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Summary

The Dutch National police increasingly use robots for their operations, for example during ob-
servation and surveillance. The robots are equipped with a camera and transmit video data
via a wireless video stream to the tele-operater, who uses the video for navigation. The tele-
operator can be assisted, or replaced, by algorithms that use computer vision.

However, the video data from the robots cannot be completely transmitted when the bit rate
of wireless video streams is larger than the available throughput. This occurs, for example,
when the wireless channel switches to a robust coding and modulation scheme, due to external
disturbances. The incomplete data causes visible artefacts in the decoded video and computer
vision algorithms cannot be effectively applied to such videos.

The goal of this research is to determine how video streams can be optimized for computer
vision, when the throughput is limited. The research is focussed on three types of video scaling
that reduce data: spatial, temporal, and quality scaling. For these types of scaling, two ques-
tions are answered during the research: Can the required throughput of wireless video streams
be reduced enough using spatial, temporal, and quality scaling, such that video data can be
transferred completely? And how do spatial, temporal, and quality scaling affect computer vis-
ion?

The impact of the three types of scaling on required throughput and computer vision, has been
determined by analysing bit rate and visual tracking performance for videos generated from
the RGB-D and CoRBS datasets, after applying different spatial, temporal, and quality scaling
parameters. A custom visual tracking algorithm has been designed for the performance eval-
uation, based on direct visual simultaneous localization and mapping methods. It uses basic
image processing techniques that are used in most other computer vision algorithms, such that
the results of the research are generalizable to such algorithms.

The results indicate that combining the three types of scaling reduces the required throughput
of a video enough, such that it is below the minimum available throughput of the IEEE 802.11
wifi standards. Of the three types, quality scaling did not impact tracking performance. Spa-
tial scaling had a negative impact on tracking performance, but it also reduced the throughput.
Temporal scaling had a bigger impact on tracking performance than spatial scaling, but a smal-
ler impact on the required throughput.

Based on the results, an optimal scaling strategy has been determined, that reduces through-
put, while maximizing performance of computer vision algorithms. The optimal strategy is to
first apply quality scaling on a video stream, until the lowest quality is reached, followed by spa-
tial scaling, until the lowest resolution is reached, and finally temporal scaling to further reduce
the required throughput.

The results can be combined with related research to implement optimal wireless video
streams on robots, such that computer vision algorithms can be effectively applied. Further
research, on a larger number of videos, is required to determine the optimal scaling strategy for
a specific throughput and to verify the optimal strategy in practice on a robot with a wireless
video stream.
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1 Introduction

1.1 Context

Recently, the Dutch National Police (NPN) have started to use robots for their operations. The
NPN use robots for a variety of tasks, such as surveillance and observation. Depending on the
task, the NPN may use drones, wheeled robots or other robots. The robots are able to travel
to places where it would be dangerous to deploy human personnel, and the robots, especially
drones, can travel much faster to an area of interest than a person. Therefore, robots allow the
NPN to increase their efficacy and the safety of their employees.

The robots are tele-operated and equipped with a camera. The video data from the cameras
is transmitted to the tele-operator via a wireless video stream. The wireless connection allows
the NPN to quickly and effectively deploy robots in a variety of environments, where time is
sometimes of the essence. The videos are encoded using the widely used H.264 encoder, which
is implemented in hardware on most robots for fast and efficient encoding.

In the future, the video stream will be used to assist, or replace, the tele-operator by algorithms
that use computer vision. Examples of these are visual simultaneous localization and map-
ping (SLAM) systems that aid the tele-operator during navigation, and algorithms for dense
3D reconstructions of observed scenes, such as a crime scene. In such systems, streams from
multiple robots and body cams can be combined on a centralized system.

The NPN do not design or manufacture the robots themselves, but use commercially available
robots, from various manufacturers. Hence, changes to these robotic systems are limited and
the NPN rely on the design decisions of the manufacturers.

1.2 Problem

Video data from the cameras cannot be completely transmitted when the required through-
put is larger than the throughput available on the wireless channel. This is, for example, the
case when the wireless channel switches to a robust coding and modulation scheme, due to
external disturbances. It also occurs if multiple videos are streamed of the network, such as
when multiple robots perform cooperative SLAM.

When the data is not completely transmitted, missing data results in visible artefacts in the
decoded video. The artefacts make it difficult for a tele-operator to navigate the robot and
inhibit effective use of computer vision on the video.

1.3 Focus

Several solutions to the problem can be thought of, for example:

1. Replacing the wireless connection with a wired connection, which has a higher through-
put than a wireless connection.

2. Preventing the wireless channel from switching to coding and modulation schemes with
low bit rates. This can be accomplished by increasing the signal-to-noise ratio of the
channel using better antennas or signal amplification.

3. Applying the computer vision directly to the video on the robot itself.
4. Reducing the data by discarding part of the data using lossy compression.

Not all these solutions are feasible, given the situation of the NPN. The first option prevents
the NPN from using robots to travel large distances unless the tele-operator closely follows the
robot. The solution, therefore, takes away the advantages of increased flexibility, speed and
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2 Optimizing wireless video streams for computer vision

safety that the robots are able to provide. Furthermore, a wire imposes other challenges as it
may get stuck and is too heavy to carry for some robots, such as small drones.

The second option is not feasible as well. As explained in Section 1.1, the police relies on the
design decisions of manufacturers and cannot easily change parts of the robots. Furthermore,
it does not solve the problem if the throughput per video stream is reduced when multiple
videos are streamed over the network.

Similar to the second option, option 3 is not possible, because is not realistic to have all man-
ufacturers change the software on the robots. Another disadvantage of the option is that it
requires new software implementations for every robot that is, or will be, used by NPN.

Hence, in this thesis the focus is on the fourth option: reducing the required throughput of the
video stream, by discarding part of the data using lossy compression.

More specifically, the data reductions that will be considered, must be possible using minor
changes to the configuration of the H.264 encoder. The NPN should be able to prescribe these
minor changes to the manufacturers of robots and the changes should be easy to implement
for the manufacturers, such that it is realistic that manufacturers implement the changes.

1.4 Related work

It is the task of an encoder to reduce data from a video, such that the video file becomes small
enough for efficient storage or transmission over a network connection. An encoder uses a
variety of techniques to describe the video information using less data, i.e., to compress data.
During compression, the encoder is responsible for discarding information with the least visual
value first. The visual value, however, might be different for computer vision than for human
vision.

1.4.1 Video encoding

H.264 (Wiegand et al., 2003; Ostermann et al., 2004) is the most widely used video compres-
sion standard. Amongst others, the standard uses inter and intra frame prediction and motion
estimation to only encode shifts of blocks of image data. This greatly reduces the amount of
information that needs to be transferred.

Certain implementations of the H.264 encoder, such as the open source x264 encoder, allow
setting a constant rate factor (CRF) (Robitza, 2017a). Using this setting the encoder will apply
a constant quality factor to the video. This quality is the perceived quality, which means that
it will apply different quantization parameters for the compression of each frame, depending
on the content. One way in which the encoder optimizes the compression, is by taking motion
into account. High motion frames are compressed more than frames with little motion. The
resulting video will have a high rate-distortion (RD) performance (Merritt and Vanam, 2007),
which is measured as the peak signal-to-noise ratio (PSNR) as a function of average bit rate.

An extension to the H.264 standard was introduced in 2007 (Segall and Sullivan, 2007; Schwarz
et al., 2007) to improve support for multiple display resolutions using scalable video coding
(SVC). SVC encodes scaled versions of the video in subsets of the bit stream. These subsets can
be derived by dropping packets from the main bit stream. The scaled video data that is con-
tained in the subset can be either scaled by resolution (spatial scalability), frame rate (temporal
scalability), quality (quality scalability) or a combination of these three. Both server and client
can switch to a different configuration by dropping packets. Hence, SVC enables a reduction of
the required throughput without re-encoding.

It has been shown that SVC can be used to improve quality (Schierl et al., 2007) and bandwidth
utilization (Chiang et al., 2008). Combining spatial, temporal, and quality scaling can effect-
ively improve the RD performance (Van der Auwera et al., 2008). When different priorities are
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assigned to the packets from different subsets, The quality of the video can be optimized by
assigning different priorities to packets from different subsets (Monteiro et al., 2008).

Hence, it is expected that SVC, or more in general, spatial, temporal, and quality scaling, can
be used to reduce the required throughput of a video stream, such that reliable transmission is
possible over a wireless network connection. However, SVC is not generally supported by H.264
encoders.

1.4.2 Perceived image and video quality

The H.264 encoder can be configured to optimize video encoding for the perceived quality of
service (PQOS) for humans. Several researches have been conducted to determine how hu-
mans perceive quality of service. Mannos and Sakrison (1974) showed how pseudorandom
perturbations in the intensity pattern of a given meaningful image is detectable by a human
subject. According to Mannos and Sakrison (1974) humans are more sensitive to some spatial
frequencies than other spatial frequencies, and more sensitive to errors in grey areas than in
white.

Similar reasoning led several others to the conclusion that a simple error metric, such as the
mean squared error (MSE) is not suitable as a quality metric for video encoding (Teo and Hee-
ger, 1994; Eckert and Bradley, 1998; Winkler, 1999; Wang, 2001; Wang and Bovik, 2002; Wang
et al., 2002; Pinson and Wolf, 2004). Some suggested different metrics (Teo and Heeger, 1994;
Winkler, 1999; Wang, 2001; Wang et al., 2002; Wang and Bovik, 2002; Wang et al., 2004) to object-
ively describe quality as perceived by the human visual system. An overview and assessment of
several systems is given in (Chikkerur et al., 2011). Overall, human perception makes objective
image quality assessment a difficult task (Wang et al., 2002).

Network related effects such as jitter and delays do not only affect the perceived quality (Clay-
pool and Tanner, 1999), but also the understanding of video (Ghinea and Thomas, 1998). Addi-
tionally, loss of packets results in a lower perceived quality of service and is considered a useful
metric in analysing the quality of a video (Lin et al., 2006; Rui et al., 2006; Frnda et al., 2016).
Gardikis et al. (2012) showed the limited correlation between network-level quality of service
(NQOS) and PQOS.

Hence, it is difficult to express quality of service from the perspective of a human, because the
human visual system is highly subjective when perceiving quality. How does this compare to
computer vision?

1.4.3 Visual SLAM

An important and extensively researched computer vision topic is visual SLAM. Eade and
Drummond (2006) and Davison et al. (2007) were the first to present a successful application of
a pure vision-based SLAM method for a monocular camera. Eade and Drummond (2006) used
a particle filter and Davison et al. (2007) an extended Kalman filter (EKF) for the camera pose
combined with a particle filter for the depth of each feature.

Mouragnon et al. (2006) and later Klein and Murray (2009) showed how bundle adjustment can
be used for camera pose estimation and geometrical reconstruction.

As opposed to previous work, Klein and Murray (2009) perform tracking and mapping on sep-
arate threads so that it can run on low-end devices. Building on this work, Mur-Artal et al.
(2015) proposed ORB-SLAM, which uses ORB features and performs loop closing and other
optimizations.

All these approaches estimate 3D geometry based on matches of keypoints. The reprojection
error for matched keypoints is minimized to obtain 3D geometry information. As they do not
directly operate on the image intensity, these types of methods are referred to as indirect meth-
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ods. Besides being indirect, the resulting map for these methods is sparse and prior knowledge
about the reconstruction is not used during estimation.

Other methods, referred to as direct methods, work directly on the pixel intensity. Such meth-
ods minimize the difference in pixel intensity between frames, the photometric error. As these
methods do not require feature extraction, but operate directly on pixel intensity, they can gen-
erate denser maps using less computation. Furthermore, dense reconstruction allows for the
use of a regularization filter to optimize depth estimates by smoothing the generated recon-
struction. Examples of direct methods are DTAM (Newcombe et al., 2011), LSD-SLAM (Engel
et al., 2014) and DSO (Engel et al., 2017).

In summary, visual SLAM is based either on matching features, or directly comparing pixel
intensities. As opposed to the human visual system, computer vision is, at least for visual SLAM,
not more sensitive to specific spatial frequencies or pixel intensities than others.

Hence, it is expected that computer vision algorithms experience a different perceived quality
of service than humans, and that the techniques that encoders apply to optimize compression
for humans do not optimize encoding for computer vision. Research is missing regarding the
perceived quality of service from the perspective of computer vision algorithms.

1.5 Research questions

To solve the problem for the NPN, the data from the video stream of the robots must be reduced
without hindering computer vision tasks. Therefore, the goal of this thesis is to determine how
wireless video streams can be optimized for computer vision, when the throughput of the wire-
less channel is limited.

Building on the related work that was presented in the previous section, it is analysed how
spatial, temporal, and quality are able to reduce video data and how these types of scaling
affect the perceived quality of service of computer vision algorithms. More specifically, the
main research question of this thesis is:

How can wireless video streams be optimized for computer vision, when the throughput is lim-
ited?

The optimization consists of a trade-off between the data reduction and performance of com-
puter vision algorithms. Hence, the research is subdivided into two parts. First, it is determ-
ined whether the required throughput of a video stream can be sufficiently reduced to guar-
antee successful transmission, even when the available throughput of the wireless connection
becomes low. Second, the impact of such data reduction measures on a visual algorithm are
examined. Therefore, the main research question is subdivided into two sub questions:

1. Can the required throughput of video streams be reduced using spatial, temporal, and
quality scaling, such that videos can be streamed reliably over a wireless connection?

2. How do spatial, temporal, and quality scaling affect computer vision algorithms?

The sub questions are answered by evaluating the bit rate and performance of a visual tracking
algorithm for videos similar to scenarios that robots from the NPN encounter, after applying
the three types of scaling using different parameters. Generalizability of the results is ensured
by restricting the visual tracking algorithm to basic image processing techniques that are used
in most computer vision algorithms.

1.6 Outline

The outline of this thesis is as follows: In Chapter 2, a theoretical background regarding visual
tracking and encoding is provided. First, basic camera projection using the pinhole camera
model is explained. Next, it is explained how pixel depth can be estimated using tracked points,
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CHAPTER 1. INTRODUCTION 5

based on epipolar geometry. Finally a brief overview of the H.264 video encoding standard is
provided.

In Chapter 3, it is explained how the limited wireless connection poses challenges to a wire-
less video stream. After this, it is analysed how the required throughput can be reduced using
spatial, temporal, and quality scaling. Finally, the impact of the different types of scaling is
analysed. The analyses in Chapter 3 are qualitative, as quantitative analysis is not possible, be-
cause the impact of scaling depends on the content of a video. It is concluded that experiments
are needed for a quantitative analysis.

In Chapter 4, it is explained how videos are generated from two datasets using different scaling
parameters, and how the bit rate and visual tracking performance for these videos is evaluated
using experiments.

The results of these experiments are presented and discussed in Chapter 5. It is shown how
spatial, temporal, and quality scaling affect the required throughput of a video stream and
the PQOS of a visual tracking algorithm. These results are subsequently used to determine a
strategy for optimizing a wireless video stream for a visual tracking algorithm and it is explained
how these results apply to computer vision algorithms in general.

In the final chapter, Chapter 6, the work is concluded and topics for further research are recom-
mended.

Robotics and Mechatronics F.J. (Frank) van der Hoek



6 Optimizing wireless video streams for computer vision

2 Background

In this chapter a theoretical background regarding visual tracking and H.264 encoding is
provided. First, the pinhole camera model is described, which forms the basis for capturing the
three dimensional world on a two dimensional image plane. Next, the relationship between
a point in one video frame and its projection in another video frame is described using the
concept of epipolar geometry. After this, a method to select points to track throughout a video
is discussed, based on gradient of pixel intensities. Subsequently, it is discussed how a pixel can
be matched between video frames by minimizing the sum of squared differences (SSD) of the
photometric error. In Section 2.5 it is described how epipolar geometry and photometric error
minimization are used in a visual simultaneous localization and mapping (SLAM) method to
build a map of the environment. Finally, a brief introduction to the H.264 encoder is given,
such that the impact of video compression can be understood as well as the ways in which
the trade-off between bit rate and video quality can be controlled using different rate control
factors.

2.1 Camera projection using the pinhole camera model

The pinhole camera model is a widely used model that mathematically describes the relation-
ship between a point in 3D and its projection on a 2D image plane. It is depicted in Figure2.1.

x

y

Principle axis

z

Image plane

u
v

p

u
Camera centre

Figure 2.1: The pinhole camera model. A point p in 3D is projected as a pixel at location u in the image
plane.

For a point p ∈R3 the pinhole camera model is described by:

λu = KRp+Kt (2.1)

Where

u =
u

v
1

 (2.2)

describes the 2D pixel location
[
u v

]T
in homogeneous coordinates,

K =
 fx 0 cx

0 fy cy

0 0 1

 (2.3)
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CHAPTER 2. BACKGROUND 7

contains the camera parameters with focal lengths fx , fy and principle axis location
[
cx cy

]T

and R and t the rotation matrix and translation vector that map the world reference frame co-
ordinates to coordinates with respect to the camera reference frame. λ is a scaling factor that
scales the homogeneous coordinates such that the bottom value in u is equal to 1.

2.2 Epipolar geometry

In Equation 2.1 the pose of the camera is described by R and t. When the pose of a camera
changes, R and t will change along. If a point ui describes the pixel of point p in frame i with
corresponding rotation Ri and translation ti , the projection of p in frame j is given by

λ j u j = KR j p+Kt j (2.4)

By expressing p in terms of ui ,Ri ,ti and λi using Equation 2.1, Equation 2.4 can be expressed
as:

λ j u j = KR j (λi RT
i K−1ui −RT

i ti )+Kt j (2.5)

Which can be rewritten to

λ j u j =λi KR j RT
i K−1ui +K(t j −R j RT

i ti ) (2.6)

If the rotation and translation of the camera at frame i and j are known, the projection u j is
described by a line that depends on the depth λi .

Expressing Equation 2.6 in the coordinate frame of the camera in video frame i , i.e., Ri = I3 and
ti = 0, results in the much simpler equation:

λ j u j =λi KR j K−1ui +Kt j (2.7)

Where λ is equal to the depth z of the point.

The line that is described by Equation 2.7 is referred to as the epipolar line. The epipolar line is
depicted in Figure 2.2 as l . In the figure, several possible 3D points, corresponding to pixel ui

are shown. The pinhole camera model of Figure 2.1 is shown for the camera centre C1 in frame
1 and the camera centre C2 in frame 2.

2.3 Matching by minimizing the photometric error

The epipolar line described by Equation 2.7 has to be reduced to a point such that the depth
given by λi can be estimated. O common approach for finding the best matching pixel on the
epipolar line, is minimization of the photometric error.

The photometric error between a pixel
[
ui vi

]T
in frame i and another pixel

[
u j v j

]T
in

frame j is defined by:

E = Ii (ui , vi )− I j (u j , v j ) (2.8)

Using a quadratic cost function and a patch N around a pixel, instead of a single pixel, Equa-
tion 2.8 can be summed to obtain the SSD corresponding to the two pixels:

SSD =∑
N

(
Ii (ui ,n , vi ,n)− I j (u j ,n , v j ,n)

)2 (2.9)

The coordinates u j , v j can be sampled from the epipolar line given by Equation 2.7.
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frame 1 fra
me 2

p1

p2

p3

p4

p5

u1

C1 C2

l

R, t

Figure 2.2: Epipolar geometry. A point in frame 1 is projected as a line l in frame 2, when the camera is
rotated and or translated between the frame captures. Points p1 to p5 are 3D points that correspond to
the pixel u1. The depth can be estimated by finding matching pixel on line l in frame 2.

For an optimal match Equation 2.9 will be minimal. Hence, the matching pixel can be found
by finding the pixel on the epipolar line for which Equation 2.9 is minimal. The depth λi that
corresponds to the minimal SSD is the depth estimate for pixel ui .

2.4 Gradient-based point selection

Not all pixels in a video frame can be accurately tracked. When pixels surrounding a pixel at ui

have similar intensities, the intensity difference from Equation 2.8 will be similar for multiple
points on the epipolar line given by Equation 2.7. Equation 2.9 will hence not provide a clear
minimum for the optimal match.

Engel et al. (2017) suggested to track only pixels with high-gradient values. As the gradient is
proportional to local pixel differences, high-gradient points provide more distinctive minima
for the SSD.

The difference between tracking low-gradient pixels and high-gradient pixels is shown in Fig-
ure 2.4. In the figure the SSD along the epipolar line in Figure 2.3b is shown for different image
patches from Figure 2.3a.

In Figure 2.4a the SSD along the epipolar line is shown for an image patch with small gradient
values and in Figure 2.4b the SSD along the epipolar line is shown for an image patch with
larger gradient values. It can be seen that the high-gradient patch results in a clear minimum
value for the SSD, whereas the low-gradient patch has multiple minimum values.

2.5 A brief introduction to visual SLAM

SLAM is the process during which a map of the environment is created, while simultaneously
localizing the camera within this map. Besides vision-based methods, there are other methods
that use lasers, sound, odometry or a combination of such techniques.

There are two different approaches regarding visual SLAM: indirect methods, that operate on
features and minimize their reprojection error, and direct methods, that operate directly on
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(a) Frame 1. The areas around the selected points
are indicated by the two rectangles.

(b) Frame 2.

(c) The area of the im-
age within the left rect-
angle of (a).

(d) The gradient of the
area (c).

(e) The area of the im-
age within the right
rectangle of (a).

(f ) The gradient of the
area (e).

Figure 2.3: Two frames of video sequence. In (c) and (e) two areas of the frame of (a) are shown. In
(d) it can be seen that the gradient in the left rectangular area of (a) is low. The gradient of the right
rectangular area of (a) is shown in (f) and is larger around the two edges of (e). The images are part of
the RGB-D dataset (Sturm et al., 2012).
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(a) The SSD along the epipolar line in Figure 2.3b for
an image patch within Figure 2.3c. There is no clear
minimum. Therefore, the pixel cannot be matched
accurately.
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(b) The SSD along the epipolar line in Figure 2.3b for
an image patch within Figure 2.3e. There is a clear
absolute minimum value around x = 190. There-
fore, the pixel can be matched accurately.

Figure 2.4: The SSD along the epipolar line in Figure 2.3b for image patches from both regions of Fig-
ure 2.3a. Only the patch from the high-gradient region can be matched accurately.
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10 Optimizing wireless video streams for computer vision

pixel intensity and minimize the photometric error. The difference between the methods is
shown in Figure 2.5.

Images

Feature extraction and matching

Tracking:
Minimizing
reprojection

error

Mapping:
Feature

parameter
estimation

(a) In indirect SLAM features are extracted and used
for tracking and mapping. The reprojection error of
features is minimized during the tracking process.

Images

Tracking:
Minimizing
photometric

error

Mapping:
Pixel

depth
estimation

(b) Direct SLAM methods operate directly on the
pixel intensities of the image. The photometric er-
ror between pixel matches is minimized during the
tracking process.

Figure 2.5: The difference between direct and indirect SLAM methods.

2.5.1 Indirect methods

Eade and Drummond (2006) and Davison et al. (2007) where the first to present a successful
application of a pure vision-based SLAM method for a monocular camera. In these methods
features are extracted from video frames and matched in subsequent frames. Based on these
matches the estimated pose of the camera is updated together with the 3D locations of the
features.

Eade and Drummond (2006) used a particle filter for this, where for each landmark multiple
hypotheses for the inverse depth are maintained and updated using the matched features. The
inverse depth here is used as the resulting likelihood is better approximated by a Gaussian dis-
tribution.

Davison et al. (2007) used an extended Kalman filter (EKF) for the camera pose combined with
a particle filter for the depth of each feature, where the particles are uniformly distributed
between a minimum and maximum depth.

Mouragnon et al. (2006) and later Klein and Murray (2009) showed how bundle adjustment
can be used for camera pose estimation and geometrical reconstruction. Bundle adjustment
optimizes the reprojection error of features over multiple frames simultaneously.

As opposed to previous work, Klein and Murray (2009) perform tracking and mapping on sep-
arate threads so that it can run on low-end devices. Multi-threading allows the bundle adjust-
ment algorithm to run in the background. Because of this, accurate 3D reconstructions can be
generated periodically, whereas the camera pose is updated every frame.

Building on this work, Mur-Artal et al. (2015) proposed ORB-SLAM, which uses ORB features
and performs loop closing and other optimizations.

All these approaches estimate 3D geometry based on matches of keypoints. The reprojection
error for matched keypoints is minimized to obtain 3D geometry information. As these types
of methods do not directly operate on the image intensity, these methods are referred to as
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indirect methods. Besides being indirect, the resulting map for these methods is sparse and
prior knowledge about the reconstruction is not used during estimation.

2.5.2 Direct methods

Other methods, referred to as direct methods, work directly on the pixel intensities. Such meth-
ods minimize the difference in pixel intensity between frames. This difference is referred to as
the photometric error.

As direct methods do not require feature extraction, such methods can generate denser maps
using less computation. Furthermore, the dense reconstruction allows for the use of a regular-
ization filter to optimize depth estimates by smoothing the generated reconstruction.

Examples of direct methods are DTAM (Newcombe et al., 2011), LSD-SLAM (Engel et al., 2014)
and DSO (Engel et al., 2017).

The techniques used to create a map in the direct methods are similar to those discussed in
Sections 2.1–2.3. When enough points are tracked, both the depth λi and the pose defined by
R j ,t j in Equation 2.7 can be optimized simultaneously using for example the Gauss-Newton
algorithm (Engel et al., 2017).

2.6 A brief introduction to the H.264 encoder

From the moment that videos were stored digitally on DVDs and the like, compression tech-
niques were used to increase storage efficiency. The technology, either hardware or software
based, that is responsible for the compression and decompression of raw video data, is referred
to as a codec.

There is a wide variety of these video codecs available. The most widely used compressed
format is H.264, also known as MPEG-4 Part 10, Advanced Video Coding (MPEG-4 AVC) Wie-
gand et al. (2003) and was developed in 2003 by the ITU-T Video Coding Experts Group and the
ISO/IEC Moving Picture Experts Group to enable transfer of high definition television signals.

The H.264 standard defines two layers for encoding; the network abstraction layer (NAL) and
the video coding layer (VCL).

2.6.1 The network abstraction layer

The NAL is used to prepare the encoded data for distribution on a variety of data transport
layers such as RTP or IP, several file formats and broadcasting services.

Encoded data is distributed via small packets of data that are referred to as NAL units. NAL
units can either contain video data (VCL NAL units), or additional information (non-VCL NAL
units). An example of such additional information is a parameter set, which contains informa-
tion about the VCL NAL units that is expected to rarely change. Such that this information does
not have to be sent with each individual VCL NAL unit.

A single picture can cover multiple NAL units. To recover from loss or data corruption, addi-
tional VCL NAL units containing redundant coded pictures can be added to the picture data.

2.6.2 The video coding layer

Where the NAL prepares the data for distribution, the VCL is responsible for the actual encoding
of the raw video data.

H.264 follows the block-based hybrid video coding approach. Each picture is divided into mac-
roblocks, which can be encoded in an efficient way.
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+ =

+ =

Luma Chroma Result

Figure 2.6: Chroma subsampling. The chroma components of the second row are subsampled. Only
one chroma sample is used for every set of two consecutive pixels. The colour of the result is slightly
different, but the brightness is not affected.

Chroma subsampling

Data in the macroblocks is stored in a different format than the standard Red, Green, Blue
(RGB) format and is subsampled using chroma subsampling. This means that the resolution of
chroma information, i.e., colour, is lowered with respect to the luma information, i.e., lumin-
ance, of a frame, by subsampling. The principle of chroma sub sampling is shown in Figure 2.6.

The reasoning behind chroma subsampling is that the human vision system is more sensitive to
differences in luminance than colour. Chroma subsampling can therefore be used to decrease
the file size of image information.

To make use of chroma subsampling, the pixel information must be converted from RGB
format into Y ′CBCR format, where Y ′ is the luma component and CB and CR the blue-
difference and red-difference chroma components respectively. For analog signals, the chroma
parts are indicated by PB and PR and are computed using the following equations:

Y ′ = KR ·R ′+KG ·G ′+KB ·B ′

PB = 1

2
· B ′−Y ′

1−KB

PR = 1

2
· R ′−Y ′

1−KR

(2.10)

Where KR +KG +KB = 1 are the constants ordinally derived from the RGB colour space. For
8-bit samples, the digital values can be obtained using:

Y = 16+219 ·Y ′

CB = 128+224 ·PB

CR = 128+224 ·PR

(2.11)

This results in scaled versions of the luma ranging from 16 to 235 and scaled versions of the
chroma ranging from 16 to 240.

The extra room at the begin and end of the values are called the footroom and headroom re-
spectively and are used for overshoot or undershoot of the processed signal.

Macroblock prediction using I,P and B frames

Frames can be coded using different coding types. As shown in Figure 2.7, there are I, P and
B type frames. The samples of each macroblock within these frames are either spatially or
temporally predicted and the resulting prediction is encoded using transform encoding.

For I frames, only intra predictions are used, which exploit spatial redundancy. This means that
a macroblock is predicted based on correlation with pixels that were coded already.
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Figure 2.7: The difference between I, P and B frames (Wikipedia, 2019). An I frame encodes an entire
image. P frames encode differences with respect to a previous frame. B frames are similar to P frames,
but also use information from future frames.

P and B frames are coded using inter predictions as well, which exploit temporal redundancy,
i.e. corresponding macroblocks between frames are encoded using a motion vector based on
motion estimation. Using the motion vector, these frames thus encode differences with respect
other frames.

A B frame is similar to a P frame, but it encodes differences with respect to both the previous
frame and the next frame. This allows for more compression than the P frame.

Transform encoding

After encoding, all luma and chroma samples either spatially or temporally, the residual image,
i.e., the difference between the encoded and raw image, is encoded using transform encoding
with a separable integer transform with similar properties as a 4×4 discrete consine transform.

The resulting coefficients are quantized according to a quantization parameter, which is a
trade-off between image quality and compression. The quantized transform coefficients are
then encoded using entropy encoding with a context-adaptive variable length coding scheme.

De-blocking filter

One of the artefacts in a block-based coding format is the blockiness of the decoded signal.
Block-like structures are visible in the decoded video. An example of such blockiness is shown
in Figure 2.8.

Figure 2.8: Blockiness due to encoding on an image from the RGB-D dataset (Sturm et al., 2012).

To remove this blockiness from the output, a de-blocking filter is applied in the decoder. The
de-blocking filter reduces the blockiness without decreasing the sharpness of the pictures. The
filter tries to estimate whether the blockiness is caused by quantization or represents an actual
edge, based on multiple thresholds.
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2.6.3 Rate control for H.264 encoding

As explained in the previous paragraphs, the coefficients of the transform encoding are quant-
ized using a quantization parameter, which is a trade-off between image quality and compres-
sion. There are multiple ways in which this quantization parameter can be configured (Robitza,
2017b). Each configuration results in a different encoding strategy and will influence both the
quality of the video, as well as the resulting bit rate. The configurations are referred to as rate
control methods, as they allow control of the bit rate.

Constant quantization parameter

The constant quantization parameter (CQP) applies the same quantization parameter to every
frame. Therefore, the same compression is applied to every frame. As the residual image and
entropy is not equal for every frame, the resulting bit rate is not constant, but will hugely vary.

Average bit rate

To obtain a less varying bit rate, the average bit rate (ABR) control option can be used. Using
this rate control option the encoder will estimate the required quantization parameter to reach
a desired average bit rate. The resulting bit rate is more constant. However, during the first
frames, while the encoder is still trying to reach the average bit rate, the bit rate will vary more.

Constant bit rate

An even stricter constant bit rate can be obtained using the constant bit rate (CBR) option. This
enforces the encoder to generate a constant bit rate by varying the amount of compression. The
encoder does not generate a lower bit rate and hence wastes bandwidth for frames that could
be compressed further. As a result of the constant bit rate, the quality will highly fluctuate.
Hence, for high-entropy frames, artefacts such as blockiness are more prevalent.

Multi-pass average bit rate

As an encoder cannot predict the compression ahead of time, it cannot compress a video using
an optimal trade-off between quality and bit rate. To solve this, the encoder can try the en-
coding two or more times when a multi-pass average bit rate is configured. This improves the
trade-off between quality and bit rate at the cost of computation time.

Constant rate factor

A constant rate factor (CRF) setting instructs the encoder to use different quantization para-
meters for different frames to create a constant perceived quality, while optimizing the com-
pression ratio. It allows the encoder to make smart decisions such as applying more compres-
sion to high-motion frames, which uses the fact that the human visual system is not able to
notice quality differences that well when a frame contains motion. While the perceived qual-
ity will be more constant, the resulting bit rate will fluctuate. Each increment of 6 for the CRF
roughly halves the bit rate Robitza (2017b).

Video buffer verifier

To cope with a varying bit rate, a video buffer verifier (VBV) can be used to create a more con-
stant bit rate without compromising on quality. The VBV uses a hypothetical buffer at a de-
coder to limit overflow and underflow at the decoder. This technique is useful when a video is
encoded for a decoder with a constant reading rate, such as a DVD player.

The concept is a bit counter intuitive. If the bit rate is too high, it will result in an underflow
error at the buffer. This is because the decoder, which will read at constant rate from the buffer,
will read data to fast for the buffer to fill itself. If the bit rate is too low, the decoder will not read
the data from the buffer fast enough, which will result in an overflow error at the buffer.
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The mechanism allows the resulting encoding to have short spikes in bit rate and short low
bit rate periods, as long as the buffer does not over or underflow. The VBV can be used in
combination with the other rate control settings.

2.7 Summary

In this chapter theoretical background was provided regarding visual tracking and H.264 en-
coding. It was explained how high-gradient points can be selected from a video frame and
tracked throughout subsequent frames by minimizing the SSD of a patch around the point
along the epipolar line. In a brief introduction to visual SLAM it was explained how this track-
ing is used in direct methods to estimate depth of these points as well as the pose of the camera.
Finally, in the brief introduction to H.264 encoding it was explained how the H.264 encoder re-
duces video data using chroma subsampling and inter and intra prediction, exploiting spatial
and temporal redundancy. The resulting encoded video may contain artefacts such as blocki-
ness. The quality of the video can be controlled using several rate control methods.

In the next chapter the ways in which video data can be optimized for throughput are analysed
as well as the impact of throughput reductions on computer vision.

Robotics and Mechatronics F.J. (Frank) van der Hoek



16 Optimizing wireless video streams for computer vision

3 Analysis

In the previous chapter, a theoretical background regarding visual simultaneous localization
and mapping (SLAM) and H.264 encoding was provided. In this chapter, the theoretical back-
ground is used to analyse the main problem of a wireless video stream, which is that the
throughput is not always large enough to transmit all video information. After defining the
cause of this problem, three types of scaling are analysed that can be used to solve the problem.
Subsequently, the impact of these types of scaling on visual tracking algorithm is discussed.

3.1 The limited throughput of a wireless connection

The throughput of a wireless connection is limited and varies depending on the environment.
External disturbances, such as signal interference and multipath fading lower the signal-to-
noise ratio (SNR), which results in loss of data.

To cope with the lower SNR, IEEE 802.11 wifi standards use adaptive coding and modulation
(ACM). With ACM, the coding and modulation scheme is changed to a configuration that is
more robust to interference when the SNR of the channel decreases. This robustness comes at
the cost of data rate. In the extreme case, where interference is very high, the resulting data rate
can become as low as 6.5 Mbps (Perahia and Stacey, 2013).

The data rate of 6.5 Mbps is a theoretical maximum data rate. Protocols, such as the user da-
tagram protocol (UDP) and the real-time transport protocol (RTP), add additional data to the
video data in order to transmit it via the network. Therefore, the throughput for video data is
much lower than 6.5 Mbps when the SNR of the wireless channel is low.

Furthermore, the available data rate is shared when multiple video streams are present on
the same wireless channel. For two or three simultaneous streams, the data rate reduces to
3.25 Mbps and 2.17 Mbps respectively.

A typical full HD H.264 video stream requires 5 to 12 Mbps on average. Peak bit rates are much
higher, because not all frames can be compressed to the same extent. Such a video stream
cannot always be fully transmitted over the wireless connection.

The loss of data causes visible streaming artefacts, of which an example is shown in Figure 3.1.
Such artefacts impact the performance of computer vision, because some parts of the images
are not visible, have different pixel intensities, or are displaced.

To optimize the video stream for a visual SLAM algorithm while preventing streaming artefacts,
data must be strategically discarded. In this thesis, three types of scaling are considered for
reducing the required throughput: spatial scaling, temporal scaling and quality scaling.

In the next sections, the impact of each of these three types of scaling on the required through-
put is discussed, as well as the impact on the performance of computer vision. The latter is
analysed qualitatively by considering the use case of a visual tracking algorithm. Subsequently,
the combination of different types of scaling is analysed, such that a trade-off between types
can be made.

A quantitative analysis is not possible without conducting experiments, because the impact of
encoding and scaling on bit rate and visual tracking performance depends on the content of
the videos. At the end of the chapter, it is determined, which experiments are needed, based
on the qualitative analysis, for a quantitative analysis of the impact of each type of scaling on
bit rate and visual tracking performance.
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(a) A decoded video frame without artefacts. (b) A decoded video frame with artefacts, obtained
by randomly altering 50 bytes in a video file of
13 MB.

Figure 3.1: A decoded video frame without artefacts and the same frame in a corrupted video file. In the
corrupted frame, it can be seen that some parts of the image are displaced or distorted. The images are
part of the RGB-D dataset (Sturm et al., 2012).

3.2 Spatial scaling

Spatial scaling reduces the size of a video by scaling the resolution of a video. Since the number
of pixels for each frame of de video decreases when the resolution decreases, the video can be
represented using less data. The principle of spatial scaling is shown in Figure 3.2.

Spatial scaling

Figure 3.2: Spatial scaling reduces the number of pixels and hence the number of points that can be
selected for tracking. The images are part of the RGB-D dataset (Sturm et al., 2012).

3.2.1 Impact on throughput requirements

When the width and height of a video frame are scaled to half of the initial width and height,
only a quarter of the original video data is left. In theory spatial scaling can, therefore, reduce
the data size quadratically. The encoder, however, applies several advanced methods to optim-
ize video compression.

As explained in Section 2.6, an encoder tries to present the same information using less data
during compression by exploiting spatial redundancy. Spatial redundancy can be considered as
a measure for information density. When there is a lot of spatial redundancy in a video frame,
it can be said that the information density is low, as a lot of visual information in a frame is
redundant.

The information density of frames with a higher resolution is often lower than that of frames
with lower resolution, as these frames represent the same visual information. When more
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pixels are used to represent the same visual information, the probability that pixels convey
redundant information increases.

Hence, it is expected that video frames at lower resolutions can be compressed less than frames
at higher resolutions, as the encoder can exploit less spatial redundancy. The resulting encoded
video will therefore require more than a quarter of the original data, when the width and height
of each frame is scaled to half of the initial width and height. The other way around, it is ex-
pected that a higher resolution will not result in a quadratic increment in the bit rate of the
video.

3.2.2 Impact on visual tracking

Spatial scaling impacts the performance of a visual tracking algorithm in multiple ways. First of
all, the quadratic change in available pixels impacts the amount of points that can be selected
for tracking. Since most tracking algorithms do not track pixels that have low gradients, as they
do not convey much information, the relation between the amount of trackable points and the
number of available pixels is not expected to be linear. As scaling the resolution down in most
cases leads to a reduction of information, i.e., the number of high-gradient pixels decreases,
the number of trackable points most likely decreases when spatial scaling is applied to a video.

A second way in which spatial scaling affects tracking performance, is that it affects the quant-
ization error in the depth estimate. Even though it is possible to perform sub pixel matching
using interpolation, the uncertainty in the estimated pixel location results in a larger uncer-
tainty in the corresponding depth estimate when the resolution is smaller. The uncertainty in
the depth estimate is therefore expected to grow when the resolution is scaled down and to
decrease when the resolution is scaled up.

The third way in which resolution affects tracking performance, is that scaling the resolution
down has the effect of a low-pass filter. Most resolution scaling algorithms do not just discard
pixels. Instead, such algorithms take multiple pixel intensities into account. The pixel intens-
ities in the scaled video frame represent weighted averages of a group of pixel intensities in the
unscaled video frame. Averaging over a group of pixels shifts the pixel intensities closer to a
local mean of the area surrounding a pixel. As a result, the gradient of these pixels decreases. In
Section 2.4 it was explained that pixels with lower gradients are more difficult to track. Hence,
it is expected that spatial scaling increases the probability of a mismatch.

The fourth way in which spatial scaling affects tracking performance, is through noise in the
image. Higher resolution images contain relatively more photometric noise. Photometric noise
can result in high-gradient values that do not correspond to real-world features. Such noise can
then be wrongly selected as point of interest or wrongly matched to a point that is tracked. For
lower resolution images, this noise is filtered out by the low-pass filtering effect of the scaling.
As explained in Section 2.6.1, an encoder uses transform encoding to encode the residual im-
age. As a result, an encoder filters out high-frequency components during transform encoding.
Therefore, it is expected that photometric noise will not be present in encoded videos. Hence,
photometric noise will not affect tracking performance.

3.3 Temporal scaling

Temporal scaling reduces the size of a video by discarding entire frames from the video. This
allows a video stream to take more time for the transmission of each frame, such that it has
enough time to transmit an entire frame before the next frame has to be transmitted. While it
decreases the required throughput, it also decreases the overlapping area between frames, as
shown in Figure 3.3.
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Temporal scaling

Figure 3.3: The overlapping area between two consecutive frames. Temporal scaling reduces the over-
lapping area between frames when the camera moves with respect to the observed scene.

3.3.1 Impact on throughput requirements

When the frame rate is halved, by discarding every other frame, the video data is theoretically
reduced to half the original size. However, similar to how spatial scaling does not achieve the
theoretical maximum data reduction, discarding every other frame does not result in a 50%
data reduction after compression.

This is because encoders make use of intra frame encoding. As explained in Section 2.6.2, the
H.264 encoder encodes only the difference between frames in P or B frames. When a camera
moves with respect to the scene, or observes a dynamic scene, the overlap between frames
decreases when the time difference between frames increases. Hence, if frames are dropped
as a result of temporal scaling, there is less overlap between consecutive frames. The encoder,
therefore, needs more data to encode the difference between frames. The required throughput
after encoding is thus expected to be reduced by less than 50% when the frame rate is halved.

3.3.2 Impact on visual tracking

Temporal scaling affects the performance of a visual tracking algorithm in multiple ways. As
the overlapping area between frames is related to the frame rate, scaling the frame rate also
scales the overlapping area between frames. When a constant velocity model is considered,
the size of the overlapping area between frames is directly proportional to the frame rate of
the video. Since only the points in this overlapping area can be successfully tracked between
frames, the amount of trackable points is also directly related to the frame rate. Fewer points
can be tracked when the frame rate is downscaled.

The frame rate also affects the update frequency of matched points. The uncertainty of a depth
estimate, that corresponds to a matched point, decreases each time a point is successfully and
accurately matched, until it converges to the measurement uncertainty. Therefore, as long as
the video is encoded using a high enough quality, the uncertainty of the depth estimates con-
verges faster when the frame rate increases. However, when the encoding quality of the video
is low, a higher frame rate actually has a negative impact on tracking performance, because the
measurement error, that is related to the encoding quality, increases. As a result, points are
matched at random depths and the uncertainty of the depth estimate increases. This prevents
the algorithm from building an accurate 3D map.

The uncertainty does not only affect the depth estimate of a pixel, it also affects the size of the
search area along the epipolar line. Assuming a Gaussian distributed likelihood, the search
area should cover three times the standard deviation in both directions of the epipolar line,
such that the probability that the pixel is inside this search area is 99.7%. The search area for a
pixel in a frame is thus proportional to the uncertainty of a pixel. As the probability of a mis-
match increases when a search is performed across more pixels, the probability of a mismatch
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increases when the uncertainty is larger. Hence, when the frame rate is increased while the
camera is moving with respect to the observed scene.

3.4 Quality scaling

Quality scaling reduces the size of a video by changing the compression that is applied to the
video. Increasing the compression ratio reduces the amount of data that is used to represent
a video frame. The data reduction comes at the price of video quality. As shown in Figure 3.4,
quality scaling introduces visual distortions, such as blockiness.

Quality scaling

Figure 3.4: Quality scaling increases the visible distortions such as blockiness. The images are part of
the RGB-D dataset (Sturm et al., 2012).

3.4.1 Impact on throughput requirements

The quality of an encoded video is not directly related to its bit rate. Some frames require more
data for the same perceived quality than others. For example, a completely black frame can be
compressed far more than a frame that contains a lot of detail.

Besides the complexity of the image, the bit rate depends on the amount of computation time
that an encoder has. For example, when an encoder can do two or more passes on the video
data, it can optimize the compression ratio far better than in a single pass. Hence, the bit rate
of an encoded video depends on the settings of the encoder. In general, reducing the quality re-
duces the bit rate, but the amount by which the encoder is able to reduce the bit rate is difficult
to predict, as it depends on the video.

As explained in Chapter 2, there are multiple ways to control the quality of the encoding. The
output can be indirectly scaled by setting a constant bit rate (CBR) or a target average bit rate
(ABR). These settings directly result in an average bit rate, however, there may still exist large
peaks in the bit rate. Furthermore, there is no control over the resulting quality.

It is also possible to control the quality more directly by setting a constant rate factor (CRF).
The encoder then optimizes the perceived quality. However, the resulting bit rate varies and
cannot be determined analytically. Each increment of 6 for the CRF roughly halves the bit rate
Robitza (2017b).

3.4.2 Impact on visual tracking for the static case

As explained in Section 2.6.2, the H.264 encoder applies transform encoding to encode resid-
ual images. Increasing the compression ratio reduces the amount of data that is used for the
transform encoding. Hence, higher frequency components are filtered out. As high-gradient
pixels, which correspond to higher frequencies, are better trackable than low-gradient pixels, it
is expected that reducing quality increases the probability of mismatches.

The impact of quality scaling on visual tracking, however, is mainly caused by the streaming
distortions that are present when the quality is decreased. The distortions cause local changes
in image intensity, which increase probability of a mismatch.
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Besides that, distortions such as blockiness introduce artificial edges in the video frame. These
artificial edges can end up being wrongly selected as point to track.

In general, frames with low quality should not be used for point selection, and ideally not for
matching either.

3.5 Trade-off between types of scaling

Now that the impact of spatial, temporal and quality scaling on both the required throughput
and the visual tracking performance is analysed, it is time to compare these types of scaling
with each other and look at their combined impact. First, the combination of quality scaling
and each of the other two types of scaling is discussed. After that, spatial and temporal scaling
are compared.

3.5.1 Quality and spatial scaling

As discussed in Section 3.2, the number of points that can be tracked relates to the resolution
of the video. When the resolution is increased, more points can be tracked and the uncertainty
in the depth estimate becomes smaller.

When the encoding quality of a high resolution video is low however, the added value of the ex-
tra trackable points is counteracted by the distortions. Therefore, it is not beneficial to increase
the resolution when the encoding quality is low.

When the encoding quality is higher, the extra tracked points can be used effectively to improve
the visual tracking. Hence, there is a minimum quality factor for each resolution for which it
becomes beneficial to increase the resolution. Until this quality factor is reached, the resolution
should not be increased. The reverse is also true, i.e., the resolution should only be scaled down
when the minimum quality for the current resolution is reached.

3.5.2 Temporal and quality scaling

As discussed in Section 3.3, a higher frame rate is only beneficial for the uncertainty of depth
estimates when the encoding quality is high. The same reasoning applies to the added value of
a larger overlapping area between frames.

Increasing quality at the cost of frame rate reduces the uncertainty of tracked points. However,
it also reduces the number of trackable points when the camera is moving.

Similar to spatial scaling, there will be a minimum quality factor for which a further decrease in
quality would prevent accurate tracking for more points than added by the overlapping area as
a result of a higher frame rate. This factor will depend on the velocity of the camera with respect
to the observed scene, as the overlapping area is a function of the velocity of the camera with
respect to the observed scene and the frame rate.

3.5.3 Spatial and temporal scaling

Both spatial and temporal scaling affect the amount of points that can be tracked between
frames. For spatial scaling this amount is more or less directly related to the resolution. For
temporal scaling, the relation between the amount of trackable points depends on both the
frame rate and the velocity of the camera with respect to the observed scene.

When the velocity of the camera with respect to the observed scene is high, most of the extra
points that are added by the higher resolution fall outside the overlapping area between frames.
Hence, in such a situation increasing the frame rate is more beneficial for the tracking perform-
ance than increasing the resolution, as increasing the overlapping area has a larger impact on
the amount of trackable points. This suggests that there is an optimal trade-off between spatial
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and temporal scaling that depends on the velocity of the camera with respect to the observed
scene.

When a static scene is assumed, this trade-off can be derived analytically, using the angular and
linear velocity and the field of view of the camera, by assuming a uniform distribution of points
in each frame.

3.6 Conclusion

The three types of scaling that have been discussed all impact the required throughput and
visual tracking performance in a different way. As the impact of the H.264 encoder is difficult
to predict, impact can only be analysed qualitatively. Experiments are required for a qualitative
analysis.

The impact of the three types of scaling on throughput is difficult to predict for all types of
scaling, as the encoder optimizes compression using a variety of advanced methods.

The quadratic and linear reductions in data that are theoretically possible for respectively spa-
tial and temporal scaling are not expected to be reached in reality after encoding.

For quality scaling the relationship between bit rate and quality is even harder to predict. How-
ever, the bit rate can be effectively set by configuring a CBR in the encoder.

For all types of scaling the required throughput is be reduced when scaling down. To find the
magnitude of this reduction, the bit rate of scaled and encoded videos should be analysed via
experiments.

The expected results are:

• Spatial scaling reduces data less than quadratically.
• Temporal scaling reduces data less than linearly.
• Quality scaling halves the data each time the CRF is incremented by 6.

Regarding the performance of a visual tracking algorithm, it can be concluded that the distor-
tions induced by lowering the quality counteract the performance gains of higher resolutions
and frame rates.

It is expected that for each combination of resolution and frame rate a minimum quality factor
exists that should be reached before applying spatial or temporal scaling. To find this min-
imum quality factor, the performance of a visual tracking algorithm should be evaluated for
each combination of frame rate and resolution while varying this quality factor.

The impact of temporal scaling depends on the velocity of the camera with respect to the ob-
served scene, as it determines the size of the overlapping area between frames. The impact
of temporal scaling increases when the velocity increases. Therefore, the trade-off between
spatial scaling and temporal scaling depends on the velocity as well, because the size of the
overlapping area determines the impact of spatial scaling.

Experiments are needed to quantify the impact of spatial, temporal, and quality scaling on
visual tracking performance. Based on the qualitative analysis, the expectations are:

• There exists a minimum quality that should be reached before applying any other type of
scaling.

• Distortions induced by quality scaling counteract benefits of higher resolutions and
frame rates.

• The trade-off between spatial and temporal scaling depends on the velocity of the camera
with respect to the observed scene. For higher velocity videos it is better to apply more
spatial scaling, and for lower velocity videos it is better to apply more temporal scaling.
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4 Test design

In the previous chapter, it was concluded that it is difficult to predict the impact of spatial, tem-
poral and quality scaling on required throughput, because of the compression methods that
the encoder uses, which depend on the content of the video. Therefore, the actual reduction
should be measured through experiments.

Besides the expected effects on throughput, the expected effects of each type of scaling on
visual tracking performance has been discussed. It was concluded that there is a trade-off
between spatial and temporal scaling and that for each combination of resolution and frame
rate there is a certain threshold for the quality factor that must be reached before changing the
spatial and temporal scaling factors.

The actual effects of scaling on the required throughput, as well as the effects of combined scal-
ing on visual tracking performance, can only be quantitatively analysed through experiments.
The threshold value for the quality and the trade-off between spatial and temporal scaling can
be obtained by analysing the results of these experiments.

In this chapter the design of these experiments is explained. First, an overview of the test frame-
work is given, after which the implementation and used algorithms are further explained. The
source code of the scripts that are referred to in this chapter is available via the GitLab reposit-
ory of the Robotics and Mechatronics group of the University of Twente. A copy of the README
file is presented in Appendix B.

4.1 Overview of the setup

An overview of the experimental setup is shown in Figure 4.1.

Camera matrix Spatial scaling
Visual

tracking
Performance

evaluation

Bit rate
evaluation

Video generation:
Spatial scaling

Temporal scaling
Encoding

Temporal scaling

Images

Camera pose

Figure 4.1: The experimental setup

Image sequences from a variety of datasets are converted into encoded videos using ffmpeg,
which is a widely used, free and open-source project that can create encoded video streams.
It is supported by most operating systems, such that it can be used on a robot, as well as on
a workstation during experiments. More information regarding the datasets that are used for
generating the videos, is provided in Section 4.8.

Spatial and temporal scaling is applied to the videos, by changing the parameters of ffmpeg,
as explained in Section 4.2.
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The same temporal scaling is applied to the file containing the camera pose, which is provided
by the datasets, such that the resulting file contains a camera pose for each frame of the video.
This process is explained in Section 4.4.

The camera matrix, which was discussed in Section 2.1, is scaled using the same spatial scaling
parameters as used for the video, such that the visual tracking algorithm can project 3D points
to the correct pixel locations. In Section 4.3, it is explained how spatial scaling is applied to the
camera matrix.

The setup is used for each combination of spatial, temporal, and quality scaling. The range of
resolutions and frame rates that are used for generating the videos are based on the available
frame rate and resolution of each dataset and are discussed in Section 4.9.

The visual tracking algorithm, which is presented in Section 4.5, runs offline, as the software
does not yet have to run in realtime on a robot. For similar reasons, the visual tracking al-
gorithm is not applied to a wireless video stream.

For each block of Figure 4.1 a Node.js script is created to automate the process. This language
was chosen by the author because of its development speed.

There is also a script that automates the whole process for a given video sequence. This script
generates videos, camera poses and camera matrices for all combinations of scaling. It then
runs the visual tracking algorithm on all these videos and outputs the result so that it can be
analysed.

In the next sections, the process within each block of Figure 4.1 is explained in more detail. Sub-
sequently, the datasets that are used in the experiments are presented, followed by the chosen
scaling parameters for each type of scaling.

4.2 Video generation

ffmpeg can be used via the command line interface (CLI) to generate videos. The image se-
quences from a dataset can be encoded into a video by specifying the paths of the images to
ffmpeg as a glob using the -i option in combination with the -pattern_type option set
to ’glob’. Each image that matches the specified glob is encoded as a single frame in the video.

For a folder named images containing PNG images, the code for generating a video using the
H.264 encoder is:

ffmpeg -pattern_type glob -i "images/*.png" \
-codec:v libx264 output_filename.mp4

Using additional options, spatial, temporal and quality scaling can be applied on the images
before they are encoded into a video.

4.2.1 Spatial scaling with ffmpeg

Spatial scaling can be applied to the video with ffmpeg via the CLI, by specifying a
-filter:v option scale, where the :vmeans that the filter should be applied on the video
stream.

ffmpeg contains several options for the scaling algorithm, such as bilinear, nearest neigh-
bour, Gaussian, Lanczos and bicubic spline. For this experimental setup, the bicubic scaling
algorithm is used, as it is a good trade-off between computation time and image quality. This
makes it a suitable scaling method for application on a robot as well.

Given a folder containing PNG images named images, a video with a spatial scaling factor of
1
2 can be obtained using:

ffmpeg -pattern_type glob -i "images/*.png" \
-filter:v "scale=iw/2:ih/2" -sws_flags bicubic \
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-codec:v libx264 output_filename.mp4

4.2.2 Temporal scaling with ffmpeg

Temporal scaling can be realized by dropping certain frames. Frames can be filtered using
ffmpeg via the CLI, by providing a -filter:v option select.

Using select="not(mod(n3))" as a filter option, every third frame is included in the res-
ulting video. This corresponds with a temporal scaling of 1

3 .

In order for the video to have the correct frame rate it is also necessary to configure the input
frame rate and the desired output frame rate.

Given that the PNG images in a folder named images were obtained with frame rate of 30 Hz,
a video with a temporal scaling factor of 1

3 can be obtained using:

ffmpeg -r 30 -pattern_type glob -i "images/*.png" \
-filter:v "select=not(mod(n\,3))" \
-codec:v libx264 -r 10 output_filename.mp4

4.2.3 Quality scaling using ffmpeg

As explained in Section 2.6.3, there are multiple ways to configure the quality of the H.264 en-
coder. For the experiments in this research, the constant rate factor (CRF) is used to control
the quality of the encoding, as it results in a constant video quality. As a constant bit rate is not
required for the experiments, a video buffer verifier (VBV) is not used.

To configure a CRF the -crf option can be set to a factor between 0 and 51, where 23 is the
default factor. An example is given by:

ffmpeg -r 30 -pattern_type glob -i "images/*.png" \
-codec:v libx264 \
-crf 23 \
output_filename.mp4

4.2.4 Combining spatial, temporal and quality scaling in ffmpeg

The settings discussed in Sections 4.2.1–4.2.3 can be combined into a single ffmpeg com-
mand, which is given by:

ffmpeg -r 30 -pattern_type glob -i "images/*.png" \
-filter:v "select=not(mod(n\,3)),scale=iw/2:ih/2" \
-sws_flags bicubic \
-c:v libx264 -crf 23 \
-r 10 output_filename.mp4

Using this command, a video can be generated for each combination of spatial, temporal and
quality scaling, by executing the command with different values for the provided options.

To use the generated video for visual tracking, the camera matrix and camera pose sequences
have to be scaled along, which is covered in the next sections.

4.3 Spatial scaling of the camera matrix

When spatial scaling is applied to a video, the dimensions of each video frame change. The
original camera matrix should be rescaled such that points in 3D are projected to the correct

2D pixel locations. As discussed in Section 2.1, the projection
[
u, v

]T
of a point p ∈ R3 with
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respect to the camera frame with camera matrix K is given by

λ

u
v
1

= Kp (4.1)

Spatial scaling can be defined as an operation that, given a scaling factor ss , maps
[
u, v

]T
to[

u′, v ′]T
, where u′ = ssu and v ′ = ss v .

Substituting this into Equation 4.1 results in

λ

s−1
s u′

s−1
s v ′

1

= Kp (4.2)

This can be rewritten as

λ

u′

v ′

1

=
ss 0 0

0 ss 0
0 0 1

Kp (4.3)

Hence, the camera matrix K′ of a scaled video is given by

K′ =
ss 0 0

0 ss 0
0 0 1

K (4.4)

A scaled version of the camera matrix as given in Equation 4.4 is computed for each spatial
scaling factor, such that it can be used as input for the visual tracking algorithm.

4.4 Temporal scaling of the camera pose

When certain images from sequences are dropped to simulate temporal scaling, the camera
pose sequence has to be scaled along, i.e. the camera pose for each frame must be extracted
from the camera pose data that is provided by the datasets.

Most datasets contain a list of the images in the sequence, together with the timestamp of
the moment of capture. Likewise, a list of camera poses with a timestamp is provided. The
timestamps of the captured images do not always correspond with the timestamps of the
provided camera poses. The latter are often captured at a higher frequency. Therefore, the
camera poses for the images have to be filtered from the list.

This algorithm is straightforward. Given the temporal scaling factor st , the list of images L I and
the list of camera poses LT , the list of temporally scaled camera poses LT,st can be obtained
using Algorithm 1.

4.5 Visual tracking

After generating a video and scaling the camera matrix and camera pose sequence, these three
files are used by a visual tracking algorithm to perform visual tracking.

The impact of spatial, temporal and quality scaling on computer vision is determined by ana-
lysing their effects on a visual tracking algorithm. It is expected that the effects on the perform-
ance of such an algorithm is similar to the effects on performance of other computer vision
algorithms, because a visual tracking algorithm uses basic image processing techniques that
are also used in most other computer vision algorithms.

For example, when tracked points are directly used to generate a map and estimate the pose
of the camera, the error in these tracked points propagates to the map and pose estimates.
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Algorithm 1: Temporal scaling of the camera pose T

Data: set of images L I , set of camera poses LT , scaling factor st

Result: set of temporally scaled camera poses LT,st

1 LT,st ←; ;
2 Sort L I and LT by their timestamp;
3 foreach timestamp tI ,i of entry i in L I do
4 if i ≡ 0 (mod s−1

t ) then
5 foreach timestamp tT, j of entry j in LT do
6 if tT, j > tI ,i then
7 if j = 0 or tT, j − tI ,i > tI ,i − tT, j−1 then
8 add T j to LT,st

9 else
10 add T j−1toLT,st

11 end
12 break;

13 end
14 end
15 end
16 end

Hence, the performance of a complete visual simultaneous localization and mapping (SLAM)
algorithm is directly related to the performance of a visual tracking algorithm.

The visual tracking algorithm that is used for the experiments is based on algorithms that are
also used in direct implementations of visual SLAM. Recently, direct methods have been part of
extensive research. As explained in Section 2.5.2, one of the advantages of direct methods is that
they operate directly on the pixel intensities. As a result, direct methods can create dense maps
of an environment, while still operating in realtime. The high amount of tracked points makes
direct methods also more robust to noise and fluctuations in the quality of the video stream.
Furthermore, as direct methods do not depend on a specific choice of feature, the outcome of
a direct visual tracking algorithm is applicable to a broader range of tracking algorithms than
a feature-based implementation. These advantages of direct methods over indirect methods
have led to the conclusion that direct methods are more useful for the use case covered by this
research, without sacrificing on generalizability.

Several open source implementations of direct visual SLAM methods exist, such as (Engel et al.,
2017, 2014; Forster et al., 2014). However, after experimenting with several of these imple-
mentations, none of the available implementations were found suitable for this research. The
algorithms either depend on the Robot Operating System (ROS), were not compiling on the
available hardware or were crashing during runtime.

After trying to fix errors and rewrite available open source implementations to the specifics of
this research, existing implementations were abandoned and a custom implementation was
developed instead. This implementation is based on a combination of (Engel et al., 2017; For-
ster et al., 2014; Vogiatzis and Hernández, 2011; Civera et al., 2008).

As shown in Figure 4.2, it consists of two main algorithms. First, a point selection algorithm
is used to determine which points should be tracked. This algorithm selects points based on
their gradient, but also optimizes for a uniformly distributed collection of points in a frame.
After points have been selected, a visual tracking algorithm performs the actual tracking using
search along the epipolar line.
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The number of visible points is evaluated for each frame, after tracking points. When the num-
ber visible points is below a target value, new points are selected in the current frame, before
the next frame is read from the video stream.

Select points Grab next frame
Estimate

per pixel depth

Enough
visible
points?

yes

no

Figure 4.2: The visual tracking algorithm consists of a point selector and a depth estimator.

4.5.1 Pixel selection

Even though it is possible to track all pixels in a frame, not all pixels can be tracked with the
same accuracy. As explained in Section 2.4, areas with low gradients are difficult to track, be-
cause surrounding pixels have similar intensities. The photometric error is about the same for
each pixel within such an area, resulting in inaccurate tracking.

To solve this problem, some visual SLAM methods apply methods such as regularization to the
depth estimates (Newcombe et al., 2011; Engel et al., 2013).

Another solution, is to prevent low-gradient points from being tracked, by adding a pixel se-
lection process. Besides increasing tracking accuracy, this also saves a lot of computation time
since fewer points have to be matched.

For this reason, a pixel selection process is added to the visual tracking algorithm that is used
during the experiments, instead of applying regularization. The algorithm that is used to select
pixels for tracking is presented in Algorithm 2. It is based on the point selection algorithm from
Engel et al. (2017).

The point selection algorithm optimizes for both distinctiveness and a uniform distortion of
points. First, a frame is divided into rectangular regions. For each region a threshold is determ-
ined, based on the median of the gradient magnitude within this region.

After determining a threshold for each region, the frame is divided into smaller regions for a
second time. For each of these regions, the pixel with the largest gradient is selected as a point
for tracking, when it is larger than the threshold for its region.

To obtain an even more uniform distribution, this last process is repeated two times using a
lower threshold value and a larger region. This adds a smaller amount of pixels with a lower
gradient to the collection of points.

4.5.2 Depth estimation

The depth estimation part of the tracking algorithm is based on a combination of direct visual
SLAM methods (Engel et al., 2017; Forster et al., 2014; Vogiatzis and Hernández, 2011; Civera
et al., 2008). The algorithm searches an optimal match between a selected point from a pre-
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Algorithm 2: The point selection algorithm for the visual tracker

Data: frame I ∈Rq×r , threshold region size ρth , threshold offset θ, selection region size d
Result: Set of selected points Lp

1 Lp ←;;
2 T ← 0q,r ;
3 Gabs ← AbsoluteGr adi ent (I);
4 ;
5 Define thresholds;

6 for i ← 0 to q
ρth

−1 do

7 for j ← 0 to r
ρth

−1 do

8 mabs ← medi an(Gi :i+ρth , j : j+ρth );
9 for k ← 0 to ρth −1 do

10 for l ← 0 to ρth −1 do
11 Tiρth+k, jρth+l ← mabs +θ

12 end
13 end
14 end
15 end
16 ;
17 Select points;

18 for i ← 0 to q
d −1 do

19 for j ← 0 to r
d −1 do

20 gmax ← 0;

21 pmax ← [−1 −1
]T

;
22 for k ← 0 to d −1 do
23 for l ← 0 to d −1 do
24 if Gi d+k, j d+l > gmax and Gi d+k, j d+l > Ti d+k, j d+l then
25 gmax ←Gi d+k, j d+l ;

26 pmax ← [
i d +k j d + l

]T
;

27 end
28 end
29 end
30 if gmax > 0 then
31 add pmax to Lp

32 end
33 end
34 end
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vious frame and candidate points on the epipolar line in the current frame by minimizing the
sum of squared differences (SSD) of the pixel intensities.

Using the location of the matched pixel, the corresponding depth is estimated. The depth es-
timate is then used to constrain the search area along the epipolar line in the next frame.

When the uncertainty of the depth estimate is under a certain threshold, the corresponding
point in 3D is added to the map. The points that are tracked are referred to as seeds, until they
reach the uncertainty threshold and are added to the map.

The algorithm is described in Algorithm 3 and is explained in more detail in the next para-
graphs.

Algorithm 3: The depth estimation algorithm for the visual tracker

Data: set of frames L I , set of camera poses LT , target #seeds Ns , camera matrix K
Result: map of points Mp

1 lv ← 0;
2 Ls ←;;
3 Mp ←;;
4 for i ← 1 to |L I | do
5 if lv < Ns then
6 Ls+ ← CreateSeeds(SelectPoints( L I ,i−1, Ns − lv ));
7 Ls ← Ls ∪Ls+

8 end
9 lv ← 0

10 foreach s j ∈ Ls do
11 if IsVisible( s j ,LI ,i ,K,LT,i ) then
12 Lc ← ComputeEpipolarLinePoints( s j ,LT,i ,K );
13 SSDmi n ←∞;

14 copt ←
[−1 −1

]T
;

15 foreach
[
uc vc

]T ∈ Lc do

16 SSD ← ComputeSSD( s j ,
[
uc vc

]T
,LI ,i );

17 if SSD < SSDmi n then
18 SSDmi n ← SSD ;

19 copt ←
[
uc vc

]T

20 end
21 end
22 s j ← UpdateSeedDepthAndUncertainty( s j ,K,LT,i ,copt );
23 if UncertaintyBelowThreshold( s j );
24 then
25 p ← Extract3DPoint( s j );
26 Add p to Mp ;
27 Remove s j from Ls

28 else
29 lv ← lv +1
30 end
31 end
32 end
33 end
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Seeds

Seeds are generated using the points that are selected by the point selection algorithm, and
updated using the matched pixel. The concept of these seeds is based on the work of Vogiatzis
and Hernández (2011), who introduced a Gaussian + uniform mixture model for vision-based
depth estimates:

p(xn |Z ,π) =πN (xn |Z ,τ2)+ (1−π)U (xn |Zmi n , Zmax ) (4.5)

Where xn is the matched pixel location, Z is the depth, τ2 the variance of a good measurement
and π the probability of an inlier, which can be modelled by the inlier count. Zmi n and Zmax

contain the prior knowledge about the minimum and maximum observable depth in a scene.

The Gaussian distribution in Equation 4.5 models the depth estimate for good matches and the
uniform distribution models the depth estimate for mismatches. The posterior of the depth
estimate is:

p(Z ,π|x0, . . . , xn) ∝ p(Z |π)
∏
n

p(xn |Z ,π) (4.6)

which can be approximated by a Gaussian × beta distribution:

q(Z ,π|an ,bn ,µn ,σn) = bet a(π|an ,bn)N (Z |µn ,σ2
n) (4.7)

Where an and bn are counts for respectively the number of inliers and the number of outliers, to
model the inlier probability π, and µn and σ2

n represent the mean and variance of the Gaussian
distributed depth estimate.

When a new depth measurement is added to Equation 4.7, the updated posterior becomes:

C ×p(xn |Z ,π)q(Z ,π|an−1,bn−1,µn−1,σn−1) (4.8)

Where C denotes a constant. This equation is not a Gaussian × beta distribution, but can be
approximated as one by matching the moments of Equation 4.8 and Equation 4.7.

The variance of the posterior, σ2
n , is used to determine if a depth estimate converged to an

accurate enough depth estimate. This is considered the case when the variance is lower than
Zmi n−Zmax

10000 and the inlier ratio an
an+bn

larger than 0.1.

In contrast with Vogiatzis and Hernández (2011), the visual tracking algorithm estimates the
inverse depth instead of the depth, similar to Newcombe et al. (2011) and Forster et al. (2014).
This is because the inverse depth is better parametrized by a Gaussian distribution than the
depth (Civera et al., 2008). Furthermore, it is less complex to describe a point at infinity in
software using an inverse depth of zero.

Similar to Vogiatzis and Hernández (2011), seeds are initialized such that the depth range is
covered by three times the standard deviation in both directions, using a0 = 10,b0 = 10,µ0 =
dmax−dmi n

2 ,σ2
0 =

(
dmax−dmi n

6

)2
, where dmax and dmi n are the maximum and minimum inverse

depths.

Epipolar geometry

Each seed is projected onto to the next frame using the spatially scaled camera matrix and
the temporally scaled camera pose. Using the basic equation for the pinhole camera model,
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which was presented in Section 2.1, the projection of a point p ∈R3, expressed in the coordinate
system of the camera at frame i , is given by:

z

ui

vi

1

= Kp (4.9)

Where K is the camera matrix, z the depth and ui , vi the pixel coordinates of the projection in
frame i . The projection of the same point in frame j is given by:

λ

u j

v j

1

= KRp+Kt (4.10)

Where R and t denote respectively the relative rotation and translation of the camera in frame
j , with respect to the pose of the camera in frame i .

Substituting Equation 4.9 into Equation 4.10 gives:

λ

u j

v j

1

= zKRK−1

ui

vi

1

+Kt (4.11)

Multiplying Equation 4.11 by the inverse depth d = z−1 results in:

dλ

u j

v j

1

= KRK−1

ui

vi

1

+dKt (4.12)

which expresses the epipolar line of a point from frame i in frame j , using the relative rotation
and translation of the camera and the camera matrix as a function of the inverse depth d . The
constrained search area for a pixel match in frame j is determined using Equation 4.12, by
projecting the minimum µ j−1 −3σ j−1 and maximum µ j−1 +3σ j−1 inverse depths.

Sum of squared differences

Candidate pixels are selected by sampling the line segment of the epipolar line between the
projections of the estimated minimum and minimum inverse depth, with a discrete step size
of one pixel. For each of these candidates pixels, the SSD between the pixel intensities of a patch
around the point in frame i and the projection of this patch in frame j is computed using:

SSD(dc ) =∑
N

(
Ii (ui ,n)− I j (P(ui ,n ,dc ,K,R,t))

)2 (4.13)

Where I j (u) retrieves the intensity of pixel u in frame j , and P(u j ,n ,dc ,K,R,t) is the projec-
tion function that maps a point ui to frame j following Equation 4.12. The candidate with
the minimum SSD is selected as matching pixel and used to update the posterior parameters
an ,bn ,µn ,σn of the seed.

4.6 Bit rate evaluation

To determine the impact of spatial, temporal, and quality scaling on the required through-
put, the bit rate of each generated video is evaluated. ffmpeg contains a CLI tool for this:
ffprobe.
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ffprobe can be configured to analyse the video stream by setting the -select_streams
option tov. Frame information can be extracted using the-show_frames option. By specify-
ing csv as -print_format, the output can be written as comma-separated values (CSV).
The columns that should be present in the CSV can be selected using the -show_entries
option.

An example output from ffprobe is shown in Table 4.1. This table shows the first 10 entries
of the output generated by:

ffprobe -loglevel error -select_streams v \
-show_frames -show_entries \
frame=pkt_pts_time,pkt_size,pict_type \
-print_format csv corbs1_1920x1080_30_29

Timestamp Size in bytes Frame type
0.000000 93020 I
0.033333 6367 B
0.066667 7595 B
0.100000 30478 B
0.133333 24985 P
0.166667 4609 B
0.200000 7449 B
0.233333 5511 B
0.266667 34180 P
0.300000 5008 B

Table 4.1: Example data obtained from ffprobe.

The bit rate throughout a video can be computed from the results, using the timestamps and
the size of the frames.

4.7 Performance evaluation

To evaluate the performance of the visual tracking algorithm, two metrics are used:

• The average number of points that can be selected for tracking per frame.
• The number of points that are added to the map.

The number of points that can be selected indicate the potential density of the map that can be
obtained via tracking. Since in general, a denser map is more useful, the number of trackable
points are considered a performance indicator.

The number of trackable points is determined by applying the point selection algorithm from
Algorithm 2 to several frames of each generated video, using region size d = 1. The results are
then averaged over the number of frames.

The density of the map is also affected by the uncertainty of the visual tracking algorithm. As
explained in Section 4.5.2, each time an inverse depth is estimated, the parameters of the cor-
responding probability distribution are updated. When the resulting uncertainty is below a
threshold, the depth estimate is considered accurate enough to add the point to the 3D map.
Hence, the total amount of points in the map indicates the performance of the visual tracking
algorithm.

The number of points in the map is analysed, by applying the visual tracking algorithm to
each generated video, using a target number of visible points of 200. By using the same tar-
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get number of visible points, the impact of the different scaling parameters on the uncertainty
of tracked points can be evaluated.

4.8 Selected datasets

Video processing algorithms are generally evaluated on standardized datasets. This allows for
objective comparison between algorithms. There exist several benchmark datasets that con-
tain image sequences captured by a camera. For the performance evaluation of visual SLAM
and visual tracking algorithms, such sequences also contain recordings of the camera traject-
ory. The camera trajectory can be used to determine the pose of the camera for each video
frame. This pose is referred to as the ground-truth camera pose, as it is accurate enough to
consider it the ground-truth.

Two datasets are used for the experiments to analyse the impact of spatial, temporal, and qual-
ity scaling on bit rate and tracking performance: the TUM RGB-D dataset (Sturm et al., 2012)
and the CoRBS dataset (Wasenmüller et al., 2016). Both datasets contain image sequences and
high-frequency camera pose information, collected by high-accuracy motion-capture equip-
ment, for different scenes.

Videos captured by the Dutch National Police (NPN) are not available and hence not used for
the experiments. The two selected datasets were chosen to be as close to a realistic scenario as
possible.

4.8.1 TUM RGB-D dataset

The RGB-D dataset from the Technical University of Munich (Sturm et al., 2012), is a benchmark
dataset that can be used to evaluate visual SLAM methods and contains a large set of image
sequences obtained using a Microsoft Kinect.

Images are recorded at a frame rate of 30 Hz with a resolution of 640×480 pixels. The images are
provided in portable network graphics (PNG) format, which is a lossless format that contains
8-bit red, green and blue pixel intensities.

The ground-truth camera trajectory is obtained at a frequency of 100 Hz using a high-accuracy
motion-capture system.

Image sequences are provided in several categories, such as handheld SLAM, 3D Object Recon-
struction and Robot SLAM. For this thesis the robot pioneer sequences 1, 2 and 3 have been
selected, as they contain images captured by a robot that is navigated through a maze of tables,
containers and walls. Hence, these sequences contain videos similar to the situation of the
NPN. There are, however, no moving objects observed by the camera. All three sequences con-
tain between 2 and 3 minutes of video. In Figure 4.3 a few example frames of these sequences
are shown.

(a) (b) (c)

Figure 4.3: A few video frames from the RGB-D dataset (Sturm et al., 2012).
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(a) (b) (c)

Figure 4.4: A few frames from the CoRBS Desk sequence (Wasenmüller et al., 2016).

4.8.2 CoRBS dataset

The CoRBS dataset (Wasenmüller et al., 2016) is another benchmark dataset, recorded using
the Microsoft Kinect v2. Similar to the RGB-D dataset, images are recorded at a frame rate of
30 Hz and provided in PNG format. However, the images in the CoRBS dataset are recorded at
a high resolution of 1920×1080 pixels.

The ground-truth camera trajectory is obtained using an external motion capture system at a
frequency of 100 Hz. The motion capture has a sub-millimetre precision.

The observed scene is less close to the situation of the NPN, however the high-resolution im-
ages allow for the evaluation of a larger range of realistic spatial scaling parameters. The dataset
contains recordings of four different scenes. The camera is moved through a room while ob-
serving a static scene of a mannequin, a cabinet, a desk and or a racing car.

It was determined that only a limited number of sequences were needed for the evaluation. As
the desk observing scene contains the fewest reflections, two desk observing sequences were
selected for the experiments, a relatively short sequence of 23.14 s and a longer sequence of
81.3 s. In Figure 4.4 a few example frames of these sequences are shown.

4.9 Choice of parameters

The impact of spatial, temporal, and quality scaling on required throughput and tracking per-
formance is analysed for a variety of scaling parameters, using the setup from Section 4.1.

The spatial scaling is applied using parameter s = 1
n for n ∈ N+ as long as the height of the

resulting video stays above 240 pixels, as a smaller resolution are too small for a tele-operator.
The spatial scaling parameters allow for an evenly divisible resolution.

The temporal scaling parameter t is varied using t = 1
m for m ∈ {1,2,3,6}, resulting in a frame

rate of 30 Hz, 15 Hz, 10 Hz and 5 Hz. 30 Hz is the maximum available frame rate and it a
minimum frame rate of 5 Hz is required for a tele-operator to navigate the robot. The values in
between are chosen such that the frame rate can be scaled by discarding entire frames.

The quality is varied using the CRF values 17, 20, 23, 26 and 29, where a larger value indicates
a lower quality. 23 is the default and recommended value and each increment of 6 roughly
doubles the resulting file size Robitza (2017a). Hence, the minimum value applies roughly 1

4 of
the maximum quality scaling, which is a similar scaling range as used for the spatial scaling.

Overviews of the applied scaling parameters and resulting resolution, frame rate, and quality
factor, for respectively the RGB-D dataset and the CoRBS dataset, are provided in Table 4.2 and
Table 4.3.
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Parameter Scaling Value
Resolution 1 640×480
Resolution 1/2 320×240
Frame rate 1 30 Hz
Frame rate 1/2 15 Hz
Frame rate 1/3 10 Hz
Frame rate 1/6 5 Hz
CRF N/A 17
CRF N/A 20
CRF N/A 23
CRF N/A 26
CRF N/A 29

Table 4.2: The different scaling parameters used for the RGB-D dataset

Parameter Scaling Value
Resolution 1 1920×1080
Resolution 1/2 960×540
Resolution 1/3 640×360
Resolution 1/4 480×270
Frame rate 1 30 Hz
Frame rate 1/2 15 Hz
Frame rate 1/3 10 Hz
Frame rate 1/6 5 Hz
CRF N/A 17
CRF N/A 20
CRF N/A 23
CRF N/A 26
CRF N/A 29

Table 4.3: The different scaling parameters used for the CoRBS dataset
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5 Results and discussion

In the previous chapter, it was explained how the impact of spatial, temporal, and quality scal-
ing on required throughput and visual tracking performance can be analysed qualitatively us-
ing experiments. In this chapter, the results of these experiments are presented and discussed.

First, the results the bit rate evaluation is presented and discussed. Then, the results of the
visual tracking performance evaluation are presented and discussed. Finally, it is discussed
how the results can be used to define an optimal scaling strategy for the visual tracking al-
gorithm. Subsequently, it is discussed to what extent the results apply to computer vision in
general. At the end of this chapter, the key findings from the experiments are summarized.

5.1 Bit rate evaluation

For each sequence a combination of spatial, temporal and quality scaling has been applied to
the image sequences, while encoding them into a video using ffmpeg as explained in Sec-
tion 4.2. Subsequently, the bit rate has been analysed using ffprobe, as explained in Sec-
tion 4.6.

5.1.1 Results

In Figures 5.1a–5.3a, the bit rates of different videos generated from the Desk 1 sequence of the
CoRBS dataset are shown. In Figure 5.1a, it is shown how the bit rate varies depending on the
resolution, in Figure 5.2a, it is shown how the bit rate varies depending on the frame rate, and
in Figure 5.3a, it is shown how the bit rates varies depending on the quality. The bit rates for
other sequences and scaling parameters follow a similar course and are shown in Appendix A.
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Figure 5.1: The bit rate and compression ratio for videos generated from the CoRBS Desk 1 sequence
with different resolutions, at a frame rate of 30 Hz and a constant rate factor (CRF) of 29. The bit rate in
(a) changes almost linearly with respect to the number of pixels. In (b), the compression ratio increases
when the resolution is increased, which means that the relationship between the bit rate and the number
of pixels is non-linear. The increase in compression ratio declines when the resolution is increased.

In Figure 5.1a the bit rate increases linearly with respect to the number of pixels when the res-
olution increases. The bit rate also increases when the frame rate increases as shown in Fig-
ure 5.2a. However, the increase in bit rate seems to decrease when the frame rate is increased.
This suggests that the bit rate converges asymptotically to an upper bound when the frame rate
is further increased beyond 30 Hz.
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Figure 5.2: The bit rate and compression ratio for videos generated from the CoRBS Desk 1 sequence
with different frame rates, at a resolution of 1920×1080 and a CRF of 29. In (a), the bit rate increases less
when the frame rate is increased. This corresponds with an increased compression ratio in (b).
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Figure 5.3: The bit rate and compression ratio for videos generated from the CoRBS Desk 1 sequence
with different qualities, at a resolution of 1920 × 1080 and a frame rate of 30 Hz. In (a), the bit rate
decreases exponentially when the quality is decreased by increasing the CRF. This corresponds with an
exponentially growing compression ratio in (b).
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For the quality factor, the relationship is quadratic, as shown in Figure 5.3a. When the quality is
decreased, which corresponds to a higher CRF, the bit rate also decreases. However, the effect
decays when the CRF is increased.

The compression applied by the encoder is shown in Figures 5.1b–5.3b for the Desk 1 sequence
of the CoRBS dataset. In these figures, the compression ratio, rcompr essi on , is defined as the
ratio between the video data rate before encoding and the resulting bit rate, fbi t , after encoding:

rcompr essi on = 3 ·8 ·#pi xel s · f f r ame

fbi t
(5.1)

The video data rate, in Equation 5.1, is defined as the product of the data in each frame, meas-
ured as three bytes per pixel, one for each colour, and the frame rate f f r ame . The resulting
compression ratio is, hence, a dimensionless number that is equal to 1, when no compression
is applied, and larger, when compression is applied to the video.

In Figure 5.1b, it is shown how the compression ratio varies depending on the resolution, in
Figure 5.2b, it is shown how the compression ratio varies depending on the frame rate, and in
Figure 5.3b, it is shown how the compression ratio varies depending on the quality. In all three
figures, the compression ratio is larger than 1, which indicates that the encoder compresses the
video data.

For both the resolution and the frame rate, the compression ratio increases as the resolution
and frame rate are increased. For the resolution, this effect decays as the resolution is increased
and for the frame rate this relationship is linear at least up until a frame rate of 30 Hz. When
the quality is increased, which corresponds to a smaller CRF, the compression ratio decreases,
as shown in Figure 5.3b.

To limit the number of figures, the bit rate and compression ratio in Figures 5.1–5.3 are shown
for a limited number of scaling parameters and only for the Desk 1 sequence of the CoRBS
dataset. The rest of the figures contain similar results and are presented in Appendix A.

5.1.2 Discussion of the results

From the results, it can be concluded that the bit rate increases linearly with the number of
pixels, which means that the bit rate changes quadratically with the applied spatial scaling.
This is in accordance with the expectations discussed in Chapter 3. The impact was expected
to be influenced by the intra frame encoding that the encoder applies. The compression ratio
in Figure 5.1b indeed indicates that the compression ratio increases when the resolution is
increased.

For the temporal scaling, a linear relationship between frame rate and bit rate was expected.
In Figure 5.2a, it is shown that this relationship is not exactly linear, but that the bit rate grows
logarithmically when the frame rate is increased. This can be attributed to the inter frame
encoding that the encoder applies. As increasing the frame rate results in a larger overlapping
area between frames, when the camera moves with respect to the observed scene, the encoder
has to encode less differences between frames. Hence, the compression ratio increases when
the frame rate increases. From Figure 5.2b it can be concluded that this is indeed the case.

Encoding quality was expected to impact the bit rate as well. It was expected that each incre-
ment of 6 of the CRF would roughly halve the bit rate. From the results, it can be concluded that
the relationship between the CRF and the bit rate is indeed quadratic, but that the impact on bit
rate is larger for each increment of 6 of the CRF. The compression ratio increases quadratically
when the CRF is increased.

Comparing the three types of scaling, it can be concluded that both quality and spatial scal-
ing can be used to effectively reduce the required throughput of a video. The effect of tem-
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poral scaling is less than that of quality and spatial scaling, because the encoder can effectively
use inter frame encoding to increase the compression ratio for higher frame rates. The addi-
tional frames are relatively cheap, considering the amount of data that is required to add them.
Hence, reducing the frame rate does reduce the required throughput as much as spatial and
quality scaling.

5.2 Visual tracking performance evaluation

For each video, generated using ffmpeg, the number of trackable points has been determined
and the visual tracking algorithm has been applied.

The amount of trackable points has been obtained by running the point selection algorithm on
one frame every second throughout the video.

A 3D map has been generated for each video using the visual tracking algorithm. The algorithm
was configured with a target minimum number of visible seeds of 200, such that it initialized
another 200 seeds, using the point selection algorithm, as soon as less than 200 seeds were
visible. The generated 3D map was saved during the visual tracking process, such that it can be
analysed.

5.2.1 Results

The average number of points that can be selected in a frame by the point selection algorithm
is shown in Figures 5.4a–5.6a for the Desk 1 sequence of the CoRBS dataset. These points have
been selected based on their gradient as discussed in Chapter 3. The number can be considered
as an indication of the amount of information that is present in a frame for a computer vision
algorithm.
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(a) The average number of trackable points
per frame for videos with different resolutions.
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(b) The information density of videos with dif-
ferent resolutions.

Figure 5.4: The average number of trackable points per frame and the information density for videos
generated from the CoRBS Desk 1 sequence with different resolutions, at a frame rate of 30 Hz and a
CRF of 29. The number of trackable points in (a) increases less when the resolution is increased. The
resulting information density in (b) stays rather constant around lower resolutions, suggesting a linear
relationship between the number of trackable points and the number of pixels. When the resolution is
further increased, the information density declines.

In Figure 5.4a, the number of trackable points increases when the number of pixels is increased.
Each time the resolution is increased, the effect becomes smaller. This suggests that there is
some maximum number of trackable points that is reached when the resolution is further in-
creased beyond 1920×1080.
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(a) The average number of trackable points
per frame for videos with different frame rates.
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Figure 5.5: The average number of trackable points per frame and the information density for videos
generated from the CoRBS Desk 1 sequence with different frame rates, at a resolution of 1920×1080 and
a CRF of 29. In (b), the number of trackable points slightly decreases in a linear fashion when the frame
rate is increased. As the compression ratio increases when the frame rate is increased, the information
density also increases in (b) when the frame rate is increased.
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Figure 5.6: The average number of trackable points per frame and the information density for videos
generated from the CoRBS Desk 1 sequence with different CRFs, at a frame rate of 30 Hz and a resolution
of 1920×1080. The number of trackable points in (a) slightly decreases when the CRF is increased. As the
compression ratio increases quadratically when the quality is decreased, i.e. when the CRF is increased
in (b), the information density also increases quadratically when the CRF is increased.
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The number of trackable points in Figure 5.5a changes linearly with respect to the frame rate.
When the frame rate is increased, the number of trackable points decreases slightly. The differ-
ence between frame rates is relatively low compared to the number of trackable points. Com-
pared to Figure 5.4a, the effect of temporal scaling on the number of trackable points is much
lower than that of spatial scaling. Even though the impact of temporal scaling on the number of
trackable points is relatively small, it is consistent throughout the results, as shown Appendix A.

In Figure 5.6a, there is a linear relationship between the number of trackable points and the
quality of the encoding. The number of trackable points increases when the quality is in-
creased, i.e. when the CRF is decreased.

In Figures 5.4b–5.5b, the information density of the generated videos from the CoRBS Desk 1
sequence is shown. The information density ρi n f or mati on , in these figures is defined as the
ratio, between the information rate and the bit rate fbi t , where the information rate is defined
as the product of the number of trackable points per frame and the frame rate f f r ame :

ρi n f or mati on = #tr ackabl epoi nt s · f f r ame

fbi t
(5.2)

The resulting number is expressed in number of trackable points per bit and indicates how effi-
cient the video is compressed with respect to the information that a computer vision algorithm
uses.

In Figure 5.4b, the information density increases slightly, when the resolution is increased.
However, at a resolution of 1920× 1080 the information density is much lower, indicating a
less efficient compression with respect to the information that is useful for a computer vision
algorithm.

The information density changes as a result of temporal scaling, as shown in Figure 5.5b. As
opposed to the resolution, the information density increases when the frame rate is increased.
This effect seems to decline slightly when the frame rate is increased. Even though the decline
is relatively small, it is visible for other resolutions as well, as shown in Appendix A.

The relationship between quality and information density is quadratic in Figure 5.6b. The in-
formation density decreases when the quality increases, i.e. when the CRF is decreased.

To limit the number of figures, the number of trackable points and the information density in
Figures 5.4–5.6 are shown for a limited number of scaling parameters and only for the Desk 1
sequence of the CoRBS dataset. The rest of the figures contain similar results and are presented
in Appendix A.

In Figures 5.7a–5.9a the number of map points, generated by the visual tracking algorithm are
shown. In Figure 5.7a the number of map points increases when the resolution is increased.
However, this effect decreases each time the resolution is increased.

The effect of temporal scaling on the number of map points is similar to that of spatial scaling.
The number of map points increases when the frame rate is increased, as shown in Figure 5.8a.
This effect decays when the frame rate is increased.

For the lowest frame rate, 5 Hz, the number of map points for the Desk 1 sequence of the CoRBS
does not seem to vary with the resolution anymore, as shown in Figure 5.10. For other frame
rates, the effects are similar to that of Figure 5.7a.

In Figure 5.9a there is no visible effect of quality scaling on the number of points in the gener-
ated map.

In Figure 5.7b–5.9b the tracking efficiency is shown. The tracking efficiency ηtr acki ng is defined
as the ratio between the number of points that are added to the map by the visual tracking
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Figure 5.7: The number of map points and tracking efficiency obtained by the visual tracking algorithm
for videos generated from the CoRBS Desk 1 sequence with different resolutions at a frame rate of 30 Hz
and a CRF of 29. The number of map points increases in (a) when the resolution is increased. However
the effect decreases when the resolution is increased, suggesting a saturation at higher resolutions. The
tracking efficiency in (b) decays exponentially when the resolution is increased.
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Figure 5.8: The number of map points and the tracking efficiency obtained by the visual tracking al-
gorithm for videos generated from the CoRBS Desk 1 sequence with different frame rates at a resolution
of 1920× 1080 and a CRF of 29. In (a) the number of map points increases when the frame rate is in-
creased. Similar to the effect of resolution, the increment in the number of map points decreases when
the frame rate is increased. However, this effect is less strong than for the spatial scaling. Furthermore,
since the compression ratio decreases when the frame rate is increased, the tracking efficiency in (b)
also increases when the frame rate is increased.
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Figure 5.9: The number of map points and the tracking efficiency obtained by the visual tracking al-
gorithm for videos generated from the CoRBS Desk 1 sequence with different CRFs at a frame rate of
30 Hz and a resolution of 1920×1080. The number of map points in (a) does not consistently change
when the CRF is changed. As the compression ratio increases when the quality is decreased by increas-
ing the CRF, the tracking efficiency in (5.9b) also increases when the quality is decreased.
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Figure 5.10: The number of map points obtained by the visual tracking algorithm for videos generated
from the CoRBS Desk 1 sequence with different resolutions at a frame rate of 5 Hz and a CRF of 29.
Compared to Figure 5.7a the number of map points does not change consistently when the resolution is
changed.
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algorithm and the data that was required to obtain these points, i.e. the size of the encoded
video:

ηtr acki ng = #mappoi nt s

fbi t ·dur ati on
(5.3)

In Figure 5.7b the tracking efficiency is shown for the Desk 1 sequence of the CoRBS dataset
with different resolutions. The efficiency decreases exponentially when the resolution is in-
creased.

As shown in Figure 5.8b, the reverse is true for the frame rate: the efficiency increases when the
frame rate is increased. This effect decreases each time the frame rate is increased, suggesting
a maximum efficiency when the frame rate is further increased beyond 30 Hz.

In Figure 5.9b the tracking efficiency increases when the quality of the encoding is decreased,
i.e. when the CRF is increased. This relationship appears to be quadratic.

To limit the number of figures, the number of map points and tracking efficiency in Figures 5.7–
5.9 are shown for a limited number of scaling parameters and only for the Desk 1 sequence of
the CoRBS dataset. The rest of the figures contain similar results and are presented in Ap-
pendix A.

5.2.2 Discussion of the results

From the results it can be concluded that the number of trackable points increases when
the resolution of the video is increased. This is in agreement with the expectation. As there
are more pixels available when the resolution is increased, there are more points that can be
tracked.

However, as discussed in Chapter 3, the information density decreases when the resolution
increases, as shown in Figure 5.4b. This means that, when more pixels are added to the frames
of the video, by increasing the resolution, there are increasingly more pixels added that are not
trackable. Hence, the number of trackable points in Figure 5.4a increases less each time the
resolution is increased.

It was not expected that the number of trackable points would change depending on the frame
rate. The frame rate should not affect the pixels in a single frame. However, from Figure 5.5a it
can be concluded that the number of trackable points slightly decreases when the frame rate is
increased. An explanation for this phenomenon is that the encoder applies more compression
when the frame rate is increased. The increased compression means that less values are used
in the discrete cosine transform, resulting in the removal of the higher frequency parts. This
low-pass filtering reduces the gradients, as explained in Chapter 3. Since points are selected
based on their gradient, less points will have the required gradient value to be selected as a
trackable point.

The small reduction in available trackable points does not result in a lower information dens-
ity. As shown in Figure 5.5b, the information density increases because the frame rate can be
increased using relatively little data, due to inter frame encoding.

The effect of quality scaling on the number of trackable points is comparable to that of tem-
poral scaling. Decreasing the quality of the encoding increases the compression, such that less
points can be selected for tracking, as shown in Figure 5.6a. The effect of quality scaling on the
number of trackable points is larger than that of temporal scaling, which is in accordance with
the expectations.

The information density increases quadratically when the quality is decreased, as shown in
Figure 5.6a. The reason for this is that the impact of quality scaling on required throughput is
larger than the impact on the number of trackable points.
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Regarding the number of map points, it can be concluded from 5.7a that increasing the resolu-
tion increases the number of points that the visual tracking algorithm can add to the generated
map. An explanation for this is that a variance of 1 pixel is used to model the uncertainty of
the matched pixel. The uncertainty in the depth estimates decreases when the resolution is
increased, because the uncertainty in pixels then corresponds with a smaller uncertainty in
the depth estimate. Hence, the points can be added to the map sooner. This is in accordance
with the expectations. The relationship between the number of map points and the number of
pixels is logarithmic. This is due to the fact that the uncertainty, corresponding to the variance
of 1 pixel in any direction, decreases with the square root of the number of additional pixels in
a frame.

The tracking efficiency decreases when the resolution is increased, as shown in Figure 5.7b.
This is because the number of map points increases logarithmically with respect to the number
of pixels, whereas the bit rate increases linearly with the number of pixels when the resolution
is increased.

Increasing the frame rate increases the number of points that are added to the map by the visual
tracking algorithm as well, as shown in Figure 5.8a. This is in accordance with the expectations.
It was expected that the uncertainty would decrease, because there are more measurements per
tracked point when the frame rate is increased. The impact of temporal scaling decreases, when
the frame rate is increased. It is expected that the relation is bounded by the target number of
seeds and the number of frames.

Compared to the resolution, the frame rate has a larger impact on the number of map points
than the resolution. Furthermore, can be concluded that increasing the frame rate is relatively
cheap considering the required throughput, because the tracking efficiency increases when the
frame rate is increased, as shown in Figure 5.8b.

In Chapter 3, it was explained that there exists a lower bound for the frame rate. After reaching
this lower bound, increasing the resolution does not increase the tracking performance any-
more. From Figure 5.10, it can be concluded that this lower bound is reached at a frame rate of
5 Hz for the Desk 1 sequence of the CoRBS dataset.

Regarding the quality, it can be concluded that, at least for a target number of seeds of 200 and
a CRF in the range of 17–29, decreasing quality does not affect tracking performance, because,
as shown in Figure 5.9a, reducing the quality does not result in a significant decrease of the
number of map points. This is not in accordance with the expectations. It was expected that
decreasing the quality would have a negative a negative impact on visual tracking performance
and hence reduce the number of map points.

Considering the increased tracking efficiency for this CRF, shown in Figure 5.9b, data is used
most efficiently, using a CRF 29. However, there are two reasons for using a higher quality and
hence a lower CRF. First of all, in Figure 5.6a it is shown that a higher quality allows for tracking
slightly more points. Second, it increases the perceived quality of service for the tele-operator.

From the results it can be concluded that the quality can be further decreased than the min-
imum value used for the experiments, because the no significant impact on tracking perform-
ance. It is, however, expected that the quality cannot be decreased indefinitely. At some point
it will affect tracking performance. Additional experiments with larger CRFs are required to
determine the maximum CRF.

When the three types of scaling are compared, it can be concluded that the CRFs used for the
experiments do not affect tracking performance. Increasing frame rate and resolution both in-
crease the number of points in the generated map. However, the impact of frame rate is larger
than that of resolution. Furthermore, increasing the frame rate also increases the information
density and the tracking efficiency, whereas increasing the resolution decreases the informa-
tion density and tracking efficiency. This indicates that it is better to use a high frame rate and
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to apply spatial scaling before applying temporal scaling. However, the number of trackable
points strongly depends on the resolution. Applying spatial scaling therefore comes at the cost
of map density.

5.3 Optimal scaling

Using the results of Section 5.1 and Section 5.2, an optimal strategy can be derived for reducing
the required throughput of the video stream, while ensuring high-performance visual tracking.
Such a strategy can be derived by applying the following steps:

1. Create a table with the scaling parameters, resulting bit rates, and number of map points
for each generated video.

2. Sort the table by the number of map points in descending order, because the strategy
should optimize for the number of map points.

3. Remove all entries that have a higher bit rate than the entry above it, because these
entries have a lower tracking performance, but require more data than the entry above
them. Hence, switching to such a configuration is not optimal.

The optimal strategies for all sequences, obtained by applying these steps, are shown in
Tables 5.1–5.5. For these tables, only scaling configurations with a CRF of 29 were taken into
consideration, as it was concluded that using a higher quality does not improve tracking per-
formance, but does increase the throughput requirements of the video.

Resolution Frame rate (fps) Quality (CRF) Bit rate (bps) # map points
1920x1080 30 29 2233689 5550

960x540 30 29 641595 4205
640x360 30 29 338207 3430
480x270 30 29 203055 2673
480x270 15 29 177706 1967
480x270 10 29 160651 1254
480x270 5 29 143580 316

Table 5.1: The configurations from the optimal strategy for the Desk 1 sequence of the CoRBS dataset.

Resolution Frame rate (fps) Quality (CRF) Bit rate (bps) # map points
1920x1080 30 29 2100282 17261
1920x1080 15 29 1867010 12508

960x540 30 29 603820 11837
640x360 30 29 315333 9990
480x270 30 29 189966 8074
480x270 15 29 163588 6368
480x270 10 29 151608 5438
480x270 5 29 138214 3669

Table 5.2: The configurations from the optimal strategy for the Desk 1 sequence of the CoRBS dataset.

All results, except for Table 5.2, indicate that the optimal strategy is to apply spatial scaling
before temporal scaling, until the lowest resolution, respectively 480 × 270 and 320× 240, is
reached. After reaching the lowest resolution, temporal scaling can be used to further reduce
the required throughput.

Since a high quality is only beneficial for a tele-operator, and does not affect tracking per-
formance, quality scaling can be applied before spatial scaling, as the first measure to reduce
throughput.
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Resolution Frame rate (fps) Quality (CRF) Bit rate (bps) # map points
640x480 30 29 401542 9031
320x240 30 29 113110 4939
320x240 15 29 98965 1057
320x240 10 29 93658 220
320x240 5 29 85384 40

Table 5.3: The configurations from the optimal strategy for the Pioneer robot sequence 1 of the RGB-D
dataset.

Resolution Frame rate (fps) Quality (CRF) Bit rate (bps) # map points
640x480 30 29 365175 5165
320x240 30 29 104972 3176
320x240 15 29 89682 1432
320x240 10 29 83902 426
320x240 5 29 76913 74

Table 5.4: The configurations from the optimal strategy for the Pioneer robot sequence 2 of the RGB-D
dataset.

Resolution Frame rate (fps) Quality (CRF) Bit rate (bps) # map points
640x480 30 29 419008 5619
320x240 30 29 110357 2806
320x240 15 29 94978 1235
320x240 10 29 88802 419
320x240 5 29 81932 17

Table 5.5: The configurations from the optimal strategy for the Pioneer robot sequence 3 of the RGB-D
dataset.

F.J. (Frank) van der Hoek University of Twente



CHAPTER 5. RESULTS AND DISCUSSION 49

In summary, the optimal scaling strategy is:

1. Apply quality scaling until the minimum quality is reached.
2. Apply spatial scaling until the minimum resolution is reached.
3. Apply temporal scaling until the minimum frame rate is reached.

The scaling should be applied until the required throughput is lower than the available
throughput, such that the available throughput does not prevent successful transmission of
all video data. The required throughput for the different sequences is roughly indicated by the
bit rate in Tables 5.1–5.5. As explained in Chapter 3, the actual required throughput is larger
due to data that is added by the network protocols. However, the minimum bit rates are more
than an order of magnitude smaller than the minimum available throughput of 6.5 Mbps that
was presented in Chapter 3. This should be low enough to successfully transmit all video data.

For any given configuration, it can be seen that the bit rate in Tables 5.1–5.5 differs between
sequences. Hence, it is not possible to define an optimal scaling strategy for specific values of
the throughput for videos in general. More research is required to determine the distribution
of bit rate for all scaling parameters for a larger number of videos. After determining how the
bit rate is distributed, the optimal scaling strategy can be combined with the work of Capirchio
(2017) and implemented and tested on an actual robotic system, that streams video via wireless
connection.

The optimal strategy for the Desk 2 sequence of the CoRBS dataset, shown in Table 5.2, differs
from the other results. For this sequence it is beneficial to reduce the frame rate, earlier in the
process. A possible explanation for this is shown in Figure 5.11. The average velocity in the
Desk 2 sequence is low compared to that in the Desk 1 sequence. As predicted in 3, the effect
of temporal scaling is larger when the camera moves with a higher velocity with respect to the
observed scene. The findings hence confirm that an optimal strategy scaling strategy depends
on the velocity of the robots. Slower moving robots can apply more temporal scaling than faster
moving robots. The threshold seems to be around an average velocity of 0.2 m/s.

(a) The velocity of the camera during the Desk 1 se-
quence.

(b) The velocity of the camera during the Desk 2 se-
quence.

Figure 5.11: The velocities of the camera for the CoRBS dataset (Wasenmüller et al., 2016).

The robots used by the Dutch National Police (NPN) are moving relatively fast with respect to
the observed scene, for example, while chasing a person. Hence, the larger velocity of the Desk
1 sequence is a better representation of the situation of the NPN. Therefore, the robots of the
NPN should be configured to apply spatial scaling before temporal scaling.
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5.4 Limitations and applicability to computer vision in general

In the previous sections, the results of the experiments were discussed and an optimal strategy
was derived for each sequence. It was concluded that, the preferred scaling order is quality
scaling, followed by spatial scaling, and then temporal scaling.

The results, however, were not obtained using an actual robot with a wireless video stream. Fur-
ther research is needed to establish whether the optimal strategy prevents streaming artefacts
in wireless video streams in practice.

Another limitation of the research is that the visual tracking algorithm used for the experiments,
tracked relatively few seeds in the videos. Therefore, it is expected that the results do not apply
to computer vision algorithms that require a relatively large number of tracked points. It is
expected that the effect of spatial scaling increases when more points must be tracked, because
spatial scaling reduces the number of trackable points.

Furthermore, the performance of the tracking algorithm was evaluated by analysing the num-
ber of points that were added to the map. This number indicates the uncertainty of the visual
tracking, but not its accuracy. The impact of spatial, temporal, and quality scaling on the ac-
curacy of 3D reconstructions was not evaluated.

Also, the tracking algorithm used for the experiments, selects the best trackable points. For
points that are less trackable, i.e., points with a lower gradient, the impact of quality scaling
is expected to be larger. Furthermore, the algorithm is relatively robust to quality scaling, be-
cause it minimizes the photometric error and does not track specific features. Computer vision
algorithms that need to track less trackable points or complex features, may require higher
quality video encoding.

In general, it is expected that the results of this thesis apply to a wide variety of computer vision
algorithms, because the algorithm used for the experiments in this thesis is based on basic
image processing techniques, that are used as a basis for most computer vision algorithms,
such as the direct visual simultaneous localization and mapping (SLAM) methods.

5.5 Summary

Experiments have been conducted to quantify the impact of spatial, temporal, and quality scal-
ing on bit rate and visual tracking performance. In summary, the key findings are:

• Spatial, temporal, and quality scaling effectively reduce the data.
• The compression ratio increases when either the frame rate or resolution is increased, or

when the quality is decreased. This effect is smaller for the resolution than for the frame
rate, which indicates that the encoder can apply more inter frame encoding than intra
frame encoding.

• The number of trackable points increases when the resolution is increased, decreases
slightly when the frame rate is increased, and decreases slightly more when the quality is
decreased.

• The visual tracking performance increases when resolution is increased. However, the
tracking efficiency decreases when the resolution is increased. Increasing the frame rate
increases both the visual tracking performance and the tracking efficiency. Furthermore,
the visual tracking algorithm is more sensitive to temporal scaling than spatial scaling.
Quality scaling does not seem to affect the visual tracking performance.

• Based on the results, there exists an optimal scaling strategy that reduces required
throughput, while maximizing tracking performance. The optimal strategy is to apply
quality scaling first, until the lowest quality is reached, followed by spatial scaling, until
the lowest resolution is reached, and finally temporal scaling to further reduce the re-
quired throughput.
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6 Conclusions and recommendations

The goal of this research was to determine how to optimize wireless video streams for computer
vision. The research question was divided into two sub questions, that respectively considered
reducing the video data and its effects on computer vision. During the research, the bit rate
and tracking performance of videos from multiple sequences of the CoRBS and RGB-D data-
sets, have been evaluated after applying spatial, temporal, and quality scaling using different
parameters. Based on these evaluations, it can be concluded that there exists a clear optimal
video scaling strategy, that reduces the required throughput, while maximizing visual tracking
performance.

According to this strategy, quality scaling is the first measure that should be taken to reduce the
required throughput of a video stream, as it has been concluded that quality scaling does not
affect tracking performance, but does reduce the required throughput.

When the minimum quality is reached, spatial scaling can be used to further reduce the re-
quired throughput of a video. While this reduces the number of trackable points, it reduces the
required throughput even more.

Finally, when the lowest resolution is reached as well, temporal scaling can be applied to reduce
the required throughput even further.

It can be concluded that the throughput reduction that is realized using the optimal strategy is
large enough to allow for successful transmission of all video data.

While the research has only considered the performance of a visual tracking algorithm, using
a limited number of seeds, it is expected that the results are generalizable to a wider range of
computer vision algorithms, because the visual tracking algorithm used for the experiments is
based on basic image processing techniques that form the basis of most computer vision tasks.

Compared to the human visual system, it can be concluded that computer vision perceives
quality of service differently. Scaling the encoding quality of a video does not seem to affect
computer vision algorithm, whereas it does affect the perceived quality of service for the hu-
man visual system.

The results of this thesis can be used to configure throughput-based, adaptive, wireless video
streams for mobile robots. Using related research, comprising the design of a system for live-
captured video streaming over the data distribution service (DDS) (Capirchio, 2017), a system
can be constructed that enables reliable video streaming for the different robots used by the
Dutch National Police (NPN) with plug-and-play functionality. Optimizing the video stream
for computer vision, enables a variety of tasks, such as the creation of a 3D map to aid the
tele-operator during navigation.

As evaluations have been performed offline, on videos that were captured by cameras while
moving through static environments. The efficacy of the optimal strategy still has to be veri-
fied on an actual robotic system, that streams video over an actual wireless connection while
observing more realistic scenarios, such as the chase of a suspect.

Some of the findings of this research can be further analysed during future research. The three
main recommendations are:

• An analysis of the bit rate of videos captured by the NPN. The strategy that was extracted
from the results in this thesis, defines how scaling can be applied to reduce throughput
while maximizing visual tracking performance. In practice, the resulting throughput of a
video varies, depending on its content. To determine the optimal scaling configuration,
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based on the available throughput, it is required to understand which bit rates can be
expected as a result of scaling for a wide variety of videos captured by the NPN.

• An analysis of the efficacy of the optimal strategy on an actual robot. As stated before,
the results of this thesis can be combined with those from related research to construct a
system that enables reliable video streaming. Capirchio (2017) analysed how available
throughput changes depending on external disturbances. Together with the required
throughputs presented in this thesis, a system for reliable video streaming can be imple-
mented and applied to an actual robot, while observing a more realistic scenario, such
that the efficacy of the proposed strategy can be verified in a realistic situation.

• An analysis of the accuracy of the generated map. The visual tracking algorithm that
was used for the experiments, used only a limited number of seeds. Furthermore, the
performance was evaluated using the number of points in the map, which is a measure
of the uncertainty of the tracking algorithm. The impact of spatial scaling on tracking
performance is expected to be larger when more points are used. It is recommended to
analyse the impact of spatial, temporal, and quality scaling on the accuracy of the gen-
erated map, when dense, accurate 3D reconstructions need to be created by a computer
vision algorithm, using a larger number of seeds.
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A Measurement results

This appendix contains all measurement results, that were not presented in Chapter 5) for read-
ability. The results are shown in Figures A.1–A.30.
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(c) The bit rate at a frame rate of 15 Hz.
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(d) The bit rate at a frame rate of 30 Hz.
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(e) The bit rate at a resolution of 320×240.

0

500000

1×106

1.5×106

2×106

2.5×106

3×106

3.5×106

4×106

5 10 15 30

B
it

ra
te

(b
p

s)

Frame rate (fps)

Quality
crf 29
crf 26
crf 23
crf 20
crf 17

(f ) The bit rate at a resolution of 640×480.

Figure A.1: The bit rate for the RGB-D robot pioneer sequence 1 after encoding the image sequence with
a variety of configurations. Each plot shows the bit rate for all constant rate factor (CRF) factors. (a) – (d)
show the bit rates for each resolution at a fixed frame rate configuration. (e) – (f) show how the bit rates
vary for a constant resolution.
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(d) The bit rate at a frame rate of 30 Hz.
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(e) The bit rate at a resolution of 320×240.
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(f ) The bit rate at a resolution of 640×480.

Figure A.2: The bit rate for the RGB-D robot pioneer sequence 2 after encoding the image sequence with
a variety of configurations. Each plot shows the bit rate for all CRF factors. (a) – (d) show the bit rates
for each resolution at a fixed frame rate configuration. (e) – (f) show how the bit rates vary for a constant
resolution.
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(c) The bit rate at a frame rate of 15 Hz.
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(d) The bit rate at a frame rate of 30 Hz.
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(e) The bit rate at a resolution of 320×240.
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(f ) The bit rate at a resolution of 640×480.

Figure A.3: The bit rate for the RGB-D robot pioneer sequence 3 after encoding the image sequence with
a variety of configurations. Each plot shows the bit rate for all CRF factors. (a) – (d) show the bit rates
for each resolution at a fixed frame rate configuration. (e) – (f) show how the bit rates vary for a constant
resolution.
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(f ) The bit rate at a resolution of 640×360.
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(g) The bit rate at a resolution of 960×540.

0

2×106

4×106

6×106

8×106

1×107

1.2×107

1.4×107

1.6×107

1.8×107

5 10 15 30

B
it

ra
te

(b
p

s)

Frame rate (fps)

Quality
crf 29
crf 26
crf 23
crf 20
crf 17

(h) The bit rate at a resolution of 1920×1080.

Figure A.4: The bit rate for the CoRBS sequence 1 after encoding the image sequence with a variety of
configurations. Each plot shows the bit rate for all CRF factors. (a) – (d) show the bit rates for each resol-
ution at a fixed frame rate configuration. (e) – (h) show how the bit rates vary for a constant resolution.
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(e) The bit rate at a resolution of 480×270.
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(f ) The bit rate at a resolution of 640×360.
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(g) The bit rate at a resolution of 960×540.

0

2×106

4×106

6×106

8×106

1×107

1.2×107

1.4×107

1.6×107

1.8×107

5 10 15 30

B
it

ra
te

(b
p

s)

Frame rate (fps)

Quality
crf 29
crf 26
crf 23
crf 20
crf 17

(h) The bit rate at a resolution of 1920×1080.

Figure A.5: The bit rate for the CoRBS sequence 2 after encoding the image sequence with a variety of
configurations. Each plot shows the bit rate for all CRF factors. (a) – (d) show the bit rates for each resol-
ution at a fixed frame rate configuration. (e) – (h) show how the bit rates vary for a constant resolution.
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(a) The compression ratio at a frame rate of 5 Hz.
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(e) The compression ratio at a resolution of 320 ×
240.
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(f ) The compression ratio at a resolution of 640 ×
480.

Figure A.6: The compression ratio for the RGB-D robot pioneer sequence 1 after encoding the image
sequence with a variety of configurations. Each plot shows the compression ratio for all CRF factors. (a)
– (d) show the compression ratios for each resolution at a fixed frame rate configuration. (e) – (f) show
how the compression ratios vary for a constant resolution.
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(a) The compression ratio at a frame rate of 5 Hz.
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(e) The compression ratio at a resolution of 320 ×
240.
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(f ) The compression ratio at a resolution of 640 ×
480.

Figure A.7: The compression ratio for the RGB-D robot pioneer sequence 2 after encoding the image
sequence with a variety of configurations. Each plot shows the compression ratio for all CRF factors. (a)
– (d) show the compression ratios for each resolution at a fixed frame rate configuration. (e) – (f) show
how the compression ratios vary for a constant resolution.
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(a) The compression ratio at a frame rate of 5 Hz.
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(b) The compression ratio at a frame rate of 10 Hz.
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(e) The compression ratio at a resolution of 320 ×
240.
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(f ) The compression ratio at a resolution of 640 ×
480.

Figure A.8: The compression ratio for the RGB-D robot pioneer sequence 3 after encoding the image
sequence with a variety of configurations. Each plot shows the compression ratio for all CRF factors. (a)
– (d) show the compression ratios for each resolution at a fixed frame rate configuration. (e) – (f) show
how the compression ratios vary for a constant resolution.
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(a) The compression ratio at a frame rate of 5 Hz.
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(b) The compression ratio at a frame rate of 10 Hz.
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(e) The compression ratio at a resolution of 480 ×
270.
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(f ) The compression ratio at a resolution of 640 ×
360.
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(g) The compression ratio at a resolution of 960 ×
540.
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(h) The compression ratio at a resolution of 1920×
1080.

Figure A.9: The compression ratio for the CoRBS sequence 1 after encoding the image sequence with
a variety of configurations. Each plot shows the compression ratio for all CRF factors. (a) – (d) show
the compression ratios for each resolution at a fixed frame rate configuration. (e) – (h) show how the
compression ratios vary for a constant resolution.
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(a) The compression ratio at a frame rate of 5 Hz.
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(b) The compression ratio at a frame rate of 10 Hz.
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(c) The compression ratio at a frame rate of 15 Hz.
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(d) The compression ratio at a frame rate of 30 Hz.
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(e) The compression ratio at a resolution of 480 ×
270.
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(f ) The compression ratio at a resolution of 640 ×
360.
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(g) The compression ratio at a resolution of 960 ×
540.
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(h) The compression ratio at a resolution of 1920×
1080.

Figure A.10: The compression ratio for the CoRBS sequence 2 after encoding the image sequence with
a variety of configurations. Each plot shows the compression ratio for all CRF factors. (a) – (d) show
the compression ratios for each resolution at a fixed frame rate configuration. (e) – (h) show how the
compression ratios vary for a constant resolution.
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(a) The average number of trackable points at a
frame rate of 5 Hz.
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(b) The average number of trackable points at a
frame rate of 10 Hz.
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(c) The average number of trackable points at a
frame rate of 15 Hz.
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(d) The average number of trackable points at a
frame rate of 30 Hz.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

5 10 15 30

#t
ra

ck
ab

le
p

o
in

ts
p

er
fr

am
e

Frame rate (fps)

Quality
crf 29
crf 26
crf 23
crf 20
crf 17

(e) The average number of trackable points at a res-
olution of 320×240.
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(f ) The average number of trackable points at a res-
olution of 640×480.

Figure A.11: The average number of trackable points for the RGB-D robot pioneer sequence 1 after
encoding the image sequence with a variety of configurations. Each plot shows the average number
of trackable points for all CRF factors. (a) – (d) show the average number of trackable points for each
resolution at a fixed frame rate configuration. (e) – (f) show how the average number of trackable points
varies for a constant resolution.
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(a) The average number of trackable points at a
frame rate of 5 Hz.
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(b) The average number of trackable points at a
frame rate of 10 Hz.
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(c) The average number of trackable points at a
frame rate of 15 Hz.
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(d) The average number of trackable points at a
frame rate of 30 Hz.
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(e) The average number of trackable points at a res-
olution of 320×240.
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(f ) The average number of trackable points at a res-
olution of 640×480.

Figure A.12: The average number of trackable points for the RGB-D robot pioneer sequence 2 after
encoding the image sequence with a variety of configurations. Each plot shows the average number
of trackable points for all CRF factors. (a) – (d) show the average number of trackable points for each
resolution at a fixed frame rate configuration. (e) – (f) show how the average number of trackable points
varies for a constant resolution.

F.J. (Frank) van der Hoek University of Twente



APPENDIX A. MEASUREMENT RESULTS 65

0

10000

20000

30000

40000

50000

60000

70000

320×
240

640×
480

#t
ra

ck
ab

le
p

o
in

ts
p

er
fr

am
e

Resolution (pixels)

Quality
crf 29
crf 26
crf 23
crf 20
crf 17

(a) The average number of trackable points at a
frame rate of 5 Hz.

0

10000

20000

30000

40000

50000

60000

70000

320×
240

640×
480

#t
ra

ck
ab

le
p

o
in

ts
p

er
fr

am
e

Resolution (pixels)

Quality
crf 29
crf 26
crf 23
crf 20
crf 17

(b) The average number of trackable points at a
frame rate of 10 Hz.
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(c) The average number of trackable points at a
frame rate of 15 Hz.
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(d) The average number of trackable points at a
frame rate of 30 Hz.
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(e) The average number of trackable points at a res-
olution of 320×240.
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(f ) The average number of trackable points at a res-
olution of 640×480.

Figure A.13: The average number of trackable points for the RGB-D robot pioneer sequence 3 after
encoding the image sequence with a variety of configurations. Each plot shows the average number
of trackable points for all CRF factors. (a) – (d) show the average number of trackable points for each
resolution at a fixed frame rate configuration. (e) – (f) show how the average number of trackable points
varies for a constant resolution.
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(a) The average number of trackable points at a
frame rate of 5 Hz.
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(b) The average number of trackable points at a
frame rate of 10 Hz.
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(c) The average number of trackable points at a
frame rate of 15 Hz.
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(d) The average number of trackable points at a
frame rate of 30 Hz.
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(e) The average number of trackable points at a res-
olution of 480×270.
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(f ) The average number of trackable points at a res-
olution of 640×360.
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(g) The average number of trackable points at a res-
olution of 960×540.
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(h) The average number of trackable points at a res-
olution of 1920×1080.

Figure A.14: The average number of trackable points for the CoRBS sequence 1 after encoding the image
sequence with a variety of configurations. Each plot shows the average number of trackable points for
all CRF factors. (a) – (d) show the average number of trackable points for each resolution at a fixed frame
rate configuration. (e) – (h) show how the average number of trackable points varies for a constant
resolution.
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(a) The average number of trackable points at a
frame rate of 5 Hz.
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(b) The average number of trackable points at a
frame rate of 10 Hz.
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(c) The average number of trackable points at a
frame rate of 15 Hz.
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(d) The average number of trackable points at a
frame rate of 30 Hz.
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(e) The average number of trackable points at a res-
olution of 480×270.
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(f ) The average number of trackable points at a res-
olution of 640×360.
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(g) The average number of trackable points at a res-
olution of 960×540.
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(h) The average number of trackable points at a res-
olution of 1920×1080.

Figure A.15: The average number of trackable points for the CoRBS sequence 2 after encoding the image
sequence with a variety of configurations. Each plot shows the average number of trackable points for
all CRF factors. (a) – (d) show the average number of trackable points for each resolution at a fixed frame
rate configuration. (e) – (h) show how the average number of trackable points varies for a constant
resolution.
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(a) The information density at a frame rate of 5 Hz.
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(b) The information density at a frame rate of 10 Hz.
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(c) The information density at a frame rate of 15 Hz.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

320×
240

640×
480In

fo
rm

at
io

n
d

en
si

ty
(p

o
in

ts
/b

it
)

Resolution (pixels)

Quality
crf 29
crf 26
crf 23
crf 20
crf 17

(d) The information density at a frame rate of 30 Hz.
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(e) The information density at a resolution of 320×
240.
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(f ) The information density at a resolution of 640×
480.

Figure A.16: The information density for the RGB-D robot pioneer sequence 1 after encoding the image
sequence with a variety of configurations. Each plot shows the information density for all CRF factors.
(a) – (d) show the information density for each resolution at a fixed frame rate configuration. (e) – (f)
show how the information density varies for a constant resolution.
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(a) The information density at a frame rate of 5 Hz.
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(b) The information density at a frame rate of 10 Hz.
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(c) The information density at a frame rate of 15 Hz.
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(d) The information density at a frame rate of 30 Hz.
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(e) The information density at a resolution of 320×
240.
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(f ) The information density at a resolution of 640×
480.

Figure A.17: The information density for the RGB-D robot pioneer sequence 2 after encoding the image
sequence with a variety of configurations. Each plot shows the information density for all CRF factors.
(a) – (d) show the information density for each resolution at a fixed frame rate configuration. (e) – (f)
show how the information density varies for a constant resolution.
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(a) The information density at a frame rate of 5 Hz.
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(b) The information density at a frame rate of 10 Hz.
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(c) The information density at a frame rate of 15 Hz.
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(d) The information density at a frame rate of 30 Hz.
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(e) The information density at a resolution of 320×
240.
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(f ) The information density at a resolution of 640×
480.

Figure A.18: The information density for the RGB-D robot pioneer sequence 3 after encoding the image
sequence with a variety of configurations. Each plot shows the information density for all CRF factors.
(a) – (d) show the information density for each resolution at a fixed frame rate configuration. (e) – (f)
show how the information density varies for a constant resolution.
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(a) The information density at a frame rate of 5 Hz.
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(b) The information density at a frame rate of 10 Hz.
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(c) The information density at a frame rate of 15 Hz.
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(d) The information density at a frame rate of 30 Hz.
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(e) The information density at a resolution of 480×
270.
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(f ) The information density at a resolution of 640×
360.
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(g) The information density at a resolution of 960×
540.
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(h) The information density at a resolution of 1920×
1080.

Figure A.19: The information density for the CoRBS sequence 1 after encoding the image sequence with
a variety of configurations. Each plot shows the information density for all CRF factors. (a) – (d) show
the information density for each resolution at a fixed frame rate configuration. (e) – (h) show how the
information density varies for a constant resolution.
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(a) The information density at a frame rate of 5 Hz.
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(b) The information density at a frame rate of 10 Hz.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

480×
270

640×
360

960×
540

1920×
1080In

fo
rm

at
io

n
d

en
si

ty
(p

o
in

ts
/b

it
)

Resolution (pixels)

Quality
crf 29
crf 26
crf 23
crf 20
crf 17

(c) The information density at a frame rate of 15 Hz.
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(d) The information density at a frame rate of 30 Hz.
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(e) The information density at a resolution of 480×
270.
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(f ) The information density at a resolution of 640×
360.
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(g) The information density at a resolution of 960×
540.
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(h) The information density at a resolution of 1920×
1080.

Figure A.20: The information density for the CoRBS sequence 2 after encoding the image sequence with
a variety of configurations. Each plot shows the information density for all CRF factors. (a) – (d) show
the information density for each resolution at a fixed frame rate configuration. (e) – (h) show how the
information density varies for a constant resolution.
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(a) The tracking efficiency at a frame rate of 5 Hz.
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(b) The tracking efficiency at a frame rate of 10 Hz.
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(c) The tracking efficiency at a frame rate of 15 Hz.
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(d) The tracking efficiency at a frame rate of 30 Hz.
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(e) The total number of map points at a resolution
of 320×240.
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(f ) The total number of map points at a resolution
of 640×480.

Figure A.21: The total number of map points for the RGB-D robot pioneer sequence 1 after encoding
the image sequence with a variety of configurations. Each plot shows the total number of map points
for all CRF factors. (a) – (d) show the total number of map points for each resolution at a fixed frame rate
configuration. (e) – (f) show how the total number of map points varies for a constant resolution.
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(a) The tracking efficiency at a frame rate of 5 Hz.
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(b) The tracking efficiency at a frame rate of 10 Hz.
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(c) The tracking efficiency at a frame rate of 15 Hz.
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(d) The tracking efficiency at a frame rate of 30 Hz.
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(e) The total number of map points at a resolution
of 320×240.
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(f ) The total number of map points at a resolution
of 640×480.

Figure A.22: The total number of map points for the RGB-D robot pioneer sequence 2 after encoding
the image sequence with a variety of configurations. Each plot shows the total number of map points
for all CRF factors. (a) – (d) show the total number of map points for each resolution at a fixed frame rate
configuration. (e) – (f) show how the total number of map points varies for a constant resolution.
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(a) The tracking efficiency at a frame rate of 5 Hz.
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(b) The tracking efficiency at a frame rate of 10 Hz.
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(c) The tracking efficiency at a frame rate of 15 Hz.
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(d) The tracking efficiency at a frame rate of 30 Hz.
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(e) The total number of map points at a resolution
of 320×240.
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(f ) The total number of map points at a resolution
of 640×480.

Figure A.23: The total number of map points for the RGB-D robot pioneer sequence 3 after encoding
the image sequence with a variety of configurations. Each plot shows the total number of map points
for all CRF factors. (a) – (d) show the total number of map points for each resolution at a fixed frame rate
configuration. (e) – (f) show how the total number of map points varies for a constant resolution.
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(a) The tracking efficiency at a frame rate of 5 Hz.
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(b) The tracking efficiency at a frame rate of 10 Hz.
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(c) The tracking efficiency at a frame rate of 15 Hz.
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(d) The tracking efficiency at a frame rate of 30 Hz.
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(e) The total number of map points at a resolution
of 480×270.
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(f ) The total number of map points at a resolution
of 640×360.
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(g) The total number of map points at a resolution
of 960×540.
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(h) The total number of map points at a resolution
of 1920×1080.

Figure A.24: The total number of map points for the CoRBS sequence 1 after encoding the image se-
quence with a variety of configurations. Each plot shows the total number of map points for all CRF
factors. (a) – (d) show the total number of map points for each resolution at a fixed frame rate configur-
ation. (e) – (h) show how the total number of map points varies for a constant resolution.
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(a) The tracking efficiency at a frame rate of 5 Hz.
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(b) The tracking efficiency at a frame rate of 10 Hz.
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(c) The tracking efficiency at a frame rate of 15 Hz.
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(d) The tracking efficiency at a frame rate of 30 Hz.
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(e) The total number of map points at a resolution
of 480×270.
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(f ) The total number of map points at a resolution
of 640×360.
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(g) The total number of map points at a resolution
of 960×540.
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(h) The total number of map points at a resolution
of 1920×1080.

Figure A.25: The total number of map points for the CoRBS sequence 2 after encoding the image se-
quence with a variety of configurations. Each plot shows the total number of map points for all CRF
factors. (a) – (d) show the total number of map points for each resolution at a fixed frame rate configur-
ation. (e) – (h) show how the total number of map points varies for a constant resolution.
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(a) The tracking efficiency at a frame rate of 5 Hz.
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(b) The tracking efficiency at a frame rate of 10 Hz.
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(c) The tracking efficiency at a frame rate of 15 Hz.
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(d) The tracking efficiency at a frame rate of 30 Hz.
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(e) The tracking efficiency at a resolution of 320×
240.
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(f ) The tracking efficiency at a resolution of 640 ×
480.

Figure A.26: The tracking efficiency for the RGB-D robot pioneer sequence 1 after encoding the image
sequence with a variety of configurations. Each plot shows the tracking efficiency for all CRF factors. (a)
– (d) show the tracking efficiency for each resolution at a fixed frame rate configuration. (e) – (f) show
how the tracking efficiency varies for a constant resolution.
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(a) The tracking efficiency at a frame rate of 5 Hz.
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(b) The tracking efficiency at a frame rate of 10 Hz.
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(c) The tracking efficiency at a frame rate of 15 Hz.
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(d) The tracking efficiency at a frame rate of 30 Hz.
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(e) The tracking efficiency at a resolution of 320×
240.
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(f ) The tracking efficiency at a resolution of 640 ×
480.

Figure A.27: The tracking efficiency for the RGB-D robot pioneer sequence 2 after encoding the image
sequence with a variety of configurations. Each plot shows the tracking efficiency for all CRF factors. (a)
– (d) show the tracking efficiency for each resolution at a fixed frame rate configuration. (e) – (f) show
how the tracking efficiency varies for a constant resolution.
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(a) The tracking efficiency at a frame rate of 5 Hz.
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(b) The tracking efficiency at a frame rate of 10 Hz.
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(c) The tracking efficiency at a frame rate of 15 Hz.
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(d) The tracking efficiency at a frame rate of 30 Hz.
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(e) The tracking efficiency at a resolution of 320×
240.
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(f ) The tracking efficiency at a resolution of 640 ×
480.

Figure A.28: The tracking efficiency for the RGB-D robot pioneer sequence 3 after encoding the image
sequence with a variety of configurations. Each plot shows the tracking efficiency for all CRF factors. (a)
– (d) show the tracking efficiency for each resolution at a fixed frame rate configuration. (e) – (f) show
how the tracking efficiency varies for a constant resolution.
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(a) The tracking efficiency at a frame rate of 5 Hz.
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(b) The tracking efficiency at a frame rate of 10 Hz.

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

480×
270

640×
360

960×
540

1920×
1080Tr

ac
ki

n
g

ef
fi

ci
en

cy
(p

o
in

ts
/b

it
)

Resolution (pixels)

Quality
crf 29
crf 26
crf 23
crf 20
crf 17

(c) The tracking efficiency at a frame rate of 15 Hz.
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(d) The tracking efficiency at a frame rate of 30 Hz.
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(e) The tracking efficiency at a resolution of 480×
270.
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(f ) The tracking efficiency at a resolution of 640 ×
360.
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(g) The tracking efficiency at a resolution of 960×
540.
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(h) The tracking efficiency at a resolution of 1920×
1080.

Figure A.29: The tracking efficiency for the CoRBS sequence 1 after encoding the image sequence with
a variety of configurations. Each plot shows the tracking efficiency for all CRF factors. (a) – (d) show the
tracking efficiency for each resolution at a fixed frame rate configuration. (e) – (h) show how the tracking
efficiency varies for a constant resolution.
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(a) The tracking efficiency at a frame rate of 5 Hz.
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(b) The tracking efficiency at a frame rate of 10 Hz.
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(c) The tracking efficiency at a frame rate of 15 Hz.
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(d) The tracking efficiency at a frame rate of 30 Hz.
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(e) The tracking efficiency at a resolution of 480×
270.
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(f ) The tracking efficiency at a resolution of 640 ×
360.
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(g) The tracking efficiency at a resolution of 960×
540.
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(h) The tracking efficiency at a resolution of 1920×
1080.

Figure A.30: The tracking efficiency for the CoRBS sequence 2 after encoding the image sequence with
a variety of configurations. Each plot shows the tracking efficiency for all CRF factors. (a) – (d) show the
tracking efficiency for each resolution at a fixed frame rate configuration. (e) – (h) show how the tracking
efficiency varies for a constant resolution.
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B Scripts used for the experiments

In this appendix, a copy of the README file from the source code of the scripts used during the
experiments is provided. It is explained how the scripts can be used to derive the results from
this thesis. The scripts themselves are available on the GitLab of the Robotics and Mechatronics
Group.

B.1 Scripts used during the thesis Optimizing wireless video streams for computer
vision

These scripts were used by, Frank van der Hoek (frank.vanderhoek@gmail.com), during
experiments for the thesis Optimizing wireless video streams for computer vision. Using the
scripts, it should be possible to recreate the results of my thesis.

B.1.1 Table of contents

• Prerequisites

– Node
– Opencv
– Datasets

• Installation
• Usage of the scripts

B.1.2 Prerequisites

Node

Node version v8.14.0 was used during the experiments. However, the scripts should work for
most other versions as well. Node can be downloaded from https://nodejs.org/en/
download/ and installed. For Mac, it is also possible to install it via homebrew by running
brew install node.

Opencv

The node scripts use OpenCV version 4.1.0. OpenCV is built from source automatically when
the npm package opencv4nodejs is installed. However, manual install is also possible.

Installation instructions can be found on the opencv website. Pre-built libraries are avail-
able for Windows. On linux it is possible to install opencv by running sudo apt-get
install python3-opencv. For Mac, it is also possible to install it via homebrew by
running brew install opencv@4. OpenCV can also be installed via python using pip
install opencv-python.

Datasets

CoRBS dataset The CoRBS dataset can be downloaded from the website of the German Re-
search Center for Artificial intelligence. In the experiments the Desk 1 and Desk 2 sequences
were used. Besides the raw images, the camera trajectories for the Desk 1 and the Desk 2 are
needed as well. The camera parameters are provided here. To use the camera matrix in a JSON
file, copy the following in a file and save it with a .json extension:

[[1054.35, 0, 956.12], [0, 1054.51, 548.99], [0, 0, 1]]

RGB-D dataset The RGB-D dataset can be downloaded from the website of the Technical Uni-
versity of Munich. The pioneer slam 1, 2 and 3 were used for the experiments. The camera
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parameters can be found here. To use the camera matrix in a JSON file, copy the following in a
file and save it with a .json extension:

[[525, 0, 319.5], [0, 525, 239.5], [0, 0, 1]]

B.1.3 Installation

After cloning this repository, cd into it.

If OpenCV is already installed, re-installation can be prevented by running the following com-
mand before installing any required node dependencies:

# linux and osx:
export OPENCV4NODEJS_DISABLE_AUTOBUILD=1
# on windows:
set OPENCV4NODEJS_DISABLE_AUTOBUILD=1

Next, install the required node dependencies by running:

npm install

B.1.4 Usage of the scripts

There are several scripts that can be used during experiments. After downloading a sequence
from one of the datasets, the following process can be used to analyse the performance of the
tracking algorithm for videos with different scaling parameters for a sequence of images:

1. Convert the list of images from rgb.txt to a JSON file using the bag-to-json.js script.
2. Convert the groundtruth.txt file to a JSON file using the bag-to-json.js script.
3. Make sure there is a JSON file containing the camera matrix.
4. Generate spatially scaled versions of the camera matrix using the

generate-camera-matrix.js script repeatedly.
5. Generate temporally scaled versions of the groundtruth JSON file using the

generate-groundtruths.js script.
6. Generate videos for all scaling parameters using the generate-videos.js script.
7. Count the maximum number of trackable points for each video using the

count-max-trackable-points.js script.
8. Track points for each video using the track-points.js script.

Convert a ROS bag to a json file

This script can be used to convert a ROS bag file to a json file. It assumes that values are space
separated and that the 3rd line contains a comment with the headers.

The script reads data from stdin and outputs it to stdout. An example of a command is:

node ./scripts/bag-to-json.js < path/to/bag-file > desired-filename.json

Generate a spatially scaled camera matrix

This script can be used to apply spatial scaling to a camera matrix in a JSON file.

It accepts three arguments:

1. The path to the camera matrix JSON file.

F.J. (Frank) van der Hoek University of Twente
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2. The source resolution of the camera matrix in wxh format.
3. The target resolution of the camera matrix in wxh format.

Output is written to stdout.

An example command is:

node ./scripts/generate-camera-matrix.js \
/path/to/cam.json 1920x1080 480x270 > cam_480x270.json

Generate temporally scaled ground-truth files

This script generates temporally scaled ground-truth files for frame rates of 30Hz, 15Hz, 10Hz,
and 5 Hz.

The script accepts 3 arguments:

1. The path to the JSON file containing a list of images and timestamps.
2. The path to the groundtruth.json file with the raw camera poses from the dataset.
3. The output directory (optional).

Output files are written using the filename:

groundtruth_[frame rate].json.

An example command is:

node ./scripts/generate-groundtruths.js \
/path/to/rgb-file.json \
/path/to/groundtruth-file.json \
/path/to/output-folder

Generate all scaled videos for an image sequence

This script generates videos with spatial, temporal, and quality scaling for an image sequence.
Spatial scaling parameters are automatically determined based on the image resolution.

It accepts two arguments:

1. The path to the image folder
2. The desired output filename base.

Video files are saved using the filename [base]_[resolution]_[frame
rate]_[quality].mp4.

An example command is:

node ./scripts/generate-videos.js \
/path/to/image-sequence/rgb \
/desired/output.mp4

This generates videos such as /desired/output_1920x1080_30_23.mp4

Count the maximum number of trackable points throughout a video

This script counts the maximum number of trackable points throughout a video.

It accepts one argument, which is the filename of the video.
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Output is written in CSV format to stdout and contains 1 entry for each second.

An example command is:

node ./scripts/count-max-trackable-points.js \
/path/to/video.mp4 > number-of-points.csv

Track points in a video file

This script tracks points in a video.

It accepts 3 arguments:

1. The path to the video file.
2. The path to the spatially scaled camera matrix JSON file.
3. The path to the temporally scaled groundtruth JSON file.

The script may take very long to run and outputs a progress bar to show its progress. For each
frame it stores the frameNumber, total number of seeds, number of observable seeds, number
of seeds that failed to converge, the average variance of the seeds, and the number of map
points in a log file in CSV format. The map points are written to a map file in CSV format,
containing the x,y,z and intensity of a 3D point.

An example command is:

node ./scripts/track-points.js \
/path/to/video.mp4 \
/path/to/cam_1920x1080.json \
/path/to/groundtruth_30.json

Perform tracking for all video files

This is a script that performs tracking for all the videos from both datasets. It limits the number
of videos that are processed in parallel to 16, such that the scripts run efficiently on a system
with 16 cores.

It assumes that videos are stored in the folder

$HOME/videos/[dataset name]/[sequence name]/[sequence]_[resolution]_[frame
rate]_[crf].mp4

Where dataset name is either corbs or rgbd and sequence name one of corbs,
corbs2, rgbd, rgbd2, rgbd3.

The camera matrices are assumed to be in the folder

$HOME/camera-matrices/[sequence]/cam_[resolution].json.

The ground truth files are assuemd to be in the folder

$HOME/camera-poses/[sequence]/groundtruth_[frame rate].json.

An example command is:

node ./scripts/track-all.js

Generate a csv containing all results

This script generates a CSV file containing the columns dataset, sequence,
resolution, framerate, quality, bitrate, duration, avgTrackablePoints,
totalMapPoints.
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The first 5 columns define the video filename.

The bit rate and duration are obtained by the script by executing ffprobe. The average max-
imum number of trackable points is obtained by computing the average of entries in the file

$HOME/videos/[dataset name]/[sequence name]/[sequence]_[resolution]_[frame
rate]_[crf].mp4.csv

This file is assumed to exist with entries generated by thecount-max-trackable-points.js
script. dataset-name is either corbs or rgbd and sequence-name one of corbs,
corbs2, rgbd, rgbd2, rgbd3.

The total number of map points is obtained from the final entry of the file

$HOME/js/tracker-js/[sequence]_[resolution]_[frame rate]_[quality].mp4_log.

This file is assumed to have been generated using the track-points.js script.

The output of the script is written to stdout

An example command is:

node ./scripts/gen-final-csv.js > final.csv
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