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Abstract

This bachelor thesis is an investigation into the optimal layer thickness and impedance
profile for a multilayer anti-reflection ultrasound lens, based on simulations using the trans-
fer matrix method. Simulation results show the biggest decrease in reflection for a dis-
cretised exponential impedance matching profile with layer thicknesses proportional to the
corresponding sound speeds. The model is validated through measurements with relatively
simple 3D-printed test structures. The comparison of simulation results to the measure-
ments suggests that the model is valid for the measurement ranges used. Based on the
characterisation results, it is not feasible to 3D-print an anti-reflection ultrasound lens with
the currently available printer and materials; therefore the validity of the model to such a
lens also has not been verified.
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List of Symbols

This page contains an overview of the symbols used in this work, their associated meanings,
and their units.

c speed of sound (m s−1)
E Young’s modulus (Pa)
f frequency (Hz)
G shear modulus (Pa)
I acoustic intensity (W m−2)
j imaginary unit
k wavenumber (rad m−1)
p sound pressure (Pa)
Q volumetric flow rate (m3 s−1)
Ra amplitude reflection coefficient
RI intensity reflection coefficient
Ta amplitude transmission coefficient
TI intensity transmission coefficient
v particle velocity (m s−2)
z specific acoustic impedance (Pa m−1 s or Rayl)
Z acoustic impedance (Pa m−3 s or Rayl m−2)

α attenuation coefficient (dB m−1 or m−1)
β phase constant (rad m−1)
γ propagation constant (m−1)
λ wavelength (m)
ν Poisson’s ratio
ρ density (kg m−3)
ω angular frequency (rad m−1)
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Chapter 1

Introduction

This report contains the documentation of a bachelor thesis. The thesis is an in-
vestigation into the optimisation of a multi material impedance matching struc-
ture, that can be used to reduce reflections of ultrasound waves at interfaces. In
the report, the relevant theory is set up, followed by a derivation of the model
and a selection of the simulation results. 3D printed test structures are used
in an underwater ultrasound measurement setup for characterisation and model
validation. The report ends with an overall discussion and conclusion.

1.1 Context

Ultrasound, which is sound at frequencies higher than 20 kHz, is widely used in many
applications to examine and modify objects. Example applications include fault detection,
heating in welding, and medical diagnosis. A mismatch in acoustic impedance at material
interfaces causes portions of the wave to be reflected back, which leads to energy inefficiency,
and less effective imaging and material modification. Repeated reflections at mismatched
interfaces can also extend ultrasonic pulse duration, which decreases axial resolution [1].

For example, at a tissue-air interface, over 99% of an ultrasonic wave is reflected. To avoid
this, gels or oils are used as couplants between the ultrasound transducer front face and
the tissue, thereby eliminating the presence of an air layer [2]. Ultrasonic probes typically
have a matching layer at the front face, with a thickness one quarter of the wavelength of
the frequency for which the transducer is designed. One way to tune the impedance of the
layer is by mixing high- and low-impedance polymers [3].

The development of piezoelectric materials in the highly electrostrictive ferroelectric re-
laxor family such as PMN-PT (lead magnesium niobate-lead titanate), which have wider
frequency bandwidths than previously used materials, makes it desirable to also develop
impedance matching structures with better spectral performance [4]. This bachelor thesis
examines the possibilities of stacking multiple 3D-printed layers for impedance matching,
and improving matching over a range of frequencies.
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1.2 Related work

There are several works investigating the use of layered impedance matching structures.
One example is by DeSilets et al., 1978 [5], in which an optimal two-layer impedance
matching structure has layer impedances as shown in equation 1.1. Here, zmi refers to
the ith matching layer’s impedance, from left to right within the matching structure. To
the left of this structure is zL, i.e. the impedance of a piezoelectric material, and zR
is the load medium impedance on the right, such as water or the human body. These
impedances are calculated from KLM (Krimholz-Leedom-Mattaei) equivalent circuit models
of the transducer. Similarly, Souquet et al., 1979 [6] use a Mason equivalent circuit to

calculate optimal impedance, which for one layer would be (2zLz
2
R)(

1
3
).

Some more recent works look into specific materials and manufacturing methods for such
impedance matching structures. For example in the paper by Fang et al., 2018 [7], anodic
aluminium oxide (AAO) is proposed as an improved material for one of two matching
layers for a PZT-water coupling, using an epoxy for the other. The impedance values are
based on layer impedances of equation 1.1. Manh et al., 2014 [8] propose a method for
manufacturing impedance matching layers on a silicone wafer with MEMS technology, to
create layer impedances in accordance with DeSilets (equation 1.1).

zm1 = z
( 4
7
)

L z
( 3
7
)

R (1.1a)

zm2 = z
( 1
6
)

L z
( 5
6
)

R (1.1b)

A different approach is using a genetic algorithm to determine layer impedances for multi-
layer acoustic matching. Saffar et al., 2012 [9] use a Dijkstra genetic algorithm to determine
optimal impedance layers, and are able to find closely matching impedances in a database
of matching layer materials.

Another direction is the development of acoustic metamaterials and phononic crystals
for impedance matching. Bai et al., 2018 [10] use 3D printed metamaterial structures, but
their focus is on wavefront transformation. Li et al, 2017 [11] use a sub-wavelength cone
structured metamaterial to create an impedance gradient for matching.

Continuous impedance gradients have also been studied in optics for antireflection coat-
ings, of which a formative work is by Southwell, 1983 [12]. Recent continuations of this
work include investigations into optic broadband anti reflection coatings (BBAR), such as
by Matsuoka et al., 2018 [13].

1.3 Research goal

The goal of this work is to investigate the optimal layer impedance and thickness for an
impedance matching structure, that couples two materials at a range of frequencies. The
structure is to be 3D printed. The focus is on medical ultrasound applications. This involves
frequencies between 1-15 MHz and load impedances around 1.5 MRayl, but the results may
also apply to other ranges of frequencies and load impedances.
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1.4 Approach

The approach taken is to develop a model for multiple layers based on transfer matrices,
and investigate optimal scenarios. Measurements are carried out with 3D printed structures
in an underwater ultrasound. The results are used to characterise the materials, and to
compare to simulation results for model validation.
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Chapter 2

Theory

What follows in this section is an introduction to ultrasound and a description of
sound wave speeds and behaviour in different materials and at interfaces. This
lays the ground work for describing and analysing what happens to the energy
in a sound wave, in terms of transmission, reflection and absorption.

At a fundamental physical level, sound is the propagation of energy through matter as
a wave , i.e. pressure variations arise from particle vibrations . Sound requires a medium
to travel in. In fluids, sound waves travel as longitudinal waves of alternating compression
and rarefaction. In solids, sound can also propagate as a transverse wave, with alternating
regions of shear stress perpendicular to the direction of the wave. Solids also support other
modes of sound propagation, such as surface waves. [14]

2.1 Ultrasound and its applications

Ultrasound concerns sounds at frequencies higher than 20 kHz. Ultrasound technologies
have a wide range of industrial, scientific and medical uses. One way to categorise these
applications is into low and high power. Low-power applications are generally focused on
sensing and imaging, without altering the medium the waves pass through. Usually these
involve frequencies in megahertz or higher, and powers up to a watt. Conversely, high-power
applications, i.e. power ultrasonics, is used to alter chemical, physical or biological proper-
ties of objects, using up to thousands of watts and usually frequencies below 100 kHz. Figure
2.1 shows an overview of some of these applications and their corresponding frequencies.

High-power ultrasound may give rise to a number of significant nonlinear phenomena
such as shock waves and harmonics generation. One such effect used in several applications
is cavitation. This is when gas bubbles (cavities) form in a liquid during rarefaction of
the sound wave. The bubbles may form from dissolved gases or the vapour of the liquid
itself. When these bubbles expand, fragment or rupture, high localised temperatures and
stresses arise, sometimes along with the creation of free radicals. These conditions are useful
in sonochemistry and ultrasonic cleaning. Some other applications of power ultrasonics
include welding of metals and polymers, emulsification, noninvasive surgery, atomisation of
liquids, machining of brittle materials, and the formation and processing of nanomaterials.
[16, p. 5] [17] The noninvasive surgery application is also referred to as high intensity
focused ultrasound (HIFU) treatment. An example of this is using a high-power focused
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Figure 2.1: Frequency ranges of a number of ultrasound applications and acoustic phenom-
ena [15].

ultrasound beam to rapidly heat a tumour in the kidney to above 55◦C, while leaving the
healthy tissue in the path largely unaffected. [18]

Among the low-power applications are nondestructive testing of materials, such as flaw
detection in ceramics and metal sheets or pipes, and characterisation of materials, such
as grain size. Other applications include medical imaging, and surface acoustic waves in
electronics. One exception to the general trend of low-power imaging and detection is
sonar, in which sound waves for underwater detection are used at a wide range of powers.
SONAR stands for SOund Navigation And Ranging, and its specific uses include underwater
detection of fish and navigation in submarines. Sonar frequencies may range from 102 to
106 Hz. [16, pp. 2,7]

2.1.1 Ultrasound transducers

Piezoelectric transducers are commonly used to generate ultrasound. Piezoelectricity is an
effect in materials of a two-way relation between mechanical strain and electrical potential,
due to an asymmetry in crystal structure. Quartz was found in early use as a piezoelectric
material, but more recently common materials used include lead zirconate titanate (PZT)
and lithium niobate.

A piezoelectric transducer probe typically consists of a layer of piezoelectric material
with metal electrodes connected to two sides. The dimensions of the piezoelectric layer
depend partly on the desired resonant frequency. When an alternating voltage is applied to
these electrodes, the thickness of the layer varies with the electric field across it. Ultrasonic
transducers are excited by voltages in the range of 102 V. The voltage may be sinusoidal
(single-frequency) or a pulse containing various frequencies, and the energy conversion is
most efficient at the piezoelectric element’s resonant frequency. [19] [20]

As the piezoelectric effect works both ways, the same probe can also be used as a receiver,
i.e. sound waves can be measured as varying voltage. As illustrated in Figure 2.2, the
element can be damped with a backing material such as epoxy, to shorten the pulse width
and improve axial image resolution. The front face may also include an acoustic matching
layer to reduce reflections, as well as an acoustic lens to shape the beam. [16, pp. 175-177]
[21, pp. 119-165] [22, pp. 79-112]

Single piezoelectric elements can also be combined in transducers in a number of ways
to shape the beam. Sequenced arrays can be linear or curved, while phased arrays may be
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Figure 2.2: Basic structure of a piezoelectric ultrasonic transducer [16, p. 177].

linear or annular. The type of element arrangement and firing order affects the scan field
and image shape. [23, pp. 540-542]

When the ultrasound wave passes through the finite aperture, the beam spreads in the
medium beyond because of diffraction. By modelling the plane transducer as a cylindrical
piston, a diffraction correction integral can be calculated for reflection or transmission
spectra, incorporating focal length, sample distance and thickness, and transducer aperture
radius. [24] [25]

Besides piezoelectric transducers, additional types also exist for generating ultrasound.
One of these is the magnetostrictive transducer. Electrostriction is the slight displacement
of ions in dielectric materials in response to an external electric field, and magnetostriction is
the equivalent for magnetic materials in external magnetic fields. Other types of transducers
include capacitive, electromagnetic, pneumatic and mechanical. Certain properties vary
between these methods, such as higher displacement amplitude or velocity, or ability to
operate at extreme temperatures. This may be useful depending on the application. [16,
pp. 192-212] [22, pp. 119-148]

2.1.2 Medical ultrasound imaging

Medical ultrasound scanning is a form of non-invasive and real time imaging. At limited
power-irradiation time combinations, this can be done without physically adverse effects,
unlike with ionising radiation. Most human tissue has mechanical properties similar to a
fluid, so the shear waves through such materials are negligible. The frequencies used in
medical diagnoses generally lie between 1 MHz and 15 MHz. Higher frequencies are used
for better resolution, but as this is accompanied by more attenuation, it is also limited to
shallower depths. [22, pp.297-300]

Ultrasound images generally depend on one two principles: reflections at interfaces, and
Doppler shifts from moving materials. Pulse-echo times and amplitudes are based on re-
flections. An ultrasonic pulse is emitted into the body; the time elapsed until an echo is
received gives information about depth, while the amplitude of the echo gives information
about the acoustic properties along the path.

The images can be shown in a number of modes. The simplest of these is an A-scan,
which displays (amplified and rectified) receiver voltage against time. This is used in
ophthalmology and encephalography. Another mode is B-scan, which is most common for
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sonography. This is a two-dimensional representation of a more extended region, made
from probing several locations with sound beams. Echo times determine pixel location, and
their intensity determine the pixel brightness. The section of the image corresponds to a
plane parallel to the beam direction.

M-mode contains temporal information: a line along a single location showing depth,
and the other axis showing changes in these over time. This can track motion towards
and away from the transducer. Finally, Doppler modes and variations of these are also
common modes. Sound reflected on a moving medium undergoes a measurable frequency
shift which depends on magnitude and direction of the movement. This technique is often
used to measure blood-flow rates, or movements of certain organs such as the heart. [16,
pp. 593-596]

2.1.3 Image artifacts

Several assumptions are made when reconstructing an ultrasound image in B-mode, and
these contribute to image artifacts, i.e. misrepresentations in the image of what is scanned.
Examples of these inconsistencies are omitting structures, and showing them in the wrong
location, size or brightness. Some assumptions computing images are as follows. Sound
is assumed to travel in a straight path, at a constant speed and return from the main
beam after a single reflection. Additionally, acoustic energy is assumed to be attenuated
uniformly along the path and the transducer is assumed to be the only source present.
These assumptions can generally not be avoided, because the premise of imaging is to view
internal structures of which the specifics are unknown.

The reverberation type artifact arises from multiple echos, which happens in the presence
of two parallel, highly reflective surfaces. The echos are interpreted as multiple objects of
increasing distance, when they are in fact the same. A ring-down artifact is a line or series
of bands extending behind air bubbles, caused by resonant vibrations. Other artifacts occur
due to attenuation which is in fact non-uniform. When a beam passes through a highly
attenuating structure, the beam echos from parts further than this will also be weaker, and
this causes shadowing on the image.

Non-ideal beam shapes also cause artifacts. Reflections are assumed to come from the
main beam, with waves parallel to the main axis of the beam. However, side lobes and
grating lobes, which are off-axis beam lobes, cause structures, sometimes referred to as
ghosts, to wrongly appear as if originating from the main beam. Ghosting may also occur
due to the differing speeds of sound in different materials. When a beam is obliquely
incident, refraction occurs. The image, which assumes the wave path to be a straight line,
may represent structures of the wrong width, or introduce phantom duplicates. [26] [27]

2.2 Sound wave intensity and attenuation

Acoustic intensity is the power transmitted by a sound wave per unit area perpendicular
to the direction of wave propagation. It is defined as in equation 2.2, with particle velocity
~v and sound pressure p.

An acoustic particle is a conceptual particle large enough to encompass millions of
molecules, but small enough that its acoustic variables can be considered nearly homo-
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geneous. Particle velocity is the instantaneous velocity of acoustic particles; this means
that the average velocity of the millions of molecules in the aforementioned particle is con-
sidered. Sound pressure is the instantaneous difference between equilibrium pressure and
actual pressure, caused by the compressions and rarefactions due to the sound wave. [28]
The equation describes the instantaneous intensity, which varies with time.

~I(t) = p(t)~v(t) (2.1)

Hence, sound-intensity is a vector. However, in the remaining of the report we will use only
single direction and therefore use:

I(t) = p(t)v(t) (2.2)

where the direction is implied. For a sinusoidal waveform with sound pressure and particle
velocity in phase, the average intensity is described in equation 2.3, where the zero subscripts
denote amplitude.

I =
1

2
p0v0 actually ~I =

1

2
p0~v0 (2.3)

As a sound wave propagates through matter, it’s amplitude and therefore its intensity
decreases. In a uniform material, this can be described as an exponential decay with a
frequency-dependent amplitude attenuation coefficient α, shown in equation 2.4. I0 is the
original average intensity at the coordinate x = 0. The factor 2 appears in the equation
because intensity is proportional to the square of sound pressure (amplitude), which decays
exponentially, and x is the distance travelled by the wave in the medium. Equation 2.5
shows the equivalent formulation for amplitude, i.e. for sound pressure. [29, p. 350]

I(x) = I0e
−2α(f)x (2.4)

p(x) = p0e
−α(f)x (2.5)

Beam divergence, scattering and stress-cycle hysteresis contribute to attenuation. Beam
divergence is associated with spherical waves rather than plane waves. It occurs as the wave
spreads over a larger area, causing the amount of energy per unit area to decrease. In het-
erogeneous media, non-uniformities such as grain boundaries or air bubbles cause energy to
be deflected away from the beam, i.e. scatter. The effect is influenced by how the diameter
of the obstruction compares to the sound’s wavelength (and therefore, frequency). Addi-
tionally, energy is converted to other forms like heat in the stress cycles, due to hysteresis.
This happens once every temporal cycle, so the loss scales proportional to frequency. In
polymers, hysteresis may arise because of viscoelastic effects. The rise of scattering and
hysteresis attenuation effects with an increase of frequency explains why higher-frequency
sound beams of the same initial intensity would have a smaller penetrative depth in a given
material. [16, pp. 72-78] [30]

In polycrystalline materials with average grain diameter D̄, the attenuation coefficient
for a planar wave (no beam divergence) is expressed in equation 2.6. The first term with
coefficient B1, is related to absorption, while the second relates to scattering. The effect
of scattering depends on how the wavelength compares to the average grain diameter. In
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the Rayleigh regime, the wavelength is significantly larger than D̄, and the contribution
of scattering to the attenuation is proportional to f4, as shown in equation 2.7. For grain
diameters roughly equal to the wavelength, the stochastic scattering attenuation coefficient
is proportional to the square of the frequency. The final case is when wavelength is far
smaller than average grain diameter, known as geometric or diffusion scattering. This is
frequency-independent. The coefficients C1, C2 and C3 are material-specific constants. [22,
pp. 223-226] [31]

α = B1f + αs (2.6)

αs =


C1D̄

3f4 λ� D̄

C2D̄f
2 λ ' D̄

C3D̄
−1 λ� D̄

(2.7)

2.3 Sound velocity and mechanical material properties

In a homogeneous medium, sound velocity depends on physical properties of the medium
and of the wave. These are the density and elastic properties of the medium; and frequency,
amplitude and mode of the wave. The properties influence how quickly the displacement
of one particle may propagate to its neighbours. Solids can contain more modes of acoustic
waves than simply longitudinal because unlike fluids, they can sustain shear forces. Waves
may also have different modes depending on whether they travel in the bulk or on the
surface of a material. [16, p. 30]

The speeds of longitudinal and transverse waves in homogeneous, isotropic solids are
expressed by the physical relations in equations 2.8 and 2.9 respectively [21, p. 19]. Here,
E is the Young’s modulus, G the shear modulus and ν the Poisson’s ratio of the medium.

cl =

√
E

ρ

1− ν
(1 + ν)(1− 2ν)

(2.8)

ct =

√
E

ρ

1

2(1 + ν)
=

√
G

ρ
(2.9)

From equations 2.8 and 2.9, the ratio of longitudinal speed to transverse speed of a bulk
wave in a solid can be calculated to be that of equation 2.10, depending only on the Poisson’s
ratio. Solids generally have a Poisson’s ratio between 0 and 0.5, meaning that longitudinal
acoustic waves travel faster than their transverse counterparts in such materials. The ratio
of longitudinal to transverse speed goes to infinity for a Poisson’s ratio going to 0.5.

cl
ct

=

√
2(1− ν)

1− 2ν
(2.10)

In anisotropic media, the speed of acoustic wave propagation depends on direction, and
there is additional differentiation between polarisations of modes. In isotropic media, two
independent elastic constants such as Young’s modulus and Poisson’s ratio, along with
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density, are enough to calculate sound speed. Depending on the material, there may be up
to 21 independent elastic constants required to calculate the phase and group velocities of
sound waves in anisotropic solids. [32, p. 10]

2.3.1 Multi-frequency sound waves and dispersion

When a sound wave contains multiple frequencies, this might be an additional factor influ-
encing the speed of sound. In a dispersive medium, the speed of propagation depends on
frequency, in addition to the factors already discussed.

For a sound wave comprising multiple frequencies, it is necessary to distinguish between
group and phase velocity. Phase velocity is the rate of spatial displacement of a particular
phase, such as a pressure crest. Group velocity is kinematically defined as the velocity
of the envelope of the wave. Figure 2.3 shows a simple example of a signal with three
frequencies, with the equation y = 2 sin 5x+ 2 sin 5.5x+ sin 5.6x. The rate of displacement
of the envelope (yellow and orange lines) is the group velocity, while the rate of displacement
of the amplitude crest marked by the red cross would be the phase velocity.

Figure 2.3: Representation of sound wave containing several frequencies, along with signal
envelope.

The group and phase velocity are equal in non dispersive media, and unequal in dispersive
media, where phase velocity depends on wavenumber (and therefore frequency). If the
different frequency components of the wave travel with different velocities, then the overall
shape of the wave also changes. This depends on the relationship between temporal and
spatial frequencies. [33] The angular velocity ω and wavenumber k are related to frequency
and wavelength through the relations in equations 2.11 and 2.12.

ω = 2πf (2.11)

k =
2π

λ
(2.12)

A wave with angular velocity ω and wavenumber k has a phase velocity cp as defined in
equation 2.13.

cp =
ω

k
= fλ (2.13)
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For a wave comprising multiple frequencies within a narrow band, the amplitude of the
wave train is modulated, i.e. wave packets arise. The velocity of these packets cg is defined
by the group velocity in equation 2.14, where the derivative is evaluated at the central
wavenumber of the wave packet. [34]

cg =
∂ω

∂k
(2.14)

By using ω = kcp from equation 2.13 along with the product rule, equation 2.14 can be
rewritten to equation 2.15. In nondispersive media, the group velocity equals the phase
velocity and phase velocity is independent of frequency, while in dispersive media, group
velocity depends on phase velocity and an additional term dependent on how phase velocity
changes with the central wavenumber of the wave packet.

cg = cp + k
∂cp
∂k

(2.15)

In lossless media (which can be dispersive), group velocity equals the velocity at which
energy and information is propagated. In absorptive media, group velocity is still defined
as in equation 2.14, but cg becomes a complex quantity which is not equal to the velocity
of energy propagation [35]. For dissipative media, ω is differentiated with respect to the
(real) central wavenumber of the wave packet. However, this central wavenumber shifts as
the wave propagates, with the drift proportional to the imaginary part of ∂ω

∂k . [36]

In the model, the media shall be considered non dispersive and therefore the phase
velocity equal to the group velocity, since velocity is considered independent of frequency
in the materials used in this work for the relevant frequency ranges.

2.4 Time and frequency domain sound wave representations

The wave equation is a partial differential equation which describes the motion of waves, and
the one-dimensional version is expressed in equation 2.16 for sound pressure propagating
along the x dimension. In this case, c̃ represents the speed of sound, c. Any planar
disturbance propagating with a constant speed c can be described as a function f(x ±
ct). Using equation 2.13, it can be seen that this is equivalent to f(kx ± ωt). When the
propagation medium is lossless, k is the real wavenumber and the speed c is a real constant.
[37, Ch. 47]

∂2p

∂x2
− 1

c̃2
∂2p

∂t2
= 0 (2.16)

In case the propagation material has damping, the same wave equation applies, but then
c̃ is a complex number, sometimes referred to as the complex speed of sound. Here, a
function of f(γjx ± ωt) satisfies this modified wave equation, where γ is related to the
phase constant β and the attenuation coefficient α through equation 2.17. [38] The phase
constant β in this one-dimensional situation is simply the wavenumber k.

γ = α+ jβ (2.17)
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Equation 2.18 is a solution to the wave equation. In the chosen sign convention with ejωt

rather than e−jωt, it represents a right-travelling wave with amplitude A at x, t = 0 and a
left-travelling wave with amplitude B at x, t = 0, along the x coordinate. The amplitude
coefficients A and B may be complex. This wave has an angular frequency ω, and the x
subscript for the γ value denotes that this is material-dependent, and may change over the
coordinate.

p(x, t) = (Ae−γxx +Beγxx)ejωt (2.18)

To illuminate the physical interpretation of this wave representation, the real part of the
first term in equation 2.18 is a sinusoidal perturbation moving along positive x over increase
in time, and showing an exponential decrease in amplitude over x, as expressed in equation
2.19. The B term is the same, except that it travels in the direction of negative x over time.
Alternatively, a signal can also be written as the sum of f(γjx + ωt) and f(−γjx − ωt),
which also results in a real sinusoid as in equation 2.19.

Re
[
Ae−γxxejωt

]
= A cos(ωt− kx)e−αx (2.19)

Sound pressure and particle velocity are related through impedance, as expressed in
equation 2.24. For a non-viscous medium in which the shearing stresses are zero, Euler’s
inviscid equation of motion in one dimension (perpendicular to gravitational acceleration
such that it can be neglected) is expressed in equation 2.20. [39, p. 7].

∇p+ ρ
∂v

∂t
= 0 (2.20)

Here, ρ refers again to the equilibrium density of the medium rather than the instan-
taneous deviations caused by the sound waves. Note that in equation 2.20, velocity is a
three-dimensional vector. In the planar case being considered, there is only movement along
the x-axis and the equation can be rewritten to only the x-axis in equation 2.21.

∂p

∂x
+ ρ

∂vx
∂t

= 0 (2.21)

Using these relations, the particle velocity corresponding to sound pressure expressed in
equation 2.18 is given by equation 2.22. In case of attenuating materials, the complex speed
c̃ = jω

γ is used, and the impedance is complex [40].

v(x, t) =
1

zx
(Ae−γxx −Beγxx)ejωt (2.22)

Since reflection, transmission and attenuation are highly frequency-dependent, it is useful
to implement frequency analysis. The Fourier transform allows to transform from contin-
uous time domain to continuous frequency domain, and is defined in equation 2.23. [41]
Using this, the frequency representations of equations 2.22 and 2.18 are the same, except
that the ejωt term is dropped. For the discrete-time measured data, discrete Fourier
transforms can be used to analyse the frequency components of the data.

X(ω) =

∫ ∞
−∞

x(t)e−jωtdt (2.23)
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2.5 Sound waves at material interfaces

When a wave encounters an interface between different media, its propagation is altered
and the energy is redistributed in a manner that may involve phenomena such as refraction,
scattering and reflection. This depends on the type of wave, the orientation of approach to
the interface, and acoustic properties of the materials on either side of the boundary.

An important property to consider here is impedance, which relates how much force is
required to induce a certain velocity change . It is a complex quantity which describes
both magnitude and phase. Characteristic acoustic impedance is defined as in equation
2.24, where p̂ is sound pressure and v̂ is particle velocity. The sound pressure and particle
velocity may be described in complex notation by their Fourier transforms, or as phasors.
[39, pp. 41-48] Characteristic impedance can also be calculated from the speed of sound and
material density. When complex speed is used, this results in complex impedance, but in
the following measurements and simulations, the speed and impedance are taken to be real.
Note that the density here refers to the equilibrium density, rather than the instantaneous
local density caused by compressions and rarefactions of a sound wave. Using equations
2.3 and 2.24, average acoustic intensity can be rewritten as in equation 2.25 [29, p. 347],
which applies to pressure and sound velocities in phase. For complex impedances, they are
out of phase, and equation 2.2 is integrated over one period and divided by the period for
the average intensity over time.

z =
p̂

v̂
= ρc̃ (2.24)

I =
p20
2z0

(2.25)

Another consideration for behaviour at interfaces is the shape of the wavefronts and of
the boundary. The geometry determines, for instance, the angle of incidence and beam
divergence. At rough interfaces, diffuse reflection rather than specular reflection occurs:
the reflected wave scatters in numerous directions. Mathematical analyses often consider
waves to be planar or spherical, meaning the surfaces of equal phase are parallel planes or
concentric spheres respectively.

At a boundary, some energy is reflected back into the wave originating medium and some
is transmitted. The angle of reflection equals the angle of incidence. Snell’s law generalises
to acoustic waves, to determine the angle of refraction of waves at boundaries. Snell’s law
is shown in equation 2.26. Here, θ1 is the angle of incidence (in region 1), θ2 the angle of
transmittance (in region 2), and c1 and c2 represent the phase velocities of sound in the
two media respectively, see Figure 2.4. The θ values are defined as the angles between the
direction of wave propagation, and the normal to the boundary. [22, p. 40]

sin θ1
sin θ2

=
c1
c2

(2.26)

With the angles known, there are also relations to calculate the proportion of the wave
that is reflected, and that which is transmitted. The following applies to planar waves at
fluid-fluid boundaries, where pressure and velocity are continuous at the boundary. The
reflection coefficient, defined as the ratio of the reflected amplitude to the amplitude of
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Figure 2.4: Wave reflection and refraction at a material interface with oblique incidence.

the incident wave, is described in equation 2.27. The transmission coefficient, defined as
the ratio of the transmitted wave’s amplitude to that of the incident wave, is described in
equation 2.28. T and R depend on the impedance values of the boundary materials. These
coefficients also apply to relative pressure amplitudes of the wave.

Ra =
pr
pi

=
z2 cos θ1 − z1 cos θ2
z2 cos θ1 + z1 cos θ2

(2.27)

Ta =
pt
pi

=
2z2 cos θ1

z2 cos θ1 + z1 cos θ2
(2.28)

At boundaries involving a solid on at least one side of the boundary, there may also be
conversion of wave mode. For instance, an arriving longitudinal wave may be partially
converted to a shear wave upon transmission into a solid. However, mode conversion does
not occur at material boundaries for normally incident waves. [22, p. 43]

For a normally incident wave, the cosines drop out and the relations simplify to the fol-
lowing: R = z2−z1

z2+z1
and T = 2z2

z2+z1
. Reflection and transmission coefficients are also used to

describe relative intensities. In this case, using equation 2.25, the reflection and transmis-
sion coefficients RI and TI for normally incident waves become as shown in equations 2.29
and 2.30, noting that this applies to media with real impedances. The subscripts i, r and
t stand for incident, reflected and transmitted respectively. When considering intensities,
RI + TI = 1 at any single interface, which holds with the conservation of energy.

RI =
Ir
Ii

= |Ra|2 =

(
z2 − z1
z2 + z1

)2

(2.29)

TI =
It
Ii

= |Ta|2 ·
z2
z1

=
4z1z2

(z1 + z2)2
(2.30)
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2.5.1 Sound through multiple layered interfaces

When a sound wave passes through multiple successive interfaces, the behaviour compared
to a single interface is complicated because reflection and transmission can occur between
intermediate boundaries, potentially an infinite number of times. This scenario can be
analysed using the transfer matrix method: relations between two variables at either end
of a two-port system are described by a (complex-valued) matrix. This is also known as
the Thomson-Haskell method. These matrices can be multiplied to describe end-to-end
behaviour for several cascaded two-ports. This approach was developed for the electric and
magnetic fields of electromagnetic waves in optics and electronics, but has been adapted to
cover acoustic systems using pressure and particle velocity as state variables. [42] This is
described below.

Let the sound pressure and particle velocity be described as planar waves travelling
along x as expressed in equations 2.18 and 2.22. A non-slip boundary is assumed between
materials, which means that both particle velocity and sound pressure are continuous at an
interface. In that case, changes in particle velocity and sound pressure between two ends
(subscripts 1 and 2) of a homogeneous layer of infinite extent, with acoustic impedance zl
can be described by the matrix relation in equation 2.31. This layer is assumed to have
planar faces perpendicular to the wave. See Figure 2.5 for an illustration of what the matrix
describes: the transformation of the pressure and particle velocity between points x = x1
and x = x2 by the layer with thickness d.

Figure 2.5: Sketch of single layer described by transmission matrix.

[
p1
v1

]
=

[
A B
C D

][
p2
v2

]
=

[
cosh (γd) zl sinh (γd)
sinh (γd)

zl
cosh (γd)

][
p2
v2

]
(2.31)

For isotropic and homogeneous media, the matrix is always symmetric, such that D = A.
Note that p1 and v1 are to the left, i.e. to negative x of p2 and v2. If the positions were
reversed, the only difference in the matrix would be the signs of the sinh terms. This is
because the layer is a reciprocal two-port network: the determinant AD −BC = 1. This,
along with symmetry, causes the inverse matrix to only have sign differences in B and C.
[42] [43, pp. 53-57]

The matrix in equation 2.31 is for an attenuating medium. In lossless materials, the
attenuation coefficient α is zero, and the propagation constant becomes purely imaginary.
The hyperbolic trigonometric functions of equation 2.31 simplify to circular sin and cos
functions, whose argument becomes βd, i.e. kd. This can be derived using relations in
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equations 2.17 and A.1 (see Appendix A). The matrix in equation 2.32, shows this simpli-
fication, and it describes sound propagating through a lossless layer. [43, p. 55]

[
p1
v1

]
=

[
cos (kld) jzl sin (kld)
j
zl

sin (kld) cos (kld)

][
p2
v2

]
(2.32)

This method can be extended to describe multiple successive layers of infinite extent by
cascading the individual matrices as shown in equation 2.33. Here, Mi denotes the transfer
matrix of the ith layer. For N layers, the overall transfer matrix is the product of the N
successive transfer matrices.[

p0
v0

]
= M1

[
p1
v1

]
= M1M2 · · ·Mi · · ·MN

[
pN
vN

]
=

[
M11 M12

M21 M22

][
pN
vN

]
(2.33)

Using the overall transfer matrix, transfer and reflection coefficients can be found. One
way to do this is to assume an anechoic termination beyond the final layer, i.e. no reflected
wave in the final medium. The transmission and reflection coefficients describe all portions
of the wave transmitted and reflected from the various interfaces within, over time. The
frequency domain representations contain all of the time information for each frequency,
and therefore it is relevant to consider the frequency spectra of these coefficients.

The amplitude reflection and transmission coefficients of a planar wave incident on a lay-
ered structure are illustrated in Figure 2.6. Note that this is the frequency representation,
independent of time (see Section 2.4). On the left, the incident wave with amplitude p0 is
travelling in positive x direction. The reflected wave with amplitude reflection coefficient
R contains all the portions of the wave reflected at any of the multiple interfaces, at any
point of time. Similarly, the transmitted term on the right describes all portions of the
wave transmitted through the structure, after any combination of internal reflection and
transmission. In the right side, any left-travelling wave is considered negligible. The trans-
mission and reflection coefficients can be found from the transfer matrix values and the
impedances of the left and right (zL and zR) media as shown in equations 2.34 and 2.35
[44]. Here, L is the total distance between the layers. The reflections follow the same path
as the incident wave, but are shown shifted to distinguish them in the schematic.

Ra =
zRM11 +M12 − zLzRM21 − zLM22

zRM11 +M12 + zLzRM21 + zLM22
(2.34)

Ta =
2zRe

jkRL

zRM11 +M12 + zLzRM21 + zLM22
(2.35)

2.5.2 Optimal impedance profiles

Also in optics, antireflective coatings are studied. One type of these are gradient-index
(GRIN) coatings, in which the refractive index of the coating changes along its profile. The
refractive index is related to the speed of light in a material and is therefore comparable
to acoustic impedance. In the work by Gomez et al (1966) [45], exponential index profiles
in GRIN rods are explored. More recently, quintic (fifth-order polynomial) and Gaussian
profiles frequently occur in literature. One example is the work by Leem et al. (2013) [46],
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Figure 2.6: Schematic depiction of pressure waves through layered media with anechoic
termination.

in which amorphous germanium films are manufactured using glancing angle deposition to
create linear, quintic and Gaussian index profiles.

When materials of known impedance are mixed to create profiles of a property, the re-
sulting impedance of the mix needs to be determined. There exist some rules to predict
properties of mixes based on the properties of the constituent materials, such as Lichte-
necker’s logarithmic rule to predict electrical permittivity [47]. However, such a general
rule does not seem to be available for acoustic impedance. Additionally, in this work, the
proportions of materials used in the experimental mixed materials are unknown, so they
are to be determined experimentally regardless.

In acoustics, continuously changing impedance profiles can be found in horns, which
are also used to match impedances. Ultrasonic horns are typically cylindrical, tapered,
exponential or stepped in their shape [48]. In the work by Roes et al. (2013) [49], stepped
exponential horn shapes are explored for use in acoustic energy transfer applications.
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Chapter 3

Simulation

For simulation in MATLAB, the transfer matrix method was implemented in
increasing complexity, to individually investigate the effect of impedances, layer
thickness and damping, followed by combinations of the same in multiple inter-
mediate layers.

3.1 Single-layer simulations

First, a single, lossless layer between two different media was simulated. At a layer thick-
ness of λ

4 , there is maximum or minimum transmission depending on whether the layer
impedance lies inside or outside of the range of the left and right material impedances; the
quarter wavelength optimal thickness for impedance matching is an established result [50].
The behaviour of the system is also periodic in thickness over λ

2 , which corresponds to a
periodicity of π in the trigonometric parameter kd.

The optimal impedance for transmission is zc = (zLzR)
1
2 . This is derived in Appendix

C.2 for a quarter-wavelength lossless layer. Figure 3.1 shows the transmission and reflection
coefficients for varying layer impedance, including the optimum. Note that zL and zR
values here are interchangeable, and the result is similar for any zL 6= zR. When the layer
impedance is between zL and zR, the transmission is always higher than when there is no
layer. Conversely, when the layer impedance is outside of this range, transmission is always
lower.

The focus of this work shall be on the intensity transmission coefficient, as it relates
to the energy of the incident wave that is transmitted, while less importance is placed on
the phase and amplitude. However, a brief simulation and discussion of the amplitude
transmission and reflection coefficients of a single, lossless layer can be found in Appendix
D.2.

Next, the implications of damping are considered. In simulation, hyperbolic sines and
cosines are used with complex wave propagation parameters. A result of this for a single
layer with optimal layer impedance is shown in Figure 3.2, with left and right impedances
at 1.5 MRayl and 15 MRayl respectively. In this plot, the damping coefficient is 100 m−1

and the results are plotted for a layer thickness of up to 12 times the wavelength.

The figure verifies the feasibility of the model in a number of ways. At zero thickness,
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Figure 3.1: Simulated TI and RI values for various layer impedances, at layer thickness λ
4 .

Figure 3.2: Effect of damping on RI and TI for various thicknesses of a single layer, with
α = 60 m−1 and λ = 1× 10−3 m.

the sum of reflection and transmission coefficient equals 1, which is expected because the
surrounding medium is considered lossless. Both the reflection and transmission (intensity)
coefficients show oscillations which damp out with an increase in thickness. The envelope
of this damping is exponentially decaying.

With an increase in layer thickness, the transmission coefficient goes to zero because
all the energy is eventually absorbed in the attenuating layer. The reflection coefficient
goes to the value of reflection coefficient for a single interface between the left medium and
the medium of the layer, as calculated from equation 2.29 and plotted in yellow. Another
observation is that the sum of reflection and transmission does not decay as a smooth
exponential. Rather, it oscillates with transmission peaks corresponding to minima in sum
of transmission and reflection. This also makes sense because with more transmission,
more energy is also converted to other forms due to attenuation within the layer. The
main consequence from considering damping is that it is beneficial to choose smaller layer
thicknesses for attenuating materials if the objective is to maximise energy transmission.
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3.2 Multiple attenuating layers and orientations

A two-layer sample is simulated, to investigate the effect of reversing the orientation of the
sample on the transmission and reflection coefficients. In the case of a lossless layer, there is
no difference in the spectra of the transmission and reflection coefficients if the order of the
layers is reversed. However, in case of attenuating materials, this does make a difference as
illustrated in Figure 3.3.

Figure 3.3: Simulated transmission and reflection coefficients for a two-layered sample in
water, in forward and reverse orientation.

The simulation is done with parameters for a two-layered block of VeroWhite and Agilus
Black each 3.0 mm, surrounded by water on both sides (see Tables 4.3 and B.1). It is
simulated in the frequency range 1-3 MHz, to be able to compare to measurements. The
layers are simulated as lossy, with attenuation coefficients as linear functions of frequency:
α = −30 + 55× 10−6f for VeroWhite and α = 10 + 75× 10−6f for Agilus Black. The coef-
ficients Taw and Raw are the absolute values of the amplitude reflection and transmission
coefficients for the VeroWhite layer being closer to the transmitting probe, i.e. the leftmost
layer in Figure 2.6. Tab and Rab represent the reverse situation, with Agilus Black closer
to the transmitting transducer.

The simulation results show that the transmission coefficient is unaffected by this, but
the reflection coefficients show different behaviour. When the black side is towards the
transmitting probe, the reflection coefficient is lower. In fact, at higher frequencies, the
transmission coefficient goes to zero as noted for a single attenuating layer, but the reflection
coefficients go to the value of the single interface between water and the material closest to
the transmitting probe, as elaborated on in Section D.3 of the Appendix.
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3.3 Multiple layer simulations

3.3.1 Two layers and effect of kd

When two layers are placed between the left and right media, the behaviour depends on the
thickness of each layer compared to the wavelength within that layer (determined by the
speed of sound in that layer), as well as the layer impedance. Considering the lossless case,
optimal transmission (TI = 1) occurs when the impedance of any medium is the geometric
mean of the adjacent impedances, i.e. the square root of the product at certain periodic

layer thicknesses. In terms of the left and right impedances, it means that z1 = z
2
3
L · z

1
3
R and

z2 = z
1
3
L · z

2
3
R for the first and second layers respectively.

The other consideration is layer thickness. For any ith layer, the value kidi is equivalent
to the thickness-to-wavelength ratio, scaled by 2π, see equation 3.1. The wavelength is
determined by the speed of sound in the medium, and by scaling the thickness of each
individual layer to the same proportion of the wavelength (e.g. di = 1

4λi), the value of kidi
is the same for different layers. However, when this value is not the same between different
layers, the periodicity as well as the amplitude of the intensity transmission coefficient over
different layer thicknesses behaves differently. This is plotted in Figure 3.4, for optimal
layer impedances, and zL = 1.5 MRayl, zR = 45 MRayl.

Figure 3.4: Different ratios of k2d2 to k1d1 for two lossless layers of optimal impedance,
with both layer thicknesses scaled to λ1.

The legend shows the ratio of kd of the second layer to the first layer. Difference in kd
between layers may arise for example when thickness of both the layers is the same while
the speed of sound and therefore wavelength is different by the factor in the legend. The
x-axis shows the thickness of each layer, scaled by wavelength in the first layer. When kd
is the same for both layers, the periodicity is, like with a single layer, still λ

2 , but there
are two peaks with value 1 instead of a single peak when there was just one optimal layer.
For unequal kd, the periodicity is different and the peak values also drop below 1. Note
that even for a difference factor of 1.05 in kd, there are visible shifts in the peak locations
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and heights. As higher transmission is the objective, the case of matching kd values will be
considered more desirable than the case in which they differ between layers.

kidi = 2π

(
di
λi

)
(3.1)

Additionally, scaling in sample thickness di
λi

can also be alternatively interpreted as scaling

in normalised frequency f
f0

. Here, f0 depends on the fixed thickness d, where f0 = c
d , i.e.

the sample thickness equals the wavelength corresponding to the normalising frequency.
This means that thickness-scaling simulation results are equivalent to frequency-scaling
simulation results.

N layers

For a structure with n intermediate layers between the left and right materials, the optimal
impedance zi of the ith layer is given by the expression in equation 3.2. This still maintains
that any layer’s impedance is the geometric mean of the adjacent material impedances. In
other words, using 3.2, it can be verified that zi = (zi−1zi+1)

1
2 .

zi = z
(n+1−i

n+1
)

L z
( i
n+1

)

R (3.2)

The relation in equation 3.2 can also be expressed exponentially. That is, the optimal
layer impedances are on locations along an exponential fit between the two end media, with
the distribution of points depending on the number of layers. For n layers, the exponential
form is shown in equation 3.3. The function expresses the impedance of the (integer) layer
number x, and it is found by determining the exponential function which equals zL for
x = 0, and zR for x = n+ 1.

f(x) = zLe

(
1

n+1
ln

(
zR
zL

)
x

)
(3.3)

Figure 3.5 shows the optimal layer impedances for a transition from 1.5 MRayl to 45 MRayl
with 50 intermediate layers of impedances from equation 3.2, and the exponential fit satis-
fying equation 3.3.

The optimal result is when kd is the same value between different layers, and each layer
has this optimal impedance: the number of TI peaks in each period of d = λ

2 equals the
number of layers. Furthermore, for a larger number of peaks, the transmission coefficient
tends to remain closer to 1, except when the thickness values are a multiple of λ

2 . As there
are more peaks for more layers, the transmission coefficient stays closer to 1. These results
are shown in the plot of Figure 3.6. The legend shows the number of optimised layers in
the structure. This is for a left impedance of 1.5 MRayl and right of 45 MRayl, i.e. quite
comparable to the interface between water and steel. It shows that for 100 layers of the
optimal impedance, the intensity transmission is close to 1 for any thickness except for the
sudden ripple and dip around multiples of half-wavelength thickness. Without this layered
impedance matching structure, the intensity transmission coefficient from the left to the
right medium would be 0.125.
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Figure 3.5: Exponential fit of the layer impedance transition for 50 layers between 1.5 MRayl
and 45 MRayl.

All these simulations so far have been for a particular frequency (which has a particular
wavelength in each material). However, from equations 2.13 and 3.1, the x-axis values could
also be interpreted as f

f0
instead of diλi , where f0 is a frequency for which each layer thickness

equals the wavelength of the sound at that frequency. This means that this simulation
describes a lens with certain optimal impedance values, of which the layer thickness scales
with the speed of sound in that layer, and transmission could be near 1 for all frequencies
except close to multiples of f02 for a certain f0 which determines the absolute layer thickness
values.

There is not, of course, one single optimal impedance assignment for the layers, as this
depends on a number of other factors. For example, when there are only two layers and
a high but flat spectral response is required, the DeSilets impedances may be considered
optimal, as from equation 1.1. The plot in Figure 3.7 shows a comparison for a two-layered
structure between end impedances of 1.5 MRayl and 30 MRayl, with kd matched between
the layers. The plot shows intensity transmission coefficient for the DeSilets impedances,
and for those optimised with equation 3.2. While DeSilets has a more consistent spectral
performance, the exponential optimal impedances have two higher peaks (of total trans-
mission) in the same range. This might be better in two cases: when high transmission of
narrow frequency spectrum is required, or when it is possible to create a structure with this
impedance distribution but a larger number of layers.

3.3.2 Errors in optimal impedance values

It is practical to consider how the simulation is affected when the impedances of the layers
are not exactly the optimal value. In the simulation, noise was introduced by adding
Gaussian noise to each layer’s optimal impedance, with mean zero and standard deviation
a fixed percentage of that layer’s optimal impedance. Results for 5% and 10% are plotted
in Figure 3.8. Comparing this to the 20-layer case in Figure 3.6, it can be seen that 10%
especially has a large effect, with transmissions dipping below 0.5 where they were over
0.97 in the noiseless case.
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Figure 3.6: Simulations for different number of intermediate lossless layers with optimal
impedances, for different thickness-to-wavelength ratios.

3.4 Model discussion and conclusion

The model has a number of merits and limitations, which are discussed below. To restate
the main assumptions, the model applies to planar sound waves at normal incidence, pass-
ing through isotropic, homogeneous media. These media are also successive planar layers.
The model can account for signal frequencies, layer thickness, material impedances, atten-
uation varying with frequency and the ordering of layers. It can be used to calculate the
spectral reflection and transmission coefficients. These spectral reflection and transmission
coefficients can be used to calculate the time domain response to a known input, using
inverse Fourier transforms.

In practice, the geometry might be a good approximation in some cases, such as with
planar immersion transducers as the one used. However, the model itself does not account
for beam shaping, focusing and non-planar beams. This makes the model especially un-
suitable to near-field predictions. The model applies to normal incidence of the ultrasound
wave, but it can be extended to oblique incidence, which would also make the transmission
and reflection coefficients dependent on the angle of incidence. The model also assumes
planes of infinite extent. For samples significantly larger than the wavelength, this is a
reasonable assumption. There exist methods to incorporate finite structure sizes, which is
more applicable at lower frequencies [51], but this was not applied in this work.

Another limitation of this work is that only longitudinal waves were considered. At
normal incidence, this is a valid assumption. At oblique incidence, other modes of sound
waves are present within the solids, particularly shear waves. However, it is also possible
to extend the model to include other modes of transmission. In that case, the state vector
would have more states - one for each wave type in the medium (for both forward and
backward directions). [52]
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Figure 3.7: Simulations showing comparisons of intensity transmission coefficients for dif-
ferent optimal two-layered impedance matching.

One drawback of this method is that the numerical answers become less stable for
higher frequencies and/or larger layer thicknesses. This instability arises from the limited
accuracy of finite-arithmetic computers in evaluating the exponential terms. An alternative
is proposed by Dazel et al. (2013) [53], but this has not been looked into further in this
work.

3.5 Conclusions

From the simulation results, it is desirable that any antireflection structure is thin, as any
extra thickness contributes to attenuation. The other main conclusions from the simulations
are as follows. For optimal reductions in reflection of a planar wave, a layered transition
between two media needs to meet two criteria: the layer thicknesses need to be proportional
to the speed of sound within each layer, and the layer impedances need to follow a discretised
exponential distribution between the two end materials. With a larger number of layers, the
transmission coefficient has a flatter and wider optimal band in the frequency spectrum.

26



Figure 3.8: Plots of 20 layers with thicknesses scaled to layer wavelength, and noise intro-
duced as a percentage of the optimal layer impedance value. The top three images show
5% Gaussian noise in each impedance value, and the bottom three show 10%.
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Chapter 4

Measurements

This section concerning the experiments is structured as follows. First, the mea-
surement setups, equipment and materials are described, in addition to specifying
which data is measured and recorded. Then, the measurement data processing
methods are described to show how meaningful values are extracted from raw
data. Finally, the results of these processed measurement data are presented.
This is followed by a discussion on the measurements themselves, and the re-
sults in context of the whole work are discussed further on in Chapter 5.

4.1 Experimental setup and measurement data

4.1.1 3D Printer: Objet Eden260VS

The 3D printer used in this work is the Objet Eden260VS, from Stratasys Ltd. It uses
PolyJet technology: to build layers, the print head deposits drops of liquid photopolymer
on the build tray, which are then cured by UV light to polymerise them. In the printer
coordinate system, layers are added in the xy plane, along built up along the z-axis.

The x and y-axis resolution of the printer is 600 dpi (236 pixels per cm, ≈ 42 µm per dot)
and the z-axis resolution is 1600 dpi (630 pixels per cm, , ≈ 16 µm per dot). The accuracy
is 20 µm to 85 µm for features smaller than 50 mm and up to 200 µm for full model size.
[54]

The printed samples are dimensioned to suit the clamps for the water tank. These are
50.0 mm × 50.0 mm across, with thicknesses of 4.0, 6.0 or 10.0 mm. This last dimension is
the one along which ultrasound pulses are directed. Samples were printed to characterise
the pure and combined materials, and finally a set of layered samples to verify the model.

Given the complexity and cost of the printer, the samples themselves were printed by a
professional operator. The parts were designed in SolidWorks, and were sent as SLDPRT
and STL files along with material requirements to be printed.
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4.1.2 3D print materials

Two pure materials are available for use, along with several predetermined combinations
of these two. These are VeroWhite and Agilus30Black, which is also referred to as Agilus
Black. VeroWhite is a rigid white polymer, while Agilus Black is flexible and black. Twelve
combinations of the two are available, of which the exact proportions are not made known
by Stratasys. Other custom combinations would be demanding, as the material of every
individual voxel (3D pixel) needs to be programmed, and this was not followed up within
the scope of this work.

To investigate any significant anisotropy arising from the inherent asymmetry of 3D
printing, two samples of pure Agilus black were printed: one with the short side along the
z-axis of the printer and the other with the short side along the x-axis. The third sample
was one of pure VeroWhite, with the short side along the z-axis. In each of these cases, the
short side is the direction of measurement, along which the ultrasound wave is transmitted
during measurements, while the axes in this section refer to those of the printer.

A second set of samples was printed to characterise all available materials. At least one
sample of each material (two pure and twelve combinations) was printed, along with a
second sample of different thickness for selected materials. The final set of samples com-
prised a two-layer sample of 0.3 mm VeroWhite and Agilus Black each, and three samples
of five layers each, with the same combination of materials but with different individual
layer thicknesses.

4.1.3 Underwater ultrasound setup

Several parameters of the materials need to be be entered in the simulation. These are den-
sity, speed of sound, acoustic impedance, attenuation and layer thickness. Measurements
are made using an underwater ultrasound setup to determine speed of sound and attenua-
tion. There are two variations of this setup: a pulse-echo mode and a through-transmission
mode. Both of these are illustrated schematically in Figure 4.1, while photographs can be
seen in Appendix F.1.

The setup includes a tank filled with distilled water, with plugged slots on each of the four
sides for ultrasound probes to be inserted. The probes themselves are connected to a wave
pulser using coaxial cables, and the probe signals are measured by a digital oscilloscope.
A laptop is connected to the oscilloscope to view and log the measurements. In pulse-echo
mode as shown in Figure 4.1a, the same ultrasound transducer is used for both sending and
receiving pulses. In this case, the reflected pulses are measured. In through-transmission
mode as in Figure 4.1b, two different probes are used. The T probe transmits a pulse, and
the receiver probe measures the wave that passes through the sample. In this case, only
the receiver probe signal is read by the oscilloscope. Table 4.1 shows the specific equipment
used in this setup.

The square wave pulser was set to pulser voltage of 100 V and a pulse repeat frequency
of 100 Hz. It also has a broad frequency setting, which is set to match the probe used.
The probes were available for certain frequencies as two types: focused and unfocused.
Focused beams converge up to a focus point, after which they diverge, while unfocused
beams diverge more along the length of the beam. The focused probes used have a focal
length of about 5 cm, see Table 4.1. In the part names in table, F stands for focal length
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(a) Pulse-echo mode.

(b) Through-transmission mode.

Figure 4.1: Illustration of the pulse-echo measurement setup.

Table 4.1: An overview of the types and names of equipment used underwater ultrasound
setup.

square wave
pulser/receiver

Panametrics-NDT Model 5077PR

digital oscilloscope Link Instruments DSO 8500

ultrasound
immersion transducer

Panametrics-NDT V306 2.25 MHz/0.5”
F = 1.9” PTF

ultrasound
immersion transducer

Panametrics-NDT V306 2.25 MHz/0.5”

ultrasound
immersion transducer

Panametrics-NDT V309 5 MHz/0.5”
F = 2.00” PTF

and PTF stands for point target focus. This means the focus is a point rather than a line.
Focused and unfocused probes were used of the 2.25 MHz type, while only focused probes
were used for 5 MHz. In through-transmission measurements, two probes of the same type
were used for consistency. The probes are single-element longitudinal transducers, with a
quarter-wavelength layer for impedance matching to water. [55]

The samples were placed in stainless steel clamps, and were hung along a rail of which
the distance is marked (see Appendix F.1, Figure F.1). At normal incidence of ultrasonic
waves, the amplitude of reflections is maximised. For each measurement involving a sample,
the mode was first set to pulse-echo and the angle of the sample was adjusted carefully
by rotating the clamp, until the reflections had maximum amplitude. This ensures the
incidence is as close to normal as possible.

4.1.4 Measurement logging

Throughout the measurements, the oscilloscope was set to a sampling frequency of 500 MHz,
i.e. time intervals of 2 ns. The trigger voltage was adjusted with individual measurements
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to keep the measured voltage within the measurement range of the scope, as measured
amplitudes varied with distances and materials involved. Depending on the chosen memory
size, the number of measurements logged is 262026 or 1048458. Each measurement set
was exported as a CSV consisting of time and voltage values, to be processed further in
MATLAB.

The dimensions of samples were measured using Vernier calipers, but there were signif-
icant uncertainties in the dimensions due to the dependence of the measurement on the
manually applied force, especially for the more flexible materials. Instead, the dimensions
sent to the printer were taken to be correct, and used in further calculations. It would be
interesting to know the difference and variability to get an idea. For the densities, samples
were weighed with a scale of 3 decimal points resolution in grams.

4.2 Data processing

4.2.1 Speed of sound

The speed of sound can be determined from the time difference between reflections from the
front and back face of a sample, i.e. time-of-flight. This time difference is the time taken for
sound to travel twice the thickness of the sample. For sound speeds, samples of a single layer
were hung in the tank and pulse-echo measurements made. However, manually identifying
the start of successive reflections is unreliable, while matching the difference between peaks
is also not consistent because of the distortion in phase and waveform between reflections.
The frequency-dependent reflection coefficient of the sample contributes to the distortion
of the reflected waveform.

In the work by Cutard et al. (1993) [56], the use of analytic signals is found to be
more reliable to determine group velocities than conventional phase slope and simple auto
correlations methods. In this method, first the analytic signal is calculated for the relevant
portion of the voltage measurements. This portion is manually identified for each probe-
sample distance to include the first front and back face reflections. The Hilbert transform
of a function x(t) is defined in equation 4.1 [57]. The analytic signal comprises the original
signal as the real part, and the Hilbert transform as the imaginary as shown in equation 4.2,
where Va(t) is the analytic signal of the voltage, Vr(t) is the real voltage from measurement
and H

[
Vr(t)

]
is the Hilbert transform of the measured voltage. The absolute value of the

analytic signal is the envelope of the measured voltage.

H
[
x(t)

]
=

1

π

∫ ∞
−∞

x(τ)

t− τ
dτ (4.1)

Va(t) = Vr(t) + j ·H
[
Vr(t)

]
(4.2)

To then determine the group velocity, the autocorrelation is calculated for the absolute
value of the analytic signal, i.e. the voltage envelope. A peak in this autocorrelation
corresponds to the time difference between the successive reflections [56]. It is worth noting
that since the material is considered nondispersive in the model, it is sufficient to determine
group velocity and consider the phase velocities to be equal to this.
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4.2.2 Attenuation coefficient

Because the attenuation coefficient is highly frequency-dependent, a spectral method is
used to determine the attenuation from measurement. First, frequency domain notation as
introduced in Section 2.4 is established for the Fourier transforms of various measurements.
Let Fw(d) represent the frequency transfer function of a wave passing through water over
distance d, as determined by the propagation constant of water. This is shown in equation
4.3.

Fw(d) = e−(αw+jβw)d (4.3)

Similarly, for a sample with thickness d, attenuation coefficient α and phase constant β,
the frequency transfer function can be expressed as Fs(d) in equation 4.4.

Fs(d) = e−(α+jβ)d (4.4)

Figure 4.2 defines distances and signal paths for a set of measurements. Let Uw, Us,
U1 and U2 represent the Fourier transforms of the measured voltages of four different
measurements: transmission without a sample, transmission with sample, front reflection
from sample and back reflection from sample. The diagram shows the paths of Us, U1 and
U2. Uw would have the same path as Us, except that the sample is removed from the water
tank first.

Figure 4.2: Schematic showing distances and signal paths for selected ultrasound measure-
ments.

Table 4.2: Transfer functions for selected measurements, in frequency domain.

signal frequency representation

Uw(f) U0(f)Fw(D)

Us(f) U0(f)Fw(D − L)Fs(L) · TwsTsw
U1(f) U0(f)Fw(2D1) ·Rws
U2(f) U0(f)Fw(2D1)Fs(L) · (TwsRswTsw)

Table 4.2 shows the frequency transfer functions for the measurements Uw, Us, U1 and
U2, using the functions for water and the sample as defined in equations 4.3 and 4.4.
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Here, Tws, Tsw and Rws represent amplitude transmission and reflection coefficients for
the water-sample interface, as they describe the wave at one single interface and point of
time rather than the overall transmission and reflection coefficients, which describe the
wave behaviour across the whole structure for all successive reflection and transmission
combinations. [40] U0(f) represents the Fourier transform of the combined effect of the
transmit and receive probes, including their coupling lenses to the water.

In every section of the path, the wave is modified depending on the attenuation and phase
constant in the material, and the distance travelled in that material. If Ai represents the
amplitude of the corresponding Ui from equation 4.2, then the sample attenuation can be
determined as shown in equation 4.5. [58]

α =
1

L
ln

(
A1

A2
· As
Aw

)
(4.5)

In calculating attenuation coefficients, the relevant time sections of the measured voltage
are selected manually for each of the waves in equation 4.2. The voltages are padded with
zeros until they are all equal in length, so that any element wise operations on their Fourier
transforms are for matching frequencies.

The above method was found to result in significantly different attenuation coefficients for
different measurements with the same material. A possible reason for this is the spreading
of the ultrasound beam, i.e. the diffraction due to the wave passing through the aperture
of the probe opening. Therefore, the spectra of the various measurements are also divided
by the Lommel diffraction correction integral, using an aperture radius of 1.27 cm. [24] [25]

4.2.3 Reflection and transmission coefficients

The transmission and reflection coefficients are ultimately used to compare the predictions
of the model using parameters from the characterisation measurements, to investigate how
well the model describes the measurements in reality.

The transmission and reflection coefficients can be calculated by dividing transmission
and reflection spectra by the spectrum reference measurement without a sample. [59]
To illustrate this, Figure 4.3 shows a schematic depiction of the complex functions which
contribute to magnitude and phase changes of the ultrasound wave at each frequency. Figure
4.3a represents the setup with two probes facing each other in the tank, and a sample placed
midway between them. Figure 4.3b is the same setup, but without the sample.

P1 and P2 represent the functions of the transmitting and receiving probes respectively.
This includes the excitation pulse, the behaviour of the piezoelectric element and the cou-
pling to the water. In a transmission pulse measurement, P1(f) and P2(f) are two different
probes, so they may be different, while in a reflection pulse, the same probe is used for both
transmission and reflection, so P1 would equal P2.

Next, W (f, x) describes the effect of water. This includes any frequency-dependent
spreading of the ultrasound beam, reflections off the wall, dispersion in water, and at-
tenuation. This is also a function of x, i.e. the distance that the wave travels in this
section. In Figure 4.3b, this is the entire distance between the two probe faces. In case of
Figure 4.3a, this is the distance from the probe face to the surface of the sample. Assuming
that the sample is placed halfway between the probes, the effect of water on either side of
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(a) Underwater ultrasound system diagram with sample.

(b) Underwater ultrasound system diagram for reference without sample.

Figure 4.3: Schematic representations of the complex functions contributing to the spectrum
of the measured ultrasound signals.

the sample can be considered identical, because it is along an axis of symmetry of the water
tank.

Finally, S(f, x) describes the effect of the sample on the wave. When this includes
the spectrum of all transmitted or reflected signals, rather than for example only first
front or back reflections in the attenuation calculations, this function describes the overall
transmission or reflection coefficient. This in turn depends on frequency, sample thickness,
attenuation, dispersion and scattering effects.

By dividing the frequency spectrum of a measurement in setup of Figure 4.3a by that of
setup in Figure 4.3b, the frequency spectrum of the reflection or transmission coefficient can
be calculated, depending on which probe is selected to receive the signal. One difference
between the two setups is that a section of the path through water is different by a distance
of the sample thickness i.e. the reference pulse passes through slightly more water than the
pulse going through the sample. However, this effect is considered negligible, i.e. referring
to Figure 4.2, D ≈ 2D1.

4.3 Measurement results

4.3.1 Characterisation results

To calculate the speed of sound, reflection measurements were used. A plot of an example
of the measured reflected signal is shown in Figure 4.4. This is for a 10.0 mm thick sample
of VeroWhite suspended about 9 cm from the probe in pulse-echo mode, in the water tank.
The probe is used in the 2.25 MHz frequency range.

A number of observations can be made from this image. The first waveform starting
around 1.44× 10−4 s is a reflection from the front face of the block, while the next waveform
starting 1.52× 10−4 s is the portion of the wave reflected from the back face of the sample.
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Figure 4.4: First front and back reflection measured with a 10.0 mm VeroWhite sample at
2.25 MHz, along with the absolute value of the corresponding analytic signal.

It can be seen that the waveform is distorted between the two reflections, and that the
amplitude of the back reflection is also significantly smaller. This is due to frequency-
dependent reflection and attenuation.

The dotted line in the figure shows the absolute value of the analytic signal, calculated
as described in Section 4.2. Note that the peak of the analytic signal does not necessarily
correspond to the positive peak of the voltage measured. Rather, it describes the envelope
of the sinusoid which includes the negative peaks as well. The autocorrelation of this dotted
line results in a peak at the time-of-flight, from which the group velocity of the sound is
calculated.

Table 4.3 shows a summary of the characterisation results, i.e. the speed, density and
impedance for each material. In total, there are 14 materials available to be characterised.
This includes the two pure materials VeroWhite and Agilus Black, and 12 combinations
of various proportions of them (of which the proportions are not published by Stratasys).
When results for all of them are presented, they are ordered in increasing rigidity, from
Agilus Black to VeroWhite.

Figure 4.5a shows a plot the speeds calculated from the pulse-echo measurements as
described in Section 4.2.1. It can be seen that there is a general increase in the sound speed
with an increase in rigidity. However, there is an exception for the fourth material, which
corresponds to FLX9860-DM. This anomaly may be due to noise or mislabelled data, or
there may indeed be an exception to the trend. Due to restricted access to measurement
equipment this was not re-investigated after its discovery.

In the figure, the error bars are calculated from the standard deviations of the measure-
ments. However, due to time constraints, several of the speed values are based on only two
sets of measurements. Some of the materials have more repeats because there were two
blocks of the same material, but different thicknesses.

Using the speed of sound (group velocity) and the density calculated for each material,
the impedances were calculated. Figure 4.5b shows a plot of the resulting impedances, again
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Table 4.3: Overview of characterisation results.

Number Name
Speed
(m s−2)

Density
(kg m−3)

Impedance
(MRayl)

1 AgilusBlack 2063.2 1116.5 2.30

2 FLX9840-DM 2087.7 1120.2 2.34

3 FLX9850-DM 2110.6 1136.0 2.40

4 FLX9860-DM 2144.5 1140.4 2.45

5 FLX9870-DM 2116.5 1143.4 2.42

6 FLX9885-DM 2173.2 1138.9 2.48

7 FLX9895-DM 2232.2 1158.4 2.59

8 RGD8530-DM 2459.5 1166.1 2.87

9 RGD8525-DM 2482.4 1176.2 2.92

10 RGD8520-DM 2488.7 1175.9 2.93

11 RGD8515-DM 2499.5 1176.9 2.94

12 RGD8510-DM 2501.3 1175.8 2.94

13 RGD8505-DM 2497.9 1177.8 2.94

14 VeroWhite 2523.5 1186.0 2.99

with the materials ordered from flexible to rigid and the material numbers corresponding
to those in Table 4.3.

From Figure 4.5b, the shape is quite similar to the distribution of the speeds, as plotted
in 4.5a. The material impedances range from about 2.3× 106 Rayl to 3.0× 106 Rayl. There
is not much variation, especially in the RGD materials (numbers 8 to 13). Material 4 shows
a slight exception to the trend, but this is from the anomaly in the speed for the same
material . No extensive error analysis was performed due to the relatively small number of
measurements for each sample, and due to time constraints.
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(a) Plot of speed of sound calculated from measurements for each of the pure and combined
materials.

(b) Plot of speed of characteristic impedances calculated from speed and density for each of
the pure and combined materials.

Figure 4.5: Characterisation plots of speed and impedance for the different materials.

Next, it was attempted to calculate attenuation coefficients as described in Section 4.2.2,
but these were quite inconsistent for different measurements of the same material. Figure
4.6 shows an example of the mean α values from five measurements with the material
RGD8520-DM, along with error bars determined from the unbiased standard deviation.
The five measurements are:

1. 10.0 mm block along short dimension of the tank with focused 2.25 MHz probes

2. 6.0 mm block along short dimension of the tank with focused 2.25 MHz probes

3. 10.0 mm block along long dimension of the tank with focused 2.25 MHz probes

4. 6.0 mm block along long dimension of the tank with focused 2.25 MHz probes

5. 10.0 mm block along short dimension of the tank with unfocused 2.25 MHz probes

The relevant frequency range is the range for which the probe signals are stronger, approx-
imately from 1.4-3.0 MHz (see Figure 4.7). In this range, α is chosen to be approximated as
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Figure 4.6: Plot of speed of characteristic impedances calculated from speed and density
for each of the pure and combined materials.

a linear function of frequency. The five different measurements had unequal measurement
section lengths and therefore values for unequal frequencies, so these were interpolated at
150 common frequencies to calculate the mean and error bars.

However, the error margins are still too large to be used in the simulation. In simulation,
a difference in α slope or intercept of even 1 can make a significant difference in fit, while
the error margins from the calculation lie in the order of tens. Additionally, most of the
other materials have fewer relevant measurements to use, as a single attenuation calculation
requires front and back reflection measurements, as well as transmission with and without
the sample, which was constrained by time available.

4.3.2 Validation results

Reflection and transmission coefficients are calculated to compare to the model predictions
for the same parameters. These are calculated in the frequency domain, and use references
of transmission measurements without the sample. It was discovered that different probes
of the same type have significantly different frequency characteristics. Figure 4.7 illustrates
this.
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Figure 4.7: Spectra of the transmission measurement frequency spectra for identical trans-
mitting but different receiving probes, all of unfocused 2.25 MHz frequency range.

The figure shows the frequency spectrum of the measured transmitted pulse for identical
scenarios except that the receiving probe was replaced by another. All the probes used are
of the unfocused, 2.25 MHz-centred type. The probes are available in focused and unfocused
varieties, at different frequency ranges. However, these measurement results mean that two
probes of the same type still have different frequency spectra i.e. P1 as defined in Figure
4.3 is significantly different from P2. This means that dividing the spectrum of a measured
reflected pulse by a reference transmission pulse can induce significant error in the reflection
coefficient spectrum due to the difference in probe spectra.

Figure 4.8 shows an example of transmission coefficient calculations for VeroWhite. In
Figure 4.8a, the blue line represents the frequency spectrum of the reference pulse measured
without a sample, while the red line represents the spectrum of the pulse transmitted
through the 10 mm sample, measured with the same probes as the reference measurement.
The spectrum of the sample transmission signal divided by the reference spectrum results
in the transmission coefficient, which is plotted in Figure 4.8b.
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(a) Frequency spectra of the reference transmission pulse, and that of transmission with a
10 mm VeroWhite sample placed between the transducers.

(b) Transmission coefficient for VeroWhite calculated from the spectra in (a), along with
simulation results for comparison.

Figure 4.8: Transmission coefficient for 10 mm VeroWhite from measurement, along with
simulation for comparison, and the spectra that the coefficient is calculated from.

Figure 4.8b shows the solid line of the absolute value of the amplitude transmission
coefficient spectrum calculated from measurement. In the same plot is the predicted trans-
mission coefficient for a simulation with parameters for VeroWhite. The thickness was set
to 10.05 mm to better align the peaks in the plot, but this effect is minimal. The impedance
and speed values used for VeroWhite in the simulation are those in Table 4.3. Finally, the
attenuation coefficient was manually adjusted to a value of α = 15 + 31 × 10−6f . Using
these simulation parameters, the results are quite close to the coefficient calculated from
measurements. The match is closer for frequencies that are more strongly present in the
original signal, i.e. the simulation and measurement transmission coefficient match most
closely around 2 MHz, which is the peak of the reference spectrum, and the match is poorer
outside the 1.3-3.0 MHz range, because the signal is weaker outside this range.

Reflection and transmission coefficients were also calculated for two-layer sample measure-
ments, to compare them to the model. Figure 4.9 shows the reflection coefficient calculated
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from pulse-echo measurements of a two-layered sample of VeroWhite and Agilus Black of
3.0 mm each. Again, the best measurement range is from about 1.4-3.0 MHz because that is
the strongest frequency range of the probe signal. Ra w and Ra b represent the VeroWhite
and Agilus Black side, respectively, being closer to the transmitting probe. It can be seen
that the reflection coefficients are significantly different depending on the orientation. The
transmission coefficient is independent of orientation as predicted by the simulation, and a
graph of this can be found in Appendix F.3.

Figure 4.9: Reflection coefficient from measurement for two-layer sample of Agilus Black
and VeroWhite, with reversal of side facing the transmitting transducer.

4.4 Measurements discussion

The characterisation results show that the available 3D print materials are in the wrong
impedance range to be able to use in a coupling structure between, for example, PZT
and water (which for a single layer would need an impedance of 6.66 MRayl, and both
higher and lower values for more layers). Additionally, the individual values of the material
impedances are still not close to the values required for the discretised exponential transition
between VeroWhite and Agilus Black, especially because there are so few impedances mid-
way between the two extreme impedances (see Figure 4.5b). Therefore, it was also not
possible to make a layered structure with an optimal impedance transition from Agilus
Black to VeroWhite.

If the possibility of printing customised proportions of two materials becomes possible,
then this would improve the applicability of 3D printing for impedance matching lenses.
In that case, care must be taken that the two materials are evenly distributed three-
dimensionally, so that the resulting material may still be considered homogeneous. If not
homogeneous, the model would need to be modified to describe inhomogeneous materials.

One limitation is that for each material, only the real speed of sound is determined,
and it is taken to be independent of frequency within the relevant range. This neglects
any dispersive effects, and also any imaginary component in sound speed. There was an
attempt to calculate phase velocity for the materials based on the Fourier transform phases
from measurements, but this resulted in unrealistic (wrong order of magnitude) numbers
and was not looked into further due to time constraints.
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The biggest challenge in the measurement processing was to extract attenuation coeffi-
cient values to characterise the materials and use in simulation. The Lommel diffraction
integral made only small differences at some frequencies, of up to 10% of the α value, but
this still did not help obtain a reliable approximation of the attenuation from measurements.
The exact composition of the 3D print materials is unknown, but they are some type of
viscoelastic, photo polymeric solid. One possibility is that the attenuation coefficient is a
more complicated, multi-term higher-order function of frequency, and that this makes it
more difficult to determine and approximate with a linear function.

Given the lack of relevant material properties published by Stratasys, a lot of time was
spent characterising the materials, which may have otherwise been spent expanding the
model. Nevertheless, the materials were characterised, and measurements were taken to
compare with simulation results.

In all of the results from measurements, the values best agree with those from simula-
tion at the frequencies at which the signal is strongest, i.e. around 2.25 MHz. There are
probes available at higher frequencies, such as centred at 5 MHz. However, at these higher
frequencies, the signal-to-noise ratio is much lower due to higher attenuation, and in some
cases essential measurements like the back reflections were not discernible from noise, so
these higher frequency measurements were not used.

Another remark is that the model describes reflections from the various interfaces at the
sample, but it does not include any signals reflected off the walls of the water tanks. In
the reflection measurements, smaller oscillations occur at twice the time of the first set of
oscillations, due to portions of the first reflections reflecting off the glass walls of the water
tank. These subsequent reflections are neglected in any measurement processing because
they are not relevant to the model. Additionally, the effect of water absorption is considered
negligible. This assumption was verified by comparing measurements immediately after
submersion to those for a sample underwater for 30 minutes. Selected samples were also
weighed before and after, and no significant change was found.

The calculation of the transmission coefficient seemed effective, based on comparison of
measured results to simulated results. However, as indicated in Figure 4.7, the individual
probes have significantly different frequency characteristics, despite being of the same probe
type. This means that a reflection measurement involving twice the same probe P1 is
divided by a reference through-transmission measurement using two probes, P1 and P2.
This does not change the behaviour of the reflection coefficient oscillations and the locations
of peaks and troughs, but it does affect the magnitude and overall trend of the reflection
coefficient. For instance, in Figure 4.9, the reflection coefficients slope upward with increase
in frequency, while the model for a comparable setup predicts that there is no such increase
(in Figure 3.3).

It is possible to obtain a reference reflection measurement with twice the same probe in
a different setup, using a divided tank in which the second half may contain air or water.
When containing air, this would create a full reflection for reference. The sample can be
placed in the division, and when the other half is filled with water, this can be used for a
reflection measurement. [60, p. 50] However, this setup was not available in this particular
work.
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4.5 Conclusions

We have developed a measurement method and data processing scheme that allows us to
determine the acoustic impedance and speed of sound in the various materials that can
be printed by the Eden 260 3D printer. Our results show that the range of impedances is
2.30 to 2.99 MRayl. This range is too small and too low to fabricate impedance matching
structures between the ultrasound probe and water or tissue.
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Chapter 5

Overall discussion and conclusion

Using the transfer matrix method, a model has been developed that can be used to predict
the reflection and transmission of a wave, for an object consisting of n number of plates,
all with a specific speed of sound and frequency-dependent damping. The model is able to
capture the behaviour of a single layer reasonably well, as shown by comparing measured
and simulated transmission coefficient results in Figure 4.8b. The model is validated in the
1.4-3.0 MHz range, because the 2.25 MHz-centred probes used, have the strongest signal for
these frequencies.

For multiple layers, the model fits two important additional aspects: the transmission
coefficient can be considered independent of the orientation (i.e. which side is closest to
the transmitting transducer), and the reflection coefficient does depend on this orientation.
This can be seen by comparing Figures 4.9 and F.4 from measurements to the predictions
for the equivalent setup from simulations in Figure 3.3. In the transmission coefficient,
there are few discernible features, but nevertheless there are similarities.

The changes with frequency are much better discernible in the reflection coefficients than
the transmission coefficients for the frequencies and materials used. Again, the simulation
and the values calculated from measurements show good correspondence in the shapes and
locations of the oscillation peaks and troughs. However, the actual values and the general
trend are off. As mentioned, this is expected to be caused by two factors: the mismatch in
probes in reflection measurements to the reference, and the difficulty in fitting the model
to the measured data for attenuation coefficient.

The α values calculated from measurement result in error ranges in the order of 10 m−1,
but the model is sensitive in the order of 10 m−1 in both slope and intercept. In other words,
while the measured values have a standard deviation in the order of 10%, the simulation
requires an accuracy in the order of 1%. Additionally, the linear model may be too simple.
For example, frequency terms of higher orders may occur, referring to equation 2.7, and
the trend in Figure 4.6 is not necessarily a straight line, considering the error margins.

Having reasoned through differences in the general trend and the exact values of the
transmission and reflection coefficients between simulation and measurement, the model
has been shown to be effective in the cases examined: relatively simple structures with few
layers, and with acoustic impedance relatively close to water.

Scattering is one phenomenon not taken into account in the simulation, and this may
contribute to mismatch between simulated and measured values. The materials may have
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been dispersive, but this was modelled as having a single phase velocity equal to the group
velocity. However, it is likely that the phase velocity varies with frequency to some extent.

Another point that can use more consideration is the effect of complex impedances and
sound speeds. This is because complex propagation constants were used to model attenuat-
ing materials, but only real densities and speeds were measured, resulting in real impedance
values.

The model showed that an optimal transmission at a relatively wide range of frequen-
cies could be achieved by using layers with an exponential impedance profile to match
impedances between to materials. The model also showed that small percentages of devi-
ation from the optimal impedances can still cause significant reduction in the antireflec-
tion effect, so it is important to find the right materials and production method to apply
these concepts. With the 3D printer used in this work, it is not yet feasible to print an
antireflection lens for interfaces like PZT-water, because of limitations in print materials
and mix proportion flexibility. However, the exponential impedance profile combined with
speed-dependent thickness is worth investigating further, including with developments in
materials and other manufacture methods. This can eventually lead to improved efficiency
and effectiveness of practical ultrasound applications.

5.1 Recommendations

Based on this work, a number of improvements and further investigations can be made.

Firstly, the model could be validated more extensively. Characterisation measurements
can be repeated more times to perform better error analysis. The experiments can also
be done for materials with acoustic impedance much higher than that of water, because
the range of impedances for which the model is validated is relatively small, especially
considering piezoelectric material impedances. Additionally, the model has also not been
validated for optimal impedances, so given the right materials, this can be done to examine
this aspect of the simulations. Other methods of determining attenuation and dispersion
from measurements can also be looked into. Another aspect to look into for measurements
is to find methods of determining complex speeds of sound and/or density.

The model itself can also be expanded to describe oblique incidence, multiple modes, and
finite structures which are relevant at lower frequencies. The effect of complex impedance
and of dispersion may be useful to explore, as well as non-planar waves and beam-shaping.
This can allow the results to be used in more varied applications, where reduced reflections
can improve performance.
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Appendix A

Trigonometric functions and
complex exponentials

The relations between circular and hyperbolic trigonometric functions and their exponential
forms are used to relate transfer matrices of lossless and lossy media. These relations are
shown in equation A.1.

sin θ =
1

2j
(ejθ − e−jθ) (A.1a)

cos θ =
1

2
(ejθ + e−jθ) (A.1b)

sinh θ =
1

2
(eθ − e−θ) (A.1c)

cosh θ =
1

2
(eθ + e−θ) (A.1d)
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Appendix B

Acoustically relevant properties of
selected materials

Table B.1 shows the longitudinal speed of sound and the specific acoustic impedance for
several materials to provide context better context to this work. The materials are taken to
be at 20◦C. It can be seen that the impedance of air is several degrees of magnitude lower
than that of all the other materials listed, which shows why, for example, air needs to be
eliminated from a transducer-tissue coupling. Soft tissue has an impedance range close to
that of water, while hard solids like PZT and steel have relatively high impedances.

Table B.1: Speed of sound and specific acoustic impedance for selected materials [61, p. 270]
[62, p. 678].

Material
Speed
(m s−2)

Impedance
(MRayl)

water 1480 1.48

air 330 0.0004

PZT 3800 30.0

stainless steel 3300 47.0

soft tissue 1440-1640 1.3-1.7

bone 4080 6.0
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Appendix C

Derivations

C.1 Derivation of TMM

In this part, it is shown how the transfer matrix relates the state variables at two points in
space. Within a single material with propagation constant γ and (complex) characteristic
impedance zl, the sound pressure and particle velocity, which are the state variables, are
expressed at two different x coordinates as shown in the table below.

x = x1 x = x2
p (Ae−γx1 +Beγx1)ejωt (Ae−γx2 +Beγx2)ejωt

v 1
zl

(Ae−γx1 −Beγx1)ejωt 1
zl

(Ae−γx2 −Beγx2)ejωt

Let x2 = x1 + d. Then, it can be shown that p1 is a linear combination of p2 and v2.

cosh (γd) · p2 + zl sinh (γd) · v2 (C.1)

Rewriting the hyperbolic functions to their exponential forms:

=
1

2

(
eγd + e−γd

)
p2 +

zl
2

(
eγd − e−γd

)
v2 (C.2)

Multiplying out:

=
1

2

[
Ae−γx1+jωt +Beγ(x1+2d)+jωt +Ae−γ(x1+2d)+jωt +Beγx1+jωt

]
(C.3)

+
zl
2

1

zl

[
Ae−γx1+jωt −Beγ(x1+2d)+jωt −Ae−γ(x1+2d)+jωt +Beγx1+jωt

]
The 2d terms cancel out by subtraction, leaving the following:

=
1

2

[
2Ae−γx1+jωt + 2Beγx1+jωt

]
(C.4)

= p1

This shows that the first line of the transfer matrix in equation 2.31 is correct. The
second line can be verified in a similar manner, so this will not be written out here.
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C.2 Geometric mean impedance matching

In this section, the layer impedance value resulting in maximum or minimum reflection at
a quarter layer thickness is derived. Here, zc represents the layer impedance.

First, the reflection coefficient is expressed in terms of the lossless transfer matrix ele-
ments, using equations 2.34 and 2.32. When the trigonometric functions are expressed in
their exponential form and like terms are gathered, it results in the following:

Ra =

(
zR − zL + zc − zLzR

zc

)
ejkd +

(
zR − zL − zc + zLzR

zc

)
ejkd(

zR + zL + zc + zLzR
zc

)
ejkd +

(
zR + zL − zc − zLzR

zc

)
ejkd

(C.5)

When d = λ
4 , kd becomes π

2 . Filling this into the exponential terms:

Ra =

(
zR − zL + zc − zLzR

zc

)
j −

(
zR − zL − zc + zLzR

zc

)
j(

zR + zL + zc + zLzR
zc

)
j −

(
zR + zL − zc − zLzR

zc

)
j

(C.6)

By removing terms which are eliminated by subtraction, and simplifying:

Ra =
z2c − zLzR
z2c + zLzR

(C.7)

By setting the numerator of equation C.7 to zero, it can be seen that the reflection
equals zero when z2c = zLzR, and assuming positive impedances, zc = (zLzR)

1
2 . Figure

C.1 shows both these optimisation results for the single layer: for the different thicknesses,
transmission is maximum at (odd multiples of) quarter wavelength thickness, and among the
various impedances, transmission is maximised (and reflection minimised) for the geometric

mean zc = (zLzR)
1
2 .

Figure C.1: Simulation of varying the single layer impedance for different layer thicknesses,
with zL = 1.5 MRayl and zR = 15 MRayl. The legend shows layer impedance.
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Appendix D

Additional figures from simulation

In this Appendix, some figures and discussions of simulation results are presented which
are not crucial to the main work, but provide supporting information and context.

D.1 Single lossless layer between two identical media

When the left and right medium impedances, zL and zR are the same, a layer placed
between them can only decrease transmission, or leave it unchanged, depending on the
layer thickness. In this case, at thickness of d = λ

4 , transmission is at a minimum, as
seen in Figure D.1. Transmission is lower for layer impedances further from the boundary
impedances, and this is similar to the result of when layer impedance lies outside the range
of two unequal left and right impedances, plotted in Figure C.1.

Figure D.1: Effect of varying the single layer impedance for different layer thicknesses,
between two identical media zL = zR = 1.5 MRayl.

D.2 Amplitude reflection and transmission coefficients for
single lossless layer

The amplitude reflection and transmission coefficients are complex numbers, of which the
real part describes the magnitude of the oscillations, while the imaginary part describes the
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phase. However, a negative real part also indicates that the wave is out of phase with the
incident wave. Another consideration is that by the conservation of energy, the amplitude
reflection coefficient cannot be greater than unity (positive or negative), because that would
mean the reflected wave carries more energy than the incident wave. On the contrary, the
amplitude transmission coefficient may be greater than one, because intensity also scales
with impedance of the medium (equation 2.25).

An example of the intensity T and R values, along with the real and imaginary parts of
the amplitudes coefficients, is plotted in Figure D.2. A number of variables can be changed
to affect the plot. Changing the wavenumber k of the rightmost medium has no effect
on the intensity coefficients, but it affects the periodicity of the amplitude transmission
coefficients. Specifically, it is the ratio of right-medium wavenumber to layer-wavenumber
which matters, and was chosen as 1.5 in the plot.

Figure D.2: Amplitude and intensity transmission and reflection coefficient values, for
different thicknesses of a single lossless layer with optimal impedance; zL = 1.5 MRayl and
zR = 15 MRayl.

As the focus is on optimising the energy transmission from one medium to another, the
remaining simulations will concern the intensity transmission coefficient rather than the
amplitude.

D.3 Two-layered attenuating sample

Figure D.3 shows the simulated values of reflection coefficient for a two-layered absorptive
sample surrounded by water, with the same parameters and notation as used in Figure 3.3.
It shoes that the reflection coefficient approaches a particular value at high frequencies,
and that this value depends on the orientation of the sample. When, for example, the
VeroWhite layer is closer to the transmission probe, the reflection coefficient approaches
that of a single water-VeroWhite interface as calculated from the impedance values, using
equation 2.27 (for normal incidence).

When there is no attenuation, there are two differences: the orientation no longer has
effect, and the reflection coefficient does not approach any particular value at high frequen-
cies.
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Figure D.3: Simulated transmission and reflection coefficients for a two-layered sample in
water, in forward and reverse orientation, showing limiting behaviour at high frequencies.
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Appendix E

Additional measurement data

Table E.1 shows the thicknesses in mm of the various single-material samples printed.
All the samples have 5.0 × 5.0 mm2 cross-sections. When two thicknesses are listed, this
indicates two separate samples with different thicknesses of the same material. The more
flexible materials are generally printed thinner than the rigid materials because they have
higher attenuation, which sometimes makes measurements invalid if for example, the back
reflection is no longer measurable because it is damped out. For multi layered samples,
the main one used is a two-layered sample of pure VeroWhite and Agilus Black of 3.0 mm
each. Other samples with more layers were printed, but results from these particular
measurements are not insightful into the model because of heavy damping and mismatched
kd, which for example leaves almost no oscillation or discernible features in reflection and
transmission coefficients.

Table E.1: Table listing the various single-layer samples that were used.

Material
Thickness
(mm)

Material
Thickness
(mm)

Agilus Black 4.0, 10.0 RGD8530-DM 4.0, 10.0
FLX9840-DM 4.0 RGD8525-DM 6.0
FLX9850-DM 4.0, 6.0 RGD8520-DM 6.0, 10.0
FLX9860-DM 4.0 RGD8515-DM 6.0
FLX9870-DM 4.0 RGD8510-DM 6.0, 10.0
FLX9885-DM 4.0, 10.0 RGD8505-DM 6.0
FLX9895-DM 4.0 VeroWhite 6.0, 10.0

In table E.2, the results of time difference between front and back reflections are shown.
These are calculated from the autocorrelation of the analytic signal, as described in section
4.2. Some comments are pertinent to these results.

Firstly, for several measurements at the higher frequency, the back surface reflection is
indistinguishable from the noise, leading to fewer data points. Most notably this is with
sound passing through Agilus Black along the x/y-axis, for which none of the measurements
was valid at the higher frequency. Additionally, for this sample, the standard deviation is
about an order of magnitude greater than for the other samples, which contributes to this
print orientation being discarded for further investigation. Finally, the time differences are
very similar, taking into account the standard deviation values, for the first two materials
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in the table at the frequencies measured. Subsequently, the speed of sound is considered to
be independent of frequency at the ranges relevant to this work.

Table E.2: Overview of selected measurement results for time difference between front and
back reflection, thickness 10 mm.

material
frequency
(MHz)

number of
points

mean time
difference (10−6 s)

standard deviation
time diff. (10−6 s)

VeroWhite
2.5 8 7.98 0.041
5 6 7.97 0.018

Agilus Black
through z-axis

2.5 8 9.73 0.034
5 3 9.75 0.071

Agilus Black
through x/y-axis

2.5 8 9.69 0.302
5 - - -
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Appendix F

Additional figures from
measurements

In this Appendix, some figures and discussions of measurement setup and results are pre-
sented which are not crucial to the main work, but provide supporting information and
context.

F.1 Photographs of underwater ultrasound equipment

Figure F.1 is a photograph of the measurement setup illustrated schematically in Figure
4.1. It shows the wave pulser on the left, the water tank in the middle and the laptop on
the right. The oscilloscope is partially obscured, behind the water tank. Also visible in
this image are the rails on which distances are marked for suspending the clamp, and the
slot in which an ultrasound probe is inserted on the visible face of the tank. The laptop is
opened to the oscilloscope software.

Figure F.1: Photograph of the water tank setup for ultrasound measurements.

Figure F.2 is a photograph of the ultrasound probes on the left, and of clamps holding
four samples at the bottom. The ultrasound probes have BNC connectors on one end, and
removable red protective caps at the other. The clamps can be opened to change the sample
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Figure F.2: Photograph of ultrasound probes and clamps with samples.

by removing two screws.

F.2 Varying the sample-transducer distance

Figure F.3 shows the effect of moving a block further from the ultrasound transducer.
Four sets of measurements are plotted in total: the front and reverse orientation of the
block at each of two distances. A slight time-difference at each front-reverse set would be
because the probe-to-block distance differed by a fraction of a millimetre. A number of
other observations can be made from this figure.

The reflections occur in pairs as front-face reflection and then back-face reflection. An
increase in distance consistently increases the time for each of these reflections. Additionally,
there are also recurring reflections between the probe and the block, which show as later
oscillations (the first set occurred before 2× 10−4 s and the second set after this time).
These amplitudes from any given measurement get progressively smaller with time because
of attenuation. Furthermore, the amplitude of reflections from the reverse face are slightly
smaller than from the front face, which is more visible in the later reflections. The front
face was visibly shinier than the reverse face, which means the reflections were probably
more specular than the reverse face. With the reverse face towards the transducer, the
sound must have gotten more scattered. However, the effect was minimal. Scattering from
the surface was considered negligible, and not taken into account in the model.

Finally, no consistent differences, for example arising from beam shape, were found in
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results (such as sound speed) computed from measurements at different distances.

Figure F.3: Echos measured off block of VeroWhite placed 8 cm and 12 cm from the trans-
ducer, showing time-shift effect.

F.3 Transmission coefficient from measurement for two-layer
sample

Figure F.4 shows a plot of the transmission coefficient calculated from through measurement
with the two-layered VeroWhite, Agilus Black sample for reversal of the material closest
to the transmitting probe. Accounting for noise, these two plots can be considered in the
frequency range of the probes, which is about 1.4-3.0 MHz. Comparing to the simulation
results in Figure 3.3, there are corresponding peaks and troughs, such as the minima at
1.4 MHz and around 2.3 MHz.

Figure F.4: Transmission coefficient from measurement for two-layer sample of Agilus Black
and VeroWhite, with reversal of side facing the transmitting transducer.
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