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Summary

The respiratory motion in the abdomen is an important source of inaccuracy in clinical appli-
cations such as image-guided interventions (e.g. radiotherapy and tumor ablation) and image
acquisition (e.g. MRI). The inaccuracies introduced to the treatments or diagnostic tests raise
the probabilities of misdiagnosis, incomplete treatment, or destruction of healthy tissues.

Among the possible solutions to these problems, much attention has been paid to respiratory
motion estimation by means of surrogate signals, in order to compensate the respiratory mo-
tion and target the points of interest more accurately.

In this study, a correlation between the collected surrogate signals and the liver tumor respi-
ratory motion is obtained using learning-based algorithms. A robotic phantom is developed
which simulates the respiratory motion of the liver, the diaphragm, and the abdomen skin in
two directions as superior-inferior (SI) and anterior-posterior (AP). The surrogate signals are
collected by means of optical markers attached to the abdomen skin and tracked by a digital
camera, in addition to an inertial measurement unit (IMU) fixed to the hub of a plastic needle
which is inserted into the liver. The liver incorporates a spherical tumor, the displacement of
which is measured by an electromagnetic sensor. Using a finite element (FE) model which is
developed based on the data collected from the physical phantom as the ground-truth, more
surrogate and tumor motion data is generated with different values of parameters such as the
tumor size, the tumor location in the liver, and the liver elasticity which differ among patients.
Subsequently, a learning algorithm is employed to find a correlation between the tumor res-
piratory motion and the surrogate signals. A sensitivity analysis is also performed in order to
find the effects of the parameters on the tumor respiratory motion. Also, the performance and
estimation error of the learning-based model is compared between the estimation results from
the measurement data and the results from the simulated data.

It is shown that the estimation error of linear regression for the SI and AP directions has been
respectively 1.37% and 2.87%, and for quadratic polynomial regression have been 0.76% and
2.41% on the data from the experiments. With the presented phantom design, it is not possible
to draw a general conclusion about which surrogate signals have higher correlation with the
tumor motion, since it depends completely on the data set. However, by combining all surro-
gate signals, the estimation error decreases about 0.5-6.5% comparing to using only one of the
surrogates. The sensitivity analysis shows that the simulation results are partly correct, and the
main difference between the results and the literature information is due to the limitations in
the phantom and FEM. Finally, it is discussed that by augmenting the measurement data with
the simulated data, the motion estimation error changes from 2.9% to 2%, which is not sig-
nificant and suggesting that the FEM is a sufficiently good representation of the experimental
setup.
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1 Introduction

In this chapter the problem statement will be defined. First, related backgrounds and literature
will be reviewed. Following that, the purpose of this project is explained, and then the outline

of the next chapters will be presented.

1.1 Anatomical terminology
Figure 1.1 shows the anatomy of the human body’s chest and abdomen. The liver is located in

the abdomen, in contact with the diaphragm.

Large 3 e
intestine intestine

(colon)

Figure 1.1: Anatomy of the abdomen and chest of the human body [24].

Figure 1.2 demonstrates some of the directional terms used for human body. The anterior-
posterior (AP), superior-inferior (SI), and medial-lateral (ML) directions are respectively back-

front, head-foot, and right-left directions, which are the main focus in this report.

1.2 Liver cancer and clinical procedures

According to World Health Organization (WHO) [31], cancer is the second cause of total deaths
worldwide. Liver or hepatic cancer is the second most common cause of cancer death and it
was responsible for 788,000 deaths in 2015. About two thirds of cancer deaths occur in lower-
income countries, where the diagnosis and treatment services are less accessible [32]. It means
that early diagnosis and treatment increase the survival chance. Due to the mentioned issues

and the high death rate of liver cancer, this project focuses on liver and liver tumor.
The clinical diagnosis and treatment procedures are as follows.

¢ The diagnostic procedures consist of: blood test, ultrasound scan, CT scan, MRI scan,

and biopsy [50].
* Some types of treatments are: ablation, embolization, immunotherapy, surgery, radio-

therapy, and chemotherapy [44], [51].
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2 Estimation of hepatic tumors respiratory motion using learning algorithms and surrogates

Superior

Supe

rior
| halic
e
P
Anterior . Posterior [ Lateral |

4

BN

—1

—

M

Inferior

Figure 1.2: The anatomical terms of location shown on the human body [27].

1.3 Challenges and common solutions

The organ motion secondary to the respiration has been always one of the challenges in the
aforementioned clinical procedures. It is not always possible to observe the organ of interest
directly in real-time, since the updating rate of the imaging modalities are not high enough
(specifically in MR imaging), or in some cases, the organ is not observable and is hidden by
other organs or tissues, or the imaging devices are not capable of deep imaging (for example
ultrasound).

In the treatments and image-guided interventions such as radiotherapy, surgery, tumor ab-
lation, and biopsy, the information about the lesion’s position is affected by the respiratory
motion [25], [2].

The inaccuracies of the lesions position and images induced by the respiratory motion affect
the quality of diagnosis and treatment and cause misdiagnosis, insufficient treatment, or de-
struction of healthy tissues.

In order to minimize the inaccuracies, several strategies have been employed in the literature
(21, [29]:

* Breath holding: It is the simplest approach, but limits the duration of the procedure to
less than 30 seconds, which is not usually sufficient.

* Respiratory gating: The lesions are scanned constantly and during a limited window of
the respiratory cycle. This method increases the duration of the procedure.

» Respiratory motion estimation: In this method, it is possible to track the motion of the
points of interest in real-time, in contrast with the previous methods. This method can
be performed in different ways:

M. (Maryam) Berijanian University of Twente



CHAPTER 1. INTRODUCTION 3

- Real-time imaging of the tumor: It is difficult to acquire the motion via imaging
during the medical procedure, and the updating rate of the image acquisition can
be low and insufficient for accurate tracking.

- Imaging of the markers or receiving signals from devices implanted close to the tu-
mor: This method is invasive and it is challenging to put the implants close to the
lesion. Also, only the motion of the markers is tracked instead of the region of inter-
est.

- Correlating an external surrogate signal with the actual tumor position: One of the
limitations of this method is the fact that the surrogate signal must have a strong
correlation with the actual tumor motion.

In this project, the last approach (respiratory motion estimation using external surrogate sig-
nals) has been chosen, because of the mentioned drawbacks and limitations of the other meth-
ods. Also, the advantage of this method is that the updating rate of the surrogate signals can be
high, which makes it a suitable method for real-time applications.

1.4 Respiratory motion estimation using surrogate signals

This section gives more information about the approach of respiratory motion estimation.

1.4.1 Previous works

Table 1.1 includes a number of studies in the literature about respiratory motion estimation of
abdominal organs using surrogate signals. Although various methods for the estimation of the
respiratory motion of different organs exist in the literature, they have the following compo-
nents in common [2]:

* Surrogate signals: the signals that are used as inputs to estimate the respiratory motion
of the region of interest. They should be easily measurable, have a strong relation with
the respiratory motion, and have a sufficiently high updating frequency.

* Motion models: a model that correlates the input (surrogate) signals with the output (the
actual motion of the region of interest) and is capable of estimating the output signal
given the input signals.

* Fitting methods: a method that is used to fit the correlation between the surrogate and
output signals, which is called typically a supervised learning algorithm.

* The estimated motion of the region of interest: if the relation between the surrogate sig-
nals and the motion of interest is successfully modeled, then the output of the model will
be an estimation of the motion of interest.

e The actual motion of the region of interest: this signal is used as a ground truth to find a
motion model and is compared to the estimated output in order to calculate the errors
of the estimation.

Figure 1.3 shows the procedures and components of the respiratory motion estimation using
surrogate signals. In Figure 1.3-(a) the learning phase is observable, in which the external surro-
gate signals and the actual motion of the region of interest are measured simultaneously during
avalidation experiment. Then, a correlation between them is found using a fitting method, and
the motion model is built. Figure 1.3-(b) shows the estimation phase, in which the previously-
made motion model is used to estimate the motion of interest (the output) from the surrogate
signals (inputs). In this phase, only the surrogate signals are measured during the experiment.

Robotics and Mechatronics M. (Maryam) Berijanian
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Table 1.1: Related studies about respiratory motion estimation using surrogate signals. Typical surro-
gate signals, the motion of interest measurement methods, and the means of validation experiments are

listed.

Reference

Surrogate signals

Motion of interest

Validation experiments H

Abayazid et al., 2018 [29]
Fahmi et al., 2018 [25]
Shin et al., 2017 [46]
Ahn et al., 2014 [7]
Durichen et al., 2013 [9]

Leietal., 2012 [36] EM tracker CT scan animals & saline bags
Cervifio et al., 2010 [41] fluoroscopic images fluoroscopic images human subjects
Torshabi et al., 2010 [10] external markers X-ray imaging human subjects
Ehrhardt et al., 2010 [12] 4D CT 4D CT human subjects

Cervifio et al., 2009 [40]
Ernst et al., 2009 [1]

Beddar et al., 2007 [39] external markers 4D CT human subjects
Ionascu et al., 2007 [35] abdominal surface motion markers & x-ray human subjects
Luetal., 2005 [17] spirometry & abdominal motion 4D CT human subjects

Isaksson et al., 2005 [28]
Hoisak et al., 2004 [18]

Ahn et al., 2004 [6] external markers & fluoroscopy fluoroscopy human subjects
Koch et al., 2004 [4] external markers & MRI MRI human subjects
Vedam et al., 2003 [37] markers & infrared camera fluoroscopy human subjects

IMU 4
external markers
digital protractor & calipers
radio-opaque markers
multi-modal sensors

fluoroscopic images
active optical markers

external markers & fluoroscopy
spirometry & abdominal motion

EM ? tracker
MRI
4D CT
fluoroscopic images
3D ultrasound

fluoroscopic images
X-ray imaging

markers & fluoroscopy
X-ray fluoroscopy

motion phantom
human subjects
motion phantom
human subjects
human subjects

human subjects
human subjects

human subjects
human subjects

Schweikard et al., 2000 [19] infrared emitters X-ray imaging human subjects

4Inertial Measurement Unit
bElectromagnetic

Once the motion model is built in the learning phase, it can be used to estimate the motion
of interest in real-time if the surrogate signals are measured in real-time (with a high updating
rate).

1.4.2 Literature gap

Most of the relevant works emphasize that the respiratory motion pattern changes from cycle
to cycle (inter-cycle variations), between different patients (inter-patient variations), between
different treatment sessions (inter-fraction variations), etc. [2]. Several papers have neglected
the mentioned variations for simplification in their works, while many studies have considered
them to an extent. However, rather less studies have taken the effects of the following patient-
specific parameters on the tumor respiratory motion or on the estimation model into account:

* Size of the tumor
* Shape and deformations of the tumor
* Location of the tumor inside the organ

* Properties of the organ tissues (e.g. elasticity and density of the tissue), which depends
on the percentages of the main tissue, fat, blood vessels, etc.

* Properties of the tumor tissue
* The breathing pattern (e.g. diaphragmatic (deep), thoracic (shallow))

* The position of the sensors, trackable markers, etc. relative to the moving organs and
regions of interest

M. (Maryam) Berijanian University of Twente
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Figure 1.3: Schematic view of the steps of the respiratory motion estimation using surrogate signals. (a)
The learning phase, (b) The estimation phase.

Table 1.2 shows the relevant works that considered the effects of some of the mentioned param-
eters on the respiratory motion of interest or on the estimation/simulation/imaging accuracy.

Table 1.2: Related studies considering the effects of some parameters on the respiratory motion of in-
terest or on the estimation/simulation/imaging accuracy.

H References Parameters Effects on the motion or estimation H
Plathow et al., 2004 [14], Larger tumors have smaller amplitude
Liuetal., 2007 [23], tumor size of motion and they reduce the mobility
Ehrhardt et al., 2010 [12], of the malignant organ as well. Also,
Cai et al., 2008 [20] the resulting images are less blurry.
Liu et al., 2007 [23], tumor location in AP% direction Tumors closer to the posterior chest
Ehrhardt et al., 2010 [12] wall have smaller motion amplitudes.
Plathow et al., 2004 [14],  tumor location in SI? direction Tumors closer to the diaphragm
Liu et al., 2007 [23] have larger motion amplitudes.
Plathow et al., 2005 [26], The respiratory motion amplitude is
Koch et al., 2004 [4], breathing pattern® larger in deep breathing and the
King et al., 2008 [22] correlation between the surrogates
and motion of interest is higher
Fahmi et al., 2018 [25], The internal respiratory motion in SI
Ahn etal., 2014 [7], position of sensors or markers direction has the highest correlation
Chi et al., 2006 [45], (on the abdomen or the chest) with the abdominal motion and in
Liu et al., 2004 [3] AP direction with the chest motion

“Anterior-Posterior
b Superior-Inferior
“deep (abdominal), shallow (thoracic or normal)

To the author’s knowledge, some of the mentioned parameters have not been taken into ac-
count in the literature. The rest of the parameters have been considered in a few studies as in
Table 1.2. Although they investigated the effects of the parameters on the results, they did not
use the mentioned parameters as inputs to the motion model and learning algorithm in order
to quantify the respiratory motion dependency on the parameters and increase the accuracy

Robotics and Mechatronics M. (Maryam) Berijanian
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of the model. In this project, the effects of the parameters: tumor size, liver elasticity, and tu-
mor location inside the liver on the respiratory motion estimation are investigated and used as
inputs to the supervised learning algorithm.

Some studies have created a simulation model of the respiratory motion of the organ of inter-
est instead of motion-estimation via learning algorithms in order to investigate the effects of
different parameters on the respiratory motion. In a study by Tehrani et al. as well as Werner et
al. a finite element model of the lung and lung tumor has been created [15, 16]. In the former,
the sensitivity of the simulation model accuracy to the tissue properties (e.g. elasticity) as well
as the modeling approaches has been evaluated and in the latter, the effects of lung tumor size
and location on the simulation accuracy are reported.

In most of the studies, the validation and testing experiments have been conducted on human
subjects. An exception is [36], in which animals and saline bags have been used for the experi-
ments as in Table 1.1. Also, [29] and [46] have made use of motion phantom:s.

Since the respiratory motion of tumors depends on numerous parameters and variations as
mentioned and is unique for each patient, it is not possible to completely and accurately ob-
serve the effects of the changes in the parameters on the respiratory motion. However, through
phantom experiment setups or simulations, the procedures are repeatable and the parameters
can be controlled and manipulated. For example, due to inter-fraction variations, the respira-
tory motion pattern of a specific patient changes from one diagnosis session to another. Nev-
ertheless, in a simulation, it is possible to change one of the parameters while fixing the rest
parameters and the respiratory pattern in order to observe the effects of the changing parame-
ter.

In this project, a respiratory motion liver phantom is developed in order to collect the motion
of interest and surrogate data via experiments. Also, a finite element model (FEM) was used
in order to make the possibility of changing the mentioned parameters and observing the re-
sulting changes quantitatively, and generating more input and output data sets for supervised
learning and motion estimation model. The main reason of using FEM instead of repeating
the experiments has been the fact that the repeat-ability of the experiments with the phantom
has been low. It was not possible to keep all parameters the same while changing only one
of the parameters. The difference between the papers that have used FEM ([15, 16]) and this
project is that they simulated the respiratory motion in order to investigate the effects of cer-
tain parameters or modeling approaches on the FE model accuracy, while in this project FEM is
used to simulate the experiments in order to generate surrogate and motion data for a learning
algorithm which quantifies the tumor motion dependency on the parameters.

This project is related to [29] and [25] as well, in which the hepatic tumors motion secondary
to respiration has been estimated using supervised learning algorithms and surrogate signals.
The former used the outputs of an IMU attached to the hub of a needle inserted into a respi-
ratory motion phantom as surrogate signals, while the latter used the displacement of external
markers placed on human subjects’ abdomen and tracked by a digital camera as surrogate sig-
nals. Another goal of this work is to use both IMU and external markers as surrogates in order
to make a comparison between them in terms of the resulting performance and accuracy of the
learning-based motion estimation.

1.5 Objectives and research questions
The objectives of this project are:

* improving an already existing robotic phantom to mimic the hepatic respiratory motion
more realistically (Chapter 2),

M. (Maryam) Berijanian University of Twente



CHAPTER 1. INTRODUCTION 7

» designing an experimental setup with the phantom and sensors in order to collect the
respiratory motion of interest and surrogate data through experiments (Chapter 3),

e liver tumor’s respiratory motion estimation using supervised learning algorithms and
surrogate signals (Chapters 4 and 5),

 modeling the experiments by FEM (made and validated by a colleague' from the experi-
mental data of the physical phantom) to generate more data sets for different parameters
(Chapter 5).

Also, the research questions are as follows, which will be answered in the next chapters.

* Which surrogate signals have a higher correlation with the tumor motion? (Answered by
comparing the estimation accuracy for different choices of surrogates in Chapter 4.)

* What are the effects of the parameters (tumor size, liver-tissue elasticity, and tumor lo-
cation in the liver) on the tumor motion in this work? Are the results different from the
previous works? (Answered by sensitivity analysis in Chapter 5.)

* Is it possible to extend the experimental data with FE simulations with a comparable
accuracy? How does the motion estimation error change? How good is the FE model?
(Answered by comparing the results of learning-based models in Chapter 5.)

1.6 Work-flow

Following are more details about the general work-flow and steps of this project, which are
shown in Figure 1.4.

The first phase of the project is done as illustrated in part (a) of the figure. A robotic phantom
which mimics the hepatic respiratory motion is improved using the information about the res-
piratory cycles and the physical properties of the liver from the literature. These specifications
affect the choice of actuators, system design, and control.

Then, experiments are performed on the robotic phantom in order to measure the surrogate
signals and the motion of the liver tumor. Following that, given the physical properties of the
liver, a finite element model (FEM) for simulating the phantom respiratory motion is developed
and validated by a colleague! using the experimental data.

The second phase of the project is data generation and machine learning as shown in part (b)
of Figure 1.4.

Asitis noticeable in Figure 1.4-(b), the aforementioned parameters (tumor size, liver elasticity,
and tumor location inside the liver) are changed in the previously developed FEM and various
sets of motion data and surrogate signals are generated via FEM simulations.

Next, all sets of data (for different parameters) are used in a supervised-learning algorithm in
order to find a correlation between the inputs (surrogate signals) and outputs (tumor motion).
This results in a respiratory motion model, which can be used for motion estimation.

Figure 1.4-(c) shows the last (third) phase of the project, which is the testing and evaluation
phase. In this phase, a new set of surrogate data from either the phantom experiments or the
FEM simulations is used as the input of the previously made motion model and the output is
estimated which is the tumor motion.

The final step is that the estimated tumor motion is compared with the measured or simulated
tumor motion from the phantom or FEM in order to evaluate the accuracy and the performance
of the learning-based model. The data used for the estimation in this phase should not be used

! Hamid Naghibi Beidokhti M.Sc
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Figure 1.4: The steps of the project. (a) The practical phase, (b) data generation and machine learning,
and (c) testing and evaluation.

for the machine learning in the previous phase, as it will not be a proper way of evaluating the
accuracy.

1.7 Thesis outline
This report is organized as follows.

Chapter 2 explains how the robotic phantom that mimics the hepatic respiratory motion and
is used for the experiments is developed and how different parts of the phantom are designed
and controlled.

In Chapter 3, an explanation of the types of surrogate signals and sensors that have been chosen
for this project is given. Then, the experimental setup is described along with the procedure of
the experiments. Next, the experiment data post-processing is explained. This chapter ends
with a description of how the finite element model is created and contributes to this project.

Chapter 4 analyzes the data obtained from two experiments and demonstrates what kind of
supervised-learning algorithm is most suitable for the data and how the mathematical motion
model is acquired for the respiratory motion estimation. Then, the results of the learning algo-
rithms and the motion estimation are presented. In addition, a comparison is made between
the performances of different algorithms. Finally, different surrogate signals are compared in

M. (Maryam) Berijanian University of Twente



CHAPTER 1. INTRODUCTION 9

terms of their contribution to the resulting motion-estimation accuracy (which is the answer
to one of the research questions).

In Chapter 5, by performing a sensitivity analysis on the data sets generated by FEM, the ef-
fects of the parameters (tumor size, liver elasticity, and tumor location inside the liver) on the
resulting motion are analyzed and compared with the information from the literature. Then,
the previously created supervised-learning algorithm is generalized to include the parameters.
Next, the data sets are used as inputs to the generalized code to evaluate the estimation accu-
racy. This chapter ends with answers to the remaining research questions.

In Chapter 6, a conclusion is given along with recommended future works and researches.

Robotics and Mechatronics M. (Maryam) Berijanian
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2 Improvement of a respiratory motion phantom

This chapter describes the hepatic respiratory motion based on the literature and how an al-
ready existing respiratory motion phantom is improved. First, the properties and patterns of
the hepatic respiratory motion is presented according to the literature. Next, the initial mo-
tion phantom designed by the former master’s student Paulo Costa [33] is presented. Then, its
weaknesses and drawbacks are discussed as well as how it can be improved in order to make it
more similar to the real respiratory motion of human body. Finally, the procedure of improving
the motion phantom to make it suitable for the experiments of this project is explained along
with a description of how different parts are designed and how they work.

2.1 Properties of hepatic respiratory motion

In this project, as shown in Figure 1.4 of Chapter 1, the aim is to simulate the respiratory motion
by the robotic phantom with a good approximation, to use it for an experiment and collection
of surrogate signals and motion of interest signals, and then to make a FE model of the liver
and liver tumor’s respiratory motion using the collected signals for validation. The experiment
that is perforemed on the phantom represents the hepatic respiratory motion for one case. As
shown in Figure ?2 of Chapter 1, once the FE model is created, it is used for simulating other
cases, e.g. for other breathing modes, or for other parameters such as the tumor size, the tumor
location in the liver, and the liver elasticity.

As shown in Figure 1.4 of Chapter 1, the requirements for the design of the respiratory motion
phantom are the properties of respiratory cycles, which are derived from the literature. The
reason is that the phantom is intended to mimic the hepatic respiratory motion realistically;
therefore, it should be created in accordance with the real respiratory cycles’ properties and
patterns that are reported in the literature.

The properties of respiratory cycles that have been considered in this project are: the amplitude
of motion cycles, the breathing frequency, and the pattern of cycles.

The amplitude of the liver motion secondary to respiration in normal breathing mode is aver-
agely in the range 10—40 mm in superior-inferior (SI) direction, 1-12 mm in anterior-posterior
(AP) direction, and 1 -5 mm in medial-lateral (ML) direction. In deep breathing mode, the av-
erage range of amplitudes is 30 — 80 mm in SI direction, larger than that of normal breathing
mode [21, 8, 56, 5]. The mentioned anatomical directions are in accordance with Figure 1.2 of
Chapter 1.

The average human respiration frequency is respectively 12 — 20 cycles.min™! and 7 - 8
cycles.min™! for normal and deep breathing. Equivalently, the period of respiratory cycles is
3-5 sec and 7-8 sec, respectively. Also, the average duration of exhalation in normal breathing
mode is 2 — 4 sec, usually longer than inhalation which is 1 -2 sec [57, 38].

The pattern of the respiratory cycles is shown in Figure 2.1. The upper image represents the
tidal volume (airflow volume) over time [13], and the lower image shows the respiratory pat-
terns in SI, AP, and ML directions which are the displacements of infra-red markers on a pa-
tient body [8]. The figures indicate that the surface displacement or the tidal volume change
smoothly over time, and there is a short pause after each exhalation.

The assumptions and the chosen properties of the respiratory cycles of the phantom are as
follows.

* The robotic phantom moves in two directions to mimic the two most dominant motion
directions SI and AP. The respiratory motion in the ML direction is negligible comparing
to the other two directions [21, 8, 56, 5].

Robotics and Mechatronics M. (Maryam) Berijanian
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Figure 2.1: The pattern of the respiratory cycles. (a) The tidal volume (V) or the volume of the airflow
vs. time [13], (b) The respiratory patterns in SI, AP, and ML directions which are the displacements of
infra-red markers on patient body [8].

* The breathing type of the phantom is normal.

» No variation or random behavior is included in the phantom motion. The reason is that
without variation, the validation of FE model is more straightforward. Once the FEM is
created, variations and changes like inter-cycle variations can be added to the model of
breathing cycles.

e The amplitude of motion of the phantom in SI direction is 3 cm and in AP direction is 1
cm.

* The breathing frequency is 20 cycles.min™!.

* The duration of inhalation and exhalation is respectively 1 sec and 2 sec.

The goal of phantom development is to mimic the above mentioned properties with a smooth
and realistic motion of the phantom similar to Figure 2.1.

2.2 Initial phantom design

A prototype of an MR-compatible respiratory motion phantom was designed and created by
Paulo Costa [33], a former master student. The phantom was designed such that it moves in
two directions SI and AP, the two most dominant respiratory motion directions. Different parts
of the phantom are illustrated in Figure 2.2 and can be listed as follows.

* The main structure made of acrylic sheets.
* Four plastic wheels on acrylic rails to guide the phantom motion.

* Three soft actuators made of Agilus 30 by 3D printing. The air is blown into the actuators
to move the phantom.

* An external air compressor to provide the required air flow.

¢ Flexible tubes for the air flow.
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e Manual pressure regulators for changing the air pressure and therefore, changing the
amplitude of motion to the desired value.

¢ Two solenoid valves! to switch the air flow between the tubes.

* A micro-controller board? to control the air flow via the solenoid valves. The solenoid
valves are connected to the digital pins of the Arduino board, and they are switched peri-
odically between "high" and "low" states by the Arduino.

|

|

— I
e ll

Figure 2.2: The initial phantom prototype designed and created by Paulo Costa [33].

Figure 2.3 shows a diagram of the electrical and mechanical connections of the initial phantom
design. As shown in the figure, two of the three actuators are responsible for creating the side
motion (or SI-direction motion), and the last one for the up and down motion (or AP-direction
motion). An external air compressor provides a constant air flow, which is used to drive the
actuators and move the phantom in two directions. The input air flow is divided between two
solenoid valves. One valve is connected to the AP-actuator, and the other is connected to the
two Sl-actuators. The micro-controller changes the openings of the valves with a desired fre-
quency. Via the SI solenoid-valve, the input air flow switches between the right and left actu-
ators, producing leftward and rightward motion respectively (only one of the SI-actuators gets
filled by the air flow at a time). In the AP solenoid-valve, one output is closed, and the other is
connected to the AP actuator, meaning that when the AP-actuator is switched on, it gets filled
by the air and goes up, and when it is off, it goes down due to the gravity.

The phantom motion amplitude can be controlled by changing the pressure of the air flow via
the manual regulators, as the motion amplitudes are proportional to the input air pressure.
Also, the frequency of motion (or the frequency of the switching action of the solenoid valves)

can be changed by means of the micro-controller program?.

2.3 Improvements of phantom design

The first phantom was improved in order to make it possible to measure the liver tumor motion
along with surrogate signals.

1TEMCo PV3211 solenoid valve, Model VC-C1, Temco Industrial
2Arduino UNO, Arduino, Italy
3Arduino IDE
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Figure 2.3: The electrical and mechanical connections of the initial phantom design.

2.3.1 Structural improvements

A number of additional parts have been designed, manufactured, and attached to the first pro-
totype to make it a more realistic representation of the hepatic motion. For this purpose, the
properties of the liver and tumor tissue and abdomen skin have been derived from the litera-
ture (as shown in Figure 1.4 of Chapter 1).

Liver phantom

According to the literature, the elastic modulus (E) of human liver ranges between 8 — 48 kPa
and the average value is 20 kPa [55].

One of the frequently used materials for artificial tissues in medical engineering studies is a
mixture of gelatin and water due to its easy availability, cheap price, and similarity of its elastic
behavior to soft tissues [54].

In a study about needle and gels interactions [53], the elastic moduli of three different mixtures
of gelatin and water have been estimated. For the mixtures of 8%, 14.9%, and 20% mass per-
centages of gelatin to water, the elastic moduli have been reported as 8.7 kPa, 35.5 kPa, and
58.1 kPa, respectively.

In this project, a gelatin? to water mixture of 10% mass percentage has been selected for cre-
ating the liver phantom. By interpolation, the corresponding elastic modulus is obtained to be
E =16.5 kPa, which is realistic comparing to the real values from the literature.

4Dr.Oetker professional gelatin powder
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For manufacturing the liver phantom, a liver-shaped mold has been designed by Charlotte
Overwijk (former bachelor’s student) and 3D printed.

Note that the value of liver elasticity is required for finite element modeling in this project.
Liver tumor

In American Cancer Society [43], it is reported that the liver tumors size in very early stage is
smaller than 2 c¢m, in early stage is 2 — 5 c¢m, and in intermediate stage is either larger or more
than one tumor. The stiffness of lesions is normally higher than the healthy tissues. According
to [58], the value of liver (malignant) lesions module of elasticity is in the range 4.4 — 188 kPa.
In addition to gelatin, another promising candidate for manufacturing soft tissues is polyvinyl
chloride (PVC), because it does not decay after a few days as opposed to gelatin, and its elastic-
ity value can be chosen easily by changing the percentages of the plasticizer and hardener. The
tumor has been manufactured of PVC, with the percentages of 35.7% and 64.3% of hardener®
and plasticizer®, respectively. The elastic modulus of the resulting PVC material is 71.4 kPa and
it has been calculated by interpolation, according to the information about the elastic moduli
of PVC material with different percentages of hardener given in [34]. PVC has been chosen to
manufacture the liver tumor, because it is stiffer than the gelatin liver which is similar to the
real case. Also, for measuring the tumor motion, an electromagnetic sensor (which will be ex-
plained in more details in the next chapter) has been placed inside the tumor. Therefore, the
tumor material should not be cracked easily. In this project, the tumor shape is spherical as
shown in Figure 2.4-(a) and the shape changes of the tumor have not been considered. The
tumor diameter is 4.5 cm, which is realistic comparing to the values reported in the literature.
Figure 2.4-(b) presents the manufactured gelatin liver containing the PVC tumor.

(b)

Figure 2.4: Photos of the manufactured tumor and liver phantom. (a) The PVC tumor, (b) The gelatin
liver phantom containing the tumor.

Diaphragm, abdomen skin, and grippers

In this project, the diaphragm and abdomen skin are made of latex sheets. Latex produces
a tension force similar to the real diaphragm and skin. In order to fix and hold the latex di-
aphragm and skin, a number of additional parts (grippers) have been designed via computer
aided design (CAD) software’ as shown in Figure 2.5. The grippers are made of acrylic sheets
and hold the latex skin and diaphragm and are attach to the phantom by means of plastic
screws and nuts. The completed phantom with the liver and latex parts is shown in Figure
2.6. The latex sheets are moderately tightened. The tension force has not been measured and
the amount of tightness has been chosen by trial and error. If the tension is too large, the liver

5LUPA hardener, Lureparts.nl
6plastileurre Soft, Bricoleurre, France
7SolidWorks
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motion will be too small, and if the latex is too loose, the addition of the skin and diaphragm
would be pointless and non-realistic.

Figure 2.6: Photos of the liver phantom along with the diaphragm (at right) and skin (at left).

Assessment experiment 1

A preliminary experiment was performed on the developed phantom to evaluate its motion. In
this experiment an electromagnetic sensor (which will be explained in the next chapter) was
placed inside the tumor to measure the phantom displacement in three directions.

Figure 2.7 shows the plot of the first phantom displacement in three directions SI, AP, and ML.
Take notice of Figure 1.2 of Chapter 1 for the terms of anatomical directions. The phantom
motion was 2-dimensional in AP and SI directions, and the ML direction in the obtained plot is
produced by the sensor noise.

Strengths and weaknesses

The phantom design is MR-compatible, meaning that it can be used in MRI sessions and ex-
periments without affecting the quality of the images, e.g. it does not consist of any metal parts.
as mentioned, the phantom structure includes the acrylic main body, plastic screws and nuts,
Agilus 30 actuators, veroclear actuator plates, and plastic wheels, and it can be used in other
projects and experiments with MR imaging.

A disadvantage of this phantom design is that after a few cycles, the polymer actuator which is
easily tear-able, gets damaged due to the increase of the air pressure and the air starts to leak
out.

Another disadvantage, is that the amplitudes of motion are very small (as shown in Figure 2.7
which shows the phantom motion amplitudes) and not realistic comparing to the average hu-
man respiratory motion. The reason is that the actuators cannot stretch completely due to the
air leakage and cannot contract completely due to the insufficient exit air flow. Also, the extra

M. (Maryam) Berijanian University of Twente



CHAPTER 2. IMPROVEMENT OF A RESPIRATORY MOTION PHANTOM 17

A e /[ ML direction

8r i ;oM / ! /4" TSl direction
— i ! i i g t : -
€ ; i i i {---AP direction
E } i } - ‘ ! i '
=6 : i f o
S .
IS
@
o4
©
o
L
T2

| |

45 50 55 60
time (s)

Figure 2.7: The plot of the phantom motion in three directions, obtained from assessment experiment
1.

force exerted by the latex diaphragm tension and the gelatin liver weight prevent the phantom
from free movement and make the phantom displacement smaller.

2.3.2 Attaching new actuators

The two SI actuators were replaced by a new design in order to prevent them from tearing and
air leakage and to produce larger displacements.

As shown in Figure 1.4 of Chapter 1, for improving the phantom and making it more realistic,
some design considerations have been taken into account in the rest of this chapter. For ex-
ample, the choice of material to manufacture the actuators, or the dimensions of the actuator
design, etc.

Manufacturing new actuators

A mold for new actuators for SI motion of the phantom were designed by Nehal Mathur, former
bachelor’s student [30].

In this project, two SI actuators have been manufactured using the 3D-printed mold and liquid
rubber®, as shown in Figure 2.8.

Figure 2.8: The new actuator made of liquid rubber.

The advantages of the new actuators are that they work with lower air pressure (around 0.1 bar
comparing to 2 bar in the previous phantom) with no air leakage.

8Ecoflex™ 00-50
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New solenoid valves

The solenoid valves implemented in the first prototype (Figure 2.2 and 2.3) have been replaced
by new ones?, since the new actuators work with a lower air pressure and the previous solenoid
valves were not able to work in that low pressure range.

Note that the air flow comes from the compressor at a high pressure for the sake of the AP
actuator. However, before the flow goes into the SI actuators, the pressure is decreased by a
pressure regulator, since the SI actuators work in a lower pressure range.

Assessment experiment 2

Another preliminary experiment has been conducted to evaluate the new phantom motion,
and the resulting plot is given in Figure 2.9. As shown in the plot, the amplitudes of motion are
still insufficient and the cycles are not realistic.
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Figure 2.9: The plot of the phantom motion in three directions, obtained from assessment experiment
2.

Strengths and weaknesses

Although the new actuators work with lower air pressure with no air leakage, they suffer from
buckling and being overly blown.

They don't have any exit air flow, air leakage, or vacuuming, and the pressure inside the actu-
ators rises continuously and the actuators get overly blown. Also, the actuators buckle during
the phantom motion, because the designed length of the actuators is too large. As a result,
the amplitudes of motion in SI and AP directions are still small and non-realistic, as shown in
Figure 2.9.

2.3.3 Improving the actuators

In order to prevent the actuators from buckling and getting overly blown, they have been im-
proved. The length of the SI actuators have been reduced to prevent them from buckling. Also,
they have been wrapped by a strip, which acts as a holder and prevent them from being overly
blown as shown in Figure 2.10.

Assessment experiment 3

The third assessment experiment has been conducted to evaluate the improve in the phantom
motion. The phantom motion in three directions is presented in Figure 2.11. The plot suggests

9MHE2-M1H-3/2G-QS-4 (196134) Solenoid valve, Festo company
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Figure 2.10: The improved SI actuator, which is shorter and wrapped by a strip.

that the motion amplitudes are still small. However, they have been improved comparing to
Figure 2.9.
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Figure 2.11: The plot of the phantom motion in three directions, obtained from assessment experiment
3.

Strengths and weaknesses

Although the attempts done in this section were effective and they reduce the buckling and
blowing behavior of the actuators, there was still no exit way for the air flow. Therefore, in the
experiments, an amount of air leakage existed by loosening the tubes connections on purpose
(otherwise the actuators would explode due to increasing the pressure).

As a result of not having a vacuum pump and air suction, again the phantom displacements
were small and insufficient.

The best solution for managing the exist air flow was installing a vacuum pump, which is ex-
plained in the next section.

2.3.4 Installing a vacuum pump

As mentioned above, a vacuum pump was required and implemented for suction of the air out
of the actuators in each cycle. In order to implement a vacuum pump into the phantom design,
the mechanical connections of the previous phantom (as in figure 2.3) have been changed. Fig-
ure 2.12 shows the altered mechanical connections of the phantom and the way of implement-
ing the vacuum pump.
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Figure 2.12: The electrical and mechanical connections of the improved phantom.
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As Figure 2.12 suggests, each actuator in connected to the output of a solenoid valve, and the
solenoid valve is connected to two inputs: the constant air flow of the compressor, and the con-
stant suction of the vacuum pump. When an actuator is in the phase of expansion, the solenoid
valve is letting the air flow in. Then, the valve switches to the vacuum pump connection, and
as a result, the air is sucked out of the actuator, and the actuator goes back to its initial state.

Note that all three actuators have been connected to the vacuum pump as explained above.
The left SI actuator is synchronized with the AP actuator, meaning that their corresponding
solenoid valves get connected to the air flow or to the vacuum pump at the same time. The right
SI actuator works oppositely to the other two actuators, meaning that when they are connected
to the vacuum pump and getting empty;, it is connected to the compressor air flow and is getting
filled, and vice versa.

Assessment experiment 4

Figure 2.13 shows the improved phantom motion in three directions, having the vacuum pump
implemented in the system.
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Figure 2.13: The plot of the phantom motion in three directions, obtained from assessment experiment
4.

Strengths and weaknesses

By implementation of a vacuum pump in the system, the previously mentioned problems such
as: actuators buckling and getting overly blown was solved.

By sucking the air out of the actuators, the vacuum pump provided a way for air to exit, and as
aresult, it helped the actuators to contract completely.

It results in a larger displacement as well, because in the previous phantom, the actuators were
not able to reach their initial state and contract completely.

The dis-advantage is that the phantom motion is still not smooth and the pattern of the cycles
is not realistic enough (comparing to Figure 2.1), since the actuators have an on-off motion due
to the switching of the solenoid valves.

2.3.5 Installing digital regulator for motion correction

In order to have a smooth and more realistic phantom motion, it was required to change the
input pressure gradually instead of the rapid on-off motion. For this purpose, a digital pressure
regulator was implemented to the system as explained in the next section.
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Figure 2.14 represents a diagram of the electrical and mechanical connections of the final im-
proved phantom with a digital pressure regulator to control the input pressure.

As shown in the figure, the mechanical connection is similar to Figure 2.12, and the only dif-
ference is that now, the input pressure of two SI actuators is the output pressure of the digital
regulator. The digital regulator and the AP actuator input pressure come from the compressor.
It means that the AP actuator is controlled in the same way as the previous phantom (with the
vacuum pump and on-off motion), while two SI actuators’ input pressures are now provided
and controlled by the digital regulator.

The changes in electrical connection are that now the digital regulator is connected to a power
supply, as well as the analogue pins of the micro-controller board (Arduino UNO). The output
pressure of the digital regulator is changed gradually and periodically by the Arduino program.
The solenoid valves are still connected to the digital pins as before, and they are switched be-
tween "high" and "low" states, so that the actuators get activated ex-changeably.

Programming the new phantom motion

In this project, a new algorithm has been implemented in Arduino for controlling the phantom
motion smoothly and the code is presented in Appendix A.

As mentioned before, the digital regulator is connected to the analogue pins of the Arduino
board, which means that the output pressure can take any desired value (instead of binary
outputs "high" or "low").

The left SI actuator expansion corresponds to inhalation, while the right SI actuator expansion
corresponds to exhalation. According to Figure 2.1, the duration of the inhalation is shorter
than exhalation, and it was taken into account in programming the phantom motion.

Assessment experiment 5
Figure 2.15 shows the result of the assessment experiment with the final improved phantom.

The expansion of the right actuator (equivalently exhalation) is programmed to be done in dif-
ferent velocities in order to reach a pattern more similar to the real case in Figure 2.1.

Strengths and weaknesses

The final phantom design is successfully showing a smooth motion which is more realistic
(comparing to Figure 2.1). The frequency of cycles, the duration of inhalation and exhalation,
and the amplitudes of motion have been carefully taken care of.

A dis-advantage of the final improved phantom is that the AP actuator has not been controlled
by a digital regulator as opposed to the SI actuators. The reason is that the AP actuator is made
of Agilus30 material by 3D printing, while the SI actuators are made of liquid rubber as men-
tioned in the previous sections and as a result, it works in a noticeably higher pressure ranges.
Since the period of each cycle is approximately 3 sec and the digital pressure regulator has some
amount of delay, it doesn’'t have enough time to reach the high pressure required by the AP ac-
tuator. Therefore, if the AP actuator gets connected to the digital regulator as well, it will have
insufficient displacement, due to the lack of time to increase the pressure sufficiently. Also, it
is a good practice to control it in the previous on-off mode in order to compare the resulting
motion with those of the newly-controlled SI actuators.

Another dis-advantage of the final improved phantom is that while the input air flow of the SI
actuators is controlled by the digital regulator and altered gradually, the vacuum pump pressure
is constant. A further improvement is recommended by adding a digital pressure regulator to
the vacuum pump as well. However, as shown in Figure 2.15, the resulting respiratory patterns
of the phantom is sufficiently realistic.
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Figure 2.14: The electrical and mechanical connections of the final improved phantom.
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Figure 2.15: The plot of the phantom motion in three directions, obtained from assessment experiment
5.

2.4 MR-compatibility test

As mentioned earlier, all phantom parts are MR-compatible, except the electrical devices and
connections. One way to use the liver phantom in a MRI room is to use long air tubes, such
that all electrical parts are laid outside of the MRI room, and only the main phantom structure
(along with the gelatin liver and latex tissues) remain in the room.

However, using very long air tubes could be challenging, because it leads to drop in pressure, as
well as delays in the air flow. Therefore, it is necessary to check whether the phantom works well
with long air tubes. A number of experiments (MR-compatibility tests) have been performed
to check this.

In this experiment, the three air tubes that are attached to the actuators (the black lines in
Figure 2.14) were replaced by three long tubes. Each of the long tubes was 6 m long, which is
enough to put the phantom inside an MRI room, separately from the rest of the system.

Figure 2.16 shows the plots that are obtained from three experiments. The top plot is obtained
from an experiment with initial short tubes and input pressure of 2 bar, the middle plot shows
the same conditions with long tubes, and the bottom plot presents the results with the same
long tubes, but with input pressure of 4 bar.

As it is observable from the plots (a) and (b) in Figure 2.16, the phantom amplitudes of motion
in respectively SI and AP directions are around 20 and 5 mm with short tubes. However, the
mentioned values are respectively about 12 and 2 mm with long tubes. It means that with
longer tubes, the air leakage (pressure loss) from the connections increases and as a result, the
phantom motion amplitudes decreases.

By comparing the plots (a) and (c) in Figure 2.16, it is clear that the phantom has approximately
equal motion amplitudes; however, the input pressure is larger in the case with longer tubes. It
means that in order to compensate the increased amount of pressure loss in the connections
and to have the same motion amplitudes, it has been necessary to increase the input pressure.

Therefore, by increasing the input pressure, the phantom is still effectively working with 6 m
long tubes, which means that it is feasible to use the phantom inside of an MRI room while
keeping the electrical devices outside of the room.
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2.5 Summary and important notes

In this project, a previously designed and manufactured respiratory motion phantom (Figures
2.2 and 2.3) has been improved and upgraded to make it a usable liver motion phantom for the
experiments.

The final improved phantom can be observed in Figures 2.6 and 2.14 with the following notes
and recommendations.

* The final improved phantom is a physical model of liver and liver tumor respiratory mo-
tion. The main parts are: phantom structure, liver and tumor, diaphragm and skin, com-
pressor, vacuum pump, digital regulator, solenoid valves, and an Arduino board.

e The resulting phantom motion is sufficiently realistic (by comparing Figures 2.1 and 2.15)
in terms of the motion amplitude, breathing frequency, the pattern, and smoothness of
the motion.

 Itis MR-compatible, provided that long tubes of length 6 m are used.

* The motion is controlled by a digital pressure regulator. The regulator has a built-in con-
troller, and is able to follow any given path for the pressure. It means that any desired
cycle pattern can be created by programming the digital regulator. Especially, random
variations can be added to the phantom motion in order to model the inter- and intra-
cycle respiratory variations. In this project, variations have not been added to the phan-
tom motion, because as it will be discussed in the next chapters, the cycles should be
variation-free for the sake of validating the finite element model.

e In future works, it would be favorable to change the AP actuator similar to SI actuators by
3D-printing a mold. In that case, the AP actuator can be connected to the digital regulator
as well and its motion can be improved. (Currently, due to the difference the SI and AP
actuators in the material and therefore the working pressure range, the AP actuator is still
working in the on-off mode and not smoothly).

* Itwould be beneficial to attach the vacuum pump to a digital regulator as well in order to
change the amount of air suction smoothly.
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Figure 2.16: The plot of the phantom motion in two directions, obtained from MR-compatibility test.
(a) Experiment with short tubes and 2 bar main input pressure, (b) Experiment with long tubes and 2
bar main input pressure, and (c) Experiment with long tubes and 4 bar main input pressure.
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3 Sensors and experimental setup

In this chapter, the types of sensors for measuring surrogate signals and the motion of interest
that are mostly used in similar works are explained. Then, the chosen set of surrogates and
sensors for this project are described, as well as the experimental setup. Next, the experimental
data post-processing is explained. The chapter ends with a discussion about the finite element
model and its contribution to this project.

3.1 Motion of interest and surrogate signals in similar works

As mentioned in Chapter 1, the liver tumor motion will be estimated from the surrogate signals
in this work.

One of the requirements of the surrogate signals is that they should be highly correlated with
the motion of interest. Also, they should have an updating frequency higher than that of the
respiratory cycles in order to capture the breathing patterns [25, 29]. To have more clinically
applicable results, the surrogate signals should be measured at high updating frequencies to
approximate a real-time estimation model.

In Chapter 1, Table 1.1, a list of the types of surrogates that have been mostly used in the litera-
ture is given.

As it is observed in the table, one of the most common surrogates is spirometry, which is based
on the measurement of the respiration air volume. The surrogates obtained from spirometry
are highly correlated with the motion of interest; however, there is always air leakage which
produces inaccuracies [25].

Another type of surrogate signals that is very common and can be seen in Table 1.1 of Chapter
1 is the displacement of external markers placed on the abdomen or chest skin which can be
measured by different devices: by infrared emitters and receivers, by imaging modalities such
as MR, CT, or fluoroscopy, and by digital camera.

In one of the studies, optical markers were placed on patients abdomenal skin and their motion
was recorded by a digital camera. Simultaneously, MR images were taken from the patients
abdomen. After MR image segmentation and extracting the motion of interest from the images,
the markers displacements were correlated to the motion of interest. It is concluded from their
study that markers displacements have the advantage of having a high correlation with the
motion of interest [25].

In another study, an IMU (inertial measurement units) has been utilized to measure the angles
of deflection of a needle which was inserted into a liver phantom and the angles had a high
correlation with the point of interest motion [29].

The displacement of optical markers obtained from digital camera as well as IMU output sig-
nals are two types of commonly used surrogates which are easily available and highly correlated
with the internal organs motion as mentioned above. In Table 1.1 of Chapter 1, it is observable
that external markers are very common in similar works, while IMU has gained less attention.
One of the aims of this project is to compare the commonly used surrogate signal (markers
displacement) with a less common one (IMU signals).

In this study, both optical markers and IMU are employed in order to make a comparison be-
tween the accuracy of the models and determine which surrogates result in a more accurate
motion estimation model. It is one of the goals of this project and is also mentioned in Section
1.5 of Chapter 1.

In Table 1.1 of Chapter 1, there is also a list of the mostly used sensors for measuring the motion
of interest in the literature. A number of most common techniques for measurement of the
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motion of interest are: electromagnetic (EM) tracker and imaging modalities such s MRI, CT,
and fluoroscopy.

One of the differences between imaging modalities and EM tracker is that the frequency of
obtaining the images is not high enough for real-time applications comparing to EM trackers,
meaning that the motion of interest cannot be estimated at a sufficiently high updating rate.
Also, EM tracker gives the exact position of the region of interest without the need for image
segmentation. There exists imaging modalities that capture the motion of the region of interest
in real-time such as ultrasound. However, ultrasound cannot always provide exact information
about the position of the region of interest and also it cannot pass through the bones. It means
that in some cases, ultrasound is not able to detect and track the objects.

3.2 Sensors and experimental setup

In this project, two different sensors have been used to measure surrogate signals: externals
markers with a digital camera, and an IMU (inertial measurement unit) attached to the hub
of a needle which is inserted in the phantom. Also, for measuring the liver tumor motion, an
electromagnetic sensor (EM tracker) has been implemented.

3.2.1 External markers and digital camera

In order to capture the displacements of all points of the abdomen skin, four markers have
been placed on the latex skin such that they have different SI and AP locations and cover the
complete width of the liver, as shown in Figure 3.1-(a).

A digital camera! with 30 fps recording frame rate has been used in the experiments of this
report, along with MATLAB Image Acquisition Toolbox. As it is presented in Figure 3.1-(b), the
latex skin motion which is in the plane SI-AP is recorded by the camera placed at a specific
distance from the plane of motion.

For converting the unit of the markers motion in the video from pixels to the real millimeters
unit, a calibrated paper is held in the plane of markers motion during the experiments by a
gripper, as shown in Figure 3.1-(b).

)

Figure 3.1: The external markers attached to the phantom along with the digital camera. (a) Four mark-
ers, named m, to my, laying on the liver, and (b) The setup of the digital camera and calibrated paper
which is held in the markers’ plane of motion, as well as the phantom coordinates system ML-SI-AP.

11 ogitech C920 PRO HD Webcam

M. (Maryam) Berijanian University of Twente



CHAPTER 3. SENSORS AND EXPERIMENTAL SETUP 29

3.2.2 Inertial measurement unit (IMU)

In this project, an IMU? was attached to the hub of a plastic needle, and the needle is inserted
into the liver phantom and latex skin as shown in Figure 3.2. This sensor has 9DOF: a triaxial 14-
bit accelerometer, a triaxial 16-bit gyroscope, and a triaxial geomagnetic sensor. More detailed
descriptions are given in [42]. It is small (of dimensions 5.2 x 3.8 x 1.1 mm?) and lightweight
enough for this project. Its output signals relevant to this work are linear accelerations, angular
rates, and absolute orientation expressed in Euler angles (or quaternions) at updating rate of
up to 100 Hz.

Figure 3.2: The IMU (at the top-right of the figure) is attached to a plastic needle which is inserted in the
latex skin and liver phantom.

The IMU is connected to the analogue pins of a micro-controller board?, and the board is pro-
grammed to collect the data via the IMU. The data are written to the serial ports of a computer,
and then they are logged and saved by another programming language software, named Pro-
cessing.

During the experiments, the deflection angles of the needle as well as its angular rates and
linear accelerations are measured by IMU in order to generate surrogate signals.

3.2.3 Electromagnetic (EM) tracker

4

The tumor motion is measured by an electromagnetic (EM) sensor”, inserted into the tumor

(the wired sensor in Figure 2.4 of Chapter 2).

The position data of the tumor in three directions is measured by the EM tracker at updating
rate of 40 Hz during each experiment, while at the same time, the IMU and digital camera are
measuring and recording surrogate signals.

3.2.4 Experimental setup and procedures

The experimental setup consists of: the improved final version of the phantom (described in
Chapter 2), the IMU attached to a needle, external markers, digital camera, calibrated paper,
and EM tracker as mentioned in the previous section.

The duration of the experiment was 100 s, with about 30 respiratory cycles. The amplitude and
frequency of the phantom motion is given in Section 2.1 of Chapter 2.

2BN0055, Bosch Sensortec, Germany
3Arduino UNO, Arduino, Italy
4NDI medical Aurora, 6DOF Reference, 25 mm Disc, Part Number: 610066, Northern Digital Inc., Canada
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3.3 Data post-processing

After the experiment, the data which were obtained from different devices were processed.
Different post-processing steps have been operated on the data and will be explained in this
section: image segmentation for obtaining the markers displacements, change of coordinates
systems for the IMU data, removing outliers, filtering and smoothing, and synchronization.

3.3.1 Image segmentation and markers tracking

A MATLAB script has been written using the idea given in MathWorks [47] for image segmenta-
tion based on color thresholds, in order to segment the markers and obtain their displacements
from the recorded video. The complete code is presented in Appendix B, and the steps are ex-
plained in this section. Also, the resulting images after each step are shown in Figure 3.3.

Figure 3.3: The steps of color segmentation for tracking the markers: (a) the original image before seg-
mentation, (b) the resulting image after segmentation based on color thresholds, (c) the result after
removing the small objects, (d) after closing the borders and filling the holes, (e) after putting back the
colors, and (f) the final segmented image along with the centers of all markers.
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First, the color high- and low-thresholds of the markers are defined, which are dependent on
each experiment conditions, such as the ambient light intensities, etc. For each experiment,
the color thresholds are changed manually by inspecting the RGB values of the pixels. Since

the markers are red, the red color thresholds are higher than green and blue.
( R

1 %$Color high- and low-thresholds
2 redThresholdLow = 160;

3 redThresholdHigh = 260;

4 greenThresholdLow = 20;

5 greenThresholdHigh = 140;

6 blueThresholdLow = 30;

7 blueThresholdHigh =140;

Then, the video is read frame by frame. Each frame is an image that is to be segmented as
shown in Figure 3.3-(a). For that, the RGB channels are defined:

1 video = VideoReader ('v.avi’); %Reading the recorded wvideo

2 n=1;

3

4 while hasFrame (video)

5 image = readFrame (video); %Reading the recorded video
frame by frame

6

7 redChannel = image(:, :, 1); %Defining the RGB channels

8 greenChannel = image(:, :, 2);

9 blueChannel = image(:, :, 3);

Next, the RGB masks are defined and the image is segmented based on the color thresholds:

(1 %RGB masks: color segmentation based on the thresholds ]
redMask = (redChannel >= redThresholdLow) & (redChannel
<= redThresholdHigh) ;
3 greenMask = (greenChannel >= greenThresholdLow) & (
greenChannel <= greenThresholdHigh);
4 blueMask = (blueChannel >= blueThresholdLow) & (

blueChannel <= blueThresholdHigh) ;

> O1

6 img =(redMask & greenMask & blueMask); %$The segmented

image
- J

The image that is obtained at this step is shown in Figure 3.3-(b). Then, the MATLAB function
bwareaopen is employed to remove the small objects. The resulting image after removing the
small objects is represented in Figure 3.3-(c).

1 smallestAcceptableArea = 500;
2 img=bwareaopen (img, smallestAcceptableArea); $%$Removing
the small objects

After that, with the help of imclose and imfill functions, the borders of the markers are
closed, and the holes are filled. The resulting image is shown in Figure 3.3-(d).

1 structuringElement = strel (’'disk’,1);
2 img = imclose (img, structuringElement); % Smooth the
borders
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3
4 img

= imfill (img, "holes’); % Fill in any holes

Next, an RGB image of the segmented markers is formed in order to put the colors back on the

image. The result is represented in Figure 3.3-(e).
e

1 Maskl = cast (img, class (redChannel));

2 maskedImageR = Maskl .x redChannel;

3 maskedImageG = Maskl .x greenChannel;

4 maskedImageB = Maskl .x blueChannel;

5

6 maskedRGBImage = cat (3, maskedImageR, maskedImagegG,
maskedImageB) ;

Then, the location of the center of each marker is derived (based on the number of pixels) using
regionprops command for each frame. The centers locations are saved in an array and are
shown in Figure 3.3-(f).

1 stats = regionprops(img,’centroid’); %Finding the center
of each marker

2 loc = cat(l, stats.Centroid);

3 mlx(n)=loc(l,1); mly(n)=loc(l,2);

4 m2x(n)=loc(2,1); m2y(n)=loc(2,2);

5 m3x(n)=loc(3,1); m3y(n)=loc(3,2);

6 mdx(n)=loc(4,1); mdy(n)=loc(4,2);

-

After that, the segmented image is saved. Also, the time stamps are stored in an array in order
to have the locations of the markers as a function of time.

imwrite (img, fullname)
n n+1;
end %$end of while loop

%$Save the segmented image

w N =

4
5 t=(1/Video.FrameRate) :
%$Saving the time stamps as a time array

(1/Video.FrameRate) :Video.Duration;

-

Finally, using the image of the calibrated paper, the number of pixels which are equivalent to
one millimeter are calculated. Then the obtained markers displacements are converted from
pixel scales to millimeters. Also, the markers motion are converted from the image’s X-Y co-
ordinates to the phantom SI-AP coordinates. Take notice of Figure 3.1-(b) for the phantom

coordinates system ML-SI-AP.
.

1 %% converting pixels to millimeter as well as converting
from image X-Y coordinates to phantom SI-AP coordinates

2 n=25/106.5; %Coefficient of conversion

3

4 ml_ST= mlx+xn; ml_AP= -mlys*n;

5 m2_STI= m2x+*n; m2_AP= -m2y*n;

6 m3_SI= m3x*n; m3_AP= -m3y#*n;

7 m4_STI= méx*n; mé4_AP= -méyx*n;
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3.3.2 Suggestions about image segmentation

The image segmentation code in the previous section has successfully worked in this project
and the displacements of the markers centers have been tracked well. However, a limitation
of this code is that it is sensitive to the ambient lights, since the light changes the RGB val-
ues. Therefore, for each experiment, the values of thresholds have been chosen separately and
manually.

In order to improve the image segmentation code and make it more robust to the ambient
changes, it is suggested to use HSV (hue, saturation, value) representation of the colored im-
ages instead of RGB. In this case, H (hue) is constant, because it corresponds to the color only.
However, S (saturation) and V (value) are variant and depend on the ambient conditions such
as the light. It is possible to write the segmentation code and separate the colors based on the
hue, instead of RGB channels and defining the thresholds. This way, the color segmentation
code will be more robust to the ambient changes. Also, it will not be necessary to change the
RGB thresholds manually for every time of experiment, and instead, the hue can be chosen
automatically.

3.3.3 Change of coordinates

The IMU measures the data with respect to an inertial coordinates system. It is necessary to
transform the data expression from the inertial coordinates to the phantom coordinates in or-
der to have a more comprehensible data.

Before the experiment, the null position of the IMU at which all Euler angles are zero is deter-
mined and recorded, which corresponds to the inertial coordinates.

After the experiment, the signals which are expressed in the inertial coordinates are converted
to the phantom ML-SI-AP coordinates, knowing the constant angles between the mentioned
two coordinates.

Note that markers displacements are converted to SI-AP coordinates as mentioned in the last
section. Also, the EM tracker’s output signals are expressed in an inertial coordinate parallel to
that of the phantom and is easily converted to the phantom coordinates.

3.3.4 Removing outliers

The outliers (if observed) of the experiment signals are removed using the MATLAB command
isoutlier.

3.3.5 Filtering and smoothing

Since all data contain a specific amount of noise, it is necessary to smooth the data by a low-
pass filter. For selection of the cut-off frequency of the low-pass filter, the breathing frequency
of the phantom should be taken into account to avoid filtering important information. It means
that the cut-off frequency should be high enough comparing to the respiration frequency.

Also, it should be noted that the amplitude of high-frequency oscillations should be small com-
paring to the main amplitude of motion; otherwise, smoothing the oscillations would reduce
the accuracy. In the experiment, the accuracy of the sensors was high enough so that the am-
plitudes of the high-frequency oscillations were very small comparing to the main motion.

3.3.6 Synchronization

Since the signals have been collected from different devices and computers, it is necessary to
perform data synchronization after the experiment. The synchronization has been performed
in two steps: aligning the starting and ending times of the signals and signals re-sampling to
obtain equal sample times.
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Figure 3.4: The final processed data from the experiment. (a) The tumor motion in SI and AP directions,
(b) the marker 1 motion in SI and AP directions, and (c) the deflection angles of the needle (shifted
through the vertical axis).

The start and ending points of the signals have been equalized by aligning the last peaks of the
signals. Note that during the experiment, all the sensors data logging were terminated in such
a way that the ending times of the signals do not differ more than one complete cycle. It means
that the last peak of all signals occurred at the same time.

Also, since the sampling rates of the sensors are different, a re-sampling has been performed
by interpolation in order to equalize the sampling time of the signals.

Figure 3.4 presents the final processed signals obtained from the sensors plotted against time.
Figures a, b, and c show respectively the signal of the tumor motion in SI and AP directions,
the first marker motion in SI and AP directions, and the angles of deflection of the needle with
respect to the phantom ML-SI-AP coordinates. Note that the motion plots of other markers are
similar to that of the marker 1 and are not repeated here.
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3.4 Finite element model

In the experiment, the geometrical properties such as the location of the markers, the location
of the liver in the setup, the location of the IMU needle in the liver, the location of the tumor in-
side the liver, etc. as well as other properties such as the input flow and vacuum pump pressure
were recorded for the sake of the finite element modeling.

The FE modeling has been performed by one of this project’s supervisors (Hamid Naghibi Bei-
dokhti M.Sc) with a FE analysis software (Abaqus FEA).

A view of the created FE model of the experimental setup is shown in Figure 3.5.
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Figure 3.5: A view of the created finite element model of the experimental setup.

The contribution of the FE model in this project is that it models the experimental setup and
makes it possible to repeat the experiment for different values of the constant parameters men-
tioned in the previous chapters. It means that, instead of repeating the experiment with differ-
ent values of parameters to obtain more data sets for training, the phantom motion and the
experiment is simulated by FEM, and more sets of data will be generated by the FE model for
different values of the parameters. Then, the effect of changing the parameters on the motion
as well as on the learning-based estimation accuracy will be analyzed.

The reason to choose FEM to generate more data sets instead of repeating the experiment is
mainly that it is not possible to change only one desired parameter while fixing accurately the
rest of the parameters. For example, it is not possible to repeat the experiment with a different
tumor size, while keeping the values of the latex tension force, the displacements, the sensors
positions, etc. exactly the same, meaning that the repeat-ability of the experiment is low.

3.5 Summary

In this chapter, it was discussed why external markers and IMU signals have been chosen as
surrogate signals, which will be used as the inputs of the learning algorithm.

Also, the experimental setup was shown as well as how the surrogates and the tumor motion
are measured.

Then, it was explained how the data obtained from the experiment are post-processed and put
together for the learning algorithms and motion estimation.
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Finally, it is argued how FEM helps to the flow of this project by generating more data sets for
different values of the concerned parameters in order to use then in learning algorithms and
analyze the effect of the parameters on the motion and on the estimation accuracy.
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4 Supervised-learning results from the experimental data

In this chapter, two data sets which have been obtained from two experiments (one with ran-
dom variations and the other without variations) are post-processed as mentioned in the pre-
vious chapter. Then, the data sets are analyzed in order to choose suitable learning algorithms.
Next, it is explained how the mathematical learning-based model for the respiratory motion
estimation is obtained using the chosen algorithms. Following that, the results of the motion
estimation are presented. This chapter ends with comparisons between the performances of
different algorithms as well as between the contributions of surrogate signals to the motion
estimation accuracy, which is the answer to one of the research questions in Chapter 1.

4.1 Experimental data

In this chapter, two experiments have been performed to generate the required input and out-
put data sets. One experiment was performed as described in the previous chapter (no random
behavior). The other experiment was the same, except that a random variation has been added
to the amplitudes of motion.

The random variations have been added by generating random numbers and adding them to
the output pressure of the digital regulator (for SI direction). The generated random numbers
are in the range +£10% of the input pressure. It means that, instead of having a deterministic
input pressure P, the input pressure in the second experiment was changing randomly in the
range [0.9P —1.1P] for SI direction.

Note that the random variations have been applied on SI direction only. The random numbers
have been generated in the phantom motion code and added by means of the digital regulator.
Since the AP actuator was not connected to any digital regulator, it was not possible to control
the output pressure in a random way for AP direction.

4.2 Selecting appropriate algorithms for the problem

In order to select the most appropriate models for the motion estimation in this project, the
experimental signals have been analyzed to find a correlation between the inputs and outputs.

For clarification, the inputs are: four external markers motion, each of them in two directions
SI and AP, three Euler angles (needle deflections), linear accelerations in three directions ML,
SI, and AP measured by IMU, and three angular rates which are the rates of needle deflection.
The outputs are the tumor motion in two directions SI and AP.

Figure 4.1 shows the relations between the tumor motion in SI direction and the input signals
measured in the first experiment for about 30 respiratory cycles. Figure 4.2 represents the same
plots for the second experiment (with random variations) for 7 respiratory cycles.

The plots (a) and (b) in both experiments (Figures 4.1 and 4.2) suggest that although a linear
fit can easily estimate the correlation between the markers motion and tumor SI motion, the
relations are not completely linear and a more complex model will improve the results. The
plots in (a) and (b) give the impression of two separate 2nd grder polynomials. In this project,
the inhalation and exhalation phases have been separated and two 2”4 order polynomials are
fit to the data.

In both cases, the plot (c) represents the correlation between the Euler angles (the needle de-
flection) and the tumor motion in SI direction, which is approximately a linear function. For
the data set with random variations, the relationship is less linear.

As shown in plots (d) and (e) of both cases, there is not a meaningful correlation between the
tumor displacement and the needle angular rates or the needle linear accelerations.

Robotics and Mechatronics M. (Maryam) Berijanian



38 Estimation of hepatic tumors respiratory motion using learning algorithms and surrogates

'
[$2}
T
]
4]

tumor SI motion (mm)
=)
':‘:\__M_‘
“::»\'«..:..
Ty
tumor SI motion {mm)
=

{ {
st | f | j }f / 151 !
M, M, |/ M, M,
20+t -20
_25 L L L L L _25 L I I
20 40 60 80 100 120 140 -90 -85 -80 -75 -70
(a) markers Sl motion (mm) (b) markers AP motion (mm)
0 F
— 5t . L o -
£ g .
E E '
c c
S -0} S0t
[=] =]
£ E
%] 7]
A5+
5 -156+ 5
£ E R
2 2
-20
-20
60 -40 -20 ) 20 40 60
(d) angular rates (deg/s)
0 [
E 5
E
c
S 101
o
£
D 45t
Q
=
2
=20+
-6 - -2 0 2 4

(e) linear accelerations (mlszj

Figure 4.1: The relations between the tumor motion in SI direction and all input signals for 30 respira-
tory cycles obtained from the first experiment (without random variations), when the input signals are:
(a) markers motion in SI direction, (b) markers motion in AP direction, (c) deflection angles of the nee-
dle, (d) angular rates of the needle deflection, and (e) the linear accelerations at the hub of the needle.
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Figure 4.2: The relations between the tumor motion in SI direction and all input signals for 30 respira-
tory cycles obtained from the second experiment (with random variations), when the input signals are:
(a) markers motion in SI direction, (b) markers motion in AP direction, (c) deflection angles of the nee-
dle, (d) angular rates of the needle deflection, and (e) the linear accelerations at the hub of the needle.
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Note that the plots of the tumor AP motion versus the input signals are similar to Figures 4.1
and the plots are not presented in the report to prevent from repetition.

The following important points are concluded in this section:

 Linear regression algorithms can be a good candidate for this project due to the simplicity
of the problem. However, 2" order polynomial regression along with a respiratory phase
parameter (to separate inhalation from exhalation) is expected to result in more accuracy.
It means that in the regression algorithm, the tumor motion should be expressed as a
214 grder function with respect to the markers motion, and at the same time, a linear
function with respect to the Euler angles.

* Among linear regression methods, ordinary multivariate regression has been chosen
along with the most common regularization methods ridge and lasso to compare the
results with the ordinary case. Shortly, the selected regression algorithms for this project
are:

ordinary multivariate linear regression,

ridge regression,

lasso regression,

and 2" order polynomial regression along with a respiratory phase parameter.

* The linear accelerations and angular rates do not have a meaningful correlation with the
tumor displacement, and as a result, they will not be employed as inputs (features) of the
regression algorithms.

4.3 Optimization and acquiring the models

As stated in the previous section, different linear and polynomial regression algorithms have
been employed in this project. More details about acquiring the models in MATLAB will follow.

4.3.1 Ordinary multivariate linear regression

In this method, which is the simplest one, the output signal is approximated by a linear function
of the surrogate signals, or:

n
V= Yest0) =) 0;xi, 4.1)
i=0

where y is a vector which is the tumor motion signal measured in the experiment, y.;; is a
vector of approximations of the output signal y, n is the number of features or measured input
signals, xp is a constant vector of ones, 6y is the bias term, x;, i = 1,2,...n are the features or
surrogates, each of which is a vector of measurements, and 8;, i = 1,2,...n are the resulting
weights of the features [52].

The goal is to find the parameters 6y, 0; such that the approximated output y,.,; has the least
deviation from the given output y, or equivalently, minimizing a pre-defined cost function.

Note that in this project, two regression models are obtained, one for the tumor motion in SI
direction, and the other for AP direction.

Among various methods, one of the most common methods of finding the unknown parame-
ters is the least square estimate, in which the cost function is the sum of the squared estimation
errors, or the norm of the estimation error vector:

1
J©) = — |y = yest @], 4.2)

where m is the number of measured samples or the number of elements in the vectors y and
Yest, and the unknown parameters are found for the minimum value of the cost function.
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One of the numerical methods to solve the problem and to converge to the optimal answer is
gradient descent [52].

In analytic methods, the solution of the least square estimate problem is
0=XTx)"1xTy, (4.3)

where 6 is a vector of all parameters 6y, 8;, and X is an m by (n + 1) matrix, the columns of
which are the features xy, x;.

In this project, the optimization has been done by MATLAB function mvregress.

4.3.2 Ridge regression and regularization analysis

Adding a regularization parameter helps to obtain a model with a higher ability of generaliza-
tion, meaning that the estimation accuracy will be higher for "unseen" input data. By adding a
regularization parameter, the estimation error for the training set increases, while it decreases
for the test set (which is "unseen" data). Regularization is favorable when the model is prone
to over-fitting, e.g. when the features (surrogate signals) are highly correlated. [52].

Ridge regression is one of the most common methods with regularization, and in MATLAB, it
can be implemented by ridge function. In this method, the cost function has an extra regu-
larization term compared to the ordinary regression cost function in Equation (4.2). The cost
function for ridge regression is [25]:

1 n
J©)=— |y~ Yes: ©) I?+%Y 62 (4.4)
i=1

The solution is similar to Equation (4.3), except that now, there is also a regularization term:
0=XTX+kD1xTy, (4.5)

where k is the regularization parameter [49].

When the regularization parameter k is small, the problem converges to an ordinary regression
problem, and the ability of the model to generalize and have a modified performance for un-
seen data decreases, and vice versa. When k is large, the regularization penalty becomes larger,
the training error increases, while the test error decreases [52].

In order to find the best value of the regularization parameter, it is necessary to perform a regu-
larization analysis. First, the training data set is split into the training and cross-validation sets.
Then, the regularization parameter k is changed over a specific interval, and the parameters of
the model are calculated based on the training set data for each value of k. Next, the estimation
error (or the cost function) is calculated for each value of k on the cross-validation set using the
calculated parameters for each k. Finally, the value of k at which the cross-validation error is
minimum is picked.

Figure 4.3 illustrates the regularization parameter analysis performed in this project. Figure 4.4
presents the same plots for the second experiment (with random variations).

The obtained best values of the regularization parameter k in this project for the SI and AP
estimation models are:
k51=7e—05, kAp=68—05, (4.6)

and for the second experiment (with random variations) the optimal regularization parameter
is:
ks[ =9e—-05. 4.7)
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Figure 4.3: Regularization parameter analysis for ridge regression in SI and AP directions for the first
experiment (without random variations). The errors are calculated on cross-validation set as well as

training set.
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Figure 4.4: Regularization parameter analysis for ridge regression in SI direction for the second exper-
iment (with random variations). The errors are calculated on cross-validation set as well as training

set.

4.3.3 Lasso regression and regularization analysis

Similar to ridge regression, lasso is a regression algorithm with regularization. The difference
between ridge and lasso algorithms is the regularization penalty in the cost function. While
the cost function of ridge algorithm is described as Equation (4.4), the cost function of lasso
regression is [25]:
n
J0) =~ ly=yest @ +2 Y 16:1. 4.8)
m i=1

The difference in the regularization penalty has created a major difference in the solution of
the optimization. Although the obtained parameters 8 in both regression algorithms are min-
imized, they can be exactly zero in lasso regression. In other words, lasso ignores a number of
features that are in-relevant or correlated with the other features.

Another difference between ridge and lasso algorithms is that lasso is computationally more
expensive, since there is not a closed-form solution for lasso [25] (similar to the one for ridge in

Equation (4.5)).
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A similar regularization analysis has been performed in order to select the best values of pa-
rameter A for the two regression models SI and AP directions, and is illustrated in Figure 4.5.
Figure 4.6 shows the same analyses for the second experiment (with random variations).
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Figure 4.5: Regularization parameter analysis for lasso regression in SI and AP directions for the first
experiment (without random variations). The errors are calculated on the cross-validation set.
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Figure 4.6: Regularization parameter analysis for lasso regression in SI direction for the second experi-
ment (with random variations). The errors are calculated on the cross-validation set.

In this project, the optimal A values in SI and AP directions have been:
/151 =0, /lAp =9e-07, (4.9)
and for the other experiment (with random variations) the optimal values are:

Asr=0. (4.10)

Note that in both cases, and in both algorithms ridge and lasso, the regularization parameters
are obtained to be close to zero, meaning that the model has has not been prone to over-fitting.

4.3.4 2" order polynomial regression along with a respiratory phase parameter

A quadratic fit can be found similar to the linear regression problem in Equation (4.1), if addi-
tional quadratic features are defined. In this context, the output estimation y,;; is still a linear
function of the unknown parameters, while it includes quadratic terms xl? Or X;X;.
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As mentioned in the previous sections, the correlation between the tumor motion and markers
motion is more close to a 2”4 order polynomial than a linear fit (but it was a linear correlation
for the Euler angles). For that, the inhalation and exhalation phases have been separated by
defining a phase parameter. The phase parameter has been defined based on the peaks and
valleys of the measured signals. Then, two quadratic polynomials have been fit separately to
the inhalation and exhalation data.

In this project, the quadratic estimations have been defined as:

n
Yinhale = Vinhale(@, B,Y) = Z aixi+ Bixi +yizi,
=0 (4.11)

n
N 2
Yexhale = yexhale(a,: .5/7 Y/) = Z a,ixl' + .B/ixi + Y;Zi;
i=0
where the features x; are formed from the markers motion signals, and z; are from the Euler an-
gles signals, because as mentioned before, the tumor motion is approximately a linear function
of the Euler angles and there is no need to add extra quadratic terms.

The parameters a, B, v, a’, f/, and y' are obtained by a multivariate linear regression. The
respiratory phase parameters are defined as:

ain =1, a.x =0 inhalation,
in ex : 4.12)
ain=0, a.x =1 exhalation.
The final motion estimation is obtained from the following equation:
V= Yest = Vinhale@in + Vexhale@ex- (4.13)

As it will be shown in the next section, the quadratic fit is more accurate than the linear regres-
sion results.

However, a dis-advantage of this method is that the obtained motion estimation has dis-
continuities at the peaks and valleys, where the model jumps from the inhalation to exhalation
and vice versa.

This model can improve by defining a more smooth respiratory phase parameter instead of
the step-wise parameter in Equation (4.12). In that case, the model will be more general and
not specific and separate for inhalation and exhalation. However, the accuracy will be lower
in the modified version, and it is a trade-off between the accuracy of the estimation and the
smoothness of the estimated signal.

Figure 4.7 shows the plot of estimated tumor motion as well as the measured motion versus
time (for the first experiment without random variations), and the dis-continuities are visible
in the plot at the peaks and valleys.

4.4 Motion estimation results and performances

In this section, the estimation results are compared between the mentioned regression meth-
ods and also between the two experiments (with and without random motion) using different
measures.

4.4.1 Estimation errors

Figure 4.8 shows a graphical comparison between the ordinary linear regression and polyno-
mial algorithms, which is the plots of estimated and real (measured) tumor motion in SI and
AP directions (for the first experiment without random variations).
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Figure 4.7: The estimation results from the 2" order polynomial regression for the first experiment
(without random variations).

In order to compare the algorithms numerically, the RMS (root mean squared) relative errors
of all algorithms have been calculated for the two experimental data sets.

The RMS absolute estimation errors are calculated from the relation

m
RMS absolute estimation error = RMS (eaps) = ||y — Yes:|| = (Vi = Yest;)% (4.14)
st

where y and y.s; are respectively the measured and estimated vector of the outputs (tumor
motion) as defined in Equations (4.1) and (4.13), m is the length of the output vectors, and y;
and y.s;, are the i-th element of the measured and estimated vectors, respectively.

Note that the relative errors are obtained by dividing the absolute error by the tumor motion
amplitude:

RMS (eaps)
tumor motion amplitude’

RMS relative estimation error = RMS (ey)) = (4.15)

Also note that the errors have been computed on the test set, separate from the training set.
It means that 80% of the data have been selected randomly for training the model, and the
rest 20% have been utilized to calculated the estimation errors. In lasso and ridge regression
models, the percentages have been 60%, 20%, and 20% for the training set, cross-validation set,

and test set, respectively. Also, all sets have been identical for all algorithms in order to have a
fair comparison.

Figure 4.9 illustrates the RMS relative estimation errors for all algorithms in the first experiment
(without random variations) as well as for the second experiment (with random variations).

From the plots, it can be interpreted that in both cases, the most accurate model is the polyno-
mial fit as mentioned before.

Also, the errors of different linear algorithms (ordinary, lasso, and ridge) are approximately
equal in both experiment cases. The reason is that the optimal regularization parameters in
ridge and lasso regression have been very small (Equations (4.9) and (4.6)) and the model con-
verged to the ordinary regression without regularization.

By comparing the results of the first and second experiments, the effect of adding random vari-
ations to the motion can be evaluated. For this purpose, the relative errors must be compared
(not absolute errors), since the amplitudes of motion in two experiments were not equal.
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Figure 4.8: (a) and (c) the tumor motion estimation results with ordinary linear regression method in SI
and AP directions, (b) and (d) the estimation results with polynomial method.

Also, in order to make a fair comparison, the data from both experiments should have the same

number of cycles (same number of data points).
For the first experiment without random variations, the relative test set errors of ordinary lin-
ear method in SI and AP directions are respectively 1.37% and 2.87%, while with polynomial
method the errors are respectively 0.76% and 2.41%. It can be interpreted that the polynomial

method is a more accurate fit.
By comparing the plots (a) and (c) of Figure 4.9, it can be observed that the estimation errors
increase by adding random motion to the phantom. It was expected, because random varia-
tions make the experiment more similar to the real case and by introducing random behavior,

motion prediction becomes more difficult.
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Figure 4.9: The RMS relative estimation errors of different regression algorithms for the experimental
data. (a) and (b) are related to the first experiment (without random variations), and (c) is related to the
second experiment (with random motion).

4.4.2 Coefficient of determination (R?)

Another measure for evaluating the regression algorithms is the coefficient of determination
(R?), which is defined as [48]:

_SSR__ SSE
T SST ~ SST

m
SSR = Z (Vest; — ye_st,-)Z,
i=1

m
SSE=Y"(¥i - Yest)%,
i=1

R2

)

(4.16)

m
SST =Y (vi-yi)%
i=1

where y; and y.;, are respectively the i-th element of the measured and estimated vectors, m
is the length of the output vectors, and the bar sign stands for the average of the data.

According to the above definition, coefficient of determination (R?) is the proportion of the
variance in the outputs of the regression model that is predicted by the inputs of the model.
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Its value is between 0 and 1, which are often related to an extremely bad fit and a perfect fit,
respectively.

Figure 4.10 presents the plots of calculated R? values for different regression algorithms for
both experimental cases (with and without randomized motion). In all plots, the calculated R?
values are large and close to 1.
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Figure 4.10: The calculated values of coefficient of determination (R?) for different regression algo-
rithms for the experimental data. (a) and (b) are related to the first experiment (without random varia-
tions), and (c) is related to the second experiment (with random motion).

Note that coefficient of determination (R?) is NOT necessarily a measure of goodness-of-fit, but
it is a measure of to what extent the estimated and measured outputs are linearly correlated
(i.e. ¥ = ayes: + b). In this context, goodness-of-fit means how much the relation between the
measured and estimated outputs is close to the specific line y = y.s; (a=1, b=0) [11].

It means that, coefficient of determination (R?) cannot determine whether a regression model
is biased (or too simple) or not.

In Figure 4.10, the calculated R? value of the linear regression algorithm is as high as that of the
polynomial algorithm. It means that the coefficient of determination (R?) has not been able to
detect that the linear model is more biased (simpler) than the second order model.

As a result, the coefficient of determination (R?) is often used along with other measures of
evaluation.
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4.4.3 Standardized residuals plot

The plots of residuals help to investigate the distribution of the errors (or residuals) of the pre-
dicted model.

The residual plot is the plot of the residuals (errors) on the vertical axis vs. an independent
variable, or the inputs (features), or the estimated values, etc. on the horizontal axis.

The standardized residuals plot is similar to the regular residuals, except that the vertical axis is
scaled and the outliers can easily be detected from the plot.

In this project, the standardized residuals are calculated from the following relation:

standardized residual = SR =

Y= Vest
RMS (eqps)
m-n

(4.17)

where m is the length of the output vectors y and y,;, and n is the number of model parameters
including the intercept term. The denominator of the above formula represents the standard
deviation of the errors.

The standardized residual has been calculated for each test sample data and plotted vs. the

sample number, and is shown in Figure 4.11.
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Figure 4.11: The standardized residuals calculated for different cases in SI direction. (a) and (b) are the
plots for the first experimental data (without randomized motion), and (c) and (d) are the plots for the
second experimental data (with randomized motion).

Note that the residuals for AP direction are similar to the plots of Figure 4.11.
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From the plots (a) and (b), it can be observed that the errors are more concentrated close to zero
with a polynomial regression, which means that it is a more accurate fit. Also, the errors in plot
(c) are more scattered (farther from zero) than (a) and in (d) are more scattered (farther from
zero) than (b), because the data in (c) and (d) are from the second experiment with randomized
motion and the errors are larger.

4.4.4 Trainingtime

Another useful measure for the comparison of different regression algorithms is the training
time, or the time that it takes for the computer to find the optimal parameters of the regression
model.

The training time is important in real-time applications, since the data are measured, pro-
cessed, and at the same time, the parameters of the regression model are optimized. All of
the procedures should be done in a minimum amount of time, so that the delay becomes small
and therefore the results can be useful for real-time motion estimations. In off-line applica-
tions like this project, the regression model can be learned in advance and the importance of
the training time is much lower. However, in order to assess which algorithms can be used in
real-time applications, a comparison between the training time of different regression methods
are given in this section.

The training time depends on several factors, such as:
* the regression model complexity (or the number of parameters to be optimized),
e the number of training samples,
* the computation algorithm,
¢ the speed of the computer, which depends on the memory, processor, etc.

In this project, the training time of different regression algorithms have been calculated using
the MATLAB function tic, toc for the first set of experimental data (without randomized
motion) for the same training data set!.

Figure 4.12 presents the calculated training time for different algorithms.
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Figure 4.12: The calculated training time of different regression algorithms with the data from the first
experiment (without randomized motion).

Hnformation about the computer that was used: processor: Intel(R) Core(TM) i7 CPU Q 720 @ 1.60GHz 1.60
GHz, installed memory (RAM): 8 GB
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As shown in the figure, the training time of ridge and lasso algorithms are larger than ordinary
linear regression, because the time for finding the optimal regularization parameter has been
included, meaning that the algorithm has been repeated many times for different values of
the regularization parameter. Without including the cross-validation in the training time, the
difference between the training time of linear methods would have been smaller.

Also, the training time of lasso regression is greater than ridge, since it is computationally more
expensive (as mentioned in the previous sections) (the factor of computation algorithm).

Another interesting point is that the training time of the second-order polynomial method is
approximately twice that of the ordinary linear regression. The reason is that the second-order
polynomial method has more number of parameters to be optimized than the linear model
(the factor of model complexity).

Choosing the best algorithm is a trade-off between the accuracy of the result and the com-
plexity (or training time) of the model. Although the training time of polynomial regression is
larger than that of ordinary linear regression, it is still small. By noticing Figure 4.9 and the fact
that the polynomial method has the smallest estimation error while its training time is small
enough, it can be concluded that the polynomial method is an appropriate algorithm for this
project and possibly for real-time estimations.

4.4.5 Learning curves

The learning curve is a plot in which the change of errors due to the change in the number of
training samples is illustrated.

The horizontal axis of the learning curve is the number of training samples (or the size of the
training set). Each training set, the size of which is shown on the horizontal axis, is used to
train a separate regression model and the training error is shown as a point in the plot for the
specific size of the training set. Each of the obtained models is also used to calculate the test
error, using a fixed-size test set, and the test errors are also shown in the learning curve plot.

In the learning curve plots, the training error increases with the increase in the number of train-
ing samples. The reason is that for a larger training set, it is more difficult to fit a model to the
data which can generalize and estimate all point accurately, than a training set with a few data
points, in which a model can easily fit to the data well.

However, the trend of test error is opposite to the training error: the test error decreases as the
number of training samples increases. The reason is that by using more data points to train
the model, the obtained model has "seen" more training data and is more able to generalize.
Therefore, such model has smaller error on the "unseen" data.

Another property of the curves is that they converge to a specific error value. It means that the
change in the errors becomes very small for a large-enough training set and the curves become
approximately a horizontal line.

By means of the learning curve, it can be specified whether a model has bias (under-fit) or
variance (over-fit). In general, if both the training error and test error converge to a small value,
the model is fine. If both errors converge to approximately the same value, but that error value
is large, it means that the model is too simple or suffers from under-fit (bias). If there is a gap
between the training and test error, meaning that the test error is large while the training error is
small, it is an indication of that the model is over-fitting (the model is accurate for the training
set data but it cannot generalize well for the "unseen" data). Finally, if the curves have not
converge yet (the errors changes are still large), it means that the number of training samples
is too small and more data should be used for training [52].
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Figure 4.13 shows the learning curve for the regression models in SI and AP directions for ordi-
nary linear regression model as well as second-order polynomial. The data is from the second
experiment (with randomized motion).
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Figure 4.13: The learning curves of ordinary linear regression model in AP and SI directions in plots (a)
and (c), respectively. Similar plots are shown for second-order polynomial model in (b) and (d). The
data is from the second experiment (with randomized motion).

As it is observable in the plots, in all cases, the training and test errors have converged to an ap-
proximately constant value, meaning that the number of training samples has been sufficient.

In the plots of linear regression model, the training and test errors are larger than those of the
polynomial model, meaning that the linear model is less accurate for motion estimation.

Also, the gaps between the training and test errors are larger than those of the polynomial mod-
els. It means that the linear regression model has higher bias (under-fit) than the polynomial
model, because linear model has lower complexity and therefore is less appropriate and less
accurate to describe the input-output relation.

4.5 Comparison between the surrogate signals

In order to compare different features (surrogate signals) in terms of their contribution to the
overall estimation error and determine which surrogates are more effective in the tumor mo-
tion estimation, a feature selection analysis has been performed. For this purpose, various
models have been obtained for different choices of surrogates.
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Figure 4.14: The RMS relative errors of ordinary linear regression model for different choices of sur-
rogates, (a) and (b) for tumor SI and AP motion estimation, with the data from the first experiment
(without randomized motion), and (c) in SI direction with the data from the second experiment (with
randomized motion).
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Figure 4.14 presents the RMS of relative estimation errors for tumor motion is SI and AP direc-
tions, and the estimations are based on ordinary linear regression model. The plots (a) and (b)
are obtained from the first experimental data set (without randomized motion) and the plot (c)
is obtained from the second experiment (with randomized motion).

Figure 4.15 illustrates the same analysis with the same data sets, but with polynomial regression
model.

Note that the errors have been divided by the tumor motion amplitude in order to have rela-
tive errors and make it possible to compare the randomized motion experiment with the other
experimental data.

The following important points can be observed from the plots of Figures 4.14 and 4.15:

* By comparing the plot (c) with (a) in both figures, it can be seen that all the relative errors
are larger in case the motion includes random variations (as expected).

¢ The difference between the estimation errors of all four markers is small, since the mark-
ers have been placed closely and the markers motions are highly correlated.
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Figure 4.15: The RMS relative errors of second-order polynomial regression model for different choices
of surrogates, (a) and (b) for tumor SI and AP motion estimation, with the data from the first experiment
(without randomized motion), and (c) in SI direction with the data from the second experiment (with
randomized motion).
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e The combination of all markers has led to an error smaller than that of each separate
marker. Although the markers motions are correlated, they still have a small difference
and combination of the markers helps to increase the accuracy. It is because by having
multiple markers, the dynamics of the phantom can be better captured and described
comparing with when only one marker is present.

* By comparing the errors related to the markers and to the Euler angles, it can be observed
that there is no specific relation between them. In one case, the error of the Euler angles
is smaller than all markers; in another case, it is smaller than all markers but larger than
the combination of markers; and in another case, it is larger than all markers. Therefore,
between the Euler angles and the markers, there is no superiority and the answer to the
question of "which surrogate signal is more helpful?" depends on the experimental data
set, the regression algorithm, etc.

» The estimation error with all surrogate signals is the smallest error in all cases. It means
that augmenting all surrogates and adding the information about the angles to the mark-
ers motions helps to increase the accuracy.

The answer to the first research question: The level of correlation between the surrogates and
the tumor motion depends on the specific experimental data measured from each patient.
In this project and with the constructed phantom, there is no specific superiority when the
Euler angles and markers displacements are compared. However, the combination of all Euler
angles and markers displacements results in a more accurate model comparing with when
only the Euler angles or the markers are used (the combination of all surrogates is better than
each one of the surrogates).

4.6 Summary

In this chapter, the best learning algorithms for the tumor motion estimation have been chosen
by analyzing the relation between the input and output data obtained from the experiments.
The data sets have been measured in two experiments: one with and the other without random
motion variations.

Then, it is explained how to obtain and optimize different regression models using a specific
cost function and MATLAB commands.

Next, different regression algorithms have been employed to fit a correlation model between
the surrogate signals and tumor motion, and comparisons have been made between the per-
formances of the algorithms using different measures of evaluation.

Finally, different surrogate signals have been compared in order to determine which surrogates
have a higher correlation with the tumor motion and to answer one of the research questions
of this project that was posed in Chapter 1.
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5 Model generalization with FEM

This chapter is devoted to the simulation of the experimental setup and investigating the effects
of different parameters on the tumor motion estimation. First, a finite element model of the
complete experimental setup, including the liver and tumor phantom, the markers, and IMU
is created using one experimental data set and then validated with another data set. Then, the
simulation has been repeated for different values of the parameters. Also, surrogate signals and
tumor motion signals have been generated for different cases. The finite element modeling and
simulations have been performed by one of this project supervisors (Hamid Naghibi Beidokhti
M.Sc). Next, by a sensitivity analysis, the effect of the parameters on the tumor motion has
been investigated. This chapter ends with a discussion about the contribution of FEM to this
project, the effect of the parameters on the learning-based tumor motion estimation, and the
answers to the research questions in Chapter 1.

5.1 Creation and validation of FE model

As mentioned in Chapter 3, the complete experimental setup has been modeled with a finite
element analysis software! by Hamid Naghibi Beidokhti M.Sc, as shown in Figure 3.5. The
model includes all parts of the phantom such as the liver, tumor, actuators, etc. as well as the
markers and IMU (attached to a needle).

The purpose of simulating the experiments with FE modeling is to repeat the experiments for
different values of the parameters and generate more data sets (tumor motion and surrogate
signals). Then, the simulation data are used to investigate the effect of the change of the pa-
rameters on the tumor motion as well as on the learning-based model.

The reason of simulating the experiments by FEM instead of repeating the experiments is that
the experiments have low repeat-ability, meaning that it is not possible to keep all parameters
exactly the same while changing one parameter only. For example, it is impractical to avoid
changes such as the change of tension force in the latex parts (skin and diaphragm), since they
are removed and secured again for each experiment.

The model has been created and validated based on the experimental data. For this purpose,
an experiment without randomized motion has been performed in two different modes with
two different amplitudes of motion (normal and shallow breathing modes). The data from the
normal breathing mode has been used for creation of the model, and the other data set (shallow
breathing mode) for validation of the created model.

In both experiments, the air pressure of the AP actuator has been changing between 0 and 2
bar. The pressure of SI actuators has been between 0 and 0.5 bar in the normal breathing
experiment and between 0 and 0.3 bar in the shallow breathing experiment.

Figure 5.1 illustrates the plots of experimental data for creating the FE model, as well as the
simulated data from the FEM. In all plots, the simulated data agrees well with the experimental
data (as expected).

Note that only the plots of marker 1 are given in the figure, since the plots of other markers are
similar to marker 1.

As discussed above, another experimental data set with different motion amplitudes and dif-
ferent pressure of the actuators (or shallow breathing) has been used for validation of the FE
model. Therefore, the FEM has been simulated in shallow breathing mode as well for valida-
tion and comparison with the experimental data.

1 Abaqus FEA
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Figure 5.1: The plots of experimental data for creation of FE model along with the simulated data for
comparison.
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Figure 5.2 shows the plots for validation of FE model. The data from the shallow breathing
experiment as well as the relevant simulated data are plotted. Again, the simulated data agrees
well with the experimental data, meaning that the simulation is valid.

5.2 Datasampling frequency

One of the factors that affects the total simulation time of the FE model is the value of the sim-
ulation step time (or the updating rate or the sampling frequency of the simulation data). The
FE simulation time becomes very large for very small sampling frequencies, which are often
unnecessary.

In this project, the sampling frequency of the simulated data has been chosen as small as pos-
sible, in order to reduce the simulation time. However, there is a lower limit for the sampling
frequency, according to the Nyquist Theorem:

fs =2 fmax, (5.1)

where f; denotes the sampling frequency and f;,,4x indicates the highest frequency of the sys-
tem dynamics.

In order to capture the dynamics of the respiratory signals, the sampling frequency of the FE
simulation data must be at least twice the respiratory frequency.

In this project, the respiratory frequency is approximately 0.3 Hz. In order to satisfy Equation
(5.1), the FE sampling frequency is chosen to be 1 Hz.

finax=03Hz, f;=1Hz. (5.2)

Note that in addition to Equation (5.1), another constraint for the simulation is that the points
of peaks and valleys of the respiratory signals are always included in the simulations.

Also note that the simulated data have been interpolated to generate sufficient number of data
points. For this purpose, after that the data have been simulated with the sampling frequency
of 1 Hz, the data are then interpolated by cubic Hermite interpolation to generate more data
points with a high enough sampling frequency. However, it is required to check whether the
interpolated data is reliable.

Figure 5.3 illustrates the plots of an example case, which has been simulated with sampling
frequencies of 1 Hz and 10 Hz. The data with the sampling frequency of 1 Hz have been inter-
polated with frequency of 10 Hz, and is plotted as well.

By comparing the interpolated data with the simulated data with sampling frequency of 10 Hz,
it is concluded that the difference between the interpolated data and higher-frequency simu-
lated data is negligible.

Therefore, in this project, the simulations have been performed with sampling frequency of 1
Hz (in order to reduce the total simulation time) and then interpolated to generate sufficient
number of data points.

5.3 Sensitivity analysis

In order to observe the effect of changes of the parameters on the tumor motion, a sensitivity
analysis has been performed.

For that purpose, the FE simulation has been repeated for different cases in which the param-
eters have been changed.

In Chapter 1, it was mentioned that although in the existing literature, there are numerous stud-
ies about considering the effects of many parameters (such as the inter-cycle, inter-patient, and
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Figure 5.2: The plots of experimental data for validation of FE model along with the simulated data for
comparison.
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Figure 5.3: The plots of simulated data with high and low sampling frequencies (10 Hz and 1 Hz) along
with the interpolated data which is obtained from the low-frequency simulated data by interpolation.

inter-fractional variations, etc.) into account in the context of respiratory motion estimation,
still there exist a number of parameters that rather less studies so far have considered their
effects on respiratory motion estimation.

The parameters that have not been studied (widely) in the previous works and literature are but
not limited to:

the tumor size, the shape and deformations of the tumor, location of tumor inside the organ,
properties of the organ tissue (like density or elasticity) as well as the tumor tissue, the breath-
ing pattern (deep, normal, etc.), and the position of the sensors that measure the surrogates
and motion of interest.

Among the mentioned parameters, the parameters that have been considered in this project to
generate FEM data sets are:

¢ the tumor size,
¢ the tumor location inside the liver,
* and the liver elasticity.

The reason of not choosing the parameter shape and deformation of the tumor is that the mod-
eling and simulation of this case is complex and beyond the scope of this project. Also, the rest
of the parameters have not been picked since their effects would be less important or less dom-
inant comparing to the chosen parameters, or although their effects cannot be ignored (e.g. the
effects of the breathing pattern), the limited time scope of this project did not allow to simulate
them as well.

Table 5.1 presents different choices of parameters, resulting in 8 different cases. The FE model
has been simulated in these cases in order to compare the simulation data and evaluate the
effects of the parameters by means of a sensitivity analysis.

Note that the values of the parameters tumor size and liver elasticity have been chosen accord-
ing to the ranges in the literature, which were mentioned in Chapter 2, Section 2.3.

Also note that for the parameter tumor location inside the liver, four locations with different SI,
AP, and ML coordinates have been selected.

As it can be seen in Table 5.1, between each two cases, only one parameter differs and any
other parameters are equal. For example, in order to observe the effect of the tumor size on the
tumor motion amplitude, FE simulations have been performed (cases 1, 2, and 3) in which all
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Table 5.1: Different cases of parameters choices in which the FE model has been simulated for the sen-
sitivity analysis.

Tumor radius Liver elasticity Tumor location in the liver

CaseNo. | 1cm |2cm |3cm | 8kPa | 16.5kPa | 40kPa | Loc. 1 | Loc. 2 | Loc. 3 | Loc. 4

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X X X

7 X X X

8 X X X

parameters, pressures, forces, etc. are equal, except that the tumor size is different between the
simulations. In this example, any change in the tumor motion amplitude can be attributed to
the change in tumor size.

Note that the FE simulated data for the sensitivity analysis exclude any randomness in the mo-
tion. The reason is that if the simulated motion was randomized, then it would not be possible
to identify which part of the change in the tumor motion was due to the change in parameters
and which part was due to the randomness of motion.

In this project, the sensitivity of tumor motion to the change of parameters is defined as:

. change of tumor motion amplitude
Sensitivity =

change of parameter
or: A
a
S=—, (5.3)
Ap
where a denotes the amplitude of tumor motion and p represents the value of a parameter.

In the next parts, the sensitivity of tumor motion to each of the parameters will be discussed.

5.3.1 Sensitivity of tumor motion to tumor location in the liver

By comparing the cases 1, 6, 7, and 8 in Table 5.1, it is observed that these cases can be used to
calculate the sensitivity of tumor motion amplitude to the tumor location in the liver.

The sensitivities are calculated based on Equation (5.3) from the simulated data.

The sensitivities of tumor motion amplitude in SI and AP direction to the tumor location in SI
direction are:
mm mm
Sg;=—2.1651e—4 [—] Sap =0.0018 [—] (5.4)
cm cm

The sensitivities to the tumor location in AP direction are:
mm mm
Sg; = —0.0015 [—] Sap=—1.7853¢—4 [—] (5.5)
cm cm
and the sensitivities to the tumor location in ML direction are:

mm mm
Ss; = 5.5304e — 4 [W] Sap = —2.7278¢—4 [%] (5.6)

Note that all sensitivities are approximately zero, meaning that in this project, the tumor mo-
tion amplitude is not dependent on the tumor location in the liver.
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Accordingto [23, 12, 14] in Table 1.2, the results are different in the real case and with the human
liver, the tumor motion depends on the tumor location. For example, the tumors which are

closer to the chest have smaller motion amplitudes, and the tumors closer to diaphragm have
larger motion amplitudes.

The reason why the tumor motion amplitude is sensitive to the tumor location in the real case
is that the tissues of the liver, tumor, diaphragm, etc. are all deform-able and thus, the motions
of different parts are not equal. However, it is not the case in this project. It means that the liver

in the simulations and in the phantom is more similar to a rigid body than a deform-able organ
and the motions of all points of the liver are approximately equal.

It is one of the limitations of the phantom and FE model that they were not able to mimic the
liver deformations sufficiently. It can be caused by insufficient force in the actuators, latex skin,

and diaphragm. Also, the tumor motion should have been smaller when it is closer to the latex
skin (similar to the chest in real case).

5.3.2 Sensitivity of tumor motion to tumor size

It is possible to observe the effect of tumor size on the tumor motion amplitude by comparing
the tumor motion data sets that are simulated in cases 1, 2, and 3 of Table 5.1.

Figure 5.4 illustrates the tumor motion plots in SI direction for different tumor sizes from case
1 and case 2. Note that the plots for tumor AP motion are similar.

effect of tumor size on tumor motion
T

T T
—tumor radius =2 cm

----- tumor radius =1 cm
0 7 n mn A

FY
[
i
\i

tumor Sl motion (mm)
=

2 4 6 8 10 12 14 16 18 20
time (s)
Figure 5.4: The simulated plots of tumor motion in SI direction for different tumor sizes (case 1 and case
2).

From the plot, it is observable that the tumor motion amplitude decreases by increasing the
tumor size.

From the FE simulation data, the average sensitivity of tumor motion in SI and AP directions to
the tumor radius calculated from Equation (5.3) are:

mm mm
Sg; = —1.5577 [—] Sap=—0.1287 [— . 5.7)
cm cm

Note that the sensitivities are negative, meaning that the tumor motion amplitude decreases
by the increase of tumor radius.

According to [14, 23, 12, 20] in Table 1.2, in human body, larger tumors have smaller motion
amplitudes and they reduce the liver motion as well. An explanation for this behavior can be
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that larger tumors have larger weights and inertia and thus, it is more difficult for the liver and
tissues to move the tumor, and they deform and change shape more than moving the tumor.

As mentioned in the previous part, the phantom and FE model have not been able to mimic
the liver deformations sufficiently and it moves more rigidly than having deformations (and it
could be caused by insufficient force in the actuators, latex skin, and diaphragm). However,
similar to the real case, the sensitivity of the tumor motion amplitude to the tumor size is nega-
tive and is not zero. The reason can be that when the tumor is larger, the total weight and inertia
of the liver and tumor is larger. Therefore, with the same amount of force (or air pressure), the
motion amplitude decreases slightly.

5.3.3 Sensitivity of tumor motion to liver elasticity

By comparing the simulation results of cases 1, 4, and 5 in Table 5.1 and using the Equation
(5.3), the sensitivities of tumor motion amplitudes in SI and AP directions to the liver elasticity
are calculated:
mm mm
Se; = 0.2073 [m] Sap = 0.0495 [ﬁ] (5.8)

The positive sign of the sensitivities suggests that the tumor motion amplitude increases by
having more liver elasticity (or more rigid liver). An explanation for this is as follows.

The tumor motion can be caused by two different sources: rigid body motion, and motion
due to liver deformations. As mentioned in the previous parts, the deformations of the liver
in the phantom and FE model are negligible, and the liver moves approximately rigidly (be-
cause of the insufficient force in the actuators, latex skin, and diaphragm). It means that the
first mentioned source has more contribution to the tumor motion in this project. Therefore,
with a higher liver elasticity (more rigid liver), the (rigid body) motion amplitude of the tumor
increases.

To the author’s knowledge, there is no study in the literature that describes the effect of liver
elasticity (which is different between the patients) on the tumor motion. Since the real case is
different with this project in having more liver deformations, it cannot be concluded whether
the sensitivity of tumor motion amplitude to the liver elasticity is positive, negative, or zero in
the real case.

5.3.4 Discussion

The sensitivity of the tumor motion amplitude to the parameters tumor size, liver elasticity, and
tumor location in the liver which was obtained in this project can be summarized as:

Ssize <0, Sioc =0, Sg>0. (5.9)

The answer to the second research question: The sensitivity of the tumor motion amplitude
to the tumor size is negative, similar to the literature. The sensitivity to tumor location in
the liver is negligible, while in the literature, the tumor location is an important factor. The
difference between the results in the literature and in this work is mainly because the liver in
real case has deformations, while in this project moves more like a rigid-body. It can be caused
by insufficient force in the actuators, latex skin, and diaphragm (or any other limitations of
the phantom). To the author’s knowledge, there is no information about the sensitivity to liver
elasticity in the literature. In this work, it has been obtained to be positive; however, it cannot
predict the sensitivity to elasticity in the real case, because the liver model and the real human
liver are different in having deformations. It can be concluded that the liver phantom and thus
the FE model can improve by adding deformation and shape changes to the liver motion.
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5.4 Generalization of the regression model

In Chapter 4, the data measured in the experiments have been used in regression models for
tumor motion estimation. In this chapter, the experiments have been simulated by FE model
and repeated for different values of parameters. Similar to the sensitivity analysis in which the
simulations have been performed in difference cases, the simulations have been repeated for
different values of parameters as shown in Table 5.1.

Note that in contrast to the sensitivity analysis, the simulations for this part of the project in-
clude random variations in order to make the data and therefore the resulting learning-based
model more realistic. The motion has been randomized by adding or subtracting a random
number to or from the motion amplitude, which can be maximum 10% of the motion ampli-
tude. It means that the motion amplitudes vary randomly in the range [0.9 — 1.1]d instead of a
fixed amplitude d.

The purpose of this section is to generalize the learning-based model so that it includes various
parameters which are different between the patients.

For this purpose, the features of the previous regression models in Chapter 4 which are the
measured surrogate signals are now including the new features (parameters). It means that, in
the generalized model, the features are the simulated surrogate signals as well as the parame-
ters: tumor size, tumor location in the liver, and liver elasticity. Note that each surrogate signal
is a vector of simulated values of length m, and each of the new features is a constant vector of
length m in each case. Then, all cases are augmented in order to create the generalized features,
output, and regression model.

Similar to Equation (4.1) in Chapter 4, the ordinary linear regression model can be written as:

n
Y& Yest0) =) 0ix; +aS+ PL+YE. (5.10)
i=0

Now, y (the tumor motion) is the augmented vector obtained from all simulation cases, y.s; is a
vector of approximations of the output signal y, n is the number of features or simulated input
signals, x( is a constant vector of ones, 8y is the bias term, x;, i = 1,2,...n are the augmented
vectors of the simulated features or surrogates from all cases, S, L, and E are respectively the
vectors of parameters: size, tumor location, and liver elasticity each of which is a vector aug-
mented from constant vectors from all cases, and 6;, i = 1,2,...n as well as a, §, and y are the
resulting weights of the regression model.

Before explaining the estimation results and the errors, the plots of the correlation between the
simulated input and output data are given in Figure 5.5. The simulated data are related to case
1 from Table 5.1.

By comparing the plots of Figure 5.5 with the plots of Figures 4.1 and 4.2 in Chapter 4 from the
experimental data, it can be observed that the non-linear relationship between the surrogates
and the output (tumor motion) and the "hysteresis"-like behavior exist more in the experi-
mental data than in the simulated data. The fact that the simulation data are more linearly
correlated than the experiments is one of the limitations of the FE model.

5.4.1 Linear regression model from the simulated data in all cases
The weights of the regression model in Equation (5.10) are obtained as explained in chapter 4.

Since the correlation between the simulated tumor motion (output) and some of the surrogates
(inputs) is very close to a linear relation (as shown in Figure 5.5), the estimation test errors
become very small, which is not realistic and not comparable with the experimental results.
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Figure 5.5: The plots of the relationship between some of the simulated input and output signals from
case 1 of Table 5.1.
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For the estimation of tumor motion in SI direction, the test error with the experimental data
with randomized motion with ordinary linear regression model in Chapter 4 was:

eresr = 1.9% with experimental data.

However, for the data from the simulation of the same experimental case, the estimation error
is:
erest = 0.0013% with simulated data,

and the estimation error for all simulated data together (augmentation of all simulation cases
in the generalized model) is:

erest = 0.0078% with all simulated data augmented.

As mentioned above, the estimation errors are very small and unrealistic due to the fact that
some of the input-output simulated data relations are linear. Therefore, the simulated features
that have a perfectly linear relation with the tumor motion have been ignored in this project.

The remaining surrogates that have been considered in the generalized regression model are:

 Surrogate signals for the motion estimation in SI direction: marker 1 motion in SI and AP
directions, the Euler angle in SI direction.

* Surrogate signals for the motion estimation in AP direction: the Euler angle in ML and SI
directions.

By ignoring the unrealistic features, the estimation error of the generalized model becomes
comparable to that of the experimental data model. For comparison, the errors are:

erest = 1.9% with experimental data,

erest = 5.2% with experimental data with ignored features, 5.11)
erest = 1.2% with simulated data with ignored features, '

erest = 2.2% with all simulated data augmented with ignored features.

Figure 5.6 shows the plots of the simulated tumor motion by FEM and estimated motion by
linear regression, from the augmented data (all simulation cases together). The plots suggest a
reasonable motion estimation and are comparable with Figure 4.8 in Chapter 4.

tumor motion estimation in Sl direction tumor motion estimation in AP direction

=—simulated motion from FEM
----- estimated motion from regression
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Figure 5.6: The plots of tumor motion simulated by FEM along with the estimated motion from the
regression model with all data augmented (generalized model)

From the errors listed in Equation (5.11), a number of conclusions can be made:
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* Like any other model, the FE model deviates from the experimental data. The main dif-
ference is in having non-linear relations between the surrogates and tumor motion. It
can improve by creating a new phantom in which the liver has deformations, as discussed
in the sensitivity analysis section.

* By generalizing the model, the estimation error increases. The estimation error from
the simulation data with different parameters (augmented from different cases) is 2.2%,
while the estimation error from only one simulation case (case 1) is 1.2%. It was expected,
since by generalizing the regression model, more training and test data sets are included
with more variations of the parameters. Therefore, the estimation error of the model with
all simulation cases with different parameters is larger than only one simulation case.

¢ In the previous point, although the error of the generalized model is larger than that of
only one case, the difference is small (about 1%). The reason why including the variety in
the parameters is not increasing the error to a great extent is that the sensitivities of the
tumor motion to the parameters are not large, as discussed in the previous sections.

¢ The estimation error from the experimental data is 5.2%, while the error from the same
simulated case is 1.2%. It was also expected, since the simulation model has less amount
of non-linearities and hysteresis comparing with the measured data.

5.4.2 Augmentation of the experimental data with FE simulated data of the same case

As mentioned before, one of the contributions of the FE model to this project is to increase
the number of data sets for different cases and parameters in order to generalize the regression
model. Also, one of the objectives of this project is to determine whether it is possible to extend
the experimental data set by FEM and to what extent the FE model is a good representation of
the experiments.

For this purpose, in this section, a comparison is made between the estimation error of the
experimental data alone, with the same experimental data augmented with the FE simulated
data. If the two errors are comparable, it means that the FEM has been successfully a good
representation of the phantom.

First, an ordinary linear regression model is estimated from the experimental data set with ran-
dom variations, similar to Chapter 4. Since some of the surrogates are ignored in the simulated
data, the same features are ignored in the experimental data in order to have a fair comparison.
In this case, the RMS test error of tumor motion estimation in SI direction is:

RMS(eexperiment) = 2.9 mm, or 8.3%. (5.12)

Then, the same data set from the experiment is augmented with the FEM simulated data set
(from the same case and same parameters). If the data sets are augmented such that 50% of
the data is from the experiment and the other 50% of the data is from the simulations, then the
RMS estimation error of the new augmented data set is:

RMS(eaugmented) = 2.01 mm, or 5.7% (5.13)

The two obtained errors are comparable, meaning that the FE model has been successful in
simulating, generating, and extending the experimental data set. However, there is a difference
in the errors suggesting that like any other model, there is still a difference between the FE
model and the experiments.

Note that in the real case and with the data from human body, the estimation errors are larger
due to the existence of more motion variations and non-linearities. According to [25], the rel-
ative motion estimation errors in SI direction with ordinary linear regression are in the range
8-10% from the data measured from 3 patients in 6 sessions.
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5.4.3 Discussion

In this section, the regression model for estimation of tumor motion has been generalized using
the simulated data from FE model. The following conclusions can be made based on the results
of this section:

* Like any other model, the FEM deviates from the experimental data. One of the limi-
tations of the FE model is that it was not able to represent the non-linear relationships
between the signals completely. Therefore, the relation between the inputs and output
has been more linear and the estimation errors were smaller and less realistic.

* By generalizing the regression model and including different parameters in different
cases, the estimation error increases as expected. However, the amount of the increase
of the error is not significant, since the sensitivity of the tumor motion to the change of
parameters is not large.

The answer to the last research question: By extending and augmenting the experimental
data with simulated data, the average motion estimation error decreases. It was expected,
since the simulated data includes less amount of non-linearities; therefore, it is less realistic.
However, the change in the error is not significant, meaning that the FE simulation has mod-
elled the experiments sufficiently well.

It is well-known that a model always deviates from the real system and cannot represent all
aspects of the system completely. The answer to the question of to what extent a model is a
good representation of the system depends on how much similarity is required in the specific
applications.

In this project, a respiratory motion phantom has been created based on the real human body
motion (an experimental model). Then, the phantom has been modeled by finite element
methods (a simulation model). In both modeling procedures, there exists a specific amount
of deviation, and the deviations can be observed by comparing the motion estimation errors.
The motion estimation error from the real human data is larger than that of the phantom ex-
perimental data, and it is larger in the phantom data than the FEM simulated data. The reason
is that in each step of modeling, some aspects of the system are neglected or simplified.

It can be concluded that both phantom and FE model have successfully modelled the respira-
tory motion of the liver and tumor. However, they still need improvements in order to become
more realistic.

5.5 Summary

In this chapter, it was explained how the finite element model of the respiratory motion phan-
tom along with the sensors have been created and validated by means of two different experi-
mental data sets.

Then, with a sensitivity analysis, the effects of different parameters on the tumor motion am-
plitude have been investigated, which was the answer to one of the research questions of this
project. By comparing the sensitivity analysis results based on the simulated data with the
results from the literature, it was concluded that one of the main limitations of the FEM and
phantom is that they cannot mimic the deformations of the liver well.

After that, it was explained how to generalize the regression model for tumor motion estimation
using the simulated data. Next, the motion estimation errors based on the simulated data have
been compared with those of the experimental data in order to check whether the simulated
results are realistic.

Finally, by augmenting the experimental data with the simulated data (simulated from the
same case and same parameters), it was concluded that although the FE model has some limi-
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tations, it was able to extend the experimental data set with a reasonable similarity (the answer
to the last research question).
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6 Conclusion and recommendations

In this project, first, a previously designed and manufactured robotic phantom has been im-
proved to represent the respiratory motion of the liver and liver tumor. Then, experiments
have been performed to measure surrogate signals as well as the tumor motion. Next, different
regression algorithms have been developed to map the surrogates to the motion of interest.
Following that, a FE model of the experiment has been created to generate more data sets for
different values of constant parameters. Then, a sensitivity analysis has been performed in or-
der to understand the effect of the parameters on the tumor motion. Finally, it was evaluated
whether the estimation results from the FE model agree with the experimental results.

The following paragraphs are the answers to the research questions:

* With the developed experimental phantom, there is no superiority regarding the effect of
the surrogate signals on the estimation accuracy. It means that it is not possible to deter-
mine which surrogates have a higher correlation with the tumor motion, as it depends
on the data set and variations between the patients that cannot be predicted. However,
combination of all surrogates results in the most accurate case, meaning that the combi-
nation of the surrogates is the best choice of the surrogates.

* The effects of the parameters: tumor size, tumor location in the liver, and liver elastic-
ity on the tumor motion are partly similar to the literature. The difference between the
obtained results with the previous works is mainly due to the limitations of the phantom
and FEM, and the fact that they have not been able to mimic the liver deformations well.

* By generating more data sets by FEM and extending the experimental data, the resulting
motion estimation accuracy was comparable with that of the experimental data alone. It
means that the FE model is a sufficiently good representation of the experimental data.

Also, the following points are important to mention:

* By Generalizing the regression model with different parameters tumor size, tumor loca-
tion in the liver, and liver elasticity and using them as features of the regression model,
the motion estimation error increases. It is expected, since by adding more variations
and cases, the model becomes closer to a universal model.

» Like any other model, the respiratory motion phantom deviates from the real patients,
and the FEM deviates from the phantom. The differences between the real case (patients)
and the phantom data or the FE simulated data are inevitable and caused by the inherent
errors in modelling the patients with the phantom, as well as modelling the phantom
with FEM. For example, the non-linear relationship between the input and output signals
from the phantom data has not been represented completely in the FE data. Also, some
aspects of the phantom have been ignored or simplified for the sake of FEM creation,
such as the air leakage from the AP actuator, or a layer of oil between the liver and latex
skin. Another example is that the liver phantom deviates from the human livers by having
a rigid-body motion instead of having deformations. Also, some other sources of errors
are: the errors in the measurements during the experiments with phantom, the errors
created bu data interpolation, errors in validating the FEM, etc.

For future works, it is suggested to improve the phantom motion in AP direction as well (similar
to the SI direction) and make it more realistic by adding variations in its motion.

Another suggestion regarding the phantom is to create a respiratory motion phantom with
which the experiments are repeatable. Therefore, instead of FE modeling, the experiments can
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be repeated reliably and the deviations caused by subsequent modelings (phantom model and
then FE modeling) will decrease.

Also, the liver phantom should improve such that it mimics the liver deformations well, similar
to the real human liver. For example, the force in the actuators, skin latex, and the diaphragm
should be increased. Therefore, the problem of rigid-body motion of the liver that was dis-
cussed in the sensitivity analysis will be solved and the liver phantom will be more realistic.
Also, some non-linear relationships between the surrogates and tumor motion will be created
and the phantom will become more realistic.

Since the designed phantom is MR-compatible, it should be also used in an experimental setup
with MR imaging to make it more realistic and similar to the experiments in clinics and deal
with the challenges of MR imaging.

Additionally, efforts should be made in order to improve the algorithms and experiments to
perform the measurements and estimation in real-time, which would be necessary to make
this project applicable to real clinical procedures.

Regarding the image segmentation code and tracking the markers, some improvements can
be made in order to make the image segmentation more robust to the changes in the ambi-
ent light. As discussed in Chapter 3, the main idea is to use hue, saturation, and value (HSV)
coordinates for the image segmentation instead of using thresholds for RGB values. Since the
hue represents the color, it is invariant and does not depend on the ambient light. By segment-
ing the colors based on hue, the color segmentation will become more robust to the ambient
changes. Also, it is possible to choose the hue thresholds automatically and there is no need to
change them for each experiment.

Another improvement to this project can be analyzing the effect of different breathing modes
(deep, normal, shallow) on the tumor motion as well as on the estimation accuracy. It is also
possible to create a classifier before the motion estimation with regression in order to separate
the regression models of different breathing types.

In order to improve the mathematical estimation model for the real-time applications, one sug-
gestion is to create an adaptive model, meaning that the parameters of the model change with
time in order to model variations more accurately. Therefore, if the patient breaths differently,
the model can adapt to the new respiratory motion.

As a final suggestion, ultrasound can also be employed to measure additional surrogate signals
and compare with the surrogate signals used in this work.

M. (Maryam) Berijanian University of Twente



A Arduino code for the phantom motion with digital
regulator

1 int OutputPin = 11;

2 int solenoidPin = 13; //This is the output pin on Arduino

3

4 enum States {StepForwardl, StepBackwardl, StepForward2,

StepBackward2, done};

5 States State;

6 int Read;

7

8 void setup ()

9 { pinMode (OutputPin, OUTPUT);

10 pinMode (solenoidPin, OUTPUT); //Sets the pin as output

11 }

12

13 void loop ()

14 {

15 Read = HIGH;

16 while (Read == HIGH) {

17 switch (State)

18 {

19 case StepForwardl:

20

21 digitalWrite (solenoidPin, HIGH); //Switch Solenoid
HIGH (right actuator is filling, the other two
are becoming empty)

22 for (int i1 = 0; 1 <= 20; i=1i+1) {

23 analogWrite (OutputPin, 1i);

24 delay (35); //increasing the pressure slowly

25 }

26 digitalWrite (solenoidPin, HIGH) ; //still the same
actuator is working

27 for (int i = 20; 1 <=100; i=1i+2) {

28 analogWrite (OutputPin, 1i);

29 delay(l); //increasing the pressure faster

30 }

31 State = StepBackwardl;

32 break;

33

34 case StepBackwardl:

35

36 digitalWrite (solenoidPin, HIGH); //still the same
actuator is working

37 for (int 1 = 100; i >= 0; i=i-1) { //decreasing

the pressure of incoming flow

38 analogWrite (OutputPin, 1i);

39 delay (10);

40 }
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41 State = StepForward?2;

42

43 break;

44

45 case StepForward2:

46

47 digitalWrite (solenoidPin, LOW); //Switch
Solenoid LOW (right actuator is becoming empty,
the other two are filling)

48 for (int a = 0; a <= 20; a=a+2) {

49 analogWrite (OutputPin, a);

50 delay (10); //increasing the pressure slowly

51 }

52 digitalWrite (solenoidPin, LOW);

53 for (int a =20; a <= 100; a=a+4) {

54 analogWrite (OutputPin, a);

55 delay(l); //increasing the pressure faster

56 }

57 State = StepBackward?2?;

58

59 break;

60

61 case StepBackward2:

62

63 digitalWrite (solenoidPin, LOW) ;

64 for (int a = 100; a >= 0; a=a-1) {

65 analogWrite (OutputPin, a);

66 delay (10); //decreasing the pressure of incoming

flow

67 }

68 State = StepForwardl;

69

70 break;

71

72 case done:

73 return;

74 break;

75

76 }

77 }

78 }
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B MATLAB script for image segmentation based on color
thresholds

= W N =

© 0 N O O

10

12

13
14
15
16
17
18
19

20

21
22
23
24
25
26
27
28

29

30

31
32

%% defining the constant parameters
%$The high and low color thresholds
redThresholdLow = 160;
redThresholdHigh = 260;
greenThresholdLow = 20;
greenThresholdHigh = 140;
blueThresholdLow = 30;
blueThresholdHigh =140;

smallestAcceptableArea = 500; S%For removing the small
objects from the segmented image

%% recording a segmented video from the original video

workingDir = tempname; %Directory path for saving the
output wvideo

mkdir (workingDir)

mkdir (workingDir,  images’)

vid = VideoReader ('v.avi’); %Reading the recorded video

1 =1;

while hasFrame (vid)

i = readFrame (vid); %Reading the recorded video frame
by frame
filename = [sprintf('%03d’,1) ’.Jpg’1; $Directory path
for saving the segmented images
fullname = fullfile(workingDir,’ images’, filename);

redBand = i(:, :, 1); %Defining the RGB bands
greenBand = i(:, :, 2);
blueBand = 1i(

$RGB masks: color segmentation based on the thresholds

redMask = (redBand >= redThresholdLow) & (redBand <=
redThresholdHigh) ;

greenMask = (greenBand >= greenThresholdLow) & (
greenBand <= greenThresholdHigh) ;

blueMask = (blueBand >= blueThresholdLow) & (blueBand

<= blueThresholdHigh) ;

img =(redMask & greenMask & blueMask); %The segmented
image

img=bwareaopen (img, smallestAcceptableArea); %Deleting
small objects
structuringElement = strel('disk’,1); % Smooth the
border
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37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55

57
58
59

60
61
62
63
64
65

66
67

68
69
70
71
72
73

img = imclose (img, structuringElement);
img = imfill (img, ’"holes’); % Fill in any holes
stats = regionprops(img,’centroid’); %Finding the
center of each marker
loc = cat (1, stats.Centroid);
mlx(l)=loc(1l,1); mly(l)=loc(l,2);
m2x (1)=loc(2,1); m2y(l)=loc(2,2);
m3x(l)=loc(3,1); m3y(l)=loc(3,2);
m4x (1)=loc(4,1); mdy(l)=loc(4,2);
imwrite (img, fullname) %Save the segmented image
1 = 1+1;
end
imageNames = dir (fullfile (workingDir,’ *.Jpg’ ) ) ;
imageNames = {imageNames.name}’;
outputVideo = VideoWriter (fullfile(workingDir,’ segmented.
avi’)); %Saving the segmented video
open (outputVideo)
for £ = 1l:length (imageNames)
img = imread(fullfile (workingDir,’ images’, imageNames{f
1))
writeVideo (outputVideo, img)
end

close (outputvVideo)

t=(1l/outputVideo.FrameRate) : (1/outputVideo.FrameRate) :
outputVideo.Duration; %Saving the time stamps as a time

array

%% code for converting pixels to millimeter as well as
converting from image X-Y coordinates to phantom SI-AP

coordinates
n=25/106.5; %Coefficient of conversion

ml_SI= mlxsn;

m2_SI= m2x*n; m2_AP= -m2y#*n;
m3_SI= m3x*n; m3_AP= -m3yx*n;
m4_SI= mdxx*n; m4_AP= -méy=*n;

ml_AP= -mlyx*n;
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