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Abstract

The current research contributes to the development of FutureType,
a word completion tool for medical reports, from two perspectives. First,
we evaluate the potential of a set of meta features about the patient,
author and the report itself to improve FutureType’s prediction capac-
ity. Second, we conduct a large scale split test involving the collection
of keystroke data from ten customer organizations of Nedap Healthcare,
involving 7062 healthcare professionals and spanning 14 and a half weeks
to investigate the transferability of instrinsic metrics of language model
performance to evaluation with real end users. Our results pave the first
steps towards a meta-enriched FutureType as we find distinctive power re-
garding vocabulary choices for three meta features: the healthcare sector
a report originates from, the type of the report and the expertise of the
author of the report. The results from the split test advocate a holistic
approach to the evaluation of text prediction applications that takes into
account both, the system’s utility (i.e., the quality of its predictions) and
its usability.
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1 Introduction

For software companies such as Nedap Healthcare, one way of supporting
healthcare professionals in their evermore demanding work due to an aging pop-
ulation and the lack of healthcare professionals on the job market is building
their software for efficiency and ease of use. To this end, Nedap Healthcare puts
effort and resources into developing FutureType, a word completion tool for
medical record writing. In 2019, Hanekamp, Heesbeen, van der Helm and Valks
[1] conducted research on the administrative pressure in long-term care, involv-
ing 7700 healthcare professionals in the Netherlands. They found that health-
care professionals spend on average 35% of their time on administrative tasks.
This marks a sharp increase compared to 2016 and 2017, when professionals
spent 25% of their time on medical documentation and compared to 2018, when
administration claimed 31% of their time. Depending on the healthcare sector,
professionals spend even more time on administration. In 2019, administrative
tasks claimed 40% of working hours in mental health care. Study participants
report that they invest most administration time in the electronic health record
(EHR). In EHRs, care plans are written out, the intake of medication and the
recovery process of patients are documented.

Unstructured text still accounts for the majority of medical documentation even
though benefits of structured ontologies are well established [2]. Professionals
prefer the ease of using unstructured, natural language and regard structured
formats as not doing justice to the complexity of reality [2], [3]. In accordance
with Sevenster, Ommering and Qian [4], we expect four main benefits of text
prediction, and word completion in particular, in the healthcare domain:

1. Word completion saves keystrokes and thereby reduces the number of mis-
spellings.

2. Word completion reassures the person who is typing that their mental
model is aligned with the software, increasing their confidence and user
experience.

3. Word completion can be used to explore the system’s underlying vocab-
ulary. As a result, it enables and encourages the user to write (medical)
terms even if they cannot spell them.

4. Word completion encourages the use of standardized medical vocabulary
which enhances the quality and reliability of documentation. High quality
documentation also facilitates secondary use of medical data for research
purposes and automation of workflows.

Due to the expected benefits of text prediction in healthcare, there has been
an increasing interest in research about clinical text prediction in recent years
(e.g., [5], [6], [3]). FutureType is not the first experimental text prediction ap-
plication in a clinical setting. For example, Gong, Hua and Wang [3] developed
an auxiliary text prediction interface for patient safety reporting. Patient safety
incidents are nowadays often documented in a structured format, including sup-
plementary narrative text fields for detailed information. However, due to work
pressure and a lack of knowledge about standardized vocabulary, users often
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leave the text fields empty or use inaccurate or incomplete terms and sentences
to describe events. Using the text prediction system developed by Gong et
al., users wrote more details in the narrative text fields and the quality of the
narrative details increased.
In text prediction, suggestions are often generated by an underlying language
model that is trained on documents that are similar to the text for which the
text prediction model is used. Traditionally, language models predict the next
word in a sentence based on a chosen number of preceding words and the letters
of the word one is currently typing.
The clinical setting poses unique challenges for text prediction, including

• the usage of complex, medical terms that are often not found in regular
language dictionaries,

• the efficient, note-like writing style including many numerical measure-
ments that deviates from natural language grammar,

• the sensitivity of any real medical data that complicates finding suitable
training data for text prediction based on machine learning approaches.

Recently, text prediction models have been extended with information beyond
the immediate word context. Besides the immediate text context in which a
next word suggestion is requested, we can think of other information that is
useful for deciding which word is the best candidate for the prediction. For
example, the text snippet below could be written in a patient report

As discussed with her gynecologist, Miss Doe stopped taking

the pill the day before yesterday. Today, she complained

about pain in the lower abdomen. I gave her mild painkillers

for her <>

As a human reader, when we predict the missing word in the sentence marked
with <>, we take into account that here, Doe is a woman. The words marked in
red also make our choice for menstrual cramps more likely than the stomach

flu. In general, we would expect the words marked in red to rather occur in a
report on a female patient than on a male patient. Extending text prediction
models with information beyond the immediate word context exactly attempts
to capture the additional value of knowing that Miss Doe is female for predict-
ing the next word in the above example. We name models extended with such
information meta-enriched language models. In the current research, we ex-
plore architecture extensions, with which we can infuse FutureType with meta
information. In addition, we examine the added value of a set of candidate
meta features for FutureType’s prediction capacity. Our first research question
(RQ1) is formulated as follows:

RQ1: What is the potential of meta information about the patient,
the author or the medical report itself to increase FutureType’s pre-
diction accuracy for word completions?

A second research interest is about how text prediction models are evaluated
and how well common evaluation methods that do not involve user testing align
with the demands of real word applications. We name evaluation methods that
do not involve real users intrinsic evaluation. Methods that do involve real
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users we call extrinsic metrics. User testing is time-consuming and expensive
[7]. Therefore, text prediction models are often evaluated using intrinisc metrics
that are common in natural language processing (NLP), such as perplexity

and mean reciprocal rank for suggestion rankings [5]. Another popular form
of intrinsic text prediction evaluation is the calculation of theoretical keystroke
savings by simulating typing behaviour given an existing text corpus (e.g., [5],
[8]). Saving keystrokes is the main objective of text prediction, but in reality,
there are other important evaluation criteria for text prediction applications
that are neglected by focussing on intrinsic measures. One example is the timing
with which word suggestions are presented to a user that interacts with the text
prediction system. Indeed, as Nielsen [9] stresses, a system’s usability and
utility are two sides of the same coin

”It matters little that something is easy [to use] if it’s not what you
want. It’s also no good if the system can hypothetically do what
you want, but you can’t make it happen because the user interface
is too difficult.”1

Our second research question (RQ2) is therefore formulated as follows:

RQ2: How does performance as measured by intrinsic text predic-
tion metrics translate to extrinsic measures of performance involving
end users?

FutureType, a word completion tool for medical report writing, is under devel-
opment within the Healthcare branch of the Dutch technology company Nedap.
The text prediction feature is implemented in the Ons software package, an ap-
plication cluster for healthcare professionals. The following section briefly gives
an overview of Ons to facilitate understanding where FutureType is located in
the software package and how users interact with the feature.

Nedap Ons

Nedap Ons is a software suite for healthcare professionals consisting of mul-
tiple applications, including an electronic health record (EHR)2. FutureType
is currently implemented for three applications within Ons, the EHR (called
Ons Dossier), Ons Agenda and Ons Groepszorg. Ons Agenda is primarily used
by healthcare professionals that manage their own client appointments, such
as physiotherapists and clinical psychologists, and focuses on making appoint-
ments with clients. Ons Groepszorg is a mobile app for registering attendances
and absences in group care.
FutureType is implemented in the text fields of Ons applications. The feature
provides word suggestions as the user types. FutureType provides one word
suggestion at a time. Using the Tab key word suggestions can be accepted.
Alternatively, as a temporary solution until FutureType is optimized for usage
on mobile devices with no physical keyboard attached, word suggestions can
also be accepted by clicking on the suggestion. A thunder symbol in the upper
right corner of each text field can be clicked to toggle FutureType on and off

1https://www.nngroup.com/articles/usability-101-introduction-to-usability/, last ac-
cessed 2020-03-05

2https://nedap-healthcare.com/oplossingen/ons/suite/, last accessed 2020-03-05
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Figure 1: Screenshot of the FutureType word completion feature in Ons Dossier,
the electronic health record of the Ons software suite. The word suggestion
kriebelhoest (Engl. dry cough) is shown in a black speech bubble and can be
accepted by pressing the Tab key. Alternatively, a suggestion can be accepted
by clicking on it with the mouse cursor on laptops and desktops, and by hand
on mobile devices. FutureType can be enabled/disabled for any text field by
clicking the small black thunder symbol in the upper right corner of a text field.
The screenshot was taken in Nedap’s test environment and does not show any
real client data.

for the field. Figure 1 shows an example text field that has been enhanced with
the FutureType feature in Dossier.
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1.1 Overview

This thesis report is subdivided into two main chapters. Chapter 2: Towards
a meta-enriched FutureType represents the first pillar of contributions to
FutureType’s development and examines RQ1. We formally present the recur-
rent neural network (RNN) architecture of the current FutureType model. We
then review approaches in scientific literature for adding meta features to re-
current neural language models, which serve as templates for how we can enrich
FutureType with meta information in the future. We conclude the chapter with
a thorough evaluation of a set of candidate meta features that we extracted from
the Ons database, using two methods described in scientific literature: log-odds
ratios [10] and the Jensen-Shannon divergence [11]. The meta feature evalua-
tion tests the added value of the chosen set of meta features by investigating
the extent to which they can be used to identify characteristic words in medical
reports.

Chapter 3: FutureType pilot presents the setup and execution of Future-
Type’s first evaluation with real end users. Evaluating FutureType with its
target group, healthcare professionals who write medical reports as part of their
daily work activities, represents the second pillar of our contribution. We con-
duct a large scale A/B test over the course of 14 and a half weeks, among
10 customer organisations of Nedap Healthcare and collecting keystroke data
from more than 7000 healthcare professionals. By employing eight FutureType
models in the FutureType pilot that vary in their performance on an intrinsic
evaluation metric, prediction accuracy, we investigate RQ2. In particular, we
examine the impact of the internally measurable performance difference on how
our users experience FutureType and how they perform when they use Future-
Type. In addition, the chapter reviews relevant literature on keystroke analysis,
our chosen method of data collection for the pilot, and model ablation, which
we employ to generate eight versions of FutureType that vary in prediction ac-
curacy. Finally, we discuss our insights from the FutureType pilot and conclude
with a set of recommendations for future user evaluations of FutureType.
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2 Towards a meta-enriched FutureType

The current chapter examines the extent to which meta information external
to the immediate text context can be used to improve FutureType’s prediction
capacity. First, in section 2.1, we review language model architectures that
enable the inclusion of meta information in language models. In section 2.2, we
present the current architecture and performance of FutureType, with no meta
features implemented yet. As a first step towards enriching FutureType with
meta information, we thoroughly evaluate a set of candidate meta features that
we retrieved from the Ons database. These candidate meta features include

• the gender of the patient about whom the report is written,
• the gender of the employee who wrote the report,
• the healthcare sector from which the report originated,
• the expertise of the author of the report,
• from which care organisation the report originated,
• the type of the report,
• the age of the patient,
• the age of the employee who wrote the report.

Section 2.3 discusses our candidate meta features in more detail. Using log-odds
ratios [10] and the Jensen-Shannon divergence (JSD) [11], we examine whether
there are differences in word usage depending on our candidate meta features.
If we can demonstrate differences in word choice depending on the chosen set of
meta features, it is more likely that FutureType will profit from their inclusion
in the model.

For the current chapter, it is important to distinguish between FutureType as
a complete text prediction system and its individual components: the recur-
rent neural network (RNN) that yields next word predictions and the Python
webservice and Javascript frontend that integrate the model into Ons. In this
chapter, we refer to the RNN model whenever we use the name FutureType.
The explanation of the other two components is beyond the scope of the cur-
rent thesis, though some of the insights we collect may refer to improvements
in either one of these components.
We close this chapter by describing the first steps taken towards a meta feature
enriched FutureType model.

2.1 Related work: meta-enriched language models

Enriching recurrent neural network (RNN) language models with additional con-
text information has its origins in research that aims to capture long-span depen-
dencies in language models. Modelling long-span features in language models
is closely tied to what has become to be known as the vanishing gradient

problem [12], [13]. The vanishing gradient problem describes the phenomenon
that the farther error signals are propagated back in time, the smaller back-
propagated errors become until they are reduced to zero. This makes training
long-span dependencies in traditional RNNs impossible. Since the discovery of
vanishing gradients, several approaches have been proposed to tackle the prob-
lem. At the same time, this research contributes to enriching language models
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with long-span information beyond a limited word context.

Notably, Mikolov and Zweig [13] refer to a number of successful methods tailored
to N-gram language models, including latent semantic analysis (LSA) based
approaches [14], [15]. In LSA, long-span history is represented as a vector in
latent semantic space. The cosine similarity between a candidate next word and
the modelled history can be interpolated with N-gram probabilities for more
accurate predictions. While this works well for N-gram language models, it is
less suitable for neural network architectures. Therefore, Mikolov and Zweig
[13] contribute a RNN model architecture that takes an additional vector f as
input that represents meta information beyond the immediate word context. f
is directly connected to the RNN layer and the output layer of the model. Figure
2 shows a schematic overview of the context-enriched RNN model proposed by
Mikolov and Zweig.

Figure 2: The feature-enriched recurrent neural network (RNN) model archi-
tecture proposed by Mikolov and Zweig [13]. In addition to the word context
vector w(t) and the state at the previous timestep s(t-1), the feature vector f
is connected to the current state layer s(t) and the output layer y(t), with own
corresponding weight matrices F and G. Adapted from [13].

In initial experiments with this at the time novel RNN architecture, Mikolov
and Zweig [13] used Latent Dirichlet Allocation (LDA) to extract topic infor-
mation from the sentence history and provide the RNN model explicitly with
this information using feature vector f. In addition, the authors build a cus-
tom modification for efficient integration and updating of LDA context vectors
depending on the context window at the current time step. At the time of
publication (2012), they report a new state-of-the-art perplexity on the Penn
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Treebank (PTB) [16] portion of the Wall Street Journal corpus. By using their
LDA representations as additional input to the model, data fragmentation can
be avoided that is typically associated with the more traditional process of
training multiple topic-specific language models.
Mikolov and Zweig further notice that their meta-enriched architecture can also
be used to feed meta information that is external to the text to a RNN model. As
an example, the authors hypothesize a feature vector f that represents habits of
a user in voice search. In the case of FutureType, we indeed have a candidate set
of meta features at our disposal from other sources than the immediate sentence
history. This saves us the effort of extracting relevant meta information from
the text itself, as Mikolov and Zweig did using LDA. Section 2.3 describes in
more detail which meta features were extracted from the Ons database to enrich
FutureType with additional context information.

From ConcatCell to FactorCell

The context-enriched RNN architecture Mikolov and Zweig [13] originally pro-
posed in 2012 has inspired recurrent neural network adaptations such as lan-
guage model personalization [17] and taking genres into account in a multi-
genre broadcast speech transcription task [18]. The architecture has recently
been named ConcatCell by Jaech and Ostendorf [19], [20]. The authors [19]
show mathematically that adding a context embedding to the recurrent layer
via concatenation boils down to using a context-adjusted bias at the recurrent
layer, like so

ht = σ(Ŵ [wt, ht−1, c] + b)

= σ(W [wt, ht−1] + V c+ b)

= σ(W [wt, ht−1] + b
′
)

(1)

Where ht is the current hidden state and wt a word embedding. Ŵ = [W V ] is
the weight matrix that transforms the concatenation of the hidden state from
the previous time step ht−1, wt and the context representation c to produce
ht. Here, V c is equivalent to Mikolov’s and Zweig’s feature vector f and its
corresponding weight matrix F that connects the vector to the recurrent layer.
Note that the above formula only holds for context embeddings that are constant
for all time steps of an input sequence.

Instead of using context as an additional input, Jaech and Ostendorf [19], [20]
propose an architecture where context is used to adapt the recurrent layer weight
matrix. The idea is that increasing the direct influence of context information on
the model parameters produces models that are more responsive and adapted
to context. Mathematically, the authors extend the ConcatCell architecture
by introducing a context-dependent weight matrix W

′
= W + A. ConcatCell

uses a single weight matrix W that is shared across all context settings. A
is an adaptation matrix that is generated by taking the product of the context
embedding vector c and a set of left and right basis tensors that together produce
a rank matrix r. Given that the context representation has a dimensionality
of k, the word embedding w of e and the recurrent hidden states of d, we can
describe the dimensions of the left and right base tensors ZL and ZR, like so
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ZL ∈ Rk×(e+d)×r

ZR ∈ Rr×d×k
(2)

Together, the two base tensors hold k different rank r matrices, each of the size
of W . A is generated like this

A = (c×1 ZL)(ZR ×3 c) (3)

where ×i denotes with which dimension of the tensor the product is taken. For
both base tensors, this is the dimension that matches with k, the dimensionality
of the context embedding.
Taken together, left and right base tensors can be used as a factor to transform
the context embedding c to adapt the recurrent weight matrix, like so

ht = σ(W
′
[wt, ht−1] + b

′
)

W
′

= W + (c×1 ZL)(ZR ×3 c
T )

b
′

= V c+ b

(4)

During model training, rank r is treated as an additional hyperparameter and
controls the extent to which the generic weight matrixW is adapted with context
information. Jaech and Ostendorf call this the FactorCell model because they
adapt the recurrent weight matrix with a factored component. The authors
note that if the context is known in advance, W

′
can be pre-computed which

means that despite having many more parameters than the simpler ConcatCell
model, computational cost at runtime is comparable. They also note that the
ConcatCell model is a special case of the FactorCell, namely when ZL and
ZR are both set to zero.

Jaech and Ostendorf [19] thoroughly evaluate their FactorCell architecture in
direct comparison to Mikolov’s and Zweig’s ConcatCell model and a third, pop-
ular context-based adaptation to the softmax output, called the SoftmaxBias

(e.g, [21], [22]). The authors note that the latter is a simplification of the
ConcatCell model which in turn is a simplification of the FactorCell model.
The three methods are compared on four publicly available word-level and two
character-level data sets. The FactorCell model is on par or outperforms al-
ternative methods in both, perplexity and text classification accuracy, for all six
tasks. As long as contexts are known in advance, the benefits of the FactorCell
model come with no additional computational costs at test time, since its trans-
formations can be pre-computed.

Recent advances in context-enriched language models

Besides Jeach’s and Ostendorf’s FactorCell extension to Mikolov’s and Zweig’s
influential ConcatCell architecture, researchers have explored a variety of meth-
ods for generating a contextual representation that can be fed into neural lan-
guage models (e.g., [23], [24]). One notable recent contribution by Zheng, Chen,
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Huang, Liu, and Zhu employs a trait fusion module to embed persona rep-
resentations in a personalized dialogue response task. The authors combine
explicitly represented “personality traits ”, namely speaker age, gender and
location, using one of three methods: traits attention, traits average,
and traits concatenation. Traits attention merges all traits into a con-
text vector vp using an attention mechanism that is based on the previous

hidden state and an attention weight a
′

that is computed during model training
for each trait. vp is then obtained as a weighted sum of the individual trait
representations, like so

vp =

N∑
i=1

a
′

ivti (5)

where vti denotes the trait embedding representation of trait ti. Since the
traits considered in the study by Zheng et al. [23] are all single-valued, the
authors used simple look-up tables for trait encoding. The second trait fusion
method, traits average is a special case of traits attention where all trait
representation are weighted equally. The final trait fusion method, traits

concatenation simply concatenates the single-valued trait representations into
one context vector, with no additional attention mechanism.

Zheng et al. call the personality context vector vp “persona representation ”.
The authors implement and evaluate two methods for incorporating vp into a
sequence to sequence model: Persona-aware attention (PAA) and persona-

aware bias (PAB). Ultimately, the two persona decoding methods implemented
by Zheng et al. [23] mirror two earlier discussed popular context-based adap-
tation methods. PAB boils down to a SoftmaxBias approach, while PAA is
similar to the FactorCell model.

What started as an approach to tackling the vanishing gradient problem

while preventing data fragmentation by training multiple smaller language mod-
els has developed into a research discipline of its own: meta-enriched RNN lan-
guage models. FutureType is a RNN language model that is likely to profit
from meta information because of its specific medical vocabulary.
The reviewed literature on enriching RNN language models with meta infor-
mation reports performance improvements above models that lack additional
information beyond the immediate text context. We reviewed three popular
approaches to incorporating meta information into RNN language models: the
ConcatCell model, the FactorCell model and the popular SoftmaxBias ap-
proach. However, none of the reviewed research explains their motivation for
including the specific meta information they selected. Before deciding on a
model architecture to implement, we need to make a well-informed selection of
candidate meta features. It is unclear how researchers in the reviewed literature
distinguished between candidate meta features that are likely to benefit model
performance from those that will only clutter the parameter space.
Therefore, as an initial step towards enriching FutureType with meta informa-
tion, the remainder of this chapter explores the potential of the meta features
available in Ons for improving FutureType’s text prediction capacity. To this
end, we first introduce the current model architecture and performance of Fu-
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tureType, with no meta features implemented. Then, we conduct an elaborate
meta feature evaluation using log-odds ratios and Jensen-Shannon divergence
(JSD) scores to explore differences in the vocabulary of medical documents, de-
pending on variables such as the type of the report or the gender of the patient.

2.2 Baseline FutureType

Architecture

In a nutshell, the text prediction model named FutureType takes a sequence
of eight words as input and predicts a single word as output. In the process,
words are represented as embedding vectors of size 300. As Yin and Shen [25]
note, 300 is the most commonly used ad-hoc dimensionality for embeddings.
In his article on empirical observations on word embeddings, Arora [26] also
discusses:

“A striking finding in empirical work on word embeddings is that
there is a sweet spot for the dimensionality of word vectors: neither
too small, nor too large. ”3

To reveal why the rule of thumb dimensionality of 300 works well for many
settings, Yin and Shen [25] developed a method based on mathematical the-
ory as well as empirical results to determine the optimal dimensionality for
word embeddings, depending on the corpus they are trained on. Their method
aims at finding the optimal dimensionality that minimizes the Pairwise Inner

Product (PIP) loss, which they describe as a dissimilarity metric between
two word embeddings. Yin and Shen validate their theoretical accounts on the
Text8 corpus [27]. We leave finding the optimal dimensionality for our corpus
to future work and adapt the empirically well-proven dimensionality of 300 for
our current word embeddings.

Word embedding vectors were not trained during model training, but generated
using the fastText4 library [28]–[30]. The word embeddings were pre-trained on
the same corpus of 308 million medical reports that we later used for training
the FutureType model. Embeddings were trained for 25 epochs using default
parameters tailored to the Skip-gram model for learning word representations,
with the exception that we created a vector representation for all tokens in
the vocabulary, including punctuation and misspelled words. Using the default
settings, only words with a minimum corpus frequency of 5 are represented as
vectors. In total, we trained 1 555 341 Skip-gram word vectors. We chose the
Skip-gram architecture since it yields better representations of rare words [31],
which we expected to deal with in our medical corpus. During model prediction,
out-of-vocabulary words were assigned a special word embedding, consisting of
only zeros.

Regarding architecture, the FutureType model consists of a single bidirectional
long short-term memory network (LSTM) layer [32], allowing simultaneous for-
ward and backwards processing of the input sequence. The bidirectional LSTM
layer has 2 × 100 nodes with hyperbolic tangent activation. The dense output

3https://www.offconvex.org/2016/02/14/word-embeddings-2/, last accessed 2020-28-02
4https://fasttext.cc, last accessed 20-02-2020
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layer had 39 074 nodes with softmax activation, each output node corresponding
to a word in the output vocabulary. Figure 3 shows a schematic overview of the
baseline FutureType model.

Figure 3: Architecture of the baseline FutureType model. The model takes an
input sequence of eight words and predicts a single next word given the input
sequence. Word embeddings had a dimensionality k of 300. The bidirectional
LSTM layer had 2× 100 nodes and the dense output layer had 39 074 nodes.

Data

We randomly sampled 1 000 000 documents from the database of Nedap Health-
care to train the FutureType model. Such a document was an entry in a real
medical report written by employees using the Ons software. Since the baseline
FutureType model takes sequences of eight words as input to predict a ninth
word, we randomly sampled 20 million sequences of length 9 from the corpus of
1 million documents. A sequence could be any nine consecutive words in any of
the sampled documents. Specifically, we sampled sequences by randomly deter-
mining 20 million target words that needed to be predicted and then retrieving
their preceding eight words, including punctuation. We padded sequences at
the beginning of a document so that we always sampled sequences of length 9,
even though the target word may not have been preceded by eight words in the
document. The 20 million sampled sequences were split into training, valida-
tion and test set with a 99.5%/0.25%/0.25% split, where 99.5% of all sequences
were assigned to the training set, and 0.25% respectively to validation and test.
As discussed in detail in section 2.2, additional filtering was performed to en-
sure that the sampled sequences did not include misspelled words as prediction
targets. The filtering reduced the final training, validation, and test sets to
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3 845 683, 9523 and 9757 sampled sequences respectively. Table 1 summarizes
descriptives for the dataset used to train and evaluate the FutureType baseline.

Table 1: Descriptives of the 20M sampled sequences, each consisting of 9 words,
from a random sample of 1 000 000 medical reports managed by Nedap Health-
care. Descriptives were calculated after filtering, which reduced the final number
of sampled training, validation and test sequences. Filtering and only affected
the target word, which means that sampled word contexts, that is the model
input, could contain words with less than six letters, even if they did not contain
special characters such as a trema (ä).

Training Validation Test

N samples 3.845M 9523 9757
N words 34.611M 85 707 87 813
Median length all words 5 5 5
Median length target words 8 8 8
Vocab size (tf 1*) 146 961 8622 8843
Vocab size (tf 2) 111 716 3642 3711
Vocab size (tf 5) 57 356 1541 1608
Vocab size (tf 10) 38 863 868 887
Vocab size (tf 20) 26 040 463 465
Vocab size (tf 100) 9928 101 105

* tf stands for minimum term frequency and means that all tokens included
in the vocabulary occurred at least n times. For tf 1, all tokens in the corpus
are counted.

Model training

The training pipeline for FutureType contained a number of preprocessing steps.
Most notably, the size of the output vocabulary was reduced by filtering based
on word frequencies and a customized spelling correction algorithm. Reducing
the size of the output layer has a number of advantages, including a faster in-
ference time in real application settings and a significant reduction in training
parameters, which speeds up model training. Frequency filtering also reduced
the chance of predicting privacy sensitive words, such as names. Spelling correc-
tion was targeted at preventing FutureType from suggesting misspelled words.

Output vocabulary reduction
As a first step towards optimizing the output vocabulary, we chose to only
predict words that occurred more than 1000 times in the training set. Second,
all words shorter than 6 characters were removed. In terms of keystroke savings,
most can be gained by predicting long words. Next, Dutch first and last names
were filtered. Two public data sets [33] of the 10 000 most frequent Dutch first
and last names were used for this purpose.

Finally, a custom spellcheck was performed. Spelling correction was based on
dictionary look-ups and (frequency based) heuristics. Unfortunately, we failed
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to actually apply the spelling correction as to the output layer vocabulary of
FutureType due to a bug. However, we did identify spelling mistakes using the
algorithm and will apply the spelling correction to future re-trained FutureTyoe
models.
At the beginning of the spellcheck, misspelled words are identified by checking
the corpus against the Hunspell dictionaries for the Dutch language5.
For words that did not exist in the dictionary, we generated a spelling update.
Updating misspelled words included finding close matches in the corpus using
the Python library difflib6 for comparing two sequences. Difflib sequence
matching is based on the Ratcliff/Obershelp pattern recognition algorithm [34],
[35]. The minimum similarity had to be 0.8 out of 1. We executed a number of
additional checks to find the best of all close matches, including

• The first two characters of a misspelled word and any close match identified
by the difflib had to be the same

• The candidate match’s prevalence in the corpus is higher
• The misspelled word had a minimum length of 4 letters

If all of the above conditions were satisfied, we checked whether the conversion
from misspelled to correctly spelled match was a matter of adding accents (e.g.,
â, ä, à). If it was, we added the accents. Otherwise, we checked whether a single
letter transformation was possible based on the Levenshtein distance metric [36].
If it was possible, the candidate was chosen as correct match.
If the algorithm failed for all close matches we extracted using difflib, the
misspelled word was simply removed from the vocabulary, without a substitute.
The spellcheck algorithm was combined with three other manual filtering con-
ditions so that all words that did not satisfy minimally one of the following
additional conditions were also removed from the output vocabulary.

• The word consists of minimally 7 characters so that long words are kept
in the vocabulary.

• The word contains tremas (¨) or other special characters. Words that do
contain special signs were considered the less frequent, but correct variant
of words that did not pass the String length filter.

• The word was matched to a spelling mistake as the correct form of the
word7.

The snippet below shows misspellings of the word medicatie (Engl. medication)
that our custom spelling correction mapped to the correct spelling of the word.

5http://hunspell.github.io
Downloaded from https://github.com/elastic/hunspell/tree/master/dicts/nl NL, last ac-
cessed 25-03-2020

6https://docs.python.org/3/library/difflib.html, last accessed 25-03-2020
7While reviewing the code, we came across a noteworthy bug in the implementation of

these last filtering steps. The bug is related to how the filtering logic was applied (a chain of
OR operators). Unfortunately, we failed to only filter spellings which were earlier identified as
correct which led to the inclusion of misspelled words in the output layer despite our efforts
to identify misspellings. Since we already removed words that were shorter than six letters at
the very beginning of the output layer filtering pipeline, they all had a length of minimally
six letters.
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mediciatie ( 2773 ) => medicatie ( 22392278 )

mediacatie ( 1387 ) => medicatie ( 22392278 )

medicaie ( 1825 ) => medicatie ( 22392278 )

medicstie ( 3548 ) => medicatie ( 22392278 )

medicarie ( 1327 ) => medicatie ( 22392278 )

Listing 1: Spelling mistakes of the word medicatie (Engl. medication) that
were caught by our custom spelling correction and mapped to the correct
spelling of the word. The frequency counts in the training set of each misspelling
and the correct variant of the word are included in brackets.

Note that FutureType does not perform spelling correction in real-time while
the user types. Spelling correction was performed for model training only.
The applied filtering strategies and (attempted) spelling correction shrank the
output vocabulary size from 1 555 342 to 39 074 words. The spelling correction
was “attempted ” because a bug in the filtering logic we applied led to the ac-
cidental inclusion of misspelled words, despite all our previous and very fruitful
efforts to identify misspellings. In the end, the filtering caused words that were
shorter than six letters and did not contain a special character like a trema (¨)
to be excluded from the output layer. This reduced the final training, validation
and test samples to 3 845 683, 9523 and 9757 sampled sequences respectively.
We thus tried to exclude misspellings from the output layer and the set of
possible training, validation and test target words.

As further explanation for our decision, at first glance, excluding misspellings
may sound dangerously as if we had intended to overestimate prediction perfor-
mance during intrinsic evaluation. The logic behind this decision was that we
did not want to punish our model for predicting correct words when the model
was trained on data containing misspelled variants of the same word. Above
all, we did not want the model to learn frequent misspellings, such as client

instead of the correct cliënt in Dutch. Spellchecking was only intended for the
output vocabulary, misspellings did have a word embedding representation and
could be fed to the model as input. In the future, the model will be re-trained
with the spellchecking described above and the bug removed.

Training with default parameters
The baseline FutureType model was trained for 20 epochs with default param-
eters for LSTM models. We used a batch size of 256, categorical crossentropy
as loss and Adam as optimizer. We reduced the base learning rate of 0.001
whenever validation accuracy did not improve for 3 consecutive epochs with a
factor of 0.1. We stopped early after 5 epochs if no improvement in validation
accuracy took place. A dropout of 0.4 was added between the word embedding
input and the LSTM layer. Between the LSTM output and the dense output
layer a dropout of 0.2 was added. No systematic hyperparameter optimization
was conducted for the baseline model.
Table 2 documents the accuracy and perplexity the trained model achieved on
1000 randomly sampled sequences from the validation and test set. Accuracy
and perplexity were calculated for varying prefix lengths which mimics how users
interact with word completion. A user may not accept a suggestion right away,
but continue typing. Table 2 shows that there is a huge increase in both, predic-
tion accuracy and perplexity, when three instead of two letters of the target word
are known at the moment of prediction. With each additional known letter, the
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set of possible predictions becomes smaller and predictions become more accu-
rate. On the basis of Table 2, we see that from five letters onward the increase
in performance flattens. It is likely that the set of possible predictions is already
small when the first five letters of the target word are known which explains
why typing additional letters does not increase the model’s performance.

Table 2: Prediction accuracy (ACC) and perplexity (PPL) on 1000 randomly
sampled sequences from the validation and test set at different prefix lengths.
A prefix length of 2 means that the prediction was performed when two letters
of the target word were known.

Prefix length
Validation Test

ACC PPL ACC PPL

2 0.583 814.37 0.574 915.82
3 0.710 292.03 0.713 297.07
4 0.810 121.11 0.794 131.81
5 0.874 60.23 0.858 67.75
6 0.912 35.03 0.903 39.28
7 0.941 22.58 0.927 25.60
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2.3 Meta feature evaluation

On the basis of earlier work [17], [23], we expect that document meta informa-
tion, such as the gender of the patient about whom a report is written, carries
useful information for word prediction tasks. In this section, this assumption
is tested using the same random sample of 1 million medical records that was
used to train the baseline FutureType model.
The extent to which the selected meta information can distinguish the usage of
words in our data set is examined in two ways. For both methods, we treat the
set of reports that belongs to each level of a meta feature as an individual text
corpus. For example, for the employee gender feature, texts written by female
employees are merged into one text corpus and reports written by male authors
into another corpus. Our first method calculates weighted log-odds ratios for
each word in the combined corpus of two (or multiple) feature levels to identify
words that are characteristic for their respective vocabularies. Using weighted
log-odds ratios to identify distinctive words was proposed by Monroe, Colaresi
and Quinn [10] (Section 2.3.1). The second method measures the similarity
between two or more word probability distributions by calculating the Jensen-
Shannon divergence (JSD) [11] between these distributions (Section 2.3.2).

Before going into the details of weighted log-odds ratios and the JSD, we pro-
vide a brief description of our meta data. Tables 3 and 4 descriptives for our
candidate meta features. Our candidate features include

• Patient gender
• Employee gender
• Healthcare sector
• Employee expertise
• Healthcare organisation
• Report type
• Patient age
• Employee age

The meta data descriptives are spread across several tables because descriptives
for categorical as well as numerical features were difficult to combine in one clear
table. The same was true for categorical meta features with just a few feature
levels, such as patient gender, and features with hundreds of levels, such as
employee expertise. We summarized categorical features with few levels in
Table 3 and features with a large number of levels in Table 4. For categorical
meta features, we summarize the number of distinct groups, their frequency and
the number of missing values. For the two continuous variables patient age

and employee age, the median and standard deviation are reported in Table 5,
as well as the number of missing values.

Some descriptive trends visible in Table 3.1 have the same underlying reason.
More than 99% of the sampled reports originate from elderly care, indicating
that the healthcare sector feature is extremely imbalanced. Only 0.25% and
0.17% respectiveley originate from the other two sectors, mental and disabled

care and regional protected living (RPL). This extreme class imbalance
correlates with the distribution of sectors across all customers of Nedap Health-
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care. Ons is indeed mainly used by care organizations working in elderly care.
This is also reflected in the median patient age of 85.
Table 3 further documents an extreme class imbalance for the employee gender

feature, with more than 86% of all employees being female. The extreme class
imbalance for the distribution of report types can be explained by how the
medical dossier application is used by end users. The Text report type serves
the needs of most everyday reports. The rest of the types is for documenting
specific information which is reported less frequently. For instance, the medical
type is intended for doctors to write down medical content.

The employee expertise feature has a large number of feature levels. This is
because customer organizations of Nedap Healthcare define their own expertise
titles. As a result, several expertise titles in the data set describe the same exper-
tise. For instance, the top three most occurring expertise titles are Verzorgende
IG, Niveau 3 and 3 VIG. They all describe the same organizational function,
but they are called and written differently by different customer organizations,
yielding distinct expertise entries in our data set. Normalizing expertises was
beyond the scope of this thesis.
In this section, the expertise feature is evaluated using a number of selected
expertise clusters. Clusters were formed by selecting expertise Strings naively
based on substrings. For instance, the doctor cluster contained medical re-
ports written by employees whose expertise title contained the substring arts,
either with a capital or lowercase letter. Table 6 summarizes which expertise
clusters were examined and the substrings used to identify them. Using sub-
strings for forming expertise clusters has its drawbacks. The main disadvantage
is that the precision and recall with which this simple method identifies ex-
pertise titles that belong to a certain expertise cluster is difficult to evaluate.
In addition, the method neglects the subtle variety of expertises that contain
a certain substring. For example, Klinisch psycholoog and Psychosociaal

medewerker are both included in the psychologist cluster, although it can be
expected that they have different responsibilities and therefore, they are likely
to report on different matters, using different vocabulary. Another drawback is
that the same expertise may be included in two or more clusters because it con-
tains more than one of the characteristic substrings, as in the case of Sociaal

psychiatrisch verpleegkundige. Nevertheless, the simplicity of this filtering
approach speaks for itself and the obtained expertise clusters were deemed suf-
ficient for the purpose at hand. The clusters were chosen based on prevalence
in the data set and assumptions about differences in language between groups.
For instance, most employees in our data set have a background in nursing. We
expected their language to differ from doctors and psychologists because they
report on different subjects.

The two age features were the only non-categorical features and were trans-
formed into age groups for subsequent analyses. Earlier research has shown that
it is impractical to work with exact ages in predictive tasks based on text data
[23], [37]. For client age, three age groups were formed. The first contained
reports on clients aged between 0 and 30 years, the second between 31 and 60
years, and the last contained reports written on clients older than 60 years up to
the filtering limit of 114 years. The rationale for these age groups was to form
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three groups that span comparable age ranges and capture individuals that, on
the basis of their age, are likely to have similar health problems. For example, it
can be expected that pregnancy related health problems are unlikely to occur in
the age groups 0 to 30 and 60 to 114, but we expect them to be most prevalent
in the middle-aged group. For employee age, three age groups were formed:
“young professionals ” including reports written by employees between the age
of 12 and 30, “professionals ” aged 31 to 50, and “senior professionals ” aged 51
or older up to the filtering limit of 99 years. We formed age groups on the basis
of simple heuristics and assumptions and their validity should be checked in the
future. Table 5 summarizes descriptives for each age group.

Table 3: Descriptive summary of categorical meta features with maximal three
feature levels in our sampled data set of 1 000 000 medical documents stored in
the Ons database.

Feature Feature levels Frequency
(%)

Missing
(%)

Patient gender Female 65.10 .02
Male 34.75

Employee gender Female 86.38 7.51
Male 6.12

Health sector elderly care 99.58 .00
mental and disabled
care

.25

regional protected liv-
ing

.17
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Table 4: Descriptive summary of meta features with more than three feature
levels in our sampled data set of 1 000 000 medical documents stored in the Ons
database.

Feature Feature levels Top 3 Missing
(%)

Employee expertise
3758* Verzorgende IG

(48.7K)
45.5K

Niveau 3 (38K) (45.57%)
3 VIG (33.4K)

Care organisation
813 54.2K (5.42%) .00

32.1K (3.22%)
29.9K (2.99%)

Report type
18** Text (868.1K)

(86.81%)
.00

Medical (44.7K)
(4.47%)
Defecation
(23.2K) (2.33%)

*Each customer organisation of Nedap Healthcare may define their own set of exper-
tise titles. The reported expertises in the data set were not normalized, meaning that
the same expertise is likely to occur several times in the data set under multiple titles.
Normalizing or clustering expertises was beyond the scope of this thesis.
**To be precisely, 29 unique report types occur in the sampled data set (N =
1 000 000). There are 18 official report types in use nowadays. In the early days
of the application, there were no clear guidelines regarding the usage of report types.
This led to the manual addition of (sometimes redundant) type codes in the database.
They occur infrequently (n = 1284) and can be regarded as residual artifacts.
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Table 5: Descriptives for the employee age and client age meta features.

Feature Groups Median SD Missing
(%)

Patient age* 85 18.39 .13
0-30 (N = 44K) 20 7.95
31-60 (N = 79K) 51 8.59
61-114 (N = 876K) 86 8.77

Employee age* 47 13.05 14.96
12-30 (N = 178K) 26 3.16
31-50 (N = 324K) 42 6.10
51-99 (N = 348K) 57 4.27

*Calculated based on filtered data sets (N = 998 695 for patient age and N = 850 393
for employee age) that excluded missing values and extreme outliers reporting ages
larger than 115 for patient age and 100 employee age. For employee age, an addi-
tional lower bound was set to 12. Reported ages beyond these bounds were believed
to represent artifacts. 12 appeared to be a reasonable lower bound for young interns
to be included in the sample.
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Table 6: Summary of expertise clusters in meta feature evaluation, based on
a random sample of 1 000 000 medical reports. N unique titles counts the
number of unique expertise titles in the dataset that contain the respective
substring.

Expertise (Sub)string N N
unique
titles

Example

Doctor arts, Arts 5K 56 Tandarts,
7a.Huisarts,
(Huis)arts

Psychologist psy, Psy 2.5K 62 GZ-psycholoog,
Psychomotorische

therapie,
Sociaal

psychiatrisch

verpleegkundige

Daycare dagb, Dag 3.4K 46 Assistent

begeleider

wonen en

dagbesteding,
Medewerker

Dagbesteding,
Medewerker

dagbehandeling

Nurse verpl, Verpl* 124.4K 504 Wijkverpleegkundige,
Coördinerend

Verpleegkundige,
3.Verpl/Verz

*Even though the word niveau is often used in expertise titles for nurses it was not
used as a substring because it occurs in many other expertise clusters as well, as in
Logopedist niveau 5.

Next, we will describe the two methods we used to examine the potential value
of our meta features for word prediction tasks. Using weighted log-odds ratios
and the Jensen-Shannon divergence, we explore the extent to which our chosen
meta features can identify differences in word usage.
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2.3.1 Log-odds ratios

Monroe, Colaresi and Quinn [10] summarize a variety of techniques for visual-
izing the extent to which words (or other lexical features) are used differently
across pairs or sets of documents. Word visualizations and lists are common in
textual analyses because they offer semantic validity to automated text analysis
as they intuitively show whether the employed technique captures some expected
substantive meaning. If it does, the visualizations reflect word selections or a
word-specific measure that characterize some semantic difference across groups,
such as topics or ideology. The selection of words or the word-specific measure
can also serve as input to some feed forward analysis, for example, training
a classifier for unlabeled documents. The summarized techniques range from
plotting word frequencies to model-based approaches that model the choice of
words as a function of the group a piece of text originates from. In the process,
the authors discuss the shortcomings of the reviewed techniques. Most of them,
despite being popular in journalism, political science and other disciplines, fail
to account for sampling variation and are prone to overfitting ideosyncratic
differences between groups.

One of the two model-based techniques that Monroe et al. [10] favour are
weighted log-odds ratios using an informative Dirichlet prior for regularization.
The other technique uses a Laplace prior for tackling the problem of overfitting.
Monroe et al. [10] model the occurence of all words in a corpus y with π

y ∼ Multinominal(n, π) (6)

where y represents the raw counts in the entire corpus with n =
∑W

w=1 yw and
π being a W-vector of multinominal probabilities. Using the multinomial logit
transformation and w = 1 as reference and adopting the convention that β1 = 0,
we transform multinominal probabilities into log-odds with

βw = log(πw)− log(π1), w = 1, ..., W (7)

Equation 8 allows us to transform β estimates back to multinominal probabili-
ties.

πw =
exp(βw)∑W
j=1 exp(βj)

(8)

Under π, Monroe et al. define the likelihood function L as

L(β|y) =

W∏
w=1

(
exp(βw)∑W
j=1 exp(βj)

)yw . (9)

L describes the likelihood of the odds for all words given our entire corpus y.
Note that Monroe et al. simplified the likelihood function by ommitting the
standard normalization factor n!∏w

w=1 yw! for multinomial distributions. The de-

scribed likelihood is thereby no longer guaranteed to be an actual probability
distribution as the individual likelihoods do not necessarily add up to 1. How-
ever, since the scaling factor is entirely based on the observed y, the likelihood
ratios between individual words w are not affected. Supposedly, Monroe et al.
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ommitted it because the authors were solely interested in the ratio between word
likelihoods under the specified model.
The respective log-likelihood function l is

l(β|y) =

W∑
w=1

ywlog(
exp(βw)∑W
j=1 exp(βj)

) (10)

Within a topic k, group partitions are made salient using subscripts. In our
case, we simplify k to be a single constant topic (i.e., a medical report). In
theory, the medical reports could be further subpartitioned into topics, such as
activities of daily living or morning report, or on the basis of the 18
report types that now form a meta feature of their own.

y
(i)
k ∼ Multinominal(n

(i)
k , π

(i)
k ) (11)

Since we do not take topic partitions into account in the current research, the
k index will be ommitted in the remainder of this chapter.

Due to the lack of covariates, the maximum likelihood estimation (MLE) for

β
(i)
w boils down to

π̂MLE = y · ( 1

n
) (12)

and using the logit transform respectively

βMLE
w = log(πMLE

w )− log(πMLE
1 ) (13)

= log(yw)− log(y1), w = 1, ..., W. (14)

Again, w = 1 serves as reference and β1 = 0 is assumed.

Dirichlet prior

In Bayesian statistics, the prior probability distribution, or prior for short, ex-
presses one’s beliefs about a quantity before some evidence is taken into account.
The conjugate prior of the multinominal distribution is the Dirichlet.

π ∼ Dirichlet(α) (15)

where α is a vector with each αw > 0. αw directly affects the posterior proba-
bility of w as if an additional αw − 1 instances of w were observed in the data.
With the Dirichlet prior, the estimate becomes

π̂ = (y + α) · 1

(n+ α0)
(16)

where α0 =
∑W

w=1 αw.
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Feature evaluation

Finally, within a topic k, we are interested in how the word usage of a word w

by group i differs from the word usage by all groups, or a specific group j. This
is captured by the log-odds ratio, which we define as

δ(i)w = log(Ω(i)
w /Ωw) (17)

where Ωw = πw/(1 − πw) denotes the probabilistic odds of word w relative to
all other words under the multinominal model π. The point estimate for this
using the appropriate subscripts is

δ̂(i)w = log[
(y

(i)
w + α

(i)
w )

(n(i) + α
(i)
0 − y

(i)
w − α(i)

w )
]− log[

(yw + αw)

(n+ α0 − y(i)w − α(i)
w )

] (18)

where

α(i)
w = α

(i)
0 π̂MLE = y · α0

n
(19)

For two specific groups i and j, the point estimate is respectively given by

δ̂(i−j)
w = log[

(y
(i)
w + α

(i)
w )

(n(i) + α
(i)
0 − y

(i)
w − α(i)

w )
]− log[

(y
(j)
w + α

(j)
w )

(n(j) + α
(j)
0 − y

(j)
w − α(j)

w )
] (20)

A large positive value indicates that documents in group i tend to contain word
w more often, a large negative value indicates that word w is more associated
with documents in group j. Without an informative prior, equation 20 boils
down to the observed log-odds ratio. Monroe et al. [10] advise to inform the
choice for a meaningful prior by what we know about the actual distribution of
words in an average document in the corpus. We know for instance that the
word mevr (Engl. Mrs.) occurs more often than the word bronchitis in our

example data. Therefore, α
(i)
0 should be chosen in such a way that it shrinks

π
(i)
w and Ω

(i)
w to more average values for frequently occurring words. Following

Monroe et al.’s example, we choose α0 equal to the average number of tokens
in a document, across all examined groups.

Finally and in accordance with Monroe et al. [10], we use z-scores of point
estimates instead of using them directly for feature evaluation. This is because
point estimates are prone to overfitting ideosyncratic words. At this point, we
profit from having taken a model-based approach, because ideosycratic words
will not only have high point estimates, but also high variance. Under the given
model, we can approximate the variance σ2 of the log-odds ratio of two groups
i and j with

σ2(δ̂(i−j)
w ) =

1

(y
(i)
w + α

(i)
w )

+
1

(y
(j)
w + α

(j)
w )

. (21)

The z-scores of the log-odds ratio can then be calculated with

ζ̂(i−j)
w =

δ̂
(i−j)
w√

σ2(δ̂
(i−j)
w )

. (22)
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2.3.2 Jensen-Shannon divergence

Identifying characteristic words depending on the level of a categorical meta
feature can be framed as a corpus comparison, where the documents associated
with different levels of a meta feature are treated as different text corpora. The
Jensen-Shannon divergence (JSD) is a popular tool for corpus comparison and
has recently been extended by Lu, Henchion, and Namee [11] for the case of
more than two corpora and for simultaneous comparison of both word unigrams
and bigrams.

The JSD originated from and represents an improvement over the Kullback-
Leibner (KL) divergence [38] as a statistical measure that captures the difference
between two probability distributions. Given two probability distributions P and
Q, the Kullback-Leibner (KL) divergence is defined as

DKL(P ||Q) =

n∑
i=1

pilog2
pi
qi

(23)

where n is the sample size. In the context of text corpora, n is interpreted as the
number of unique words and pi is the probability with which word i occurs in
P and qi is respectively the probability with which i occurs in Q. Applying the
KL divergence to text corpora is likely to pose problems, though, because words
that only occur in one, but not the other corpus yield infinitely large values.
Gallagher et al. [39] proposed to use the JSD instead and suggested a rephrased
form with respect to the original JSD proposed by Lin [40]. The JSD is a
smoothed, symmetrical variant of the KL divergence, defined as

DJS(P ||Q) = π1DKL(P ||M) + π2DKL(Q||M). (24)

The problem of infinitely large divergence is solved by introducing M, a mixed
distribution with M = π1P + π2Q, where π1 and π2 represent weights propor-
tional to the sizes of P and Q, with π1 + π2 = 1. A JSD score close to 0 means
that the word probability distributions of the two compared corpora are similar.
A JSD score of 1 indicates that there are no common words in the compared
word probability distributions. Accordingly, for n probability distributions we
can calculate the JSD with

DJS(P1||P2||...||Pn) =

n∑
i=1

πiDKL(Pi||M) (25)

In addition, Lu et al. [11] contributed an extension of the JSD that allows us to
calculate the individual contribution of word i to the divergence of n probability
distributions:

DJS,i(P1||P2||...||Pn) = −milog2mi +

n∑
j=1

πjpjilog2pji (26)

with pij representing the probability of word i occurring in corpus Pj and mi

being the probability of i occurring in M. For n corpora, M is defined as:

M =

n∑
i=1

πiPi (27)
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where
∑n

i=1 πi = 1 holds and weights are proportional to the sizes of P1 to
Pn. In the context of the different levels of our meta features, we expect the
words contributing most to the divergence of two word probability distributions
at hand to match with the words that are identified as being characteristic
for either one of the two compared groups by the log-odds ratios. If a word
contributes strongly to the divergence, it can be expected to be associated with
one, but not with the other corpus.

2.3.3 Results

Log-odds ratios

This section is structured as follows: first, some general results obtained from
the log-odds ratios of each categorical meta feature are summarized. Second,
for Healthcare sector, results are presented in detail to exemplify how indi-
vidual features were evaluated. Details of other individual feature evaluations
are included were applicable.

General results

Generally speaking, the obtained log-odds ratio results suggest that the ex-
amined meta features do affect choice of words in the sampled data set. The
obtained results are in line with our intuitions about how certain levels of a
meta feature influence report writing. For example, as can be seen in Figure
4, for patient gender, gender-specific ways of addressing the patient in a re-
port, such as mv (mevrouw, Engl. Mrs.) and heer (Engl. Mr.) produce high
log-odds ratio z-scores, meaning that the data suggests with fair certainty that
these gender-specific forms of addressing patients are characteristc for reports
written about either female or male patients. Other intuitive word usage dif-
ferences depending on patient gender reflect different care needs depending on
gender, with words such as scheren (Engl. to shave) and katheter (Engl.
catheter) being more associated with reports written on male patients and the
word steunkousen (Engl. support hose) being more characteristic for reports
written on female patients.
Another general trend is the magnitude and frequency of large z-scores. As
can be seen in Figure 4, the point estimates of the log-odds ratios for patient

gender tend to produce large z-scores. This can be seen as a property of the
data. Our z-scores are only meaningful when evaluated in relation to each other.
We pay special attention to words that produce high z-scores compared to the
rest of the vocabulary without actively interpreting statistical significance.
We can further observe that extreme class imbalance as it occurs in several meta
features masks the distinctiveness of minority classes when they are combined
with the majority class. This essentially turns any one-vs-rest comparison to a
one-vs-majority class comparison. This is well visible in the detailed healthcare

sector comparison depicted in Figure 7 where the mental care sector (mental
healthcare) loses its distinctiveness when combined with the majority class, the
elderly care sector.
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Figure 4: Word feature evaluation using z-scores of log-odds ratios for the two
levels of the patient gender meta feature. Positive z-scores are associated with
the female group and negative scores with the male group. The x-axis shows
the frequency of words on a log-scale. The top 20 words that produce the largest
z-scores are annotated for both groups. Z-scores larger than 1.96 are coloured
blue. They indicate values that are more than |1.96| standard deviations away
from the mean in a normal distribution. Person names were anonymized as
NAME and customer names as CUSTOMER NAME.
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Healthcare sector

Figures 5 to 8 shows for each word in a shared vocabulary of two or more health-
care sectors the z-score of the log-odds ratio using a Dirichlet prior. As can be
seen in Figures 6, 7 and 8, the extreme class imbalance within the healthcare

sector meta feature shows as the elderly class introduces extremely large raw
frequency scores. In addition, as depicted in Figure 5, the shared vocabulary
of the regional protected living (RPL) is much smaller when combined with the
mental and disabled care sector than when it is combined with reports orig-
inating from the elderly sector. Note how the most distinctive words for the
RPL class vary depending on the class it is compared against. When compared
against the mental healthcare sector, adverbs of time (e.g., vandaag (Engl.
today) and vanmorgen (Engl. this morning)) and words about activities of
daily living (ADL) (e.g., eten (Engl. food or meal) and bed) and appoint-
ments (e.g., gebeld (Engl. called) and uur (Engl. hour)) dominate the list
of most distinctive words. However, when RPL is compared against the elderly
care sector, the class’ by far most characteristic words are names of healthcare
organisations. Intuitively, this suggests that vocabularies of reports written in
RPL and elderly care are more similar than between RPL and mental health-
care. This is confirmed in Section 2.3.3 by the Jensen-Shannon divergence

(JSD) measure of similarity between the word probability distributions of the
three healthcare sectors.
The most distinctive words for the mental healthcare sector confirm intuitions,
as words describing emotions and other mental states produce high log-odds
ratio z-scores (e.g., voelen (Engl. to feel), angst (Engl. fear), spanning

(Engl. tension)), regardless of the sector it is compared against. In addition,
when compared against the elderly care sector, words characteristic for treat-
ment in mental care produce high z-scores, such as sessie (Engl. session),
cliënte (Engl. (female) client, as opposed to calling clients patients) and
groep (Engl. group).
From Figures 5 to 8, we can further observe that when the mental healthcare
sector is combined with the elderly care sector in a one-against-the-rest com-
parison against RPL, the words from the majority class, that is, elderly care,
outweigh words characteristic for the mental healthcare sector by far, because
technically, most reports of this hybrid class originate from elderly care. Essen-
tially, the weights of words characteristic for the mental healthcare sector are
trumped by the massively larger elderly care sector, which hides the distinctive-
ness of the mental healthcare sector.
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Figure 5: Word feature evaluation using z-scores of log-odds ratios for the mental
healthcare sector and the regional protected living sector. Positive z-scores are
associated with the mental care group and negative scores with the regional

protected living group. Person names were anonymized as NAME and cus-
tomer names as CUSTOMER NAME.
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Figure 6: Word feature evaluation using z-scores of log-odds ratios for the elderly
care sector and the regional protected living sector. Positive z-scores are asso-
ciated with the elderly care group and negative scores with the regional

protected living group. Person names were anonymized as NAME and cus-
tomer names as CUSTOMER NAME.
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Figure 7: Word feature evaluation using z-scores of log-odds ratios for the re-
gional protected living sector and the combined data from the mental and elderly
care sectors. Positive z-scores are associated with the regional protected

living group and negative scores with the combined mental and elderly
care group. Person names were anonymized as NAME and customer names as
CUSTOMER NAME.
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Figure 8: Word feature evaluation using z-scores of log-odds ratios for the elderly
care sector and the mental care sector sector. Positive z-scores are associated
with the elderly care group and negative scores with the mental care group.
Person names were anonymized as NAME and customer names as CUSTOMER NAME.

Jensen-Shannon divergence

Table 7 summarizes Jensen-Shannon divergence (JSD) scores for the examined
feature levels. For each JSD score, five words are listed from the joint vocab-
ulary of the compared classes that contribute most to the obtained JSD score.
The five most contributing words were determined as proposed by Lu et al.
[11]. Examined customer care organisations are anonymized with captial letters
A, B, and C respectively. According to the JSD scores, word probability distri-
butions are most distinct between report type classes, followed by employee

expertise clusters, and healthcare sectors. Word distributions depending
on gender and age, either for patients or employees, are similar according to
the obtained JSD scores, suggesting that gender and age do not influence word
choice. Word distributions between the three largest customer organisations are
also marginally different.
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The five words that we identified to differ most between word probability dis-
tributions using the method proposed by Lu et al. [11] match well with the
obtained results from the log-odds ratios. This speaks for the validity of both
methods. For example, for the healthcare sector feature, the five most char-
acteristic mental healthcare words on the basis of log-odds ratio z-scores are
groep, voelt, gevoel, lijkt en spanning when compared against the re-
gional protected living (RPL) sector. For the latter, vandaag, gaf, kwam,

eten and uur are identified as most characteristic. Comparing these top five
most characteristic words for either of the two feature classes with the top five
most important words based on their JSD contribution, we find that four out of
the latter five were also identified by the log-odds method. The last of the top
five most JSD contributing words, laag, has the sixth highest log-odds z-score
for the mental healthcare class when it is compared against RPL.
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Table 7: Summary of Jensen-Shannon divergence (JSD) scores per meta feature.
For each similarity assessment, the top 5 words are listed that contribute most
to the divergence.
Feature classes JSD Top 5 most contributing words
Patient gender .026 mv, heer, mevr, vrouw, echtgenote

Employee gender .039 vanmorgen, bed, gewassen, erg, dd

Healthcare sector
elderly, mental healthcare .26 bed, groep, vanmorgen, geholpen, zorg

elderly, RPL .127 zorg, moeder, bed, we, geholpen

mental healthcare, RPL .239 gaf, laag, vandaag, voelt, groep

All .299 bed, groep, zorg, vanmorgen, laag

Report type
Omaha, Text .236 blijft, evaluatie, tevreden, vanmorgen,

zorg

Omaha, Defecation .466 ontlasting, gehad, toilet, vanmorgen,

normaal

Omaha, Medical .249 ysis, afkomstig, deskundigheid, vanuit, p

Text, Medical .14 ysis, deskundigheid, afkomstig, vanuit,

verpleegkunde

Text, Defecation .342 def, ontlasting, gehad, toilet, normaal

Medical, Defecation .409 def, ontlasting, gehad, toilet, incontinent

All .529 ontlasting, gehad, toilet, normaal,

incontinent

Expertise
Doctor, Nurse .17 dd, mg, b, p, kreeg

Doctor, Daycare .325 dd, mg, vanmorgen, vanmiddag, mee

Doctor, Psychologist .216 dd, mg, b, pijn, lab

Psychologist, Nurse .206 gedrag, vanavond, wond, psycholoog, kreeg

Psychologist, Daycare .237 vanmorgen, vanmiddag, vandaag, psycholoog,

ging

Daycare, Nurse .192 zorg, bed, mee, medicatie, we

All .378 dd, mg, vanmorgen, vanmiddag, vandaag

Customer
A, B .119 vv, plan, zorg, volgens, -

A, C .122 plan, -, zorg, volgens, zvp

B, C .091 vv, kreeg, def, ontlasting, steunkousen

All .158 vv, plan, -, zorg, volgens

Patient age
0-30, 31-60 .06 moeder, school, vader, ouders, ysis

0-30, 61-114 .158 moeder, bed, geholpen, zorg, school

31-60, 61-114 .086 bed, geholpen, kreeg, we, zorg

All .141 moeder, bed, geholpen, school, zorg

Employee age
12-30, 31-50 .02 mv, gaf, vlgs, coach, vanochtend

12-30, 51-99 .032 mv, gaf, vlgs, med, geeft

31-50, 51-99 .021 mv, med, geeft, gaf, we

All .034 mv, gaf, vlgs, med, geeft
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2.3.4 Discussion meta feature evaluation

The current meta feature evaluation examined the extent to which word usage
in reports is influenced by report meta information, such as the healthcare

sector a report originates from. Two methods were used to evaluate meta
information. For each word in a shared vocabulary of two meta feature level,
log-odds ratios were calculated following the methodology proposed by Monroe
et al. [10]. Using the z-scores of the log-odds ratio point estimates, we not only
identified characteristic words, but also took the reliability of the point estimate
into account. Second, Jensen-Shannon divergence (JSD) [11] scores were calcu-
lated to assess how similar or dissimilar word probability distributions are across
the levels of a meta feature. The obtained results univocally suggest that some
meta features can identify word usage differences in medical reports. According
to our analysis, the gender and age features for clients and employees, as well
as the care organisation feature are unsuitable for identifying differences in
word choices. In contrast, the report type, healthcare sector, expertise
feature exhibit remarkable distinctive value. For employee expertise this is
even more remarkable considering the simplicity with which expertise clusters
were formed in the current analysis.

The extreme class imbalance in the examined meta information is likely to pose
a problem for learning from explicitly provided meta information. Especially for
the log-odds ratio method we saw that otherwise distinctive words for smaller
feature classes are masked when a smaller class is combined with the majority
class, essentially turning any decision involving, but not exclusively involving
the majority class, into a decision whether a word is more distinctive for the
class at hand or the majority class.

One important drawback of the employed methodology is its focus on main ef-
fects, and therefore, its ignorance of interaction effects between levels of meta
features. For instance, according to the obtained JSD scores for the care

organisation feature, the word probability distributions of the three most
occurring customer organisations differ marginally. However, all three organisa-
tions work in the elderly care sector. As a result, their clients have similar care
needs and sector-specific ways of report writing are standardized. However, it
is still possible that the care organisation feature interacts with another fea-
ture, say the healthcare sector feature, because two customer organisations
specialize in caring for specific client groups, such as adult clients compared to
child clients.

A limitation of how we employed the log-odds evaluation is its focus on dif-
ferences. We emphasized distinctive word tokens in our plots using overlayed
colour coding for z-scores within the 95% confidence interval, which overempha-
sizes the extent to which the two compared text corpora are distinct. This is
because the colour coded data points occlude some of the other data points. The
actual fraction of words identified as reliably distinct is much smaller than our
plots may suggest. For instance, for the patient gender feature, only 0.052%
of all z-scores are larger than 1.96. As a result, our employed log-odds method
does reliably identify distinctive words, but is less suitable for giving an impres-
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sion on how different the word distributions are as a whole. Fortunately, the
calculated JSD scores complement the log-odds method in this regard and we
refer to them for getting an impression on how different two or multiple text
corpora are in general.

Another limitation of the employed methodology is that we looked at sub-
samples, instead of the full picture due to the high complexity of most meta
features. For instance, instead of looking at all 18 report types, only four were
covered in the current meta feature evaluation. One the one hand, this in-
creases the chance that we missed some important trends regarding the capac-
ity of meta information to distinguish word usage in our medical reports. On
the other hand, focusing on sub-samples enabled us to analyze the differences
between levels of meta features with greater detail, that is, on the level of word
tokens. In addition, the high dimensionality of the meta information makes it
challenging, if not unfeasible, to include all information in one analysis while
still providing meaningful results.
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2.4 Concluding remarks and future work

This chapter set out to examine RQ1, the extent to which meta information
about medical records in the Ons database can be useful for FutureType, a text
prediction model that is currently under development at the Dutch technology
company Nedap. To this end, we reviewed relevant literature on how recurrent
neural network (RNN) language models such as FutureType can be enriched
with additional meta input. To introduce FutureType formally, we described
its architecture and training in detail. Finally, before setting out to build a
meta-feature enhanced FutureType model, we evaluated a set of candidate meta
features with regard to their capacity to distinguish word usage in medical report
writing. For this we employed two methods, log-odds ratios [10] and Jensen-
Shannon divergence scores (JSD) [11].

We saw that the model’s performance in terms of prediction accuracy and per-
plexity increases sharply and then flattens depending on the number of known
letters of the target word. Our evaluation of FutureType as described in this
chapter is limited in an important way. We only trained and evaluated the
model for target words that consisted of at least six letters. This means that
FutureType cannot predict words with less than six letters. We chose to bias
the model towards long words because we anticipated that the model’s predic-
tions are most beneficial in terms of preventing spelling mistakes and saving
keystrokes for long, complex and possibly infrequent medical terms. However,
our dataset statistics show that the median length of all words in the training,
validation and test sets was five. This means that many words in our medical
report database are shorter than six letters and cannot be predicted by Future-
Type by design. Since we trained and evaluated FutureType only for words
with minimally six letters, the performance we report is likely higher than the
performance FutureType would achieve if it were used to predict words of all
lengths. In a downstream scenario with end users, this can mean that Future-
Type often suggests irrelevant words, also named unnecessary distractions

(UDs). If the majority of words in medical reports is indeed shorter than six
letters and we impose no further restrictions on word suggestions, the user will
often get a wrong, long word suggestion simply because FutureType is incapable
of predicting shorter words.

Our results from the meta feature evaluation indicate that some, but not all,
candidate meta features can distinguish differences in word choice. The three
meta features that have the most dinstinguishing power are the type of the
report, the healthcare sector a medical document originates from and the ex-
pertise of the author of the document. Meta features with negligible distinctive
value are the age and gender of the patient about whom the report is written
and the author of the report. Explicitly providing the healthcare organisation
from which a report originates also appears to be a futile effort. We discussed
drawbacks of the methodology we employed. One drawback is that we are un-
able to observe interaction effects between multiple meta features because we
only compared a selected set of levels of one and the same feature, such as the
the vocabulary of male compared against the vocabulary of female authors.
Some systematic differences may only be meaningful if a set of meta features is
considered at the same time. However, the employed methodology is unsuitable
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for visualizing such interaction because of the large number of feature levels of
some of our meta features, especially the employee expertise feature. Consid-
ering that we applied only simple filtering startegies to obtain expertise clusters
and still, the feature showed remarkable distinctive power, we recommend for
future work to put effort into deriving sound expertise clusters from the 3758
unique expertise titles in the Ons database. The employee expertise feature
is a strong candidate for complementing FutureType’s predictive capacity.

Even if future work succeeds in identifying meaningful interactions and provides
a set of well-interacting and meaningful meta features with proven distinctive
power, it remains unclear whether FutureType will profit from their inclusion in
the model. It may implicitly extract any distinctive value of the provided meta
features from a large enough text corpus because any differences in word usage
are implicit in the text data. In that case, adding meta information explicitly
may be redundant. We established for some meta features that they are suitable
for detecting word usage differences, the next step is to see whether explicitly
providing this information to FutureType does indeed improve its predictive
performance.

As a first step, we started re-organizing the code repository at Nedap Healthcare
for training FutureType and sampled a new training, validation and test set.
The re-organized and newly sampled data set includes 308 649 554 (308, 649M)
randomly sampled documents, the same documents that were sampled for the
initial training of FutureType. Each document is a medical report under the
administration of Nedap Healthcare. A major difference between our previous
and current sampling strategy is that we no longer sample word sequences from
a document subset, but we sample documents from the entire set of 308 million
available medical reports. The dataset was divided into training, validation and
test set using a 90/5/5 split, where 90% of the documents were assigned to the
training set, and respectively 5% to validation and test set each.

To further reduce data leakage, training, validation and test documents were
sampled in a stratified fashion. While splitting the dataset into training, valida-
tion and test samples ensures that the model does not encounter any documents
during training that are shared with the test set, information from the test set
can still leak into the training process. That is because we enrich the model
with meta information that is shared across training and test samples. For ex-
ample, out of two randomly sampled reports, one is assigned to the training
set and the other report to the test set. The two reports are distinct docu-
ments covering different text content. However, they were written by the same
employee. While we do not explicitly feed employee identifiers to the model,
the model can in theory still learn from implicitly leaked information between
training and test documents using the set of meta features it is provided with.
In fact, given enough data, the model could learn a representation of individ-
ual employees or clients. While the latter would be ethically problematic, any
data leakage from test to training documents sheds doubt on the reliability of
performance evaluations. Therefore, we used customer code and employee id

combinations as an additional splitting variable, ensuring that no reports writ-
ten by the same employee are shared between the training and test data. Due to
computational restrictions, the training set was downsampled to 1% for model
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training, denoted as training downsampled in Table 8.

Table 8: Descriptives of the re-organized and newly sampled data set from
308 649 554 medical reports in the database of Nedap Healthcare.

Training Validation Test Training
(downsampled)

N documents 275.752M 15.221M 15.480M 2.661M
N tokens* 8.103B 452.791M 459.466M 79.546M
Median N tokens per doc 16 17 16 17
Vocab size (tf 1**) 1.353M 663 487 662 525 289 661
Vocab size (tf 2) 1.353M 425 293 423 104 157 019
Vocab size (tf 5) 1.353M 226 147 225 068 82 659
Vocab size (tf 10) 837 395 147 689 146 693 54 458
Vocab size (tf 20) 537 758 98 664 98 250 36 742
Vocab size (tf 100) 206 420 39 897 40 032 14 975
N employees 109 667 9938 9939 2351

* Here, token means a unigram word.
** tf stands for minimum term frequency and means that all tokens included in the
vocabulary occurred at least n times. For tf 1, all tokens in the corpus are counted.

Regarding the architecture for a baseline meta-enriched FutureType, we recom-
mend implementing the simplest form of adding meta information to a recurrent
neural language model, the approach proposed by Mikolov and Zweig [13], the
ConcatCell model. The ConcatCell model can optionally be implemented with
a SoftmaxBias, another popular technique for adjusting the weights to infor-
mation outside the immediate text context. Once a first meta-feature enriched
FutureType model is implemented, future work can be devoted to further ex-
plore the interaction of our meta features and alternative ways of incorprating
meta information in the model, such as an extension of the ConcatCell archi-
tecture to a FactorCell approach, or by giving more attention to how meta
features are represented in an additional feature vector, similar to the research
efforts of Zheng, Chen, Huang, Liu, and Zhu [23].

Interaction effects between the chosen set of meta features can be approximated
by making their inclusion in the model a part of the hyperparameter space that is
searched during hyperparameter optimization. Alternatively, systematic model
ablation [5] can be applied to a meta-enriched FutureType model to experiment
with the inclusion and exclusion of specific meta features. Spithourakis, Peter-
son and Riedel [5] ablated their meta-enriched medical text prediction model to
examine the added value of additional patient data, including the gender of the
patient and several numerically-encoded medical test results. An example for
such a medical test result are end diastolic and systolic volumes for the left and
right heart ventricles as measured through magnetic resonance imaging (MRI).
These volumes capture the amount of blood that is in the ventricles before and
after the heart contracts and are a measure of the health of a person’s heart.

Ultimately, if the inclusion of explicit meta features turns out to be of little
additional value with regard to FutureType’s performance, for the sake of par-
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simony [41], [42], they should be abandoned and future efforts should focus on
improving FutureType in alternative ways. In a way, we already took a step
into that direction by conducting a large scale pilot study with real end users,
as the next chapter describes.
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3 FutureType pilot

While the previous chapter generated recommendations with regard to the re-
current neural network (RNN) language model underlying FutureType, i.e.,
the technical backend of the text prediction application, the current chapter
focuses on a second pillar of software development, early and (preferably) iter-
ative user testing. In her blog post on reasons why usability testing can save
software companies money, Collete Stumpf stresses the paramount importance
of early user testing:

“Fixing an error in a product can be up to 100 times more expensive
than it would have been to implement early-stage testing. ”8

Indeed, it is well documented in literature that early involvement of end users in
software development is crucial for system success (e.g., [7], [9]). According to
Damodaran [43] and Kujala [44], empirical results show that user involvement
in system design yields the following benefits:

1. Overall improved system quality because user requirements are captured
more accurately

2. Costly system features that the user does not want or use can be recognized
early and avoided

3. Higher user acceptance of the system

4. More effective use because the user better understands the system

5. Increased participation in future feature decision-making

The above empirically grounded benefits are somewhat focused on participa-

tory user testing, where users actively contribute to the system’s design. How-
ever, Kujala [44] confirms in her review on the benefits and challenges of user
involvement that benefits 1 to 3 do apply to other user testing approaches. In
the current research, we chose A/B testing as our user testing method. A/B
tests are a form of online controlled experiment [45]. The simplest A/B test
setup involves two conditions: the control condition A, which is the default or
current version of a feature, and a treatment condition B, which is the change in
the feature to be tested. Since A/B tests are a form of controlled experiments,
they allow us to establish causal relationships between a system change and its
effect on observable user behaviour [46]. A/B testing is also called split testing
when more than two conditions are involved. Traditionally, A/B tests have been
employed to increase revenue and more recently for usability testing [7]. In the
current research, we employ a split test involving 8 different conditions.

Our pilot study represents the first user test of FutureType with its target group,
healthcare professionals whose daily activities inlcude writing medical reports.
Next to documenting FutureType’s first large scale user evaluation, the current
chapter explores how well common intrinsic evaluation metrics align with how
end users receive a text prediction application in downstream evaluation.

8https://www.surgeforward.com/top-5-reason-why-usability-testing-can-save-you-money/,
last accessed 2020-03-01
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Unfortunately, the term downstream evaluation is misleading in natural lan-
guage processing (NLP), since it suggests that language models are evaluated
under conditions that are comparable with real world applications. However,
what is meant with downstream is the evaluation on a number of benchmark
tasks that are still distant from real world applications. As a result, the question
arises to what extent the results obtained from such benchmark studies can be
transferred to real world applications. There has been evidence that evaluation
metrics used in common downstream tasks in NLP may align poorly with the
demands of real world applications. Cumulative evidence indicates that per-
plexity, the most common benchmarking evaluation metric for language models
[19], poorly aligns with other text prediction metrics, such as mean reciprocal
rank (MRR), which is the multiplicative inverse rank of the correct word in a
suggestion list [5], and prediction accuracy [19]. Ultimately, it is likely that the
evaluation of language models that are designed for use beyond benchmarking
their capabilities can better opt for a holistic evaluation approach that captures
both, the system’s utility and usability [9].
In the current study, we evaluated FutureType instrinsically with prediction
accuracy and perplexity. It remains unclear how well our chosen metric trans-
lates to differences in user satisfaction and performance in real world settings,
although there is evidence that the quality of predictions, that is, the system’s
utility, greatly impacts user experience [3], [47]. Intrinsic model evaluation is
certainly less costly and more efficient than elaborate user testing. Therefore,
it is an important task to establish the transferability of intrinsic results to
external settings.

The current chapter is organized as follows. In section 3.1, we first review rele-
vant literature about keystroke analysis, a common method for evaluating text
prediction systems with end users. Secondly, we introduce model ablation, our
chosen method for generating multiple versions of FutureType that score differ-
ently on prediction accuracy. Section 3.2 describes in detail how we set up the
FutureType pilot and how we conducted the keystroke analysis. The remaining
sections document and discuss the results we obtained from the keystroke data.

3.1 Related work

Keystroke analysis

Analyzing keystrokes, either collected from real end users or by simulating the
typing behaviour of potential users, is a common user testing method for text
prediction applications [5], [48]. Text prediction applications originated in the
field of augmentative and alternative communication (AAC) for motor and
speech impaired people (e.g., [49], [47]), where each saved keystroke matters
to reduce communication effort for the user and to increase the user’s commu-
nication rate, i.e., producing more text faster and with less effort.

Recently, Dhakal, Feit, Kristensson, and Oulasvirta [48] analyzed keystroke pat-
terns from 168 000 online volunteers and show that typing behaviour is subject
to individual differences. Main insights from their research include the identi-
fication of eight groups of typists that differ in typing accuracy, performance,
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hand and finger usage, and rollover. Rollover is the phenomenon of pressing
the next key before the previous is released. Rollover was found to be a strong
predictor of typing speed (Pearson correlation coefficient r = 0.73). Contradic-
tory to common belief, formal typing training appears to be no prerequisite for
fast, error-free typing, though fast typists (65 − 68 words per minute (WPM))
do make less errors than slow typists (46−48 WPM). The authors claim to have
captured modern typing behaviour by including untrained typists and multiple
keyboard layouts (physical, on-screen, laptop) in their sample.
Dhakal et al. further review a number of standard typing evaluation metrics
in keystroke analysis, including typing speed in words per minute (WPM) or
characters per minute (CPM), error rate, inter-key intervals (IKIs; the
difference in timestamps between two consecutive keypress events), keypress
durations, keystrokes per character (KSPC; i.e. number of keystrokes di-
vided by the number of characters in the final string produced), and error

corrections (i.e. the percentage of keypresses using the Backspace or Delete
key during typing). The authors further argue that current modelling assump-
tions behind the design of text entry applications need to be updated as our
knowledge of typing proficiency has recently been extended with metrics such
as rollover, consistent key-to-finger mapping, and reliance on visual information
[50].

Using keystroke analysis, a number of benefits and challenges of text prediction
applications have emerged. On the one hand, text prediction has been shown to
save keystrokes and prevent spelling mistakes [3], [49]. On the other hand, while
auto completion has been found to increase typing speed for impaired people
using on-screen keyboards [47], [49], results are less promising for able-bodied
people using physical keyboards [3], [51], [52]. Intuitively, keystroke savings are
negatively proportional to time spent on typing. However, using a text predic-
tion application is bound to introduce cognitive overhead by exposing typists to
word suggestions [47], [52]. Typists are forced to scan through predictions and
to shift their focus. Trnka, McCaw, Yarrington, and McCoy [47] developed a
mathematical model that directly captures the trade-off between keystroke sav-
ings and input rate (i.e. the time needed to enter a single keystroke, measured
in seconds per keystroke (SPK)). The model can be used to identify cases in
which text prediction is slower (or faster) than letter-by-letter text entry. The
model represents speedup (or slowdown) as the ratio between communication
rate (i.e. output rate or typing speed, number of characters produced per time
unit) with and without text prediction

speedup =
1

(1− actual keystroke savings
100 ) ∗ SPKaided

SPKunaided

(28)

where SPKunaided and SPKaided represent seconds per keystroke for letter-by-
letter text entry and text entry using text prediction, respectively. We leave
examining speedup vs. slowdown experiments involving FutureType to future
work and focus on gathering initial usage statistics and comparing our eight
ablated FutureType models in the current research.

For FutureType’s first evaluation with its target users, healthcare profession-
als who write medical reports as part of their daily work activities, we chose
keystroke analysis as our user testing method. By analyzing keystrokes from
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users who use FutureType, we not only get an insight into how our users type,
but we can monitor the usage of FutureType remotely in an unobtrusive fashion
and under naturalistic usage conditions.

Model ablation

Our second research question is about the extent to which model performance
differences as measured by intrinsic performance metrics such as perplexity and
prediction accuracy impact end users. To this end, we compare user acceptance
and performance differences between eight versions of FutureType. Our chosen
method for generating multiple versions of FutureType that score differently
on prediction accuracy is ablation. The term originally stems from the field
of clinical neuropsychology and describes the removal or destruction of body
tissue or anatomical structures by means of surgery, disease or other physical or
energetic processes. Ablation is employed as treatment or to study the function
of bodily parts [53].
In June 2018, a tweet post by François Chollet, the primary author of the
Keras deep learning framework, re-directed attention to the term ablation in
the machine learning community. In the post, Chollet stresses the utility of
ablation for studying causal effects in deep learning models:

“Ablation studies are crucial for deep learning research – can’t stress
this enough.

Understanding causality in your system is the most straightforward
way to generate reliable knowledge (the goal of any research). And
ablation is a very low-effort way to look into causality. ”9

In the context of machine learning, the term ablation is used to describe the
systematic removal of parts of a complex neural network to gain more insight
into the network’s behaviour.
For example, in their influential paper in the field of object detection, Girshick,
Donahue, Darrel and Malik [54] present a large and complex neural model that
consists of three modules. The first identifies regions in an image within which
to search for objects. It feeds its information forward into a large convolutional
neural network (CNN) with 5 convolutional layers and 2 fully connected layers.
The CNN extracts features from those regions in the image that were marked
as candidates for object search. The final module takes those features as input
and feeds them to a set of support vector machines to perform classification.
At the time of publication, the authors report significant improvements on the
PASCAL VOC 2010 benchmark challenge [55] for object detection. To get a
better understanding of their complex model, the authors performed an ablation
study where they removed different parts of their system. To their surprise,
Girshick et al. found that removing one of the two large fully connected layers
of the CNN led to no performance loss at all despite having ablated 29%, about
16.8 million, of the CNN’s parameters. Removing both fully connected layers
led to a small drop in performance. The authors concluded that most of the
CNN’s power is rooted in its convolutional layers and that the much larger fully
connected layers are somewhat dispensable.

9https://twitter.com/fchollet/status/1012721582148550662?lang=en, last accessed 2020-
03-03
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In the field of clinical text prediction, Spithourakis, Peterson and Riedel [5]
ablated their meta-enriched text prediction model to examine the added value
of additional and especially numerical patient data. The authors included one
categorical (patient gender) and 19 numerical meta features that represented
the results of medical tests. The authors found that their ablated models were
on par and occasionally even outperformed their meta-enriched counterparts
marginally with regard to perplexity and keystroke savings in a word comple-
tion task. Qualitative inspection of word suggestion ranks produced by meta-
enriched as well as ablated models revealed that enriching the model with meta
information changed the order in which suggestions appeared. Most of the time
the correct suggestion was included in the top 5 predictions, but not on rank 1.

Recently, model ablation has been established as an important tool at the
disposal of machine learning researchers to study the behaviour of their neu-
ral models. Next to other more elaborate and sophisticated methods such
as quantization [56], [57] and distillation [58], [59], ablation is a popular
method for downscaling huge models to make them more suitable for produc-
tion and to meet the low latency constraints of many real world applications.
In the current pilot study, we employ ablation for yet a different purpose. We
use weight pruning [60], [61] to intentionally decrease FutureType’s perfor-
mance in a controlled fashion to study the effect of prediction accuracy on user
reception of FutureType and user performance. In weight pruning, individual
weight connections between layers are removed. A popular variant of weight
pruning is weight magnitude pruning which removes weights closest to 0, us-
ing weight magnitude as a measure of importance. Connections are removed by
setting the respective elements of a weight matrix manually to 0. This proce-
dure does not affect the size of the weight matrix or computational speed, but
it does affect model performance. Since we aimed to intentionally downgrade
the performance of our FutureType model, we did not need to pay attention to
only removing weights that were close to 0 anyway. We pruned a systematic
proportion of weights, but we chose the pruned weights randomly.

3.2 Pilot method

Study design

To investigate end user reception of the FutureType prototype and the influence
of internally measured model performance on user experience, an experimental
between-subjects design was employed. The experiment followed the setup of
an A/B test [7]. Participants were assigned to one of eight experimental groups
using a custom assignment algorithm described in section 3.2. The independent
variable that distinguished one group from another was the FutureType model
that provided word suggestions. The dependent variables were calculated from
keystroke logs and included: word suggestion acceptance (either using the Tab

key or by clicking on the suggestion), typing speed, keystroke savings (KS),
and unnecessary distractions (UD). With the exception of UDs, the dependent
variables measured typing behaviour. UDs are a measure of how distracted
typists get by the text prediction feature. The current study received ethical
approval from the ethics committee of the Faculty of Electrical Engineering,
Mathematics and Computer Science (EEMCS) at the University of Twente,
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Enschede, The Netherlands.

Data collection

The dependent variables for analysis were calculated from raw log event data.
Table 9 shows the content of a raw json log. Each log falls into one of three
event types: a keypress, toggling FutureType (enabled/disabled) or showing
a suggestion. Application logged the type of Ons application in which the
log event was triggered. Client id uniquely identified the healthcare patient
in whose medical record the typing occurred. Context captured completed
words in a window of eight preceding words. Prefix logs the preceding letters
of the current word when the log event was triggered. The user agent is
a characteristic String that lets the server know the application, operating
system, vendor, and/or version of a requesting user agent. A user agent is
a computer program that represents a person. In the current web context of
FutureType, the user agent is a browser.

Table 9: Raw logged keystroke data

Log variable Data type Example

Client id int 1234

Employee id int 5678

Customer code String DF1111

Application String {dossier, agenda, groupcare}
Timestamp int 1576561169834

Event type String {keypress-down, show-prediction
toggle-futuretype}

Key String a, Tab, ArrowRight, AltGraph
Context String vannacht onrustig geslapen.

Dhr heeft last van

Suggestion String kriebelhoest, ’’
Prefix String kri

User agent String Mozilla/5.0 (Macintosh;

Intel Mac OS X 10.14;

rv:73.0) Gecko/20100101 Firefox/73.0

Participants

In total, 7063 healthcare professionals participated in the FutureType pilot
study. We gathered no demographics on our participants because they were
irrelevant for the purpose of the study. No inclusion or exclusion criteria were
applied, except for the implicit inclusion criterion that all participants were em-
ployed at a healthcare organisation that uses the Ons software package of Nedap
Healthcare. In total, 10 customer organisations participated in the pilot, work-
ing in three different healthcare sectors: elderly care, disabled care and mental
care.

49



Procedure

Customer organisations took the initiative in joining the FutureType pilot. The
pilot was advertised in two ways. First, an announcement was placed simulta-
neously in two web environments: a) Basecamp10, an online environment used
by the account management department of Nedap Healthcare and its support
staff to communicate with customer healthcare organisations about new fea-
tures and b) the support portal of Nedap Healthcare. The FutureType pilot
was added to the Pilot section of the portal. Both communication channels
included a description of FutureType and some usage instruction. The informa-
tion brochure is included in Appendix A. Second, the pilot was announced at the
customer day, an annual gathering of Nedap’s customer healthcare organisations
at Nedap. During the customer day, software developers present their current
and future ideas and discuss the latest software releases with end users and
application managers. FutureType was pitched during the 2019 edition of the
customer day. Except for the information brochure, no direct communication
took place between researchers and research participants. We have no further
knowledge of whether and how customer organisations discussed participating
in the pilot with their employees internally. When a customer organisations
took the initiative to join the pilot, we assumed that the employees at the or-
ganisation consented to participation.
Once a pilot customer joined the pilot, FutureType was enabled on their pro-
duction environment, meaning that it was enabled in the software environment
that is used in real work settings. Since FutureType was designed to disrupt
the normal workflow of healthcare professionals as little as possible, no explicit
briefing sessions were scheduled. Once FutureType was activated on produc-
tion, the text input fields in the Nedap Ons Dossier, Agenda and Groepszorg
applications were enhanced with the feature for all employees.
Due to performance considerations with respect to the backend of FutureType,
pilot customers were added gradually. The first two customers joined the pilot
in late September 2019. On January 17th 2020, FutureType was deactivated
for all production environments. In total, the pilot was conducted during 102
days (14 and a half weeks). However, the runtime of the pilot varied per pilot
organisation.

FutureType models

Eight different FutureType models were used in the pilot. None of them were
enriched with meta information described in chapter 2. We ablated the Fu-
tureType model described in chapter 2. In particular, we systematically set
proportions of its weights to 0. The proportions we tested varied between 0%
and 56% with a step size of 1%. The ablated weights were chosen randomly.
Only weights between the LSTM output nodes and the last dense output layer
were ablated. The effect of ablation on model accuracy was examined for pre-
dicting the next word based on a context window size of 8 preceding words and
a word prefix of length 2 for the current word. The ablation experiments were
conducted on the same 1000 randomly sampled sequences from the test set that
were used to evaluate the trained FutureType model as described in chapter 2.

10https://basecamp.com, last accessed 2020-03-27
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Table 10: Accuracy scores of the eight ablated FutureType models that were
used as experimental conditions in the FutureType pilot. Accuracy scores were
calculated for predicting the next word given a context window of eight preced-
ing words and a word prefix length of 2. Ablated accuracy scores were calculated
for the same test set as the FutureType model was originally evaluated on (see
chapter 2).

Ablation fraction (%) Test accuracy

M0.57 (Baseline) 0 0.574
M0.55 0.09 0.545
M0.52 0.17 0.516
M0.48 0.24 0.476
M0.45 0.29 0.454
M0.42 0.35 0.424
M0.39 0.42 0.386
M0.37 0.46 0.365

The best performing ablated model had an accuracy of 57.4%, the worst per-
forming model an accuracy of 32%. For the experimental pilot groups, we chose
eight models with linearly descreasing accuracy in the range of 58% to 38%. We
deemed a difference of 20% in model accuracy as an ethically responsible per-
formance range for investigating the effect of internally measured performance
differences, without actively disturbing the work of healthcare professionals too
much. The linear step size for choosing the “next worst ” model was a rounded
decrease of 0.03 in accuracy and ablated models were chosen on the nearest fit.
Table 10 shows an overview of the final set of experimental FutureType mod-
els. It is remarkable how robust FutureType is to ablation, given that accuracy
“only ” dropped by about 20% when 46% of all weights were randomly set to 0.

An algorithm assigned each pilot participant one of the eight models. Once
assigned, the same model was used for the participant throughout the pilot.
Based on employee ids, the algorithm distributed the eight models for each
pilot customer. From a reputational and marketing perspective, we wanted to
give as many end users as possible the best performing model. At the same
time, we had to ensure that sufficiently many participants were assigned the
less well performing models to be able to compare experimental groups during
analysis. The following pseudo code illustrates how 72% of all employees in an
organisation were assigned the best performing model (baseline), while each
of the ablated models were assigned to 4% of all users. Essentially, a batch

number is calculated by taking a participant’s employee id modulo 100 and
then checking the percentile in which the resulting number falls.
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1 algorithm get_model(employee_id)

2 """ Returns a FutureType model based on the employee number """

3

4 batch <- employee_id mod 100

5

6 if batch < 72

7 model <- baseline

8 else if batch < 76

9 model <- model_2

10 else if batch < 80

11 model <- model_3

12 else if batch < 84

13 model <- model_4

14 else if batch < 88

15 model <- model_5

16 else if batch < 92

17 model <- model_6

18 else if batch < 96

19 model <- model_7

20 else

21 model <- model_8

22

23 return model

Listing 2: Pseudo algorithm for assigning a model to a research participant

Plan of analysis

Data preprocessing

We preprocessed the raw keystroke logs in several ways. First, all logs, dis-
tributed over three servers, were collected in one single json file. Logged events
were either a keystroke, activating/deactivating FutureType, or showing a pre-
diction. Second, logs had to be sorted based on user id and timestamp. A
unique intermediate sorting key was used to sort the raw logs, a String, con-
sisting of user id, customer code and timestamp. User ids were unique per
customer, but not across customers. Therefore, it was necessary to incorporate
customer codes to form unique sorting keys. Once the raw logs were sorted,
they were ready for simplification. Preprocessing included

• Finding suggestion acceptances that were accepted by clicking on the
suggestion rather than using Tab. Extracting click acceptances was based
on shown suggestions and the expected next word context (i.e., the word
context at the previous timestep plus the shown suggestion).

• Extending the set of relevant event types. After simplification, log event
types included special, key, show suggestion, no suggestion avail-

able, delete, accept suggestion (click), accept suggestion,
navigation, toggle off, toggle on. The key event was assigned to
keys of length 1, such as alphanumeric characters and punctuation, but
also symbols like ¶ were included by filtering on the length of the keypress
event. Special was assigned to keypress events that did not fall into
any other event type. In addition, it was assigned whenever the key that
triggered the log event could not be identified, literally producing the
String Unidentified. No suggestion available occurred when the
server did receive a client request for a suggestion and it did reply with a
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suggestion, but the suggestion was intercepted. Pruned suggestions were
intercepted.

• Reducing the amount of String objects to minimize the size of the final
data frame. Only contexts, prefixes and suggestions were kept that
occurred in a show suggestion event.

• Assigning a session id and word id to each log event. A typing session
was defined as any continuous period of typing, interrupted by a gap in
consecutive event timestamps of more than 60 seconds. Word ids enabled
analyses such as counting the number of suggestions received for one and
the same word. They also simplified counting words.

Preprocessing was performed in steps of pilot customers. All logs originating
from the same customer were preprocessed at a time. The preprocessed logs
were saved on disk, in one csv file per customer. To analyze the keystroke log
data, all customer csv files were read into a single Pandas11 data frame, in total
amounting to 64.8GB of keystroke data. Each row in the data frame represented
a (simplified) log event and contained the following information:

• Timestamp
• Model
• Application
• User id
• Type
• Customer code
• Employee id
• Client id
• User agent
• Key
• Session id
• Word id
• Context
• Prefix
• Suggestion

Preprocessing was performed from within a Jupyter Notebook12, running on
a secured GPU server owned by Nedap Healthcare, using Python 3.6.713 and
Debian/Linux 14 for intermediate sorting of log events15.

A major filter that was later applied to the preprocessed keystroke data was
based on whether a log event had occurred on a mobile device or not. Filtering
for mobile devices was performed by filtering the case insensitive user agent

String for markers of mobile user agents. The following substrings were used
as markers: mobile, tablet, android, iphone, ipad, and blackberry. If a
user agent field contained any of these substrings, the log event was classified

11https://pandas.pydata.org/, last accessed 2020-03-27
12https://jupyter.org/, last accessed 2020-03-27
13https://www.python.org/, last accessed 2020-03-27
14https://www.debian.org, last accessed 2020-03-27
15Here, I would like to acknowledge the major support I received from my colleagues at the

Data Science team of Nedap Healthcare in preprocessing the raw log data - many thanks, this
would not have been possible without your help!
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as originating from a mobile device. It is possible that this rather simple filter
missed some mobile log events. Our substring choice was based on regular
expression suggestions on Github16 for identifying mobile user agents.

Comparing ablated FutureType models

The primary goal of the keystroke analysis is to compare how multiple Future-
Type models that differ in their intrinsically evaluated performance impact the
typing and usage behaviour of end users.
One simple way of comparing our eight ablated models is to look at the amount
of accepted suggestions they yielded. Note that this comparison can only be
made if our experimental groups are comparable with regard to the amount of
time people spent typing using each model and the amount of users that were
assigned to our models. Since our model assignment was biased to assign the
best performing model to most pilot participants, we extracted a random sample
of 300 users that were assigned the baseline model in our between-model com-
parisons. The sampled subset is denoted as M0.57(downsampled) or baseline

(downsampled) when it is directly compared to the full baseline dataset. In all
other cases, baseline and M0.57 refer to the downsampled dataset in subsequent
analyses. The rest of the experimental groups did not need to be downsampled.

A formal way of assessing the performance of a text prediction model in a real
world task is to look at its precision and recall when used by end users.
Spithourakis, Petersen, and Riedel [5] and Bickel, Haider, and Scheffer [62]
note that keystroke savings (KS), the percentage reduction in key presses
compared to character-by-character text entry, corresponds to a recall metric.
Likewise, the average number of unaccepted character suggestions that the user
has to scan before completing a word, called unnecessary distractions (UD),
corresponds to a precision metric. KS and UD are calculated as follows:

KS =
keysunaided − keyswith prediction

keysunaided
(29)

UD =

∑
string lengthaccepted suggestions∑

string lengthall suggestions

(30)

Typing performance

In real world settings, models can also be compared by how they impact end
users on relevant metrics. In the context of text prediction models, typing
performance is a relevant metric. We calculated one measure from the raw
keystroke logs to approximate typing performance for our participants: typing
speed in words per minute (WPM). In accordance with Wobbrock [63], typing
speed is calculated based on all keystrokes that contribute to the text result,
not to the process of writing text, like so

Words per minute (WPM) =
|T | − 1

S
× 60× 1

5
(31)

16https://gist.github.com/dalethedeveloper/1503252, last accessed 2020-03-27
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Hence, |T | in equation is the length of the final transcribed String that may
be composed of letters, numbers, punctuation, spaces and other printable char-
acters, but not for instance backspaces. S is the number of seconds starting
from entering the first character to the last, including keystrokes related to the
text entry process. The −1 in the numerator is crucial since the preparation
time for executing the very first keystroke of the entered text is not included
in S as it occurs before the first keystroke is executed [63]. Multiplying with 60
and dividing by 1

5 converts the measure from characters per seconds (CPS) to
WPM, the latter being more commonly reported in literature. The conversion
is according to Wobbrock [63] and MacKenzie [64] and subdivides the string of
characters into words of length 5 as a rule of thumb.

For calculating WPM, the keystrokes and total time for the unit of time of
interest, in our case typing sessions, were summed and equation 31 was applied
to the summed keystrokes and time in seconds, as if dealing with one very
long typing session. A typing session was defined as all subsequent keystroke
events cut off from the next event by a break of more than 60 seconds. That
way, only actual typing time was included in the calculation. Sessions with
only one keystroke event were excluded from the calculation, as were sessions
that did not contain printable characters, i.e. letters or punctuation, but only
special keys like Shift, Unidentified, or ArrowDown. In our calculation of
typing speed, we explicitly distinguished between keystrokes gathered on mobile
devices and keystrokes gathered on laptops or desktops. While keystroke data
collected on mobile devices with an attached physical keyboard are comparable
with keystroke data on laptops and desktops, keystrokes collected on touch
screens are not comparable. Since we could not reliably distinguish between
mobile users with physically attached keyboards and mobile users typing on a
touch screen, we excluded all mobile keystrokes from calculating typing speed.

3.3 Results

Descriptives

Table 11 summarizes basic descriptives on the keystroke log data. The high
number of accepted suggestions by clicking is remarkable. About 98% of all
accepted suggestions were accepted by clicking on the suggestion. The number of
acceptance clicks by users who used FutureType on a mobile device cannot solely
explain why so few suggestions were accepted using the intended method, the
Tab key. Not all mobile device keyboards have a Tab key. Therefore, one would
expect most suggestion acceptances using the click method to originate from
keystrokes logs on mobile devices. The data does not confirm the expectation as
only about 20% of all click acceptances were performed on a mobile device. This
means that 80% of all suggestion acceptances using the click method originate
from laptops or desktops. One explanation is that users did not know that word
suggestions could be accepted using the Tab key and therefore, mostly used the
click method.
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Table 11: Keystroke log descriptives. The subset of logs that was gathered on
mobile devices is highlighted to show what proportion of suggestion acceptances
were collected on mobile devices.

N N
Total Mobile %

Number of users 7063 2486 35.2
Number of log events 176.320M
Number of keystrokes 108.490M
Number of words 17.3748M
Number of sessions* 365 274
Number of hours spent typing 13 607.9
Number of suggestions shown 52.853M 9.388M 17.76
Number of accepted suggestions 483 843 95 548 19.75
Number of accepted suggestions (Tab) 7331 811 11.06
Number of accepted suggestions (click) 476 512 94 737 19.88
Number of keystroke savings 1.711M 200 688 11.73

* A session is defined as a period of continuous typing. Sessions are inter-
rupted by pauses. The threshold for determining the end of a session was set
to 60 seconds.

Comparing ablated FutureType models

Table 12 shows basic descriptives for the keystroke logs gathered for each of
the eight ablated FutureType models. Baseline represents the best performing
model and the rest of the models the next best performing model in descending
order. Since the model assignment algorithm was biased to assign the baseline
model to most pilot participants, subsequent analyses were executed on a ran-
dom sample of 300 users for the baseline group, denoted as M0.57downsampled
in Table 12. Once the Baseline group is downsampled, all model groups are
comparable with regard to the number of users and the amount of typing. Hence,
experimental groups are suitable for comparison.

Table 12: Keystroke log descriptives dependent on model

N users Number of Number of N hours
keystrokes words spent typing

M0.57 (Baseline) 5113 77.831M 12.408M 9795
M0.57 (downsampled) 300 4.694M 744 985 613.8
M0.55 306 4.108M 663 690 529.2
M0.52 272 4.157M 669 701 494.6
M0.48 278 4.748M 766 529 590.7
M0.45 275 4.554M 737 660 565.3
M0.42 255 4.025M 651 007 513.2
M0.39 285 4.656M 771 355 564.8
M0.37 279 4.408M 706 188 555.0
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Table 13: Word suggestion acceptances dependent on model

N users N suggest- N accepted N accepted N accepted N median Keystroke Unnecessary
ions shown suggest- suggest- suggest- accepted savings distractions

ions ions ions per user (recall) (precision)
(Tab) (click)

M0.57 300 2.298M 21 841 248 21 593 38.5 0.434 0.009
M0.55 306 2.031M 18 813 108 18 705 32.5 0.398 0.009
M0.52 272 2.122M 17 643 406 17 237 35.5 0.387 0.008
M0.48 278 2.320M 20 245 92 20 153 35.0 0.424 0.009
M0.45 275 2.263M 18 683 238 18 445 37.0 0.397 0.008
M0.42 255 1.881M 17 897 44 17 853 29.0 0.405 0.009
M0.39 285 2.308M 19 717 299 19 418 38.0 0.387 0.008
M0.37 279 2.244M 18 798 557 18 241 38.0 0.367 0.008

Accepted word suggestions and deactivating FutureType

Table 10 shows statistics on how many word suggestions were shown and ac-
cepted for each model. In addition, Table 6 shows how many suggestions were
accepted on average by a user in each model group (N median accepted per

user). There seems to be no remarkable difference between models with regard
to the total number of word suggestions accepted. However, in some groups,
slightly more suggestions are accepted using the Tab key than in other experi-
mental groups. The least Tab acceptances occur in the group of M0.42 (N = 44)
and most in the group of M0.37 (N = 557). Still, compared to the total number
of word suggestions accepted in both groups, these differences are small.

Further analysis investigates the individual suggestion acceptance behaviour of
participants, depending on their assigned model group. Figure 9 shows boxplots
of the distribution of accepted suggestions per user, normalized by the amount of
words a user has typed. For this analysis, only users that have typed at least 200
words in total were included. Participants who typed less than 200 words were
regarded as unrepresentative for the sample: healthcare professionals whose
daily work activities include medical report writing. Three extreme outliers
were excluded from Figure 9 for the sake of readability. One outlier had an
suggestion acceptance

typed words ratio of more than 1, the other two of more than 0.8. These
extreme ratio scores are possible if a user has typed more words than the final
report included. Our calculation of the number of typed words only takes words
into account that are in the final result, not words that were typed as part of the
typing process. If a user deleted a large proportion of their typing in the process,
the number of acceptances were still counted, but words were only counted for
the final text product. Figure 9 shows that the average suggestion acceptance

typed words ratio

per user lies around 2 − 3%. This shows that most users accepted few word
suggestions with regard to the amount of typing they did throughout the pilot.
However, for each model, a small group of users (between 2 − 5%) produces
more or less extreme outliers, with suggestion acceptance

typed words ratios ranging between

10% and 55%. This trend is constant for all models.
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Figure 9: Number of word suggestion acceptances per user for each FutureType
model, normalized by the amount of words a user typed. Except for the baseline
model, all models were represented as numbers in the plot. 1 corresponds to
M0.55, 2 to M0.52 and so on. Boxplots were drawn with box borders representing
the 75th (Q3) and 25th (Q1) percentile respectively. The whiskers were drawn
according to Hoaglin and Iglewicz [65], they indicate data points at Q3+2.2∗IQR
and Q1 − 2.2 ∗ IQR respectively, with IQR (inter quartile range) = Q3 − Q1.
Only users that had a total typed word count of at least 200 were included in
the analysis.

If there is a select group of enthusiast FutureType users, there may also be
a comparable group at the other end of the spectrum: users that deactivate
FutureType extremely more often compared to the average pilot participant.
Figure 10 shows boxplots of the distribution of the number of deactivation events
per user for each model. Again, only users who typed at least 200 words during
the pilot were included in the analysis. No outliers were removed. For all
model groups, the median number of toggle off events is very small, either
1 or 1.5. The 75th percentile of all groups lies at about 16 deactivations per
user. However, for each model group, there is a large subset of users (between
16− 22% of all participants) that deactivates FutureType a lot more often than
the average participant.
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Figure 10: Number of toggle off (deactivation) events per user for each Fu-
tureType model. Except for the baseline model, all models were represented as
numbers in the plot. 1 corresponds to M0.55, 2 to M0.52 and so on. Boxplots
were drawn with box borders representing the 75th (Q3) and 25th (Q1) per-
centile respectively. The whiskers were drawn according to Hoaglin and Iglewicz
[65]. Only users that had a total typed word count of at least 200 were included
in the analysis.

Further analysis shows that participants from two out of the ten participating
customer organisations deactivated FutureType more often than participants
from other customers. Figure 11 shows boxplots of the number of toggle off

events per user for each participating customer organisation. Again, only users
who typed at least 200 words during the pilot were included in the analysis.
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Figure 11: Number of toggle off (deactivation) events per user for each cus-
tomer who participated in the pilot. Customers were anonymized with upper-
case letters. Boxplots were drawn with box borders representing the 75th (Q3)
and 25th (Q1) percentile respectively. The whiskers were drawn according to
Hoaglin and Iglewicz [65]. Only users that had a total typed word count of
at least 200 were included in the analysis. As a result, the two only partici-
pants from customer I were filtered and no boxplot could be constructed for
the organisation.

It appears that participants at customer organisations D and E systematically
deactivated FutureType more often than participants working at the rest of the
pilot customers. Apart from that, the same pattern is visible as when comparing
the number of toggle off events between models. The median number of
deactivation events is very small, either 1 or 1.5, while each customer group has
a distinct group (about 15− 19%, for customers D and E about 8%) of outliers
that activated FutureType a lot more often.

Finally, about half of all participants neither toggled FutureType off, nor
did they toggle FutureType on. Table ?? shows for each model, how many
participants did neither activate or deactivate FutureType during the pilot. For
this overview, only participants who typed at least 200 words throughout the
pilot were included. This suggests that half of all pilot users did not experiment
with FutureType at all. It may also offer an explanation for the low median
number of deactivations for all model groups and customers depicted in Figures
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10 and 11. Participants who did not use the toggle feature were evenly spread
across experimental groups. Their behaviour is thus unlikely to be related to
the model they were assigned.

Table 14: Number of participants per model who made no use of the toggle

on/toggle off feature. Only participants who typed at least 200 words during
the FutureType pilot are included in the overview.

N total N no toggle events %

M0.57 (Baseline) 300 162 54.0
M0.55 305 162 53.1
M0.52 272 144 52.9
M0.48 277 159 57.4
M0.45 275 137 49.8
M0.42 255 146 57.3
M0.39 285 141 49.5
M0.37 279 140 50.2

User performance

Apart from comparing usage data depending on the FutureType model they
were assigned, the impact of the ablated models on a user’s typing performance
is examined. Here, typing performance is approximated with typing speed.
Figure 12 shows boxplots of the typing speed in words per minute (WPM) for
each model. When summing the total typing time and typed characters across
typing sessions, as we do in our calculation for typing speed (see Section 3.2),
there appears to be no difference in speed between model groups. For each model
group, the median WPM is about 22 WPM, and the fastest typists within the
75th percentile typed about 50 words per minute.
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Figure 12: Typing speed of individual pilot participants in words per minute
(WPM) for each model. Except for the baseline model, all models were rep-
resented as numbers in the plot. 1 corresponds to M0.55, 2 to M0.52 and so
on. Boxplots were drawn with box borders representing the 75th (Q3) and 25th
(Q1) percentile respectively. The whiskers were drawn according to Hoaglin and
Iglewicz [65]. Only users that had a total typed word count of at least 200 were
included in the analysis. Keystrokes typed on mobile devices were excluded
from the analysis as explained in Section 3.2.
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3.4 Discussion

For a software developing company such as Nedap Healthcare, one way of sup-
porting healthcare professionals in their evermore demanding work due to an
aging population and the lack of healthcare professionals on the Dutch (and
global) job market, is building their software for efficient and ease of use. To
this end, Nedap Healthcare puts effort into developing FutureType, a textual
auto completion tool for medical records.
Motivations for the FutureType pilot described in this chapter were rooted in
commercial as well as scientific interests. The pilot had two main objectives.
First, FutureType needed validation in real work settings, with real users. Our
second research question (RQ2) concerns the impact of internally determined
performance differences of text prediction models on end users. If internally
measured performance differences using common metrics such as prediction ac-
curacy turn out to matter little for the end user, the suitability of evaluation
tasks and metrics researchers use to evaluate text prediction models may be
challenged. Their evaluation methods may match poorly with what real ap-
plication settings demand of text prediction models. After all, text prediction
applications in real life settings are likely to profit from a more holistic evalua-
tion process, taking both, a system’s utility and usability into account [9].
To this end, we set up a FutureType pilot involving ten customer organisation of
Nedap Healthcare. All customers were healthcare organisations providing either
intra- or extramural care in one of three healthcare sectors in the Netherlands:
elderly care, disabled care, and mental care. We devised eight experimental
conditions, featuring eight ablated FutureType models in a large scale A/B
test, spanning 14 and a half weeks in total. Keystroke log events were collected
and formed the basis for analysis.

The conducted analyses yielded two main insights. First, pilot participants
likely did not know how to use FutureType properly. Second, our eight ablated
FutureType models performed equally “well ” in the examined analyses, sug-
gesting that their internally determined performance differences did not matter
for our end users.

FutureType usage throughout the pilot

Usage of the toggle functionality and how users accepted word suggestions sug-
gest that our pilot participants did not know how to use FutureType properly.
The results show that, independent of the model they were assigned, half of all
participants never used the designated thunder symbol in the user interface to
activate or deactivate FutureType. While this can in theory mean that half of
all participants were satisfied enough with FutureType as it is, our combined
results suggest otherwise. In particular, we see that most accepted word sugges-
tions were accepted by clicking on the suggestion. In the current FutureType
release, this way of accepting suggestions was intended for users on mobile de-
vices because mobile keyboards do not necessarily include a Tab key. That is,
accepting suggestions using Tab is cumbersome, if not impossible on certain
mobile devices, when no physical keyboard is attached. However, accepting by
clicking was never intended as the main way of accepting suggestions when
a physical keyboard is available. Clicking is much less efficient, even detri-
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mental for typing performance because the user has to switch attention and
finger movements from keyboard to a mouse cursor. Since acceptance using
clicks is less efficient, one would expect users that had a physical keyboard
at their disposal to refrain from using them. Unless they did not know how to
accept suggestions otherwise. Further analysis confirmed this intuition. The
proportion of suggestion acceptances using the click method that originated
from mobile devices could not fully account for the unexpected high number
of click acceptances. Only a fifth originated from mobile devices and thus, it
is very likely that our pilot participants did not know that they could accept
suggestions with Tab. However, it would be interesting to investigate how often
a word suggestion that was not accepted was typed over by a user. The sugges-
tion may not have been accepted because the user did not know how to accept
it or because pressing the Tab key or clicking on the suggestion was perceived
as more effortful. However, in this way FutureType would still contribute to re-
ducing the amount of spelling mistakes. We name this until now unconsidered
use case for FutureType FutureType as a spellchecker. FutureType as a
spellchecker should definitely be explored in the future as yet another potential
use case for the word prediction tool.

Since accepting word suggestions with a click is less efficient, its high prevalence
in our pilot data may partly explain why our users typed much slower compared
to a recent and very deatiled study of 136 million keystrokes by Dhakal, Feit,
Kristensson, and Oulasvirta [48]. Despite the undeniable differences between our
study and the typing tasks devised by Dhakal et al., differences in average typing
speed in words per minute (WPM) are striking. Dhakal et al. investigated
typing performance in brief transcription tasks and their sample was based on
teenagers and young adults that volunteerd to take part in a commercially
advertised typing test. On average, their participants typed 51.56 WPM with
a standard deviation of 20.20 WPM. Our fastest typists typed about 50 WPM,
and the average 22 WPM of our sample aligns with the slowest 10% in Dhakal
et al. [48]. Clearly, the methodological differences make a direct comparison
difficult, but the magnitude of the difference is striking. The inefficient use
of FutureType by accepting suggestions with clicks instead of Tab may have
contributed to the slow typing that is prevalent in our sample. However, by
choosing a cut-off of 60 seconds between typing sessions, we may also have
contributed to the slow typing speed in our sample. 60 seconds was a safe,
but possibly excessive cut-off to distinguish periods of continuous typing from
a typing break. By failing to reliably identify the onset of typing breaks, we
may have included time when people already stopped typing in the calculation
of their typing speed. Consequently, it is possible that we underestimated the
typing speed of our participants. Future work should experiment with shorter
session cut-offs. Shorter session cut-offs produce more sessions, but are less likely
to unjustly include time when people take a break from typing in the calculation
of speed. We could find no theoretical or empirically based guidelines regarding
cut-offs between typing sessions and breaks. It is likely that such an ideal cut-off
differs from sample to sample and between typing tasks.

It remains unclear why our users did not know that they could accept word sug-
gestions with Tab. How to accept word suggestions and how to (de)activate Fu-
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tureType with the thunder symbol was explained in the information brochure.
It appears that most end users did not read the instructions in the manual. In
general, we do not have any insight into how participation in the FutureType
pilot was communicated within customer organisations, whether the pilot and
the usage of FutureType was openly discussed or simply decided by people at
the top of the organisational hierarchy. This observation is included and further
discussed in a set of general practical observations with regard to conducting a
large scale A/B test with real end users at the end of this thesis report. Since it
is unclear how using a new feature is communicated downward within customer
organisations, for future releases of FutureType, we highly recommend mak-
ing its usage (even more) self-explaining so that instructions outside the direct
application context are rendered superfluous. In practice, this means that the
application context should explain how to use FutureType. This can be achieved
by putting very brief textual instructions, such as Accept word suggestions

with Tab, close to text fields for which FutureType is enabled or as default into
the text field and remove the default once the user starts typing. Alternatively
or additionally, during the first one or two visits of the application after Fu-
tureType is activated, a pop up with a short instruction video could explain
the two main functionalities of FutureType visually: accepting suggestions with
Tab and (de)activating the feature for a text field and as a global setting.

Impact of FutureType model ablation

On the basis of the normalized distribution of word suggestion acceptances
across experimental conditions, the usage of the (de)activation feature and user
performance, our results suggest that there is no main effect of experimental
condition. In other words, it appears that it did not matter which ablated
FutureType model we assigned to an end user.

Our results revealed promising keystroke savings (KS), regardless of the as-
signed model. The calculation of KS may have profitted from the complex-
ity of the accepted word suggestions. That is, if users tend to write many
complex, long words as it is the case in medical reports, achieving promising
keystroke savings is easier, especially when users accept suggestions after hav-
ing typed only a few characters. Even if relatively few suggestions are accepted,
if accepted suggestions are long words, the count of saved keystrokes increases
fast. If our accepted suggestions are indeed mainly complex, medical terms,
our results emphasize the utility of a good auto completion tool for medical
reports. Follow-up analyses should confirm whether accepted word suggestions
tend to be complex. Our ablated FutureType models performed much worse
with regard to the second formal metric we used to evaluate model performance,
unnecessary distractions (UD). While the relation between KS and UD is
as much a balancing act as the relation between recall and precision in virtu-
ally all machine learning settings, the FutureType models we tested in the pilot
scored strikingly poorly on UD. One explanation for this was given in chapter
2. FutureType is biased towards predicting long words and in fact, is unable
to predict words that are shorter than six letters by design. If our users typed
many words that are shorter than six letters, they were bound to receive many
irrelevant suggestions. Apart from enabling FutureType to also predict shorter
words which comes with its own complications such as a much larger output
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layer, additional optimizations for presenting and timing word suggestions can
help to reduce the amount of UDs.

One way of reducing UDs is putting more emphasis on an ideal delay for present-
ing word suggestions. Word suggestions should only be delivered when needed,
otherwise they impose more cognitive load on users than they can possibly re-
deem by saving keystrokes. As it is now, it appears that our pilot participants
were bombarded by unnecessary suggestions. As a follow-up, we recommend
investigating the typing speed of our users more closely in terms of characters
per milliseconds, preferably under conditions where a) additional overhead
from accepting suggestions with clicks is minimized and b) shorter cut-offs
are employed to reliably distinguish between typing sessions and breaks. By
doing so, suggestion delays can be optimized depending on the typing speed of
our users. In addition, UDs can be reduced by investigating the moment when
users are most likely to accept a suggestion, that is, the prefix length at which
users are most likely to accept a suggestion. We expect that such a tendency
is closely related to the model’s prediction accuracy at different prefix lengths.
As we saw in chapter 2, the performance of the baseline FutureType model (de-
picted as M0.57 in the current chapter) increases sharply when three instead of
two letters of the target word are known. Consequently, we expect that users
are more likely to accept suggestions at a prefix length of three than when two
letters of the target word are known. However, there are probably other factors
at play as well. If FutureType fails to predict the correct word early enough,
that is, at small prefix lengths, the effort of switching from spelling the word
to pressing Tab outweighs typing the word oneself. This is even more relevant
when users accept suggestions with a mouse click because clicking on a sug-
gestion represents a greater and more effortful switch than hitting the Tab key.
Yet another way of reducing UDs is to employ a probability threshold for next
word suggestions which enforces a minimum certainty before suggesting a word.
This way, less incorrect suggestions should be presented to the user. Reducing
unnecessary distractions is crucial for limiting the cognitive overhead introduced
by FutureType for our users.

Our results show that the performance of our tested ablated FutureType models
is comparable with regard to keystroke savings, unnecessary distractions, and
user reception. On the one hand, this could mean that the evaluation methods
researchers use without involving end users in meaningful downstream tasks
align poorly with the requirements for real application settings. On the other
hand, one can argue that the discriminative power of the tested ablation factions
was too small. As outlined, while chosing an appropriate maximum for degrad-
ing the performance of FutureType, we had to take ethical considerations into
account. Degrading the performance of a software feature to the extent that
it obstructs healthcare professionals in their daily work would have been unac-
ceptable from an ethical point of view. In addition, FutureType’s robustness
to ablating as much as 46% of weights connecting the LSTM output with the
dense output layer and the results we obtained from the pilot suggest that our
chosen method of ablation may be ineffective. This may be the case because the
output layer of FutureType has a very high dimensionality (39 074), enabling
it to predict many words. However, not all words that FutureType can predict
may be used by our end users. Some words are used much more frequently than
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others, which limits the detrimental effect of removing infrequent words from
the output layer. In addition, if the words that were removed have frequently
occurring synonyms, their removal is also likely to go unnoticed by our end users.
As a result, pilot participants may have noticed very little of the performance
differences as determined by internally measured prediction accuracy.

In addition, it is entirely possible that we could not find a difference in user
reception and performance depending on intrinsic model performance differences
because our users struggled too much with other elements, such as the user
interface (UI) of FutureType. We set up the A/B test under the assumption
that our users would be able to use FutureType as intended, by using the Tab key
to accept suggestions and knowing how to switch the feature off and on. Since
we know that our participants did not understand the feature well, conclusions
can only be drawn with great caution.

Limitations

Our collected keystroke data has a number of limitations that caution us to
draw conclusions with overly great confidence. The data is flawed in relevant
ways. First, we cannot reliably identify periods when FutureType was acti-
vated or deactivated on the basis of the log events. While we did log toggle

events, we discovered that some customer organisations have a policy for delet-
ing browser histories when closing a browser. Due to initial technical difficulties,
we saved user preferences for deactivating FutureType in the browser settings,
rather than in their profile. As a result, some participants were forced to deac-
tivate FutureType whenever opening a new browser, for which FutureType was
activated by default. We have no logs of FutureType activations by virtue of
opening a new browser, ergo, we cannot reliably determine based on our logged
toggle events whether FutureType was active or not. Ideally, to reliably eval-
uate the impact of FutureType on user performance, we would have wanted to
only include periods when FutureType was indeed activated in our calculations.
However, this was impossible for our collected log data.

In addition, our inability to cache user preferences regarding FutureType (de)acti-
vation was likely the source of major frustration for a select group of pilot par-
ticipants. It also impaired the extraction of a control group from the keystroke
logs. Ideally, we would have enlisted an additional customer as a control group
to compare user performance with and without FutureType in a clean fashion.
When this turned out to be unfeasible, first due to commercial considerations
and later due to time restrictions, we planned to extract a group of pilot par-
ticipants from the initial pilot group. We would have argued that users that
decided that FutureType is not for them and therefore, deactivated the feature
early on, were suitable enough as a control group. However, since we cannot
reliably distinguish between periods when FutureType was activated or deacti-
vated, we had no means of extracting a control group from the log data. In the
future, from a scientific perspective, a control group should be secured by all
means prior to the pilot kick off.

Another limitation of our collected log data is that we cannot reliably distinguish
between mobile devices with an attached physical keyboard and mobile devices
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with no attached keyboard. This makes grouping keystroke events based on
(non-)mobile devices less reliable and forced us to exclude all mobile agents
from performance analyses. Luckily, we could minimize the impact of this flaw
on the reliability of our conducted analyses by excluding all mobile user agents
and by virtue of having collected large amounts of data, which made log events
collected on mobile devices somewhat dispensable for drawing the bigger picture
of user performance depending on experimental condition.

3.5 Concluding remarks FutureType pilot

Testing software in parallel with development in an iterative fashion is crucial for
building user-friendly and meaningful software products. The current chapter
documents the first validation FutureType, a word completion tool for medical
records which is currently under development at the Dutch technology company
Nedap. A team of developers is processing the insights from this pilot as the
current thesis report is written. Our pilot study had two main objectives. First,
validating FutureType with end users in real work settings. Second, investi-
gating the suitability of common text prediction evaluation metrics used as a
proxy for model performance in downstream tasks with real end users. Regard-
ing the first objective, at this point, we can conclude that future iterations of
FutureType will profit considerably from putting usage information directly into
the application context of the feature. Regarding the second objective, results
suggest that evaluation metrics used for internal model evaluation capture the
demands of real application settings for text prediction insufficiently. Indeed,
our study participants struggeled so much with the user interface of FutureType
that drawing reliable conclusions about how our eight ablated FutureType mod-
els performed is difficult, which only confirms that a model that performs well
on intrinsic metrics is not guaranteed to be useful for end users. As a result, we
attribute only more importance to Nielsen’s advice to view a useful system as a
two-sided coin, including the system’s utility and usability [9]. We acknowl-
edge that conclusions can only be drawn with utter caution since our collected
keystroke log data is flawed and since it is likely that the devised method for
degrading model performance was somewhat inefficient for the studied down-
stream task, the composition of medical record entries. The conducted pilot
contributes important insights for future pilots with regard to improved logging
and pitfalls of large scale A/B testing for scientific purposes.
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4 Conclusion

The current thesis research set out to support the development of FutureType,
a word completion tool for medical report writing, from the persepctive of both
pillars that make up a system’s usefulness: utility and usability. The first
chapter of this research focuses on exploring extensions to the recurrent neu-
ral network (RNN) architecture of FutureType, with the aim of improving the
model’s prediction performance. The quality of predictions is an important mea-
sure of the utility of a text prediction system. We demonstrate the capacity
of a number of meta features concerning medical reports, such as the expertise
of the employee who writes the report and the type of the report, for identify-
ing systematic vocabulary choices. We thereby conclude with respect to RQ1:
“What is the potential of meta information about the patient, the author or
the medical report itself to increase FutureType’s prediction accuracy for word
completions? ” that some of our examined meta features have high potential
for enriching FutureType, while others appear to be less suitable. One meta
feature with high potential is the type of the report, while two features with
less potential are the age and gender of the patient about whom the report
is written. We leave it to future work to investigate whether feeding meta in-
formation explicitly to FutureType increases its predictive capacity, but we did
provide a roadmap for incorporating meta features into RNN language models.

The second chapter of this thesis focuses on FutureType’s usability. In ad-
dition, it investigates RQ2, the extent to which common intrinsic evaluation
methods for system utility align with downstream utility when the system is
used by end users. To this end, we conducted a large scale end user evaluation,
collecting keystroke data from ten customer organizations of Nedap Healthcare
and more than 7000 healthcare professionals. The results from the FutureType
pilot perpetuate the importance of approaching the development of software
from a utility as well as from a usability perspective. Our participants strug-
gled much with the usability of FutureType, which made assessing the impact
of intrinsically measured utility differences on our end users difficult. We draw
any conclusions with great caution, but our results suggest that differences in
prediction accuracy had little influence on how FutureType was used by our
pilot participants. We provide recommendations for the future development of
FutureType regarding its utility and usability and we conclude this thesis report
with a number of practical observations that we believe to capture some of the
pitfalls of conducting research involving large scale user testing and big data
analysis in the healthcare domain.
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5 Practical observations

While working on the current thesis research, we experienced a number of com-
plications along the journey and some plans turned out differently than ex-
pected. We gained some important insights about conducting applied research
in healthcare and the specific methods we employed. Apart from our recommen-
dations for the future development of FutureType at Nedap Healthcare and the
scientific contribution of this thesis, we summarize a number of practical obser-
vations that we hope will guide future researchers that choose similar research
methods.

• A first set of observations is about conducting large scale pilots with real
end users as part of a thesis project. As a developer of a software feature
which may well be at the heart of your thesis research, you may want
to develop in close cooperation with end users. In reality, this is may
be difficult because real end users have busy schedules and organisational
policies may not work in your favour. An example is a scaffolded feedback
loop between developers and end users, involving account managers at
your own software company and application managers at customers. To
prevent ineffective feedback loops and misunderstandings, you should do
your very best to make sure that your product design incorporates all
relevant information for usage so that indirect communication lines are
used as little as possible.

• Research and industry do not always align well. While working on Future-
Type, we often noticed that building text prediction models for research
purposes is not necessarily the same as building models for production.
For example, from a language model perspective and for the sake of com-
parability with benchmarks, FutureType should be evaluated in specific
ways which may be completely irrelevant for its use at Nedap Health-
care. At times, this puts additonal workload on you because you will
want to satisfy the demands of both worlds. Setting up a user study is
one example of conflicting interests between industry and research. One
example from the current research is how we assigned participants to one
of the eight ablated FutureType models. From a scientific perspective,
you would want to randomly assign participants to their condition and to
assign equally many participants to each condition. From a marketing and
ethical perspective, it is unwise to assign more end users than necessary an
intentionally inferior product. Often, a compromise or clever alternatives
need to be found as we did in the current study. We assigned the best per-
forming model to most participants and downsampled the overrepresented
experimental condition during analysis.

• A final set of observations is about collecting keystroke log data on a large
scale and the subsequent analyses. If keystroke log data is part of your
project, you need to know exactly what to log in advance. Moreover,
having an idea what to log is unfortunately not enough, you should sit
down and try to conduct the analyses you intend to do with a set of dummy
log data that exactly represents the logs that you would be collecting,
based on the set of log requirements you came up with. While this may
sound overly careful, it really is the only way to figure out whether you
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generate logs for all events you need for your analysis. Also consider how
logging is integrated in the service of interest. Consider where you save
your user dependent settings and how you can protect logs and settings
alike from sources of failure from outside your logs. We overlooked external
sources of failure in the current FutureType pilot which eventually made
it impossible to reliably infer periods in which FutureType was (in)active.
Keystroke log data is messy which is why you need to chose your filters
wisely. Make sure you collect all necessary information for applying your
chosen filters later on and document your filtering decisions well. They
can make the difference between a reliable and an unreliable analysis.

Be aware that there is little you can conclude with certainty from keystroke
logs with a single analysis. Keystroke logs are puzzles. You will often
need to cross-check the results you retrieve from one analysis with results
from another analysis. For example, our log data showed that half of all
users did not use the toggle feature. Log data however, does not tell
you why users did not use the feature. They might love FutureType so
much that they never felt like switching it off. But it is more probable
that they simply did not know how to use the toggle button since it
better fits the general picture of the log data, i.e. users clearly did not
know how to accept suggestions with Tab, ergo, it is probable that they
did not understand the toggle button either. Analysing keystroke log
data is very time-consuming because one always needs to cross-reference
conclusions by conducting several analyses that together form a tiny piece
of the puzzle. It also makes it difficult to not lose yourself in details.
Our advice is to conduct keystroke analyses in small steps. Start with
very simple descriptives to get a feeling for the data and the answers you
can and cannot get by analysing your data. Sometimes, you will need to
abandon a planned analysis because the result of your data exploration
is that you cannot conduct the intended analysis reliably with the data
you collected. But that does not mean that your data does not contain
interesting results. Sometimes, you will find patterns in your data that
you did not expect. Therefore, to a certain extent, let the data guide your
analysis, depending on the questions it can and the questions it cannot
answer.

71



References

[1] M. Hanekamp, S. Heesbeen, I. v.d. Helm, and R. Valks, “Administratieve
belasting langdurige zorg 2019 [online]”, Berenschot, 2019, Available at
https://www.berenschot.nl/actueel/2019/september/administratieve-
belasting/, last accessed 2020-03-05.

[2] N. R. Greenbaum, Y. Jernite, Y. Halpern, S. Calder, L. A. Nathanson,
D. A. Sontag, and S. Horng, “Contextual autocomplete: A novel user inter-
face using machine learning to improve ontology usage and structured data
capture for presenting problems in the emergency department”, BioRxiv,
p. 127 092, 2017.

[3] Y. Gong, L. Hua, and S. Wang, “Leveraging user’s performance in re-
porting patient safety events by utilizing text prediction in narrative data
entry”, Computer methods and programs in biomedicine, vol. 131, pp. 181–
189, 2016.

[4] M. Sevenster, R. van Ommering, and Y. Qian, “Algorithmic and user
study of an autocompletion algorithm on a large medical vocabulary”,
Journal of biomedical informatics, vol. 45, no. 1, pp. 107–119, 2012.

[5] G. P. Spithourakis, S. E. Petersen, and S. Riedel, Clinical text prediction
with numerically grounded conditional language models, 2016. arXiv: 1610.
06370 [cs.CL].

[6] A. Yazdani, R. Safdari, A. Golkar, and S. R. N. Kalhori, “Words prediction
based on n-gram model for free-text entry in electronic health records”,
Health information science and systems, vol. 7, no. 1, p. 6, 2019.

[7] S. Firmenich, A. Garrido, J. Grigera, J. M. Rivero, and G. Rossi, “Usabil-
ity improvement through a/b testing and refactoring”, Software Quality
Journal, vol. 27, no. 1, pp. 203–240, 2019.

[8] J. Eng and J. M. Eisner, “Informatics in radiology (info rad) radiology
report entry with automatic phrase completion driven by language mod-
eling”, Radiographics, vol. 24, no. 5, pp. 1493–1501, 2004.

[9] J. Nielson, “Usability 101: Introduction to usability [online]”, 2012, Avail-
able at https://www.nngroup.com/articles/usability-101- introduction-
to-usability/, last accessed 2020-03-01.

[10] B. L. Monroe, M. P. Colaresi, and K. M. Quinn, “Fightin’words: Lexical
feature selection and evaluation for identifying the content of political
conflict”, Political Analysis, vol. 16, no. 4, pp. 372–403, 2008.

[11] J. Lu, M. Henchion, and B. MacNamee, “Extending jensen shannon diver-
gence to compare multiple corpora”, in 25th Irish Conference on Artificial
Intelligence and Cognitive Science, Dublin, Ireland, 7-8 December 2017,
CEUR-WS. org, 2017.

[12] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult”, IEEE transactions on neural networks,
vol. 5, no. 2, pp. 157–166, 1994.

[13] T. Mikolov and G. Zweig, “Context dependent recurrent neural network
language model”, in 2012 IEEE Spoken Language Technology Workshop
(SLT), IEEE, 2012, pp. 234–239.

72

https://www.berenschot.nl/actueel/2019/september/administratieve-belasting/
https://www.berenschot.nl/actueel/2019/september/administratieve-belasting/
https://arxiv.org/abs/1610.06370
https://arxiv.org/abs/1610.06370
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/


[14] J. R. Bellegarda, “Exploiting latent semantic information in statistical
language modeling”, Proceedings of the IEEE, vol. 88, no. 8, pp. 1279–
1296, 2000.

[15] N. Coccaro and D. Jurafsky, “Towards better integration of semantic pre-
dictors in statistical language modeling”, in Fifth international conference
on spoken language processing, 1998.

[16] M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large
annotated corpus of english: The penn treebank”, 1993.

[17] J. Li, M. Galley, C. Brockett, G. P. Spithourakis, J. Gao, and B. Dolan,
“A persona-based neural conversation model”, 2016. arXiv: 1603.06155
[cs.CL].

[18] X. Chen, T. Tan, X. Liu, P. Lanchantin, M. Wan, M. J. Gales, and
P. C. Woodland, “Recurrent neural network language model adaptation
for multi-genre broadcast speech recognition”, in Sixteenth Annual Con-
ference of the International Speech Communication Association, 2015.

[19] A. Jaech and M. Ostendorf, “Low-rank rnn adaptation for context-aware
language modeling”, Transactions of the Association for Computational
Linguistics, vol. 6, pp. 497–510, 2018.

[20] ——, Personalized language model for query auto-completion, 2018. arXiv:
1804.09661 [cs.CL].

[21] A. B. Dieng, C. Wang, J. Gao, and J. Paisley, Topicrnn: A recurrent neural
network with long-range semantic dependency, 2016. arXiv: 1611.01702
[cs.CL].

[22] J. Tang, Y. Yang, S. Carton, M. Zhang, and Q. Mei, “Context-aware nat-
ural language generation with recurrent neural networks”, arXiv preprint
arXiv:1611.09900, 2016.

[23] Y. Zheng, G. Chen, M. Huang, S. Liu, and X. Zhu, “Personalized dialogue
generation with diversified traits”, arXiv preprint arXiv:1901.09672, 2019.

[24] H. Zhou, M. Huang, T. Zhang, X. Zhu, and B. Liu, “Emotional chatting
machine: Emotional conversation generation with internal and external
memory”, in Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[25] Z. Yin and Y. Shen, “On the dimensionality of word embedding”, in Ad-
vances in Neural Information Processing Systems, 2018, pp. 887–898.

[26] S. Arora, Word embeddings: Explaining their properties, https://www.
offconvex.org/2016/02/14/word- embeddings- 2/, Accessed 2020-28-02,
2016.

[27] M. Mahoney, “Large text compression benchmark”, 2011, Accessed 2020-
01-03.

[28] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information”, Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[29] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin, “Ad-
vances in pre-training distributed word representations”, arXiv preprint
arXiv:1712.09405, 2017.

73

https://arxiv.org/abs/1603.06155
https://arxiv.org/abs/1603.06155
https://arxiv.org/abs/1804.09661
https://arxiv.org/abs/1611.01702
https://arxiv.org/abs/1611.01702
https://www.offconvex.org/2016/02/14/word-embeddings-2/
https://www.offconvex.org/2016/02/14/word-embeddings-2/


[30] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov, “Learning
word vectors for 157 languages”, arXiv preprint arXiv:1802.06893, 2018.

[31] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting similarities among
languages for machine translation”, arXiv preprint arXiv:1309.4168, 2013.

[32] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[33] M. I. Amsterdam, Netwerk naamkunde, http : //www.naamkunde .net,
Accessed: 2020-20-02.

[34] J. W. Ratcliff and D. E. Metzener, “Pattern-matching-the gestalt ap-
proach”, Dr Dobbs Journal, vol. 13, no. 7, p. 46, 1988.

[35] P. E. Black, Ratcliff/obershelp pattern recognition, in Dictionary of Algo-
rithms and Data Structures [online], Paul E. Black, ed. Available from:
https://xlinux.nist .gov/dads/HTML/ratcliffObershelp.html, accessed
2020-20-02, 2004.

[36] D. Jurafsky and J. H. Martin, Speech and language processing. Pearson
London, 2014, vol. 3.

[37] P. Eckert, “Age as a sociolinguistic variable”, The handbook of sociolin-
guistics, pp. 151–167, 2017.

[38] S. Kullback and R. A. Leibler, “On information and sufficiency”, The
annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[39] R. J. Gallagher, A. J. Reagan, C. M. Danforth, and P. S. Dodds, “Diver-
gent discourse between protests and counter-protests:# blacklivesmatter
and# alllivesmatter”, PloS one, vol. 13, no. 4, e0195644, 2018.

[40] J. Lin, “Divergence measures based on the shannon entropy”, IEEE Trans-
actions on Information theory, vol. 37, no. 1, pp. 145–151, 1991.

[41] E. Sober, “The principle of parsimony”, The British Journal for the Phi-
losophy of Science, vol. 32, no. 2, pp. 145–156, 1981.

[42] J. Vandekerckhove, D. Matzke, E.-J. Wagenmakers, et al., “Model compar-
ison and the principle of parsimony”, Oxford handbook of computational
and mathematical psychology, pp. 300–319, 2015.

[43] L. Damodaran, “User involvement in the systems design process-a prac-
tical guide for users”, Behaviour & information technology, vol. 15, no. 6,
pp. 363–377, 1996.

[44] S. Kujala, “User involvement: A review of the benefits and challenges”,
Behaviour & information technology, vol. 22, no. 1, pp. 1–16, 2003.

[45] R. Kohavi and R. Longbotham, “Online controlled experiments and a/b
testing.”, Encyclopedia of machine learning and data mining, vol. 7, no. 8,
pp. 922–929, 2017.

[46] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne, “Con-
trolled experiments on the web: Survey and practical guide”, Data mining
and knowledge discovery, vol. 18, no. 1, pp. 140–181, 2009.

[47] K. Trnka, J. McCaw, D. Yarrington, K. F. McCoy, and C. Pennington,
“User interaction with word prediction: The effects of prediction quality”,
ACM Transactions on Accessible Computing (TACCESS), vol. 1, no. 3,
pp. 1–34, 2009.

74

http://www.naamkunde.net
https://xlinux.nist.gov/dads/HTML/ratcliffObershelp.html


[48] V. Dhakal, A. M. Feit, P. O. Kristensson, and A. Oulasvirta, “Observa-
tions on typing from 136 million keystrokes”, in Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, 2018, pp. 1–
12.

[49] S. K. Kane, J. O. Wobbrock, M. Harniss, and K. L. Johnson, “Truekeys:
Identifying and correcting typing errors for people with motor impair-
ments”, in Proceedings of the 13th international conference on Intelligent
user interfaces, 2008, pp. 349–352.

[50] A. M. Feit, D. Weir, and A. Oulasvirta, “How we type: Movement strate-
gies and performance in everyday typing”, in Proceedings of the 2016 chi
conference on human factors in computing systems, 2016, pp. 4262–4273.

[51] X. Liu and J. P. Bagrow, “Autocompletion interfaces make crowd work-
ers slower, but their use promotes response diversity”, arXiv preprint
arXiv:1707.06939, 2017.

[52] D. Anson, P. Moist, M. Przywara, H. Wells, H. Saylor, and H. Maxime,
“The effects of word completion and word prediction on typing rates using
on-screen keyboards”, Assistive technology, vol. 18, no. 2, pp. 146–154,
2006.

[53] E. Wong, “Ablation”, in Encyclopedia of Clinical Neuropsychology, J. S.
Kreutzer, J. DeLuca, and B. Caplan, Eds. New York, NY: Springer New
York, 2011, pp. 6–6, isbn: 978-0-387-79948-3. doi: 10.1007/978-0-387-
79948-3 3. [Online]. Available: https://doi.org/10.1007/978-0-387-79948-
3 3.

[54] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation”, in Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion, 2014, pp. 580–587.

[55] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge”, International journal
of computer vision, vol. 88, no. 2, pp. 303–338, 2010.

[56] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding”,
arXiv preprint arXiv:1510.00149, 2015.

[57] R. Cheong and R. Daniel, “Transformers. zip: Compressing transformers
with pruning and quantization”, Technical report, Stanford University,
Stanford, California, 2019. URL https . . ., Tech. Rep., 2019.

[58] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network”, arXiv preprint arXiv:1503.02531, 2015.

[59] R. Tang, Y. Lu, L. Liu, L. Mou, O. Vechtomova, and J. Lin, “Distill-
ing task-specific knowledge from bert into simple neural networks”, arXiv
preprint arXiv:1903.12136, 2019.

[60] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network”, in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[61] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in deep neural
networks”, arXiv preprint arXiv:1902.09574, 2019.

75

https://doi.org/10.1007/978-0-387-79948-3_3
https://doi.org/10.1007/978-0-387-79948-3_3
https://doi.org/10.1007/978-0-387-79948-3_3
https://doi.org/10.1007/978-0-387-79948-3_3


[62] S. Bickel, P. Haider, and T. Scheffer, “Predicting sentences using n-gram
language models”, in Proceedings of Human Language Technology Confer-
ence and Conference on Empirical Methods in Natural Language Process-
ing, 2005, pp. 193–200.

[63] J. O. Wobbrock, “Measures of text entry performance”, in Text entry sys-
tems: Mobility, accessibility, universality, San Francisco: Morgan Kauf-
mann, 2007, pp. 47–74.

[64] I. S. MacKenzie, “A note on calculating text entry speed”, Unpublished
work. Available online at http:// www.yorku.ca/ mack/ RN-TextEntrySpeed.
html , 2002.

[65] D. C. Hoaglin and B. Iglewicz, “Fine-tuning some resistant rules for outlier
labeling”, Journal of the American statistical Association, vol. 82, no. 400,
pp. 1147–1149, 1987.

76

http://www.yorku.ca/mack/RN-TextEntrySpeed.html
http://www.yorku.ca/mack/RN-TextEntrySpeed.html


Tekstvoorspelling in rapportages (FutureType) - Pilotfunctionaliteit 

 Deze functionaliteit zit nog in de pilotfase, daarom is dit nog niet voor iedereen 
zichtbaar. Neem contact op met je accountmanager voor meer informatie over 
deelname aan de pilot. 

Ons FutureType is een hulpmiddel voor het eenvoudiger invoeren van tekst. 

Gebruikers worden geholpen met het invoeren van complexe medische en 
(zorginhoudelijke) terminologie.  De functionaliteit lijkt op het slimme toetsenbord van een 
smartphone. Ons FutureType wordt geactiveerd in Dossier, Agenda en Groepszorg. 

De suggesties worden gebaseerd op de bestaande rapportages in Ons. Er is geen koppeling 
met een (medisch) woordenboek. 

 De voorgestelde woorden zijn altijd een suggestie. Als je niet actief de suggestie 
selecteert, zal er niets veranderen in het rapporteren. 

Bij het typen van een rapportage of registratie in een veld met Ons Futuretype zullen suggesties 
voor het schrijven van woorden verschijnen: 
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Pilotfunctionaliteit
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Zodra je begint met typen, kunnen voorspellingen verschijnen (1). Door op de tab-toets te 
drukken wordt je woord automatisch aangevuld op basis van de suggestie. 

Op een touchscreen werkt het aanvullen van de suggestie door er op te klikken. 

Uitgangspunten: 

• Suggesties worden gebaseerd op basis van bestaande rapportages. 
• De suggesties houden rekening met de context. In verschillende rapportages kunnen andere 

suggesties getoond worden bij dezelfde beginletters. 
• Suggesties kunnen per gebruiker verschillen, ook als dezelfde tekst ingevoerd wordt. 

Het is mogelijk om FutureType per applicatie uit te zetten. Klik hiervoor op het icoontje 
rechtsbovenin (2). 

Het aan- of uitzetten van FutureType wordt opgeslagen in je browser. Als je in een andere 
browser (op een ander apparaat) een rapportage bewerkt, kan de instelling anders zijn. 
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