of Dutch houses built from the floor plans.

*funda.nl: https://www.funda.nl/.
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Verification setup

The performance of the proposed algorithm is verified by performing both quantitative and
qualitative analyses in comparison with the baseline.

Quantitative analysis: This analysis is designed to measure the performance of each method
by computing and comparing the following attributes.

• Path length: Distance traveled by the robot.

• Percentage of area explored: The number of free cells is counted by iterating over the
entire cells in a map. The product of the number of free cells, with its resolution, evaluates
the total area explored. The percentage is calculated using the actual floor plan area.

• Exploration time: The total exploration time is the duration between the beginning of the
exploration to the time when it ends the exploration. The exploration terminates for the
following conditions:

– No more goals were available.

– All the available goals were attempted for 60 seconds each and then canceled.

Qualitative analysis: Investigating the quality of the goals and repetition of the trajectory will
be done for qualitative analysis.

• Quality of goal selection: The goals selected are analyzed in terms of safety and coverage.

• Path repetition: The sequence of goal selection is observed to analyze the repetition of
the trajectory followed by the robot during exploration.

The baseline exploration is repeated ten times in all the five environments for consistency. The
mean value of the percentage area explored, path length, and exploration time will be used for
comparison. The results of the experiments conducted are presented in Section 5.3. The results
obtained after running each experiment are illustrated, and the observations are discussed in
Chapter 5.
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5 Results and discussion

In this chapter, the results obtained by investigating the research questions are discussed. The
effects of various GP model parameters on the detection of viewpoints, given a complete map of
the environment, are studied in the first section. In the second section, the GP parameters are
selected based on the study performed and are adapted to predict the viewpoint in a partially
visible map setting. Further, the predictions made by both SCEAM and iSCEAM algorithms are
analyzed. Finally, the proposed exploration algorithms are compared to baseline exploration
heuristics to evaluate the exploration while using a global optimization-based planning.

5.1 Experiment 1: Results

The algorithm designed in Section 3.1 to detect viewpoints, given a complete map of the en-
vironment, is assessed with the first experiment. The effect of the GP model parameters on
viewpoint prediction is studied through this experiment and the results are shown according
to Table 5.1. The inferred relationship among the parameters is then used to determine the
combination of parameters for the successful detection of all viewpoints. The simulation and
verification procedure for this experiment is discussed previously in Section 4.1.

Parameters

Training samples
Length

scale
Kernel

Testing
Samples

Results

Random samples 100 x100 Figure 5.1
inside the polygon RBF 500 x 500 Figure 5.2
50, 100, 250, 500, 100 x 100 Figure 5.3
750, 1000 1,2,3 Matern52 500 x 500 Figure 5.4

Table 5.1: GP parameters and results

The prediction score calculated using Equation 5.1 is used to analyse the effect of parameters
quantitatively.

prediction score= numof correct predictions−numof incorrect predictions

total number of rooms
(5.1)

Figure 5.1: Viewpoint prediction score using RBF kernel for 100x100 testing sample mesh.
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Figure 5.2: Viewpoint prediction score using RBF kernel for 500x500 testing sample mesh.

Figure 5.3: Viewpoint prediction score using Matern52 kernel on 100x100 testing samples.

Figure 5.4: Viewpoint prediction score using Matern52 kernel on 500x500 testing samples.

The examined range of parameters resulted in detecting all the viewpoints in the given envi-
ronment on repeated trials, and the results obtained are shown in Figure 5.5.
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Figure 5.5: GP posterior predicting viewpoints in all the twelve rooms of the given environment.

5.1.1 Experiment 1: Discussion

In this section, the results shown in Figure 5.1, 5.2, 5.3 and 5.4 are discussed. Further, an intu-
itive discussion of the parameters and their selection is presented.

Effect of GP parameters on prediction score

• The prediction score, in general, has an increasing trend with the number of training
samples: For a higher number of training samples, there is more information available for
the GP to predict the function, hence the predictions are more accurate and consistent
as shown by the less variance and vice versa. The high variance (inconsistency) caused
by random sampling, is more visible in the lower number of training samples.

• The prediction score varies with the length scale: The RBF kernel is a distance-based
kernel that correlates the training samples radially. The RBF fails to correlate complex
spatial data from the map as the length scale varies, because an RBF covariance function
is infinitely differentiable and hence very smooth. For a longer length scale, there will be
more variations in data, which is hard for a smooth function to capture.
In the Matern family of kernels, there exists a parameter ν, such that the kernel is ν−1
times differentiable. When ν→∞, the Matern kernel converges to an RBF kernel. There-
fore parameter ν can control the smoothness of the function for capturing complex spa-
tial data. Hence, the prediction score has lower variation with length scale for a Matern52
kernel with the value of ν as 5/2.

• The prediction score drops to zero for 1000 training samples for a mesh of 500x500 testing
samples: This is because of the high computational requirement that causes a processing
error on the testing work station. The process termination is included as a zero prediction
score to eliminate that range from the evaluation.

• The prediction score is below zero for a fewer number of training samples: This is be-
cause, the model is not trained properly when fewer samples are used, and hence makes
incorrect predictions than correct ones. Therefore it leads to a negative success ratio.
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To obtain a more intuitive understanding of the effect of length scale on RBF and Matern52
kernels a different range of length scale is used and the supportive discussions are provided in
Appendix E.

Selection of GP parameters

In this experiment, it is showed that the designed algorithms are capable of detecting view-
points inside a room. However, the parameters used for the GP model affect the detection of
viewpoints.

• Based on the observation, training samples of size 250-500 is an adequate range. Hence
the visibility GP will use 300 training samples, considering adequate resource allocation
during the exploration setup.
Moreover, The random sampling does not generate samples in every room, and hence
those regions are unmodeled or untrained. Besides the successful detection of view-
points, complete elimination of randomness is not possible even with an increasing
number of samples. However, a better sampling procedure should result in more con-
sistent results.

• A Mater52 kernel with a length scale two and 100x100 testing sample mesh will be used.
This choice is evident from the robust performance of the Matern52 kernel with struc-
tural changes of the environment using a 100x100 testing sample, as shown in Figure
5.3. However, the length scale should be comparable to the spread of a given number of
samples even for successful detection by the Matern52 kernel.

• For testing samples, the choice of 100x100 or 500x500 grid changes the resolution of the
prediction made. The minimum search length between the two local maximum should
be selected according to the resolution. Hence for maintaining the same physical search
distance, a 100x100 grid used a peak to peak distance of 10 and 500x500 used 50.

In this experiment, the viewpoints are predicted in a known map. However, in an unknown
environment, the robot has to explore to build the map. Hence, based on the intuitions ob-
tained, the viewpoint detection is investigated in an exploration framework to answer research
question 2 (1.3) in Experiment 2.

5.2 Experiment 2: Results

In this experiment, the robot is made to explore the environment used in Experiment 1, by us-
ing SCEAM and iSCEAM algorithms on a partial map given by the SLAM algorithm. The exper-
iment designed in Section 4.2 uses the viewpoints detected in Experiment 1 as ground truth.
The informative GP used by iSCEAM algorithm is trained with cells having a probability be-
tween 0.3 and 0.5, rather than random sampling. Since the data is sparse, a Matern52 kernel
with length scale three is used. The number of testing samples remains 100x100.
Figure E.3 and E.4 (Appendix E) shows the sequence of goal selection during the exploration
using SCEAM and iSCEAM algorithms respectively.

Results of viewpoint detection during exploration

The viewpoints predicted during the exploration using SCEAM and iSCEAM algorithms, along
with the ground-truth viewpoints, is shown in Figure 5.6.
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Figure 5.6: Viewpoints predicted during exploration using partial map from SLAM algorithm.

Prediction error results of SCEAM and iSCEAM algorithms

The prediction error is calculated as the Euclidean distance between the ground truth view-
point and predicted viewpoint. The error for each goal selected by the SCEAM and iSCEAM
algorithms are shown in Figure 5.7.

Figure 5.7: Prediction error of each navigation goal selected, as shown in Figure 5.6

5.2.1 Experiment 2: Discussion

In this section, the results of viewpoint prediction by SCEAM and iSCEAM algorithms in a par-
tial map setting, shown in Figure 5.6 and the prediction error, shown in Figure 5.7 are dis-
cussed.

Robotics and Mechatronics Atul Hari



44
A spatial cognitive exploration algorithm for autonomous mapping of unknown indoor

environments

Viewpoint detection using SCEAM algorithm

• The algorithm can detect 10 viewpoints out of 12, with the partial map obtained from the
SLAM algorithm. All the viewpoints in the explored region were detected with an average
error of 1.059 m.

• Multiple viewpoints are detected in some rooms because the explored regions are
rechecked when the algorithm fails to find new viewpoints. The rechecking allows im-
proving predictions previously made with a partial map.

• Predicted goals 4,9 and 10 as shown in Figure 5.6 (left) is sufficiently away from the actual
viewpoints. Interestingly these points lead to regions that have a wider area and were not
visible from the previous goal. Hence, the off-target predictions made are like supporting
goals that prevent the robot from getting stuck in a local exploration.

Viewpoint detection using iSCEAM algorithm

• The iSCEAM algorithm detected 8 viewpoints out of 12, given a partial map of the envi-
ronment. All viewpoints in the explored regions were detected with an average prediction
error of 1.069 m.

• The robot revisits some rooms multiple times even though the algorithm was designed
to visit viewpoints at uncertain locations because the algorithm searches for regions with
higher visibility when it fails to detect new viewpoints in unexplored regions.

• Goals 3,10,13 and 14 are the off-target prediction that leads to more information. The
robot first visits viewpoints in uncertain regions and then corrects the prediction based
on the new observations.

• In iSCEAM algorithm, the correction step reduces the map uncertainty of a region around
the robot because it makes a repeated observation of the same region. Hence, the num-
ber of informative training samples is reduced, and the GP fails to model the explorable
areas correctly.

5.3 Experiment 3: Results

This experiment focuses on analyzing the exploration based on the sequence by which these
viewpoints are visited, hence to answer the third research question (1.3). The experiment de-
signed in Section 4.3 is extended to explore five environments shown in Figure 4.2, to evaluate
the robustness and scalability of the algorithm towards structural changes. To compare the
performance of the proposed algorithms, classical approaches shown in Table 4.7 are used as
the baseline. Further, the results are both quantitatively and qualitatively discussed.

5.3.1 Quantitative experimental results

For quantitative evaluation of exploration, the time taken, the total distance traveled, and the
percentage of total area explored are the metrics on which the comparisons are made.
The results obtained are shown in Figures 5.8, 5.9 and 5.10. Further, the average percentage of
area explored in all the environments is shown in Table 5.2.
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Figure 5.8: Exploration time taken for different algorithms in all the five environments.

Figure 5.9: Total distance travelled during exploration in each of the five environments.

Figure 5.10: The percentage of area explored by the algorithms in each of the five environments.
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Method Average percentage area explore(%)
D 85.0
D25I 86.2
D50I 87.9
D75I 84.85
I 86.08
SCEAM 91.3
iSCEAM 89.24

Table 5.2: The average percentage area explored in all the five test environments.

5.3.2 Quantitative discussion

In this section, the results shown in Figures 5.8, 5.9 and 5.10, and the percentage area explored
shown in Table 5.2 are discussed using the following comparisons are made with the baseline.

General comparison

• The exploration results show that the environment 1 and 2 required comparatively higher
time to explore and also required a higher path length; this is clear from the area to be
explored.

• The second environment has the least area explored, higher exploration time, and lower
path length. This signifies that most of the algorithms failed to deduce explorable regions
in the map, including the proposed algorithm.

Comparison of SCEAM algorithm

• The exploration time for the proposed SCEAM algorithm is comparable to the other base-
line approaches. Even though the time consumed is low in some environment, it does
not show consistent performance. However, the exploration time is sufficiently low com-
pared to iSCEAM.

• The path length of the SCEAM algorithm is high compared to the other methods and
is mostly lower to the iSCEAM algorithm. However, this is due to the extra length the
propose methods have to travel to reach the viewpoint, considering which the SCEAM
algorithm still has a comparable trajectory length.

• On comparing the area explored, a remarkable consistency is maintained throughout
all the given environment, except the second environment. The SCEAM algorithm on
average explores 91.34% of the area and is the highest on the list.

Comparison of iSCEAM algorithm

• The exploration time for iSCEAM algorithm is high compared to all the other methods in
the list. This behavior is primarily due to two reasons.

In environment 1, the exploration time and path length, both have high values;
this signifies the repetition of the path. As discussed previously, the iSCEAM algorithm
shuffles between the known and unknown regions to reduce viewpoint prediction error.
Hence increases the path length.

In the other environments, the path length is low but still has high exploration time.
This is because the exploration time includes both times taken to make a decision, and
that to execute an action. Hence, the increase in time is due to the delay in making the de-
cision. This algorithm uses two GP to make decisions compared to one in SCEAM, which
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on the workstation requires more resources to process. The computation and memory
usage of the algorithms are shown in Appendix E.

• Even though the time consumption and path length are more, the iSCEAM maintains the
consistency in the area explored similar to the SCEAM. The iSCEAM algorithm has the
second-highest area explored with an average of 89.24%.

5.3.3 Qualitative experimental results

To demonstrate the results of qualitative investigation, the exploration in Environment 1 with
total area of 291sq.m is selected. The exploration trajectory of an Information greedy approach,
which has area explored near to the proposed method, is used to make a comparison. The envi-
ronment selected is entirely different from the one in Experiment 2. Hence this allows observ-
ing the exploration based on path repetition and quality of goal selection of both the proposed
algorithms. The trajectory followed by information greedy, SCEAM and iSCEAM algorithms
used for illustrating the qualitative discussion is shown in Figure 5.11.
Further, to observe the trajectory executed in other four environments, the exploration paths
of proposed algorithms is illustrated along with one performing baseline algorithm in Figure
E.5 (Appendix E).

Figure 5.11: Exploration trajectory of the robot in Environment 1.
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5.3.4 Qualitative discussion

In this section, the explorations showed in Figure 5.11 is discussed qualitatively.

Evaluation of path repetition

The path repetition of both the proposed algorithms are higher compared to the baseline.
Moreover, the iSCEAM algorithm has even higher path repetition. This behavior is because
the algorithm tries to improve the predictions made when it gains more knowledge about the
environment and hence re-plans a new tour between all available viewpoints.

Evaluation of goal selection quality

The traditional exploration algorithms only aim to explore the whole region. Hence it is not
necessary to enter every room to obtain an occupancy representation from the SLAM algo-
rithm. However, The proposed algorithm aims to visit all the rooms to capture the 360-degree
view inside the room for a mapping application. The trajectory of the SCEAM algorithm shows
that most of the rooms were visited during the exploration, and the viewpoints selected seems
to provide a sufficient view of the surrounding. Similarly, iSCEAM also visits the rooms more
than the baseline but still fails to detect some of the viewpoints.

Effect of optimization on viewpoint selection

The proposed methods are compared against the baseline exploration methods to investigate
the effect of optimizing the travel between the viewpoints.
The TSP framework plans the optimal path to visit all the explorable viewpoints in every itera-
tion and executes the first viewpoint in the optimized sequence. However, because of the cyclic
planning, the first goal in the planned sequence can also be a long path. Hence the global path
optimization strategy can negatively affect the exploration, causing a considerable increase in
path length. This effect is noticeable in iSCEAM algorithm because of the more planning itera-
tion required to find viewpoints using sparse map uncertainty data.
Furthermore, it is not entirely fair to make a verdict on the performance based on comparing
the path length and exploration time since the robot has to travel more to visit the viewpoints.
However, a comparable time and path length of the SCEAM algorithms are notable.
Exploring the complete house without missing out on any rooms is the goal of the algorithm.
The consistency in the area explored by both algorithms on all the environment supports its
expected behavior.
Moreover, in all the environments, both the proposed algorithms can locate viewpoints within
the explored regions. While the exploration algorithms in the literature do not visit all the
rooms. Hence considering the application of mapping, the proposed algorithm is functional.
However, the algorithm is in the initial versions and needs more attention to eliminate behavior
that causes path repetitions. Further, the sampling technique used to train the GP for detecting
the viewpoints should be improved to a more even distribution of samples.
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6 Conclusion and Future work

6.1 Conclusion

In this thesis, the viewpoints to perform scanning were detected using a 2D LIDAR sensor to
automate the process of mapping. Further, a sequence to visit the viewpoints were determined.
This research addressed the following questions.

"How to develop an algorithm to detect viewpoint within the rooms using geomet-
ric relationships, provided a complete house map?"

In this research, a novel Gaussian processes based algorithm is developed to transform the
spatial information to a surface function that can evaluate the visibility at every point in the
environment to detect viewpoints. Further, it has been investigated that a consistent and ro-
bust detection of viewpoints required GP model with a Matern52 kernel, trained with 250-500
samples and tested with a 100x100 mesh. The results confirm that the GP is a powerful tool to
correlate spatial information while using a 2D LIDAR and is capable of detecting viewpoint in
all the 12 rooms of varying sizes in the test environment.

The following research question studies the effect of viewpoint detection during exploration.

"Given a partial map from the SLAM algorithm, how accurately can viewpoints be
predicted during the exploration?"

To evaluate the prediction of viewpoints with a partial map, the viewpoint detection was
adapted to develop two exploration algorithms called SCEAM and iSCEAM. The former ex-
plores by actively learning spatial relations, and the latter uses map uncertainty also. The re-
sults indicate that the GP model trained with the identified parameters succeeded in detecting
viewpoints with an approximate error of 1m using only the partial map. The SCEAM algorithm
locates 10 out of 12 viewpoints, while sparseness in map uncertainty data used to train iSCEAM
algorithm results in detection of only 8 viewpoints. Further, substituting random sampling with
a more efficient technique is believed to improve GP training and increase prediction accuracy.

The following research question compares the exploration of the proposed algorithm with the
baselines.

"How does optimizing the route between the viewpoints affect exploration com-
pared to heuristics used by baseline methods?"

To find the sequence by which the viewpoints should be visited, a TSP based formulation had
been used to optimize the travel distance for visiting all the viewpoints in each exploration cy-
cle. A comparison of the proposed algorithms with baseline methods showed that SCEAM al-
gorithm performs equivalent to others considering the path length and exploration time. Nev-
ertheless, iSCEAM takes a longer time and travels more during the exploration because the
optimization affects the algorithm negatively. Results of the area explored showed that both
SCEAM and iSCEAM algorithms explore 90.34% and 89.2% respectively on an average in all the
environments and are the highest compared to the baseline.
The results of exploration demonstrate that the baseline methods explore the environment
with shorter and simple paths. However, these methods do not visit the viewpoints inside ev-
ery room. On the other hand, the proposed algorithms have longer paths and are repeated,
but still, they succeed in visiting viewpoints of all the visible rooms. However, since the SCEAM
algorithm has comparable path length and time of exploration with the baseline, it is the best
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among the choices for exploration in the mapping application.
This research shows that learning spatial relations is a convenient approach to locate view-
points by using only the 2D LIDAR. Moreover, the proposed SCEAM algorithm can be used to
automate mapping based on the results obtained. However, the algorithm explores only 90%
of the area, and hence more developments are required to improve the exploration.

6.2 Future work

The presented research can be extended in the following directions:
Probabilistic sampling
In the proposed algorithm, the GP model is trained by randomly sampling points inside the
polygon map. However, when the explored area becomes larger, the density of samples reduces
and hence can fail to model certain regions. An improvement over the current method can be
to learn the explored area so that more samples can be drawn near the unexplored region. The
trajectory samples could be used to identify the explored regions. Further, using a probabilistic
sampling technique like the Monte-Carlo Markov chain (MCMC) can be used to predict the
posterior from the information about the explored region.

Multi-polygon map
The current implementation of the polygon map only considers the exterior boundary assum-
ing a concave polygon environment. However, the objects in the interior polygon will be elim-
inated by this assumption. Hence, the polygon mapper should be improved to model interior
boundaries as well. This could be done by extending the single polygon map to a multi-polygon
model, which includes both interior and exterior boundaries.

Motion planning
In the current version, discrete points are selected as viewpoints, and the navigation stack pro-
vided by ROS is used for motion planning. However, the Gaussian process model provides a
distribution of depth property, which models the safe traversable regions in the map. Due to
the continuity of GP models, it is possible to use the predicted values as a cost to plan paths
explicitly to the viewpoints. Further, the values could be used as rewards in a reinforcement
learning framework to develop continuous motion planing models.

Exploration in a 3D environment
The research shows that modeling spatial relations can also provide a safe traversable region.
However, the same concept can be extended to volumetric models. The 3D point cloud can
be used to capture more detailed spatial representation. Using semantic maps along with the
spatial model will enable extending the algorithm to be used in more cluttered and occluded
environments. Moreover, identifying safe traversable volumes will be highly beneficial for un-
manned ariel vehicles (UAVs) operating in indoor environments.
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A Fundamentals of Gaussian processes

Gaussian processes (GPs) are popularly considered as a powerful tool in machine learning Ras-
mussen (2004). GP can be used to predict the value of a function given some prior knowledge.
This provides an ability to capture the data to fit into a function, commonly known as regres-
sion.

A.1 Multivariate Gaussian distributions

In a multivariate Gaussian distribution X , each of the random variable belongs to a normal
distribution and has a joint distribution which is a Gaussian. The Multivariate Gaussian distri-
bution is defined using a n ×1 vector of mean µ and n ×n covariance matrix Σ. Which can be
mathematically represented as shown in Equation A.1.

X ∼N (µ, Σ) (A.1)

Where, diagonal elements of Σ represents variance of all points and the off-diagonal elements

Figure A.1: A joint distribution of X1 and X2, created using the visualization tool provided by
Görtler et al. (2019). Left: X1 and X2 are correlated (). Right: X1 and X2 are non-correlated.

describes the correlation between each other random variable in X . The covariance matrix Σ
visualises the shape of the distribution. Considering any two points from the input vector X ,
the covariance can be represented as E(Xi , X j ) where E denotes the expectation, see A.2.

Σ= E[(Xi −µi )(X j −µ j )T ] (A.2)

In the Equation, (Xi −µi )(X j −µ j )T is basically the dot product, and dot products are used to
measure similarity. Considering the joint probability of a 2D example, given by X = [X1 X2]T ,
the covariance matrix can be visualized as shown in Figure A.1

After representing the data as a Gaussian distribution, to extract information, some operations
have to be performed.

A.1.1 Marginalization

Marginalization is an operation performed on Gaussian distribution to separately extract in-
formation provided by a single stochastic source of a joint distribution. The peculiar property
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of this operation is that it always yields a Gaussian, which is part of the joint distribution. Con-
sidering a joint probability distribution of variables X1 and X2, as denoted in Equation A.3:[

X1

X2

]
∼N (µ, Σ) =N (

[
µX1

µX2

]
,

[
ΣX1 X2 ΣX1 X2

ΣX2 X1 ΣX2 X2

]
) (A.3)

Given the joint distribution, the marginalized X1 and X2 can be formulated as A.6 and A.7

X ∼N (µX1 , ΣX1 X1 ) (A.4)

Y ∼N (µX2 , ΣX2 X2 ) (A.5)

This corresponds that the marginalized variable only has dependency on its own µ a Σ. The
Figure A.2 (left) shows marginalization of X2.

Figure A.2: A joint distribution of X1 and X2, created using the visualization tool provided by
Görtler et al. (2019). Left: marginalization of X2 Right: conditioning X1 at X1 = 1.94.

A.1.2 Conditioning

Conditioning is an operation performed on Gaussian distribution to obtain the probability
value of a variable given the other. The result of a conditioning operation is also a Gaussian.
Conditioning can be visualized as slicing the multivariate distribution through the condition.
The projection obtained while slicing is the conditioned Gaussian. Conditioning of X1 given X2

and the vice versa are in Equation:

X1|X2 ∼N (µX1 +ΣX1 X2Σ
−1

X2 X2 (X2 −µX2 ), ΣX1 X1 −ΣX1 X2Σ
−1

X2 X2ΣX2 X1 ) (A.6)

X2|X1 ∼N (µX2 +ΣX2 X1Σ
−1

X1 X1 (X1 −µX2 ), ΣX2 X2 −ΣX2 X1Σ
−1

X1 X1ΣX1 X2 ) (A.7)

In the Equation A.6 and A.7, the conditioning variable is required to compute the conditioned
µ. However, the computation of the covariance matrix Σ is independent of the variables di-
rectly. This dependency is clearly visible from the Figure A.2, where the covariance remains the
same and mean shifts.
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A.2 Gaussian processes

Considering a multivariate distribution, of a vector with two variables as shown in Equation
A.3, the Equation can be simplified by taking vector X with mean vector as µ and covariance
matrix as Σ. To obtain a representation like in Equation A.1.
Considering a univariate Gaussian distribution, any sample in the distribution can be repre-
sented as the sum of their mean and standard deviation, where standard deviation is the square
root of variance. Now, to obtain such a representation in the case of a multivariate distribution,
the Equation A.1 can be represented as in Equation A.8.

X ∼µ+LN (0, I ) (A.8)

In the Equation A.8, L is the root of the covariance matrix, which is then multiplied to a Gaus-
sian with zero mean and covariance as the identity matrix. This is a case of representing several
linear equations in the form of vectors and matrices. The elegance of this simplification lies
in obtaining the root of the covariance matrix Σ, represented as L, where L is denoted as the
CholeskyDereniowski and Kubale (2003) of the covariance matrix Σ.
From Cholesky decomposition, it can be stated that, for any n ×n symmetric positive definite
matrix A, there exists a lower triangular matrix L such that L times its transpose gives the matrix
itself. As shown in Equation A.9.

A = LLT i .e., Σ= LLT (A.9)

The discussion above demonstrates a representation of any sample in a multivariate distribu-
tion. However, something more interesting is to obtain a model of a function f (X ) for any given
X in the distribution. Then, the multivariate distribution over the functions can be represented
by the Equation A.10.

F ∼N (µ,K) (A.10)

Where, in the Equation A.10, F is the vector of functions, µ is the mean of the distribution of
functions and K is the covariance matrix. Given a function and the sample, the trick to create
the joint model to find the relation between each term in the function vector. Generally, the
covariance matrix that measures the similarity between the terms can be calculated using the
covariance function called a kernel. The idea behind using such functions is from the logic that
the value of the function of nearby samples from the distribution will be similar, and that of far
away will be less correlated. There are several kernels (covariance functions) that can be used
to approximate the covariance matrix based on the complexity of the function to be modeled.
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B Design of polygon mapping algorithm

This section gives step-wise description of the polygon mapping algorithm. This algorithm
connects the scanned points into a polygon map. When the robot starts to move, the mea-
surements obtained at new instances will be stitched to the old polygon by performing a union
operation. Even though this appears to be straight forward, a problem with this approach is
that the LIDAR measurements called scans obtained at each instance are not entirely aligned.
This misalignment is due to the error in localization due to drift in odometry and can result in
the map as shown in Figure B.1.

Figure B.1: Polygon map generated without using a SLAM correction (left). Occupancy grid
map representation of the same environment built by the robot using a SLAM algorithm (right).

Hence to correct this issue, simultaneous localization and mapping (SLAM) algorithm are es-
sential to correct the robot’s pose relative to the measurements obtained. The SLAM discussed
in Section 2.2 focuses on providing a general idea of estimating the robot’s pose by matching
the landmarks observed. Hence, for each new measurement, the point cloud should be aligned
with the previous point cloud, and the pose of the robot should be corrected. An approach
called iterative closest point (ICP) (Segal et al., 2009) algorithm is commonly used to obtain
transformations between new LIDAR scan and the previous. The steps in ICP is given in the
next section.
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Steps in ICP algorithm

Association

Association is the process of
identifying points in the new
scans that correspond to points
in the previous scan and are
usually achieved using a near-
est neighbor search. Hence this
operation pairs up the points
from both the scans. The cyan
color represents the new scan
and the purple the previous.

Transformation

Transformation is the process
of identifying the transforma-
tion between the two scans
so that the mean square er-
ror between the pairs is mini-
mum. Moreover, the transfor-
mation that minimizes the er-
ror corresponds to the correc-
tion factor of the robot’s pose,
and hence, the scans can be
nearly aligned. The line con-
necting the associated points of
two scans visualizes the trans-
formation needed.

Error evaluation

Error evaluation is the process
of comparing the two nearly
aligned scans to find out the er-
ror between them. This error
is minimized below a particular
threshold value by iteratively
repeating the steps. Hence, the
accuracy of the prediction is
improved. The purple and cyan
scans during the iteration visu-
alizes the correction.

Table B.1: Three steps in an iterative closest point algorithm. The visualization is adapted from
Kramer,(2019).
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B.1 Point cloud filtering and down-sampling

The LIDAR scan measurements have sensor noise, which produces an error in their range mea-
surements. The 2D point cloud containing the noise should to be filtered for obtaining the re-
quired polygon map. Even though there are several filter techniques in 3D, such techniques
do not work effectively for 2D. Moreover, maintaining the geometrical structure is also a chal-
lenge. Hence to tackle this problem, rather than filtering, a curve simplification approach is
more suitable. Therefore a general curve simplification algorithm called Douglas−Peucker al-
gorithm (Visvalingam and Whyatt, 1990) is used to filter the point cloud by simplifying the con-
nection between them.
This algorithm uses a simplification factor γ to determine the smoothness of the curve. Which
executes piecewise evaluation that divides the entire set of points, top-down iteratively. Fur-
ther, the points less than the simplification threshold in each segment are eliminated. Hence
each division is a simplified segment, and a lower simplification factor increases the smooth-
ness. However, the simplification operation should also ensure the reduction of the number of
points in the cloud. The cloud has a considerable number of points, which increases the com-
putational requirement and creates memory issues. Hence the curve simplification also should
down-sample the cloud by increasing the simplification factor. Hence a trade-off between the
number of points and the simplification quality is necessary. After several trials, a value of 0.04
was obtained, to work well in down-sampling and still succeeds in simplifying the curve with-
out losing much of the geometric information.
Given a set of boundary points that are obtained after filtering the point cloud, a polygon can

Figure B.2: Left: polygon map formed using disordered point cloud registration. Right: occu-
pancy grid map of the same environment, red region indicating the robot’s current scan.

be constructed by connecting them. However, a valuable property that needs to be satisfied is
the order of the points, which maintains the polygon’s structure. The point cloud gets updated
every time a new measurement is available. This also means that two nearby points can be reg-
istered at different instances of time and need not follow the order. A polygon constructed by
connecting the points is shown in Figure B.2.
To address the problem faced in Figure B.2, the polygon generated at every instance is stitched
to the polygon obtained at the next measurement by performing a union operation. This con-
tinuous stitching ensures that the lines passing through the interior of the polygon are elimi-
nated.
Further, since the scans have noisy range measurements, there is still a high chance for erosion
of some areas of the map, where erosion indicates the failure to construct a particular part of
the map due to the noise in the point cloud. This effect is visible when the robot scans both
sides of the walls. To prevent this from happening, a negative buffer β is added to the poly-
gon map. The buffer is a small region around the boundary of the polygon, with a width equal
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to the buffer value. A negative buffer causes the region to be inside the polygon and hence
compresses the actual boundary by the buffer value. Even though the buffer parameter cannot
eliminate the effect of erosion, it successfully reduces its occurrence. The polygon map con-
structed using the proposed method, and the effect of the buffer parameter is shown in Figure
B.3. The polygon mapping algorithm is showed in Algorithm 6. The proposed polygon map-
ping algorithm aims at creating a continuous relation between the discrete set of scan points.
This implementation is imagined as correlating the occupied cells of an OG map.

Algorithm 6: polygonMapping

Input: P: Point cloud ; // Aligned point cloud from ICP SLAM
Output: P̄ : Polygon map
k ← 0 : time step;
β←−0.25 : Buffer value ;
γ← 0.04 : Simplification factor ; // Simplify polygon edges less than γ

Pi ni t ← P
Si ni t ← LineSimplification(Pi ni t ,γ); // Filter, down-sampling (Visvalingam
and Whyatt, 1990)

Si ni t_bu f f er ← applyBuffer(Si ni t ,β); // Pad the polygon map with β

while k > 0 do
Sk ← LineSimplification(P,γ)
Sk_bu f f er ← applyBuffer(Sk ,β)
P̄ ← Sk_bu f f er ∪Si ni t_bu f f er

Si ni t_bu f f er ← LineSimplification(P̄ ,γ);
k = k +1;

end

Figure B.3: Polygon map using the proposed algorithm and the effect of buffer parameter. (a)
polygonal map without a buffer parameter. (b) polygonal map with a buffer value β = 0.25,
which is less prone to erosion. (c) occupancy grid map, red: robot’s current scan.

Representing the wall boundaries in the form of a polygon makes it easier to evaluate the rela-
tionship between the polygon and the points enclosed by it using geometric techniques. The
developed polygon map is a tool that will be used to comprehend spatial relations to detect the
viewpoints.
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C Iterative closest point SLAM formulation

The ICP SLAM algorithm starts by finding the transformation between two consecutive point
cloud measurements. For two consecutive point clouds P = {p1, p2, ..pn} ∈ R2n and Q =
{q1, q2, ..qn} ∈ R2n , the aim is to find a translation te and rotation Re , such that the sum of the
squared error E(Re , te ) between the point cloud is minimized.
The translation te is found using the difference between the center of mass of each point cloud,
given by points pcom and qcom , which is calculated as in Equation C.1.

pcom = 1

n

n∑
i=1

pi , qcom = 1

n

n∑
i=1

qi

te = pcom −qcom (C.1)

To obtain the rotation matrix, consider a matrix A such that the decomposition of A can be
written as in Equation C.2.

A = (pi −pcom)(qi −qcom)T =UW V T (C.2)

Given the decomposition, the rotation matrix Re can be found using singular value decompo-
sition (SVD), given by Equation C.3.

Re =UV T (C.3)

Once both Re and te are obtained, the homogeneous transformation T̃ between point clouds
P and Q can be found by running optimization to minimize the squared error as shown in
Equations C.4 and C.5.

E(ee , te ) = 1

n

n∑
i=1

||pi −Re qi − te ||2 (C.4)

T̃ = argmin
Re ,te

{E(Re , te )} ∈ SE(3) (C.5)

The obtained transformation can align the two point clouds to form a merged point cloud
P = {p1, p2...pm} of m points. Similarly, the pose of the robot also should be corrected based on
the measured point clouds.
Consider that, point cloud P is measured at a sensor pose si ∈R6 and Q at s j ∈R6, represented
in global frame. Then a graph SLAM can be formulated with each sensor pose representing a
node on the graph and the edges represents the motion constraint. The SLAM algorithm starts
by predicting the transformation between the sensor’s pose, and then the measurements are
used to update the prediction made. The predicted transformation represented by the twist
Ti j ∈ R6 is the expected relative transformation between two point cloud measurements as
given in Equation C.5. Twist allows minimal representation suitable for optimization com-
pared to homogeneous transformation. Therefore, a motion composition operator ⊕ is used
to concatenate two sensor poses using the transformation as given in Equation C.6.

s j = si ⊕Ti j (C.6)

The observation is given by the odometry data oi j ∈ R6 which is the relative motion between
the two sensor pose. To define the optimization setting an error function ei j (x) between the
predicted and measured transformation is defined, where x = {s1, s2, ..sk } ∈ R6k , is the sensor
state vector. The error can be computed using the motion composition operator ª as shown in
Equation C.7.

ei j = oi j ªTi j (C.7)
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The error is distributed normally with covariance Σ to account for the observation noise.

ei j ∼N (0,Σi j ) (C.8)

The aim is to obtain the state vector x∗, such that the observation error is minimized. However,
to perform minimization, a better option is to compute the negative log-likelihood L and min-
imize its summation over all the motion steps taken by the robot, as shown in Equation C.9.

Li j (x) =− log p(ei j ) ∈R (C.9)

For all the sensor poses in the state vector x, the pose that minimizes Li j (x) is given in Equation
C.10 and C.11.

x∗ = argmin
x

∑
i j

Li j (x) (C.10)

x∗ = argmin
x

∑
i j

ei j (x)TΣ−1
i j ei j (x) (C.11)

The minimization can be solved by non-linear optimization techniques like Gauss-Newton or
Levenberg-Marquardt to estimate the state vector x∗ ∈ R6k , which gives the robot’s position at
any instance. Moreover, the measurements are also concatenated to update the polygon map
at every step.
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D Methods to detect explorable regions

D.1 Wavefront frontier detection

A wavefront frontier detection (WFD) algorithm developed by Keidar and Kaminka (2014), im-
plements two levels of breadth-first search (BFS*)algorithm. The BFS is a graph-search algo-
rithm that is used to find the shortest paths. The search proceeds with the starting node and
evaluates all accessible node from it, the search continuous by repeating this until the evalua-
tion of all the available nodes. Keider and Kaminka considered the grids in an occupancy grid
map as the nodes. He evaluated all the unoccupied cells in the observed subspace until he
finds a frontier cell. A frontier cell is distinguished by the neighbors, which would be classified
as free on one side and unknown on the other. After detecting the frontier point, the algorithm
executes another BFS that progresses along the frontiers to identify the entire frontier segment.
These segments will lead to more exploration.

D.2 Fast frontier detection

Fast frontier detection (FFD) is another algorithm for detecting exploration doorways devel-
oped by Keidar and KaminkaKeidar and Kaminka (2014). The FFD algorithm is not imple-
mented on the map representations, besides it uses the laser scans measurements. The laser
scans are used to build a contour by implementing a line drawing algorithm known as Bre-
senham’swik (2019). Bresenham’s algorithm is used to approximate a line segment through a
given set of points. These selected contours are stored and updated to accomplish continuous
frontier detection.

D.3 Information based detection

In an occupancy grid composition, the cells are valued based on their probability of occupancy.
These values update continuously on obtaining new measurements. Moreover, in a LIDAR, the
beams will be denser in regions close to the sensor and sparse towards the maximum measur-
able range. Hence the laser beams that do not hit any obstacle will have an uncertain estimate
in the region near the maximum range. Such beams usually cannot make a conclusive decision
on their occupancy. Hence a probability of occupancy is considered, such that the explorable
region will have an occupancy probability of around 0.5.

*BFS: https://en.wikipedia.org/wiki/Breadth-first_search

Atul Hari University of Twente

https://en.wikipedia.org/wiki/Breadth-first_search


61

E Additional simulation and results

E.1 Understanding the effect of length scale

E.1.1 RBF kernel for different length scale

The example considered to understand the effect of the length scale is shown in Figure E.1.

Figure E.1: GP posterior showing the effect of length scales 0.1, 1, and 5 on an RBF kernel for
100 training samples.

A short length scale of 0.1, a length scale of 1, and a long length scale of 5 for 100 training sam-
ples are used in the example. When the length scale is 0.1, very close by samples are correlated.
However, there are almost no nearby samples when 100 training samples are used. Hence, the
GP has peaked at only distinct points where it has been sampled. For a length scale 1, it can
be seen that the change in the correlation of samples across the walls is sufficiently captured.
However, for a longer length scale of 5, even the samples from two different rooms with similar
mean are related. The spacious rooms have more samples with high mean and less number of
samples with low mean. Therefore a smooth function like RBF correlates the dominant mean
within the range of the length scale, which fails to model the walls. However, it is the vice-versa
for the region with smaller rooms, hence the central region of the rooms with higher mean are
not modeled.

E.1.2 Matern52 kernel for different length scales

Figure E.2 illustrates an example used to understand the effect of different length scale for the
same number of training samples on a Matern52 kernel.
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Figure E.2: GP posterior showing the effect of length scales 0.1, 1, and 5 on Matern52 kernel for
100 training samples.

The figure shows that for 100 samples, the length scale of 0.1 and 1 performs similar to RBF.
However, for a length scale 5, the reduced smoothness of Matern52 kernel is beneficial to cap-
ture a more significant number of different samples within a given length scale. This supports
the deduction that the Matern52 kernel can model varying spatial data.
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E.2 Simulation of exploration using SCEAM and iSCEAM algorithms

Figure E.3: Exploration using SCEAM algorithm. Red line: robot trajectory, green markers:
saved trajectory nodes used for remembering the visited region, orange line: path planned,
yellow: goal selected.
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Figure E.4: Exploration using iSCEAM algorithm. Red line: robot trajectory, green markers:
saved trajectory nodes used for remembering the visited region, orange line: path planned,
yellow: goal selected.

E.3 Simulation of exploration in different environments

The SCEAM and iSCEAM algorithms are simulated to explore in five environments. Figure E.5
shows the exploration trajectory of the developed algorithms along with the baseline algorithm
that demonstrated best performance in each of the environments.
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Figure E.5: Comparison of exploration trajectory (starting: blue dot) with the baseline in Envi-
ronments 2,3,4 and 5.
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E.4 Resource utilization

In this section, the CPU and memory usage of the developed algorithms are illustrated. The
resource utilization of the SCEAM and iSCEAM algorithms are shown in Figure E.6 and E.7.

Figure E.6: CPU usage of the developed algorithms during exploration.

Figure E.7: Memory usage of the developed algorithms during exploration.

The additional modules that enables exploration includes the polygon mapping module and
the trajectory node, which utilise resources as shown in Figure E.8 and E.9.
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Figure E.8: CPU usage of trajectory node and polygon mapping module.

Figure E.9: Memory usage of trajectory node and polygon mapping module.
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