
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

A polyhedral study of the
Travelling Tournament Problem

Marije Renske Siemann
M.Sc. Thesis
March 2020

Supervisor:
dr. M. Walter

Graduation committee:
prof. dr. M.J. Uetz

dr. M. Walter
dr. J.D. Backhoff

Discrete Mathematics and
Mathematical Programming

Department of Applied Mathematics
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract

The Travelling Tournament Problem (TTP) is a sports scheduling problem in which the goal is
to find a double round-robin tournament schedule with minimum total travel distance. Additional
constraints are the no-repeaters constraint and constraints on the length of home stands and road
trips. Without these constraints, the problem is called unconstrained. In this thesis, the TTP is
modelled as an integer program and the polytope of solutions is investigated. The dimension of the
solution polytope of the unconstrained problem is found and proved. Using this result, it is proved that
a certain class of valid inequalities is facet-defining for the unconstrained problem. A separate part of
this thesis is spent on analysing the equivalences between three tournament scheduling methods: the
circle method, the canonical 1-factorisation and the Kirkman tournament. It is proved that the last
two methods are equivalent up to permutation, a result that was missing in electronically available
literature.

Preface
This thesis is the result of my final project of the master program Applied Mathematics, and concludes
my time as a student. The project was carried out at the University of Twente during the last 7
months. Before I started this project, I did a research internship at a company. Although the company
offered me a graduation opportunity, I chose for an internal project at the University of Twente. Not
because I did not like the company—quite the contrary—but because I wanted to discover both
worlds. Looking back, I am happy with this choice: I have learned what I like and what I do not.

Before I start thanking people, I would like to add a note about the current situation. As a sports
enthusiast and athlete, I chose an assignment about scheduling sports tournaments. Ironically, how-
ever, at the moment of writing this preface, almost all sports leagues in Europe, and in an increasing
number of countries all over the world, are being suspended for an indefinite period of time. This is
due to the COVID-19 pandemic that currently rages around the world. The Netherlands are in an
“intelligent lockdown”, and the presentation of my thesis next week will be held online.

As a result, the last two and a half weeks of writing this thesis did not happen in my familiar office
at the university, but in the living room of my student house, after studying on my own in my small
student room had proved unsuccessful. Therefore, a first word of thanks goes to my housemates, who
accompanied me during these last weeks in our “home office”, which greatly improved my productivity.

Of course, I would like to thank my daily supervisor, Matthias Walter. For giving me the opportunity
to finish my studies with this research. For his guidance and feedback, for the opportunity to ask
questions at any moment, and for his quick responses to e-mails. And finally, for letting me research
whatever I like, as long as it results in “nice mathematics”. This has resulted in a chapter which is
not directly related to the main goal of this thesis, but I did enjoy this part of the research.

It goes without saying that I want to thank my family and friends. Special thanks go to my parents,
for their support and unwavering belief that everything will be all right, even though they usually
hardly know what I am doing. Hopefully, that will change a bit during the (online) presentation next
week. I would like to thank my fellow students for the nice talks during breaks. And of course, I
want to thank my friends from Tartaros for the trainings and other activities we did together, which
were very welcome distractions from the work.

Finally, I would like to thank the members of the graduation committee for taking the time to read
and evaluate my work.

Marije Siemann
March 2020, Enschede

1

Contents

1 Introduction 4
1.1 Background . 4
1.2 Goals . 5
1.3 Structure . 5
1.4 Notation . 5

2 The Travelling Tournament Problem 7
2.1 Description of the standard TTP . 7
2.2 Variants . 8
2.3 Integer programming formulations . 8

3 Tournament scheduling methods and their equivalence 10
3.1 Three scheduling methods . 10

3.1.1 Circle method . 10
3.1.2 Canonical 1-factorisation . 11
3.1.3 Kirkman tournament . 11

3.2 Equivalence of the canonical 1-factorisation and the Kirkman tournament 12
3.2.1 Games in each slot in a Kirkman tournament 13
3.2.2 Apply permutation . 15
3.2.3 Equality of permuted Kirkman tournament and canonical 1-factorisation . . . 16

4 Dimension of the solution space of the TTP 18
4.1 Redundant equations . 18
4.2 Dimension of conv(Xn) . 19

4.2.1 Transform Xn into Xn . 20
4.2.2 Proof outline . 20
4.2.3 Local change: home-away swap . 21
4.2.4 Local change: partial slot swap . 22
4.2.5 Conclusion . 25

4.3 Dimension of conv(Yn) . 26
4.3.1 Definition of Yn . 26
4.3.2 Proof outline . 26
4.3.3 Variables of the type yi,i,t . 27
4.3.4 Variables of the type yi,t,i . 27
4.3.5 Variables of the type yi,s,t . 27
4.3.6 Conclusion . 27

5 Facets 29
5.1 Integrality gap . 29
5.2 Finding facets . 30

2

5.3 Facet proof . 32
5.3.1 Proof outline . 32
5.3.2 Local changes . 33
5.3.3 Affinely independent vectors . 33
5.3.4 Combining the previous results . 39

6 Conclusions and recommendations 42
6.1 Conclusions . 42
6.2 Recommendations for further research . 42

3

Chapter 1

Introduction

1.1 Background
All over the world, sports leagues exist. Some leagues, such as the Diamond League (track and field),
the UCI World Tour (road cycling), and the Formula One (auto racing), consist of a series of games
or races in which multiple teams or individuals compete against each other. However, the larger part
of sports leagues, such as the Eredivisie (football) and the MLB (baseball), consist of games between
two teams instead of multiple teams. In a typical league, these teams play against each other team
twice: once at home and once at the other team’s venue. This is the type of league that this thesis
focuses on.

In recreational leagues, the distances between the teams are usually not too large. However, in
professional leagues, the teams are often spread over an entire country or even multiple countries.
Thus, the distances between the teams’ stadiums can be rather large. If a team has two or more
away games in a row, then excessive travel time and travel cost can be avoided by travelling from the
venue of an away game to the venue of the next away game directly, without going home in between.
This happens in reality in large competitions such as the NBA (basketball) and is called a road trip.

If a number of venues are close to each other, but far from home, then combining these venues in a
road trip saves a large amount of travel distance. This is illustrated in Figure 1.1.

1

2 3 4

Figure 1.1: In black: team 1 must travel home after the away games against teams 2, 3, and
4, because home games are scheduled in between.

In red: team 1 plays the three away games consecutively.

However, the schedule of one team affects the schedules of the other teams. Thus, simply minimising
the travel distance of a single team can lead to unfavourable schedules for other teams. Furthermore,

4

there are often additional rules to be satisfied, such as a maximum on the number of consecutive
home and away games. Consequently, minimising the total travel distance of all teams in the whole
schedule is a complicated task. This problem is known in mathematics as the Travelling Tournament
Problem (TTP) and is the subject of this thesis.

1.2 Goals
The Travelling Tournament Problem has turned out to be a hard problem. The most common variant
of the TTP is proved to be strongly NP-complete in [1]. Intuitively, this is not strange: minimising
the travel distance of a single team can be seen as a variant of the travelling salesman problem, which
itself is NP-complete. Minimising the travel distance of all teams is even harder: this can be seen as
solving a variant of the travelling salesman problem for each team individually, while the individual
solutions should also fit together to form a feasible tournament schedule.

When modelling the TTP as an integer program, it turns out that the integrality gap is large, which
is one of the reasons that solving the integer program takes very long. This can be improved by
adding cutting planes to the program. A special type of cutting planes are facets, which can be seen
as the best possible cutting planes. The main goal of this thesis is to reduce the integrality gap by
finding facets.

To prove that a valid inequality is indeed facet-defining for a polytope, we must show that its dimen-
sion is one less than that of the polytope itself. Thus, it is essential to know the dimension of the
polytope. This is an important subgoal of this thesis: computing the dimension of the solution space
of the TTP.

During the research, a well-known method to generate tournament schedules was used frequently.
While trying to retrace the origin of this method, it was discovered that a certain source, which is
often cited as the inventor of this method, cannot be the real inventor. The last subgoal of this thesis,
which is not directly related to the main goal but is nevertheless interesting, is to clarify the origin
of and the relation between multiple tournament scheduling methods.

1.3 Structure
Chapter 2 describes the Travelling Tournament Problem in more detail. Two variants are intro-
duced, and integer programs are formulated for them. Chapter 3 discusses three different tournament
scheduling methods and the equivalences between them. Furthermore, it takes away a misconception
about the inventor of a well-known tournament scheduling method. In Chapter 4, the dimension of
the solution space of the TTP is figured out. A class of valid inequalities is identified in Chapter 5,
and it is proved that these inequalities are facet-defining. Finally, Chapter 6 closes the thesis with
the conclusions and recommendations.

It may occur to the reader now that a literature review is missing. This is correct, and has a simple
reason: no literature was found in the area of facets and the dimension of the solution space of the
TTP. However, for the interested reader, we refer to [2] for an excellent overview of the methods used
in tournament scheduling in general and for the TTP in particular.

1.4 Notation
Most of the mathematical notation used in this thesis can be considered standard. Some notation
that is not as common or might be ambiguous is clarified in Table 1.1.

5

Symbol Meaning
|x| number of elements in x
0n null vector with n elements
a ≡ b (mod n) a and b are congruent modulo n
a mod n remainder of the division of a by n
[n] the set {1, 2, ..., n}
[m,n] the set {m,m+ 1, ..., n}

Table 1.1: Notation

6

Chapter 2

The Travelling Tournament
Problem

This chapter starts with a precise description of the Travelling Tournament Problem. Next, variants
of the TTP and the variants used in this thesis are described. The chapter concludes with integer
programming formulations for the used variants.

2.1 Description of the standard TTP
In Section 1.1, we already gave an informal description of the TTP. Here, we make this more precise.
Multiple variants of the TTP exist, but we focus on the most predominant one here, which we call
“the standard TTP” or “the standard problem”.

A round-robin tournament is a tournament in which each team plays each other team a fixed number
of times. In the standard TTP, this number is 2, which is called a double round-robin tournament. A
double round-robin tournament is often created by concatenating two single round-robin tournament
schedules, so that each half of the whole schedule is a single round-robin tournament, but this is not
required. Thus, it is allowed that a team plays another team twice in the same half of the schedule.

Each game is allocated to a time slot, or simply slot, such that a team never plays two games in the
same slot. In a compact schedule, each team plays a game in each slot. This is possible for an even
number of teams, but not when the number of teams is odd. In the standard TTP, an even number
of teams compete, and the schedule is compact.

Each game is played at the venue of one of the two competing teams. If a team plays a game at
its own venue, this is called a home game, and a game played at the opponent’s venue is called an
away game. In the standard TTP, where each team plays each other team twice, one of the two
games against the same opponent is played at home and the other one away. Thus, if the tournament
consists of n teams, each team plays n − 1 home games and n − 1 away games, one at each of the
other teams’ venues. Each team starts and ends the competition at home. Thus, n − 1 teams will
travel from home to an away venue in the first slot, and n − 1 teams will travel home after the last
game.

If a team plays multiple consecutive home games, this is called a home stand, and multiple consecutive
away games are called a road trip. The length of a home stand or road trip is defined as the number
of games in the home stand or road trip, respectively.

7

In the standard TTP, there are two additional constraints. First, two teams cannot play the two
games between them in two consecutive slots. This is called the no-repeaters constraint. Second, the
length of a home stand and road trip has a maximum of three.

2.2 Variants
The main variants differ from the standard TTP in one or more of the following fields (see [3]):

• the maximum length of home stands and road trips is another number than 3, or unconstrained;
• repeaters are allowed;
• the schedule is required to be mirrored: the second half is the same as the first half, but with
reversed venues.

In this thesis, we work with two variants of the Travelling Tournament Problem. The first one is the
standard problem. In the second one, two types of constraints are ignored: the constraints on the
length of a home stand and road trip, and the no-repeaters constraints. This version is referred to
as “the unconstrained problem”. Although it is less restrictive than the standard problem, the main
structure is still intact; the removed constraints make the tournament nicer for the teams, but are
not necessary. In [4], it is proved that the unconstrained problem is NP-hard.

The use of the unconstrained problem has the following reason: various proofs have turned out to
become much more laborious when the removed constraints are included. With these constraints, it
is not guaranteed that simple operations, such as swapping two slots, keep a tournament schedule
feasible. The proofs in Chapters 4 and 5 of this thesis apply to the unconstrained problem. However,
there is a good chance that these proofs can be extended to proofs for the standard problem using
similar proof techniques. Thus, this thesis provides a basis for proving similar theorems for the
standard problem and for other variants.

2.3 Integer programming formulations
In this section, we present an integer programming formulation for the standard TTP and the un-
constrained TTP.

Parameters:

• number of teams n;
• distance matrix D, dii = 0 ∀i, dij = dji ∀i, j;
• scalar U : maximum length of a home stand or road trip.

Sets:

• slots k ∈ {1, ..., 2(n− 1)};
• teams i, j, s, t ∈ {1, ..., n}.

Variables:

• xk,i,j ∈ {0, 1}, ∀k, i, ∀j 6= i;
• yi,s,t ∈ {0, 1}, ∀i, s, ∀t 6= s

with the interpretation

xk,i,j = 1 ⇐⇒ team i plays against team j at home in slot k;
yi,s,t = 1 ⇐⇒ team i travels from s to t.

8

The variables xk,i,j will sometimes be referred to as the play variables, and the variables yi,s,t as the
travel variables.

Integer program:

min
∑

i

∑
s

∑
t 6=s

ds,tyi,s,t (2.1)

s.t.
∑
j 6=i

(xk,i,j + xk,j,i) = 1 ∀k, i (2.2)

∑
k

xk,i,j = 1 ∀i, ∀j 6= i (2.3)

xk,i,j + xk+1,j,i ≤ 1 k = 1, ..., 2n− 3, ∀i, ∀j 6= i (2.4)
U∑

l=0

∑
j 6=i

xk+l,i,j ≤ U k = 1, ..., 2(n− 1)− U, ∀i (2.5)

U∑
l=0

∑
i 6=j

xk+l,i,j ≤ U k = 1, ..., 2(n− 1)− U, ∀j (2.6)

yi,s,t ≥ xk,s,i + xk+1,t,i − 1 k = 1, ..., 2n− 3,∀i, ∀s 6= i, ∀t 6= s, i (2.7)

yi,i,t ≥
∑
j 6=i

xk,i,j + xk+1,t,i − 1 k = 1, ..., 2n− 3, ∀i, ∀t 6= i (2.8)

yi,t,i ≥ xk,t,i +
∑
j 6=i

xk+1,i,j − 1 k = 1, ..., 2n− 3, ∀i, ∀t 6= i (2.9)

yi,i,t ≥ x1,t,i ∀i, ∀t 6= i (2.10)
yi,t,i ≥ x2(n−1),t,i ∀i, ∀t 6= i (2.11)
xk,i,j ∈ {0, 1} ∀k, i, j (2.12)
yi,s,t ∈ {0, 1} ∀i, s, ∀t 6= s (2.13)

The objective, in (2.1), is to minimise the total travel distance of all teams. Constraint (2.2) enforces
that each team plays exactly once in each slot, either at home or away. Constraint (2.3) implies that
each team must play exactly once against each other team at home and once away. It is ensured that
two teams do not play each other twice consecutively by constraint (2.4) (no-repeaters constraint).
Finally, constraints (2.5) and (2.6) guarantee that a home stand or road trip has length at most U ,
respectively.

Constraints (2.7) – (2.9) couple the variables yi,s,t to the variables xk,i,j . The first one, (2.7), takes
care of travelling from an opponent’s venue to another opponent’s venue. Constraints (2.8) and (2.9)
manage the trips from home to an opponent’s venue and vice versa, respectively. However, one case
is missed by these constraints: as each team must start and finish the tournament at home, a team
should also travel from home to an opponent’s venue when the first game is played away, and vice
versa if the last game is played away. Constraints (2.10) and (2.11) take care of this.

We model the standard TTP by the integer program specified above, but replace the no-repeaters
constraint (2.4) with the following constraint:

xk,i,j + xk,j,i + xk+1,i,j + xk+1,j,i ≤ 1 k = 1, ..., 2n− 3, ∀i, ∀j 6= i. (2.14)

This strengthens the linear relaxation.

The integer programming formulation of the unconstrained problem is equal to the inter program for
the standard problem, except that constraints (2.4) (no repeaters), (2.5) (length of home stand), and
(2.6) (length of road trip) are removed.

9

Chapter 3

Tournament scheduling methods
and their equivalence

In subsequent chapters, we will have to generate tournament schedules multiple times. Therefore,
this chapter discusses three methods to generate single round-robin tournament schedules. It turns
out that the tournament schedules generated by these three methods have a similar structure: they
are equivalent up to permutation of the teams. However, the equivalences are not always clear at
first sight.

In the next section, we will discuss the three methods. Thereafter, we continue with a proof that two
of these tournament scheduling methods are equivalent, a proof of which is missing in electronically
available literature.

3.1 Three scheduling methods
We discuss three tournament scheduling methods: the circle method, the canonical 1-factorisation
and the Kirkman tournament. In the largest part of this chapter, we are not interested in the venue
where games take place: home or away. However, for the canonical 1-factorisation, we add a method
to determine a home-away assignment.

3.1.1 Circle method
The circle method is a well-known method to generate a single round-robin tournament schedule. We
will explain the method shortly. First, the n teams are arranged in a 2 × n/2 array, in any order.
The teams in the same column play each other in the first slot. Next, one of the teams is fixed. The
other teams move one position, either clockwise or counterclockwise, skipping the fixed team. In
the second slot, the teams that are now in the same column play each other. An example of such a
rotation is shown in Figure 3.1. These rotations are repeated until the teams are back at their initial
position in the array. At this point, each team has played each other team exactly once.

1 2 3 ... n/2
n n− 1 n− 2 ... n/2 + 1

1 n 2 ... n/2− 1
n− 1 n− 2 n− 3 ... n/2

Figure 3.1: Example of a rotation of the circle method. Team 1 is fixed, the other teams
move clockwise.

10

The name circle method originates from a slightly different way of generating the same schedule, in
which the teams are arranged in a circle instead of in an array. A clear explanation of this method
can be found in [5]. In this article, it is also explained that the circle method is equivalent to another
construction, called the canonical 1-factorisation. This construction was first described by De Werra
in [6].

3.1.2 Canonical 1-factorisation
The canonical 1-factorisation is a specific 1-factorisation of the complete graph on an even number of
vertices n, all of which represent a team. The 1-factors, i.e., perfect matchings, are defined as follows,
as described in [7]. The 1-factor Fk is the set of edges specifying the games played in slot k, and is
defined by

Fk = {{n, k}} ∪ {{k + i, k − i} | i = 1, ..., n/2− 1} k = 1, ..., n− 1. (3.1)

Here, the numbers k + i and k − i are taken modulo n − 1 as one of the numbers 1, ..., n − 1. The
games are denoted by sets of two teams instead of tuples because the order of the teams is irrelevant;
we are not concerned with the venues of the games here. The schedule derived from the canonical
1-factorisation is equivalent to the schedule generated by the circle method up to permutation of the
teams. When the circle method is applied as in Figure 3.1, with the teams arranged in the same order,
team n fixed, and rotating counterclockwise, then the resulting schedule is equal to the schedule from
the canonical 1-factorisation.

In the remainder of this chapter, we are not interested in the venues of the games. However, in a
later chapter, we will be. Therefore, we add a method to determine which team will play home and
away in each game, which is called a home-away assignment. Denote the games by a tuple instead
of a set, and let the first team in the tuple play at home. Then the following home-away assignment
is suggested in [7]:

• (2n, i) if i is odd, or (i, 2n) if i is even;
• (i− k, i+ k) if k is odd, or (i+ k, i− k) if k is even.

This assignment has a number of favourable properties, such as the balancedness of the home and
away games for each team. We call this home-away assignment the standard home-away assignment.

We now have two methods to generate equivalent tournament schedules: a somewhat geometric
way (the circle method), and an algebraic way (the canonical 1-factorisation). There exists a third
method, described first by Reverend Kirkman in [8] in the year 1847 already, which can be seen as a
greedy method.

3.1.3 Kirkman tournament
A tournament scheduled according to the method described by Kirkman is called a Kirkman tour-
nament. It is constructed as follows. All the games {i, j}, i < j have to be scheduled once. First
they are sorted lexicographically: if i < j and i′ < j′, then {i, j} ≤ {i′, j′} if and only if i < i′ or
(i = i′ and j ≤ j′). Next, the games are scheduled sequentially.

We start with an empty array with n − 1 columns and a yet unknown number of rows. After
completion, column k of the array will contain the games played in slot k. The first game, {1, 2}, is
scheduled at position (1, 1) of the array, i.e., the top-left corner. The next games are scheduled by
traversing the array in a left-to-right, top-to-bottom manner, starting from the position of the last
scheduled game, and picking the first entry which keeps the schedule feasible. That is, an entry in
a column in which none of the teams to be scheduled have played yet. As one only moves forward
through the array, a once skipped entry will never be filled, but the column (slot) containing this
skipped entry can still be picked in later rows.

11

Thus, games {1, 3} up to {1, n} are placed at positions (1, 2) up to (1, n−1), respectively, as there are
no other games in these columns yet. Next, game {2, 3} has to be scheduled. The first empty entry
is at position (2, 1). However, this column already contains the game {1, 2}, so that the game {2, 3}
can not be scheduled here—otherwise, team 2 is scheduled twice in slot 1. Similarly, the game cannot
be scheduled at position (2, 2). The next entry is available however, so that game {2, 3} is scheduled
at position (2, 3). This process is continued until all games have been scheduled. An example with
6 teams is shown in Table 3.1. Note that the game {2, 6} is scheduled at position (3, 2) and not at
position (2, 2) in this example, as one only moves forward through the array.

c1 c2 c3 c4 c5
r1 {1, 2} {1, 3} {1, 4} {1, 5} {1, 6}
r2 - - {2, 3} {2, 4} {2, 5}
r3 - {2, 6} - - {3, 4}
r4 {3, 5} - - {3, 6} -
r5 - {4, 5} - - -
r6 {4, 6} - {5, 6} STOP

Table 3.1: Kirkman tournament with 6 teams. Dashes indicate skipped entries.

Now we can simply collect the teams in each column to obtain the tournament schedule. It turns out
that this method always yields a feasible single round-robin schedule for an even number of teams n,
as proved in [9].

Kirkman is often cited as the founder of the circle method (see, e.g., [5], [10], [11], [12]). However,
this is incorrect: it can easily be seen that the method above has nothing to do with circles. It has a
totally different structure than the circle method. Moreover, Kirkman did not use the method above
to produce tournament schedules; it was only a tool used in solving a larger mathematical problem.
Surprisingly, the resulting schedule is equivalent up to permutation to the schedule derived from the
circle method. However, a non-trivial permutation must be applied to obtain equal schedules and
there is no easy way to transform a Kirkman tournament into the circle method. Therefore, Kirkman
cannot be considered the founder of the circle method.

To the best of our knowledge, Félix Walecki, a French mathematician, is the real inventor of the circle
method. Édouard Lucas, another French mathematician, posed the following recreational problem:

Un pensionnat renferme un nombre pair de jeunes filles qui se promènent tous les jours deux par
deux ; on demande comment il faut disposer les promenades de telle sorte qu’une jeune fille se trouve
successivement en compagnie de toutes les autres, mais ne puisse s’y trouver plus d’une fois.

Paraphrased translation: an even number of young girls walk in pairs each day. How should the pairs
be arranged such that each girl forms a pair with each other girl exactly once?

In his book Récréations mathématiques, published in 1883 [13], Édouard Lucas wrote down the circle
method as a solution to this problem, and attributes the solution to Félix Walecki.

3.2 Equivalence of the canonical 1-factorisation and the Kirk-
man tournament

It is known that the circle method and the canonical 1-factorisation are equivalent (see, e.g., [5]).
The equivalence of the Kirkman tournament and these two methods (up to permutation) is non-
trivial, however. Presumably, a proof of this equivalence has been published before in [14]. We know
this because references to this article have been found, stating that the article contains this proof.

12

However, the article is very inaccessible. Also, no other articles have been found containing the proof.
Therefore, we will prove the equivalence ourselves in this section.

The following plan will be followed to prove the equivalence. First, in Section 3.2.1, we investigate
which games take place in each slot in a Kirkman tournament. Thereafter, a permutation is applied
to these games in Section 3.2.2. Finally, in Section 3.2.3, it is shown that the permuted Kirkman
tournament and the canonical 1-factorisation are equal.

3.2.1 Games in each slot in a Kirkman tournament
Although the rule used to generate a Kirkman tournament is simple, it is not immediately clear which
games take place in which slot. In [9], the following theorem is proved by mathematical induction:

Proposition 3.1. [9] In a Kirkman tournament,

• each game {i, n}, 1 ≤ i ≤ n− 1, takes place in slot (2i− 2) mod (n− 1);
• each game {i, j}, 1 ≤ i < j ≤ n− 1, takes place in slot (i+ j − 2) mod (n− 1).

Here, the result of the modulo operation is one of the numbers 1, ..., n− 1.

The theorem can be seen as a function that maps each game to a slot. We would like to know which
games take place in each slot; that is, we are looking for the (multivalued) inverse of this function—
which strictly speaking does not exist, but we take a practical approach here. To find out which
games {i, n} and {i, j} take place in slot k, we must solve the following two equations, respectively:

2i− 2 ≡ k (mod n− 1)
i+ j − 2 ≡ k (mod n− 1)

The resulting games, for each slot k, are collected in Table 3.2. It remains to prove that these games
are 1) valid, 2) in the correct slot, and 3) exhaustive.

k even k odd, k 6= n− 1 k = n− 1

{k
2 + 1, n} {n+k+1

2 , n} {1, n}

{1 , k + 1}
{2 , k }...

...
{k

2 ,
k
2 + 2}

{ 1 , k + 1}
{ 2 , k }...

...
{k+1

2 , k+3
2 }

{2 , n− 1}
{3 , n− 2}...

...
{n

2 ,
n+2

2 }

{k + 2, n− 1 }
{k + 3, n− 2 }...

...
{ n+k

2 , n+k+2
2 }

{ k + 2 , n− 1 }
{ k + 3 , n− 2 }...

...
{n+k−1

2 , n+k+3
2 }

-

+1 −1

+1 −1

+1 −1

+1 −1

+1 −1

Table 3.2: The games taking place in slot k, 1 ≤ k ≤ n− 1, in a Kirkman tournament

Validity

A game {i, j} is valid if the teams i and j are two distinct integers between 1 and n. In Table 3.2,
a distinction is made between even and odd k to ensure that all teams are integer. Slightly abusing

13

the concept of a set, we will use the phrases ‘first team’ and ‘second team’ in the next part to refer
to the teams i1 and i2, respectively, in the game {i1, i2}.

First, we show that the teams playing each other in each game are distinct. In the top row of the
table, one can simply substitute the largest value of k and note that the first team is always smaller
than n. In the (non-empty) columns in the middle and bottom rows, a series of games is displayed.
The last game of each of these series contains a game {i, i + 1} for some team i, so these teams are
clearly distinct. Furthermore, i is the largest first team and i+ 1 the smallest second team in each of
these series. Hence, the other games must also contain distinct teams.

Finally, we should verify that all the teams are between 1 and n. In the previous part, it was already
shown that for each game in Table 3.2, the first team is smaller (in team number) than the second
team. Therefore, we should verify that the first team is at least equal to 1 and the last team at most
equal to n in all games. For the games in the top row, this is trivial. For the middle and bottom
rows, it is sufficient to check the first game of each of the series, as this one contains the smallest first
team and the largest second team. Checking the values of these teams is also trivial and leads to the
conclusion that all teams are between 1 and n.

Having shown that the teams in the games in Table 3.2 are all integer, distinct, and between 1 and
n, we can conclude that the games are indeed valid.

Correct slot

Here, we show that each game is placed in the right slot. The top row of the table contains the games
in which team n plays; the games {i, n}. Therefore, we should compute 2i− 2 and verify that this is
equal to k (mod n − 1) for each game (cf. Theorem 3.1). This turns out to be true; we leave it to
the reader to verify this.

The middle and bottom rows contain series of games in which team n does not play. Hence, for each
of these games {i, j} we should check that i+ j− 2 equals k (mod n− 1). As the first team increases
by one and the second team decreases by one in each of these series of games, it is clear that i+ j− 2
is a constant number in each series. Therefore, it is sufficient to check that the first game of each
series is in the correct slot. Verifying this is trivial, and it turns out that all games are in the right
slot.

Exhaustiveness

Now that it is confirmed that each of the games in Table 3.2 are valid and in the correct slot, it
remains to prove that these games are exhaustive, i.e., that no games are missing. Therefore, we
count the number of games in each slot and verify that this is equal to n/2. In Table 3.3, the number
of games in each cell of Table 3.2 are shown.

k even k odd, k 6= n− 1 k = n− 1
1 1 1
k
2

k+1
2

n
2 − 1

n−k−2
2

n−k−3
2 0

n
2

n
2

n
2

Table 3.3: In the top three rows: the number of games in the corresponding cells of Table 3.2.
In the bottom row: the column sums.

The number of games in each column sum to n/2, proving that no games are missing. Together with
the fact that all the games are valid and placed in the correct slot, we can conclude the following:

14

Theorem 3.2. The games taking place in a Kirkman tournament in each slot k, 1 ≤ k ≤ n− 1, are
given in Table 3.2.

3.2.2 Apply permutation
Now we apply the permutation to the games in Table 3.2. After the permutation, the Kirkman
tournament should be equal to the tournament resulting from the canonical 1-factorisation. The
following permutation P is used, where t is a team between 1 and n:

P (t) =
{
n if t = n

2(t− 1) mod (n− 1) otherwise

Again, the result of the modulo operation is a number between 1 and n− 1.

First, we should prove that this is indeed a permutation. That is, the domain and the range of P
should be equal. It is easy to see that each team t, 1 ≤ t ≤ n, is mapped to a valid team (a team
between 1 and n): team n is mapped to itself, and the modulo operation takes care of the other
teams.

Besides this, it should be proved that no two teams are mapped to the same team. For team n this
is clear. Now suppose to the contrary that there exist two teams t1 and t2, 1 ≤ t1 < t2 ≤ n− 1, such
that P (t1) = P (t2). That is,

P (t1) = P (t2)
⇐⇒ 2(t2 − 1) mod (n− 1) = 2(t1 − 1) mod (n− 1)
⇐⇒ 2(t2 − 1) = 2(t1 − 1) + p(n− 1) (for some integer p)
⇐⇒ 2(t2 − t1) = p(n− 1) (3.2)

Note that the left-hand side of the last equation is an even number. On the right-hand side, n− 1 is
an odd number. That implies that p should be even. We distinguish two cases.
Case 1: p ≤ 0 If p is less than or equal to 0, then p(n− 1) is at most 0. However, as t2 is greater
than t1, 2(t2 − t1) is greater than zero. This gives no solutions.
Case 2: p ≥ 2 If p is greater than or equal to 2, then p(n − 1) is at least 2(n − 1). However,
2(t2 − t1) ≤ 2((n− 1)− 1) = 2(n− 2) < 2(n− 1). This gives no solutions.
Hence, there are no solutions to equation (3.2). This shows that no two distinct teams are mapped
to the same team by P , and hence, P is a valid permutation.

First we apply the permutation to the games in the top row of Table 3.2, the games in which team n
plays. The second team in these games is always team n, which is mapped to itself. The images of
the first team under the permutation P are given below:

k even P

(
k

2 + 1
)

≡ 2
(
k

2 + 1− 1
)

= k (mod n− 1)

k odd, k 6= n− 1 P

(
n+ k + 1

2

)
≡ 2

(
n+ k + 1

2 − 1
)

= n+ k − 1 ≡ k (mod n− 1)

k = n− 1 P (1) ≡ 2(1− 1) = 0 ≡ n− 1 (mod n− 1)

Similar computations are executed for the games in the middle and bottom rows of Table 3.2. The
resulting games are given in Table 3.4. Note that the modulo operation has not been applied yet to
the games in the middle and bottom rows, as this depends on the value of k.

We call this schedule the P -permuted Kirkman tournament.

15

k even k odd, k 6= n− 1 k = n− 1

{k, n} {k, n} {n− 1, n}

{ 0 , 2k }
{ 2 , 2k − 2}...

...
{k − 2, k + 2 }

{ 0 , 2k }
{ 2 , 2k − 2}...

...
{k − 1, k + 1 }

{ 2 , 2n− 4}
{ 4 , 2n− 6}...

...
{n− 2, n }

{ 2k + 2 , 2n− 4}
{ 2k + 4 , 2n− 6}...

...
{n+ k − 2, n+ k }

{ 2k + 2 , 2n− 4 }
{ 2k + 4 , 2n− 6 }...

...
{n+ k − 3, n+ k + 1}

-

+2 −2

+2 −2

+2 −2

+2 −2

+2 −2

Table 3.4: The games taking place in slot k, 1 ≤ k ≤ n− 1, in a Kirkman tournament after
applying permutation P . The teams in the middle and bottom rows should be taken modulo

n− 1 as one of the numbers 1, ..., n− 1 after substituting a value for k.

3.2.3 Equality of permuted Kirkman tournament and canonical 1-factorisation
It remains to prove that the P -permuted Kirkman tournament is equal to the schedule following from
the canonical 1-factorisation. We differentiate between the games in which team n does and does not
play.

Looking in the top row of Table 3.4, it is clear that team n plays against team k in slot k in the
P -permuted Kirkman tournament. Recall the definition of the canonical 1-factorisation:

Fk = {{n, k}} ∪ {{k + i, k − i} | i = 1, ..., n/2− 1} k = 1, ..., n− 1 (3.1)

The first game of each factor Fk, {n, k}, shows that team n also plays against team k in slot k.
Thus, P -permuted Kirkman tournament and the canonical 1-factorisation are equal with respect to
the games in which team n plays.

Next, we consider the games in which team n does not play. To show that the tournaments are also
equal with regard to these games, we take two steps. First, we show that the sum of the teams playing
against each other in slot k is always equal to 2k mod (n− 1) in both tournaments. Thereafter, we
prove that this implies that the tournaments are equal.

Sum of the teams in each game

In the canonical 1-factorisation, the games in which team n does not play is given by the set {{k +
i, k−i} | i = 1, ..., n/2−1} in slot k. Here, k+i and k−i should be taken modulo n−1. Adding these
two numbers, we see that the sum of the teams playing each other in slot k is equal to 2k mod (n− 1).

The same holds for the P -permuted Kirkman tournament. The first games in the columns of the
middle row of Table 3.4 are {0, 2k} and {1, k + 1}. The sum of the teams is 2k in both games. In
each series of games, the first team always decreases by 2 and the second team always increases by
2. Therefore, the sum does not change. Hence, the sum of the teams playing against each other in
the middle row of Table 3.4 is always 2k.

In the bottom row of Table 3.4, the first game of the series is {2k + 2, 2n − 4} in both non-empty
columns. Summing these teams yields (2k + 2) + (2n − 4) = 2k + 2(n − 1) ≡ 2k (mod n − 1). The
same argument as in the preceding paragraph leads to the conclusion that this holds for all the games
in the series: the sum of the teams playing each other is equal to 2k mod (n− 1).

16

Equality of the tournaments

Now we use this property to prove that the tournaments must be equal. Suppose that there exist
three teams t1, t2, t3 ∈ [n− 1], all distinct, such that

t1 + t2 ≡ 2k (mod n− 1)
t1 + t3 ≡ 2k (mod n− 1).

That is, for some integer p,

t1 + t2 = t1 + t3 + p(n− 1)
⇐⇒ t2 − t3 = p(n− 1) (3.3)

To find solutions to this equation, we distinguish two cases.
Case 1: p = 0 This implies that t2 = t3. However, t2 and t3 were assumed to be distinct. This
gives no solutions.
Case 2: |p| ≥ 1 Then |t2 − t3| = |p(n− 1)| = |p|(n− 1) ≥ n− 1. However, as 1 ≤ t2, t3 ≤ n− 1, we
have that |t2 − t3| ≤ (n− 1)− 1 = n− 2. This gives no solutions.
Hence, there are no solutions to equation (3.3). Therefore, there can not exist two distinct teams t2
and t3 which can play against team t1 in slot k. Thus, the opponent of team t1 in slot k is unique,
and hence, the P -permuted Kirkman tournament and the canonical 1-factorisation are equal with
respect to the games in which team n does not play. We can conclude the following:

Theorem 3.3. The tournament schedule following from the canonical 1-factorisation, as given in
Equation (3.1), and the P -permuted Kirkman tournament, as given in Table 3.4, are equal. Therefore,
the Kirkman tournament is equivalent up to permutation to the tournament schedules following from
the canonical 1-factorisation and the circle method.

17

Chapter 4

Dimension of the solution space of
the TTP

In this chapter, we figure out the dimension of the polytope of solutions to the Travelling Tournament
Problem. In Sections 4.1 and 4.2, we focus on the polytope of play vectors. In Section 4.3, this is
extended to full solutions, including the travel vectors. The whole chapter applies to the unconstrained
problem.

4.1 Redundant equations
Let xn denote the vector of the play variables xk,i,j for n teams, n even. Let the set of indices of xn

be given by

An := {(k, i, j) | k ∈ {1, ..., 2(n− 1)}, i, j ∈ {1, ..., n}, j 6= i}.

Formally, if B and C are arbitrary sets, then BC is the set of all functions from C to B. We slightly
abuse this notation by identifying such a function with a vector which has its indices in C and its
values in B. Then, let

Xn :=
{

xn ∈ {0, 1}An
xn satisfies (2.2) and (2.3)

}
. (4.1)

That is, Xn is the set of all feasible double round-robin schedules for n teams, ignoring the no-
repeaters constraints (equations (2.4)) and the constraints on the length of home stands and road
trips (equations (2.5) and (2.6)).

In this section, we investigate which equations are redundant. First recall equations (2.2) and (2.3):∑
j 6=i

(xk,i,j + xk,j,i) = 1 ∀k, i (2.2)

∑
k

xk,i,j = 1 ∀i, ∀j 6= i (2.3)

It can be shown that the equations (2.2) for one slot k are a linear combination of the other equations.
We show this for slot 1, w.l.o.g., and for an arbitrary team i. In the first line, we work with the left-
hand side of equations (2.2). In the second line, a part of these are rewritten to the left-hand side of

18

equations (2.3). Then these are replaced with the right-hand sides of equations (2.2) and (2.3), after
which the linear dependence follows:

∑
j 6=i

(x1,i,j + x1,j,i) =
2(n−1)∑

k=1

∑
j 6=i

(xk,i,j + xk,j,i)−
2(n−1)∑

k=2

∑
j 6=i

(xk,i,j + xk,j,i)

=
∑
j 6=i

2(n−1)∑
k=1

xk,i,j

+
∑
j 6=i

2(n−1)∑
k=1

xk,j,i

− 2(n−1)∑
k=2

∑
j 6=i

(xk,i,j + xk,j,i)

=
∑
j 6=i

1 +
∑
j 6=i

1−
2(n−1)∑

k=2
1

= (n− 1) + (n− 1)− (2(n− 1)− 1)
= 1.

Hence, these equations are redundant. Now we show that the remaining equations are linearly
independent.

First we show that the equations (2.2) are linearly independent for all slots k ≥ 2. That is, the
coefficient matrix of these equations has full row rank. Let the coefficient vectors corresponding to
each of these equations be denoted by vk,i and let ak,i be the associated scalars. So, we must show
that the only solution to ∑

k≥2

∑
i

ak,ivk,i = 0 (4.2)

is the trivial solution ak,i = 0 for all k ≥ 2 and for all i.

Note that the variable xk,s,t only appears in the following two equations:∑
j 6=s

(xk,s,j + xk,j,s) = 1

∑
j 6=t

(xk,t,j + xk,j,t) = 1.

The coefficients of xk,s,t are 1 in both equations and the scalars corresponding to these equations are
ak,s and ak,t. It follows that ak,s + ak,t must be equal to 0 in any solution to (4.2). This holds for all
slots k ≥ 2 and for all pairs of distinct teams s and t. Then, it is easy to see that all coefficients ak,i

must be equal to zero. Hence, these equations are linearly independent.

Next, it is easy to see that equations (2.3) cannot be written as a linear combination of the other
equations, since each of these equations contains a unique variable: x1,i,j . This one does not appear
in any other equation anymore, since the equations (2.2) for slot 1 were shown to be redundant.
Therefore, all remaining equations are linearly independent, and the equations (2.2) for slot 1 are the
only redundant equations.

4.2 Dimension of conv(Xn)
The set Xn of all feasible double round-robin schedules is defined by equations (2.2) and (2.3).
Equations (2.2) are defined for each slot and for each team. For one slot, they are redundant. This
yields a total of (2(n − 1) − 1)n = n(2n − 3) irredundant equations. Equations (2.3) are defined
for every pair of two distinct teams. That gives n(n − 1) equations. Hence, the total number of
irredundant equations equals n(2n− 3) + n(n− 1) = n((2n− 3) + (n− 1)) = n(3n− 4).

19

However, we cannot conclude yet that the dimension of the polytope conv(Xn) is equal to |xn| −
n(3n − 4), where |xn| denotes the number of variables in xn. It could be possible that there exist
irredundant valid equations for Xn which are not explicitly present in the formulation of Xn. In this
section, we will show that such an equation does not exist.

This section is structured as follows: first we transform the set Xn into an isomorphic set Xn, which
will turn out handy later. This will be explained in the next section. Next, we sketch an outline of
the proof. To complete the proof, we will have to construct a number of feasible double round-robin
schedules. Therefore, we introduce an algorithm to produce such schedules, named the circle method.
Using this algorithm, we construct the schedules needed for the proof. The section is concluded with
a summary of the proof.

4.2.1 Transform Xn into Xn

In Section 4.1, we showed that the equations (2.2) for slot 1 were redundant. These equations make
the proof unnecessarily complicated. Therefore, we transform the set Xn into a new set Xn in which
we remove these equations. Note that the variables x1,i,j now only appear in equations (2.3), a unique
one in each equation. We can project out these variables, thereby transforming equations (2.3) into
inequalities. This gives the following constraints:∑

j 6=i

(xk,i,j + xk,j,i) = 1 ∀k ≥ 2,∀i (4.3)

∑
k≥2

xk,i,j ≤ 1 ∀i, ∀j 6= i (4.4)

Let xn denote the vector of play variables for n teams, but only for the slots k ≥ 2. Let the
corresponding set of indices of xn be given by

An := {(k, i, j) | k ∈ {2, ..., 2(n− 1)}, i, j ∈ {1, ..., n}, j 6= i}

Now, let

Xn :=
{

xn ∈ {0, 1}An

xn satisfies (4.3) and (4.4)
}
.

Clearly, any element xn of Xn, i.e., a feasible double round-robin schedule, can be transformed
(affinely) into an element of Xn by setting xk,i,j = xk,i,j for k ≥ 2. Similarly, any element xn of
the set Xn can be transformed back (affinely) into a feasible double round-robin schedule by setting
xk,i,j = xk,i,j for k ≥ 2 and x1,i,j = 1 −

∑
k≥2 xk,i,j for all distinct i and j. Hence, Xn and Xn are

isomorphic and their convex hulls have the same dimension.

4.2.2 Proof outline
In this section, we sketch an outline of the proof. The general idea is as follows: assume that some
valid equation exists for Xn that is irredundant. Then derive constraints on the coefficients of the
equation, to show that the equation is a linear combination of the equations we already know. This
is a contradiction, showing that no additional irredundant valid equations can exist. Therefore, the
dimension of conv(Xn) is equal to |xn| minus the number of (linearly independent) equations in the
definition of Xn. As Xn and Xn are isomorphic, the dimensions of their convex hulls agree.

Now we develop this idea in more detail. Let aTxn = β be an arbitrary valid equation for Xn. We will
derive constraints on the coefficient vector a to show that this valid equation is a linear combination
of the equations (4.3) that we already know. These constraints have the form b`a = 0, where b` is a
row vector. The vectors b` will be called constraint vectors and are collected in a matrix B, one in
each row. Thus, any coefficient vector a must satisfy Ba = 0.

20

We write the equations (4.3) in matrix form: Kxn = 1. Here, the rows of K are the coefficients of the
Known equations (4.3). Now, we want to show that any solution a to Ba = 0 is a linear combination
of the rows of K. In other words, we want to show that the null space of B, null(B), is a subspace
of the row space of K, row(K): null(B) ⊆ row(K).

As each row k` of K contains the coefficients of a valid equation for Xn, we know that Bk` = 0
holds for all `. Hence, row(K) ⊆ null(B). Therefore, to show that null(B) ⊆ row(K) also holds, it is
sufficient to prove that row(K) and null(B) have the same dimension. That is, the rows of B must
contain |xn| − rank(K) linearly independent constraint vectors b`.

We already proved that the rows of K are linearly independent. Thus, rank(K) = n(2n − 3). This
yields

|xn| − rank(K) = n(n− 1)(2n− 3)− n(2n− 3)
= n((n− 1)− 1)(2n− 3)
= n(n− 2)(2n− 3)

So, we have to find n(n−2)(2n−3) linearly independent constraint vectors bl. We do this as follows:
let xn, zn ∈ Xn be two feasible solution vectors to the transformed problem. Then, aTxn = β and
aTzn = β hold. Hence, aTxn = aTzn or aT(zn − xn) = 0, and we have that (zn − xn)T is a valid
constraint vector that can be added to the matrix B.

In order to find n(n−2)(2n−3) linearly independent constraint vectors (zn−xn)T, we try to construct
sparse constraint vectors. This makes it easier to show that the vectors are linearly independent.
These sparse vectors are generated as follows: a vector xn is chosen, and the vector zn is constructed
from xn by applying a local change to the schedule which keeps the vector feasible. Examples of such
local changes are swapping the venues of the games between two teams, or swapping all games of two
slots.

This completes the plan of the proof. Now we must generate the constraint vectors. Therefore, we
will have to construct feasible double round-robin schedules. We use the circle method, as described
in Chapter 3, to generate single round-robin schedules. To generate a double round-robin schedule,
two single round-robin schedules are concatenated. Now, we will look into two types of local changes
to generate the constraint vectors.

4.2.3 Local change: home-away swap
The first local change we consider is swapping the venues of the games between two teams, called
a ‘home-away swap’. That is, two teams i and j play each other twice, once home and once away.
The home game becomes the away game and vice versa for each team. Clearly, if the vector xn is
a feasible vector, then applying a home-away swap to this vector again yields a feasible vector zn.
Because the vectors xn and zn are very similar, the difference vector is sparse.

At this point, we can finally exploit the properties of the transformed set Xn. Suppose we apply a
home-away swap to two teams of which one of the two games between them is played in the first slot.
Then the difference of the vectors xn and zn becomes even sparser than when we would have used
the vectors xn and zn of the original set Xn.

Now we will describe the home-away swap in detail, first for the original set Xn. Suppose team i
and team j play each other in slot 1 at team i’s venue and in slot k ≥ 2 at team j’s venue. That
is, x1,i,j = 1 and xk,j,i = 1. After the swap, we obtain the vector zn which differs from xn in the
following entries: z1,i,j = 0, z1,j,i = 1, zk,i,j = 1 and zk,j,i = 0. Therefore, the only nonzero entries
in the difference vector c = (zn − xn)T are c1,i,j = −1, c1,j,i = 1, ck,i,j = 1, and ck,j,i = −1. The
vectors xn and zn of the transformed problem do not have an entry for the first slot, and hence, the
difference vector b = (zn − xn)T only has two nonzero entries: bk,i,j = 1 and bk,j,i = −1.

21

Of course, we still have to prove that there exists a feasible schedule in which teams i and j play each
other in slot 1 and in slot k. This is, however, trivial: we can use the circle method, as described
in Section 3.1.1, to generate a (single) round-robin schedule. We then duplicate this schedule, and
randomly choose which of the two games between two teams is played at home and away. Next, we
can swap all games in two slots to obtain another feasible schedule. So, we can simply swap the slots
such that one of the games between team i and team j is played in slot 1 and the other one in slot k.

It is easy to see that the set of constraint vectors generated by performing home-away swaps for every
slot k ≥ 2 and for every unique pair of distinct teams i and j is linearly independent. After all, the
value of the variable bk,i,j is nonzero only in the constraint concerning the home-away swap of teams
i and j in slots 1 and k. We select those pairs i and j for which i < j. The number of these unique
pairs of distinct teams equals n(n−1)/2 and the number of slots except the first slot is 2n−3. Thus,
we already have n(n− 1)(2n− 3)/2 linearly independent constraint vectors. These constraint vectors
are collected in the matrix B.

The constraint vectors are similar for the different slots k and slot 1 between which you perform a
home-away swap. For n = 4 and an arbitrary slot k ≥ 2, the interesting entries of the constraint
vectors are shown in the matrix in Figure 4.1. The other entries of these vectors are zero.

xk,1,2 xk,1,3 xk,1,4 xk,2,1 xk,2,3 xk,2,4 xk,3,1 xk,3,2 xk,3,4 xk,4,1 xk,4,2 xk,4,3

1 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 −1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1 0 0 −1

Figure 4.1: The nonzero entries of the constraint vectors generated by performing a
home-away swap between slot 1 and slot k for n = 4. The entries coloured in red highlight

the row echelon form. The blue colour highlights the other nonzero entries.

Note that the variables in Figure 4.1 are lexicographically ordered. That is, if two variables are
indexed by (k, i, j) and (k′, i′, j′), then (k, i, j) ≤ (k′, i′, j′) if and only if k < k′ or (k = k′ and i < i′)
or (k = k′ and i = i′ and j ≤ j′). Furthermore, we ordered the rows such that the matrix is in
row echelon form. We do the same for the whole matrix B: the variables are also lexicographically
ordered, and the rows are ordered such that B is in row echelon form. This is possible because each
pivot is in a unique column.

Now we switch to another type of local change, the partial slot swap, to find the remaining constraint
vectors.

4.2.4 Local change: partial slot swap
With the home-away swaps, we found n(n − 1)(2n − 3)/2 linearly independent constraint vectors.
The number of independent constraint vectors still needed then equals:

n(n− 2)(2n− 3)− n(n− 1)(2n− 3)
2 = n(2n− 3)

(
(n− 2)− n− 1

2

)
= n(2n− 3)2(n− 2)− (n− 1)

2
= n(2n− 3)n− 3

2

22

To find these vectors, we consider another local change, called the ‘partial slot swap’. Suppose two
games are played in the first slot by four teams, and the same four teams play another two games in
another slot k ≥ 2. Then we can swap the games of these four teams between slot 1 and slot k. An
example of such a swap is displayed graphically in Figure 4.2.

1 2

34

1 2

34

Slot 1 Slot k

Figure 4.2: Example of a partial slot swap. In black, the original games. In red, the games
after the swap. The arrow heads indicate the venue of the games.

The above description of the partial slot swap is a little inaccurate. According to this description,
Figure 4.3 also depicts a valid partial slot swap. However, this is actually a double home-away swap,
and therefore, this type is not considered a partial slot swap.

1 2

34

1 2

34

Slot 1 Slot k

Figure 4.3: Example of a double home-away swap. This is not regarded a partial slot swap.

We now describe this swap mathematically, first for the vectors in the original set Xn. Suppose teams
i, j, s, and t, all distinct, are involved in a partial slot swap. Team i and j play at team i’s venue in
slot 1 and team s and t play at team s’s venue in slot 1: x1,i,j = 1 and x1,s,t = 1. In slot k, team
i′ plays home against team j′ and team s′ plays home against team t′: xk,i′,j′ = 1 and xk,s′,t′ = 1.
Here, the set {i′, j′, s′, t′} is equal to the set {i, j, s, t}. Now, we swap these games in slot 1 and k
to obtain a new vector zn. The changed entries in zn compared to xn are z1,i,j = 0, z1,s,t = 0,
z1,i′,j′ = 1, z1,s′,t′ = 1, zk,i,j = 1, zk,s,t = 1, zk,i′,j′ = 0, and zk,s′,t′ = 0.

The vectors in the transformed set Xn do not have an entry for the first slot, so that the difference
vector b = (zn − xn)T has only four nonzero entries: bk,i,j = 1, bk,s,t = 1, bk,i′,j′ = −1, and bk,s′,t′ =
−1. With this type of constraint vectors, it is possible to construct the remaining n(2n− 3)(n− 3)/2
linearly independent constraint vectors. The proof consists of two parts. Of course, we cannot perform
a partial slot swap if there does not exist a schedule in which x1,i,j = 1, x1,s,t = 1, xk,i′,j′ = 1, and
xk,s′,t′ = 1. Therefore, we will first show that for every possible partial slot swap, there exists a
feasible schedule on which this swap can be performed. Next, we will show how we can select the
right swaps to obtain n(2n− 3)(n− 3)/2 additional linearly independent constraint vectors.

Existence of schedules

Again, we use the circle method twice to obtain two feasible single round-robin schedules. Because
we can specify the games in the first slot as we like, we can simply choose the first single round-robin

23

schedule to contain the games (i, j) and (s, t) in the first slot, and the second schedule to contain
the games (i′, j′) and (s′, t′) in the first slot. Next, we concatenate these two schedules to obtain a
double round-robin schedule and swap the slot containing the games (i′, j′) and (s′, t′) with slot k.
This clearly yields a feasible double round-robin schedule with the right properties for a partial slot
swap.

Selecting partial slot swaps

Now, we must select partial slot swaps to obtain the remaining linearly independent constraint vectors.
We do this by only choosing those constraint vectors which can be added to B while maintaining the
row echelon form. This is done by only adding a constraint vector b to B if its pivot entry corresponds
to a free variable in B. Then, this vector can be inserted into B such that the matrix remains in row
echelon form. This is repeated until we have added n(2n− 3)(n− 3)/2 vectors. Because the rows of
B remain linearly independent by construction during this process, this ensures that we have found
enough linearly independent constraint vectors.

So, we have to find n(2n− 3)(n− 3)/2 partial slot swaps of which the first nonzero entry corresponds
to a unique free variable in B. Note that the constraint vectors obtained by the home-away swaps and
the partial slot swaps are similar for the swaps between the different slots k and slot 1. Therefore, we
can focus on the swaps concerning one particular slot k, so that we have to find n(n−3)/2 additional
constraint vectors for this slot.

The constraint vectors originating from the home-away swaps have their pivots in the columns corre-
sponding to those variables xk,i,j for which i < j. Hence, the free variables in B are those variables
xk,i,j for which i > j. Thus, for a given team i ∈ [n], there are i − 1 free variables for each slot k:
xk,i,1 up to xk,i,i−1. Then the number of free variables from i = 2 to i = n− 1 for one slot k equals

n−1∑
i=2

(i− 1) =
n−2∑
i=1

i = (n− 2)(n− 1)
2 = n2 − 3n+ 2

2

= n2 − 3n
2 + 1 = n(n− 3)

2 + 1.

This is exactly one more than the number of vectors we need: n(n − 3)/2. Thus, if we can find
constraint vectors of which the set of indices of the pivot entries is equal to the set

Sk = {(k, i, j) | i ∈ {2, ..., n− 1}, j < i, (i, j) 6= (n− 1, n− 2)}, (4.5)

then we are done. This is possible, as shown in Algorithm 1.

It can easily be verified that the games (s, t), (i′, j′), and (s′, t′) are all valid and lexicographically
larger than (i, j). Furthermore, i, j, s, and t are all distinct and {i, j, s, t} = {i′, j′, s′, t′}. Therefore,
the constraint vector b that is returned by the algorithm is indeed a feasible constraint vector derived
from the partial slot swap of the games (i, j) and (s, t) in slot 1 with the games (i′, j′) and (s′, t′) in
slot k.

Applying this algorithm to each of the tuples of indices in the set Sk (4.5) yields n(n−3)/2 constraint
vectors, all linearly independent from the other row vectors in B because the pivot entry in each of
the constraint vectors corresponds to a unique free variable. Then the new constraint vectors can be
inserted into the rows of B such that B remains in row echelon form. This is done for each slot k
greater than 1.

To illustrate this process, we extend Figure 4.1 to include the (nonzero entries of the) constraint
vectors derived from partial slot swaps between slot 1 and slot k. This is shown in Figure 4.4.

The matrix contains two new rows. The first new row corresponds to the ‘else’ clause of Algorithm
1, the last one to the ‘if’ clause. Note that the matrix is indeed in row echelon form.

24

Algorithm 1: Construct partial slot swap vector
Input : Number of teams n, slot k, index (i, j) with j < i < n− 1 or (i = n− 1 and j < n− 2)
Output: Constraint vector b following from the valid partial slot swap between games (i, j) and

(s, t) in slot 1 and games (i′, j′) and (s′, t′) in slot k, such that (s, t), (i′, j′) and (s′, t′)
are all lexicographically larger than (i, j)

1 if j < i− 1 then
2 (s, t)← (i+ 1, j + 1)
3 (i′, j′)← (i, j + 1)
4 (s′, t′)← (i+ 1, j)
5 else
6 (s, t)← (i+ 1, i+ 2)
7 (i′, j′)← (i, i+ 2)
8 (s′, t′)← (i+ 1, j)
9 end

10 b← 0|xn|
11 bk,i,j , bk,s,t ← 1
12 bk,i′,j′ , bk,s′,t′ ← −1
13 return b

xk,1,2 xk,1,3 xk,1,4 xk,2,1 xk,2,3 xk,2,4 xk,3,1 xk,3,2 xk,3,4 xk,4,1 xk,4,2 xk,4,3

1 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 −1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 −1 0 0
0 0 0 1 0 −1 −1 0 1 0 0 0
0 0 0 0 1 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 1 −1 0 −1 1 0
0 0 0 0 0 0 0 0 1 0 0 −1

Figure 4.4: The matrix in Figure 4.1 augmented with the constraint vectors from the partial
slot swaps. The rows with the green pivots are new.

The proof is now completed. In the next section, the proof will be summarised.

4.2.5 Conclusion
In Section 4.2.2, we sketched an outline of the proof that the dimension of conv(Xn) equals |xn|
minus the rank of K. The outlined steps were followed in the subsequent sections. We summarise
them shortly. We found n(n− 2)(2n− 3) linearly independent constraint vectors in total, that were
collected in the matrix B. This number is equal to the rank of K, and hence, the null space of B is
equal to the row space of K. Therefore, there do not exist additional valid equations for Xn that are
not explicitly present in its formulation. Thus, the dimension of the convex hull of Xn is equal to the
number of variables minus the rank of K:

dim(conv(Xn)) = |xn| − rank(K)
= |xn| − nullity(B)
= rank(B)
= n(n− 2)(2n− 3).

25

Now, we conclude the proof with a theorem.

Theorem 4.1. The dimension of conv(Xn) is equal to n(n−2)(2n−3). AsXn andXn are isomorphic,
the same holds for conv(Xn).

4.3 Dimension of conv(Yn)
In the previous section, the dimension of the convex hull of Xn was demonstrated. However, in this
set, only the play variables xk,i,j were considered. In this section, the result is extended to the travel
variables yi,s,t. First we define the set Yn. Next, an outline of the proof is sketched, after which the
proof follows.

4.3.1 Definition of Yn

Let yn denote the vector of the travel variables yi,s,t for n teams, n even. Let the set of indices of
yn be given by

Bn := {(i, s, t) | i, s, t ∈ {1, ..., n}, t 6= s}.

Then, let

Yn := {(xn,yn) ∈ {0, 1}An × {0, 1}Bn | xn ∈ Xn, yn satisfies (2.7), (2.8), (2.9), (2.10), (2.11)}. (4.6)

That is, an element of the set Yn is a tournament schedule (the x-values), together with values
for the travel variables (the y-values). However, note that the travel variables are only constrained
by inequalities of the type ‘greater or equal than’. When solving the integer program, the costs are
minimised and hence, the values of the travel variables become as small as possible. Then they reflect
the real travel movements of the teams. However, this is not necessarily the case for the elements of
Yn; a travel variable yi,s,t can be equal to 1 even though team i never travels from s to t.

4.3.2 Proof outline
We now investigate the dimension of the convex hull of this set Yn. The number of equations in the
definitions of Xn and Yn is equal; only inequalities were added. We want to show that the dimension
of conv(Yn) is equal to the dimension of conv(Xn) plus the number of elements of yn. This is done
in the same way as for the set Xn: we assume that some valid equation exists, and then show that
this valid equation must be a linear combination of the known equations.

So, let aTxn+bTyn = γ be an arbitrary valid equation for Yn. We derive constraints on the coefficients
b by applying local changes to elements of the set Yn such that the modified elements are in Yn as
well. However, constructing explicit elements of Yn is rather laborious. We can avoid doing so by
using a well-known property of double round-robin schedules, that uses the concept of a break. If a
team plays either home or away twice in a row, this is called a break. It is known that in any double
round-robin schedule on n teams, at least 2n − 2 breaks occur [15]. Thus, any double round-robin
schedule on n teams, n ≥ 4, contains at least two breaks.

We call a break that occurs when a team plays two games either home or away in a row a ‘home
break’ or ‘away break’, respectively. It is easy to see that the number of home and away breaks in any
double round-robin schedule must be equal—otherwise, the number of teams playing home and away
is not equal in some slot, which is clearly impossible. This implies that in each double round-robin
schedule on n teams, n ≥ 4, at least one away break occurs. That is, team i plays consecutively away
at team s and at team t for some i, s, t ∈ [n], all distinct. From this, we can derive a couple of things.

26

First we address the variables of the type yi,i,t, then yi,t,i and finally yi,s,t. Here, i, s and t are all
distinct.

4.3.3 Variables of the type yi,i,t

First, as team i plays away at team t’s venue only once and travels there from team s, team i never
travels directly from i (home) to t. There are two constraints on the variable yi,i,t: (2.8) and (2.10).
As team i never travels directly from i to t, constraint (2.8) does not restrict the value of yi,i,t. The
same holds for constraint (2.10), as team i does not play its first game against team t; the game
against team s precedes it. Thus, yi,i,t can take both the values 0 and 1.

We take advantage of this by picking a random element of Yn, choosing i, s and t such that i plays
consecutively at team s and at team t (which is possible as argued in the previous section), and
creating two elements of Yn by setting the value of yi,i,t to 0 and 1. We name these two elements
(xn,yn) and (x′n,y′n), respectively. As they are elements of Yn, we know that aTxn + bTyn = γ and
aTx′n + bTy′n = γ hold. Also, xn and x′n are equal. Hence,

0 = γ − γ
= (aTx′n + bTy′n)− (aTxn + bTyn)
= bT(y′n − yn).

Because the difference vector c = y′n − yn has only one nonzero entry, namely ci,i,t = 1, this implies
that bi,i,t = 0. By permuting the teams, this argument can be repeated for all i, t ∈ [n], i 6= t. Thus,
bi,i,t = 0 for all distinct teams i and t.

4.3.4 Variables of the type yi,t,i

In this part, we swap s and t: we assume that team i plays consecutively away first at team t and
then at team s. Given that team i travels from team t to team s, we can conclude that team i never
travels directly from team t back to team i (home). Thus, constraint (2.9) does not restrict the value
of yi,t,i. The same holds for constraint (2.11), as team i does not play its last game against team t;
the game against team s succeeds it. Thus, yi,t,i can take both the values 0 and 1.

We again pick a random element of Yn and construct two elements from it, one with value 0 and one
with value 1 for the variable yi,t,i. This gives two elements of Yn which differ only in this variable.
Thus, using the same technique as in the previous section, we can conclude that the coefficient bi,t,i

of the valid equation must be equal to zero. By permuting the teams, the same follows for all distinct
teams i and t.

4.3.5 Variables of the type yi,s,t

In this part, we rename t to j. Thus, team i plays consecutively away first at team s and then at
team j. We let t be a team distinct from i, j and s. In total, we have 4 distinct teams now, which
is possible as n ≥ 4. As team i travels from team s to team j, team i never travels directly from
team s to team t. Thus, constraint (2.7) does not restrict the value of yi,s,t. There are no other
constraints which apply to yi,s,t . Thus, yi,s,t can take both the values 0 and 1. Now by following
the same approach as in the previous two sections, we can conclude that the coefficient bi,s,t of the
valid equation must be equal to zero for all distinct teams i, s and t.

4.3.6 Conclusion
In the previous three sections, we showed that in any valid equation aTxn + bTyn = γ for Yn, the
values bi,i,t, bi,t,i and bi,s,t must all be equal to zero for i, s and t distinct. Together, this implies that

27

b = 0. Thus, any valid equation for Yn must be of the type aTxn = γ.

Now, any valid equation of the type aTxn = γ for Yn is automatically also a valid equation for Xn,
as this equation only concerns the x-variables and Xn and Yn have the same constraints applying to
the x-variables. The reverse is also true: as Yn is an extension of Xn in which no extra constraints
are added to the original variables, any valid equation for Xn is also a valid equation for Yn. Thus,
the valid equations of Xn and Yn of the type aTxn = γ are equal for both sets.

In Section 4.2, we already investigated valid equations of the type aTxn = γ and concluded that
no additional valid equations exist apart from those already known. Thus, the same applies to Yn.
Also, no valid equations with nonzero coefficient vector b exist. Hence, we can conclude that the
dimension of the convex hull of Yn is equal to the dimension of the convex hull of Xn plus the number
of elements of yn:

dim(conv(Yn)) = dim(conv(Xn)) + |yn|
= n(n− 2)(2n− 3) + n2(n− 1)
= n(3n2 − 8n+ 6).

We conclude the section with a corollary.

Corollary 4.1.1. The dimension of conv(Yn) is equal to n(3n2 − 8n + 6). This is equal to the
dimension of conv(Xn) plus the number of elements in yn.

28

Chapter 5

Facets

The hardness of the Travelling Tournament Problem is at least partially caused by the weak linear
relaxation, leading to a large integrality gap. By adding cutting planes, we can reduce the gap.
In this chapter, we focus on a specific class of cutting planes: facets. First, the integrality gap is
discussed. Next, using specialised software, a class of facets is identified that reduces the integrality
gap. However, as the software can only be applied to a finite number of instances, we need to prove
mathematically that the facets found by the software are indeed facets for all instances. The chapter
is concluded with this proof, which is, as in Chapter 4, for the unconstrained problem.

5.1 Integrality gap
To test the effect of the addition of facets, the set of National League (NL) instances is used. The
National League is a baseball league in the United States and Canada which is part of the Major
League Baseball (MLB), where the TTP has its origin. The National League consists of 16 teams,
but smaller instances are created by taking a subset of the teams. This way, the instances NL4 up to
NL16 are created, one for each even number between 4 and 16 [16]. To give an idea, the data of the
NL4 instance can be found in Table 5.1. The data of the other instances are accessible on [3]. Here,
also the current best upper and lower bounds can be found. At the moment of writing, the instances
NL12, NL14, and NL16 have not yet been solved.

Team ATL NYM PHI MON
ATL 0 745 665 929
NYM 745 0 80 337
PHI 665 80 0 380
MON 929 337 380 0

Table 5.1: The distances between the teams of the NL4 instance.
Note that the distances are symmetric.

First, we investigate the integrality gap. We use the standard problem for this, because the solution
values are known for this problem, but not for the unconstrained problem. The software Gurobi
[17] was used to compute the optimal solution to the linear relaxation. The integrality gap of the
instances NL4 up to NL12 can be found in Table 5.2, and is large for all instances.

Now we should add facets to reduce the integrality gap. In the next section, we use specialised
software to identify facets.

29

NL4 NL6 NL8 NL10 NL12-l NL12-u
IP value 8276 23916 39721 59436 108629 110729
LP value 2004 2186 2686 2980 4736 4736
Int. gap 4.13 10.9 14.8 19.9 22.9 23.4

Table 5.2: In the first two body rows, the objective values of the optimal solutions to the
integer program and its linear relaxation. In the last row, the integrality gap. For the NL12
instance, two values are shown: for the best known lower bound (NL12-l) and upper bound

(NL12-u).

5.2 Finding facets
The software library IPO (Investigating Polyhedra by Oracles, [18]), the theory and details of which
are described in [19], can be used to compute facets of a polytope. IPO was applied to the standard
version of the NL4 instance, including the no-repeaters constraints and the constraints on the length
of home stands and road trips; see Table 5.1 for the data. Let P be the convex hull of the set of
solutions of the NL4 instance. To be precise, we try to find facets of the polytope P .

A screenshot of the output of IPO is displayed in Figure 5.1. In short, IPO works as follows. First,
the optimal solution to the LP relaxation of the integer program (IP) is computed. Next, a facet or
equation of the polytope P is computed which separates the current solution to the LP relaxation
from P . This facet or equation is added to the IP, after which this procedure is repeated.

Figure 5.1: Output of IPO when applied to the NL4 instance

Most facets that are found by IPO appear to be specific to the instance to which it is applied, like
the facet displayed in Figure 5.1, and are therefore unusable in other instances. However, a small
number of the facets that were found did have a physical interpretation and are applicable to other
instances. An example of such a facet is

play[2,PHI,NYM] + play[3,NYM,PHI] + play[3,PHI,NYM] + play[4,PHI,NYM] <= 1.

30

We can interpret this as follows: if team NYM plays home against team PHI in slot 3, then team
NYM cannot play away against team PHI in slot 2, 3 or 4. This follows logically from the fact that
team NYM can neither play two games in the same slot, nor can it play against team PHI in slot 2
or 4 because of the no-repeaters constraints. (Note that IPO was applied to the standard problem,
including these constraints.)

However, addition of all the facets of this type does not lead to a reduction of the integrality gap.
The same holds for most of the other classes of facets that were found with IPO. It seems that the
large integrality gap is caused mainly by the weak coupling between the play and the travel variables,
which leads to low values of the travel variables. Hence, it is not surprising that facets in which only
the play variables appear are not effective to reduce the integrality gap.

One class of facets found with IPO involves only travel variables. An example of such a facet is

travel[MON,NYM,ATL] + travel[MON,NYM,PHI] + travel[MON,NYM,MON] >= 1.

The interpretation is that team MON must travel to one of the other teams from team NYM. This
follows logically from the fact that team MON starts and ends the competition at home, and plays
away against team NYM once during the competition. Thus, after this away game has been played,
team MON cannot stay at team NYM’s venue.

Of course, this does not only hold for leaving a venue, but also for travelling to a venue. Each team
should travel to and leave each of the other teams’ venues exactly once (inequality: at least once).
Thus, we can describe this class of facets as the “flow conservation facets”. A special case is leaving
and returning to the home venue. In the unconstrained problem, this must happen at least once. In
the standard problem, the number of times the home venue must be left depends on the problem
size. Because of the constraints on the length of a home stand and road trip, at most 3, one cannot
visit all 5 venues of the other teams in a 6-team instance without leaving and returning to the home
venue at least twice. Similarly, for the NL8 instance, this number is at least 3, for the NL10 instance
at least 3 as well, and for the NL4 instance at least 4.

Now, we add all these facets to the instances NL4 up to NL12 and compute the objective values of
the optimal solutions to the linear relaxations. The standard problem is used for this. The results
are given in Table 5.3.

NL4 NL6 NL8 NL10 NL12-l NL12-u
IP value 8276 23916 39721 59436 108629 110729
LP value 8016 16638 29889 38572 78047 78047
Int. gap 1.03 1.44 1.33 1.54 1.42 1.39

Table 5.3: The same type of data as in Table 5.2, but now, the flow conservation facets have
been added. This leads to a lower integrality gap.

The integrality gap has decreased significantly for all instances. Moreover, the gap does not increase
monotonically anymore with the size of the instance.

Because this is the only class of facets found with IPO that has significant effects on the integrality
gap, the remainder of this chapter focuses on the flow conservation facets. The software was only
applied to the NL4 instance. Thus, a mathematical proof that the valid inequalities found with IPO
are indeed facet-defining for all instances is lacking at this moment. In the next section, this proof is
given. As the proof is for the unconstrained problem, all valid inequalities are of the type “≥ 1”.

31

5.3 Facet proof
In this section, the proof that the flow conservation facets found with IPO are indeed facets of the
unconstrained problem will be given. One special case remains unproven; only computational results
are given for this case. First we define precisely the statement to be proved.

Let Pn = conv(Xn) and Qn = conv(Yn). We want to prove that the following inequalities are
facet-defining for Qn: ∑

s∈[n]\{t}

yi,s,t ≥ 1 ∀i, t

∑
s∈[n]\{t}

yi,t,s ≥ 1 ∀i, t,

or equivalently, that the following faces are facets:

{(xn,yn) ∈ Qn |
∑

s∈[n]\{t}

yi,s,t = 1} ∀i, t

{(xn,yn) ∈ Qn |
∑

s∈[n]\{t}

yi,t,s = 1} ∀i, t.

By symmetry, it is sufficient to prove this for only one of these two types of facets: either those
regarding travelling to a venue, or those regarding leaving a venue. We choose for the first one:
travelling to a venue. For convenience, we give names to the associated inequalities and faces:

`n,i,t :
∑

s∈[n]\{t}

yi,s,t ≥ 1 (5.1)

Fn,i,t := {(xn,yn) ∈ Qn |
∑

s∈[n]\{t}

yi,s,t = 1}. (5.2)

The indices take the following values: n is even and at least 4, and i and t range from 1 to n.

Now, we are ready to start with the proof. First an outline of the proof is sketched in the next
section.

5.3.1 Proof outline
Two proof techniques were considered for this proof. The first one is very straightforward: trying to
find dim(Qn) affinely independent vectors which are contained in the face Fn,i,t. The second one is
a bit more sophisticated, but resembles a proof technique used before. The face Fn,i,t is contained in
some facet. This facet is defined by some facet-defining inequality `n. By applying local changes to
tournament schedules, like in Sections 4.2.3 and 4.2.4, we can deduce properties of the coefficients of
`n. The goal is then to find enough properties of the coefficients so that we can conclude that `n is
equivalent to our inequality `n,i,t, proving that Fn,i,t is a facet.

Both techniques have advantages and disadvantages. To make best use of the advantages of both
methods, we use a combination of both techniques. The next sections are structured as follows. First,
we use the local change technique to derive properties of some of the coefficients of the facet-defining
inequality `n. Next, we look for affinely independent vectors contained in Fn,i,t, but in a lower
dimensional polytope. Finally, these two results are combined to prove that Fn,i,t is a facet.

32

5.3.2 Local changes
Let n ≥ 4, n even, be an arbitrary tournament size and choose i, t ∈ [n] arbitrarily. The inequality
`n,i,t (5.1) is clearly valid: this follows from the physical interpretation as described in Section 5.2.
The face Fn,i,t (5.2) is contained in some facet of Qn. Call this facet Fn and let the facet-defining
inequality be

`n : aTxn + bTyn ≤ γ.

Let xn ∈ Xn and compute the associated travel vector yn such that values of all elements are
minimised. Because the travel variables only depend on the play variables and not on each other, this
is easy to do. The vector yn now reflects the real travel movements. This implies that (xn,yn) ∈ Fn,i,t.

Many elements of yn are equal to zero. Suppose the variable yi′,s′,t′ is equal to zero and does not
appear in the inequality `n,i,t. Now increase its value to 1. This yields the new vector y′n. The
schedule (xn,y′n) is also contained in Fn,i,t. As Fn,i,t is contained in Fn and (xn,yn) and (xn,y′n)
are both in Fn,i,t, this implies that they are also in Fn. Thus, the following equations hold:

aTxn + bTyn = γ

aTxn + bTy′n = γ,

and hence, by subtracting them,

bTy′n − bTyn = 0
⇐⇒ bT(y′n − yn) = 0.

Now, as y′n only differs from yn in one position, namely at index (i′, s′, t′), this implies that bi′,s′,t′ = 0.
In Sections 4.3.3, 4.3.4, and 4.3.5, we already showed that it is possible to construct tournament
schedules such that each travel variable is equal to zero in at least one schedule. Using these schedules,
and minimising the entries of the travel variables, we can repeat the procedure above for all variables
yi′,s′,t′ which do not appear in the inequality `n,i,t. Thus, for all indices (i′, s′, t′) which do not appear
in `n,i,t, bi′,s′,t′ must be equal to zero.

Let yn and b indicate the travel vector and coefficient vector, respectively, restricted to the indices
appearing in the inequality `n,i,t. Thus, these vectors have n−1 elements: one for each of the indices
(i, s, t) where s ∈ [n] \ {t}. Now, we can write the facet-defining inequality `n as follows:

`n : aTxn + bTyn ≤ γ.

5.3.3 Affinely independent vectors
In the previous section, we showed that the travel variables which do not appear in the inequality
`n,i,t are irrelevant in a sense. Therefore, we restrict the travel variables to the appearing variables
in this section. Like in yn and b, we use a bar to indicate the restricted versions of several entities.
Among them are Yn, Qn and Fn,i,t. The definitions speak for themselves.

The goal of this section is to find dim(Qn) affinely independent vectors which are contained in the
restricted face Fn,i,t, proving that Fn,i,t is a facet of the restricted polytope Qn. This does not yet
prove that Fn,i,t is also a facet of Qn, but it does bring us closer to a proof.

First set of vectors

To begin with, we can find dim(Pn) + 1 affinely independent play vectors xn. Let p = dim(Pn) +
1. Call these vectors x1, ...,xp and collect them in the set Sx

n . To avoid notational clutter, we

33

omit the subscript n on the play variables. Compute the associated travel vectors with minimised
values, and restrict these vectors to the appearing variables. This yields the vectors y1, ...,yp. The
restricted tournament schedules (x1,y1), ..., (x1,y1) are contained in Fn,i,t. Thus, we have already
found dim(Pn) + 1 affinely independent vectors.

Now we compute the remaining number of vectors to be found. In accordance with the dimension
of Qn, the dimension of Qn is equal to the dimension of Pn plus the number of elements of yn. yn

contains n− 1 elements. Thus, the remaining number of vectors is

dim(Qn)− (dim(Pn) + 1) = dim(Pn) + (n− 1)− (dim(Pn) + 1) = n− 2.

To find these vectors, we first deduce the properties they should have.

Properties of the remaining vectors

Choose a set of n − 2 play vectors: u1, ...,un−2 ∈ Xn. As the set of vectors x1, ...,xp is an affine
basis of the affine hull of Xn, we can write each vector uj as an affine combination of these vectors.
Hence, there exist scalars γm

j such thatuj = γ1
j x1 + ...+ γp

j xp

p∑
m=1

γm
j = 1 ∀j ∈ [n− 2].

Let the associated travel vectors of the play vectors uj , with minimised values and restricted to the
appearing variables, be v1, ...,vn−2. Thus, (uj ,vj) ∈ Fn,i,t for all j ∈ [n − 2]. The whole set of
vectors

Sn :=
{

(xj ,yj)
}

j∈[p] ∪
{

(uj ,vj)
}

j∈[n−2] (5.3)

is affinely independent if and only if the only solution to

α1x1 + ...+ αpxp + β1u1 + ...+ βn−2un−2 = 0
α1y1 + ...+ αpyp + β1v1 + ...+ βn−2vn−2 = 0

p∑
j=1

αj +
n−2∑
j=1

βj = 0

(5.4)
(5.5)

(5.6)

is the trivial solution αj = 0 for all j ∈ [p] and βj = 0 for all j ∈ [n− 2].

The first equation, (5.4), can be rewritten as follows:

α1x1 + ...+ αpxp + β1u1 + ...+ βn−2un−2 = 0

⇐⇒ α1x1 + ...+ αpxp + β1

p∑
m=1

γm
1 xm + ...+ βn−2

p∑
m=1

γm
n−2xm = 0

⇐⇒

α1 +
n−2∑
j=1

βjγ
1
j

x1 + ...+

αp +
n−2∑
j=1

βjγ
p
j

xp = 0 (5.7)

Combining equations (5.7) and (5.6) and the fact that the vectors x1, ...,xp are affinely independent,
we can conclude that for all m ∈ [p],

αm +
n−2∑
j=1

βjγ
m
j = 0.

34

This gives a new expression for the αj . We can use these to rewrite equation (5.5):

α1y1 + ...+ αpyp + β1v1 + ...+ βn−2vn−2 = 0

⇐⇒ −y1
n−2∑
j=1

βjγ
1
j − ...− yp

n−2∑
j=1

βjγ
p
j + β1v1 + ...+ βn−2vn−2 = 0

⇐⇒ β1

(
v1 −

p∑
m=1

γm
1 ym

)
+ ...+ βn−2

(
vn−2 −

p∑
m=1

γm
n−2ym

)
= 0.

Hence, if the vectors

wj := vj −
p∑

m=1
γm

j ym ∀j ∈ [n− 2] (5.8)

are linearly independent, then all βj must be equal to zero. Next, if all βj are equal to zero, then
equations (5.4) and (5.6) reduce to

α1x1 + ...+ αpxp = 0
p∑

j=1
αj = 0,

and as the xj are all affinely independent, this implies that all αj should be equal to zero too.

Thus, if the vectors wj are linearly independent, then the only solution to the set of equations (5.4),
(5.5), and (5.6) is the trivial solution. Therefore, the set of vectors Sn (5.3) is affinely independent.
This gives us the following task: finding vectors u1, ...,un−2 ∈ Xn such that the vectors wj are
linearly independent. Keep in mind that we did not pose any restrictions on the set of play vectors
{xj}j∈[p], apart from the fact that the set should be affinely independent. This gives us some freedom.

Technique to construct vectors uj

The following technique was found to construct vectors uj . We focus on a specific facet: Fn,n,1. Thus,
i = n and t = 1. First recall the canonical 1-factorisation (note that the factors Fk have nothing to
do with the facets Fn):

Fk = {{n, k}} ∪ {{k + i, k − i} | i = 1, ..., n/2− 1} k = 1, ..., n− 1. (3.1)

We start with a schedule on n teams generated with the canonical 1-factorisation, and apply the
standard home-away assignment as described in Section 3.1.2. Thus, team n plays alternately home
and away. A double round-robin schedule is created by copying the schedule, reverting the home-away
assignment and then concatenating the copy to the original schedule. Now swap teams 2 and n− 1.
For n = 6, the resulting schedule is shown in Table 5.4. Note that without the swap, team n plays
the other teams in increasing order.

Now, in slot n− 1, team n plays home against team 2. In slot n, team n plays away against team 1.
Create a second schedule by performing two home-away swaps on the first schedule: between team n
and team 1, and between team n and team 2. Create a third schedule by performing one home-away
swap on the first schedule: only between team n and team 2. Call the play vector of the first schedule
x2

1, the second one x2
2, and the third one x2

3. The superscript 2 comes from the swap between team
n− 1 and team 2. The subscript does not refer to the number of teams in this case.

We focus on slots 1, n− 1, and n. The opponents of team n in these slots of the three schedules are
given in Table 5.5. A minus indicates an away game and vice versa.

35

Slot
Team 1 2 3 4 5 6 7 8 9 10
1 −6 +3 −2 +5 −4 +6 −3 +2 −5 +4
2 +5 −4 +1 −3 −6 −5 +4 −1 +3 +6
3 +4 −1 −6 +2 −5 −4 +1 +6 −2 +5
4 −3 +2 −5 +6 +1 +3 −2 +5 −6 −1
5 −2 +6 +4 −1 +3 +2 −6 −4 +1 −3
6 +1 −5 +3 −4 +2 −1 +5 −3 +4 −2

Table 5.4: Tournament on 6 teams, generated with the canonical 1-factorisation.
Teams 2 and 5 are swapped. The table shows the opponent of each team in each slot.

A minus indicates an away game and vice versa.

Slot x2
1 x2

2 x2
3 u2

1 +1 −1 +1 −1
n− 1 +2 −2 −2 +2
n −1 +1 −1 +1

Table 5.5: The opponents of team n in slots 1, n− 1, and n in the schedules x2
j , j ∈ [3], and

u2.

We can create a new play vector, u2, by computing the following affine combination of the other play
vectors:

u2 = x2
1 + x2

2 − x2
3.

This yields again a feasible play vector. The opponents of team n in this schedule are also shown in
Table 5.5.

Now we compute the corresponding travel vectors of these four schedules, with minimised values and
restricted to variables appearing in the facet Fn,n,1. Call these vectors y2

j , j ∈ [3], and v2. They
contain the variables with indices (n, s, 1), s ≥ 2. These variables indicate whether team n travels
from team s to team 1. Take a look at their values, in Table 5.6.

Index y2
1 y2

2 y2
3 v2

(n, 2, 1) 0 1 0 0
(n, 3, 1) 0 0 0 0...

...
...

...
...

(n, n− 1, 1) 0 0 0 0
(n, n, 1) 1 0 1 1

Table 5.6: The values of the vectors y2
j , j ∈ [3], and v2. All nonzero values are shown.

Recall equation (5.8):

wj := vj −
p∑

m=1
γm

j ym ∀j ∈ [n− 2]. (5.8)

In our case, only three travel vectors are involved: y2
1, y2

2, and y2
3, with coefficients +1, +1, and −1,

36

respectively. Using Table 5.6, it is easy to see that the only two nonzero values of the vector

w2 = v2 − (y2
1 + y2

2 − y2
3)

are +1 at index (n, 2, 1) and −1 at index (n, n, 1). Thus, the vector w2 is nonzero, and the set
containing only this vector is linearly independent. Hence, with u2, we have found the first vector
that we were looking for. Do not forget that we should also choose the vectors x2

1, x2
2, and x2

3 to be
part of the set Sx

n of affinely independent play vectors—otherwise, u2 will be formed by a different
affine combination, which should not happen.

Finding the remaining vectors

To find the other vectors, a simple trick can be used: swapping team 2 with team 3, ..., n− 1, one by
one. This gives us the vectors (u3,v3), ..., (un−1,vn−1). Also, we obtain the vectors xj

1, xj
2,x

j
3,y

j
1,y

j
2,

and yj
3 for j ∈ [3, n− 1] by performing the same swap. Compute the vectors

wj = vj − (yj
1 + yj

2 − yj
3).

Similar to w2, the vector wj for j ∈ [3, n − 1] has two nonzero values: +1 at index (n, j, 1) and −1
at index (n, n, 1). Thus, each vector wj , j ∈ [2, n− 1], has a unique nonzero entry: at index (n, j, 1).
Hence, the set {w2, ...,wn−1} is linearly independent.

It seems that we are done now. Unfortunately, there is one problem: the vectors xj
1, xj

2, and xj
3 for

j ∈ [2, n− 1] should all be part of the set Sx
n of affinely independent play vectors. However, they are

not affinely independent, and thus, we cannot add them all. Fortunately, this can be fixed.

First we investigate which vectors can be added. We start with the set Sx
n = {x2

1,x2
2,x2

3}. Note that
the vectors xj

1 and xj
3 for j ∈ [3, n− 1] all have a unique nonzero entry. In the play vector xj

1, team n

plays home against team j in slot n− 1. In the vector xj
3, team n plays away against team j in slot

n− 1. Thus, we can add these vectors to our set Sx
n while keeping it affinely independent, resulting

in the set

Sx
n = {x2

1,x2
2,x2

3} ∪ {x
j
1,x

j
3}j∈[3,n−1].

Now we have to find alternatives for the vectors xj
2, j ∈ [3, n− 1]. Therefore, look at the opponents

of team n in the second half of the schedule. For n = 8, these are given in Table 5.7.

Slot x2
2 x3

2 x4
2 x5

2 x6
2 x7

2

8 +1 +1 +1 +1 +1 +1
9 +7 +7 +7 +7 +7 +2
10 −3 −2 −3 −3 −3 −3
11 +4 +4 +2 +4 +4 +4
12 −5 −5 −5 −2 −5 −5
13 +6 +6 +6 +6 +2 +6
14 +2 +3 +4 +5 +6 +7

Table 5.7: The opponents of team 8 in the play vectors xj
2 in slots 8 up to 14 for n = 8.

Now we swap some slots in the range n up to (and including) 2n − 3, or the range 8 up to 13 for
n = 8. This range is suited for this, for two reasons. First, swapping slots in this range does not
change the travel vectors yj

1, yj
2, and yj

3 for j ∈ [3, n− 1], because team n still travels to team 1 from
the same venue; the away game against team 1 takes place in slot 1.

37

Second, we want to make sure that the vectors uj = xj
1 + xj

2 − xj
3 are feasible play vectors. Because

the vectors xj
1 and xj

3 have the same values for the slots in the range n up to 2n − 3, we have that
uj = xj

2 for the entries in this range; xj
1 and xj

3 cancel out. Thus, if we swap some slots in the range
n up to 2n− 3 in the vector xj

2, the same happens in uj , ensuring that this play vector stays feasible.

As we can see in Table 5.7, in the vectors xj
2, j ∈ [2, n − 1], the opponents of team n in each of the

slots from n + 1 up to 2n − 3 consist of two teams: the ‘regular’ opponent in all but one vectors,
and once team 2 as opponent. In slot n, team 1 is the only opponent. Thus, it is possible to swap
two slots in such a way that a new opponent is introduced in at least one of these slots. Hence, the
resulting vector can be added to the set Sx

n . We choose the following system of swaps, so that we do
not introduce the same opponent in the same slots: swap slots n+ j − 3 and n+ j − 2 in vector xj

2.
Let the resulting play vectors be x̂j

2, j ∈ [3, n− 1]. The result on the schedule of team 8 for n = 8 is
shown in Table 5.8.

Slot x̂2
2 x̂3

2 x̂4
2 x̂5

2 x̂6
2 x̂7

2

8 +1 +7 +1 +1 +1 +1
9 +7 +1 −3 +7 +7 +2
10 −3 −2 +7 +4 −3 −3
11 +4 +4 +2 −3 −5 +4
12 −5 −5 −5 −2 +4 +6
13 +6 +6 +6 +6 +2 −5
14 +2 +3 +4 +5 +6 +7

Table 5.8: The opponents of team 8 in the play vectors x̂j
2 in slots 8 up to 14 for n = 8.

Colours indicate which slots are swapped; no special meaning otherwise.

This system of swaps works for all n ≥ 4. Now, we obtain new vectors ûj and we can add the vectors
x̂j

2, j ∈ [3, n− 1] to the set Sx
n :

ûj = xj
1 + x̂j

2 − xj
3 ∀j ∈ [3, n− 1]

Sx
n = {x2

1,x2
2,x2

3} ∪ {x
j
1,x

j
3}j∈[3,n−1] ∪ {x̂j

2}j∈[3,n−1].

Conclusion

We found a set of affinely independent play vectors Sx
n from which we can construct the vectors

u2, û3, ..., ûn−1. The corresponding travel vectors are yj
1,y

j
2,y

j
3 and vj for j ∈ [2, n− 1]. With these

travel vectors, we compute the set of vectors {w2, ...,wn−1}. This set is linearly independent.

The set Sx
n contains 3(n − 2) affinely independent vectors. This can be extended to an affine basis

of Xn. Call these vectors x3(n−2)+1, ...,xp and let the corresponding travel vectors, with minimised
values and restricted to the appearing variables, be y3(n−2)+1, ...,yp.

Now, the following set of dim(Qn) vectors, all of which are contained in the fact Fn,n,1, is affinely
independent:{

(x2
j ,y2

j)
}

j∈[3] ∪
{

(xj
1,y

j
1), (x̂j

2,y
j
2), (xj

3,y
j
3)
}

j∈[3,n−1]
∪
{

(xj ,yj)
}

j∈[3(n−2)+1,p]

∪
{

(u2,v2)
}
∪
{

(ûj ,vj)
}

j∈[3,n−1] .

This proves that Fn,n,1 is a facet of the polytope Qn. Now, by symmetry, Fn,i,t is a facet of Qn for
any two distinct teams i and t.

38

Unfortunately, the author realised too late that i = t is a special case, and time is lacking now to
write down a formal proof that Fn,i,i is indeed a facet of Qn for all i ∈ [n]. The point where the proof
for this case could fail, is that the set of vectors {w2, ...,wn−1} is not linearly independent.

As a practical substitute for a proof, computations were carried out to compute these vectors for
i = t = n. It turned out that, for n = 4, 6, 8, 10, 12, 14, and 16—the sizes that are used in practice—
the nonzero entries of wj are:

• value -1 at index (n, j, n) for all j ∈ [2, n− 1];
• value -1 at index (n, n− 3, n) for j = n− 1 if n ≥ 6.

Thus, it is clear that the set of vectors {w2, ...,wn−1} is linearly independent for n between 4 and
16. Therefore, Fn,i,i is a facet of Qn for n between 4 and 16, n even. A formal proof for all n for the
case i = t should not be too complex; all components are present, but it is simply laborious to prove
what values the vectors wj take, and time is lacking.

We now turn to the last part of the original problem we were proving: that the face Fn,i,t is a facet
of the polytope Qn.

5.3.4 Combining the previous results
In Section 5.3.2, we assumed that the face Fn,i,t is contained in a facet Fn of Qn and showed that
the facet-defining inequality `n of Fn does not contain travel variables which do not appear in the
inequality `n,i,t of Fn,i,t. Thus, `n can be written as

`n : aTxn + bTyn ≤ γ.

In Section 5.3.3, we showed that the restricted face Fn,i,t is a facet of the restricted polytope Qn. For
the case i = t, the proof is incomplete; a small part is missing. However, for the values of n between
4 and 16, which are used in practice, computations were carried out to show that Fn,i,i is a facet of
Qn.

Now, these results should be combined to show that Fn,i,t is a facet of Qn. The proof is split into
two parts. First, we prove a lemma. Next, we use this to complete the proof.

Facet-defining inequalities of Qn and Qn

First we prove the following lemma, relating facets of Qn to facets of Qn.

Lemma 5.1. Suppose we have a facet-defining inequality of the polytope Qn. Furthermore, suppose
that in this inequality, only variables appear which are also in Qn. Then the facet-defining inequality
for Qn is also facet-defining for Qn.

Proof. Let aTxn + bTyn ≤ γ be some facet-defining inequality of Qn and let the corresponding facet
be

FQn = {(xn,yn) ∈ Qn | aTxn + bTyn = γ}.

Similarly, let

FQn
= {(xn,yn) ∈ Qn | aTxn + bTyn = γ}.

As FQn
is a facet of Qn, it contains dim(Qn) affinely independent vectors. Let these vectors be

(x1,y1), ..., (xqn ,yqn),

39

where qn = dim(Qn).

To prove that FQn
is a facet of Qn, we must show that it contains dim(Qn) affinely independent

vectors. Suppose to the contrary that this is not the case. So, FQn
contains at most r < dim(Qn)

affinely independent vectors. Let yj , j ∈ [qn], be the restricted versions of the vectors yj . Thus, of
the vectors

(x1,y1), ..., (xqn ,yqn),

at most r are affinely independent, or equivalently, of the vectors

(1,x1,y1), ..., (1,xqn ,yqn),

at most r are linearly independent. Now put these vectors in a matrix:

M =

 1 1 . . . 1
x1 x2 . . . xqn

y1 y2 . . . yqn

 .
As the matrix contains at most r linearly independent columns, we have that rank(M) ≤ r, and
hence, the matrix contains at most r linearly independent rows. Now, we extend the matrix M to
the full matrix M by replacing the vectors yj by yj :

M =

 1 1 . . . 1
x1 x2 . . . xqn

y1 y2 . . . yqn

 .
Thus, we have added

∣∣yj
∣∣ − ∣∣yj

∣∣ new rows. Therefore, M contains at most r +
∣∣yj
∣∣ − ∣∣yj

∣∣ linearly
independent rows. This gives

rank(M) ≤ r +
∣∣yj
∣∣− ∣∣yj

∣∣
< dim(Qn) +

∣∣yj
∣∣− ∣∣yj

∣∣
= dim(Qn).

Thus, M contains less than dim(Qn) linearly independent columns. However, this implies that the
vectors

(1,x1,y1), ..., (1,xqn ,yqn)

are not linearly independent, and hence, that the vectors

(x1,y1), ..., (xqn ,yqn)

are not affinely independent. This is a contradiction. Thus, FQn
must contain dim(Qn) affinely

independent vectors, and hence, it is a facet of Qn.

Completing the proof

Recall the first part of Section 5.3.2. We assumed that our face Fn,i,t (5.2), defined by the inequality
`n,i,t (5.1), is contained in the facet Fn. Next, we showed that that the inequality defining Fn can be
written as

`n : aTxn + bTyn ≤ γ.

40

Fn,i,t is the restricted version of Fn,i,t, defined by the same inequality `n,i,t. Similarly, Fn is the
restricted version of Fn, defined by the same inequality `n.

As `n only contains variables which appear in Qn, Lemma 5.1 shows that `n is facet-defining for Qn,
and hence, that Fn is a facet of Qn. Furthermore, we showed that Fn,i,t is a facet of Qn in Section
5.3.3 (except for the case i = t for n ≥ 18, which we momentarily ignore).

First we show that Fn,i,t ⊆ Fn. So, suppose that (xn,yn) ∈ Fn,i,t. Thus, there exists a vector yn

which is an extension of yn such that (xn,yn) ∈ Fn,i,t. As Fn,i,t is contained in Fn, this implies that
(xn,yn) ∈ Fn. And hence, (xn,yn) ∈ Fn. Thus, Fn,i,t ⊆ Fn. Combining this with the fact that
Fn,i,t and Fn are both facets, this shows that Fn,i,t = Fn.

This does not imply that their facet-defining inequalities `n,i,t and `n are equal, as the polytope Qn is
not full-dimensional. However, it does imply that the one inequality can be obtained from the other
by scalar multiplication and addition of linear combinations of the equality set of Qn. Thus, we can
say that these inequalities are “equivalent with respect to the facets of Qn”. As the equality set of
Qn is equal to the equality set of Qn, this implies that `n,i,t and `n are “equivalent with respect to
the facets of Qn” as well. And hence, as `n is facet-defining for Qn, so is `n,i,t. Thus, Fn,i,t is a facet
of Qn.

We conclude the proof with a theorem.

Theorem 5.2. The inequalities ∑
s∈[n]\{t}

yi,s,t ≥ 1

∑
s∈[n]\{t}

yi,t,s ≥ 1

are proved to be facet-defining for the polytope Qn in the following cases:

• for all distinct i, t ∈ [n], for all n ≥ 4, n even;
• for i ∈ [n] and i = t, for n ∈ {4, 6, 8, 10, 12, 14, 16}.

Note that for the case i = t and n ≥ 18, it is very unlikely that the inequalities are not facet-defining,
but a formal proof is missing.

41

Chapter 6

Conclusions and recommendations

6.1 Conclusions
The Travelling Tournament problem was modelled as an integer program. The main goal of this
research was to reduce the integrality gap of this integer program by adding a specific type of cutting
planes: facets.

Before we started searching facets, first we demonstrated the dimension of the solution polytope of
the integer program. This was done in two steps: first only for the part of the polytope with the play
variables, and next this was extended to the full polytope. The results are given in Theorem 4.1 and
Corollary 4.1.1, respectively.

Next, we started looking for facets. Using the software library IPO, facets of the solution polytope
were found. Most facets appeared to be specific to the instance to which the software was applied,
but a few had a physical interpretation so that they could be generalised to other instances. Only
one class of facets found in this way, which we called the “flow conservation facets”, had a significant
effect on the integrality gap.

Thereafter, it was proved that this class of facets is indeed facet-defining for the unconstrained TTP,
using a combination of two proof techniques. For one special case, the proof is missing. However,
computations showed that the proof technique used in the other cases seems to be working for the
special case as well. Therefore, it is expected that this gap can be filled quite easily. The precise
result can be found in Theorem 5.2.

During the research, we needed methods to generate tournament schedules. We spent a chapter on
discussing three methods: the circle method, the canonical 1-factorisation and the Kirkman tour-
nament. Kirkman is often cited as the inventor of the circle method, but we showed that this is a
misconception. Furthermore, we proved that the Kirkman tournament is equivalent up to permuta-
tion to the canonical 1-factorisation. Presumably, this proof has been done before, but it was not
electronically available. Thus, our proof fills this gap.

6.2 Recommendations for further research
We have a number of suggestions for further research. First of all, it would be good to complete the
missing part of the facet proof. It is expected that this is not very complex, but it can be a laborious
task.

42

The proofs in Chapters 4 and 5 of this thesis applied to the unconstrained TTP. The next step would
be to extend this to the standard TTP. It seems likely that similar proof techniques can be used for
the standard TTP as those used for the unconstrained TTP.

The last suggestion is the most important one in our opinion. Although we showed that the integrality
gap is reduced significantly by adding the flow conservation facets, the integer program is still much
slower after the addition of the facets than current state-of-the-art methods for solving TTP instances.
The question is whether the facets can be incorporated in these methods to make them faster. It
would be good to investigate this.

43

Bibliography

[1] C. Thielen and S. Westphal, “Complexity of the traveling tournament problem,” Theor. Comput.
Sci., vol. 412, no. 4&5, pp. 345–351, 2011, doi:10.1016/j.tcs.2010.10.001.

[2] R. V. Rasmussen and M. A. Trick, “Round robin scheduling – a survey,” Eur. J. Oper. Res., vol.
188, no. 3, pp. 617–636, 2008, doi:10.1016/j.ejor.2007.05.046.

[3] M. A. Trick, “Challenge Traveling Tournament Instances,” https://mat.tepper.cmu.edu/
TOURN/, (accessed Mar. 24, 2020).

[4] R. Bhattacharyya, “Complexity of the Unconstrained Traveling Tournament Problem,” Oper.
Res. Lett., vol. 44, no. 5, pp. 649–654, 2016, doi:10.1016/j.orl.2016.07.011.

[5] D. Froncek, “Scheduling a Tournament,” in Mathematics and Sports, J. A. Gallian, Ed. Math.
Assoc. Amer., 2010, pp. 203–216, doi:10.5948/UPO9781614442004.018.

[6] D. de Werra, “Scheduling in Sports,” in Studies on Graphs and Discrete Programming, ser.
North-Holland Mathematics Studies, P. Hansen, Ed. North-Holland, 1981, vol. 59, pp. 381–
395, doi:10.1016/S0304-0208(08)73478-9.

[7] A. Drexl and S. Knust, “Sports league scheduling: Graph- and resource-based models,” Omega,
vol. 35, no. 5, pp. 465–471, 2007, doi:10.1016/j.omega.2005.08.002.

[8] T. P. Kirkman, “On a problem in combinations,” Cam. Dub. Math. J., vol. 2, pp. 191–204, 1847.

[9] I. Anderson, Combinatorial Designs and Tournaments. Oxford, U.K.: Oxford Univ. Press,
1997, ch. 8.1.

[10] M. Goerigk and S. Westphal, “A combined local search and integer programming ap-
proach to the traveling tournament problem,” Ann. Oper. Res., vol. 239, pp. 343–354, 2016,
doi:10.1007/s10479-014-1586-6.

[11] C. C. Ribeiro, “Sports scheduling: Problems and applications,” Int. Trans. Oper. Res., vol. 19,
no. 1&2, pp. 201–226, 2012, doi:10.1111/j.1475-3995.2011.00819.x.

[12] E. Lambrechts et al., “Round-robin tournaments generated by the Circle Method having max-
imum carry-over,” Math. Program., vol. 172, no. 1&2, pp. 277–302, 2018, doi:10.1007/s10107-
017-1115-x.

[13] Édouard Lucas, Récréations mathématiques. Paris, France: Gauthier-Villars, 1883, ch. Les jeux
de demoiselles, pp. 176–180.

[14] I. Anderson, “Kirkman and GK2n,” Bull. Inst. Combin. Appl., vol. 3, pp. 111–112, 1991.

[15] D. de Werra, “Some models of graphs for scheduling sports competitions,” Discrete Appl. Math.,
vol. 21, no. 1, pp. 47–65, 1988, doi:10.1016/0166-218X(88)90033-9.

44

https://doi.org/10.1016/j.tcs.2010.10.001
https://doi.org/10.1016/j.ejor.2007.05.046
https://mat.tepper.cmu.edu/TOURN/
https://mat.tepper.cmu.edu/TOURN/
https://doi.org/10.1016/j.orl.2016.07.011
https://doi.org/10.5948/UPO9781614442004.018
https://doi.org/10.1016/S0304-0208(08)73478-9
https://doi.org/10.1016/j.omega.2005.08.002
https://doi.org/10.1007/s10479-014-1586-6
https://doi.org/10.1111/j.1475-3995.2011.00819.x
https://doi.org/10.1007/s10107-017-1115-x
https://doi.org/10.1007/s10107-017-1115-x
https://doi.org/10.1016/0166-218X(88)90033-9

[16] K. Easton, G. L. Nemhauser, and M. A. Trick, “Solving the Traveling Tournament Problem:
A Combined Integer Programming and Constraint Programming Approach,” in Practice and
Theory of Automated Timetabling IV, E. Burke and P. D. Causmaecker, Eds., Gent, Belgium,
Aug. 2002, pp. 100–109, doi:10.1007/978-3-540-45157-0_6.

[17] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2020. [Online]. Available:
http://www.gurobi.com

[18] M. Walter, “IPO - Investigating Polyhedra by Oracles,” 2019. [Online]. Available:
https://bitbucket.org/matthias-walter/ipo/src/master/

[19] M. Walter, “Investigating Polyhedra by Oracles and Analyzing Simple Extensions of Polytopes,”
Ph.D. dissertation, Fak. für Math., Otto-von-Guericke-Univ. Magdeburg, Magdeburg, ST, 2016.

45

https://doi.org/10.1007/978-3-540-45157-0_6
http://www.gurobi.com
https://bitbucket.org/matthias-walter/ipo/src/master/

	Introduction
	Background
	Goals
	Structure
	Notation

	The Travelling Tournament Problem
	Description of the standard TTP
	Variants
	Integer programming formulations

	Tournament scheduling methods and their equivalence
	Three scheduling methods
	Circle method
	Canonical 1-factorisation
	Kirkman tournament

	Equivalence of the canonical 1-factorisation and the Kirkman tournament
	Games in each slot in a Kirkman tournament
	Apply permutation
	Equality of permuted Kirkman tournament and canonical 1-factorisation

	Dimension of the solution space of the TTP
	Redundant equations
	Dimension of conv(Xn)
	Transform Xn into Xn
	Proof outline
	Local change: home-away swap
	Local change: partial slot swap
	Conclusion

	Dimension of conv(Yn)
	Definition of Yn
	Proof outline
	Variables of the type y-iit
	Variables of the type y-iti
	Variables of the type y-ist
	Conclusion

	Facets
	Integrality gap
	Finding facets
	Facet proof
	Proof outline
	Local changes
	Affinely independent vectors
	Combining the previous results

	Conclusions and recommendations
	Conclusions
	Recommendations for further research

