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Abstract

The field of Brain Computer Interface (BCI) research has seen tremendous growth in
the last years. This research handles an endeavor towards improvement of specifically
Sensorimotor Rhythm BCIs based on Electrocorticographic measurements (ECoG) by
investigating the possibility to decode individual finger movements from both the hand
contralateral to the implanted ECoG electrode grid as well as the hand ipsilateral to the
implanted grid. Although the hemispherical organization of the limbs is largely contralat-
eral, cortical activation during ipsilateral hand movement has been reported in literature.
The possibility to decode both ipsilateral and contralateral finger movements from a sin-
gle hemisphere could increase the available degrees of freedom for device control without
the necessity of placing electrode grids on both hemispheres, which is unfavorable given
the tremendous impact of the surgery associated with implantation. This research in-
cluded four participants with intractable epilepsy who underwent placement of HD ECoG
grids over the hand knob of the SMC of a single hemisphere. The participants performed
individual finger movement of the thumb, index and little finger of the hand contralat-
eral and ipsilateral to the implanted ECoG grid. A synchronous (cue-based) experiment
showed that individual movement of contralateral and ipsilateral fingers along with trials
of rest can be decoded with a performance significantly above chance level (p<0.05) for all
participants with an accuracy of 79.22 ± 6.30 (Mean ± SD) across participants. In this
synchronous experiment, only ipsilateral finger movement showed confusion with rest (i.e.
false positive detections). In addition to this synchronous experiment, an asynchronous
experiment (non cue-based) was approximated such that it closely resembled a real-life
BCI use case. In this experiment, the occurrence of false positive detections of especially
ipsilateral finger movements was grossly exacerbated, which has strong implications for
the eventual usability of individual ipsilateral finger movement as a BCI control signal.
This research is, to the best of the author’s personal knowledge, the first research to
investigate the possibility to decode both contralateral and ipsilateral individual finger
movements from ECoG signals recorded over the Sensorimotor Cortex (SMC) of a single
hemisphere. Future research should focus on a much more elaborate asynchronous eval-
uation and eventually experiments with end users should be performed to determine the
full extent to which both contralateral and ipsilateral (attempted) finger movements can
be used as a viable control signal in BCIs.

Keywords: Electrocorticography, ECoG, Unimanual, Finger, Movement, Contralateral,
Ipsilateral, Decoding, Classification, Machine Learning, Brain Computer Interface, BCI,
Synchronous, Asynchronous
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1 Introduction

An illustrative definition of a Brain Computer Interface (BCI) has been provided by
Graimann and colleagues by referring to an excerpt from the science fiction series Star
Trek (Graimann et al., 2009). The character Captain Pike was struck by severe radiation
which left him paralyzed. The dialog between the characters Piper and Mendez describe
the situation of Pike:

PIPER: We’re forced to consider every possibility, sir. We can be certain Captain
Pike cannot have sent a message. In his condition he’s under observation every

minute of every day.
¡text¿

MENDEZ: And totally unable to move, Jim. His wheelchair is constructed to
respond to his brain waves. Oh, he can turn it, move it forwards, or backwards

slightly.
¡text¿

PIPER: With the flashing light, he can say yes or no.
¡text¿

MENDEZ: But that’s it, Jim. That’s as much as that poor devil can do. His mind is
as active as yours and mine, but it’s trapped inside a useless vegetating body. He’s

kept alive mechanically, a battery-driven heart.
¡text¿

Original Airdate: 17 Nov 1966

For Pike, the only way to control his wheelchair and communicate with the outside world
is via a computer that can read his brains’ signals (hereafter referred to as cortical signals)
and convert those signals to commands which control his wheelchair and communication
device. Graimann states that such a device would indeed be perfect for a science fiction
movie but hardly imaginable in real life (Graimann et al., 2009).

To date, almost 50 years after the airing of that Star Trek episode, a large number of
BCIs have been developed that use physiological measures of brain activity to facilitate
an alternative manner of communication for those individuals who can no longer use their
muscles to communicate through speech or movement (Wolpaw et al., 2002) (Birbaumer,
2006). Such a disability can be found in individuals with Locked in Syndrome (LIS).
Individuals with LIS lose, in varying gradation, control over primary muscles of the body
leaving them unable to move or speak. The causes for LIS are diverse, including but not
limited to brainstem stroke or Amyotrophic Lateral Sclerosis (ALS) (Kübler et al., 2005).
In extreme cases, these individuals have no way of communicating their desires to the
outside world and are thus ”locked” in their own body (Bauer et al., 1979). For individu-
als with LIS, quality of life has been strongly correlated with the ability to communicate
(Rousseau et al., 2015) (Pels et al., 2017) and for this reason, this particular group of
individuals may benefit strongly from such a BCI.
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1.1 Structure of a Brain Computer Interface

Currently, a wide variety of BCIs exist but in essence, their structure can often be re-
duced to five fundamental components namely: signal acquisition, preprocessing, feature
extraction, decoding and feedback (Wolpaw et al., 2002) (See Figure 1.1).

 User

Signal Acquisition

Device

Preprocessing DecodingFeature Extraction
ECoG, fMRI, EEG & MEG

Feedback Commands

Brain Computer Interface

Figure 1.1: Simplified architecture of the incorporation of a BCI system in a control
loop consisting of the signal acquisition, preprocessing, feature extraction, decoding and
feedback stages. (figure recreated from (Wolpaw et al., 2002).)

The signal acquisition encompasses the recording of the brain signals. For this, several
techniques exist for the recording of cortical signals including but not limited to Electroen-
cephalography (EEG), Electrocorticography (ECoG), Magnetoencephalography (MEG)
and functional Magnetic Resonance Imaging (fMRI) which can subsequently be divided
into invasive and noninvasive recording methods (Wolpaw et al., 2002) (see Box 1). Im-
ages of the recording techniques are depicted in Figure 1.2.

Figure 1.2: Image A depicts an ECoG electrode grid placed on the cortical surface (Blaus,
2014). Image B depicts an MEG machine (Bodison, 2017). Image C depicts EEG elec-
trodes on the scalp (Hamzelou, 2016). Image D depicts an fMRI machine (Wang, 2018).
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Box 1: Recording Techniques
¡text¿
Noninvasive: Non-invasive techniques
record activity either directly from the
scalp of the subject, as in EEG, or sur-
rounding the head of the subject, as in
fMRI and MEG. Noninvasive recording
techniques do not require surgery for the
installation of recording electrodes:

• EEG: applies electrodes on the
scalp (skin) of the head to measure
cortical electrical activity (Henry,
2006).

• MEG: records the weak orthogo-
nal magnetic field resulting from
electrical currents flowing through
neurons (Hämäläinen et al, 1993).

• fMRI: uses a strong magnetic field
to measure a correlate of cortical
activity, namely the metabolic re-
sponse referred to as the Blood
Oxygen Level Dependent (BOLD)
response. Active neurons produce
an increase in oxygen-rich blood
flow in surrounding tissue, and this
metabolic change can be measured
by fMRI (Logothetis et al, 2001).

Invasive: In medical terms, an invasive
procedure requires entering or penetrat-
ing the body, through the skin, tissue
or bone. This means surgery is required
during which the scalp is temporarily re-
moved in order to place the recording
electrodes on top of the cortical surface,
as with ECoG:

• ECoG: involves recording electri-
cal activity directly with electrodes
placed directly onto the cortical
surface (Hill et al., 2012).

These techniques all have their own ad-
vantages and disadvantages: Noninvasive
techniques record through the bone, tis-
sue, muscle and skin that cover the cor-
tical surface which impacts the signal to
be measured in several ways. The bod-
ily matter causes attenuation of cortical
signals, resulting in a decreased measure-
ment amplitude in noninvasive techniques
as opposed to invasive techniques (Schalk,
2010). Additionally, for EEG and MEG,
the influence of bodily matter on the sig-
nal causes a reduced recording bandwidth
as opposed to ECoG (Schalk, 2010). Fur-
thermore, the bodily matter causes scat-
tering of recorded signals and increases the
distance between the recording electrodes
and the brain. These two factors strongly
reduce the spatial resolution of EEG and
MEG with respect to ECoG (Hämäläinen
et al., 1993) (Hill et al., 2012). FMRI
however is able to reach a spatial resolu-
tion similar to that of ECoG (Siero et al.,
2014). The temporal resolution of fMRI is
much lower as opposed to EEG, MEG and
ECoG, which is due to the fact that fMRI
measures a correlate of activity (BOLD
signal) that manifests itself only seconds
after activity (Kim et al., 1997). During
MEG, EEG and fMRI scanning, the par-
ticipant must remain completely still as
to prevent movement artifacts in the mea-
sured data (Kim et al., 1997), something
which is not an issue in ECoG recordings.
In terms of portability, MEG and fMRI
recording devices are large and heavy and
are therefore not portable. EEG and ECoG
allow for more portable setups, allowing
for home use or eventually, in the case
of ECoG, full implantation (Vansteensel
et al., 2016b). One distinct disadvantage
of invasive techniques is that rejection and
encapsulation of the electrodes may occur
as a defense mechanism of the human body
to foreign objects. This phenomenon can
decrease both the feasibility and safety of longer-term implementation as well as influence
the signal quality negatively (Schendel et al., 2014). Even though the invasive recording
techniques are associated with a high impact and risk due to surgical procedures, they
have been applied in a wide variety of BCI applications. This holds for BCI users with
LIS, for whom the potential of an invasive technique for use in a BCI can outweigh the
associated risk and impact of the required surgery.

Following acquisition, the raw data is preprocessed in order to remove artifacts, noise
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and other irrelevant signal components. After the preprocessing stage, the feature ex-
traction is performed. This process entails the transformation of the raw signal into a
meaningful and useful representation from which the user’s intent can be inferred. In
the decoding step, a computerized method bases a classification or regression decision
on these informative features and outputs a discrete or a continuous control signal that
represents the intent of the user and is used to control an auxiliary device, such as a
wheelchair (Tanaka et al., 2005) or spelling computer (Kübler et al., 2009). The control
signal is additionally presented to the user via feedback (Cincotti et al., 2007). Feedback
additionally serves a key role during stages of training for BCI usage. With the aid of
feedback, the user can adapt his or her actions depending on whether the outcome was
desired or not in order to improve the usability of the BCI (Nijboer et al., 2008).

1.2 The Sensorimotor Cortex & the Sensorimotor

Rhythms

The cortical signals that are being measured can originate from various cortical areas.
There is however one specific cortical area which has been exploited by many BCIs,
namely the Sensorimotor Cortex (SMC) (Yuan and He, 2014) (Figure 1.3). An area of
the SMC of particular interest for at least ECoG BCI usage is the hand knob; the area
on the SMC that is mainly responsible for coordinating and performing hand and finger
movements (Yousry et al., 1997).

Box 2: Imagined Movement
¡text¿
Imagined Movement: Also known as
motor imagery, denotes the mental re-
hearsal of physical movement. It has
been shown that imagined movement
produces largely identical SMR modu-
lations as actual performed movement.
Alternatively, imagining the kinesthetic
experience of movement can result in an
identical effect (Lotze et al., 2000).

The SMC has several distinct properties
that make it attractive for BCI use. The
first distinct property of the SMC is that
it presents an ordered representation of all
the limbs of the human body across the
cortical surface; this mapping is referred to
as the somatotopic mapping (Figure 1.3B).
The second distinct property of the SMC
is the modulation of cortical activity pat-
terns during movement as well as during
attempted movement and imagined move-
ment (Box 2) (Yuan and He, 2014). These
patterns, when considered in the frequency
domain, are referred to as Sensorimotor
Rhythms (SMRs) and can be divided into several bands; namely the delta (δ) (0-4Hz),
theta (θ) (4-7), alpha (α) (7-15), beta (β) (15-30), and gamma (γ) (>30 Hz) bands
(Jochumsen et al., 2017). Although, the exact definitions of the upper and lower fre-
quencies of these bands vary largely in literature. The modulation of the SMRs during
movement manifest itself in decreases of spectral power in the α and β frequency bands
(hereafter referred to as the Low Frequency Band (LFB)) as well as an increase in the γ
frequency band (hereafter referred to as the High Frequency Band (HFB)) (Miller et al.,
2007) (Figure 1.3C). Lastly, the third property of the SMC is the contralateral hemi-
spheric organization. In this context, a contralateral organization denotes the crossing of
cortical pathways from the SMC to the muscles of the hands and fingers (Figure 1.3D).
As such, the SMC of the left hemisphere is mainly involved in coordinating movement
of the right hand and similarly, the SMC of the right hemisphere is mainly involved in
coordinating movement of the left hand.

To make the use of the words contralateral and ipsilateral clearer, the definitions will
be defined here per modality. For EEG, MEG and fMRI the words ipsilateral and con-

4



tralateral will be defined with respect to the hemisphere and corresponding arm, since
EEG, MEG and fMRI can consider both hemispheres during the movement of one or both
arms, the usage of contralateral and ipsilateral may become confusing. Contralateral/Ip-
silateral activity will refer to activity in the hemisphere contralateral/ipsilateral to the
moving hand, regardless of whether the left or right hand was moved. In cases were only
one hand was used (in a unimanual task), this will be mentioned. In ECoG studies, the
electrode grid is often placed on a single hemisphere and therefore, contralateral activity
is defined as activity resulting from movement of the arm contralateral to the electrode
grid and ipsilateral activity is defined as activity resulting from movement of the arm
ipsilateral to the electrode grid.
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Figure 1.3: The SMC and its three distinct properties. A) The SMC consists of the Pre-
central Gyrus (PrCG) and Postcentral Gyrus (PCG), which are separated by the Central
Sulcus (CS). The Primary Somatosensory Cortex (S1) - denoted in this figure in blue - is
located on the PCG and is believed to be mainly responsible for the processing of sensory
information (Martuzzi et al., 2014). The Primary Motor Cortex (M1) - denoted in this
figure in light blue - is located on the PrCG and is believed to be mainly responsible for
the planning and execution of movement (Zang et al., 2003). The hand knob, which can
be found with aid of the Superior Frontal Sulcus (SFS) constitutes a particularly large
area of the SMC and is pictured inside the dashed rectangle. Image created from images
of (Purves et al., 2011).
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B) An important characteristic of the SMC is the orderly arrangement of the limb repre-
sentations on both the cortical areas S1 and M1 of the SMC, which is referred to as the
somatotopic organization. This image provides a coronal view of M1 and shows the hand
representation over the hand knob. These mappings have been determined by stimulation
studies by Penfield and Boldrey (Penfield and Boldrey, 1937). It was observed that the
cortical areas for the hands and face are relatively much larger than cortical areas associ-
ated with other limbs. This disproportional representation of these areas was made visual
with the aid of the human homunculus (”little man”) depicted in the dashed rectangle.
Image created from images of (Purves et al., 2011). C) Changes in SMRs during move-
ment compared to rest. During movement, attempted movement or imagined movement,
a decrease in power in the LFB can be observed with an additional an increase in power
in the HFB (and occasionally theta band (Yanagisawa et al., 2011)). The x-axis denotes
the frequency in Hertz and the y-axis denotes the logarithmic power. Since the illustration
solely shows the relative increases and decreases, the y-axis has no scale and units. This
figure has been constructed from results from (Miller et al., 2007). D) The contralateral
hemispheric organization. The SMC of the contralateral (opposing side) right hemisphere
is mainly responsible for the control of the left hand. Here, the left hemisphere is referred
to as the hemisphere ipsilateral (same side) to the left hand. Image created from images
of (Purves et al., 2011).
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1.3 Research Motivation & Problem Statement

The concept of the somatotopic mapping of limbs on the cortical surface as well as distinct
modulations of the SMRs during (imagined) movement form the fundamentals on which
sensorimotor based BCIs are developed that can distinguish the movement of different
limbs based on the spectral and spatial aspects of cortical activity measured with ECoG.
In such a way, the (imagined) movements of distinct limbs can be coupled to various
control commands. Given the fact that movement, attempted movement and imagined
movement result in similar SMR modulations, such SMR based BCIs can also be used
by individuals with LIS who no longer have control over their muscles but are able to
modulate their SMRs (Ang et al., 2011).

This notion has been recently explored by the University Medical Center Utrecht (UMCU)
Brain Center in a BCI referred to as the Utrecht Neuroprosthesis (UNP) which has been
implanted and tested on two individuals with LIS in order to restore their communication
abilities (Vansteensel et al., 2016a). The current UNP system uses an ECoG electrode
grid implantation over the hand knob to obtain a stable and pronounced signal for control
which allows these individuals to perform a computer mouse click by mentally performing
certain actions or tasks. Motivated by the progress made in four years of implementation,
the ultimate goal of the UNP project is to develop a BCI that is 100% accurate and 100%
reliable.

Even though the current system has proven to be reliable, it still suffers from two lim-
itations. Firstly, the current version of the UNP system uses a bipolar measurement
technique with a relatively low spatial resolution, where signal is recorded from only 2
electrodes at once in a pairwise fashion. Secondly, the number of degrees of freedom avail-
able for control in the current project is limited to one, namely the aforementioned mouse
click.

Several strategies for the improvement of the current version of the UNP can be con-
sidered. The measurement resolution can be improved by making use of larger High
Density (HD) electrode grids (Wang et al., 2016). The increased number of electrodes
and reduced inter-electrode spacing of such HD electrode grids can significantly increase
the measurement area and -resolution compared to the first iteration of the UNP system.
This means that a larger cortical area can be measured at a finer level of detail. The
usage of electrode grids with an increased resolution may enable to discern more detailed
differences between cortical activity patterns associated with ipsilateral and contralateral
finger movements (Jiang et al., 2018), subsequently improving the decoding results (Her-
miz et al., 2018). To increase the degrees of freedom for device control, one can consider
using not only the SMR modulations resulting from movement performed by the hand
contralateral to the hemisphere on which the ECoG electrode grid is implanted, but also
the SMR modulations resulting from movement performed by the hand ipsilateral to the
hemisphere on which the electrode grid is implanted. Although the hemispherical orga-
nization is largely contralateral, cortical activity in a single hemisphere during ipsilateral
hand movement has been reported in literature (Fujiwara et al., 2017), (Verstynen et al.,
2005), (Bundy et al., 2018). The possibility to decode both contralateral and ipsilateral
finger movements from a single hemisphere additionally alleviates the necessity of placing
electrode grids on both hemispheres, which is unfavorable given the tremendous impact
of the surgery associated with implantation.

There are several unknowns surrounding these possible improvement strategies that need
to be further researched. Firstly, it is currently unknown whether contralateral and ipsi-
lateral finger movement can be accurately classified from the SMC of a single hemisphere.
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Secondly, it is unknown whether the HD electrode grids allow for classification of these
finger movements from a small area of the SMC of a single hemisphere. Hence, the prob-
lem statement that reflects the resulting knowledge requirement can be formulated as
follows:

It is unknown to what extent contralateral and ipsilateral individual finger movements
can both be classified from the same small area of SMC of a single hemisphere.

The rationale behind the desire to perform classification from a small area - with an
arbitrary location and with an arbitrary size in cm2 - of SMC follows from the philoso-
phy of the UNP which aims at simplicity and minimal invasiveness of a BCI. The rationale
behind classifying both contralateral and ipsilateral finger movements to increase the de-
grees of freedom stems from a more universal desire for BCI use which may in addition
to the UMCU, benefit the BCI community as a whole.

This research will firstly use the problem statement as a guide to determine the scope
of an initial literature review. Afterwards, the insights gained from this literature review
will be used to formulate novel research questions that the remainder this research will
address with the aid of several experiments. In this way, this research will partially fulfill
the knowledge requirement of the UMCU and will provide novel insights for the field of
(academic) BCI research.
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2 Literature Review

Based on the problem statement defined in the previous section, this literature review will
shed light on the underlying physiological principles, preprocessing methods, features and
decoding methodologies that enable the classification of both contralateral and ipsilat-
eral finger movements from a single hemisphere. Additionally, this literature review will
address and discuss the technical implications for the development of BCIs that decode
both contralateral and ipsilateral movements from a single hemisphere and additionally
identify gaps in knowledge and literature on this topic.

2.1 Literature Outline

This literature review will commence with Section 2.3, which will address finger somato-
topy in light of both contralateral and ipsilateral finger and hand movements. In Section
2.4, the underlying physiological phenomena of both contralateral and ipsilateral finger
movements will be discussed. These physiological phenomena will be handled separately
in terms of spatial, temporal and spectral aspects. This division allows for an ordered
overview of physiological phenomena which translates well to the three feature domains
(the spatial, temporal and spectral domains) that are used in decoding processes. For
ECoG, EEG and MEG, the spatial and temporal aspects are tightly coupled to the spec-
tral aspects; the spatial and temporal aspects are different for each frequency band and
therefore, the spatial and temporal aspects cannot be considered outside the spectral
context and will consequently be handled within the section on spectral aspects. One
exception to this layout can be made for studies using fMRI. The usage of this technique
does not involve any spectral aspects but will be handled in this same section never-
theless. Section 2.5 will present the state of the art on the decoding of hand and finger
movements in general and will discuss how the physiological aspects divided in the three
aspects are used in the decoding process. Section 2.6 will be devoted to the classification
of both contralateral and ipsilateral hand and finger movement, which is the subject that
is most relevant to the problem statement of this literature review. With this structure, all
relevant aspects around the classification of contralateral and ipsilateral hand and finger
movements are handled: from the underlying physiological principles to the translation
of these principles into features and back to the elaboration on physiological principles
with aid of classification outcomes.

2.2 Literature Selection

The databases that were used for this literature review were Scopus, Embase, PubMed,
Google Scholar and BioRxiv. Pubmed, Embase and BioRxiv are oriented towards the
medical domain, while Scopus and Google Scholar do not have a specific focus domain.
Cochrane was not considered for this literature review, because it focuses more on clinical
healthcare and reviews of treatments. Several inclusion and exclusion criteria were defined
which will be handed during the initial assessment of an article based on its title, abstract,
methodology and results. These criteria are listed below. A more detailed description of
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the formulation of the inclusion criteria is included in Appendix B.

• Date: Articles on physiological process were included regardless of the publication
date. Only decoding papers more recent than 2000 were included.

• Participants: Only studies with human participants were included.

• Methodology: Only studies that recorded hand and finger movement were in-
cluded, additionally, studies with imagined movement were excluded. Studies with
attempted movement were however included.

• Language: Only articles written in English were included.

• Literature types: Literature from peer-reviewed (Scopus, Embase, Pubmed, Google
Scholar) and non-peer reviewed sources (BioRxiv) were included.

• Modalities: Articles using ECoG, fMRI, EEG and MEG were included. Studies
that combine two or more of these modalities were also included.

The keywords that are relevant for finding literature within the scope of this research were
extracted from the problem statement in Section 1.3 and the inclusion- and exclusion
criteria mentioned in the sections above. The search keywords that will be used are listed
in (Table 2.1). These search keywords were combined with logical operators (AND, OR,
NOT) to form search queries.

Concept Keywords and Search Terms

Imaging modality

Functional magnetic resonance imaging, fMRI, MRI,
ECoG, electrocorticography, electroencephalography,
EEG, iEEG, intracranial, EEG, magnetoencephalography,
MEG

Cortical areas
Primary somatosensory cortex, sensory cortex, primary
motor cortex, motor cortex, sensorimotor cortex, SMC,
M1, S1, cortical areas, precentral gyrus, postcentral gyrus

Decoding and Classification
Encoding, decoding, mapping, somatotopy, somatotopic,
mapped, classification, representation

Movement Finger, hand, gesture, unimanual, movement

Laterality contralateral, ipsilateral
Participant type Human

Study type Comparing

Table 2.1: Keywords and search terms for the literature search summarized per concept

In order to restrict the number of results, the queries are created such that they return
not more than 100 results per database were included. The reader can refer to Appendix
C for the combination of keywords with the Boolean operators and Appendix D for an
overview of constructed queries and search results that were obtained and included.

The search process yielded 1830 articles. This number also included articles that were
found prior to the systematic search from for example literature recommendations by
colleagues, related articles or references inside these articles. After removing duplicates,
1618 unique articles were retained. At first, articles handling pathology were removed.
After that, the relevance of the articles was judged based on the title. The relevance was

10



determined by evaluating which articles focused on the SMC and are related to the decod-
ing or physiological aspects of either contralateral hand or finger movement, ipsilateral
hand or finger movement or both contralateral and ipsilateral hand or finger movement.
After this process, 386 of the 1618 articles were retained. Afterwards, the relevance of
this subset of articles was judged on the abstract, after which 202 of the 386 articles
were retained. The relevance was determined in an analogous manner as above, but the
abstract was used to assess the research on the ”Participants”, ”Modality” and ”Method-
ology” criteria so that studies with recorded or attempted movement using fMRI, ECoG,
EEG or MEG in human participants were included. After this process, 202 of the 386
articles were retained. These articles have been assigned to several categories and sorted
per modality. The resulting overview is listed in Table 2.2.

Topic ECoG fMRI EEG MEG Total

Somatotopy 1 36 0 0 37

Ipsilateral or contralateral
hand or finger movement 46 17 19 8 90

Ipsilateral and contralateral
hand or finger movement 11 15 14 4 44

Preprocessing and decoding 12 1 5 0 18

Physiological background 0 10 1 2 13

Total 70 79 39 14 202

Table 2.2: The division of literature in five distinct categories and sorted per modality

2.3 Somatotopy of the Fingers on the SMC

Much of the knowledge on somatotopy is attributed to a study dating back to 1937 by
Penfield and Boldrey (Penfield and Boldrey, 1937). The work by Penfield and colleagues
made use of electrical cortical stimulation of the M1 and S1 areas upon which the au-
thors observed whether movement of the participant’s limbs occurred during stimulation
of M1, or whether the participant reported a sensory related sensation upon stimulation,
such as a tingling sensation, during stimulation of S1. The article by Penfield and his
colleagues has been used widely in literature as an argument for the existence of a clear
somatotopic map, without any mention of the complex context of the research itself.
Even Penfield and his colleague have warned against a too simplistic interpretation of
their work (Kaufman, 1950). Therefore, to no surprise, the classical interpretation of a
fine grained, segregated and homogenic map of the distinct body parts cannot always be
reproduced in more recent studies, in particular in M1.

More recent studies have successfully reproduced the finger specific somatotopic map in
S1. In contrast to using electrical cortical stimulation, these studies elicit cortical activity
in S1 through tactile input, by means of applying touches, brush strokes or vibrations
onto the fingers of the participants. Using fMRI, a lateral to medial finger somatotopy in
S1 can be established by using either calculations of Centers of Mass (COMs) for voxel
groups associated with fingers or assigning a voxel to the finger for which it was most ac-
tivated (Sanchez Panchuelo et al., 2018), (Pfannmöller et al., 2016), (Besle et al., 2014),
(Martuzzi et al., 2014), (Stringer et al., 2011), (Weibull et al., 2008), (Overduin and
Servos, 2004), (Blankenburg et al., 2003). Albeit, the somatotopies showed overlapping
finger representations (Sanchez Panchuelo et al., 2018), (Besle et al., 2014), (Overduin
and Servos, 2004), (Meier et al., 2008) and large inter-participant differences (Martuzzi
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et al., 2014), (Stringer et al., 2011), (Weibull et al., 2008).

2.3.1 Finger Somatotopy During Movement

Within the context of this literature review, somatotopy studies involving movement
rather than tactile input are more relevant and will provide results that are more repre-
sentative for movement research (Kolasinski et al., 2016). Although the finger somatotopy
in S1 has been reproduced by means of tactical input, no studies were found that have
reproduced the finger somatotopy in S1 during finger movement. Several studies have
however researched finger somatotopy in M1 during movement and discrepancy over the
existence of a clear finger somatotopy exits between these studies. Several studies re-
port a rather limited ordered somatotopy with overlap (Olman et al., 2012a), (Beisteiner
et al., 2004), (Dechent and Frahm, 2003) while other studies report a clearer somatotopy
(Lotze et al., 2000), (Zang et al., 2003) however still with significant overlap and high
inter-participant variability.

One explanation for the broad spatial overlap of finger somatotopy in M1 is extensively
brought up; movement requires collaboration of multiple muscles and therefore, the larger
and more separated cortical activation seen during movements is the result of multiple
muscle groups being called upon in an orchestrated manner (Beisteiner et al., 2004),
(Dechent and Frahm, 2003), (Sanes and Donoghue, 2002), (Meier et al., 2008), (Sanes
and Schieber, 2001). In addition, different movement tasks can result different cortical
activation patterns depending on the type and complexity of movement (Lotze et al.,
2000) as well as the order of movements. For example, individual finger movements re-
portedly produce more overlapping activation patterns than movements of two fingers
simultaneously (Dechent and Frahm, 2003). Additionally, a random finger tapping task
may produce differently arranged cortical activation patterns than a sequential finger
tapping task (Olman et al., 2012a). The authors of this paper argue that the differences
between sequential and random tapping tasks may be attributed to movement anticipa-
tion and preparation. Furthermore, it is often difficult during a motor task move solely
the intended finger and minimize movement of adjacent fingers (Ejaz et al., 2015), (Li
et al., 2016). This movement of non-cued fingers has been linked to coincide with patterns
of daily use (Kolasinski et al., 2016). This theory closely follows the notion of finger en-
slavement (Yu et al., 2009), in which movement of non-cued fingers was observed during
force deficit in one finger in tasks that require high force production. These notions serve
as an argument for the desire of a standardized movement task across different studies
to enable the production of more reproducible somatotopic maps in M1 in movement
(Beisteiner et al., 2004).

At this point, the need to investigate the finger somatotopy in S1 and M1 during move-
ment still exists. Only two studies have researched finger somatotopy in both S1 and M1,
which enable a comparison between S1 and M1.

At first, Hlustik performed an fMRI study with two different movement tasks for thumb
and little finger, and index, middle and ring finger respectively (Hlustik, 2001). The thumb
and little finger were moved by simple flexion and extension, while the index, middle and
ring finger where moved sequentially by pressing on a keypad. Notably, M1 and S1 were
defined with the aid of the central, precentral and postcentral sulci. The study design
included (COM) calculations for each participant, where each voxel was weighted by its
correlation coefficient with a certain finger so that voxels which contained more active
tissue were assigned a larger weight. The results were compared at group level, of which
an interpretation is depicted in Figure 2.1. Their study shows presence of somatotopy in
S1 and M1 when considering the average COMs of the participants. By hand, it can be

12



measured that the finger representations of M1 and S1 span an area of roughly 2.5x4.5
mm and 4x4.5 mm (x,y; lateral-medial x anterior-posterior), respectively. The authors
showed that centroid of the thumb representation in S1 was located more laterally than
the respective thumb centroid of M1. Moreover, each finger movement was not segregated
into discrete areas, but showed overlap, in accordance with the studies outlined in the
previous sections. The authors presented as main finding that somatotopy exists for both
M1 and S1, but that the somatotopy observed in S1 is more discrete and segregated in
contrast to the integrated and overlapping somatotopy in M1. The authors explain their
spatial variability in COMs by the variable size and topography of the cortices of individ-
ual participants, which the authors did not compensate for using a standard coordinate
system or universal cortical model. Unfortunately, this study presents the results only
on group level and not on particpant level. The authors do state that the somatotopy
obtained by group results was clearer than the variable individual finger somatotopy, but
do not present any results to prove this statement.
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Figure 2.1: Group average of COM calculations for each of the fingers during the two
different movement types for M1 on the left-hand side (A) and S1 on the right-hand side
(B) constructed from the results of (Hlustik, 2001). The images are depicted in the axial
(x,y) (lateral-medial, anterior-posterior) plane. The x-axes denotes the x coordinate in
mm and the y-axes denote the y coordinate in mm. Note that the coordinates on the axis
differ between (A) and (B), but the proportions are equal. The thumb and little finger
movements are shown, together with the results of sequential finger movements of the
index, middle and ring finger.

Secondly, study by Schellekens and colleagues have presented their findings using a
different method by considering Gaussian population Receptive Field (pRF) models
(Schellekens et al., 2018). The authors of this paper used a finger flexion and exten-
sion task to consider both the somatotopic differences between S1 and M1 (including the
central sulcus) as well as the somatotopic differences between finger flexion and extension
in both areas. The method in which the center of the Gaussian pRFs associated mostly
with each finger was visualized, resulted in a gradient that shows distinct somatotopic
organization in M1 and S1 (in S1 only during finger flexion) where each cortical area
responds to movement of a preferred digits but also, albeit to a lesser extent, to other
fingers. The authors also observed a medial to lateral layout from thumb to little finger
for both M1 and S1. Interestingly, upon visual inspection of the results, it can be inferred
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that the somatotopy computed for S1 was located more laterally than the somatotopy
for M1, which is in accordance for the thumb centroid placing between M1 and S1 in the
study by Hulstik (Hlustik, 2001). In addition to the definition of Gaussian pRF centers,
the spread of the Gaussian pRFs was used as a measure for the finger specificity, where
a larger spread dictated less finger specificity of a neuronal population. The largest pRF
spread was observed in M1, which the authors interpret as the notion that sensory infor-
mation processing in S1 occurs in a more specific, less segregated level than the processing
of movement activity in M1. These results seem to be in line with the previous study
handled in this section. The article by Schellekens and colleagues unfortunately do not
report any quantifiable differences in terms of measurements (in mm or cm) that can
support or oppose the findings of the Hlustik and colleagues.

2.3.2 Finger Somatotopy During Contralateral and Ipsilateral
Movement

The findings presented up till now have portrayed an image of the finger somatotopy in the
SMC resulting from contralateral movement. However, a limited number of studies have
examined the differences between the finger somatotopies in the SMC resulting from con-
tralateral and ipsilateral finger movements. Interestingly enough, Hlustik (Hlustik, 2001)
observed additional cortical activity in the ipsilateral hemisphere in both S1 and M1 in
some participants. However, this cortical activity could not resolve a structured somato-
topy in the ipsilateral hemisphere, due to the activation not being statistically significant
for all participants. In total, two studies were found that research contralateral and ipsi-
lateral finger somatotopy.

Alkhadi and colleagues published a study researching the somatotopy in M1 of a sin-
gle hemisphere during ipsilateral finger movements, using the same data that was used
in a previous study investigating the somatotopy of contralateral movement in a single
hemisphere ((Alkadhi et al., 2000); (Alkadhi et al., 2002)). Both research papers investi-
gated a larger scale somatotopy between finger, hand and other body parts. The research
used a brisk finger task, during which all fingers of the right hand were simultaneously
opened and closed once. Using again a COM approach, a large scale somatotopy was
reported for the contralateral hemisphere and significant activity was reported for all
runs of the finger task. For the ipsilateral hemisphere, significant cortical activation was
only reported during less than half of the finger task runs, in which it was always smaller
in comparison with activation in the contralateral hemisphere. However, a high-level so-
matotopy for the ipsilateral hemisphere could be constructed from data obtained over
2 imaging sessions. The authors of the articles did not provide a one on one compar-
ison between the layout of the somatotopies observed in the two hemispheres, but the
authors did use the same Talairach coordinate system and scale for the presentation of
the results of both contralateral and ipsilateral somatotopies. The finger somatotopies
during contralateral and ipsilateral movement can therefore be visualized by manually
overlaying the COMs of both contralateral and ipsilateral runs (Figure 2.2). The COMs
were calculated from all voxels that crossed the significance threshold and were uniformly
weighed in the calculation.
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Figure 2.2: Two dimensional plots of the COMs of the statistically significant runs from
all participants observed in M1 of the contralateral and ipsilateral hemisphere constructed
by overlaying the results of both papers by Alkhadi et al. ((Alkadhi et al., 2000); (Alkadhi
et al., 2002)). The figure gives an axial view and the axes denote the y and x coordinates
in Talairach space. Negative y coordinates denote the posterior brain. The x coordinates
denote medial (0) to lateral (70). In blue, the borders of the contralateral M1 and the
COMs of finger task runs of all participants are given. In red, the approximated borders
of the ipsilateral M1 and the COMs of finger task runs of all participants are given. The
contralateral results have been mirrored over the vertical axis to match the orientation
of the ipsilateral results. The dots with the black outline indicates the mean COMs of
the separate COMs of each of the runs for the ipsilateral and contralateral hemisphere
respectively. Note that for contralateral hemisphere, more dots are depicted because more
runs reached statistically significant activation in contrast to the ipsilateral hemisphere.
For the contralateral hemisphere the COMs of 24 runs are depicted, and for the ipsilat-
eral hemisphere, the COMs of 11 runs are depicted. Any COMs from the different tasks
recorded in this study have been omitted in this figure.

A different study conducted by Stippich and colleagues also investigated the contralat-
eral and ipsilateral larger scale somatotopy in M1 between fingers and other body parts
(Stippich et al., 2007). The area under consideration did extent the central sulcus onto
S1 but no activity related to finger movement was observed there. The authors used a
finger opposition task with all digits towards the thumb, with both the left and right
hand. In their findings, ipsilateral cortical activation was present during more than 90%
of runs for the finger task, although the cortical activation levels were lower than those for
contralateral cortical activity. The results of their study presented both individual runs
of all participants and COM calculations for the runs of all participants (Figure 2.3). The
authors noted that the Euclidean coordinates of the COMs of the ipsilateral activation
were shifted anteriorly for both hemispheres, which is in line with the results from Alka-
dhi and colleagues ((Alkadhi et al., 2000); (Alkadhi et al., 2002)), who also report the
COM for the contralateral finger movements to be further posterior in addition to being
located more lateral. The authors did not discuss the varying number of contralateral
and ipsilateral task runs for both the ipsilateral and contralateral runs. Again, the COMs
of contralateral and ipsilateral runs have been constructed from a different number of
datapoints between the contralateral and ipsilateral runs, in this study, there were more
ipsilateral data points. The COM and the lower boundary of the contralateral activity
are shifted slightly more posterior in the left hemisphere than in the right hemisphere
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and in addition, the contralateral COMs are narrower in a medial to lateral.

Contralateral
Ipsilateral

Right Hemisphere Left Hemisphere

Contralateral
Ipsilateral

X (mm)

-20 -40 -60 -80   0 20 40 60 80

Y
 (

m
m

)

10

  0

-10

-20

-30

-40

-50

20

Y
 (

m
m

)

10

  0

-10

-20

-30

-40

-50

20

X (mm)

-20 -40 -60 -80   0 20 40 60 80

Right Hemisphere Left Hemisphere

Figure 2.3: Two dimensional plots, recreated from the results by Stippich and colleagues
(Stippich et al., 2007), of both the individual runs (left hand figure) and the COMs of these
runs (right hand figure) observed in M1. The figure gives an axial view and the axes denote
the y and x coordinates in tens of millimeters in Euclidean space. Negative x coordinates
denote the left hemisphere and positive x coordinates denote the right hemisphere. The
x coordinates denote medial (0) to lateral (80/-80). Negative y coordinates denote the
posterior brain. The blue dots represent the individual contralateral runs and the red dots
represent the individual ipsilateral runs, for both hemispheres. The COMs are depicted in
blue for contralateral runs and in red for ipsilateral runs. No exact information on the
number of runs for the right and left hand was available. Any information from individual
runs or COMs from the different tasks recorded in this study have been omitted in this
figure.

In conclusion, more recent studies were in some cases able to reproduce the somatotopic
maps of M1 and S1 depending on the visualization methodology and task paradigm
that was used. The studies that used a movement paradigm task showed overlapping
finger representations, where the somatotopy in S1 seems more segregated and distinct
relative to M1. Two studies present an overlap in contralateral and ipsilateral finger
representations and that the ipsilateral finger representations are located more anteriorly
than contralateral movement, but this was researched only in M1.

2.4 Spatial, Temporal and Spectral Aspects of

Contralateral and Ipsilateral Movement

Neuronal signals can be characterized into three separate aspects; namely the spatial
(with respect to magnitude of the signal), temporal and spectral aspects. For ECoG,
EEG and MEG, the spatial and temporal aspects are tightly coupled to the spectral
aspects, as these vary per frequency band. On the other hand, fMRI signals do not have
a spectral or temporal representation, thus only the spatial aspects related to these studies
are discussed in this section.
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2.4.1 Spatial Aspects

Findings from fMRI Studies

Various fMRI studies have reported different outcomes on the presence of ipsilateral cor-
tical activity. Contralateral cortical activity was reported in all participants in all studies,
whereas ipsilateral activity was found in either all participants (Horenstein et al., 2009)
or only a subset of participants (Ehrsson et al., 2000), Hanakawa et al. (2005), (Singh
et al., 1998), (Cramer et al., 1999), (Kim et al., 1993), (Nirkko et al., 2001). Several
studies reported less pronounced ipsilateral activity in comparison with contralateral ac-
tivity (Hanakawa et al., 2005), (Singh et al., 1998), (Baraldi et al., 1999), (Diedrichsen
et al., 2013), (Kim et al., 1993) while some studies even reported ipsilateral deactivation
(Kobayashi et al., 2003), (Wu et al., 2008).

It appears that the occurrence and degree of ipsilateral activity depends on several as-
pects. First, several studies report that the task complexity influences the magnitude of
ipsilateral cortical activity in the SMC. Three studies compared the degree of ipsilat-
eral cortical activation during a simple and more complex tasks: Ehrsson and colleagues
compared a simple power grip to a more complex precision grip (Ehrsson et al., 2000),
Verstynen and colleagues compared simple finger tapping to more complex multi-finger
chord tapping (Verstynen et al., 2005) and Huo and colleagues compared a simple hand
squeeze to a more complex finger opposition task (Huo et al., 2010). All three studies
found increased levels of ipsilateral cortical activity during the complex task in compari-
son with the ipsilateral cortical activity levels observed during the simple tasks. Although
the two tasks in the study by Verstynen and colleagues involved a different number of
fingers, a control experiment performed by the authors did not show a linear increase of
ipsilateral activity with the number of fingers used. In the three studies, the contralateral
cortical activity did not change significantly during the increasing task complexities, un-
derlining the theory of a supportive role of ipsilateral activity during complex and precise
movement.

Secondly, the handedness of participants influences the magnitude of ipsilateral corti-
cal activity. In M1 of ten right-handed participants, movement of the non-dominant left
hand resulted in contralateral activity in all participants and ipsilateral activity in half of
the participants whereas dominant right hand movement resulted in contralateral activ-
ity, but not in ipsilateral activity (Kobayashi et al., 2003). A similar phenomena has been
observed by Singh and colleagues over the whole SMC during a finger opposition task
(Singh et al., 1998). Conversely, Wu and colleagues performed a study in M1 of both left
and right-handed participants and observed no change in ipsilateral activity levels during
movement of the dominant hand but instead observed significant ipsilateral deactivation
during movement of fingers of the non-dominant hand in all participants (Wu et al., 2008).
A study performed by Kim and colleagues observed that for an ambidextrous participant,
ipsilateral activation was more pronounced during both non-dominant and dominant hand
movement than for the right-handed participants, with a factor of ten (Kim et al., 1993).
Verstynen and colleagues additionally found that left-handed participants recruited the
left hemisphere more during movements than right-handed participants (Verstynen et al.,
2005). However, the topic of hand dominance is far from being understood, thus this re-
port should be cautiously interpreted.

Two studies have further compared the spatial distribution of contralateral and ipsilat-
eral activity (Verstynen et al., 2005), (Horenstein et al., 2009). Verstynen and colleagues
visualized the spatial distribution of contralateral and ipsilateral peak activation from a
finger tapping task in the axial plane of M1 (Figure 2.4).
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Figure 2.4: Two dimensional plot of the COMs of peak activation from runs of all partici-
pants during the two complex finger movements observed in M1 in both hemispheres. The
figure gives an axial view where the x axis denotes a lateral to medial to lateral progression
over both hemispheres and the y axis denotes the posterior to anterior progression. The
peak activation locations for contralateral and ipsilateral activity have been denoted in
blue and red respectively. This image has been constructed with the results from the paper
by Verstynen et al. (Verstynen et al., 2005)

Additionally, Horenstein and colleagues visualized the voxel coordinates for contralateral
and ipsilateral movements in M1 during a finger tapping task in the axial plane for two
participants (Figure 2.5).
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Figure 2.5: Two-dimensional plot of the activated voxel coordinates of M1 of both hemi-
spheres in participant P2 (left hand figure) and P4 (right hand figure) respectively. The
figure gives an axial view where the x axis denotes a lateral to medial (0) to lateral (60/-
60) progression over both hemispheres and the y axis denotes the posterior to anterior
progression where negative y coordinates denote posterior. Note that the y-axis of the re-
sults from participant P4 (right hand figure) has a different range. The activated voxel
coordinates for contralateral and ipsilateral activity have been denoted in blue and red
respectively. Participant P2 (left hand figure) showed no ipsilateral activity in the right
hemisphere. This image has been constructed with the results from the paper by Horenstein
et al. (Horenstein et al., 2009)

In both studies, the analyses were limited to M1 and/or pre-motor areas and results for
S1 were not presented. Furthermore, both studies report that the ipsilateral activity sites
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were shifted laterally, and anteriorly with respect to the contralateral activity sites in
a single hemisphere. The anterior shift of ipsilateral activity is in accordance with the
literature handled in the somatotopy section, although a lateral shift was not reported
by Stippich and colleagues (Stippich et al., 2007) (Figure 2.3) and a contrasting medial
shift was seen after overlaying the results of Alkadhi and colleagues ((Alkadhi et al.,
2000); (Alkadhi et al., 2002)) (Figure 2.2). However, significant spatial overlap between
contralateral and ipsilateral activity was reported in all five studies. Horenstein and col-
leagues have additionally calculated that the spatial overlap in M1 was greater than 70%
in the right hemisphere of nine out of ten participants (Participant P2 showed no ipsilat-
eral activation in the right hemisphere (Figure 2.5)) and in the left hemisphere for eight
out of eleven participants (Horenstein et al., 2009).

Findings From EEG, ECoG and MEG Studies

The differences in magnitude between contralateral and ipsilateral cortical activity have
been similarly researched in EEG, ECoG and MEG studies. In an unimanual hand move-
ment EEG study, Formaggio and colleagues observed a spectral decrease in the LFB
during contralateral movements in all participants (Formaggio et al., 2008). In seven out
of nine participants, a less pronounced spectral decrease in the LFB was observed during
ipsilateral movements. This observation of a less pronounced spectral decrease in the LFB
were acknowledged by the findings of an EEG study by Gerloff and colleagues (Gerloff
et al., 2000) and those of a MEG study by Muthuraman and colleagues (Muthuraman
et al., 2012). Notably, Muthuraman and colleagues found that the spectral decreases in
the LFB during ipsilateral movement were more pronounced during left hand movements
than during right hand movements, indicating a similar hemispheric asymmetry as was
observed in the fMRI studies. In ECoG studies, the spectral decreases in the LFB during
both contralateral and ipsilateral movement were visible (Zanos et al., 2009) (Jin et al.,
2016) although a pronounced difference as in the EEG and MEG studies was more diffi-
cult to observe. This may be caused by the choice of electrode referencing methods; all
ECoG studies used Common Average Referencing (CAR) while Gerloff et al. and Muthu-
raman et al. used a mastoid reference electrode and Formaggio et al. used Fz as reference
electrode. The ECoG studies additionally described the spectral modulation patterns in
the HFB, where an increase in spectral power during ipsilateral movements was either ab-
sent (Wisneski et al., 2008) or smaller in comparison with contralateral movement(Zanos
et al., 2009), (Jin et al., 2016).

The more focal spatial distribution of HFB modulations in contrast to the more broad
spatial distribution of LFB modulations resulting from contralateral movements has been
reported widely in literature (Crone, 1998) (Miller et al., 2009). When observing the spa-
tial aspects of the various frequency bands with EEG and MEG, it is useful to use source
localization methods given the limited spatial resolution of these techniques (Dalal et al.,
2008). The same observations of more spatially focal HFB modulations in comparison
with the spatially broad LFB modulations resulting from contralateral movement have
been observed in an EEG study that utilized the sLORETA localization method (Kuo
et al., 2014) and a MEG study that made use of the Synthetic Aperture Magnetometry
(SAM) beamformer localization method (Huo et al., 2010). A later study by Jin et al. ob-
served the spatial differences between modulations resulting from both contralateral and
ipsilateral hand gestures (Jin et al., 2016). The spatial extent of HFB modulations result-
ing from contralateral movements was larger (i.e. spanning more electrodes) than that of
ipsilateral movements, but the modulations took place over similar electrodes, implying
that HFB modulations resulting from ipsilateral movements are more focal than those
resulting from contralateral movements, but still overlap to a large degree. This finding is
in line with the earlier findings from the fMRI studies. The only contrasting finding was
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reported by Wisneski and colleagues who observed that the ipsilateral hand movements
produced more notable modulations in the LFB than for than in the HFB during a hand
movement task in six participants (Wisneski et al., 2008). The authors do report that
the spectral modulations in the HFB resulting from contralateral and ipsilateral move-
ment show overlap in a third of the electrodes. The authors observed that the electrodes
over which spectral modulations resulting from contralateral movement were observed,
lay mostly over the SMC. In contrast, electrodes over which spectral modulations result-
ing from ipsilateral movement were observed, did not lay over the SMC but lay either
over pre-motor areas or cortical areas that have no direct relation to movement. The
discrepancy in results between the other studies and this study could not be explained
with the information presented in this study. Something that may have contributed to
the contrasting results is the fact that the electrode grids that were used in this study
were large 64 channel electrode grids located over various (non-motor) areas and were in
some cases placed bilaterally. Therefore, the results obtained in this study may not be
representative of the results obtained in the studies that had mainly grid coverage over
the SMC.

A recent study by Scherer and colleagues focused on a single patient with an atypi-
cal electrode grid arrangement (Scherer et al., 2009). The standard clinical electrode grid
of this participant was interleaved with several smaller electrodes, which reduced the ef-
fective inter-electrode distance to 0.7mm and increased the measurement resolution. Two
different movement tasks were performed by the participant; one movement task that
included movement of all the fingers on one hand (whole hand movement) and the other
task consisted of individual finger movement. The authors reported a spatially broad
modulation of the LFB and more focal modulation of the HFB in electrodes covering the
SMC, for both tasks. The electrodes that showed modulations in the HFB during con-
tralateral movement were similar to those that showed modulations in the HFB during
ipsilateral movements. However, again the HFB modulations for ipsilateral movements
were more spatially focal. The spatial distributions of LFB modulations were highly sim-
ilar between whole hand and individual finger movements and the spatial extent of the
LFB modulations was thus large for both whole hand and individual finger movements.
However, the spatial extent of the modulations in the HFB was larger for whole hand
movement than for individual finger movement. The group additionally reported that
the HFB modulations took place over a smaller number of electrodes for ipsilateral finger
movements in comparison with contralateral finger movements, but that these electrodes
did overlap. More interestingly, the authors found that even though the HFB modulations
took place over the same electrodes for contralateral and ipsilateral tasks, the electrodes
that recorded the highest activity for contralateral finger movements were different from
electrodes which recorded the highest activity during ipsilateral finger movement. The
authors of the current paper attribute the discovery of these finer grained differences
between cortical activity resulting from ipsilateral and contralateral finger movements to
the increased measurement resolution of the electrode grid. The authors further argue
that the use of higher density electrode grid enabled them to capture non-redundant pat-
terns of HFB modulations and that the exact small differences in finger representations
might not be discernible with clinical electrode grids. Although this finding is interesting,
the study included only a single participant and the results of this participant were not
compared to results of a participants with a standard clinical electrode grid in the same
study.

2.4.2 Temporal Aspects

So far, the spatial and spectral aspects have been considered from a rather stationary
point of view. Movements are highly dynamic and require the collaboration of multiple
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muscles and cortical areas during various stages of movement, so that changes of in cor-
tical activity patterns over time are expected. Only the findings from EEG, MEG and
ECoG studies on this matter will be presented here; temporal aspects in fMRI stud-
ies will not be discussed here due to the limited temporal resolution of this technique.
While multiple studies have examined the temporal aspects of LFB modulations of only
contralateral hand and finger movement (Yong et al., 2004), (Quandt et al., 2012), (Huo
et al., 2010), (Talakoub et al., 2017), (Erbil and Ungan, 2007), (Pfurtscheller et al., 1996),
only a small number of studies could be found that handle the timing differences between
LFB modulations resulting from both contralateral and ipsilateral movements. Bai and
colleagues (Bai et al., 2007) observed hemispheric asymmetry and hand dominance re-
lated timing differences in an EEG study. During left hand movements, the decrease in
spectral power in the LFB was observed as early as almost 2000ms prior to movement
onset distributed over both the contralateral and the ipsilateral hemisphere. From 640ms
after movement onset, the decrease in spectral power in the LFB decreased on both hemi-
spheres but showed a prolonged suppression only over the ipsilateral left hemisphere at
around 1200ms after movement onset. During right hand movements, the decrease in
spectral power in the LFB was most notable over the contralateral left hemisphere from
1400ms to 380ms prior to movement onset. This early appearance of LFB modulations
in the contralateral hemisphere have additionally been described in other studies (Yong
et al., 2004), (Quandt et al., 2012), (Rau et al., 2003). Bai and colleagues observed the
decrease in spectral power in the LFB over the ipsilateral hemisphere rather late in com-
parison to the contralateral hemisphere, only at 130ms prior to movement onset for both
hands. No further evidence of the later occurrence of ipsilateral LFB modulations before
movement could be found. During movement, Bai and colleagues observed prolonged sup-
pression of spectral power in the LFB over both hemispheres. This prolonged suppression
has been similarly observed by studies researching the contralateral hemisphere (Huo
et al., 2010), (Erbil and Ungan, 2007). Bai and colleagues additionally observed that a
decrease in spectral power sustained longer during ipsilateral movement than during con-
tralateral movement, of which further proof was not found in other studies. The study by
Bai and colleagues demonstrates that a notion of hemispheric asymmetry, which was also
observed in the spatial aspects in the chapter above, may also be present in the temporal
aspects. However, the proof to support any statements surrounding this theory is too
scarce. Such detailed results have additionally not been reproduced in ECoG studies that
were included in this literature selection. However, the studies by Wisneski and Leuthardt
(Wisneski et al., 2008), (Leuthardt et al., 2009) both show that decreases in spectral power
in the LFB as a result of ipsilateral movement occur on average 160ms earlier than the
decreases in spectral power in the LFB resulting from contralateral movement. This ob-
servation makes the authors of both studies argue that the hemisphere ipsilateral to hand
or finger movement may be involved in the planning of motor action, however this claim
cannot be supported sufficiently with the results from these studies alone.

No articles could be found on the differences in timing of HFB modulations between
contralateral and ipsilateral movement. What is known from studies handling contralat-
eral movement is that in contrast to LFB modulations, the HFB modulations have been
shown to be highly time locked to movement (Talakoub et al., 2017), (Huo et al., 2010),
(Erbil and Ungan, 2007) which makes the modulations in the HFB an effective marker
of movement onset and termination. Given this fact, one might argue that a comparison
of these modulations between contralateral and ipsilateral movement may be performed.
However, as has been mentioned, no such study has been found. Only one ECoG study
has examined the temporal aspects of HFB signals, but only between M1 and S1 during
contralateral movement (Sun et al., 2015). The authors of this study showed that the
occurrence of spectral power increases in the HFB located in S1 preceded those of M1
by 136ms. These results were found in five participants included in the study. Although
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interesting, no reproduction of this result has been found in the literature selection.

As a last remark, there is one temporal aspect that has been found that deserves some
attention, albeit for contralateral movement only. In addition to considering signals in the
frequency domain, as has been done in previous sections, one can consider these signals
from the temporal domain. When comparing signals in the time domain, the informa-
tive (although difficult to interpret) phase information can be retained (Quandt et al.,
2012). Such a temporal representation of cortical signals has found its applications in
both ECoG and EEG where these time series signals are referred to as the Local Motor
Potential (LMP) and the Slow Cortical Potential (SCP) respectively (Salyers et al., 2018).
The LMP can be obtained by low pass filtering (<10 Hz) cortical recording time series
(Acharya et al., 2010) and the authors of this study have shown that the LMP strongly
correlates with the time course of finger movement. Unfortunately, no study so far has
attempted to compare LMP signals between ipsilateral and contralateral hand or finger
movement.

In conclusion, several fMRI studies have shown that ipsilateral cortical activity (in com-
parison to contralateral cortical activity) was less pronounced (in magnitude) and depends
on both handedness and task complexity. Additionally, several authors found a large spa-
tial overlap between contralateral and ipsilateral cortical activity, where some studies
report an anterior shift of ipsilateral cortical activity. EEG, MEG and ECoG studies
have similarly shown that spectral modulations in both the LFB and HFB manifested
with a smaller magnitude for ipsilateral movement in comparison with contralateral move-
ment. It was shown that the LFB spectral modulations were less spatially focal than HFB
modulations and that spectral modulations in the HFB resulting from both contralat-
eral and ipsilateral movement show a large spatial overlap, but that HFB modulations
resulting from ipsilateral movements were more spatially focused (i.e. occurring over less
electrodes). Such a spatial difference between contralateral and ipsilateral fingers could
not be observed for the LFB. The temporal patterns of modulations in the LFB have
been researched and it appears that the differences of the LFB modulation patterns in
both hemispheres are related to handedness. For the HFB, timing has been researched
in ECoG studies in which the onset of spectral modulations appeared earlier during ipsi-
lateral movements with respect to contralateral movements. Additionally, the time series
signal referred to as the LMP has been introduced in this section.

2.5 State of the Art on Decoding Hand and Finger

Movement

So far, the physiological principles surrounding cortical activity related to contralateral
and ipsilateral movement have been covered. These sections have provided a segregated
view of the spatial, temporal and spectral aspects surrounding cortical activity resulting
from movement. However, in practice these aspects are in dynamic interplay, often in
multiple dimensions, and are related to complicated mechanisms of the brain of which
many have not yet been unraveled. Decoding of cortical signals is only possible with
an informative representation of these complex processes in the form of (combinations
of) features in the temporal, spatial or spectral domain. This chapter will therefore be
devoted to the state of the art on decoding hand and finger movement in general. This
section will summarize, on a high abstraction level, the main insights that are related to
decoding of only ipsilateral or contralateral hand or finger movement. A later section will
be devoted to decoding of both contralateral and ipsilateral movement.
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2.5.1 Insights from Decoding Attempts of Hand and Finger
Movement

Before delving into the details of the decoding, a distinction must be made between to
different decoding strategies that were commonly found in literature: classification and
regression. Classification refers to the division of movement into discrete classes or states,
such as movement or no movement, or movement of an index finger versus movement
of a thumb. In classification, movement is modeled as having a direct relationship with
cortical activity and these models often discard the temporal evolution of movement pa-
rameters (Wang, 2011), an aspect that is important in regression problems. In regression,
the movement is represented as a continuous variable and is decoded as such (Xie et al.,
2018). The temporal information is of substantial importance in regression tasks; the
cortical and physical movement aspects at one point in time are dependent on those of
previous time and influence those that follow. Regression studies that were found in this
literature selection handle mostly kinetic and kinematic aspects, such as the position of
the finger or arm movements over time (trajectory) or the acceleration of a limb. Although
regression methods in movement studies mostly attempt to model temporal evolution of
movement and cortical activity, they can be used for classification.

Whether a classification method or a regression method is more suitable depends highly
on the eventual application. A form of continuous control obtained with regression might
provide more degrees of freedom, but for some BCI applications, having several discrete
classes is enough and may provide more simplicity to the user. In this literature review, the
focus mainly lies on the classification of individual finger movement, and to a lesser extent
on the classification of hand movements or regression of both hand and finger movements.

A broad overview of features, classifiers, regressors and corresponding decoding accu-
racies that were found in this literature selection are presented in Table 2.3. One should
be cautious with directly interpreting and comparing decoding accuracies; the accuracies
have been obtained from different datasets and using different features. Additionally, only
the lower and upper bound of the performances are listed. However, the accuracies can
aid in model and feature selection in a later stage. Additionally, this table can be used
to infer general statements about features, classifiers and regressors.

Author Modality Task Features Classifier Performance

Classification
(Jiang et al., 2018) ECoG Grasp CSP LDA 93.6–97.4%
(Fifer et al., 2011) ECoG Grasp (8–14),

(16–30),
(30–50)
(70–100),
(100–150)
Hz + LMP

GLM 0.79<r<0.81

(Waldert et al., 2007) EEG
&
MEG

Grasp LMP RLDA 54-57%

(Li et al., 2017) ECoG Gestures (4–8) (8–12),
(70–135) Hz

SVM 55-90%

(Yanagisawa et al., 2011) ECoG Gestures (2-8), (25-
40), (80-150)
Hz

SVM 25-60%

Continued on next page
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Table 2.3 – continued from previous page
Author Modality Task Features Classifier Performance

(Bleichner et al., 2016) ECoG Gestures (4–8),
(8–14),
(15–30),
(65–95),
(70–125) Hz
+ LMP

PTC 30-100%

(Chestek et al., 2013) ECoG Gestures (66–114) Hz NB 55-96%
(Branco et al., 2017) ECoG Gestures (70–125) Hz PTC 59-100%
(Hotson et al., 2016) ECoG Individual

Finger
Movement

(72-110) Hz LDA 76.0-96.5%

(Xiao & Ding, 2013) EEG Individual
Finger
Movement

(8–12),
(13–30) Hz

SVM 35-45%

(Bai et al., 2007) EEG Individual
Finger
Movement

PCA, ICA,
CSP, DWT

LMD,
QMD,
BSC,
MLP,
PNN,
SVM

53-63%

(Xiao & Ding, 2015) EEG Individual
Finger
Movement

(0-70) Hz,
PCA

SVM 55-99%

(Shenoy et al., 2007) ECoG Individual
Finger
Movement

(11-40), (71-
100) Hz

SVM 30 - 91%

(Wissel et al., 2013) ECoG Individual
Finger
Movement

(11-30), (60-
300) Hz

HMM,
SVM

37-100%

(Liao et al., 2014) EEG Individual
Finger
Movement

(0-200) Hz,
PCA

SVM 45-92%

(Onaran et al.,2011) ECoG Individual
Finger
Movement

CSP SVM 18-85%

(Elgharabawy & Wahed,
2012)

ECoG Individual
Finger
Movement

SIDWT
+ Gram
Schmidt

SVM r=0.82

(Samiee et al., 2010) ECoG Individual
Finger
Movement

(1-60),
(60-100),
(100-200)
Hz, AM,
DWT

LDA,
SVM,
kNN

15-55%

Regression
(Talakoub et al., 2017) ECoG Hand Reach-

ing
(1–4),
(8–12),
(13–30), (>
30) Hz +
LMP

MLR 0.80<r<0.95

(Bundy et al., 2016) ECoG Reaching (4–8),
(8–12),
(12–24),
(24–34),
(34–55),
(65–95),
(130–175)
Hz + LMP

PLS 0.22<r<0.80

(Waldert et al., 2008) MEG Reaching (<7), (10-
30), (62-87)
Hz

RLDA 35–78%

Continued on next page
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Table 2.3 – continued from previous page
Author Modality Task Features Classifier Performance

(Acharya et al., 2010) ECoG Grasp LMP GLM 0.51<r<0.91
(Flint et al, 2017) ECoG Grasp (0–4), (7-20),

(70-115),
(130-200),
(200-300) Hz
+ LMP

WSC 0.2<r<0.6

(Pan et al., 2018) ECoG Gestures - RNN 43-90%
(Flamary & Rakotoma-
monjy, 2012)

ECoG Individual
Finger
Movement

AR LR r=0.42

(Kubánek et al., 2009) ECoG Individual
Finger
Movement

(8–12),
(18–24),
(75–115),
(125–15),
(159–175)
Hz + LMP

PR 40-100%

(Liang & Bougrain, 2012) ECoG Individual
Finger
Movement

(1–60,
(60–100),
(100-300),
(300-600) Hz

LR 0.21<r<0.48

(Wang, 2011) ECoG Individual
Finger
Movement

(8-12),
(18-24),
(75-115),
(125-159),
(159-175) Hz
+ LMP

PR,
SNDS

0.64<r<0.86

(Hazrati & Hofmann,
2012)

ECoG Individual
Finger
Movement

EMD AF r=0.55

(Saa et al, 2016) ECoG Individual
Finger
Movement

(70-170) Hz CRF 62–65%

(Saa et al., 2018) ECoG Individual
Finger
Movement

(0.5-40), (70-
170) Hz

LDA,
MLR

0.55<r<0.78

(Elango et al., 2017) ECoG Individual
Finger
Movement

- LDA,
HMM,
LSTM

53 - 82 %

(Chen et al., 2014) ECoG Individual
Finger
Movement

(1-60),
(60-100),
(100-300),
(300-6000)
Hz + LMP

LWR 0.40<r<0.70

(Marjaninejad et al.,
2017)

ECoG Individual
Finger
Movement

(1-60),
(60-100),
(100-200) Hz

MLP,
LDA

0.40<r<0.69

(Nakanishi et al., 2014) ECoG Single Finger
Movement

(0–4), (4–8),
(8–14),
(14–20),
(20–30),
(30–60),
(60–90),
(90–120),
(120–150)
Hz

SLR 0.86<r<0.97

(Xie et al., 2018) ECoG Single Finger
Movement

- RNN 0.32<r<0.79

Continued on next page
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Table 2.3 – continued from previous page
Author Modality Task Features Classifier Performance

Table 2.3: Overview of articles that handle decoding of hand and finger movement, sorted
by whether the research includes regression or classification and whether these research
focused on decoding of hand movement or finger movement. For each study, the fea-
tures, classifiers and the obtained lower and upper bound for accuracy in percent, or
the correlation value (r) is listed. The abbreviations for the Features are formulated
as follows, in order of appearance; Common Spatial Patterns (CSP), Principal Compo-
nent Analysis (PCA), Independent Component Analysis (ICA), Shift Invariant Discrete
Wavelet Transform (SIDWT), Auto-regressive Model (AM), Empirical Mode Decomposi-
tion (EMD). The abbreviations for the classification or regression models are formulated
as follows, in order of appearance; Linear Discriminant Analysis (LDA), Regularized Lin-
ear Discriminant Analysis (RLDA), Generalized Linear Model (GLM), Support Vector
Machine (SVM), Pattern Template Correlation (PTC), Naive Bayes (NB), Mahalanobis
Distance Classifier (LMD), Quadratic Mahalanobis Distance Classifier (QMD), Bayesian
Classifier (BSC), Multi Layer Perceptron (MLP), Probabilistic Neural Network (PNN),
Hidden Markov Model (HMM), k-Nearest Neighbours (kNN), Multi-linear Regression
(MLR), Partial Least-squares Regression (PLS), Wiener Cascade Decoder (WSC), Re-
current Neural Network (RNN), Linear Regression (LR), Pace Regression (PR), Switched
Non-parametric Dynamic System (SNDS), Adaptive Filtering (AF), Conditional Random
Fields (CRF), Long Short-term Memory (LSTM) Sparse Linear Regression (SLR).

The findings from Table 2.3 will be discussed in the same order as that of a decoding
methodology, starting with features and ending with actual classification or regression.
From Table 2.3 it appears that a large number of studies, either focused on regression
or classification, make use of frequency domain features. It is therefore interesting to
elaborate on how the various frequency bands relate to movement, which can be done by
means of classification and regression results.

Several studies handling the classification or regression of hand or finger movement have
already selected one particular frequency band or component of interest. From the ar-
ticles included here, these are either the HFB or LMP. In hand movement studies, the
HFB shows good classification of gestures (e.g. (Chestek et al., 2013), (Branco et al.,
2017)). The LMP shows to be able to hold information regarding brisk hand movements
and has been successfully applied for both classification (Waldert et al., 2007) and re-
gression tasks (Acharya et al., 2010). For studies handling finger movement, the HFB
shows to be informative in both regression (Delgado Saa et al., 2016) and classification
problems (Hotson et al., 2016), (Liao et al., 2014). Notably, for all studies that involved
individual finger movement, the LMP was not found to be the only feature that was used.

The studies that have researched - in a methodological way - the contribution of each
frequency band on the decoding accuracy can provide insight into the informativeness of
one frequency band in comparison to the other frequency bands. From these studies, it
could be inferred that the HFB is more informative for decoding brisk hand movement
than the LFB in classification (Fifer et al., 2011) and more informative than both the
LFB as well as the LMP (Li et al., 2017) (Bleichner et al., 2016) in classification. For de-
coding individual finger movement, the same observations can be made; the HFB showed
better discriminative power for fine movement than the LFB in classification (Onaran
et al., 2011), (Wissel et al., 2013), (Hotson et al., 2016) and regression studies (Liang and
Bougrain, 2012). Again, the LMP was not mentioned as the most informative feature in
any of the studies involving individual finger movement.

Bundy and Yanagisawa (Bundy et al., 2016), (Yanagisawa et al., 2011) demonstrated
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that during hand and finger movement, the number of electrodes showing significant ac-
tivity in the HFB was smaller than the number of electrodes showing significant activity
in the LFB meaning that the lower frequencies have a more diffuse spatial representation
and that the higher frequencies show a more focal spatial representation, which is in ac-
cordance with the spatial acuity of the LFB and HFB bands discussed in the section 2.4.1.
The notion that the HFB has a different spatial distribution than the LFB or LMPs had
led to the hypothesis that these phenomena are governed by different underlying neuronal
mechanisms and further spatial discrepancies between the frequency bands made Bundy
and colleagues (Bundy et al., 2016) hypothesize that the brain represents finger move-
ment in different abstraction levels; i.e. a difference between the coarse aspects (such as
distinction between movement or rest) and the finer aspects related to finger movement,
such as the exact amount of finger flexion.

Interestingly, such a hypothesis was paralleled by the results of Flint and colleagues
(Flint et al., 2017). The authors of this paper have used PCA to reduce the high dimen-
sional (22 dimensions) data coming from a Cyberglove data recording glove that tracked
the exact positions of the joints from the hand that was being moved. The first Principal
Component (PC) was attributed to the large and brisk hand grasping motions, while the
second and third PCs were attributed to the finer and smaller finger movements during
the grasp task. The authors found that the first PC in this brisk hand movement was
highly correlated with the activity in the LFB. However, the authors also found that
the second and third PCs, containing the more detailed information about precise joint
angles, were mostly correlated with the HFB, instead of the LFB. This contributed to the
hypothesis that finer movements may be encoded in higher frequency signals and thus
that different gradations of detail may be encoded in different frequency bands. A similar
finding was observed in the results by Acharya and colleagues (Acharya et al., 2010), who
found that the first PC decoded from the cyberglove recordings of hand grasping motions
represented the slow opening and closing of the hand. This slow movement was found
to be highly correlated with the low frequency LMP. Similarly, Onaran and colleagues
(Onaran et al., 2011) observed that the LFB alone did not yield high classification accu-
racy for a finger movement task and argued that these frequency bands may only have
relation to a general cognitive state of movement. Bundy and colleagues (Bundy et al.,
2016) later applied this insight in practice and were able to increase classification accu-
racy with a two stage hierarchical approach in which the authors used the LFB to first
coarsely differentiate rest from movement, after which the finer movement kinematics
were decoded with the information from the HFB and the LMP.

These results show that hand or finger movements are not solely represented in one
specific frequency band of cortical signals. Several studies have demonstrated that com-
bining information from the LFB with either the LMP or information from the HFB led
to higher decoding accuracies for classification (Chestek et al., 2013), (Bleichner et al.,
2016), (Li et al., 2017) and regression (Talakoub et al., 2017), (Bundy et al., 2016) of
brisk hand and finger movements (Kubánek et al., 2009), (Shenoy et al., 2007). Addition-
ally, selection of narrower sub-bands in the larger frequency bands (that were sometimes
rather coarsely defined by some authors as can be observed from Table E.1) may yield
better decoding results (Scherer et al., 2009) and it is therefore perhaps useful to define
multiple narrower frequency band that may give information about more specific narrow
band activities that govern movement.

Although these results give no final conclusion on which frequency bands are best for
decoding movements in all participants, the results of this analysis show that different
frequency components may be related to unique aspects of movement and that especially
the higher frequencies show the spatial acuity necessary for successfully decoding fine
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movements such as those of individual fingers. These findings also show that the cortical
processes governing hand and finger movement are inherently complex and are repre-
sented in varying degrees in the frequency spectrum and recording channels without a
clear structure, which makes optimal decoding a challenging task.

For that reason, it is no surprise that much research has been done into feature selection,
channel selection and classification schemes that provide the best decoding results. In
some cases, especially in studies of a more exploratory nature, the features and channels
may be manually selected a priori. Afterwards, the classification results can be analyzed
to determine what channels or features were most informative. However, this process can
be time consuming and the results may be difficult to interpret. Additionally, selecting
one broad set of frequencies for all participants may lead to discarding of narrow band
participant-specific activity, consequently leading to sub-optimal decoding results that
may not generalize well across participants.

From a machine learning point of view, the trade-off often lies on the transparency of the
results versus a black box approach that determines a (locally) optimal set of features
and channels for each participant resulting in a possibly more uniform decoding perfor-
mance. This notion is especially important given the high dimensionality (substantial
number of frequency bands and channels) and the often low number of trials found in
especially ECoG studies. It is therefore not surprising that many authors have applied
automated methods to optimize the selection of representative and informative features
of the various aspects of cortical activity. There is a vast number of well validated filtering
and signal decomposition techniques available for feature extraction and feature selection.
For now, these will not be covered in much detail, given that most provide no comparison
with respect to alternative options, but rather show that these can achieve good per-
formance. Examples of techniques include Independent Component Analysis (ICA) (Bai
et al., 2007), Common Spatial Patterns (CSP) (Onaran et al., 2011), (Jiang et al., 2018).
Shift Invariant Wavelet Decomposition Trees (SIDWT) (Elghrabawy and Wahed, 2012)
with Gram Schmidt feature selection (Samiee et al., 2010), (Elgharabawy and Wahed,
2017), Auto-regressive Coefficients (AR) (Flamary and Rakotomamonjy, 2012) Empiri-
cal Mode Decomposition (EMD) (Hazrati and Hofmann, 2012) or combinations of spatial
and spectral filtering methods (Saa et al., 2018).

Apart from spatial, spectral or temporal filtering and feature subset selection, these tech-
niques also have the important function of dimensionality reduction. The importance of
dimensionality reduction here can be illustrated with a dimensionality reduction tech-
nique that was found in this collection of literature. The technique concerns a type of
spectral PCA, which has been designed by Miller and colleagues (Miller et al., 2009).
The authors hypothesized that the increases in spectral power in the HFB are part of
a broadband phenomenon that is visible over the whole frequency spectrum. By apply-
ing PCA on the cortical data (in the frequency domain) from individual finger flexion
task the authors obtained so called Principal Spectral Components (PSCs). The authors
observed that this decomposition resulted in several PCs, of which the third spectral
component reflected changes in spectral power in the θ and α range, the second PSC
reflected changes in spectral power in the β range and the first PSC reflected changes in
spectral power over the whole power spectrum ranging from 0 to 200 Hz, which was the
limit of the bandwidth that the authors have selected (Figure 2.6).
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Figure 2.6: The resulting elements of the Principle Spectral Component Analysis. The first
PSC corresponds to the broadband phenomena of which the samples are higher than zero
over the whole bandwidth. The second PSC corresponds to the β band. The third PSC is
depicted in green and represents the θ and α bands. This figure was taken from the paper
by (Miller et al., 2009).

Miller and colleagues hypothesize that the increase in spectral power in the HFB is part
of this broadband spectral activity taking place over the whole power spectrum. This phe-
nomenon denoted by the first PSC was found consistently in all participants and varied
in magnitude over electrode locations. Surprisingly, the authors found that the relative
magnitude of the first PSC related to a certain finger was different at neighboring chan-
nels and showed indirectly, that the first PSC showed similar spatial specificity as the
normally used HFB.

Xiao and Ding (Xiao and Ding, 2015) later hypothesized that this well defined broadband
spectrum could also be detected in noninvasive methods and have applied this technique
in decoding of individual finger movements in EEG. The authors showed that the first
PSC was able to decode individual finger movement better than the second PSC, third
PSC or LFB separately for all participants except two. Notably, when classifying with
only the LFB features, the confusion matrix showed that all fingers were classified as
being the thumb, while for classification of the PSCs separately, much better results were
obtained. Liao and colleagues (Liao et al., 2014) have similarly applied this spectral PCA
technique on EEG data (128 channels) from an individual finger movement task, but
additionally provide a comparison of this technique with ECoG data from a similar fin-
ger movement task. The authors showed that the first PSC representing the broadband
phenomena from the EEG data was able to classify individual finger movements better
than the LFB or HFB separately in all participants. The authors show the results of
the classification using the first PSC from the ECoG data in comparison and it shows
that the differences in accuracy between EEG and ECoG decoding differ from 10 to 20
percent. However, given that the results were obtained from different datasets and record-
ing techniques, a direct comparison may be questionable. However, as an indication for
baseline results from ECoG studies, it is remarkable to see that both EEG studies, with
limited bandwidth and resolution, are able to classify individual fingers with the use of
this methodology, something which was not possible with using only the modulations of
the LFB and HFB as features.

This shows that the use of dimensionality reduction as a means of feature subset se-
lection can improve classification and increase the noise robustness of a decoding process.
However, the curse of high dimensionality and data scarcity is not only reflected in the
feature selection stages. The results of classification are not solely attributable to the
features, but also to the classifiers or regressors. And naturally, low quality features can-
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not be compensated for with complex classifiers and vice versa. From Table 2.3 it can
be qualitatively observed that a vast number of articles have applied lightweight sparse
or linear classification or regression models. Although it is unlikely that brain works in
a linear fashion, there is some discussion as to whether the high dimensionality of data
combined with the small number of trials allows for successful application of nonlinear
classifiers. On the one hand, nonlinear classifiers can capture the nonlinear nature of
cortical recordings but may on the other hand may be prone to overfitting on high di-
mensional data if no generalization can be found with the limited amount of training
data. As an example, Marjaninejad and colleagues (Marjaninejad et al., 2017) have com-
pared a linear classifier (LDA) with a non-linear classifier (MLP). The authors extracted
features from three broad frequency bands from 1 to 200 Hz and fed this as a feature
vector in both decoding models. The authors observed that the classification accuracy
between the linear and nonlinear model did not differ to a considerable extent. The au-
thors used this observation as an argument for the fact that although the physiological
processes resulting in the energy in the frequency bands stem from nonlinear processes,
they can be approximated well with a linear classifier. Of note, the MLP used in their re-
search only contained a single layer. However, the authors observed that upon increasing
the number of layers of the MLP and thus increasing its ability to capture non-linearity,
the decoding accuracy degraded because of overfitting. It is to be noted that the classi-
fication was performed after a strong reduction of the dimensionality of the feature vector.

For the studies that do not apply sophisticated dimensionality reduction techniques (for
example when using a more exploratory research approach), the use of sparse and linear
models appears to be suitable option. Focusing for now only on classification of individ-
ual finger movement, it can be stated from Table E.1 that the SVM is used rather often.
While most authors do not give an explicit explanation for the choice of an SVM, Wissel
and colleagues (Wissel et al., 2013) have mentioned that the SVM can be considered
as the gold standard within BCI applications thanks to its robustness, ability to handle
nonlinear relationships and ability to problems that come with small datasets with high
dimensional data (Wang et al., 2010). A study by Shenoy and colleagues (Shenoy et al.,
2007), demonstrate the ability of a sparse SVM with a L1 regularization norm to contin-
uously perform well under an increase of the number of channels in the feature vector.
The sparseness of the classifier indicates that most weights are zero, which the authors
interpret as a form of dimensionality or feature reduction. A similar dimensionality re-
duction is observed in pace regression (Wang and Witten, 1999), which is used by several
studies in Table 2.3.

In general, the linear and simplistic models (or in some cases template matching ap-
proaches e.g. (Branco et al., 2017), (Bleichner et al., 2016)) for both classification and
regression that are used in the studies in Table E.1 provide the ability to decode with
little training data and more importantly, the ability to interpret the results, which is
often needed in studies that use classification as a means to explain underlying neuro-
logical principles. The use of deep learning and Artificial Neural Network (ANN) models
apparent from this table is not ignored, but the models that are observed in these studies
remain rather shallow; Xie and colleagues (Xie et al., 2018) have used a 4 layer RNN
and both Saa and colleagues (Saa et al., 2018) and Marjaninejad and colleagues (Mar-
janinejad et al., 2017) have used a single layer MLP. It must be mentioned that there
is definitely no consensus on whether nonlinear models are substantially better than lin-
ear models and vice versa (Wang, 2011). However, the implications of limited data and
high dimensionality are clearly visible in preprocessing, feature selection and classification
stages.
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2.5.2 Classification Schemes and Results on Finger Movement
Classification

Since this literature review focuses on the classification of individual fingers, it is sen-
sible to provide more detail into the results of studies that have handled classification
of individual finger movements. For such a multi-class classification problem, generally a
One versus All (OVA) or One versus One (OVO) scheme was used. Although they both
provide valid options, there has been one report that the OVA scheme suffered from class
imbalance (Shenoy et al., 2007). Much of the studies unfortunately do not report what ex-
act classification scheme has been used, and those who do report this, have used an OVO
scheme (Samiee et al., 2010), (Onaran et al., 2011), (Liao et al., 2014), (Xiao and Ding,
2015). However, regardless of the scheme or classifier that was used, there was a large
similarity between studies for the individual finger classification results. Generally, the
thumb was decoded with higher accuracy than other fingers (Elgharabawy and Wahed,
2017), (Onaran et al., 2011), (Liao et al., 2014), (Hotson et al., 2016), (Xiao and Ding,
2013), (Xiao and Ding, 2015), (Shenoy et al., 2007), (Elghrabawy and Wahed, 2012).
Some mixed results were reported for the other fingers. For the little finger, in some cases
it was well classified (Elgharabawy and Wahed, 2017), (Liao et al., 2014), (Xiao and Ding,
2013), (Xiao and Ding, 2015), (Elghrabawy and Wahed, 2012) and in other cases, there
was considerable misclassification between the little finger, the ring finger and the middle
finger or index finger (Onaran et al., 2011), (Hotson et al., 2016), (Liang and Bougrain,
2012). For the studies considered, there was considerable confusion between the middle
three fingers. Anatomically, this could be explained by the fact that the tendons of the
index, middle, ring and little finger are coupled to the same flexor, namely the flexor dig-
itorum profundus. The thumb is hereby the only finger that is not coupled to the same
flexor, which is a likely explanation for the fact that it is less often confused with other
fingers (Elghrabawy and Wahed, 2012). Additionally, the movement of non cued fingers
has been linked to coincide with patterns of daily use (Kolasinski et al., 2016). Whether
the higher classification accuracies of the thumb could be attributed to the larger cortical
representation of this finger on the (Olman et al., 2012a), (Overduin and Servos, 2004)
remains unknown.

2.5.3 Applying Pragmatic Anatomical Constraints to Improve
Decoding

Literature has demonstrated another particular way of increasing the decoding results of
methodologies. One way that was found is to incorporate certain anatomical constraints
into the decoding scheme. An example is provided by Wang and colleagues (Wang, 2011),
who included a constrained graph model in the decoding process. This graph model con-
tained transitions based on the three states a finger can be in; namely extension, flexion or
rest. Each state is associated with particular movement patterns described by kinematic
parameters such as speed and acceleration, of which there is little in resting state and more
in movement states. Also, there is a finite set of transitions between the states, so that
transitions are not truly random. The inclusion of these constraints have shown to provide
a better fit than pace regression that had been used as a comparison. Chen et al. (Chen
et al., 2014) have applied a similar approach by approaching movement not solely as a
pure regression problem, but as having what the authors refer to as the binary property of
being either in motion or in a resting state. The authors incorporate this knowledge into
their logistic weighted regression algorithm and show improvement over pace regression
and linear regression which the authors use as comparison. A slightly different approach
was suggested by Bundy et al., (Bundy et al., 2016) in a study into asynchronous de-
coding of movement. The authors hypothesized that the cortical activity recorded during
rest would be different from that during movement and therefore constructed a hierarchi-
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cal regression model that first determined whether there was movement or not and after
that was established, applied regression of kinematic parameters, improving on their own
model.

There are, however, some possible downsides to these approaches. At first, these con-
straints have often been tailored specifically for each task implying that the constraints
possibly only generalize across that task or participant (Xie et al., 2018). Secondly, some
constraints that are designed may not include all possible patterns of for example finger
flexion or usage (Wang, 2011). These two factors can limit how well these models may
generalize with different data (Elango et al., 2017).

In conclusion, different movement types were encoded differently in various frequency
bands, where the LFB contained most information around brisk movements and the
HFB showed to be informative in decoding fine movements. However, it has been demon-
strated that different frequency components may be informative in combination with
several frequency components, so that there is no definite answer on what frequency
band encodes what aspect of movement. In addition, the most informative frequency
bands were participant-specific. Due to the high data dimensionality and often low num-
ber of trials, much attention is paid to dimensionality reduction, feature selection and
classifier selection. In some cases, this poses a tradeoff in sacrificing transparency of the
obtained results. In terms of individual finger decoding, it has been shown that the thumb
is generally well decoded, while the other fingers are often confused, possibly due to the
fact that these are connected to the same flexor. The additional inclusion of prior knowl-
edge of finger movements in the form of pragmatic constraints may improve the decoding
process.

2.6 Classification of Contralateral and Ipsilateral

Hand and Finger Movement

The previous section provided an overview of the state of the art of decoding hand
and finger movements in general. This section focuses particularly on decoding both
contralateral and ipsilateral hand and finger movement. Table 2.4 gives an overview of the
articles that decode of only ipsilateral, contralateral or both ipsilateral and contralateral
movement of either the whole hand or the individual fingers (Appendix E provides the
actual references that have been used to construct this table).

Laterality and Limb ECoG fMRI EEG MEG Total

Contralateral Hand 10 1 3 1 15
Contralateral Finger 24 0 4 0 28
Ipsilateral Hand 0 0 0 0 0
Ipsilateral Finger 1 0 0 0 1
Contralateral and Ipsilateral Hand 2 0 1 0 3
Contralateral and Ipsilateral Finger 1 1 2 1 5
Total 39 2 10 2

Table 2.4: Overview of literature handling decoding of hand and finger movements sorted
per category and per measurement modality

It should be noted that this table has been made from the viewpoint of contralateral and
ipsilateral hand movements, relative to a single hemisphere. Such a viewpoint holds for
ECoG studies. However, as has become clear from other sections in this review, the other
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imaging techniques (EEG, MEG and fMRI) can observe the complete cortical surface
and give insight to both hemispheres at the same time. However, for the interpretation of
this table, the division was made by analyzing whether the classification was performed
for a single hand or both hands, and which hemisphere(s) had been used for decoding.

The number of articles that focus only on decoding ipsilateral finger movement with
ECoG is strikingly small, only a single article was included in this literature selection
that equipped ECoG. Unfortunately, the authors of this article have made a note that
the results were not reproducible. Therefore, this article will not be handled. Similarly,
a very small number of articles is available that handle the classification of both con-
tralateral and ipsilateral hand or finger movement, which is the most important topic in
light of this literature review. Notably, only a single article focuses on the classification of
both contralateral and ipsilateral finger movements. This chapter begins with handling
the methods that allow to investigate both hemispheres at the same time, being EEG,
MEG and fMRI. After those methods, the focus will be shifted to ECoG.

2.6.1 Findings from fMRI, EEG and MEG

Diedrichsen and colleagues (Diedrichsen et al., 2013) performed classification of both
contralateral and ipsilateral individual finger movements in fMRI. The authors used a
searchlight based approach using two classifiers for each hand. The classification of ip-
silateral movements was most successful in regions that showed a decrease in cortical
activity in comparison with the rest condition. The areas that contributed highly to the
classification of ipsilateral finger movements overlapped to a great extent with the areas
that contributed to the correct classification of contralateral movements in both M1 and
S1 (Figure 2.7).

Left Hemisphere Right Hemisphere

CS

SFS SFS

CS
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Ipsilateral
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S1
S1
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Figure 2.7: The overlap in regions in which classification accuracy was larger than 32%.
The circles and denote the COMs of classification accuracy for the individual participants
in both M1 and S1. The central sulcus is denoted with CS and the superior frontal sulcus
is denoted with SFS. This figure was taken from the paper by (Diedrichsen et al., 2013)

As seen from Figure 2.7, the COMs for ipsilateral classification accuracy in S1 seem
to be shifted anteriorly, which is an observation that has not been reproduced in other
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studies. In other studies, such an anterior shift was only observed in M1 (Alkadhi et al.,
2000), (Alkadhi et al., 2002), (Stippich et al., 2007) (Figure 2.3), (Verstynen et al., 2005),
(Horenstein et al., 2009) (Figure 2.5). Such a shift in M1 has not been reported in this
study by Diedrichsen and colleagues (Diedrichsen et al., 2013). The authors report that
the voxels that showed cortical activity in a single hemisphere during movement of a
finger contralateral to that hemisphere also showed activation during movement of the
identical finger on the hand ipsilateral to that hemisphere, although ipsilateral activity in
those voxels was less pronounced. This is in accordance with the spatial aspects discussed
in section 2.4. Additionally, the classification accuracies for ipsilateral finger movements
were lower than for contralateral finger classification, an effect that was slightly more
apparent in S1 than in M1. Unfortunately, the authors do not present the classification
results of individual fingers and do not discuss or observe any difference in classification
between hemispheres.

Cho and colleagues (Cho et al., 2004) have discriminated left and right finger index
movement with the use of EEG. The authors used the spectral power decreases in the
LFB (parameters obtained by an auto-regressive model) as features. The classification was
performed over the channels C3, Cz and C4, corresponding to the SMC. Their approach
using a simple neural network yielded good discrimination accuracy, albeit the accuracies
obtained for the left hand were higher than for the right hand in most participants, which
were all right handed. This indicates that the hemispheric symmetry observed in earlier
chapters, might impact classification performance. Liao and colleagues (Liao et al., 2007)
used the so called Movement Related Potentials (MRPs), which are similar to LMPs,
in addition to spectral modulations in the LFB as features. The authors found that the
MRPs at the electrodes contralateral to the movement produced a more rapid decrease
in signal amplitude in comparison with electrodes ipsilateral to the side of movement.
The authors additionally found that the modulation of the LFB was more pronounced
for right index finger movement than for left index finger movement and that these mod-
ulations were more pronounced at contralateral electrode sites. These effects were used
as the features for classification by means of Discriminative Spatial Patterns (DSP) and
CSP using electrodes C3 and C4. This method provided reliable results, although the
authors do not present results related to difference in finger classification accuracy.

Pires and colleagues performed the same index finger movement task and classified left
and right finger movements based on the Bereitschaftspotential (BP) and modulations in
the LFB, which were obtained with EEG (Pires et al., 2007). After removing much of the
trials due to artefacts, the authors obtained a high accuracy by using these features in
combination with Common Spatial Subspace Composition (CSSD) on electrodes around
C3 and C4. In a MEG study, Kauhanen and colleagues observed that the post movement
β rebound was more pronounced over contralateral electrodes than over ipsilateral elec-
trodes and have consequently used this phenomenon as a classification feature, yielding
good results (Kauhanen et al., 2006). Classification accuracy improved by increasing the
number of channels around the SMC, which is in line with the theory that the LFB
modulation patterns are spatially widespread phenomenon in which information from a
larger spatial region can increase classification.

Both EEG and MEG are able to classify left and right hand or finger movement with
low frequency features. The reduced spatial resolution of these techniques did not per se
limit the effectiveness of classification. However, these articles only studied classification
between 1 finger of both hands, making the classification task more focused on separat-
ing left- and right-hand movement, rather than separating individual fingers from both
hands. The large advantage of the three techniques (fMRI, EEG and MEG) is that these
allow to use both hemispheres for the classification of movement from both hands. All
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these studies make use of observed differences observed between the electrodes over the
left and right hemispheres in a bipolar measurement.

2.6.2 Findings from ECoG

Such an approach is not possible with ECoG, given that the electrode grid is normally
placed over a single hemisphere. ECoG studies therefore require a different decoding ap-
proach. As an example, Fujiwara and colleagues have hypothesized that ipsilateral hand
movement is decoded in the same was as contralateral hand movement (Fujiwara et al.,
2017). To test this hypothesis, the authors used a cross-decoding methodology where one
classifier was trained with data from ipsilateral movement and tested this classifier on
data of contralateral movement and vice versa, a methodology that has seen application
in a similar setting but then for brisk arm movements in a study by Bundy and colleagues
(Bundy et al., 2018). The authors of this paper have used spectral domain features from
both the LFB and HFB. In addition, the authors included the LMP. The classification
was performed with a SVM with L1 regularization to prune off irrelevant features. De-
coding accuracies were lower for ipsilateral movements than for contralateral movements.
For all participants, the best results were obtained when using features from the HFB
recorded from both M1 and S1, although the selection of an optimal subset of features
from the HFB differed for each participant. If their hypothesis of a similar neural pattern
between contralateral and ipsilateral movement is true, their classifiers should generalize
well on data of movement from either hand. The authors found that when using the HFB
obtained from M1, the classifiers generalized in both directions (trained with ipsilateral
data and tested on contralateral data and vice versa) for all participants. The LMP from
M1 was able to generalize in one direction (trained with ipsilateral data and tested on
contralateral data). A similar result was found for the HFB features obtained from S1. A
spatial analysis revealed that the spatial patterns of HFB modulations in M1 were more
focal than those of the LFB. Additionally, the authors showed that the HFB modulations
resulting from both contralateral and ipsilateral movement show high spatial similarity,
although the magnitude of ipsilateral activity was lower. Their results indicate that iden-
tical neural patterns exist for both contralateral and ipsilateral hand movements in the
HFB obtained from M1.

Jin and colleagues researched the decodability of the gestures used in the rock paper and
scissors game, performed with the contralateral and ipsilateral hand (Jin et al., 2016). No-
table differences in the magnitude and spatial distribution of the spectral changes in the
HFB between the three gestures were found. The authros do however not report the quan-
titative differences between the spectral changes in the HFB resulting from contralateral
and ipsilateral movements. After classification with a SVM using features from the HFB,
the authors inferred that the increase in spectral power in the HFB was larger during
contralateral movement than during ipsilateral movement. By comparing the single chan-
nel decoding performance, the number and distribution of informative channels seemed
similar between contralateral and ipsilateral movements, but no quantitative analysis was
performed. The decoding accuracies were slightly lower for ipsilateral movement than for
contralateral movements.

Following these two articles, only one article was found that was in line with the prob-
lem statement; namely the classification of contralateral and ipsilateral individual finger
movement. Scherer and colleagues have applied a clustering approach referred to as Dis-
tinction Sensitive Learning Vector Quantization (DSLVQ) which allows for feature subset
selection by assigning lower weights to features that contribute less to the decoding ac-
curacy and assigning higher weights to features that were more relevant to increasing
the decoding accuracy (Scherer et al., 2009). The authors performed research on two
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participants of which one was implanted with a clinical electrode grid with 1cm spacing
and the other with a similar grid, but interleaved with smaller electrodes, increasing the
electrode spacing to 0.7cm. The authors composed 4 binary classification schemes that
required classification of different fingers from the same hand (contralateral thumb versus
contralateral index and ipsilateral thumb versus ipsilateral index) as well as classification
of identical fingers from the different hands (contralateral thumb versus ipsilateral thumb
and contralateral index versus ipsilateral index). The accuracies were computed for 9 time
lags ranging from 0 to 4 seconds in steps of 0.5 seconds. The authors present that the
classification yielded good results using the combined information from both the LFB as
well as the HFB, of which the results are displayed in Table 2.5.

Participant Classification Channel Accuracy

1 Contra thumb vs. Contra index 41 81.7% (+/- 7.3)
Ipsi thumb vs. Ipsi ndex 28 66.6% (+/- 7.1)
Contra thumb vs. Ipsi thumb 50 94.7% (+/- 3.3)
Contra index vs. Ipsi index 20 98.5% (+/- 1.5)

2 Contra thumb vs. Contra index 16 79.2% (+/- 6.9)
Ipsi thumb vs. Ipsi ndex 16 81.3% (+/- 5.3)
Contra thumb vs. Ipsi thumb 32 100.0% (+/- 0.0)
Contra index vs. Ipsi index 24 100.0% (+/- 0.0)

Table 2.5: Classification results from the DSLVQ classification on the different classifica-
tion schemes using all features from the LFB and HFB in the study by (Scherer et al.,
2009). The results are listed per participant. The channel that is listed denotes the best
performing individual channel. Classification accuracies are given as mean classification
accuracies and the standard deviation is provided between brackets. The mean and stan-
dard deviations are computed from 100 runs of the DSLVQ method for the time lag with
the highest accuracy.

From this study it was no possible to infer which feature combinations and electrode
locations were selected by the DSLVQ algorithm, but interestingly the authors observe
that the binary classification schemes that involve the separation of finger movements
from identical fingers of different hands (classification accuracies in bold in Table 6) are
better classified than different fingers from one hand. The authors show for three arbi-
trary channels, that the amplitudes in the HFB are highly different between ipsilateral
and contralateral finger movements but are highly similar for movements of both fingers
from one hand. This serves as an explanation for why the classification between fingers on
the same hand proves to be less successful than classifying identical fingers from the two
opposing hands (for which in some cases perfect classification was reached), it is likely
that the classification between contralateral and ipsilateral movement is based on the
difference in amplitude of the power spectrum over the relevant electrodes. The authors
further explain that the classification results for the participant with the higher resolution
electrode grid were better, although this is not directly observable from their results. The
authors demonstrate that selecting participant-specific narrow sub-bands from both the
LFB and HFB can in some cases improve classification performance in comparison with
using features from the complete LFB and HFB. This effect was most apparent for the
second participant (with the clinical electrode grid) and to a lesser extent for the first
participant (with the higher density electrode grid), but the authors do not discuss this
observation in light of the increased measurement resolution. The authors conclude with
the remark that the finer differences in spectral and spatial aspects between the fingers
from the same hand may be resolved with higher resolution electrode grids.

Summarizing, several studies used both hemispheres for decoding contralateral and ip-
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silateral finger movement and therefore made only a binary decision on contralateral or
ipsilateral movement. Several more studies focused on classification between contralat-
eral and ipsilateral hand movements from M1 and observed similar spatial patterns for
both movement classes with a smaller magnitude for ipsilateral movement. A single ar-
ticle was found that performed classification of contralateral and ipsilateral individual
finger movements and showed similar spatial overlap between the movement categories.
The results from the studies show that classification decisions between contralateral and
ipsilateral movement can be based on the difference in magnitude of cortical activation
related to both movement types and to some extent to spatial differences between the
movement types. The article however showed that individual contralateral and ipsilateral
finger movements can be distinguished with high accuracy between 66.6% and 100%.

2.7 Summary of Literature Findings

The literature handled in this review covered the broad physiological and computational
aspects related to discerning hand and finger movements from the SMC, with the under-
lying goal to provide answers to the problem statement formulated in Section 1.3:

It is unknown to what extent contralateral and ipsilateral individual finger movements
can both be classified from the same small area of SMC of a single hemisphere.

Section 2.3 found that studies using a movement paradigm task, showed overlapping
finger representations, with a more segregated and distinct somatotopy in S1 than in M1.
Two studies showed overlap between contralateral and ipsilateral finger representations
and reported that the ipsilateral finger representations are located more anteriorly than
contralateral finger representations in M1, however this difference was only reported at
the level of all fingers and the exact somatotopic representations of individual contralat-
eral and ipsilateral fingers was not reported in literature.

In Section 2.4, several fMRI studies have shown that ipsilateral cortical activity (in com-
parison to contralateral cortical activity) was often less pronounced (in magnitude) and
depends on both handedness and task complexity. These studies additionally found a
large spatial overlap between contralateral and ipsilateral cortical activity, where some
studies additionally report an anterior shift of ipsilateral cortical activity. EEG, MEG and
ECoG studies have similarly shown that modulations in both LFB and HFB manifested
with a smaller magnitude for ipsilateral movement in comparison with contralateral move-
ment. It was shown that the LFB spectral modulations were less spatially focal than HFB
modulations and that spectral modulations in the HFB resulting from both contralateral
and ipsilateral movement show a large spatial overlap, with ipsilateral modulations being
more spatially focused (i.e. occurring over less electrodes). For the HFB, timing has been
researched in ECoG studies in which the onset of modulations appeared earlier during
ipsilateral movements with respect to contralateral movements.

Section 2.5 presented the state of the art on the decoding of hand and finger move-
ments in general. Due to the high data dimensionality and often low number of trials,
much attention is paid to dimensionality reduction, feature selection and classifier selec-
tion. From this section it can be concluded that different movement types are encoded
differently in various frequency bands, where the LFB contained the most information
about brisk movements and the HFB showed to be informative for decoding fine move-
ments. However, different frequency components may be informative in combination with
several other frequency components. In terms of individual finger decoding, it has been
shown that the thumb is generally well decoded, while the other fingers are often con-

37



fused possibly due to the fact that these are connected to the same flexor. The additional
inclusion of prior knowledge of finger movements in the form of pragmatic constraints
may improve the decoding process.

These sections have provided relevant background knowledge on the topic of decoding
of hand and finger movements from the SMC, surprisingly revealing a limited number
of studies that focused on the classification of both contralateral and ipsilateral move-
ments. Section 2.6 showed that both hemispheres can be used for classifying contralateral
and ipsilateral finger movement by making a binary decision on contralateral or ipsilat-
eral movement. Several studies additionally showed that even though ipsilateral cortical
activity was less prominent in terms of magnitude and spatial extent and additionally
showed spatial shifts, it is possible to classify contralateral and ipsilateral hand and finger
movement from the same area in the SMC as a whole or from M1 and S1 separately; all
from a single hemisphere. Only a single article could effectively contribute to the knowl-
edge requirement. This article showed that contralateral and ipsilateral individual thumb
and index finger movements can be distinguished using ECoG signals recorded over the
SMC of a single hemisphere.

2.8 Implications of Literature Findings on the

Problem Statement

Given that the article by Scherer and colleagues (Scherer et al., 2009) is the only article
that provides insight into the state of the art on classifying individual contralateral and
ipsilateral finger movement, a vast amount of knowledge on this topic remains unexplored.
Although the results of Scherer and colleagues showed that contralateral and ipsilateral
fingers can be accurately distinguished from the SMC of a single hemisphere as a whole,
three topics need further investigation: At first, it remains to be investigated whether
contralateral and ipsilateral individual finger movements can both be accurately classified
from the SMC of a single hemisphere as a whole. Secondly, it should be investigated
whether this classification can be performed from a small sub area of the SMC of a single
hemisphere and lastly, whether the usage of HD electrode grids allow the recording of
cortical activity in finer detail and therefore allows this classification at a small scale.

2.8.1 The Ability to Classify Contralateral and Ipsilateral
Individual Finger Movements from the SMC of a Single
Hemisphere

The classification of contralateral and ipsilateral finger movements from the same small
area of SMC can be related to the findings on finger somatotopy since these provided
insights into the spatial arrangement of the individual fingers on the SMC. The existence
of any small- or large-scale finger somatotopy does not directly guarantee the ability to
accurately classify individual fingers, but it will in this section help interpret the impli-
cations of finger representation in classification of fingers on a smaller scale.

It is unknown if the ability to classify individual fingers from an arbitrary area is strictly
governed by somatotopy but the literature findings indicate that the ability to do so
certainly relies on the spatial arrangement of HFB signals, as these are described by lit-
erature as the most informative features for the classification of fine finger movements.
The idea of a perfectly separated finger representation can be beneficial for classification
of separate fingers but overlapping finger representations allows for the representation of
multiple fingers in a single area which may be beneficial for classifying multiple fingers
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from the same area, regardless of where that area is located. Several movement stud-
ies demonstrated overlapping somatotopic arrangements of the fingers in M1 and S1 in
which many neurons are involved in the movement of several fingers with sometimes a
preference towards a single finger or no clear preference to any finger at all. This indi-
cates that different fingers can be distinguished from a single area of the SMC, but it is
not known whether there exists a lower limit for an area of the SMC from which both
contralateral and ipsilateral individual fingers can be accurately classified and whether
this limit is governed by the boundaries of the somatotopic representations of fingers.
In the case that the ability to classify from a smaller area of SMC is indeed limited by
somatotopy, one can expect that every small area of SMC that is chosen will only provide
good classification results of adjacent fingers since those provide the largest overlap in
that area, in contrast to good classification results for all fingers.

Literature did not provide enough information to hypothesize about an area from which
contralateral and ipsilateral fingers can both be accurately decoded. The results of (Hlustik,
2001) showed that the contralateral finger representations of M1 and S1 span an area of
roughly 0.1 cm2 and 0.2 cm2, Diedrichsen and colleagues were able to classify fingers
(combined, not separately) from an area as small as 3.9 cm2 in M1 (Diedrichsen et al.,
2013). The ECoG studies conducted by Jin, Fujiwara and Diedrichsen do not provide
the required information to hypothesize about a lower limit on the area from which con-
tralateral and ipsilateral finger movements can be classified (Jin et al., 2016), (Fujiwara
et al., 2017), (Diedrichsen et al., 2013), (Scherer et al., 2009). These studies used a clinical
32-channel electrode grid of which only some electrodes (of which no detailed information
was provided) covered the SMC and were used for classification. Siero and colleagues were
able to coregister fMRI and ECoG (HD electrode grids) with a similar 1.5 mm spatial
resolution and found that the finger representations of the contralateral hand could be
discerned on a 1 cm2 area of the SMC (Scherer et al., 2009).

Additionally, it is not yet known whether the finding of a more discrete and segregated
somatotopy in S1 in contrast to M1 (Schellekens et al., 2018), (Hlustik, 2001) impacts the
ability to discern finger movements on a smaller scale from M1. Although the SMC as
a whole and S1 and M1 separately are suitable for decoding hand and finger movement,
no consensus has been reached in this literature review on whether M1 or S1 is a more
suitable candidate for classification of contralateral and ipsilateral finger movements on
a smaller scale.

More importantly, these considerations have not yet been thoroughly explored in light
of discerning both contralateral and ipsilateral finger movement. The studies by Alka-
dhi and Stippich present an overlap in contralateral and ipsilateral finger representations
(Alkadhi et al., 2000), (Alkadhi et al., 2002), (Stippich et al., 2007). However, the studies
both considered all fingers of the hand at the same time and did not focus on the individ-
ual fingers. Therefore, it is not known to what extent the considerations outlined in the
paragraphs above hold in light of both contralateral and ipsilateral finger movements.

2.8.2 The Usage of HD Electrode Grids in Classification of
Contralateral and Ipsilateral Individual Finger
Movements

The classification accuracies in the study of Scherer and colleagues were slightly higher
for one participant with an increased resolution electrode grid (Scherer et al., 2009). The
authors have therefore advocated for the usage of higher resolution electrode grids to
capture non-redundant spatial patterns of spectral modulations as to improve the overall
classification results for distinguishing between contralateral and ipsilateral finger move-
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ment. However, the small number of participants in this study begs the question whether
the higher accuracy for the participant with the increased resolution electrode grid is to
be attributed to chance. The authors of this paper were understandably not able to test
on statistically significant differences but therefore it remains unknown whether a higher
resolution electrode grid provides significant contribution to classification accuracy and
whether this effect generalizes across a larger population.

The studies by Jin, Fujiwara and Diedrichsen are also unable to show the influence of
an increased measurement resolution, but these studies have shown a lower classifica-
tion accuracy for ipsilateral movement than for contralateral movement. Therefore, one
can speculate that the spatial extent of ipsilateral cortical activity is thusly small that
the spatial resolution of the measurement techniques was not large enough to effectively
discern ipsilateral activity. This begs the question whether the reported neural pattern
similarity between contralateral and ipsilateral hand movements (Fujiwara et al., 2017)
is real or was only observed because the measurement resolution that the authors used
was not high enough to discern the actual spatial differences but only the differences in
magnitude of cortical activity. This thought can be translated to the findings of (Scherer
et al., 2009) where the classification decision between contralateral and ipsilateral finger
movements was largely based on a difference in magnitude between contralateral and
ipsilateral activity, while spatial overlap was visible. When differences in magnitude were
not that large, the classification was less accurate, as could be seen from their results
on distinguishing fingers from the contralateral hand. It is not clear from the studies of
Jin and Fujiwara whether the classification between contralateral and ipsilateral move-
ment is also mostly based on differences in magnitude similar as in the study by Scherer
(Scherer et al., 2009), (Jin et al., 2016), (Fujiwara et al., 2017). The study by Diedrichsen
did observe differences in magnitude in BOLD level between contralateral and ipsilateral
finger movement which may indicate that the classification was based on differences in
signal amplitude (Diedrichsen et al., 2013). One can hypothesize that the finer spatial
differences obtained by higher resolution measurement techniques can aid the classifica-
tion of individual finger movements and additionally allow the classification to rely less
on only the difference in magnitude and more on that of finer spatial differences between
contralateral and ipsilateral finger movements. If the classification decisions depend less
on only differences in magnitude, a more accurate classification of both contralateral and
ipsilateral fingers may be expected. Additionally, placing a classification decision solely
on differences in magnitude may not provide a robust classification mechanism, since
other research has shown that the magnitude of cortical activity resulting from ipsilat-
eral movement is strongly dependent on the movement task, its complexity, the amount
of force required and the handedness of the participant.

The exact influence of measurement resolution on classification of movement remains
unknown for two reasons. At first, Scherer and colleagues do not show what differences
existed between the participants with different resolution electrode grids (Scherer et al.,
2009). Secondly, a fair comparison between measurement resolutions is difficult to make.
There are findings that cortical activity in the HFB resulting from fine finger movements
may be more accurately decoded in participants with higher resolution electrode grids in
comparison with those participants who did not have high resolution grids (Flint et al.,
2017), (Wang et al., 2016) but a fair comparison between participants in such studies
cannot be made due to different cortical structure and differing electrode placement. An
alternative would be to artificially reduce the resolution of electrode grids by averaging
the signal of neighboring electrodes, resulting in an artificial lower spatial resolution as an
artificial larger electrode size. The results by Jiang and colleagues have shown that using
such a simulated lower resolution electrode grid severely impacted the ability to classify
movement from HFB in comparison with the original HD electrode grid while for the
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more spatially spread LFB, the classification results did not change significantly (Jiang
et al., 2018). The main problem with these methodologies is that there is no ground truth
in comparing performances across resolutions and therefore it remains a topic of discus-
sion whether one can directly compare and attribute increased classification results to an
increased measurement resolution. In addition, the HD electrode grids have an increased
number of recording channels on a certain cortical area which directly increases the num-
ber of features that can be used during classification, which can increase classification
performance.

Lastly, the HD electrode grids have a smaller electrode size which means that these
electrodes record cortical activity from a smaller neuronal population. In the light of
somatotopic representations, it is probable that multiple finger digit representations are
present among neuronal populations of a certain size (Schellekens et al., 2018) and that
a smaller neuronal sample size recorded by the smaller electrodes of the HD electrode
grids may to be more finger specific than a larger neuronal sample size.
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2.9 Gap in Literature and Research Questions

Due to the scarce amount of literature, no definite clarifications could be provided to-
wards the problem statement posed in Section 1.3. This problem statement was initially
posed as a two-fold problem, of which the first aspect focused on whether contralateral
and ipsilateral individual finger movement could be classified and the second aspect fo-
cused on the area from which this could be performed. Given that literature is scarce on
both of these topics, all efforts in this work are focused on researching the first and most
fundamental aspect of the problem statement; whether both contralateral and ipsilateral
individual finger movements can be accurately detected and classified at all. Therefore,
the main research question for this research is formulated as follows:

1. To what extent can contralateral and ipsilateral individual finger movements both be
accurately classified from the SMC of a single hemisphere?

Since this research will handle an exploratory research into this topic, the main research
question is intentionally broadly formulated and any assumptions or hypotheses sur-
rounding the ability to classify both contralateral and ipsilateral individual fingers are
left unspecified. The definition of accurate classification is defined as classification with
an overal accuracy of 85%. This lower boundary was determined by the results from the
UNP project (Vansteensel et al., 2016a) and denotes an accuracy with which a BCI can
be reliably used.

While literature has shown that it is possible to distinguish contralateral and ipsilat-
eral individual finger movements in binary classification schemes (Scherer et al., 2009), a
single performance measure for the classification of contralateral and ipsilateral individ-
ual finger movement is still lacking. To contribute to this knowledge, contralateral and
ipsilateral individual finger movements can be classified in a similar setting as related
research; namely in a synchronous setting. In a synchronous (cue paced) BCI, the par-
ticipant is expected to perform attempted movement of a finger after a visual cue and
within a specific time frame. In machine learning terms, these trials can be classified in a
supervised manner, where prior information about which finger is moving is present and
predetermined and well defined episodes of cortical activity during finger movement can
be used for training and testing of the machine learning model. The classification of cued
movement in specific trials provides the opportunity to experiment with various machine
learning models and preprocessing- and feature selection techniques under laboratory
conditions. For this purpose, the following sub research question has been formulated:

1.1 What performance can be attained on the classification of contralateral and ipsilateral
individual finger movements in a synchronous setting?

Although synchronous classification provides a good theoretical ground to build on, the
problem of accurately decoding contralateral and ipsilateral finger movements must be
viewed from a more pragmatical point of view; synchronous classification does not fully re-
semble the conditions under which SMR based BCIs are used in daily life by participants.
A synchronous BCI analyzes cortical signals during predefined time ranges dictated by
the cue and the participant can perform attempted finger movement to issue a command
during this specific time. The BCI will not process cortical signals that fall outside this
time frame which strongly simplifies the design of a BCI but limits the flexibility of use.
An asynchronous BCI on the other hand constantly analyses cortical signals and the user
can provide commands at his or her own pace, which offers a more flexible and natural
way of BCI usage.
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The design of such asynchronous BCIs is more complex for two distinct reasons. At first,
the exact moment at which attempted movement corresponding to issuing a command
(referred to as episodes of Intentional Control (IC)) takes place is not known in asyn-
chronous BCIs as opposed to synchronous BCIs. Secondly, these episodes of attempted
movement are alternated by episodes of rest or no attempted finger movement (referred to
as episodes of No Control (NC)) in which the user does not issue a command. This means
that the BCI must, in addition to correctly classifying different classes of IC relating to
different finger movements, be able to accurately detect episodes of IC and distinguish
them from episodes of NC.

Although this more challenging task inherently needs to be handled in any asynchronous
BCI, it is brought up here for a more specific reason: Literature has shown that contralat-
eral individual finger movement causes well distinguishable cortical patterns in compari-
son to motor rest. However, cortical activity resulting from ipsilateral finger movements
showed less pronounced activity in terms of both spatial extent and magnitude and was
reported to be absent in some studies (e.g. (Zanos et al., 2009), (Diedrichsen et al., 2013),
(Hanakawa et al., 2005)). This gives rise to the thought that ipsilateral cortical activ-
ity might be more difficult to distinguish from motor rest (i.e. not performing finger
movement). This can strongly impact the usability of ipsilateral finger movement in an
asynchronous BCI, where it can potentially lead to an increased number of False Positive
(FP) detections of ipsilateral finger movement. In light of the main research question,
it is therefore desirable to research this issue to reflect on the true extent with which
contralateral and ipsilateral finger movements can be classified. Therefore, the following
research sub research question has been formulated:

1.2 What performance can be attained on the classification of contralateral and ipsilateral
individual finger movements in an asynchronous setting?

Following these experiments, the attained performances from sub research questions 1.1
and 1.2 need to be compared and therefore the following sub research question has been
formulated:

1.3 Do the attained performances on the classification of contralateral and ipsilateral
individual finger movements differ between synchronous and asynchronous settings and
what can explain possible differences?

After these sub- research questions have been answered, a complete answer can be given to
the main research question. By assessing the classification performance for contralateral
and ipsilateral individual finger movements in both a synchronous and an asynchronous
setting, one can reflect on the extent to which contralateral and ipsilateral individual
finger movements both be accurately classified from the SMC of a single hemisphere. The
obtained results can be considered as a continuation of the studies performed by Scherer
and colleagues (Scherer et al., 2009), who may have provided an optimistic view of the
ability to classify contralateral and ipsilateral finger movement in a realistic BCI setting.
The results obtained in this research additionally allow to determine what possibilities
and caveats exist for using both contralateral and ipsilateral individual finger movements
as control signal for BCIs. These insights can additionally aid the UMCU and the BCI
research field towards the development of an online BCI with more degrees of freedom.
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3 Methodology

3.1 Overview of Experiments

This section will shortly handle the dataset and the research methodology that was used
to answer the sub research questions and consequently the main research question. It
will provide an concise overview of the chronological order of experiments, which are
explained in more detail in later sections.

3.1.1 Summary of the Dataset

Based on the literature findings, it could be stated that clinical electrode grids may not
provide the spatial resolution necessary to optimally discern individual finger represen-
tations and it can be hypothesized that HD electrode grids have the ability to resolve
fine spatial patterns of cortical activity beyond those that can be measured with clinical
electrode grids. Furthermore, the SMC has proven to be a suitable area for discerning
individual finger movement. Therefore, this research made use of an existing dataset
recorded at the UMCU that included four subjects with intractable epilepsy who under-
went surgery to place HD ECoG electrode grids over the hand knob of the SMC. These
subjects have performed contralateral and ipsilateral individual movement of the thumb,
index and little finger in a randomized event-related task design, which made this dataset
suitable for this research.

3.1.2 Preliminary Data Analysis

Prior to classification, more insight into the current dataset was required. For this pur-
pose, a preliminary data analysis was performed to determine to what extent the literature
findings regarding the spatial, spectral and temporal aspects of cortical activity resulting
from contralateral and ipsilateral finger movements held for this dataset. Additionally,
in-depth knowledge of the data aided in the discussion and explanation of obtained clas-
sification results.

The preliminary data analysis consisted of thee separate experiments. The first experi-
ment aimed to visualize the signal envelope of power modulations in the α, β and HFB
frequency bands. This analysis enabled a comparison of the temporal and amplitudal
differences of cortical activity resulting from contralateral and ipsilateral movement. The
second experiment of the preliminary data analysis aimed to visualize the spatial extent
and distribution of cortical activity in the α, β and HFB frequency bands across the
electrodes of the ECoG grids. As a third and last topic for the preliminary analysis, an
attempt was made to visualize the high dimensional cortical data resulting from the con-
tralateral and ipsilateral finger movements in the α, β and HFB frequency bands which
aided in formulating preliminary hypotheses before classification.
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3.1.3 Experiment I: Synchronous Classification

Following the preliminary analysis, the first experiment of this research handled the syn-
chronous classification, which aimed to obtain the results required to answer the first
sub research question. Since it was unknown which machine learning models were able
to accurately classify contralateral and ipsilateral individual finger movements, several
machine learning models were explored in a synchronous setting These models were eval-
uated in a synchronous setting and the accuracy in percent along with the corresponding
confusion matrices (e.g. (Xiao and Ding, 2015), (Bleichner et al., 2014)) were obtained.

After the classification attempts, several smaller side experiments were conducted. Firstly,
the contribution and information content of the α, β and HFB frequency bands on the
classification process was separately researched. Secondly, related to the limited amount
of data that was available, an investigation was set out to determine how the amount of
data used in the training of the classifier influenced classification performance of each of
the classifiers. Thirdly, due to the fact that the temporal characteristics of cortical activ-
ity were not well defined by literature, a separate experiment set out to determine the
influence of several temporal aspects on the classification process. The last experiment of
this section investigated the distribution of channels across the cortical surface that were
important in distinguishing contralateral and ipsilateral finger movements.

3.1.4 Experiment II: Asynchronous Classification

Following the synchronous classification, the second experiment conducted in this research
handled the asynchronous classification which aimed to obtain the results required to an-
swer the second sub research question. Although the dataset used in this research was
not specifically designed for the verification of an asynchronous BCI, it was possible to
approximate conditions similar to those in asynchronous BCIs since the data contained
trials of movement of each of the six fingers (here the six different IC states) alternated
with trials of rest (here the NC state). The best performing model in the synchronous
classification was used to detect and classify IC states and the NC state in this asyn-
chronous setting by letting the classifier predict a class label at every time point of the
ECoG data of a run. The predicted class labels at each time point in combination with
other parameters were used for the labeling of an IC or NC event in an asynchronous
fashion. The performance of the classifier in this asynchronous setting was evaluated by
means of a slightly adapted form of the Event-based True Positive rate (EB-TPR) and
the Sample-based False Positive Rate (SB-FPR) metrics (Mason and Birch, 2000).

The following sections in this chapter will provide the rationale, methodological details
and theory towards all experiments that were performed in this research and were shortly
described in the section above. These methodological descriptions will be provided in the
same chronological order as the results section, so that the reader can easily browse
forward and backward between methodology and results if desired. This organization ad-
ditionally allows the reader that is more familiar with machine learning, ECoG and BCIs
in general to skip several sections if desired.

3.2 Data Acquisition and Processing

3.2.1 Participants

This research included four participants with intractable epilepsy who underwent subdu-
ral ECoG grid implantation for the clinical purpose of seizure localization and monitoring.
The participants gave written informed consent to place additional subdural HD ECoG

45



electrode grids over the SMC (including the hand knob) for the purpose of research. The
pathological region of epilepsy did not extend to the SMC and the participants all had
normal hand function. All procedures described were approved by the Institutional Re-
view Board of the Utrecht University Medical Center and the informed consent was given
in accordance with the Declaration of Helsinki (WMA, 2013).

The HD electrode grids (AdTech, Racine, USA) were localized using co-registration be-
tween a high resolution post-implantation Computerized Tomography (CT) scan (Philips
Tomoscan SR7000, Best, the Netherlands) and a pre-operative T1-weighed anatomical
scan on a 3T MRI scanner (Philips 3T Achieva, Best, the Netherlands) using the method-
ology as described work of Hermes and colleagues (Hermes et al., 2010) and Branco and
colleagues (Branco et al., 2018b). The locations of the electrode grids on the cortical
surfaces of the participants are depicted in Figure 3.1.

Figure 3.1: ECoG electrode grid locations on the cortical surface of the four participants
included in this research.

The labeling of electrodes on the cortical surface was performed by means of visual
inspection using distinct anatomical landmarks: The electrodes over the CS were defined
after which the electrodes anterior to the CS (until the precentral sulcus (prCS)) were
labeled as M1 electrodes and those posterior to the CS (until the postcentral sulcus
(pCS)) were labeled as S1 electrodes. The resulting electrode layouts are depicted in
Figures A.1 through A.3 in Appendix A. Further information about the participants and
the implanted electrode grids is summarized in Table 3.1.
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Information Participant P1 Participant P2 Participant P3 Participant P4

Age 34 22 50 42
Gender Female Male Female Male
Handedness Right Right Left Right
Implanted Hemisphere Right Left Right Left
Electrode Layout 8x8 8x8 8x16 8x4
Electrode Diameter 1 mm 1 mm 1 mm 2 mm
Electrode Spacing 4 mm 4 mm 3 mm 3 mm
Covered Area 5.2 cm2 5.2 cm2 10.4cm2 2.5 cm2

CS Electrodes 10 9 20 11
M1 Electrodes 19 27 18 9
S1 Electrodes 16 18 29 5
Non-SMC Electrodes 19 10 46 6

Table 3.1: Elaborate information regarding the participants and implanted electrode grids.
The handedness of the participants was evaluated by means of the Edinburgh handedness
inventory (Oldfield, 1971). The inter-electrode spacing is measured center to center. The
number of electrodes over the CS, over S1 and over M1 are listed. The electrodes that
are not located over these three areas are marked as non-SMC electrodes. Some electrodes
were excluded from all analyses due to noise or other electrode faults.

3.2.2 Experimental Task

The participants performed a finger movement task which consisted of the flexion and
extension of a single finger at a time. Two runs of the task were recorded, one run were
the participant performed the task with the fingers on the hand contralateral to the im-
planted grid and afterwards with the fingers on the hand ipsilateral to the implanted
electrode grid. It is to be noted that these runs were performed and recorded on different
days for participant P2 and P4. For participants P1 and P3, the runs were recorded on
the same day. During the task, the participants were seated in a comfortable position in
their bed and focused on a monitor which presented a cue to move either the thumb,
index finger or little finger of the specific hand, which constituted one trial. The complete
task was constructed following a randomized event-related design with 30 trials per finger.

For participants P1 through P3, one trial of finger movement lasted 1.5 seconds and
consisted of one flexion and one extension of the cued finger. Every finger movement trial
was succeeded by a trial of rest with a duration of 3.5 seconds, during which no finger
movement was allowed. For participant P4, a finger movement trial consisted of one flex-
ion and extension at minimum, but no restriction was placed on the maximal number
of flexions and extensions in a trial. For this participant, a finger movement trial had a
duration of 4.4 seconds including resting time; no specific trials of rest were included in
this participants task. The task designs are graphically represented in Figures 3.2 and 3.3
below.
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Figure 3.2: Graphical depiction of the randomized event-related task design of participants
P1 through P3. The beginning of each 1.5 second movement trial is marked by a movement
cue for a specific finger after which the participants performs one extension and flexion
of the cued finger. After each trial of finger movement, a trial of rest is issued by the rest
cue, in which the participant performs no movement for the duration of 3.5 seconds.

movement cue movement cue movement cue

finger movement and rest

0 4.4 8.8
Time [s]

finger movement and rest

Figure 3.3: Graphical depiction of the randomized event-related task design of participant
P4. The beginning of each 4.4 second movement trial is marked by a movement cue for a
specific finger after which this participant performs at least one extension and flexion of
the cued finger. Followed by the finger movement, the participant was instructed stay at
rest and perform no finger movement.

3.2.3 ECoG Acquisition and Preprocessing

During each run, the ECoG signals were continuously recorded from the cortical surface.
For participants P1 through P3, a 16-bit Blackrock amplifier (Blackrock Microsystems,
Salt Lake City, USA) with a sampling rate fs of 2000 Hz and an internal bandpass filter
of 0.3-7500 Hz was used to record the ECoG data. For participant P4, the ECoG signals
were recorded with a 22-bit Micromed amplifier (Micromed, Treviso, Italy) with a sam-
pling rate fs of 512 Hz and an internal band-pass filter of 0.15-134.4 Hz. The recorded
ECoG data were processed offline with the Fieldtrip Toolbox (Oostenveld et al., 2011)
(July 2019) for MATLAB 2019a. The subset of noisy and non-functioning electrodes were
identified per participant via assessment of signal amplitude (flat electrodes or amplitu-
dal outliers), line noise amplitude and 1/f distribution (Liu et al., 2015). These faulty
electrodes are marked in Figures A.1 through A.3. These faulty electrodes were excluded
from further analysis, resulting in a subset of functional electrodes (channels) Ef .

All following preprocessing procedures for the ECoG data were applied per run sepa-
rately. Fistly, the raw voltage ECoG data of each channel Ve with e ∈ Ef were referenced
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with the CAR method defined by:

VeCAR
= Ve −

1

|Ef |
∑
e∈Ef

[
1

N

N∑
n=1

Ve[n]

]
(3.1)

Here, N denotes the number of recorded data samples of channel e. Following, a But-
terworth band-pass filter was applied to the data of each of the participants. The gain
expression at frequency f of this filter is given by G(f)bp:

G(f)bp =

f
fl√

[1 + fl
f

]2d[1 + f
fh

]2d
(3.2)

The filter order d was set to three and the lower and upper cutoff frequencies, fl and
fh, were set to 0.15 and 130 Hz respectively. These cutoff frequency settings reflect the
bandwidth limits of the Micromed amplifier used for participant P4. This band-pass fil-
ter was applied to the data of all participants to ensure that the same spectral content
was retained in the data of all participants regardless of the amplifier bandwidths, which
differed between participants P1 through P3 and P4. To remove power line noise, two
additional third order Butterworth band-stop filters with gain expression 1−G(f)bp were
centered around multiples of the power line frequency (50Hz) with lower and upper cutoff
frequencies of [49 51] Hz and [99 101] Hz respectively.

Following, a window function of one second length (based on the average time a par-
ticipant required to perform a single finger flexion and extension) was centered over each
ECoG sample n ∈ VCAR of a run. Here, a Hanning window H[n] was used:

H[n] =


1
2

[
1 + cos

(
π
(
2n
L
− 1
))]

0 ≤ n ≤ 1
2
L

1 1
2
L < n < 1− 1

2
L

1
2

[
1 + cos

(
π
(
(2n
L
− 2) + 1

))]
1− 1

2
L ≤ n ≤ L

Here, L denotes the length of the window expressed in the number of datapoints which
for a length of one second, corresponds to 2000 datapoints for participants P1 through P3
and 512 datapoints for participant P4. Each one second window of ECoG data V

hann
was

transformed to the frequency domain by use of the Discrete Fourier Transform (DFT) to
obtain Phann, which constituted the collection of normalized log10-transformed frequency
bin magnitudes ranging from 6 Hz to 130 Hz in steps of 2 Hz. These frequency bins are
described by the set K = {6,8,...,130} :

Phann = F{Vhann[k]} = log10

[
1

N

[
N−1∑
n=0

Vhann[n]

[
cos(

2π

N
kn− i · sin(

2π

N
kn)

]]]
(3.3)

Here, k denotes a discrete frequency bins in K for which the spectral magnitudes were
obtained. In this case, The resulting spectral data of a window Phann has dimensionality
RK×Ef . The complete spectral data of a run Prun with in total N samples then has
dimensions RN×K×Ef .

3.2.4 Dataglove Acquisition and Preprocessing

The finger movements that were performed by the participants during the task were
recorded with a five degrees of freedom dataglove (5DT, Irvine, USA) placed only on the
hand involved with the task. The dataglove recorded the amount of flexion and extension
of all 5 fingers of the hand with a sampling rate of 50 Hz. Two examples of recorded
dataglove signals have been depicted in Figure 3.4 below:
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Figure 3.4: Schematic representation of the recorded movement of each finger by the data-
glove. The bumps in the dataglove signals (colored lines) following the movement cues
(dashed gray line denoting which finger is cued) demonstrate flexion and extension move-
ments of the cued finger. Rest cues are omitted in this schematic depiction. Participant
P1, whose dataglove signals is depicted in the left hand figure, was instructed to flex and
extent the cued finger only once, whereas participant P4 (right hand side) was allowed to
flex and extent the cued finger multiple times in a trial.

Following, the task performance of each of the participants was analyzed. For this purpose,
a visual inspection of the dataglove signals and the cues (as depicted in Figure 3.4)
was performed to determine whether the correct finger was moved in each trial and
whether the the finger movement was performed correctly (i.e. no hesitation or correction
of movement between fingers). In addition, trials of rest were inspected to ensure that
there was actual rest and no residual movement. Trials with faulty task performance were
excluded from further analysis. This resulted in the collection of correct trials as depicted
in Table 3.2 below.

Finger Participant P1 Participant P2 Participant P3 Participant P4

Contralateral Thumb 30 30 29 30
Contralateral Index 30 30 29 28
Contralateral Little 30 30 30 29
Ipsilateral Thumb 28 29 29 25
Ipsilateral Index 30 29 29 24
Ipsilateral Little 30 30 30 23

Table 3.2: Number of included trials for each participant and each cued finger of both
contralateral and ipsilateral runs.

Section 2.5.2 of the literature review showed that movement of several fingers can cause
conjoined movement of other fingers on that hand due to the fact that all fingers on one
hand (with exception of the thumb) are connected to the same flexor digitorum profundus.
Therefore, it was important to investigate the extent to which conjoined movement of non-
cued fingers took place during movement of the cued finger during a task. Given that
each dataglove signals had a significant DC offset and a varying measuring amplitude
(hardware related), the separate dataglove signals corresponding to each of the fingers
were first z-scored as follows:

Zv =
Dv −Dv

σDv

(3.4)

Where Zv denotes the z-scored dataglove signal for finger v, Dv denotes the raw dataglove
signal for finger v and Dv and σDv denote the mean and standard deviation of the raw
dataglove signal for finger v.
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After z-scoring, the maximum deflection of all fingers during the trials of a cued fin-
ger were collected and the amount of conjoined movement was visualized. An example
of one of those visualizations is depicted in Figure 3.5. The visualizations of conjoined
movement of the other participants are included in Appendix F.
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Figure 3.5: The amount of conjoined movement of non-cued fingers during movement of
the cued contralateral thumb (left hand figure) and contralateral index finger (right hand
figure) of participant P3. The bar that represents the cued finger is depicted in blue and the
non-cued fingers are represented by the white bars. This Figure caption holds for Figures
F.1 through F.4 in Appendix F, which show the results for the other participants.

These figures show that there is little conjoined movement of any of the fingers with the
thumb. The index finger shows conjoined movement with the middle finger and the little
finger mainly shows conjoined movement with the ring finger. Little conjoined movement
occurs between any of the fingers actively employed in the finger movement task that the
participants completed (i.e. between the thumb, index finger and little finger).

To quantitatively determine whether the movements of any cued finger was larger than
that of non-cued fingers, the maximum deflection amplitudes were subjected to a one-way
ANOVA. The resulting p-values of these comparisons are depicted in Table G.1 in Ap-
pendix G. The results show that the middle finger moved in conjunction with the index
finger and that the ring finger moved in conjunction with the little finger. Additionally,
movement of several cued fingers were not significantly larger than that of the non-cued
fingers for some participants, but these non-cued fingers did not belong to the set of
fingers actively employed during the movement task. Therefore, the participants overall
performed well on the task. The only participant that had a decreased task performance
was participant P4, who had a somewhat lower number of correct trials during the ipsi-
lateral run (Table 3.2).

The dataglove recordings additionally allowed for determination of the point in time
in each trial at which movement onset took place. For this purpose, the dataglove data
were first up-sampled using interpolation to match the sampling rate fs of the ECoG
data so that the dataglove data and ECoG data could be aligned. Each value to be inter-
polated Dv,t at position xt of finger v was calculated using a linear interpolation of the
following form:

Dv,t =

[
(xv,t − xv,t−1)(Dv,t+1 −Dv,t−1)

xv,t+1 − xv,t−1

]
+Dv,t−1 (3.5)

Following, the start cue - denoting the time at which the run started - in the ECoG
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data was aligned with the start cue in the dataglove data so that the ECoG data and
the dataglove signals were aligned. Next, the first derivative of the dataglove signal was
calculated to obtain the amount of acceleration during movement. The first derivatives
of the dataglove signals were approximated as follows:

δZv,t = |(Zv,t+1 − Zv,t)| (3.6)

Where Zv,t represents the datapoint at time t of dataglove signal Zv and δZv,t represents
the approximate first derivative of point Zv,t. By taking the absolute value of δZv,t , this
signal resulted in pronounced peaks during flexion and extension regardless of the enve-
lope of the original dataglove signal, as depicted in Figure 3.6. This signal allowed for
more accurate determination of movement (onset) periods than the original dataglove
signal.
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Figure 3.6: The left hand figure shows signal excerpts for thumb movement performed
by participant P1. The right hand figure shows signal excerpts for thumb movement per-
formed by participant P4. The gray dashed lines denote the movement cue, indicating the
beginning of a trial in which in thumb movement is desired. In both figures, the datatglove
traces for the finger v, Zv, are depicted in blue. The first derivative of Zv, denoted as δZv

is depicted in red. δZv shows pronounced peaks during movement regardless of whether the
orginal dataglove signal denoted by Zv shows a negative or positive deflection.

To find the time points at which the finger movements occurred, the first peak of δZv in
each movement trial of every finger needed to be found. This point denoted the moment
at which movement was performed by the participant. This first peak was found by
searching for local maxima in δZv during each trial. Only the time points corresponding
to the first peak in δZv in each trial were retained. For this purpose, this research used the
findpeaks function from the Signal Processing Toolbox of MATLAB 2019a (MathWorks
Inc.). An overview of the complete process is depicted in Figure 3.7.
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Figure 3.7: The left hand figure shows dataglove acceleration excerpts for thumb move-
ment performed by participant P1. The right hand figure shows dataglove acceleration
excerpts for thumb movement performed by participant P4. The gray dashed lines denote
the movement cues. The rest cues are omitted in this figure. The first derivative of Zv,
denoted as δZv is depicted in red. The first peak of δZv in each trial is indicated by a purple
dot. This point denotes the time right after the first finger flexion when the finger is fully
flexed and is thus an accurate reflection of the time at which finger movement is taking
place. The time between the cue and that first peak is denoted by ∆c,m.

.

The purple dots in Figure 3.7 denoting the time point of the first movement in each trial
will be referred to as the movement markers. A visual inspection was performed to confirm
that indeed the first peak of δZv was correctly selected in each trial. The time between
the cue and the movement marker ∆c,m, reflecting the position of the movement marker
relative to the cue, were stored for each trial. This method of identifying movement could
naturally not be used to define similar markers for periods of rest. To define these, a
set time value between the rest cue (participants P1 through P3) or the movement cue
(participant P4) and an arbitrary time point in a period of rest was defined, such that
this arbitrary time point was centered in an interval of rest with a minimal duration of
one second, as depicted in Figure 3.8. This set time is referred to as ∆c,r. The one second
duration of the selected rest intervals enable the placement of the Hanning windows with
a one second length (described in Section 3.2.3) over the intervals so that these particular
windows contain only ECoG signal recorded during rest.
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Figure 3.8: The left hand figure shows dataglove acceleration excerpts for thumb movement
and rest performed by participant P1. The right hand figure shows dataglove acceleration
excerpts for thumb movement and rest performed by participant P4. The gray dashed lines
denote the cues for rest and movement respectively depending on the participant. The first
derivative of Zv, denoted as δZv is depicted in red. The purple dot denotes the arbitrary
time point in the rest trial or episode of rest such that it is centered in a period of rest
with a minimal duration of one second. The time between the rest cue and this arbitrary
time point, ∆c,r, is calculated.

.

The time value ∆c,r was set at two seconds for participants P1 through P3 and at 3.9
seconds for participant P4. The purple dots in Figure 3.8 are referred to as the rest mark-
ers. Again, a visual inspection confirmed that the rest markers were indeed surrounded
by at least half a second of rest on each side. The number of movement markers and rest
markers that were found are summarized in Table 3.3 below:

Finger Participant P1 Participant P2 Participant P3 Participant P4

Contralateral Thumb 30 30 29 30
Contralateral Index 30 30 29 28
Contralateral Little 30 30 30 29
Ipsilateral Thumb 28 29 29 25
Ipsilateral Index 30 29 29 24
Ipsilateral Little 30 30 30 23
Rest 182 182 182 132

Table 3.3: Overview of the number of found movement markers and rest markers for each
participant. The number of rest markers found corresponds to the number of included
movement trials listed in Table 3.2. Given that every movement trial is followed by a
trial of rest for participants P1 - P3, the number of rest trials constitutes 182 for these
participants: each run consists of 30 trials of movement and thus 91 trials of rest. Two
runs (contralateral and ipsilateral) were performed which amounts to 182 rest trials and
thus 182 rest markers. Finding suitable rest markers for participant P4 was more difficult
due to the absence of a clear rest cue. As a result, 60 rest markers had to be discarded
resulting in a total of 132 rest markers.
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3.3 Preliminary Data Analysis

3.3.1 Amplitudal Analysis: Visualization of Spectral
Modulations

To analyze the envelope of the spectral modulations in each of the α, β and HFB fre-
quency bands, the spectral data of the each of the trials t in the set of trials Tv of a
finger v, denoted by Pv,t, were aligned on the movement markers similar as in (Talakoub
et al., 2014). This process was performed for each participant individually. Following, the
spectral data Pv belonging to finger v, were averaged over all trials to obtain Pv,Tv

:

Pv,Tv
=

1

|Tv|
∑
t∈Tv

Pv,t (3.7)

The distinct frequency bins k of the spectral data were divided in more narrowly defined
frequency bands of [8-12], [16-30] and [60-130] Hz corresponding to the α, β and HFB
frequency bands respectively. These frequency ranges are denoted in the set B = {α, β,
HFB}. Following, the averages over the k frequency bins in each frequency band B ∈ G
were taken to obtain Pv,Tv ,B

:

Pv,Tv ,B
=

1

|B|
∑
b∈B

Pv,b,Tv
(3.8)

To enable a comparison of the amplitudes of the spectral modulations, the data Pv,Tv ,B

of all frequency bands and all contralateral and ipsilateral fingers were concatenated to
form Ptot, and all data Pv,Tv ,B

were z-scored as follows:

ZPv,Tv,B
=

Pv,Tv ,B
− Ptot

σPtot

(3.9)

The data ZPv,Tv,B
were plotted for each frequency band, channel, finger and participant

separately. To enable easy comparison of spectral modulations across fingers, Pv,Tv ,B
was

averaged over channels Ef to obtain a grand average of spectral modulations:

Pv,Tv ,B,Ef
=

1

Ef

∑
e∈Ef

Pv,e,Tv ,B
(3.10)

Again, the data Pv,Tv ,B,Ef
of all frequency bands and all contralateral and ipsilateral

fingers were concatenated to form Ptot, and all data Pv,Tv ,B
were z-scored as follows:

ZPv,Tv,B,Ef
=

Pv,Tv ,B,Ef
− Ptot

σPtot

(3.11)

The data ZPv,Tv,B,Ef
were plotted for each frequency band, finger and participant sepa-

rately.

3.3.2 Spatial Analysis: Channel R2 Values

The R2 value of each channel was calculated for the α, β and HFB frequency bands sep-
arately. For this purpose, the non z-scored spectral data of each trial separately averaged
over the three frequency bands for each specific finger, Pv,t,B, was used. The average spec-
tral magnitudes of the window centered around the movement marker were extracted,
since this point in time showed peak cortical activity, confirmed by the results of Section
3.3.1. For trials of rest, the average spectral magnitudes of the window centered around
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the rest marker were taken. Following, the average spectral magnitudes of the trials of
both movement and rest were sorted to form the line segment A[n]. This line segment
was then overlaid by a Heavidside step function H[n] as defined below:

H[n] =


0 n < 0
1
2

n = 0

1 n > 0

The process of forming the line segment A[n] and the subsequent overlaying with the
Heaviside step function H[n] is depicted in more detail in Figure 3.9 below:
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Figure 3.9: The forming of line segment A[n] and the subsequent overlaying with the
Heaviside step function H[n]. This figure depicts an example for channel 1 of the electrode
grid of participant P1 during contralateral thumb movement. The left hand figure shows
the values of the average spectral magnitudes in the HFB as blue crosses, where each
cross denotes the average spectral magnitude in the window centered around the movement
marker of one trial. The average spectral magnitudes in the HFB during rest are depicted
by blue circles where each circle again denotes the average spectral magnitude in the
window centered around the rest marker of one trial. The spectral magnitudes during both
movement and rest form the line segment A[n], denoted by the blue line. The red line
denotes the Heaviside step function H[n]. The right hand figure shows the same content,
but for the alpha frequency band.

Following, the correlation coefficient R between A[n] and H[n] was calculated as follows:

R(A[n],H[n]) =
1

N − 1

N∑
n=1

[(
A[n]−A

σA

)(
H[n]−H

σH

)]
(3.12)

More trials were available for rest than there were for movement (Table 3.3) and it was at
this point unknown how representative each individual rest trial was. For these reasons,
R was calculated between all available trials of movement and a subset of rest trials with
an equal amount of trials as were available for movement. This process was repeated until
all trials of rest were included in a calculation of R once. The resulting values for R and
the corresponding p-values (denoting whether the difference between spectral magnitudes
in the specific frequency band between movement and rest were significant) were aver-
aged. This allowed for the most representative calculation of the R2 values. The obtained
averaged correlation value R was squared and the initial sign was retained to obtain the
signed R2 ∈ [−1, 1] for each electrode during movement of each finger. As can be de-
duced from Figure 3.9, the R2 values in the HFB (left hand figure) were mostly large
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positive values resembling an increase in spectral power in the HFB during movement.
Subsequently, the R2 values in the α band were mostly negative values, resembling the
decrease in spectral power during movement.

The obtained R2 values were plotted on the cortical surface of the participants to deter-
mine the spatial distribution of cortical activity during both contralateral and ipsilateral
movement. Only the channels which showed significant (p<0.05, Bonferroni corrected for
multiple comparisons across channels) cortical activity during movement were plotted on
the cortical surface.

3.3.3 Visualization of the Data Space

Several techniques exist for dimensionality reduction and the subsequent visualization
of high-dimensional data. In this research, the t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) (Maaten and Hinton, 2008) technique was selected especially for its
ability to handle non-linear data structures. This relatively new technique is able to map
high-dimensional data to two or three dimensions using the local relations between data
points. More specifically, t-SNE technique uses the Euclidean distances between data-
points in the high-dimensional space and uses these to create a probability distribution
that describes the relations between the points in high-dimensional space. As an example,
t-SNE describes the similarity between datapoints xi and xj as a conditional probability
pj|i under a Gaussian distribution centered at xi:

pj|i =
exp [−||xi − xj||2 · (2σ2

i )−1]∑
k 6=i

[exp [−||xi − xj||2 · (2σ2
i )−1]]

(3.13)

Resulting, datapoints that are similar in the high-dimensional data space show similar
probability distributions. Now, for the low dimensional representation of the datapoints
xi and xj, noted as li and lj, a similar distribution qj|i can be defined. For this purpose,
a Student’s t-distribution with one degree of freedom is used:

qj|i =
exp [−||li − lj||2]∑

k 6=i

exp [−||li − lk||2]
(3.14)

If the low-dimensional mapping has successfully modeled the similarities found in the
high-dimensional data space, then the conditional probabilities pj|i and qj|i will be similar.
To compute the extent to which these probabilities are indeed similar, the Kullback-
Leibner divergence between pj|i and qj|i is computed over all datapoints and used as a
cost function F for finding the low dimensional mapping:

F =
∑
i

KL(Pi||Qi) =
∑
i

∑
j

pj|ilog
pj|i
qj|i

(3.15)

To find a suitable low-dimensional representation qj|i, the cost function F is optimized
with the gradient descent method. Several caveats surrounding the use of this technique
must be addressed. Firstly, because the cost function is non-convex, each run of t-SNE
might produce different results. Secondly, the final mapping depends on the selection
of a value for σ, for which a hyper-parameter referred to as the perplexity needs to be
set. Therefore, the results obtained with this technique must be carefully interpreted and
were in this research only used during the formulation of several preliminary hypotheses
before classification. The MATLAB 2019a implementation of t-SNE tsne (Statistics and

Machine Learning Toolbox) was used to reduce the dimensionality of the spectral data
of each trial averaged separately over the three frequency bands for each specific finger,
Pv,t,B and subsequently visualize these data. Again, the average spectral magnitudes
of the window centered around the movement marker were extracted. The perplexity

parameter was set to 30 for all participants.
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3.4 Experiment I: Synchronous Classification

Several classifiers were selected for the synchronous evaluation. Firstly, Linear Discrimi-
nant Analysis (LDA) and a Support Vector Machine (SVM) were selected given that these
have been named as the gold standard in ECoG BCI research (e.g. (Wang et al., 2010),
(Wissel et al., 2013)) in literature and have been proven to work with high dimensional
data and a small number of training samples. Secondly, a model that had not yet been
handled in literature related to this subject was explored, namely a Random Forest (RF),
which may be able to handle high dimensional data well (Do et al., 2010). Additionally,
a generative statistical model, the Naive Bayes (NB) classifier was explored since it could
be argued that the soft decision boundaries and the statistical approach may be suitable
to handle noisy ECoG data. The NB classifier assumes independence between features
and could therefore be less sensitive to the curse of dimensionality.

3.4.1 Background on Classifiers

Before handling the procedures surrounding the synchronous classification, an introduc-
tion of the classifiers is required. For the explanations of the classifiers, a toy data set D
={(x1,y1),...,(xn,yn)} will be considered. This dataset consists of observations xn and the
corresponding target label yn which indicates the class to which the observation belongs.
Each observation xn is described by a set of features f so that xn , (xn1 , xn2 , ..., xnf

).
This toy dataset contains two classes so that yn ∈ [+1,−1]. All data is real valued so
that D ∈ R|F |+1.

3.4.1.1 Linear Discriminant Analysis

The LDA classifier is a linear, probabilistic, inherently multi-class classifier that seeks to
find linear discriminant functions that separate data from different classes (Fisher, 1936).
The classifier makes use of Baye’s rule to compute the posterior probability P (c|xn) that
an observation xn belongs to class c as follows:

P (c|xn) =
P (xn|c)P (c)

P (xn)
(3.16)

To compute this posterior probability, LDA assumes that the likelihood P(xn|c) of an
observation xn belonging to class c is drawn from a multivariate normal distribution
xn ∼ N (µn,Σn) for which the probability density function fn(x) is defined as:

P (xn|c) = fn(x) =
1

(2π)f/2|Σc|1/2
exp

[
−1

2
(xn − µc)

TΣ−1c (xn − µc)

]
(3.17)

It is to be noted that the covariance matrices for all classes are equal. The prior probability
of class c, P(C) is the fraction of training samples belonging to class c out of all training
samples Ntot, defined as πc:

P (c) = πc =
|{n : yn = c}|

Ntot

(3.18)

Given that P (xn) does not depend on the class and is equal in the computation of
each posterior probability, it can be omitted. Therefore, the posterior probability can be
calculated as:

P (c|xn) =
πc

(2π)f/2|Σc|1/2
exp

[
−1

2
(xn − µc)

TΣ−1c (xn − µc)

]
(3.19)
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Rewriting gives the objective function δc(x) to maximize over all classes c defined as
follows:

δc(x) = wTxn + b = log(πc)−
1

2
µT
k Σ−1µc + xTΣ−1µc (3.20)

And as such, a datapoint xn will be classified as the class resulting in the highest value
for the objective function δc(x):

P (c|xn) = ŷn = argmax
c∈C

δc(xn) (3.21)

The decision boundaries (linear discriminants) indicated by the dotted lines in Figure
3.10 are the set of points for which the class probabilities are equally large (i.e. δ+1 =
δ−1).
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Figure 3.10: Visualization of the datapoints xn belonging to classes +1 and -1 in blue
and red respectively. The linear discriminant function δc(x) is indicated by the black line
separating the observations of the two classes classes.

A drawback of applying the LDA classifier to high-dimensional data is that the covariance
matrix Σ may be come singular in the case of a large number of features relative to the
number of training observations available for each class. To avoid the covariance matrix
from becoming singular, a diagonalization of the covariance matrix can be applied which
functions as a form of regularization. The amount of diagonalization of the covariance
matrix can be set by the regularization parameter γ as follows:

Σ = (1− γ)Σ + γ · diag(Σ) (3.22)

If the regularization parameter γ is set to 1, the covariance matrix is completely diago-
nalized.

The LDA classifier used in this research is the MATLAB 2019a implementation of the
LDA classifier fitcdiscr (Statistics and Machine Learning Toolbox). This classifier
has two hyper-parameters eligible for optimization, namely the γ (Gamma in the MATLAB
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implementation) regularization parameter and a different regularization parameter that
is unique to the MATLAB implementation referred to as the linear coefficient threshold δ
(Delta in the MATLAB implementation). This parameter can reduce the dimensionality of
the feature space by removing features with a weight w in the weight vector w of the
LDA classifier that are lower than the set linear coefficient threshold.

3.4.1.2 Support Vector Machine

The SVM is a binary non-probabilistic linear classifier that aims to find a linear hy-
perplane that optimally separates observations of different classes (Evgeniou and Pontil,
1999). Given that the SVM is a linear classifier and most real data is not linearly separa-
ble, the SVM makes use of a transformation to implicitly map non-linearly separable data
to an arbitrary higher dimensional space where the data becomes linearly separable. To
perform this operation computationally efficiently, the SVM makes use of a linear kernel
function K which computes the inner products between two observations xi and xj:

K(xi, xj) = 〈φ(xi), φ(xj)〉 (3.23)

Given a binary classification problem with classes +1 and -1, the SVM finds a separating
hyperplane so that data points of one class fall to one side of the separating hyperplane
and data of the other class falls to the other side of the separating hyperplane while
keeping the margin, the distance between the separating hyperplane and the closest ob-
servations (the support vectors), as large as possible, as depicted in Figure 3.11.
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Figure 3.11: Visualization of the datapoints xn belonging to classes +1 and -1 in blue and
red respectively. The separating hyperplane y(x)=0 is indicated by the black line separat-
ing the observations of the two classes classes. The support vectors are indicated by the
datapoints surrounded with a circle. The distance between the support vectors between two
classes is defined by the margin. The parameter ξ denotes the slack parameter.

This linear separating hyperplane y(x) and the constraints for the correct classification
of the observations can be formulated as follows:

y(x) = wTφ(xn) + b and

{
y(xn) ≥ 0, ∀yn = +1

y(xn) ≤ 0, ∀yn = −1
(3.24)
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Which can be rewritten as:
yn(wTφ(xn) + b) ≥ 1 (3.25)

If the data is hardly linear separable it may occur that the separating margin becomes very
small, leading to the possibility of underfitting and susceptibility to noise. To overcome
this, a slack parameter ξ can be introduced which allows a relaxation of the constraints
so that most but not all observations are correctly classified. The slack variable can be
integrated into the constraint as follows:

yn(wTφ(xn) + b) ≥ 1− ξ (3.26)

The distance between the support vectors and the separating hyperplane can be found
as follows:

Dx,hp =
|wTxn + b|
||w||

(3.27)

The optimal hyperplane can be found by maximizing the distance between the support
vectors which can be calculated by minimizing the following equation subject to the
relaxed constraint:

argmin
1

2
||x||+ C

N∑
n

ξn (3.28)

subject to yn(wTφ(xn) + b)− 1 + ξn ≥ 0, ξn ≥ 0 (3.29)

This problem forms a quadratic constrained optimization problem that has to be solved.
The parameter C regulates the trade-off between the margin width and the number of
misclassified observations during training. Setting C to a small value changes the archi-
tecture of the SVM classifier from hard-margin to soft margin. A new observation xn

is accordingly classified in the class +1 or -1 depending on which side of the separating
hyperplane it is located.

The SVM classifier used in this research is the MATLAB 2019a implementation of the
SVM classifier fitcsvm (Statistics and Machine Learning Toolbox). This classifier
has two hyper-parameters that are considered in this research and require optimization,
namely the C (BoxConstraint in the MATLAB implementation) parameter governing the
relaxation of the constraint and the kernel scale parameter (KernelScale in the MATLAB

implementation) which governs the scaling of the features of the observations. All data
will be standardized before classification with the SVM.

Given that the SVM classifier is a inherently binary classifier, several classifiers must
be used to tackle multi-class problems. Literature has discussed OVO and OVA archi-
tectures, with the corresponding disadvantages. The possible ambiguity in assigning a
class label when an equal number of votes for one class are issued in a majority vote,
can be circumvented by making use of Error Correcting Output Codes (ECOC). ECOC
make use of binary coding designs (dictating which classes each of the binary learners are
trained on) and a corresponding decoding scheme (which determines how the predictions
of each of the binary classifiers are aggregated). For example, for a three class problem,
a coding design M could be the following:

M =

s1 s2 s3[ ]+1 +1 0 c1
−1 0 1 c2
0 −1 −1 c3

Here, the three SVM classifiers are denoted by s1,..,s3 and the classes are denoted by
c1,..,c3. To classify the data point xn, all binary classifiers are evaluated to obtain a
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the corresponding bit string. The class label that is assigned to observation xn is then
calculated as follows:

ŷn = argmin
c

∑
s∈S

[|mc,s|L(mc,s, p̂s)]∑
s∈S
|mc,s|

(3.30)

Here, mc,s is an element of the coding matrix M and p̂s is the predicted label for the
positive class of classifier s. L(·) denotes the loss function, for which the binary cross
entropy loss function is used:

L(mc,s, p̂s) = mc,s · log(p̂s) + (1−mc,s) · log(1− p̂s) (3.31)

This research uses the MATLAB 2019a implementation of ECOC model, named fitcecoc

(Statistics and Machine Learning Toolbox).

3.4.1.3 Naive Bayes

The NB classifier is an inherently multi-class probabilistic classifier which classifies a
data sample xn to a class based on the maximum posterior probability P (c|xn) (Juraf-
sky and Martin, 2008). Since this probability is often difficult to directly estimate from
training data, the NB classifier relies on Bayes Theorem for calculation of this posterior
probability:

P (c|xn) =
P (xn|c)P (c)

p(xn)
(3.32)

Given that again P (xn) is equal in the computation of the posterior probabilities P (c|xn)
of each class, it can be omitted, so that P (c|xn) can be formulated as follows:

P (c|xn) = P (xn|c)P (c) (3.33)

Since the likelihood of an observation can be described as the likelihood of each of the
features (xn , xn1 , xn2 , ..., xnf

), the the posterior probability P (c|xn) can be reformulated
again:

P (c|xn) = P (xn1 , xn2 , ..., xnf
|c)P (c) (3.34)

However, the likelihood is again difficult to empirically determine. Therefore, the NB
classifier makes the naive assumption that each xnf

∈ xn is independent given the class
c, so that the posterior probability P (c|xn) can be calculated as follows:

P (c|xn) =
[
P (xn1|c) · P (xn2|c), ..., ·P (xnf

|c)
]
P (c) =

[∏
f∈F

P (xnf
|c)

]
P (c) (3.35)

The observation xn is then assigned to the class for which the largest posterior probability
is calculated:

ŷ(xn) = argmax
c∈C

[∏
f∈F

P (xnf
|c)

]
P (c) (3.36)

The decision boundaries of the NB classifier can be visualized and interpreted as a prob-
ability distribution over the classes depending on the value of the features, as depicted in
Figure 3.12 below:
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Figure 3.12: Visualization of the datapoints xn belonging to classes +1 and -1 in blue
and red respectively. The probability distributions over the two classes are indicated by
the color gradients.

Although the independence assumption that the NB classifier makes is often violated
in real life cases, the NB classifier has proven to be a useful and simple classifier in
many problems. The Naive Bayes classifier used in this research is the MATLAB 2019a

implementation of the Naive Bayes classifier fitcnb (Statistics and Machine Learning

Toolbox). There are no hyper-parameters that are eligible for optimization.

3.4.1.4 Random Forest

The RF classifier is a tree-structured inherently multi-class classifier that aims to classify
observations by means of a collection of Decision Trees (DTs) (Breiman, 2001). A visual
representation of a section of such a decision tree is depicted in Figure 3.13 below:
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Figure 3.13: Visualization of the structure of a decision tree. A decision tree aims to build
a tree structure from the features of an observation xm to reach a final decision on the
class label of the observation. Such a tree is build up from a starting node at the top of the
tree and several child nodes that spring from the starting node (which is then referred to
as the parent node). The nodes that contain the targets for the observations are depicted
here in red and blue for the -1 and +1 classes respectively and are referred to as leaf
nodes.

The decision tree starts with a root node, which contains all observations of both classes
+1 and -1. Next, if the set of observations contains observations of both classes, the de-
cision tree algorithm selects a feature f to partition (or split) the parent node into child
nodes based on the value of that feature. Here, the aim is that each child node contains
a purer subset of observations. This process of splitting over features is continued until
a node is a pure subset containing only observations belonging to one class. Such a node
is referred to as a leaf node. By traversing the resulting tree during the classification of
a new unknown observation, a class label can eventually be assigned to that observation
based on which leaf node the observation falls in.

The best split to be made at each point is dictated by the impurity of the resulting
child nodes, where a smaller impurity denotes a better split. A measure used to calcu-
late this impurity is the Gini impurity measure, which calculates the squared sum of the
fractions of observations belonging to each class:

IG =
∑
c∈C

[
|n : yn = c|

Ntot

]2 (3.37)

To determine the most suitable feature f to split on, a measure is required that compares
the Gini impurity of the parent node P with the Gini impurities of the child nodes K
after splitting on that feature. For this purpose, the gain criterion ∆ can be used:

∆ = IGP −
∑
j∈K

Ncj

Ntot

(3.38)

Here, Ncj denotes the number of observations in child node j and Ntot denotes the total
number of observations in both child nodes.

A problem with applying decision trees to high-dimensional data is that the tree can
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become large and complex which increases the risk of overfitting. One way of overcoming
this is to combine several of these ”weak” decision tree learners and combine them into
one stronger ensemble, in that case referred to as a Random Forest (RF). To train multi-
ple weak learners on the data, a method referred to as bagging is used, where t subsets of
observations are sampled with replacement from the total set of observations. Following,
t weak learners are trained on the t sampled subsets. In addition, at each split of each
tree, the RF algorithm selects a random subset of features as candidates for the split. By
means of these two methods, the chance of overfitting of the individual decision trees in
the ensemble is reduced. The final class label that is assigned to the observation xn is
based on a majority vote among all of the predicted class labels of each of the decision
trees in the random forest.

This research uses the MATLAB 2019a implementation of an ensemble method fitcensemble

(Statistics and Machine Learning Toolbox). The ensemble consisted of a collection
of template decision trees, for which the MATLAB 2019a implementation templateTree

(Statistics and Machine Learning Toolbox) was used. Two hyper-parameters are eligi-
ble for optimization, namely the minimum number of observations per leaf (MinLeafSize
in the MATLAB implementation) and the number of trees in the ensemble (NLearn in the
MATLAB implementation).
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3.4.2 Baseline Classification

First, this research required a baseline of classification accuracy to compare the accuracy
of any further classification attempts throughout this research to. The data that was used
for this baseline classification run is described by the dataset D ={(x1,y1),...,(xn,yn)} The
dataset consisted again of observations xn, where one observation represented one trial of
finger movement, and the corresponding target label yn which idicated the class to which
the observation belonged. The features f of each observation were extracted by taking the
all individual frequency bin magnitudes of the power data of each trial, Pv,t,k ∈ REf×K

of the window surrounding the movement marker. This classification constituted a
seven-class classification where the classes corresponded to each of the fingers and rest
so that yn ∈ {contrathumb, contraindex, contralittle, ipsithumb, ipsiindex, ipsilittle, rest}.
To maintain a balanced distribution of class labels, 30 trials of rest were selected from
all available trials of rest of each participant (Table 3.2). The resulting feature vector
will from now on be referred to as the baseline feature vector.

Because the performance of the four classifiers was to be compared, care had to
be taken that a low initial performance of a classifier was not simply attributable to an
erroneous initialization of hyper-parameters. Therefore, a hyper-parameter optimization
was first performed which consisted of a grid search over the eligible hyper-parameters
of each classifier validated by 10-fold cross validation using all available data. Of note,
when the goal is to use the resulting optimized hyper-parameters for model training,
the performance evaluation during the hyper-parameter optimization process should
be performed on a separate validation set and not on the test set on which the tuned
classifier will be employed. Otherwise, the obtained results could be positively biased
which in turn may lead to an optimistic view of performance. However, in this research,
the focus actually lay on generalization of results across participants. Therefore, not
having to perform any hyper-parameter optimization was preferred. The hyper-parameter
optimization on all data only served as a quick comparison between (possibly) more
optimal settings and the default settings of all classifier hyper-parameters. The ranges
and step sizes in which the hyper-parameters were optimized are depicted in Table 3.4
for each classifier separately.

Classifier Hyperparameter Range and Step Values

LDA Gamma Real Values R ∈ [0,1]
Delta Positive Values (log-scaled) ∈ [1e−6, 1e3 ]

SVM BoxConstraint Positive Values (log-scaled) ∈ [1e−3, 1e3 ]
KernelScale Positive Values (log-scaled) ∈ [1e−6, 1e3 ]

RF NLearn Positive Integers (log-scaled) ∈ [10,500]
MinLeafSize Positive Integers (log-scaled) ∈ [1, max(2, floor(NumObservations · 0.5))]

Table 3.4: Ranges and step sizes for the hyper-parameters values used in the optimiza-
tion process for each classifier. The parameter NumObservations of the RF denotes the
number of observations xn in the training data D.

Given that the dimensionality of the data was high, the covariance matrices of the LDA
classifier were diagonalized for all participants, which corresponds to a default value for
the Gamma hyper-parameter of 1. The NB classifier had no eligible hyper-parameters and
therefore no optimization could be performed. The performance after hyper-parameter
optimization was compared to the performance obtained by the default MATLAB 2019a

values for the hyper-parameters. Following, the baseline classification run was performed
and validated per participant with Leave One Out Cross Validation (LOOCV) due to the
scarcity of data.
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3.4.3 Individual Frequency Band Classification

Based on insights from the results of the t-SNE visualizations of the data (Section
3.3.3), it was desirable to further research the contribution of the separate frequency
bands on the classification process. Especially the HFB appeared to hold a significant
amount of information for the distinction between finger movements. Even though
the LFB did not appear to hold important information other than for the distinction
between movement and rest, both the LFB and HFB frequency bands were sepa-
rately classified. This was done for the sake of completeness, but mostly to determine
whether an eventual increase in performance was not simply due to the reduction of
the dimensionality of the feature vector. At first, the feature vector containing the
individual spectral magnitudes of all frequency bins k was reduced to a feature vector
containing only the frequency bins in the more narrowly defined frequency bands
B = {α, β,HBF}, for which the feature vector will be denoted by [α, β,HBF]. This
feature vector was further divided into a feature vector containing only the frequency
bins corresponding to the LFB (which will be referred to as the [α, β] feature vector) and
a feature vector containing only the frequency bins corresponding to the HFB (which
will be referred to as the [HFB] feature vector). These feature vectors all showed di-
mensionality REf×K where the value of K depended on the selected frequency bands in B.

Additionally, feature vectors were created which contained the average value over the
frequency bins k in each frequency band B, which were denoted as [α, β,HBF]B ∈ REf×3,
[α, β]B ∈ REf×2 and [HBF]B ∈ REf respectively. Since the dimensionality of these
averaged feature vectors was much lower than the dimensionality of the original
baseline feature vector, the hyper-parameter optimization process was repeated on the
[α, β,HBF]B feature vector.

Following, all classifications were performed and again validated with LOOCV.The
empirical chance level of accuracy was determined by classifying on random data with
dimensions equal to that of the corresponding feature vector based on (Combrisson
and Jerbi, 2015). The random data were created by randomly sampling numbers from
a uniform distribution with upper and lower limits determined by the minimum and
maximum value of the corresponding feature vector. The classification process on this
random data was repeated as many times as possible (200 times) with LOOCV. The
statistical significance of the obtained classification results in this section was determined
by the 95th percentile (p<0.05) of the accuracy obtained on classification of the random
data.

3.4.4 Required Training Data

Up to this point, LOOCV had been the evaluation method of choice since training data
was scarce. However, for practical reasons it was sensible to determine how varying the
amount of training data used to train the classifiers, influenced classification performance.
For this purpose, a different method of cross validation was devised in which one trial
per finger was incrementally added to the test set, starting with one trial per finger
and continued until twenty trials per finger were included in the test set. This was the
maximum amount of trials that could be withheld from the training data before the LDA
classifier could no longer be trained for one of the participants due to a resulting singular
covariance matrix. At each increment, classification was performed 200 times to increase
the likelihood that each trial was included in the classification process at least once,
even when only a small number of trials was included in the test set. Additionally, the
empirical chance level was again determined at each classification step; especially with a
small number of samples the estimation of the classification accuracy may vary strongly,
resulting in a wider standard deviation. Therefore, the 95th percentile may shift strongly
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and it became necessary to re-estimate the 95th percentile at every size of the test set.
This complete process was performed for the baseline, [α, β,HFB]B and [HFB]B feature
vectors.

3.4.5 Time Lag Classification

Literature has shown that the occurrence of cortical activity does not coincide exactly
with the time of movement. Additionally, literature has shown that cortical activity re-
sulting from ipsilateral movement may appear earlier than cortical activity resulting from
contralateral movement. This finding was additionally supported by the findings of the
amplitudal analysis carried out in Section 3.3.1. Therefore, it was worth investigating
how the classification performance was influenced by the selection of features extracted
at different time points relative to the movement marker. For this purpose, the fea-
ture extraction and classification processes were repeated for several [α, β,HFB]B feature
vectors that were extracted at various time lags, starting from one second prior to the
movement marker until one second after the movement marker in steps of 0.05 seconds.
The corresponding empirical chance level of Section 3.4.3 was used as a reference. The
time lag classification process was repeated several times; once only with contralateral
fingers including rest, once only with ipsilateral fingers including rest and once with both
the contralateral and ipsilateral fingers including rest.

3.4.6 Spatial Analysis: Relative Channel Importance

This second spatial analysis was set out in an attempt to determine the cortical areas
that were most informative for distinguishing movement of individual contralateral
and ipsilateral fingers. For this purpose, the classifier weights were used; the weight
w that a classifier assigns to each feature f during training serves as an indicator of
the importance of that feature. In the case where one feature is assigned per channel,
the weight can subsequently indicate the importance of this channel in distinguishing
between the various classes. This concept was used in order to identify the spatial
distribution of informative channels of the different cortical areas M1, S1 and the CS.

In all upcoming analyses, the [HFB]B feature vector and the LDA classifier were
used. The [HFB]B feature vector was used for several reasons: Firstly, the [HFB]B
assigned indeed one feature to each channel and secondly, literature indicated that the
modulations in the [HFB]B show the highest spatial specificity. Since it can be observed
from the results of the classifications using individual frequency bands (Section 3.4.3)
that the classification performances between classification on the [α, β,HFB]B and the
[HFB]B feature vectors were highly similar, it could be argued that the results obtained
in these sections generalized between classification processes on these two feature vectors.
The rationale behind using the LDA classifier for these analyses stems from its high
performance, observed in the results of the classification experiments in Sections 3.4.3
and 3.4.2. Only when the classification performance is high, it can be assumed that the
estimation of channel importance is valid.

To calculate the weights of the classifier, only training (fitting) of the LDA classi-
fier was performed, and no classification. For the Matlab2019a LDA classifier, the
weights were stored in the DeltaPredictor variable. The resulting weights of the train-
ing process had an arbitrary unit with a lower boundary of 0 and no upper boundary
(not specified by the Matlab2019a documentation). For this reason, the weights were
normalized between 0 and 1 per participant and training run for all following spatial
analyses.
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3.4.6.1 Informative Areas for Distinguishing between Finger Movement
and Rest

The first spatial analysis aimed to investigate whether the channels showing the highest
R2 values in Section 3.3.2 were also the channels that were most informative in distin-
guishing the movements of each of the fingers from rest. For this purpose, several binary
LDA classifiers were trained to distinguish all trials of movement of each finger versus an
equal number of rest trials (e.g. contralateral thumb versus rest, ipsilateral index finger
versus rest, etc.).

3.4.6.2 Informative Areas for Distinguishing between Individual Finger
Movement of the Same Laterality

The following spatial analysis aimed to determine which cortical areas where meaning-
ful for distinguishing movement of the different fingers from the same hand. For this
purpose, the LDA classifier was trained to distinguish movement trials of every finger
against movement trials of the other fingers on the same hand in a binary scheme (e.g.
ipsilateral thumb versus ipsilateral index and little finger, contralateral index finger ver-
sus contralateral thumb and little finger, etc.). To maintain a balance between training
data of each class, trials of the contrasting fingers were sub-sampled and the training
process was repeated 200 times to increase the likelihood that each trial was included in
the training process at least once. The weights of the 200 training runs were averaged
prior to normalization.

3.4.6.3 Informative Areas for Distinguishing between Contralateral and
Ipsilateral Finger Movement

The last spatial analysis aimed to determine which cortical areas were meaningful for
distinguishing between contralateral and ipsilateral finger movements. For this purpose,
the LDA classifier was trained to distinguish all trials of movement of a specific contralat-
eral finger against trials of the same ipsilateral finger movement separately in a binary
scheme (e.g. ipsilateral thumb versus contralateral thumb, ipsilateral index finger versus
contralateral index finger, etc.). Another training run was performed in which the LDA
classifier was trained to distinguish all trials of all contralateral fingers from all trials of
all ipsilateral fingers in a binary scheme (i.e. ipsilateral thumb, index and little finger all
together versus contralateral thumb, index and little finger altogether).

3.5 Experiment II: Asynchronous Classification

As mentioned in the overview of experiments in Section 3.1, the goal of the asynchronous
classification was to resemble the scenario of a real-life BCI were cues for finger movements
are absent and movement is insead paced by the participant. The goal of a classifier in
such a BCI is now to correctly classify movement of a certain finger when actual movement
of that finger is performed (an IC event) and to classify episodes of rest in case there
is no finger movement (the NC events). It should be underlined that the goal of this
section was not to create the best possible performing asynchronous BCI for detecting
contralateral and ipsilateral finger movement, but rather to evaluate the detection of
both contralateral and ipsilateral finger movement in an asynchronous setting, mainly
to determine whether ipsilateral finger movement could be correctly detected without a
significant number of false positive detections during episodes of NC. For this purpose,
the methodology for performing the asynchronous evaluation aimed at finding the most
transparent and perhaps most pessimistic results, and not the best performance.
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3.5.1 Approximation of an Asynchronous BCI

In this research, an asynchronous BCI setting was approximated by letting a classifier
classify each one second window that was placed over each time point in the complete
spectral ECoG data of both the contralateral run and the ipsilateral run (described by
Prun, defined in Section 3.2.3) of a participant, and saving the classifier output. This is
schematically depicted in Figure 3.14 below.
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Figure 3.14: A schematic representation of the classifier consecutively classifying each
window in the spectral ECoG data Prun. The outputted posterior probabilities of the classes
at each window are concatenated to form traces as the classifier progresses in time. Here,
the posterior probabilities corresponding to the contralateral thumb, ipsilateral index finger
and rest classes are depicted. This instance shows that the classifier has passed a window
to which a large posterior probability was assigned to the class of contralateral thumb
movement.

These traces of posterior probabilities for each class resulting from the classification of
a complete run were compared to the dataglove signal of that same run, as depicted in
Figure 3.15.
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Figure 3.15: A schematic representation of the approximation of a self paced asynchronous
BCI. The dataglove signals for each finger are depicted in the top of the figure. The
concatenated posterior probabilities for each finger are depicted in the bottom of the figure.
Given that this figure represents a self-paced BCI, the movement cues are not present and
the goal of the classifier is to correctly classify episodes of movement (IC). A measure
for how confident a classifier is about whether there is movement of a certain finger,
is the outputted posterior probability corresponding to that finger. This probability will
theoretically be (close to) zero when there is no movement of that finger and (close to) one
if there is. In this figure, the trace of the posterior probability of a finger is matched to the
dataglove signal of that finger by color. The green trace denotes the posterior probability
of rest, which is theoretically (close to) one during rest and (close to) zero during episodes
of movement.

In asynchronous BCIs, there are several parameters that govern whether a modulation
in the control signal (here the increase of the posterior probability) will lead to an ac-
tual detection of movement. At first, a threshold is applied above which the posterior
probability needs to rise before detection is considered. Secondly, the posterior probabil-
ity needs to stay above this threshold for a certain amount of time to confidently and
robustly label a detection. This amount of time is referred to as the dwell time. A last
parameter is referred to as the refractory period, which denotes a period after which any
rise in posterior probability - after a rise that has met the dwell time - will be ignored for
a certain duration. Once a rise in posterior probability fits the criterion of the threshold
and dwell time parameters, it is labeled as a movement detection. Once the detection of
a specific finger movement takes place inside a movement episode of that specific finger,
the detection is counted as a True Positive (TP). When the detection of a specific finger
movement takes place outside a movement episode, the detection is labeled as a false
positive. This is depicted schematically in Figure 3.16.
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Figure 3.16: A schematic representation of the detection of movement in an asynchronous
BCI showing the detection threshold, the dwell time and the refractory period. The de-
tections during and outside of movement events are indicated as true positives and false
positives respectively.

To evaluate the performance of an asynchronous BCI, literature has provided two
suitable measures referred to as the event-based True Positive Rate (eb-TPR) for
the evaluation of IC events, and the sample-based False Positive Rate (sb-FPR) for
evaluation of NC events (Mason et al., 2006).

An eb-TP is counted when a detection of a finger movement is made inside an
event where movement of that finger has taken place and the eb-TPR is expressed
as a percentage of correctly detected movement events out of all movement events.
In the case were more than one correct detection takes places during a movement
event, it is necessary to count these as one detection in order to avoid a bias in
the number of eb-TPs. Since this measure is often used for asynchronous BCIs with
only two classes (one IC and one NC), literature does not describe the handling
of detections of multiple (other) fingers within an movement event of one specific
finger. In this research, such detections were counted as true positives, but they were
considered as misclassifications as in the synchronous classification. As such, confusion
matrices could be constructed during the asynchronous classification. Since these
misclassifications can not be expressed as percentages in the confusion matrices, this re-
search presented the number of eb-TPs as integers instead of the eb-TPR as a percentage.

Similarly, for the false positives, an eb-FPR can be calculated. However, the dura-
tion of NC events often vary largely (there may be a arbitrarily large time in between
movements in BCI usage) and having to label a complete long NC event as a false
positive when only a single false positive has occurred may provide a pessimistic view on
performance. Therefore, the sample-based FPR (sb-FPR) can be used as an evaluation
measures for NC episodes. During the calculation of this measure, the number of falsely
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labeled IC samples within a NC event is divided by the total number of samples during
all NC events and expressed as a percentage. In BCI research it is common to present the
eb-TPR corresponding to a set sb-FPR of one percent (Bashashati et al., 2007). Since
this research aimed to exactly investigate the occurrence of false positive detections
(mainly for ipsilateral fingers), the sb-FPR measure was not used. Instead, the number
of false positive detections during all NC events were provided as an integer since this
provided a more transparent and practical performance measure to be used during NC
events.

3.5.2 Feature Extraction and Preliminary Classification

The spectral data of both the contralateral and ipsilateral run Prun were extracted using
the DFT as described in Section 3.2. This time however, the one second windows of
ECoG data were not extracted at each sample of a run, but at every 0.01 seconds to
enable a relatively quick computation during the asynchronous classification. Again, the
dataglove data were up-sampled similarly as in section 3.2.4. The LDA classifier was
selected for the asynchronous classification for several reasons. Firstly, its performance
was high during the synchronous classification. Secondly, it has the ability to output
a posterior probability distribution over classes instead of only class labels. Lastly, it
has the ability to remain performing well with reduced data available for training, as
shown in Section 3.4.4. To determine how classification was impacted by refraining
from sub-sampling the rest trials and to determine whether the DFT computation at
a different time resolution had any impact on the classification, again synchronous
classification similar to Section 3.4.3 was performed. This time, sub-sampling of rest
trials was thus not performed and all available trials of rest as noted in Table 3.2 were
used in the classification process. The [α, β,HFB]B feature vector was used to for this
classification run.

For the asynchronous classification, a different LDA classifier was trained on the
[α, β,HFB]B feature vector. During this process, three-fold cross validation was applied.
Here, every complete contralateral and ipsilateral run was divided in three parts each
containing an equal number of trials for all fingers (10 trials per finger per fold) and
rest (again not sub-sampled, 60 trials per fold). The LDA classifier was trained similarly
as in Section 3.4.3 on the trials of all classes that were in the in total four folds (two
folds from the contralateral run and two folds from the ipsilateral run). After training,
each one second window placed at every 0.01 seconds in the remaining two folds (one
from the contralateral run and one from the ipsilateral run) were classified to obtain the
concatenated posterior probability distribution traces which the classifier outputted as it
progressed over the windows. This process of cross validation was repeated three times
so that every one second window of both the contralateral and the ipsilateral run of a
participant was classified and the posterior probability traces for both runs had been
obtained.
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3.5.3 Postprocessing of Dataglove and Posterior Probability
Traces

The dataglove signals showed significant amounts of noise and sensor drift and they were
therefore unsuitable to directly use in the asynchronous evaluation. The dataglove signals
corresponding to each finger Dv where therefore manually binarized to obtain Dbinv as
depicted in Figure 3.17. Visual inspection ensured that only confident movements were
included and sensor noise was not labeled as movement. Corrections of movement were
retained since finger movement had actually occurred, albeit not inside a trial. It is
expected that movement will be detected by the classifier somewhat prior to the performed
movement and likely similarly after the performed movement. To prevent these early and
late detections that actually corresponded to the movement from being unnecessarily
labeled as false positives, mercy windows of 200ms were added prior to and after each
binary block of movement in the binarized dataglove signal movement Dbinv as depicted
in Figure 3.17.

time [s]

D
v

[a
.u

]

D
bi

n 
[0

,1
]

0

1

v

Figure 3.17: Depiction of the binarization process of the noisy and drifted signal of Dv in
blue, to obtain Dbinv , depicted in red. The introduced mercy windows are depicted by the
dashed red lines.

The number of movement events that were defined for each finger and participant from
the binarized dataglove signals Dbinv is presented in Table 3.5

Finger Participant P1 Participant P2 Participant P3 Participant P4

Contralateral Thumb 30 30 31 30
Contralateral Index 30 30 30 30
Contralateral Little 30 30 31 30
Ipsilateral Thumb 29 29 30 27
Ipsilateral Index 30 30 30 26
Ipsilateral Little 30 30 30 28

Table 3.5: The number of movement events for each participant and each finger during
both the contralateral and ipsilateral task runs.

An investigation of the outputted posterior probability traces of the classifier was per-
formed. At first, it was expected that the increase of the posterior probability correspond-
ing to a finger during movement of that finger was gradual, as depicted in the left hand
figure of Figure 3.18. In contrast, the actual outputted posterior probability trace closely
resembled a step function, as depicted in the right hand figure of Figure 3.18, where the
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posterior probability increased strongly and quickly around the start of movement and
similarly decreased strongly and quickly after movement.

time [s]

D
bi

n 
[0

,1
]

0

1
v

P
os

te
ri
or

 P
ro

ba
bi

lit
y 

[0
,1

]

time [s]

Figure 3.18: The expected gradual posterior probability output belonging to an arbitrary
finger is depicted in the left hand figure. The actual outputted posterior probability trace
corresponding to an arbitrary finger is depicted in the right hand figure and depicts a
more step function-like output.

For this reason, the decision was made to binarize the classifier output completely. As
such, the output of the classifier no longer consisted of traces of posterior probabilities for
each class, but rather traces of ones and zeros for each class (forming traces that resembled
block functions), corresponding to whether the one second windows were assigned to that
specific class or not. This is schematically depicted in Figure 3.19 below.
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Figure 3.19: Schematic depiction of the traces of ones and zeros outputted by the classifier
for each class during the classification of each one second window in Prun.

This decision was preffered since it additionally circumvented the need to define a
sensible value for the threshold parameter, since the classifier output were now binarized
traces bound between with a value of either zero or one.

At this point, another phenomenon was observed. The classifier often outputted
class labels corresponding to a detected finger only surrounding the beginning and
ending of movement events of that specific finger. In the middle section of the movement
event, the classifier outputted class labels corresponding to the rest class. Given that
ipsilateral activity was occasionally confused with rest, several occurrences of outputted
class labels for several ipsilateral fingers could also be found during that specific
movement event. This is schematically depicted in Figure 3.20.
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Figure 3.20: The binarized dataglove signal denoting the movement event of an arbitrary
finger, Dbinv , is depicted with the dashed blue line. The series of outputted class labels
corresponding to that same arbitrary finger surrounding the beginning and ending of the
movement event are depicted with the solid blue line. The occurrences of series of out-
putted class labels corresponding to rest and arbitrary ipsilateral fingers in the middle of
the movement event are respectively denoted by the green and red lines.

This phenomenon could be explained by considering that the beginning and ending of
the movement episode constituted the moments at which finger flexion and finger exten-
sion respectively occurred. Because the finger movement performed by some participants
was relatively slow, a brief period between flexion and extension existed where no actual
movement took place. This is more easily visible when looking at the plots that denote the
acceleration δZv in Figure 3.7. These brief intermittent periods of rest were subsequently
detected by the classifier. This phenomenon may cause several misclassifications of rest
and perhaps ipsilateral finger movement during other events of (contralateral or ipsilat-
eral) finger movement. Such occurrences may normally be solved by issuing a refractory
period (and possibly by setting an appropriate dwell time), but in this research the choice
was explicitly made to not use any refractory period. This was done to be able to present
the most transparent results as possible, in accordance with the statement made in the
introductory paragraph of this section. Adding a refractory period can help to mitigate
false positives (Townsend et al., 2004), while the goal of this section was actually to in-
vestigate in detail the occurrences of false positives. Additionally, this dataset was not
designed for asynchronous evaluation and it may therefore not be suitable to introduce
refractory periods since the movement events and inter-trial times are relatively constant
and short. With this prior knowledge it is expected to see significant confusion between
movement events and rest in the confusion matrices of this asynchronous classification.

3.5.4 Movement Detection in Asynchronous Classification

The moments in time at which the classifier outputted a class label corresponding to a
finger, were the moments at which movement of that finger was detected by the classifier.
Since the binarization of the classifier output circumvented the need to set a threshold
parameter, the detection of events in this research was governed only by the dwell time
parameter. The dwell time could in this research be approximated by counting how
many one second windows spaced at 0.01 seconds had to consecutively labeled with
the class label of a certain finger. Thus, if a finger movement that was detected by the
classifier had to satisfy a dwell time of 0.12 seconds, then twelve consecutive one second
windows spaced at 0.01 seconds had to be consecutively assigned the class label for that
specific finger.
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Detection of movement in this research therefore consisted of searching for the
number ’1’ across all finger movement classes (and rest) in the output traces produced
by the classifier at each one second window (see Figure 3.19), which denoted that
the particular window was labeled as the class for which the ’1’ was found. When an
arbitrary class label was found, the number of identically labeled consecutive windows
was counted and the total number of consecutive identical class labels was multiplied
with 0.01 to obtain the duration of the movement detection of that finger in seconds
(each window was spaced at 0.01 seconds). The duration of the detected movement event
in seconds was compared to the set dwell time in seconds. If the duration of the detected
event was equal to or exceeded the set dwell time, it was registered as a movement
detection, otherwise it was ignored.

The search for the number ’1’ in the output traces of the classifier across all classes was in
this research performed with the same MATLAB 2019a findpeaks function that was used
in Section 3.2. The minimum peak height parameter MinPeakHeight was set to one. To
determine whether the detected movement satisfied the dwell time, the MinPeakWidth

parameter was set to the number of consecutive 0.01 second windows that had to be
assinged a 1. Thus, if the dwell time was 0.12, the MinPeakWidth parameter was set to 12.

A detected movement of an arbitrary finger was considered a true positive when
it was located inside a movement event of that arbitrary finger, defined by the binarized
dataglove signal. If the detected movement of an arbitrary finger was located inside
the movement event of another finger that was not the arbitrary finger, it was counted
as a true positive but considered as a misclassification and included in the confusion
matrix. Events of rest were determined by the periods in the dataglove signal where
no movement episodes of any finger were present and if the detected movement of an
arbitrary finger was located inside such a rest event, it was counted as a false positive
detection.
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Figure 3.21: The detection of peaks in the output trace of the classifier corresponding to an
arbitrary finger, denoted with the solid blue line. An output trace of the classifier belonging
to a different finger is depicted with the solid green line. The location of the found peaks
in the middle of the detected movements are denoted with a dot. The location of this peak
was co-registered with the binarized dataglove trace Dbinv corresponding to the arbitrary
finger, depicted with the dashed blue line. True positives were counted if the duration of
the detected movement satisfied the set dwell time and if the peak in located in the middle
of the detected movement fell within the boundaries of a movement event, regardless of
which finger the output trace belonged to. False positives were counted if the peak satisfied
the dwell time value but the peak fell outside the boundaries of a movement event. Peaks
were not detected if they did not satisfy the dwell time value.

3.5.5 Determination of Dwell Times

Firstly, an appropriate value of the dwell time had to be found. As a baseline, a dwell time
of 0.01 seconds was selected. This was the smallest possible dwell time and was chosen
to firstly determine whether all movement events of all fingers could be detected at all,
and secondly to determine the largest number of false positive detections during rest that
could possibly be attained. Afterwards, the dwell time was optimized for each separate
finger of each participant by searching for a dwell time that minimized the number of false
positive detections of that finger during episodes of rest while maintaining the maximum
attainable number of true positives of that finger. For both dwell time settings, the
number of true positive detections of that finger during movement events of only that
finger was stored. Additionally, the number of false positives during periods of rest from
the contralateral run and the ipsilateral run were separately determined.

3.5.6 Asynchronous Classification Runs

Afterwards, the actual asynchronous classification was performed twice with two different
settings for the dwell time: one setting that was optimal for the detection of ipsilateral
fingers and one setting that was optimal for contralateral fingers.
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4 Results

4.1 Preliminary Data Analysis

4.1.1 Amplitudal Analysis: Visualization of Spectral
Modulations

The visualization of the spectral modulations in the separate frequency bands and chan-
nels for a specific finger averaged over trials (ZPv,Tv,B

) is depicted for the thumb of partici-
pant P1 in Figure 4.1 below. The visualizations of ZPv,Tv,B

corresponding to the remaining
fingers of this participant as well as the fingers for the other participants are included in
Figures H.1 through H.11 in Appendix H.

Figure 4.1: Visualization of the spectral modulations represented by ZPv,Tv,B
in the α, β

and HFB frequency bands during movement of the thumb performed by participant P1.
Modulations during contralateral thumb movement are depicted in blue and modulations
during ipsilateral thumb movement are depicted in red. Each separate line denotes the
signal of one channel. The dashed gray lines at t=0 seconds denote the movement marker
position.

The visualization of the spectral modulations in the separate frequency bands averaged
over trials and channels for all fingers (ZPv,Tv,B,Ef

) is depicted for one of the participants in

Figure 4.2 below. The visualizations of ZPv,Tv,B,Ef
corresponding to the other participants

are included in Figures I.1 through I.3 in Appendix I.
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Figure 4.2: Visualization of the spectral modulations of ZPv,Tv,B,Ef
in the α, β and HFB

frequency bands during movement of the thumb, index and little finger performed by par-
ticipant P1. Modulations during contralateral finger movement are depicted in blue and
modulations during ipsilateral finger movement are depicted in red. The solid lines denote
the grand average signal and the shaded areas show the standard deviation of the signal.
The dashed gray lines at t=0 seconds denote the movement marker positions.

Several remarks can be made regarding the temporal aspects of spectral modulations of
cortical activity resulting from contralateral and ipsilateral movement. In the HFB, the
timing between channels seems to be less robust which is especially visible in the plots
of ZPv,Tv,B

. From the plots of ZPv,Tv,B,Ef
it can be seen that the peak of the spectral

modulations in the HFB for ipsilateral movements occurs somewhat earlier. Any notable
temporal differences between spectral modulations resulting from contralateral and
ipsilateral movements were not visible in the α and β bands.

Some remarks regarding the amplitudal differences of spectral modulations result-
ing from contralateral and ipsilateral movement can additionally be made. No clear
differences in amplitude of the spectral modluations in the α and β bands can be
deduced, except for participant P4, for whom the amplitude of spectral modulations in
these bands is smaller during ipsilateral movement. There are however clear differences
in amplitudes of spectral modulations in the HFB. In this band, the amplitudes of
the spectral modulations resulting from ipsilateral movement are smaller than the
amplitudes of spectral modulations resulting from contralateral movement. This finding
was consistent across all participants and all fingers.
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4.1.2 Spatial Analysis: Channel R2 Values

The spatial distributions of channel R2 values in the α and β frequency bands plotted on
the cortical surface of all participants are depicted in Figures J.1 through J.8 in Appendix
J. The spatial distributions of channel R2 values in the HFB plotted on the cortical surface
of participants P1 and P2 are depicted below in Figures 4.3 through 4.4. The distribution
of channel R2 values in the HFB for the other participants are depicted in Figures K.1
through K.2 in Appendix K.

Figure 4.3: Visualization of channel R2 values in the HFB band for participant P1. Chan-
nels that showed no significant cortical activity as well as faulty channels are denoted in
gray. This Figure caption holds for Figure 4.4 below.

Figure 4.4: Visualization of channel R2 values in the HFB band for participant P2.

In the α and β bands, there seems to be little difference between the number of channels
that show significant cortical activity during ipsilateral movement with respect to
contralateral movement. Especially for participants P1 and P3, the observed differences
are minimal. For participant P2, no significant activity in the α and β bands is visible at
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all. For participant P4, differences in the α band are slightly visible but clear differences
are visible in the β band.

The most pronounced results can be found in the HFB. In this frequency band,
the number of significantly channels resulting from ipsilateral movement is visibly
smaller than the number of significantly activated channels during contralateral move-
ment. Contralateral movement causes widespread cortical activity over M1 and S1 (with
distinct hot-spots over S1) while ipsilateral cortical activity seems to manifest mostly
over M1, a result that is consistent across participants.
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4.1.3 Visualization of the Data Space

The low dimensional representations of Pv,t,B obtained with t-SNE for participants P1 and
P2 are depicted below in Figures 4.5 and 4.6. The visualizations of the other participants
are included in Figures L.1 through L.2 in Appendix L.
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Figure 4.5: Visualization of the low-dimensional data distribution formed by the t-SNE
algorithm on the Pv,t,B data for participant P1. The purple, blue, red and green dots
indicate the datapoints corresponding to observations of rest, thumb movement, index
finger movement and little finger movement respectively. This Figure caption holds for
Figure 4.6 below.
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Figure 4.6: Visualization of the low-dimensional data distribution formed by the t-SNE
algorithm on the Pv,t,B data for participant P2.

The results obtained with this analysis allow to refine several early hypotheses. Firstly,
from these results it appears that the α and β bands may serve as a good indicator for the
differentiation of movement in general versus rest. The purple clusters, corresponding to
observations of rest, are generally well separated from datapoints resembling movement
of contralateral and ipsilateral fingers. The HFB might be an equally good indicator for
the differentiation of movement in general versus rest, as again the purple datapoints
corresponding to rest are clearly separated from the clusters of datapoints corresponding
to contralateral and ipsilateral finger movements. Similarly, the HFB seems to hold
the necessary information to effectively distinguish individual finger movements, as
the results of the HFB show the strongest separation between clusters of datapoints
corresponding to each of the individual finger movements.
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These hypotheses asked for a systematic analysis of the contribution of the sep-
arate frequency bands on the classification of contralateral and ipsilateral finger
movements and rest, which will be addressed in a later section.

It can additionally be observed that the separation between clusters of datapoints
corresponding to observations of rest and datapoints corresponding to finger movements
is generally smaller for ipsilateral fingers across all frequency bands. Secondly, the
clusters of datapoints corresponding to observations of ipsilateral finger movement are
generally less well separated. These insights contributed to an initial hypothesis that
ipsilateral finger movements might be less well distinguished from rest and similarly less
well distinguished from one another.
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4.2 Experiment I: Synchronous Classification

4.2.1 Baseline Classification

The results of the performed hyper-parameter optimization prior to classification on the
baseline feature vector are depicted in Tables 4.1 through 4.3.

Gamma Delta Accuracy [%]

Participant Default Optimized Default Optimized Default Optimized ∆

P1 1 0.983 0 0.007 73.08 73.56 +0.48
P2 1 0.997 0 0.293 81.73 82.69 +0.96
P3 1 0.845 0 0.409 71.35 75.73 +4.38
P4 1 0.816 0 0.409 68.58 70.68 +2.10

Table 4.1: Settings and results of the hyper-parameter optimization process for the LDA
classifier on the baseline feature vector. The default value and optimized value for each
hyper-parameter is listed. Along with these values, the obtained accuracies with the default
values and the optimized values are listed. The gained accuracy in percent after hyper-
parameter optimization is listed in the column ∆. This Table caption holds for Tables 4.2
through 4.6 which show the results of the hyper-parameter optimization processes for the
other classifiers.

BoxConstraint KernelScale Accuracy [%]

Participant Default Optimized Default Optimized Default Optimized ∆

P1 1 37.24 1 0.001 72.60 78.85 +6.25
P2 1 186.85 1 15.42 70.19 71.29 +1.10
P3 1 120.90 1 38.12 72.33 75.09 +2.67
P4 1 46.66 1 4.00 67.02 70.16 +3.14

Table 4.2: Settings and results of the hyper-parameter optimization process for the SVM
classifier.

NLearn MinLeafSize Accuracy [%]

Participant Default Optimized Default Optimized Default Optimized ∆

P1 100 499 1 23 48.07 51.44 +3.37
P2 100 322 1 10 44.71 47.11 +2.40
P3 100 500 1 3 47.09 49.51 +2.42
P4 100 241 1 1 47.64 48.69 +1.05

Table 4.3: Settings and results of the hyper-parameter optimization process for the RF
classifier.

Besides the expected increase in accuracy of several percent, no substantial increases
in performances were attained which indicates that the default hyper-parameter values
formed a valid initialization. Therefore, the default hyper-parameter values, identical
across participants, were selected to favor comparability between participants.
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The confusion matrices of the best performing classifier (LDA) are listed in Fig-
ure 4.7. The confusion matrices of the other classifiers are listed in Figures M.1 through
M.3 in Appendix M.
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Figure 4.7: Confusion matrices for the classification on the baseline feature vector with
the LDA classifier for each participant individually.

From these confusion matrices, it can be inferred that contralateral and ipsilateral fingers
are never confused with each other. Moreover, contralateral fingers are less often confused
with fingers from the same hand than ipsilateral fingers. Lastly, only ipsilateral fingers
are confused with rest. These results are consistent across all participants.
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4.2.2 Individual Frequency Band Classification

The results of the hyper-parameter optimization on the [α, β,HBF]B feature vector prior
to the classification on the individual frequency bands are depicted in Tables 4.4 through
4.6 below:

Gamma Delta Accuracy [%]

Participant Default Optimized Default Optimized Default Optimized ∆

P1 1 0.433 0 0.003 81.73 82.69 +0.96
P2 1 0.329 0 0.000 86.06 87.02 +0.96
P3 1 0.693 0 0.000 81.55 87.02 +5.47
P4 1 0.000 0 0.000 72.25 76.44 +4.19

Table 4.4: Settings and results of the hyper-parameter optimization process for the LDA
classifier on the [α, β,HBF]B feature vector. The default value and optimized value for
each hyper-parameter is listed. Along with these values, the obtained accuracies with the
default values and the optimized values are listed. The gained accuracy in percent after
hyper-parameter optimization is listed in the column ∆. This Table caption holds for
Tables 4.5 through 4.6 below, which show the results of the hyper-parameter optimization
processes for the other classifiers.

BoxConstraint KernelScale Accuracy [%]

Participant Default Optimized Default Optimized Default Optimized ∆

P1 1 0.00 1 0.25 79.33 83.65 +4.32
P2 1 0.00 1 0.31 86.54 88.46 +1.92
P3 1 986 1 113.88 84.46 85.44 +0.98
P4 1 0.00 1 0.15 74.87 78.01 +3.14

Table 4.5: Settings and results of the hyper-parameter optimization process for the SVM
classifier on the [α, β,HBF]B feature vector.

NLearn MinLeafSize Accuracy [%]

Participant Default Optimized Default Optimized Default Optimized ∆

P1 100 106 1 10 69.23 70.67 +1.44
P2 100 499 1 14 73.59 78.66 +5.07
P3 100 496 1 15 69.36 75.39 +6.03
P4 100 500 1 1 68.06 69.11 +1.05

Table 4.6: Settings and results of the hyper-parameter optimization process for the RF
classifier on the [α, β,HBF]B feature vector.

Again, the hyper-parameter optimization procedures produced the expected increase in
accuracy of several percent. No substantial increases in performances were attained. The
default hyper-parameter values, identical across participants, were again selected for the
classifiers.

Figure 4.8 shows the classification accuracies across participants on all the sepa-
rate feature vectors, for each classifier separately.
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Figure 4.8: Classification accuracies of the different classifiers on all available feature
vectors, calculated across participants. The purple bar indicates the average accuracy ob-
tained on the baseline feature vector. The red bars denote the average accuracies on the
feature vectors with the various frequency bands, denoted by [·]. The blue bars denote the
average accuracy on the feature vectors containing the average values over the various
frequency bands, denoted by [·]B.

These results show that the various finger movements can be as accurately classified
from only the HFB as from the α, β and HFB frequency bands combined. Additionally,
these results show that averaging over frequency bands increases performance, regardless
of which (combinations of) frequency bands are used for classification. Both these results
are consistent across participants and classifiers.

Figure 4.9 shows the attained averaged accuracies across participants on the base-
line, [α, β,HFB]B and [HFB]B feature vectors separately per classifier.
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Figure 4.9: The attained average accuracies across participants on the baseline feature
vector as well as the attained average accuracies across participants on the [α, β,HFB]B
and [HFB]B feature vectors are depicted for each classifier separately.

From these results it can be seen that the performances of the various classifiers on the
classification of the [α, β,HFB]B and [HFB]B feature vectors are on par, in contrast with
the performance of the classifiers on the classification of the baseline feature vector,
for which clear differences can be seen. The only exception to this statement has to be
made for the RF classifier, which consistently performed less well than the other classifiers.

Figure 4.10 shows the highest obtained classification accuracies with the LDA
classifier on the [α, β,HFB]B and [HFB]B feature vectors separately per participant. The
accuracies are compared to the empirical chance levels of classification at p<0.05, which
were found to be 18.33 (± 0.33) and 19.07 (± 0.31) (Mean ± SD) for classification on
the [α, β,HFB]B and [HFB]B feature vector respectively.
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Figure 4.10: Classification accuracies obtained per participant on the [α, β,HFB]B and
[HFB]B feature vectors respectively with the LDA classifier. The empirical chance level
(p<0.05) is depicted by the horizontal black dotted line.

This figure shows that the classification results attained by the LDA classifier on the
[α, β,HFB]B and [HFB]B feature vectors were significantly above chance level (p<0.05)
for all participants. The confusion matrices of the LDA classifier on the [α, β,HFB]B and
[HFB]B feature vectors are depicted in Figures 4.11 and 4.12 respectively. The confusion
matrices of the other classifiers on these feature vectors are listed in Figures O.1 through
P.3 in Appendices O and P.

90



LDA - P3 LDA - P4

LDA - P1 LDA - P2

contrathumb

contraindex

contralittle

ipsithumb

ipsiindex

ipsilittle

rest

Tr
ue

 C
la

ss

30

29 1

30

14

6

3

1

9

10

10

3

3

12

17

2

2

26

27 1

30

2

2

28

21

1

1

1

5

22

4

3

6

25

1 28

con
trat

hum
b

con
trai

nde
x

con
tral

ittl
e

ipsi
thu

mb

ipsi
ind

ex
ipsi

litt
le rest

Predicted Class

contrathumb

contraindex

contralittle

ipsithumb

ipsiindex

ipsilittle

rest

Tr
ue

 C
la

ss

25 3

27

4

1

2

26

22

5

1

1

7

18

8

6

21

29

con
trat

hum
b

con
trai

nde
x

con
tral

ittl
e

ipsi
thu

mb

ipsi
ind

ex
ipsi

litt
le rest

Predicted Class

29

1

22

8

1

7

21

17

4

1

4

5

10

6

3

9

15

1

1

26

Figure 4.11: Confusion matrices for the classification on the [α, β,HFB]B feature vector
with the LDA classifier for each participant individually.
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Figure 4.12: Confusion matrices for the classification on the [HFB]B feature vector with
the LDA classifier for each participant individually.

Similar to the results in Figure 4.7, it can be inferred from these confusion matrices that
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contralateral and ipsilateral fingers are never confused with each other. Contralateral
finger movements are again less often confused with fingers from the same hand than
ipsilateral finger movements and only ipsilateral finger movements are confused with
rest. These results are once more consistent across all participants.

There are minute differences in the confusions made between individual contralat-
eral and ipsilateral finger movements between Figure 4.11 and Figure 4.12, but the
overall classification accuracies are highly similar. Most importantly, the results from
the classification on the [α, β,HFB]B feature vector show somewhat less confusion
between ipsilateral finger movements and rest when compared to the results from the
classification on the [HFB]B feature vector. Additionally, for participant P4, the rest
class is no longer confused with ipsilateral fingers as was the case with the classification
on the [α, β,HFB]B feature vector. However, the rest class is confused with movement of
some contralateral fingers during the classification on the [HFB]B feature vector.
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4.2.3 Required Training Data

The evolution of classification performances over the incremental reduction of the number
of training observations in the baseline, [α, β,HFB]B and the [HFB]B feature vectors are
depicted below in Figures 4.13 through 4.15 for the LDA classifier. The results of the
other classifiers on the various feature vectors are displayed in Figures Q.1 through S.3
in Appendices Q through S.
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Figure 4.13: The evolution of the classification performance with the incremental inclusion
of trials of finger movement in the test set of the baseline feature vector. This figure
shows the results obtained by the LDA classifier for every participant separately. The
blue solid line and the blue shaded region respectively denote the classification accuracy
on the baseline feature vector and standard deviation thereof. The red solid line and the
red shaded region respectively denote the classification accuracy on random data and the
standard deviation thereof. The gray dashed line shows the 95th percentile of the empirical
chance level of classification at p < 0.05. This Figure caption holds for Figures 4.14
through 4.15, which show the results of the LDA classifier on the other feature vectors.
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Figure 4.14: The evolution of the classification performance with the incremental inclusion
of trials of finger movement in the test set of the [α, β,HFB]B feature vector. This figure
shows the results obtained by the LDA classifier for every participant separately.
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Figure 4.15: The evolution of the classification performance with the incremental inclusion
of trials of finger movement in the test set of the [HFB]B feature vector. This figure shows
the results obtained by the LDA classifier for every participant separately.

Expectantly, the decrease in performance as an evolution of the number of used training
samples is the most gradual for the feature vectors with the smaller numbers of features;
especially the [HFB]B features appear to be highly robust. This result is consistent across
classifiers. Especially the LDA classifier demonstrates a relatively gradual decrease in
performance across all feature vectors in comparison with the other classifiers, a result
that is consistent across all feature vectors.
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4.2.4 Time Lag Classification

The results of the time lag classification of contralateral finger movements with rest,
ipsilateral finger movements with rest and the full classification with both contralateral
and ipsilateral finger movements including rest are depicted below in Figure 4.16.
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Figure 4.16: The evolution of the classification performance over different time lags rela-
tive to the movement marker using the LDA classifier on the [α, β,HFB]B feature vector.
The blue line denotes the classification performance on contralateral finger movements
with rest. The red line denotes the classification performance on ipsilateral finger move-
ments with rest. The purple line denotes the classification performance on both contralat-
eral finger movements, ipsilateral finger movements and rest together. The gray dashed
vertical line at t=0 seconds denotes the movement marker position and the gray horizontal
line denotes the empirical chance level (p < 0.05) of classification.

Based on these results, no clear statement on the influence of the reported earlier oc-
currence of cortical activity resulting from ipsilateral movements can be formulated; no
clear peak in the classification performance of ipsilateral finger movements (purple line in
Figure 4.16) could be observed prior to the movement marker. All classification accura-
cies are close to chance level prior to movement and peak close to the movement marker,
after which a gradual decrease in classification performance can be observed. The results
of participant P4 show a sustained performance long after movement onset but it is to
be noted that this participant performed multiple finger movements in each trial.
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4.2.5 Spatial Analysis: Relative Channel Importance

Before presenting the results of this spatial analysis, it must be mentioned that the
channel weights presented in all subplots have been obtained from different classifier
training schemes as described in Section 3.4.6. This means that the classifier weights
were normalized with a different range during each training scheme. Therefore, the actual
numerical values of the channel weights can not be compared between participants or
different fingers of one participant. Only the spatial distribution of the most informative
channels can be compared across participants and fingers.

4.2.5.1 Informative Areas for Distinguishing between Finger Movement
and Rest

The spatial distributions of important channels for distinguishing between individual
finger movements and rest are plotted on the cortical surfaces of participants P1 and
P2 in Figures 4.17 through 4.18 below. The visualizations of the other participants are
included in Figures T.1 through T.2 in Appendix T.

Figure 4.17: The relative importance of channels in distinguishing between finger move-
ment and rest for participant P1. Faulty channels are denoted in gray. Channels in red
denote a relatively high channel importance and channels in blue denote a relatively low
channel importance as indicated by the color bar. The inlay image at the far left depicts
a schematic representation of the electrode grid placement with respect to S1 and M1,
separated by a solid line representing the CS. This inlay serves as a reference for the
exact electrode locations on the cortical surface. This caption holds for all figures in the
upcoming spatial analyses.
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Figure 4.18: The relative importance of channels in distinguishing between finger move-
ment and rest for participant P2.

When comparing these results with the results obtained in the analysis of channel
R2 values (Section 3.3.2), it can be seen that many of the channels that showed
significant cortical activity during ipsilateral finger movement are indeed important for
distinguishing between movements of those respective ipsilateral fingers and rest. Most
of the channels that were important for distinguishing between movement of ipsilateral
fingers and rest are clustered on M1 with several individual important channels located
on S1. These results are consistent across participants.

When comparing the results corresponding to the distinction between contralat-
eral finger movements and rest with the results obtained in the analysis of channel R2

values (Section 3.3.2), several differences can be observed. While movement of contralat-
eral fingers resulted in a widespread distribution of significantly activated channels across
the SMC, the distribution of channels that are important for distinguishing contralateral
finger movement from rest seem to be clustered mostly around the CS and S1. This
result is consistent across all participants.

4.2.5.2 Informative Areas for Distinguishing between Individual Finger
Movement of the Same Laterality

The spatial distributions of important channels for distinguishing between movement of
a specific finger against movement of the other fingers of the same laterality are plotted
on the cortical surfaces of participants P1 and P2 in Figures 4.19 through 4.20 below.
The visualizations of the other participants are included in Figures U.1 through U.2 in
Appendix U.
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Figure 4.19: The relative importance of channels in distinguishing between movement of
a specific finger against movement of fingers of the same laterality for participant P1.

Figure 4.20: The relative importance of channels in distinguishing between movement of
a specific finger against movement of fingers of the same laterality for participant P2.

Based on these results, it can be stated that mainly channels located over S1 and the CS
are important for distinguishing between individual movements of contralateral fingers.
Regarding the ability to distinguish between individual movements of ipsilateral fingers,
several channels surrounding the CS and S1 seem to hold important information about
finger specificity while these channels were not the channels which showed the most
pronounced activation in Section 3.3.2 or which otherwise showed to be informative for
distinguishing between movements of that certain finger and rest in in Section 3.4.6.2.
These results were consistent across participants.

4.2.5.3 Informative Areas for Distinguishing between Contralateral and
Ipsilateral Finger Movement

The spatial distributions of important channels for distinguishing between movement of
pairs of contralateral and ipsilateral fingers are plotted on the cortical surfaces of partic-
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ipants P1 and P2 in Figures 4.21 and 4.22 below. The results of the other participants
are included in Figures V.1 through V.2 in Appendix V.

Figure 4.21: The relative importance of channels in distinguishing between movements of
contralateral and ipsilateral fingerpairs separately for participant P1.

Figure 4.22: The relative importance of channels in distinguishing between movements of
contralateral and ipsilateral fingerpairs separately for participant P2.

The spatial distributions of important channels for distinguishing between movement
of all contralateral fingers versus movement of all ipsilateral fingers are plotted on the
cortical surfaces of participants P1 and P2 in Figures 4.23 below. The results of the other
participants are included in Figures W.1 through W.2 in Appendix W.

Figure 4.23: The relative importance of channels in distinguishing between movement of
all contralateral fingers versus movement of all ipsilateral fingers for participant P1 and
P2.

Based on the results obtained in this section, it can be stated that mainly channels lo-
cated over S1 and the CS are important for distinguishing between movements of pairs
of contralateral and ipsilateral fingers and for distinguishing between movements of con-
tralateral and ipsilateral fingers in general.
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4.3 Experiment II: Asynchronous Classification

4.3.1 Feature Extraction and Preliminary Classification

The result of the preliminary classification performed to investigate the influence of the
alternative power extraction method and the inclusion of all available rest trials is depicted
in Figure 4.24 below.
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Figure 4.24: Confusion matrices for the classification performed with the LDA classifier
on the [α, β,HFB]B feature vector which was created using a different power extraction
method and which additionally included all available rest trials. The results for each par-
ticipant are depicted separately.

When comparing these results with the results obtained during the synchronous classifica-
tion (Section 3.4.3), little differences in the classification of contralateral finger movements
can be observed. Only several trials of contralateral finger movement were confused dif-
ferently for participants P2 through P4. For participants P1 and P2, several false positive
detections of contralateral thumb movement can be noted. These confusions of contralat-
eral finger movement with rest had not occurred in the results of Section 3.4.3. For the
classification of ipsilateral finger movement, a slight and expected increase in the number
of confusions between ipsilateral finger movements and trials of rest are notable. Based
on these results, there is no indication that the imbalanced training data resulting from
the inclusion of all available trials of rest negatively impacts classification performance.
Similarly, there seems to be no negative influence of the reduced time resolution with
which the DFT was performed.
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4.3.2 Determination of Dwell Times

The results of the comparison between the baseline dwell time of 0.01 seconds and the
optimal dwell times are depicted in Tables 4.7 through 4.10.

Finger Baseline Dwell Time Optimized Dwell

TP FPrestcontra FPrestipsi FPTotal Dwell Time TP FPrestcontra FPrestipsi FPTotal

Contra Thumb 30 1 2 3 0.30 30 0 1 1
Contra Index 30 2 1 3 0.29 30 0 0 0
Contra Little 30 6 2 8 0.28 30 3 2 5
Ipsi Thumb 29 137 72 209 0.07 29 104 55 159
Ipsi Index 29 198 78 276 0.22 29 106 38 144
Ipsi Little 25 52 9 61 0.03 25 47 8 55

Table 4.7: The number of true positive detections and false positive detection per finger
separately, listed for both the baseline dwell time and the optimized dwell time for that
finger. For both dwell time settings, the number of true positive detections of the specific
finger during movement events of only that finger are listed under the TP column. Addi-
tionally, the number of false positive detections during periods of rest in the contralateral
run and ipsilateral run are separately listed in the columns denoted by FPrestcontra and
FPrestipsi respectively. The total number of false positive detections during rest periods
in both runs is listed under the column denoted by FPTotal. This Table caption holds for
Tables 4.8 through 4.10 which show the results for the other participants.

Finger Baseline Dwell Optimized Dwell

TP FPrestcontra FPrestipsi FPTotal Dwell Time TP FPrestcontra FPrestipsi FPTotal

Contra Thumb 30 1 10 11 0.17 30 1 7 8
Contra Index 30 2 0 2 0.30 30 0 0 0
Contra Little 29 1 0 1 0.33 29 1 0 1
Ipsi Thumb 29 27 84 111 0.25 29 6 28 34
Ipsi Index 29 96 28 124 0.12 29 64 12 79
Ipsi Little 30 121 39 160 0.15 30 66 17 83

Table 4.8: Baseline and optimized dwell times and the corresponding number of true
positives and false positives for each finger of participant P2.

Finger Baseline Dwell Optimized Dwell

TP FPrestcontra FPrestipsi FPTotal Dwell Time TP FPrestcontra FPrestipsi FPTotal

Contra Thumb 31 22 0 22 0.27 31 9 0 9
Contra Index 30 0 0 0 0.16 30 0 0 0
Contra Little 31 5 0 5 0.20 31 3 0 3
Ipsi Thumb 27 49 93 142 0.14 27 18 73 91
Ipsi Index 25 35 18 53 0.02 25 34 17 51
Ipsi Little 28 26 8 34 0.13 28 13 4 17

Table 4.9: Baseline and optimized dwell times and the corresponding number of true
positives and false positives for each finger of participant P3.
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Finger Baseline Dwell Optimized Dwell

TP FPrestcontra FPrestipsi FPTotal Dwell Time TP FPrestcontra FPrestipsi FPTotal

Contra Thumb 30 46 0 46 0.53 30 2 0 2
Contra Index 30 6 0 6 0.13 30 2 0 2
Contra Little 30 13 0 13 0.27 30 1 0 1
Ipsi Thumb 27 39 142 181 0.23 27 3 61 64
Ipsi Index 24 1 63 64 0.06 24 1 55 56
Ipsi Little 26 17 33 50 0.05 26 6 20 26

Table 4.10: Baseline and optimized dwell times and the corresponding number of true
positives and false positives for each finger of participant P4.

Several observations can be made based on these results. Firstly, when equipping the
baseline dwell time, all available events of contralateral finger movement (which were
listed in Table 3.5) were detected for all participants, with the only exception being one
trial of contralateral little finger movement for participant P2. For ipsilateral fingers,
several trials of finger movements were not detected at all. This is apparent in the results
of all participants but was most notable in the results of participant P3. Secondly, when
using the baseline dwell time, the number of false positives is much larger for ipsilateral
fingers than for contralateral fingers, with the number of false positives exceeding the
number of true positives for several ipsilateral fingers. This is visible in the results of all
participants. The only contralateral fingers for which a large number of false positive
detections took place were the contralateral thumbs of participants P3 and P4. Lastly,
for participants P1 through P3, many of the false positive detections of ipsilateral finger
movement occurred during rest periods of the contralateral run instead of during rest
periods in the ipsilateral run.

After optimizing the dwell time for each finger individually, several changes could
be noted. The number of false positives for contralateral fingers decreased where possi-
ble. The most notable decrease in the number of false positives could be observed for the
contralateral thumbs of participants P3 and P4. For the ipsilateral fingers, a decrease in
the number of false positives was similarly notable. Most notably, the ipsilateral thumb
still showed a large number of false positives for all participants. Only for participant P2,
the number of false positive detections of ipsilateral thumb movements was somewhat
similar to the number of true positives for that finger. For the other participants, the
number of false positive detections of ipsilateral thumb movement still strongly exceeded
the number of true positives for that finger. The results for the ipsilateral index and little
fingers were less consistent across participants, but in several cases the number of false
positives exceeded the number of true positives for these fingers. Such observations could
not be made for any of the contralateral fingers for any of the participants. Additionally,
the optimal dwell times for contralateral fingers were on average higher than the optimal
dwell times for ipsilateral fingers with optimal dwell times of (0.27 ± 0.01) seconds and
(0.12 ± 0.01) seconds respectively (Mean ± SD across participants).

4.3.3 Asynchronous Classification Runs

The asynchronous classification was performed twice with two different settings for the
dwell time. At first, the dwell time was set to match the optimal dwell time for ipsilateral
fingers at 0.15 seconds. Afterwards, a dwell time that corresponded to the optimal dwell
time for contralateral fingers was employed, namely 0.30 seconds. The results of these
classifications are depicted in Figures 4.25 and 4.26 respectively.
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Figure 4.25: The results of the asynchronous classification run with a dwell time setting
of 0.15 seconds. The confusion matrices correspond to the true positive detections of
finger movement events and misclassifications between contralateral and ipsilateral finger
movement events. The number of false positives that occurred during periods of rest in both
the contralateral and the ipsilateral task run are included below each confusion matrix.
The results are presented for each participant separately.
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Figure 4.26: The results of the asynchronous classification run with a dwell time setting
of 0.30 seconds. The confusion matrices correspond to the true positive detections of
finger movement events and misclassifications between contralateral and ipsilateral finger
movement events. The number of false positives that occurred during periods of rest in both
the contralateral and the ipsilateral task run are included below each confusion matrix.
The results are presented for each participant separately.

The results of both asynchronous classification runs runs show several similarities. At
first, the phenomena described in Figure 3.20 are visible throughout these results: Firstly,
misclassifications between the rest class and both contralateral and ipsilateral movement
events occurred as can be deducted from the confusion matrices. This effect was
somewhat more pronounced for ipsilateral finger movement events than for contralateral
finger movement events, especially for participant P4. The misclassifications of rest
events during movement episodes of fingers of both lateralities does not further impact
the current results and they will not be discussed further. Secondly, misclassifications
of ipsilateral movement during contralateral movement events occurred regularly, but
almost no misclassifications of contralateral movement occurred during ipsilateral
movement events. Increasing the dwell time from 0.15 seconds to 0.30 seconds decreased
the occurrence of both these types of misclassifications.

Increasing the dwell time additionally reduced the overall number of confusions
between movement events of contralateral and ipsilateral finger movements, visible in
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the off-diagonal entries of the confusion matrices in Figures 4.25 and 4.26.

When considering the false positive detections of finger movement events during
rest, one largely clear observation can be made based on Figures 4.25 and 4.26: the
number of false positive detections was severely larger for ipsilateral finger movements
than for contralateral finger movements. Increasing the dwell time from 0.15 seconds to
0.30 seconds reduced the number of false positive detections for both contralateral and
ipsilateral fingers, but did impact the detectability of the movement events for some
fingers. This was most notable for the ipsilateral fingers, meaning that some trials of
ipsilateral finger movement were not detected at all. After increasing the dwell time, the
number of false positives was still considerably larger for ipsilateral finger movements
than for contralateral finger movements and generally, the best detectable ipsilateral
fingers were also exactly the fingers associated with the largest number of false positives
during rest.
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5 Discussion

This research has investigated the possibility to classify both contralateral and ipsilateral
individual finger movements from the SMC of a single hemisphere with the aid of several
experiments, of which the results and implications will be discussed in more detail in this
chapter.

5.1 Preliminary Data Analysis

Prior to the classification experiments, a preliminary analysis was carried out in Section
3.3 to determine whether the reports surrounding cortical activity resulting from con-
tralateral and ipsilateral finger movements found in the literature review, coincided with
the dataset that was employed in this study.

5.1.1 Spatial Aspects of Cortical Activity

Various fMRI studies showed that cortical activity resulting from ipsilateral movement
was either absent (e.g. (Ehrsson et al., 2000) (Singh et al., 1998)), or showed a smaller
spatial extent with respect to cortical activity resulting from contralateral movement
(e.g. (Hanakawa et al., 2005) (Baraldi et al., 1999)), although overlap was visible (e.g.
(Horenstein et al., 2009) (Verstynen et al., 2005)). The spatial specificity of the fMRI
BOLD signal is highly similar to the spatial specificity of cortical activity in the HFB
measured in ECoG signals (Siero et al., 2014). Indeed, a reduced spatial extent of cortical
activity in the HFB resulting from ipsilateral movement was similarly described in ECoG
studies (e.g. (Zanos et al., 2009), (Jin et al., 2016)). This research gathered more evidence
for the above mentioned findings in literature. The spatial analysis that handled the
distribution of significantly activated channels (Section 3.3.2) showed that the spatial
extent of cortical activity resulting from ipsilateral finger movements was smaller with
respect to that of cortical activity resulting from contralateral finger movement. Cortical
activity resulting from ipsilateral finger movement was clustered mostly in M1, similar to
the findings of (Verstynen et al., 2005) and (Horenstein et al., 2009)). Cortical activity
resulting from contralateral finger movements was found spread over the whole SMC
(similar to the findings of (Jin et al., 2016) and (Scherer et al., 2009)), with especially
channels over S1 showing strong cortical activity. A reduced spatial extent of cortical
activity resulting from ipsilateral fingers movements with respect to that of contralateral
finger movements in the α and β bands could not be reliably determined with the
results of this research. It is to be noted that for participant P2, very little significantly
activated channels could be observed in the α and β band. Additionally, for participant
P4, several positive correlations in the β band are visible. It is at this point unknown
whether these unexpected results are attributable to individual cortical characteristics,
the use of anti-epileptic or surgery related drugs, the mental state or other the pathology
of the participants.

In hindsight, the apparent similarity between cortical activity resulting from ip-
silateral finger movement and cortical activity resulting from contralateral finger
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movement appears to be mostly dependent on the available measurement resolution.
The observed neural pattern similarity of Fujiwara et al. (Fujiwara et al., 2017) could
have been attributed to the fact that their study employed clinical ECoG grids, which
are arguably less suitable for discerning fine differences in cortical activity. Additionally,
their study employed a more brisk hand movement task which may have resulted in
activation over a broader cortical area than one would otherwise observe by using a finer
finger movement task. The results of the spatial analysis that handled the distribution of
significantly activated channels (Section 3.3.2) are more in line with the findings of Zanos
and colleagues (Zanos et al., 2009), who similarly employed a higher density electrode
grid for one participant and subsequently noted unique locations of pronounced cortical
activity resulting from ipsilateral movement with respect to the locations of cortical
activity resulting from contralateral movement.

5.1.2 Spectral Aspects of Cortical Activity

Although the spatial distribution of the HFB and BOLD signals can be compared, much
discussion still exists on the comparison of the signal envelopes between HFB and BOLD
signals. Therefore, the findings from the ECoG, EEG and MEG studies surrounding the
signal envelope of spectral modulations in the various frequency bands will be compared
with the findings of the amplitudal analysis carried out in Section 3.3.1. This research
has provided further evidence to support the findings of a smaller amplitude of spectral
modulations in the HFB resulting from ipsilateral movement in contrast of those result-
ing from contralateral movement. (e.g. (Jin et al., 2016) (Wisneski et al., 2008)). The
comparison of the amplitudes of spectral modulations after averaging over channels as
in Section 3.3.1 may have been somewhat misleading since including the channels which
show no significant activation in the averaging process automatically leads to a reduced
average amplitude. However, in the figures that show the amplitudes of modulations
for each channel separately (Section 3.3.1), the relatively smaller amplitudes of spectral
modulations in the HFB resulting from ipsilateral finger movement with respect to those
resulting from contralateral finger movement are still apparent. Reports of smaller am-
plitudes of spectral modulations in the α and β bands resulting from ipsilateral finger
movement with respect to those resulting from contralateral finger movement (e.g. (For-
maggio et al., 2008) (Muthuraman et al., 2012)) were only visible for participant P4 and
can therefore not be confidently underlined with the findings of this research.

5.2 Experiment I: Synchronous Classification

After establishing that cortical activity resulting from both contralateral and ipsilateral
finger movements was present over the SMC, the sub research question that handled the
actual classification of this activity could be addressed. This first sub research question
was formulated as follows:

What performance can be attained on the classification of contralateral and ipsilat-
eral individual finger movements in a synchronous setting?

This question was formulated such that the results could build upon the findings
of Scherer et al. (Scherer et al., 2009), who had only provided results on the classification
of movement from several contralateral fingers versus movement of several ipsilateral fin-
gers. These incomplete results called for a more realistic evaluation of the decodability of
individual contralateral and ipsilateral finger movements with the addition of a rest class.
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5.2.1 Classification Results

Based on the confusion matrices depicted in Section 3.4.3, individual movements of both
contralateral and ipsilateral fingers along with periods of rest can be classified with a
performance significantly above chance level (p<0.05) for all participants with an average
accuracy of 79.22 ± 6.30 (Mean ± SD) over participants. This research has shown that
individual contralateral finger movements (excluding rest) can be classified with an
average accuracy of 90.75% ± 7.68 (Mean ± SD) over participants. Individual ipsilateral
finger movements (excluding rest) were classified with an average accuracy of 65.00%
± 6.16 (Mean ± SD) over participants. The accuracies obtained on the classification of
individual contralateral finger movements in related research can be calculated by taking
the lower and upper boundaries of accuracies of the ECoG studies that have handled
classification of Individual Finger Movement in Table E.1 in Section 2.5. These results
were on average 66.75% ± 32.97 (Mean ± SD) using similar frequency band features
and classifiers. When comparing the obtained performances of this research with the
results from related research, it can be stated that the average accuracy obtained on the
classification of contralateral finger movement in this research is in the higher registers
of related research. The accuracies obtained on the classification of ipsilateral finger
movements were lower than those obtained on the classification of contralateral finger
movement, which is in accordance with related research on classifying contralateral and
ipsilateral movement (e.g. (Diedrichsen et al., 2013) Jin et al. (2016) (Fujiwara et al.,
2017)). The differences in performance between the classification of contralateral and
ipsilateral finger movements in this research were however larger, which is something that
could be attributed to the fact that these former studies employed a brisker movement
task. No performance benchmark for the classification of individual ipsilateral finger
movements could be deduced from related research, but the accuracies obtained in this
research from the classification of ipsilateral finger movements are on par with accuracies
for classifying contralateral finger movements in related research. Trials of ipsilateral
finger movement were additionally confused with trials of rest, which was not observed
for contralateral finger movements.

Although still no concrete answer can be given regarding the discussion on the in-
fluence of electrode grid density, it is likely that the high classification accuracies
obtained in this research can be related to the usage of HD electrode grids. Especially
accurate placement of these grids over the SMC can contribute to high classification
accuracies (Bleichner et al., 2016). A third factor that may have contributed to the
high classification performance is the fact that the task performance of the participants
was generally good. The number of bad trials was low across participants and the error
bars on the deflection amplitudes of cued fingers (Section 3.2.4) showed little variance
of finger deflection amplitudes during the movement task. For this reason, it can be
stated that there was high consistency in the execution of the movement task by the
participants, which can be beneficial for the overall classification performance (Bleichner
et al., 2014).

Lastly, when observing the confusion matrices depicted in Section 3.4.3, it can be
deduced that contralateral finger movements can be excellently distinguished from
ipsilateral finger movements, with an accuracy of 100% for all participants. These results
are comparable with the results of Scherer and colleagues (Scherer et al., 2009) who have
classified two binary schemes of contralateral finger movements versus ipsilateral finger
movements. The accuracies attained in those classification schemes ranged between
94.7% and 100.0%. The observant reader might have noticed that the contralateral and
ipsilateral task runs have been recorded on different days for two of the participants,
which may cause some bias in the signal due to the re-initialization of hardware or the
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selection of different reference electrodes. It can therefore be argued that the ability
to distinguish contralateral and ipsilateral finger movements might be attributed to
systematic differences in the ECoG data of the separate runs. However, an excellent
performance on the classification of contralateral versus ipsilateral finger movements
was also observed in the results of the participants for which the runs were recorded on
identical days. Additionally, The use of the DFT as power extraction method may be
especially suitable for eliminating signal biases such as a Direct Current (DC) biases.
For these reasons, it can be argued that the results in this research are true. For future
research it is nevertheless recommended to combine trials of both contralateral and
ipsilateral finger movement in one task run to completely rule out the possibility of such
a phenomenon.

5.2.2 Contribution of Frequency Bands

Prior to the actual classification, Section 3.3.3 described the low-dimensional visualiza-
tion of the high-dimensional ECoG data. Several hypotheses were formulated with these
results and as a subsequently, the contribution of the individual frequency bands in the
classification process was assessed. For participant P4, some confusion of contralateral
fingers with rest occurred after leaving the α and β bands out of the classification
process. This finding may support the literature finding that the α and β bands serve as
a robust indicator of a general cognitive state of movement (e.g (Onaran et al., 2011)
(Hotson et al., 2016)). Solely features from the HFB were as effective for the accurate
classification of individual contralateral and ipsilateral finger movements including rest
as features from the α, β and HFB frequency bands together. This finding indicates
that the HFB indeed held information around finer aspects related to finger movement
(e.g. (Onaran et al., 2011) (Wissel et al., 2013)). Additionally, the HFB seems to
similarly serve as a robust indicator of a movement state. This research confirmed that
these discussed literature findings do not only hold for cortical activity resulting from
contralateral finger movement, but also for cortical activity resulting from ipsilateral
finger movement, for which little literature evidence could be found. The finding that
solely the HFB contains enough information for accurate decoding of both contralateral
and ipsilateral finger movements may be especially beneficial for eventual BCI users
with LIS, for whom the ability to modulate the α and β bands might be impacted by
their lesion (Freudenburg et al., 2019). As a final remark, averaging over frequency bins
resulted in a strong increase in performance for all frequency bands and participants.
This increase can most likely be attributed to the reduction of dimensionality and the
cancellation of noise inside the various individual frequency bins through averaging.

Several anomalies in the low-dimensional visualizations in Section 3.3.3 must be
discussed. One of the subplots for participant P4 (Figure L.2 in Appendix L, sub-figure
for contralateral HFB) shows two separated clusters of observations corresponding to
trials of rest. This anomaly could be explained by the fact that t-SNE uses a gradient
descent method which can converge at different and possibly locally optimal solutions.
Therefore, visualizations can differ every time the analysis is performed. Such a separa-
tion of clusters of datapoints corresponding to rest trials was namely not observed in the
corresponding subplot for ipsilateral HFB, for which the same rest trials were used. The
plots of the datapoints in the α and β bands belonging to participant P2 (Figure 4.6)
showed no formations of separate clusters for any of the observations corresponding to
rest or finger movement. This can be explained by the fact that there was no significant
cortical activity in these frequency bands for this participant (Figures J.3 and J.4 in
Appendix J).
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5.3 Experiment II: Asynchronous Classification

After the classification of contralateral and ipsilateral finger movements in an syn-
chronous fashion was handled, further evaluation in an asynchronous setting was
required. Therefore, the second sub research question was formulated as follows:

1.2 What performance can be attained on the classification of contralateral and ip-
silateral individual finger movements in an asynchronous setting?

Theoretically, any arbitrarily complex BCI with a large number of parameters
and filtering stages may have performed well on the classification of contralateral and
ipsilateral finger movements. The application of such a sophisticated system would
however have masked the phenomenon that was precisely the subject of this research;
namely the hypothesized occurrence of false positive detections of mainly ipsilateral
finger movements. By implementing the simplest approximation of an asynchronous BCI,
this research has provided other (future) researchers with an honest and transparent
ground truth and a clear presentation of the obstacles to overcome.

The results of the asynchronous classification were in line with the hypothesis in
the discussion section of the literature review (Section 2.8). The number of false positive
detections during episodes of rest were especially high for the ipsilateral fingers. The
number of false positive detections of ipsilateral finger movement during periods of rest
for were at best 106, 57, 55 and 54 for different fingers of participants P1 through P4
respectively, when employing a dwell time of 0.30 seconds. The number of false positive
detections of contralateral fingers during episodes of rest using the same dwell time were
at best 5, 1, 8 and 7 for different finger of participants P1 through P4 respectively.
Considering that the two movement tasks performed by the participants combined took
roughly 20 minutes, the number of false positive detections of ipsilateral finger movement
is relatively large for such a short time span.

5.4 Comparison of Experiment Results

The last sub research question was intended to compare the performance attained
on the synchronous classification with the performance attained on the asynchronous
classification and was formulated as follows:

1.3 Do the attained performances on the classification of contralateral and ipsilat-
eral individual finger movements differ between synchronous and asynchronous settings
and what can explain possible differences?

The large differences in the methodologies of the synchronous and asynchronous
classifications make a one-on-one numerical comparison between results difficult. How-
ever, the largest difference that can be observed between the results of the synchronous
classification and the asynchronous classification is the strongly exacerbated number
of false positive detections of ipsilateral finger movements during the asynchronous
evaluation. During the experiment handling synchronous classification, several misclas-
sifications between ipsilateral finger movements and trials of rest were already visible.
However, the synchronous classification constituted the classification of at most 300
one-second windows corresponding to each of the trials of finger movement or rest, which
were additionally aligned and processed perfectly with use of the movement markers.
During the asynchronous classification, around 40.000 to 45.000 one-second windows
were classified for each contralateral and ipsilateral run separately in which the windows
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contained ECoG signals corresponding to various stages of finger movement, rest and
everything in between.

One note of criticality surrounding the differences in the classification process be-
tween the synchronous and asynchronous cases must be addressed. Firstly, it can be
observed that there was a large class imbalance during the training the asynchronous
case (Section 3.5.2). One could argue that as a result, the classifier would be biased to
the majority class. However, as mentioned, a proportional increase in the number of
confusions of ipsilateral fingers with rest were not observed in Figure 4.24. Still, this
class imbalance may have caused a bias towards the rest class during the asynchronous
evaluation which could imply that the number of false positive detections of ipsilateral
finger movements could have been larger if the classes were balanced. In this research,
this did not impact the final outcome of this research since a large number of false
positives was still observed and the initial hypotheses remained confirmed, but for future
research, it can be recommended to retain the class balance.

Comparison of the confusion matrices of the synchronous classification and those
of the asynchronous classification is even more difficult. The confusion matrices of
the asynchronous classification demonstrated that still a fairly large number - much
larger than in the synchronous evaluation - of misclassifications between movement
events of the fingers took place. The initial investigation of the posterior probabilities
(Figure 3.20) already provided clarification towards this phenomenon and most of the
misclassifications can be attributed to the fact that the asynchronous classification was
highly simplistic. Therefore, an in depth comparison between the confusion matrices
of the synchronous and asynchronous experiments can be explained with this reason
and further comparison is disappointingly not possible. The confusion matrices of the
asynchronous evaluation do show that the movement events of each finger can be
accurately detected in the asynchronous setting (based on the true positive detections
on the diagonals of these confusion matrices), although for now this largely depends on
the selected dwell time. By comparing the diagonals of the confusion matrices and the
number of false positive detections corresponding to the two asynchronous classification
runs with different settings of the dwell times (Figures 4.25 and 4.26), it can additionally
be seen that balancing the reliable detection of ipsilateral finger movements with the
number of false positive detections of ipsilateral finger movements poses a difficult
trade-off.

The best way to compare the obtained results in both experiments is therefore to
consider them as extensions of one another. The results of synchronous classification
portray the most optimistic view regarding the true positive detections of contralateral
and ipsilateral finger movement and the results of the asynchronous classification
portray the most pessimistic view regarding the false positive detections of contralateral
and ipsilateral finger movements. One note of criticality must be made; during the
synchronous classification, bad trials were visually rejected which naturally introduced a
slightly positive bias in the results. It is however expected that this bias is not extremely
large, since only a small number of finger movement trials were rejected as can be seen
from Table 3.2.

5.5 Implications, Limitations and

Recommendations

The results obtained in this research need to be put into a broader context and this section
will be devoted to discussing possible explanations and implications surrounding the
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results obtained in this research. This section will additionally address further limitations
of this research, which will subsequently be transformed into recommendations for future
work. To provide overview, the implications, limitations and recommendations have been
combined per topic and are handled in that order.

5.5.1 Somatotopy and the Relative Importance of the Cortical
Areas

The notion that the spatially focal HFB was important in the classification process asks
for the re-visitation of a question that was posed in the discussion of the literature review
in Section 2.8, namely the question whether the notion of a somatotopy is required for
the correct classification of finger movements. It is to be noted that the question whether
good classification results are causal with - or even correlated with - the notion of a
distinct somatotopy can definitely not be answered with the results of this research.
Among more reasons, the main limitation is that even though HD electrode grids with
3-4 mm inter-electrode spacing were used in this study, the spatial sampling of these
electrode grids is still rather coarse and sparse in comparison to fMRI and therefore a
true somatotopy is difficult to establish by using ECoG.

However, several insights contributed to the believe that at least some spatial or-
dering of finger representations was required for accurate classification and that therefore
the related research on somatotopy should be discussed in light of the obtained results
of this research. Firstly, the spatially focal HFB was required for accurate classification
and even more importantly, classification could be equally well performed using only
features from the HFB with respect to using features from the α, β and HFB frequency
bands. Secondly, the findings surrounding finger somatotopy in the literature review
(Section 2.3) were based on the cortical regions that expressed the most activity during
movement of a specific finger. Based on the results of the first spatial analysis into the
relevant cortical areas (Section 3.4.6.1) it could be inferred that the channels that showed
the most activation were also the most relevant ones for the classification of finger
movements versus rest. Therefore, several insights from the classification results and the
subsequent spatial analysis carried out in Section 3.4.6 deserve some more attention.

Literature on somatotopy for contralateral finger movement described widespread
cortical activity across the SMC, similarly to the results of the Channel R2 analysis
(Section 3.3.2) of this study. Literature on somatotopy noted a more ordered and
segregated somatotopy in S1 with respect to M1, suggesting that the processing of
sensory information occurs at a more specific level (Schellekens et al., 2018). The
discussion section of the literature review (Section 2.8) therefore posed the question
whether HD electrode grids could possibly capitalize on this fine segregation in S1
because these grids would allow for recording of smaller and more finger specific neuronal
populations. Whether there is direct causality or not, the results of the spatial analysis
in Section 3.3.2 did show that the channels over S1 show strong cortical activity during
during contralateral finger movement. Similarly, the channels that were relevant for the
classification of contralateral finger movement versus rest were mainly located on S1 and
several channels that are important for distinguishing between individual contralateral
finger movements (Section 3.4.6.1) were similarly located on S1 and the CS. Both these
results were consistent across participants.

Literature on somatotopy for ipsilateral finger movement was scarce and could
not establish a finger somatotopy in S1 due to the absence of significant cortical activity
(e.g. (Hlustik, 2001), (Stippich et al., 2007)). In M1, only a rough somatotopy was
observed in literature due to the reduced cortical activity resulting from ipsilateral
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movement and the brisk movement task employed (e.g. (Alkadhi et al., 2002) (Alkadhi
et al., 2000)). The relatively small amount of cortical activity in S1 for ipsilateral fingers
was similarly observed in this study (Section 3.3.2) but the results do show that the
patterns of cortical activity resulting from individual ipsilateral finger movements were
unique in M1 and over several channels in S1. The spatial analysis in Section 3.4.6.2
showed that important channels for distinguishing between individual contralateral and
ipsilateral fingers were located mainly over S1 and the CS. Given that the cortical
activity resulting from ipsilateral fingers was most pronounced on M1 and not S1, the
claim by Scherer and colleagues (Scherer et al., 2009) that the good differentiation of
contralateral versus ipsilateral finger movements in their binary classification scheme
being mostly due to a difference in amplitude can be supported with these results. To go
further on this claim, the results of this research indicate that the classification decision
between movement of contralateral and ipsilateral fingers seemed to be mostly based
on an amplitude difference in S1. Given the apparent importance of S1, it might be an
interesting target for the decoding contralateral and ipsilateral finger movements on a
smaller scale, which was an additional aspect of the problem statement from Section 2.8,
which was later deemed outside of the scope of this research.

The are several factors that can help explain the importance of S1 beyond its
role in the processing of sensory information. These factors are important because it
can be argued that BCI performance may be positively influenced by the processing
of sensory feedback resulting from muscle movement in able-bodied participants (e.g.
(Branco et al., 2017) (Chestek et al., 2013)), who have been included in this research.
Naturally, such feedback processing mechanisms would be absent in participants with
LIS, who must resort solely to attempted movement. For that reason, S1 has been the
subject of research that aimed to find answers regarding its possible active role during
voluntary movement. The best known active role of S1 can be considered the generation
and sending of efference copies (Cullen, 2004) during movement, for which some
evidence was also found in an ECoG study (Sun et al., 2015). Additionally, one study
demonstrated that cortical stimulation of S1 can result in movement of the limbs (Nii
et al., 1996), which supports the claim that S1 may play a role during active movement.
Adding to that, other studies have shown that the segregated finger representations of S1
(and M1), that are potentially valuable to the good classification results of this research,
have been conserved in paralyzed individuals and individuals with amputated limbs
(Bruurmijn et al., 2017). The activity in S1 (and additionally M1) appears to also be
retained during attempted movement (Hotz-Boendermaker et al., 2008) (Cramer et al.,
2005), which may suggest that the findings in this research obtained from able-bodied
participants may generalize for lesional BCI users as well.

5.5.2 The Effects of Reduced Cortical Activity

So far, it appears likely that the ability to distinguish finger movements is related to a
somatotopic representation of fingers on the cortical surface. However, the plausibility
of this theory seems debatable when the detection of ipsilateral finger movements is
concerned. It is expected that any somatotopy would appear in those regions that show
most cortical activity, but based on the results of this research, this did not seem to
hold for ipsilateral fingers. The spatial analysis carried out in Section 3.4.6.2 showed
indeed that distinction of individual ipsilateral finger movements did not solely rely
on the channels that showed the most (or even significant) activation when comparing
these with the results of Section3.3.2. Apparently, finding unique hotspots of cortical
activity in M1 resulting from ipsilateral finger movement was not a good enough premise
for accurate classification of movements of these fingers. This implies that there is not
much distinguishable power in the overlapping cortical activity (resulting from both
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contralateral and ipsilateral finger movements) in M1 and that therefore several channels
in the CS and in S1 are required to reliably distinguish individual ipsilateral finger
movements.

For the classification of ipsilateral finger movements, this finding has some impli-
cations. If the classifier assigns a high importance to one of these non-significantly
activated channels during training, it seems logical that any non-significant and therefore
non-task related stray activity occurring over these electrodes would contribute to false
positive detections. During the classification attempts in this research, the classifier was
trained on all available channels, including the non-significantly activated channels. This
did not seem to be problematic during the classification of contralateral fingers, for which
a large number of significantly activated channels were found. However, in hindsight it
may have posed issues for the classification of ipsilateral finger movements, for which
there were generally more non-significantly activated channels than there were signifi-
cantly activated channels. This additionally may have caused the difficulties in detecting
these ipsilateral finger movements, resulting in missed detections of movement events
during the asynchronous evaluation. It must be mentioned that the spatial distribution
of cortical activity in Section 3.3.2 shows a rather black and white view of which channels
show activity. There might reasonably be task-related activity over the non-significant
electrodes that was simply not pronounced enough to survive the fairly strict Bonferroni
corrected threshold. But, as the methodology dictates, any non-significant activity should
be regarded as noise and it can therefore be argued that non-significant stray activity
may have played a role in the creation of false positive detections during the classification
of especially ipsilateral finger movements. A notable example comes from the results of
the dwell time optimization step during the asynchronous classification (Section 4.3.2).
It can be seen that false positive detections of ipsilateral finger movements did not only
occur in episodes of rest from the ipsilateral run, but it appeared that a significant
amount of false positives also occurred during the rest episodes of the contralateral run.
When observing the fact that misclassifications with rest and ipsilateral fingers occurred
right in between flexion and extension of contralateral fingers (schematically depicted
by Figure 3.20), it is highly plausible that stray activity resulting from the onset or
completion of contralateral movement with a subsequent smaller amplitude and spatial
distribution could trigger false positive detections of ipsilateral finger movement. A
striking example is the ipsilateral thumb of participant P4, for which no significantly
activated channels were found in the spatial analysis of Section 3.3.2 (Figure K.2).
The spatial analysis in Section 3.4.6.1 for this finger (Figure T.2) showed consequently
that the classifier was forced to base classification decisions over the complete set of
non-significantly activated channels.

One critical note should be placed surrounding the identification of important channels.
It might at first seem curious that the spatial analyses showed in a several occasions
that individual channels were highly important and that the respective neighboring
electrodes were not relevant, for example in Figure 4.17. It is reasonable to assume that
neighboring channels in ECoG grids are highly correlated and these results may therefore
be unexpected. However, in the spatial analysis of Section 3.3.2, several individual
channels could be identified that showed a high R2 value without its neighbors showing
significant activation. This could be discussed in light of the distinct characteristic of HD
electrode grids to measure smaller populations neurons with a more specific function.
Also, especially when cortical activity of several finger movements overlap over channels,
the classifier will be forced to focus on minute and detailed differences between these
channels, which could result in only several scattered channels to be highly important.

From a machine learning point of view, especially the small number of signifi-
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cantly activated channels can have a negative impact on the classification results. Basing
classification decisions on numerous channels that show no significant activity implies
that there may simply be little informative features to be used in the classification
process. This in turn helps towards explaining why ipsilateral finger movements could
not be reliably distinguished from rest but also not be reliably distinguished from one
another. Simply put, if there is no cortical activity, a classifier has nothing to pick up
on and a harsh theoretical upper limit to the decodability of especially ipsilateral finger
movements may well exist.

Since a researcher can hardly dictate where and when cortical activity appears,
the insight of the previous paragraph begs the question whether the SMC was the
most suitable candidate in the search for cortical activity resulting from ipsilateral
finger movement. Several studies handled in the literature review have mentioned that
cortical activity resulting from ipsilateral movement might manifest outside the SMC
as well. Berlot and colleagues (Berlot et al., 2018) mentioned in their fMRI study that
contralateral activity showed the strongest representation in S1, which was observed
in this study, but that ipsilateral activity showed the strongest representation in the
Premotor (PM) cortex and the Posterior Parietal Cortex (PPC). Also Wisneski and
colleagues (Wisneski et al., 2008) showed in their ECoG study that cortical activity
resulting from ipsilateral finger movement can be found in areas outside the SMC, such
as again the PM cortex or other non-sensorimotor areas which are left unspecified by
the authors. Additionally, Fujiwara and colleagues include the PM cortex in their work
(Fujiwara et al., 2017) which handles the classification of ipsilateral hand movements.
Since the electrode grids employed in this study did not extent to those areas, nothing
can be said about the ability to decode from these areas based on the results of this
study. However, a word of caution must be issued when embarking on the search for
cortical activity resulting from movement outside areas that are known to be associated
with movement. It might become difficult to interpret and discuss the exact neurological
underpinning and reliability of this found cortical activity. Nevertheless, it can be argued
that for some machine learning or BCI research, the neurophysiological function of
cortical activity might be somewhat less relevant if good classification accuracy in those
regions can be reliably obtained.

5.5.3 Classifiers and the Classification Approach

Simple and linear classifiers have been employed in this research for several distinct rea-
sons. Especially the high dimensionality and the small amount of training data available
made these classifiers a suitable choice. Additionally, the application of simple classifiers
allowed for the desired white box classification approach with which inferences about
some of the underlying neurological phenomena contributing to the results gained in this
research could be made. Especially the spatial analyses of Section 3.4.6 using the weights
of the LDA classifier provided several interesting insights and helped explain the obtained
results. The LDA classifier was mostly used in this research because of its architectural
simplicity in comparison to the ECOC-SVM and its ability to work well despite a reduced
amount of training data with respect to the RF and NB classifiers (Section 3.4.4). The
ability of the LDA to work with little training data may be devoted to the fact that its
covariance matrix was completely diagonalized and therefore relatively easy to estimate.
Additionally, the LDA uses only the pooled covariance matrix computed based on obser-
vations from all classes. This allowed the classifier to use all data for the robust estimation
of the covariance matrix. Lastly, the success of the linear hyperplanes employed by
several of the classifiers might be attributed to the fact that their generalization ability is
high in the case of little data, which in turn made the classifier less susceptible to outliers.
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The LDA, SVM and NB classifiers all seemed to perform well and notably, the
only non-linear classifier that was employed consistently showed a lower performance.
One possible explanation could be that the amount of training data was indeed too little
to adequately train the classifier. The combination of a small number of training samples
and a high dimensionality of the feature space can cause the more complex RF model to
overfit. The question whether linear classifiers are unconditionally better than non-linear
classifiers in BCI research was already discussed with the article of Marjaninejad and
colleagues (Marjaninejad et al., 2017) and naturally, still no conclusive answer can be
provided based on the results of this research. The possible advantages of the non-linear
variant of the LDA, the Quadratic Discriminant Analysis (QDA) classifier can however
be discussed. This classifier was not employed in this research due to the resulting
singular covariance matrices after training, to be attributed to too little training data.
However, a strong benefit of the QDA could be that it does not use the same covariance
matrix for all classes but instead computes these for each class separately. In reality, the
covariance matrices of the different classes may indeed not be similar at all, especially
for movement and rest, so that the usage of QDA might yield better classification scores
and possibly even help mitigating the observed false positives. This notion could hold for
non-linear classifiers in general, of which the complex decision boundary may function
well in modeling fine differences between cortical activity resulting from ipsilateral finger
movement and rest.

Although the use of complex non-linear and modern classifiers may be tempting,
the largest impeding factor in BCI research and ECoG research (including this research)
in particular remains the scarcity of data and participants. The scarcity of data may be
limiting and frustrating at times, but one must not forget that this type of research is
performed for and with human beings. The author of this research has attended one of
the surgeries required for the implantation of the ECoG grid and has further personally
witnessed at first hand the burden of data collection for the already ill participants
suffering from not only their epilepsy but also from the consequences of the surgery they
underwent. Foremost, gratefulness should here be expressed to all the participants in this
research for their courage, time and effort. Naturally, a higher number of participants
would have strengthened the results especially in a statistical sense and could have
helped to better explain the variance in classification scores, but four participants can
be already considered as a relatively large number of participants in ECoG literature.
It is imaginable that home usage of a BCI would allow for the collection of more data
over time, enabling the use of more complex classifiers. But for most research, including
this one, the matter of data scarcity will likely remain prominent and researchers must
therefore be pragmatical in their choice of classification strategy.

The above paragraph should also serve as an encouragement that machine learn-
ing in BCI research should mainly remain a means towards an end and not an end in
itself. Therefore, researchers should also attempt to investigate possibilities for improve-
ment in the broadest range of the classification pipeline, starting with the preprocessing
and feature extraction stages and ending with the deployment of classifiers. The influence
of the preprocessing and feature extraction procedure of this research also deserves some
discussion. Here, rather wide one second Hanning windows were used to ensure that
at least a complete flexion of the finger was included in the window. However, because
the window was centered around the peak of movement, it is reasonable to assume
that the windows included a significant amount of rest signal prior to movement. In
hindsight, this could have been disadvantageous for the feature extraction of ipsilateral
fingers with less pronounced activity. Also, the relatively wide window setting may have
masked the possible influence of the earlier occurrence of ipsilateral activity in the time
lag classification in Section 3.4.5. The fact that classification in Section 3.4.5 was above
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chance level even half a second before movement can similarly be contributed to the
fact that half of the window centered around -0.5 seconds included signal corresponding
to movement onset. Additionally, the steep increase of the posterior probability in the
asynchronous evaluation (Figure 3.18) can be attributed to the wide window setting.
Selection of a more narrow window may have lead to a more gradual increase of
posterior probability which in turn could have effected the detection process. Although
determining the optimal window length can be considered as a form of hyper-parameter
optimization, the exact windowing approach could be more thoroughly investigated.
For example, in the time frame during which this research was carried out, an article
was published that effectively included temporal successions of cortical signals in the
classification process, which increased classification performance for finger movement
with a similar simple LDA classifier (Gruenwald et al., 2019) that was highly successful
in this research.

Similarly, there still exists a myriad of features, feature extraction techniques, di-
mensionality reduction techniques, noise mitigation techniques and classifiers that can
be employed, of which Table E.1 shows only a small collection. Most interesting is
that these techniques have proven to be successful for classification or regression of
contralateral finger movement, but have not yet been applied towards the decoding of
ipsilateral finger movement. An investigation into the application of these options might
therefore be an interesting quest.

The usage of machine learning methods here can be discussed in the light of the
thought that only synchrony of man and machine can lead to optimal BCI usage.
In terms of this research, that was of an exploratory nature, any hyper-parameter
optimization was not performed to favor generalizability and comparability of results
across participants. But however important generalization is for research and however
noble the quest for a ”one size fits all” BCI may be, this research has shown that increase
in performance may be possible with further optimization of several parameters in the
classification pipeline. Firstly, the hyper-parameter optimization in Sections 3.4.2 and
3.4.3 show that tuning hyper-parameters can increase decoding performance. The actual
validation of those settings must then however be appropriately determined, as the
hyper-parameter search in this research was only used as a sanity check. Secondly, the
cortical structure and occurrence of cortical activity varies strongly across participants
and therefore the search for informative participant-specific frequency modulations and
locations thereof may be fruitful (Scherer et al., 2009). This research has shown that
feature extraction could even be dependent on participant-specific temporal aspects of
cortical activity (Section 3.4.5).

5.5.4 Modeling of the NC State

The modeling of the NC state as performed in this research also deserves some discussion.
Section 2.9 already discussed the difficulty of accurately modeling the NC state since it
factually constitutes everything that is not an IC state. However, in this research it was
decided to model an NC state (by means of taking one second windows in a rest trial as
depicted in Figure 3.8 for several reasons. Firstly, these observations of rest were required
to calculate the channel R2 values in the spatial analysis (Section 3.3.2). Secondly,
this research aimed to quantify the number of confusions with rest in the synchronous
classification, for which observations of rest were required. These same trials of rest
were later used to calculate the channel importance in the spatial analysis of Section 3.4.6.

If the NC state was not accurately modeled by these rest trials, this would have
strong consequences for all analyses performed in this research. In this dataset, the time
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in between trials was relatively short and this research was not able to rule out the
possibility that several frequency components such as the β rebound or other sustained
presence of cortical activity (described in Section 2.4.2) may have bled into the one
second windows placed in the rest trials. Additionally, signal components related to the
anticipation of movement (e.g. (Kornhuber and Deecke, 1965)) may have been present
throughout the runs since it this research employed an event-based task design (Olman
et al., 2012b). It is debatable whether similar activity in the HFB would be included,
since that component was strongly time-locked to movement (e.g. (Talakoub et al., 2017)
(Huo et al., 2010)), but especially the combination of sustained cortical activity in the
α and/or β bands with an absence or scarcity of cortical activity in the HFB in trials
of rest does resemble the cortical activity resulting from ipsilateral finger movement. In
that sense, bad modeling of the NC state may actually cause additional false positive
detections of finger movement.

The above scenario is however highly speculative and this research did not at-
tempt to establish the true extent to which this phenomenon may have taken place.
Rather, good care was taken to select one second windows that contained only rest and
were surrounded by rest as much as possible. Additionally, this research investigated
whether the set of sub-sampled rest trials were representative with respect to all available
rest trials by refraining from sub-sampling of rest trials in the classification prior to
the asynchronous classification (Figure 4.24). These results showed that the amount of
confusions of ipsilateral finger movements with rest did not increase proportionally to
the increas in the number of rest trials in the classification process. Therefore, it can be
argued that the NC state was modeled fairly well by these rest trials.

Nevertheless, it may advisable for the future researcher to think about whether
he or she wants to model a NC state at all. The direct seven-class classification employed
in this research required the classifier to always choose one class at every observation
since it simply cannot output no class label at all. Similarly, the posterior probability
distribution outputted over all classes should sum to one and this distribution rarely
showed a scenario in which equal probabilities over the movement classes were assigned
(Figure 3.20). If the rest class was not included, the classifier would have been forced to
make a choice out of the remaining six classes (which constituted finger movement) at
every observation. In the case of periods of rest, the classifier would have likely picked
the class that most resembled rest out of the classes it can choose from, which would
likely be one of the ipsilateral finger movement classes. This would have potentially
caused even more false positive detections and as such, the modeling of an NC state was
clearly a necessity with this approach. In hindsight, a completely different approach to
the asynchronous classification could have been handled that circumvented the need to
model an NC state altogether. An example would be to use a number of 1-class SVMs
that are trained only on the class they have to detect, so that classification becomes a
matter of anomaly detection instead of assigning a specific class label to each window.

5.5.5 Creation of a Dataset for an Asynchronous Evaluation

This research has shown that fair accuracy can be obtained for the classification of
contralateral and ipsilateral finger movements during a synchronous evaluation. It is
needless to mention that especially the decodability of ipsilateral finger movements
should from now on only be mainly evaluated in an asynchronous setting to determine
how well the false positive detections related to movements of these fingers can be
mitigated.

As mentioned in the discussion of the literature review (Section 2.8) this dataset
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was not purposely designed for an asynchronous evaluation. Therefore, the most
important step towards future research is the recording of a dataset that is suitable for
the classification of contralateral and ipsilateral finger movements in an asynchronous
setting. The first recommendation towards this dataset is to increase the duration of
movement events. Since the movement task equipped in this research dictated mostly
one finger flexion and extension, the movement events were of relatively short duration.
Most BCI datasets for asynchronous evaluations include (attempted) movement events
of several seconds (e.g. (Blankertz et al., 2007) (Brunner et al., 2008) (Leeb et al., 2008)).
The dwell times in this research were relatively short with a minimum of 0.02 and a
maximum of 0.53 seconds. Such short dwell times were dictated by the short movement
periods but could be responsible for a portion of false positives. Longer (attempted)
movement events could enable longer dwell times so that noisy detections need not to be
counted as a false positives. Especially for ipsilateral finger movements, which appeared
to be more difficult to detect, this could be beneficial.

The second recommendation to be made for this dataset has regard to the NC
events. The dataset of this research contained relatively short periods of NC (rest). The
possibility that false positives for ipsilateral fingers may be caused by stray activity
prior to and following finger movement has already been discussed, but with the short
and fixed inter-trial times in between movements of this dataset, it can not be certainly
determined whether the occurrences of false positives for ipsilateral fingers would only
occur prior to and shortly following contralateral or ipsilateral finger movement. It
would be advisable to determine whether the false positive detections of ipsilateral
finger movements would spontaneously occur after much longer periods of rest of several
seconds or even minutes. If this is not the case, it could put the results of this research
in a different perspective and the problem of false positives may be partially mitigated
by using for example a refractory period. The fixed inter-trial time of the employed
data set in this research also explains why any refractory period was not introduced
in this research. A fixed refractory period with the length of the inter-trial time could
theoretically have mitigated the occurrence of all false positives which would provide
highly masked results. Although the refractory period may good for mitigating false
positives and misclassifications of multiple fingers during movement events, they should
be used with caution for the above mentioned reason. In real life BCI situations, periods
of NC would have a more variable duration and the determination of a refractory period
will be not as straightforward. The variable length of NC episodes could additionally
provide the future researcher with more possibilities to model and evaluate an NC state
in different ways and aid in determining whether modeling an NC would be a logic
approach in the first place.

The creation of such a dataset will first be limited to an event-related task design
with executed movement. A task design with imagined movement or a self paced task
design would require feedback to the user for which first a reasonable working system
for the detection of (mainly ipsilateral) fingers is required.

5.5.6 Alternative Classification Strategy

It is worthwhile to shortly spark a brainstorm surrounding an alternative classification
strategy for the classification of contralateral and ipsilateral finger movements. This re-
search has not further explored the possibilities mentioned in Section 2.5.3 regarding the
use of pragmatical constraints or hierarchical classification, but such constraints may be
valuable in this scenario. One possible option for an asynchronous BCI employing these
constraints would be a multi-stage classifier specifically designed for the classification of
contralateral and ipsilateral finger movements. As seen from the confusion matrices of
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the synchronous classification (Section 3.4.3), contralateral and ipsilateral finger move-
ments could be well distinguished from each other. Contralateral and ipsilateral finger
movements could possibly be well distinguished from rest by using only those channels
that showed significant cortical activity. Two separate classifiers could be trained on the
subsets of significantly activated channels for each laterality and could, during the classifi-
cation, jointly first place a decision on whether there was movement or not and afterwards
decide on which finger was moved, in a hierarchical fashion. This could circumvent the
problem that may arise when a classifier has been trained on a lot of non-significant
channels. Further decreasing the number of electrodes in the classification process has
the additional benefit that the dimensionality of the data is lowered. To what extent the
discarding of non-significant electrodes influences the ability to accurately distinguish in-
dividual contralateral and ipsilateral fingers should then naturally be first investigated,
but removing non-significant channels during classifier training is an otherwise known
and used methodology (e.g. (Salari et al., 2019)).

5.5.7 Exploiting Knowledge of Underlying Neurophysiology

This research has not further investigated the neurological processes and functional roles
that govern cortical activity resulting from contralateral and ipsilateral finger movements.
This topic was outside the scope of this research and for that reason discussion of this
topic might become more speculative than factual. However, if properly investigated,
knowledge on this matter could have provided another layer of depth in this discussion.
For this reason, some of the insights - mostly related to cortical activity resulting from
ipsilateral movements - are worth mentioning while refraining from directly relating
them to the results obtained in this research.

Several articles in the literature review have argued that ipsilateral cortical activ-
ity plays an active role rather than a passive role during voluntary movement. Literature
reported that cortical activity resulting from ipsilateral movement was mostly seen
during active movement tasks and not during passive tactile stimulation (e.g. (Berlot
et al., 2018) (Singh et al., 1998) (Li et al., 1996)). Several other articles argued that
ipsilateral activity may play a supportive role during voluntary movement of limbs of the
opposite laterality, contributing to the precision of those movements (e.g. (Ehrsson et al.,
2000) (Verstynen et al., 2005)). Such a theory would fit with the matter of handedness,
where it was reported that ipsilateral cortical activity was most pronounced during
non-dominant hand movements (e.g. (Kobayashi et al., 2003), (Singh et al., 1998)). Also,
an earlier occurrence of ipsilateral activity (e.g. (Wisneski et al., 2008), (Leuthardt et al.,
2009)) suggests that ipsilateral activity may even play a role in movement planning,
perhaps supported by the findings that ipsilateral activity was found in the PM cortex
(e.g. (Berlot et al., 2018) (Wisneski et al., 2008)).

There similarly is debate about the functional relation between contralateral and
ipsilateral activity in the two hemispheres. Some research shows that fibers in the
Corpus Callosum (CC) connect the motor cortices of different hemispheres and one can
therefore investigate how activity in the motor cortex of a single hemisphere is related
to activity in the laterally opposite motor cortex (Wahl et al., 2007). The research
by Berlot and colleagues (Berlot et al., 2018) suggests that the motor cortices of the
two hemispheres reflect different functional processes during unilateral movement and
activity in M1 of a single hemisphere is not likely to be attributed by passive spillover
from the laterally opposite motor cortex. Although these examples again focuses on two
hemispheres instead of one, more investigation into the specific underlying phenomena
that generate cortical activity in M1 (and S1) of a single hemisphere during ipsilateral
and contralateral finger movement may have enabled a more thorough discussion on
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the matter why M1 was did not appear to be the most informative cortical area for
distinguishing ipsilateral and contralateral finger movement. Similarly, such research
could provide more clarification as to why S1 was an important cortical area in this
research. Furthermore, the knowledge of the underlying neurophysiological principles
could have aided with explaining several observations in this research, such as the
variances in the classification accuracies for ipsilateral finger movements or the question
as to why the spectral and spatial differences between cortical activity resulting from
contralateral and ipsilateral finger movement mostly manifested only in the HFB.

This knowledge could be applied practically as well. Firstly, if ipsilateral activity
indeed plays an active role during voluntary movement, this might support that
ipsilateral cortical activity could potentially also be modulated by individuals with LIS
or lesional BCI users in general, which can serve as a motivation to perform further
research into the topic of decoding ipsilateral finger movements. Secondly, the matter of
handedness could not be further clarified by the results of this research, but if handedness
is in some way related the amount of cortical activity resulting from ipsilateral finger
movements, then knowledge about this could aid in the decision on which hemisphere the
electrode grid should be placed. Similarly, if cortical activity resulting from ipsilateral
movement is related to movement planning (Wisneski et al., 2008), then a small extension
of the grid over the SMC towards the PM cortex might possibly be beneficial. Lastly, if
the amount of ipsilateral cortical activity is indeed dependent on the task complexity
(perhaps in a supportive manner as described above) (e.g. (Ehrsson et al., 2000), (Huo
et al., 2010), (Verstynen et al., 2005)), issuing a different and perhaps more complex
finger movement task might yield more cortical activity and possibly better decoding
results.

5.5.8 Experiments with End Users

First, further research should investigate what quantitative performance can be attained
on the classification of contralateral and ipsilateral finger movements. More specifically,
research should first further investigate how well especially the false negative (i.e. missed
detections) and false positive detections mainly associated with ipsilateral finger move-
ment can be mitigated. Afterwards, the true extent to which contralateral and ipsilateral
finger movements can be used as a viable control signal must be determined more qualita-
tively. One important measure of qualitative performance is the opinion of the final user
and the requirements dictated by the final application. Firstly, experiments with lesional
users, such as individuals with LIS, can provide a definitive answer whether the findings
of this research generalize during attempted movement instead of actual performed move-
ment, as was discussed earlier. Secondly, during such experiments, the final user him- or
herself can determine what level of performance is acceptable, depending on the final
application. It is imaginable that some critical tasks such as wheelchair control require
a reliable detection with zero false positives and zero false negatives. Any false positive
detections during such a critical control task can impose risk to the user, which is under-
standably unacceptable. Although false negative detections might influence the perceived
smoothness of operations and thus be frustrating for users, they might be preferable over
false positive detections in a critical control task such as wheelchair control. Other tasks
such as control of a speller or computer program may be less performance critical and
may provide a safer testing environment. If it indeed appears that there is a limit to the
attainable performance on the classification of ipsilateral fingers, they could perhaps still
be used in a more supportive fashion, or during tasks that require less frequent control,
for example performing a right mouse click in addition to a left mouse click, which is
used more often. Although it is yet too early to speculate about the eventual possibili-
ties, it can be stated that even if (attempted) movement of only a single ipsilateral finger
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could be used in BCI control, this would already help not only the UMCU, but the BCI
community and end users towards a BCI with more degrees of freedom.
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6 Conclusion

The main research question of this research was formulated as:

To what extent can contralateral and ipsilateral individual finger movements both
be accurately classified from the SMC of a single hemisphere?

Based on the results of the synchronous classification, it can be stated that con-
tralateral and ipsilateral fingers along with periods of rest can be classified from the SMC
of a single hemisphere with accuracies significantly above chance level (p<0.05) for all
participants. The average attained accuracy of 79.22 ± 6.30 across participants lies only
slightly lower than the definition of accurate classification accuracy of 85% (Vansteensel
et al., 2016a). By performing an asynchronous classification, this research has on the
other hand identified the occurrence of a large number of false positive detections for
mainly ipsilateral finger movements which forms a key obstacle to overcome in future
research. With these results, this research has build further on the results of Scherer and
colleagues, Jin and colleagues and Fujiwara and colleagues ((Scherer et al., 2009), (Jin
et al., 2016),(Fujiwara et al., 2017)) and shows that the results of these authors presented
an optimistic view on the decodability of mainly ipsilateral movement. This research has
provided further directions that future research could take, after which it should become
more clear to what extent both contralateral and ipsilateral finger movements can be
used as a viable control signal for a reliable BCI with more degrees of freedom.

124



References

Acharya, S., Fifer, M. S., Benz, H. L., Crone, N. E., and Thakor, N. V. (2010). Electro-
corticographic amplitude predicts finger positions during slow grasping motions of the
hand. Journal of Neural Engineering, 7(4):046002.

Alkadhi, H., Crelier, G. R., Hotz Boendermaker, S., Hepp-Reymond, M. C., and Kol-
lias, S. S. (2002). Somatotopy in the ipsilateral primary motor cortex. NeuroReport,
13(16):2065–2070.

Alkadhi, H., Kollias, S. S., Crelier, G. R., Golay, X., Hepp-Reymond, M. C., and Valavanis,
A. (2000). Reproducibility of Primary Motor Cortex Somatotopy Under Controlled
Conditions. American Journal of Neuroradiology, 21(8):1423–1433.

Ang, K. K., Guan, C., Chua, K. S. G., Ang, B. T., Kuah, C. W. K., Wang, C., Phua,
K. S., Chin, Z. Y., and Zhang, H. (2011). A Large Clinical Study on the Ability
of Stroke Patients to Use an EEG-Based Motor Imagery Brain-Computer Interface.
Clinical EEG and Neuroscience, 42(4):253–258.

Bai, O., Lin, P., Vorbach, S., Li, J., Furlani, S., and Hallett, M. (2007). Exploration of
computational methods for classification of movement intention during human volun-
tary movement from single trial EEG. Clinical Neurophysiology, 118(12):2637–2655.

Baraldi, P., Porro, C. A., Serafini, M., Pagnoni, G., Murari, C., Corazza, R., and Nichelli,
P. (1999). Bilateral representation of sequential finger movements in human cortical
areas. Neuroscience letters, 269(2):95–98.

Bashashati, A., Ward, R. K., and Birch, G. E. (2007). Towards development of a 3-
state self-paced brain-computer interface. Computational intelligence and neuroscience,
2007.

Bauer, G., Gerstenbrand, F., and Rumpl, E. (1979). Varieties of the locked-in syndrome.
Journal of Neurology, 221(2):77–91.

Beisteiner, R., Gartus, A., Erdler, M., Mayer, D., Lanzenberger, R., and Deecke, L. (2004).
Magnetoencephalography indicates finger motor somatotopy. European Journal of Neu-
roscience, 19(2):465–472.

Berlot, E., Prichard, G., O’Reilly, J., Ejaz, N., and Diedrichsen, J. (2018). Ipsilateral finger
representations in the sensorimotor cortex are driven by active movement processes,
not passive sensory input. Journal of Neurophysiology, 121(2):418–426.

Besle, J., Sánchez-Panchuelo, R. M., Bowtell, R., Francis, S., and Schluppeck, D. (2014).
Event-related fMRI at 7T reveals overlapping cortical representations for adjacent fin-
gertips in S1 of individual subjects. Human Brain Mapping, 35(5):2027–2043.

Birbaumer, N. (2006). Breaking the silence: Brain-computer interfaces (BCI) for com-
munication and motor control. In Psychophysiology, volume 43, pages 517–532. John
Wiley & Sons, Ltd (10.1111).

125



Blankenburg, F., Ruben, J., Meyer, R., Schwiemann, J., and Villringer, A. (2003). Ev-
idence for a rostral-to-caudal somatotopic organization in human primary somatosen-
sory cortex with mirror-reversal in areas 3b and 1. Cerebral cortex (New York, N.Y. :
1991), 13(9):987–993.

Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.-R., and Curio, G. (2007). The
non-invasive berlin brain–computer interface: fast acquisition of effective performance
in untrained subjects. NeuroImage, 37(2):539–550.

Blaus, B. (2014). Medical Gallery of Blausen Medical.

Bleichner, M. G., Freudenburg, Z. V., Jansma, J. M., Aarnoutse, E. J., Vansteensel, M. J.,
and Ramsey, N. F. (2016). Give me a sign: decoding four complex hand gestures based
on high-density ECoG. Brain Structure and Function, 221(1):203–216.

Bleichner, M. G., Jansma, J. M., Sellmeijer, J., Raemaekers, M., and Ramsey, N. F.
(2014). Give me a sign: Decoding complex coordinated hand movements using high-
field fMRI. Brain Topography, 27(2):248–257.

Bodison, S. (2017). Neuroimaging.

Bougrain, L., Liang, N., Inria, C., and University-loria, N. (2009). Band-specific features
improve Finger Flexion Prediction from ECoG. Jornadas Argentinas sobre Interfaces
Cerebro Computadora, 2009:1–4.

Branco, M. P., Freudenburg, Z. V., Aarnoutse, E. J., Bleichner, M. G., Vansteensel, M. J.,
and Ramsey, N. F. (2017). Decoding hand gestures from primary somatosensory cortex
using high-density ECoG. NeuroImage, 147:130–142.

Branco, M. P., Freudenburg, Z. V., Aarnoutse, E. J., Vansteensel, M. J., and Ramsey,
N. F. (2018a). Optimization of sampling rate and smoothing improves classification of
high frequency power in electrocorticographic brain signals. Biomedical Physics and
Engineering Express, 4(4):045012.

Branco, M. P., Leibbrand, M., Vansteensel, M. J., Freudenburg, Z. V., and Ramsey, N. F.
(2018b). Gridloc: An automatic and unsupervised localization method for high-density
ecog grids. NeuroImage, 179:225–234.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., and Pfurtscheller, G. (2008). Bci
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A Electrode Grid Layout
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6 10 18 22 30 34 42 46 

7 11 19 23 31 35 43 47 

8 12 20 24 32 36 44 48 

P1 P2

Figure A.1: Electrode Grid Numbering and Layout for participants P1 and P2. Channels
over the CS are depicted in gray, channels over S1 are depicted in blue and channels over
M1 are depicted in red. Faulty are depicted in a wave pattern.
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Figure A.2: Electrode Grid Numbering and Layout for participant P3. Channels over the
CS are depicted in gray, channels over S1 are depicted in blue and channels over M1 are
depicted in red. Channels indicated in white are those that fall in neither M1, S1 or the
CS. Faulty channels are depicted in a wave pattern.
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P4
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Figure A.3: Electrode Grid Numbering and Layout for participant P4. Channels over the
CS are depicted in gray, channels over S1 are depicted in blue and channels over M1 are
depicted in red. Faulty channels are depicted in a wave pattern.
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B Elaboration on Inclusion Criteria

This appendix provides an elaboration on the decisions that were involved in constructing
the inclusion criteria. These are summed up per inclusion criterium.

• Date: Articles focusing on physiological processes may be older articles, as they
portray results about the brain that may not change significantly over time (such
as definition of Brodmann areas). To include these articles, no lower boundary on
the publication year was set. However, articles related to classification or other com-
puterized methods quickly outdate given the rapid increase of computing power and
classification possibilities. Therefore, the choice was made to only include articles
from the year 2000.

• Participants: Studies that use data acquired from healthy participants are natu-
rally included. Studies with epilepsy patients are expected since much of the ECoG
research is performed with participants that required ECoG electrode implantation
for the localization of epilepsy foci. Studies with epilepsy participants are therefore
included but it is important that task data has not been recorded shortly after or
before an epilepsy attack or that the epileptic focus area does not extend to the
SMC. Studies handling neurological damage of the cortical matter of interest (re-
sulting from stroke or bleeding for example) should be excluded since these damages
may affect patterns of cortical activity and cortical organization. However, studies
handling individuals with amputated limbs or individuals with paralysis (such as
those who suffer from ALS) are included. A low number of participants is expected
for ECoG studies, therefore no lower boundary for the number of participants was
set. Non-human primate studies were considered, but it was not known whether the
results would generalize and therefore it was decided to exclude those studies

• Methodology: The movement during tasks should be measured with a data glove,
EMG measurements or similar techniques so that obtained results can be precisely
aligned with the movement. Studies with purely qualitative methodologies (free un-
recorded movement) will be excluded. Studies that focus solely on bimanual move-
ment were excluded since unimanual movement is researched in this review. Only
studies that recorded hand and finger movement were included. However, studies
with attempted movement from individuals with amputated limbs or paralysis were
included, since studies with these patients were included as defined by the inclusion
criterion ”participants” above.

• Language: This study field was not so small that articles from other languages
had to be considered. Therefore, it was decided for the sake of transparency to only
include articles written in English.

• Literature types: Literature from peer-reviewed (Scopus, Embase, Pubmed,
Google Scholar) and non-peer reviewed sources (BioRxiv) were included. The one
exception was made for BioRxiv in order to include relevant articles that had not
yet been published.
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• Modality: Articles using ECoG, fMRI, EEG and MEG were included. Studies that
combine two or more of the abovementioned modalities were also included and were
even highly favorable. Needle electrodes and other techniques such as fNIRS have
been considered, but in order to avoid too many comparisons between modalities
the focus was lain on these four modalities since it was expected that the majority
of publications would use one of these modalities.
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C Keyword Combinations with
Boolean Operators

Below in Table C.1, the keywords that were used during the literature search are organized
and grouped per concept, so that clustered groups of words or separate words can be used
to define search queries for the databases with a boolean (OR, AND, NOT) structure.

Concept Keywords and Search Terms

Imaging modality

(Functional magnetic resonance imaging OR fMRI OR MRI)
(ECoG, OR electrocorticography)
(electroencephalography OR EEG OR iEEG OR intracranial OR EEG)
(magnetoencephalography OR MEG)

Cortical areas

(Primary somatosensory cortex OR sensory cortex OR s1 OR
postcentral gyrus)
(Primary motor cortex OR motor cortex OR m1 OR precentral gyrus)
(Sensorimotor cortex OR SMC)

Decoding and Classification
(encoding OR decoding OR classification)
(mapping OR somatotopy OR somatotopic OR representation)

Movement (finger OR hand OR gesture OR unimanual OR movement)

Laterality (contralateral OR ipsilateral)

Participant type Human

Study type Comparing

Table C.1: Keywords and search terms for the literature search grouped in a boolean
structure per concept
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D Search Queries
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Including all search terms and bridging all categories with an OR operator  

(functional magnetic resonance imaging OR fmri OR mri) OR (electrocorticography OR ecog) 

OR (encephalography OR eeg OR ieeg OR intracranial eeg) OR (micro array OR needle) OR 

(magnetoencephalography OR meg) AND (Primary somatosensory cortex OR sensory cortex 

OR s1 OR postcentral gyrus) OR (Primary motor cortex OR motor cortex OR m1 OR 

precentral gyrus) OR (Sensorimotor cortex OR SMC) OR (encoding OR decoding OR 

classification) OR (mapping OR somatotopy OR somatotopic OR representation) OR (finger 

OR hand OR gesture OR unimanual) OR (Contralateral AND Ipsilateral) 

Scopus Pubmed Embase Biorxiv Google Scholar 

4,602,818  2,055,920  1,557,773 - - 

Query much too broad and too long for biorxiv and google scholar 

 

 

Including all search terms and bridging all categories with an AND operator  

(functional magnetic resonance imaging OR fmri OR mri) OR (electrocorticography OR ecog) 

OR (encephalography OR eeg OR ieeg OR intracranial eeg) OR (micro array OR needle) OR 

(magnetoencephalography OR meg) AND (Primary somatosensory cortex OR sensory cortex 

OR s1 OR postcentral gyrus) AND (Primary motor cortex OR motor cortex OR m1 OR 

precentral gyrus) AND (Sensorimotor cortex OR SMC) AND (encoding OR decoding OR 

classification) AND (mapping OR somatotopy OR somatotopic OR representation) AND 

(finger OR hand OR gesture OR unimanual) AND (Contralateral AND Ipsilateral) 

Scopus Pubmed Embase Biorxiv Google Scholar 

1 0 0 - - 

Query much too narrow and too long for biorxiv and google scholar 

 

 

Including all articles which handle finger mapping or classification in any of the 

brain areas 

(functional magnetic resonance imaging OR fmri OR mri)  OR  (electrocorticography OR 

ecog) OR (encephalography OR eeg OR ieeg OR intracranial eeg) OR (micro array OR 

needle) OR (magnetoencephalography OR meg)  OR (encoding OR decoding OR 

classification) OR (mapping OR somatotopy OR somatotopic OR representation) AND (finger 

OR hand OR gesture OR unimanual) AND (Contralateral AND Ipsilateral) OR (Primary 



somatosensory cortex OR sensory cortex OR s1 OR postcentral gyrus) OR (Primary motor 

cortex OR motor cortex OR m1 OR precentral gyrus) OR (Sensorimotor cortex OR SMC) 

Scopus Pubmed Embase Biorxiv Google Scholar 

3,481 214,294 

 

122,917 - - 

Query much too broad and too long for biorxiv and google scholar 

 

 

Including all articles which handle finger mapping and classification in any of the 

brain areas 

(functional magnetic resonance imaging OR fmri OR mri)  OR  (electrocorticography OR 

ecog) OR (encephalography OR eeg OR ieeg OR intracranial eeg) OR (micro array OR 

needle) OR (magnetoencephalography OR meg)  AND (encoding OR decoding OR 

classification) AND (mapping OR somatotopy OR somatotopic OR representation) AND 

(finger OR hand OR gesture OR unimanual) AND (Contralateral AND Ipsilateral) OR 

(Primary somatosensory cortex OR sensory cortex OR s1 OR postcentral gyrus) OR (Primary 

motor cortex OR motor cortex OR m1 OR precentral gyrus) OR (Sensorimotor cortex OR 

SMC) 

Scopus Pubmed Embase Biorxiv Google Scholar 

95 214,055 

 

122,523 - - 

Query much too broad and too long for biorxiv and google scholar 

 

 

 

Including all articles which handle finger mapping or classification in the specific 

brain areas 

(functional magnetic resonance imaging OR fmri OR mri)  OR  (electrocorticography OR 

ecog) OR (encephalography OR eeg OR ieeg OR intracranial eeg) OR (micro array OR 

needle) OR (magnetoencephalography OR meg)  OR (encoding OR decoding OR 

classification) OR (mapping OR somatotopy OR somatotopic OR representation) AND (finger 

OR hand OR gesture OR unimanual) AND (Contralateral AND Ipsilateral) AND (Primary 

somatosensory cortex OR sensory cortex OR s1 OR postcentral gyrus) AND (Primary motor 

cortex OR motor cortex OR m1 OR precentral gyrus) OR (Sensorimotor cortex OR SMC) 



Scopus Pubmed Embase Biorxiv Google Scholar 

19 16,349 

 

 

17,345 - - 

Query much too broad and too long for biorxiv and google scholar 

 

 

Including all articles which handle finger mapping and classification in the specific 

brain areas 

(functional magnetic resonance imaging OR fmri OR mri)  OR  (electrocorticography OR 

ecog) OR (encephalography OR eeg OR ieeg OR intracranial eeg) OR (micro array OR 

needle) OR (magnetoencephalography OR meg)  AND (encoding OR decoding OR 

classification) AND (mapping OR somatotopy OR somatotopic OR representation) AND 

(finger OR hand OR gesture OR unimanual) AND (Contralateral AND Ipsilateral) OR 

(Primary somatosensory cortex OR sensory cortex OR s1 OR postcentral gyrus) OR (Primary 

motor cortex OR motor cortex OR m1 OR precentral gyrus) OR (Sensorimotor cortex OR 

SMC) 

 

Scopus Pubmed Embase Biorxiv Google Scholar 

95 214,055 

 

 

122,523 - - 

Query much too broad and too long for biorxiv and google scholar 

 

 

Including all articles which handle finger mapping in the specific brain areas 

(functional magnetic resonance imaging OR fmri OR mri)  OR  (electrocorticography OR 

ecog) OR (encephalography OR eeg OR ieeg OR intracranial eeg) OR (micro array OR 

needle) OR (magnetoencephalography OR meg) AND (mapping OR somatotopy OR 

somatotopic OR representation) AND (finger OR hand OR gesture OR unimanual) AND 

(Contralateral AND Ipsilateral) AND (Primary somatosensory cortex OR sensory cortex OR 

s1 OR postcentral gyrus) AND (Primary motor cortex OR motor cortex OR m1 OR 

precentral gyrus) OR (Sensorimotor cortex OR SMC) 

Scopus Pubmed Embase Biorxiv Google Scholar 



5 16,288 17,500 - - 

Query much too broad and too long for biorxiv and google scholar 

 

  

Including all articles which handle decoding in the specific brain areas  

(functional magnetic resonance imaging OR fmri OR mri)  OR  (electrocorticography OR 

ecog) OR (encephalography OR eeg OR ieeg OR intracranial eeg) OR (micro array OR 

needle) OR (magnetoencephalography OR meg) AND (encoding OR decoding OR 

classification) AND (finger OR hand OR gesture OR unimanual) AND (Contralateral AND 

Ipsilateral) AND (Primary somatosensory cortex OR sensory cortex OR s1 OR postcentral 

gyrus) AND (Primary motor cortex OR motor cortex OR m1 OR precentral gyrus) OR 

(Sensorimotor cortex OR SMC) 

Scopus Pubmed Embase Biorxiv Google Scholar 

1 16,243 17,493 - - 

Query much too broad and too long for biorxiv and google scholar 

 

 

All modalities, but only focussing on decoding and classification of movements of 

contralateral and ipsilateral, not minding the brain regions.  

(functional magnetic resonance imaging OR fmri OR mri)  OR  (electrocorticography OR 

ecog) OR (encephalography OR eeg OR ieeg OR intracranial eeg) OR (micro array OR 

needle) OR (magnetoencephalography OR meg) AND (encoding OR decoding OR 

classification) AND (finger OR hand OR gesture OR unimanual) AND (Contralateral AND 

Ipsilateral)  

Scopus Pubmed Embase Biorxiv Google Scholar 

34 39 34 - - 

Query returns a decent number of results, the query is still too long for biorxiv and scholar 

 

 

Only ecog and only focussing on decoding and classification of movements of 

contralateral and ipsilateral, not minding the brain regions.  



( electrocorticography  OR  ecog )  AND  ( encoding  OR  decoding  OR  classification )  

AND  ( finger  OR  hand  OR  gesture  OR  unimanual )  AND  ( contralateral  AND  

ipsilateral )  OR  ( primary  AND somatosensory  AND cortex  OR  sensory  AND cortex  

OR  s1  OR  postcentral  AND gyrus )  OR  ( primary  AND motor  AND cortex  OR  motor  

AND cortex  OR  m1  OR  precentral  AND gyrus )  OR  ( sensorimotor  AND cortex  OR  

smc ) 

Scopus Pubmed Embase Biorxiv Google Scholar 

26 27,094 30,789 - - 

Query returns a decent number of results, the query is still too long for biorxiv and scholar 

 

 

Only fmri and only focussing on decoding and classification of movements of 

contralateral and ipsilateral, not minding the brain regions.  

(functional magnetic resonance imaging OR fmri OR mri) AND  ( encoding  OR  decoding  

OR  classification )  AND  ( finger  OR  hand  OR  gesture  OR  unimanual )  AND  ( 

contralateral  AND  ipsilateral )  OR  ( primary  AND somatosensory  AND cortex  OR  

sensory  AND cortex  OR  s1  OR  postcentral  AND gyrus )  OR  ( primary  AND motor  

AND cortex  OR  motor  AND cortex  OR  m1  OR  precentral  AND gyrus )  OR  ( 

sensorimotor  AND cortex  OR  smc ) 

Scopus Pubmed Embase Biorxiv Google Scholar 

77 27,065 30,802 - - 

Query returns a decent number of results, the query is still too long for biorxiv and scholar 

                                                                                                                                                                                                                                                                                                                                                                                            

 

Focusing on the mapping or somatotopy of fingers including all modalities and 

not specifing brain areas 

mapping  OR  somatotopy  OR  representation  AND  finger  AND  ( ecog  OR  fmri  OR  

mico array  OR  eeg  OR  meg ) 

Scopus Pubmed Embase Biorxiv Google Scholar 

68 313 428 0 48,100 

Query returns a decent number of results 

 



 

Focusing on the mapping or somatotopy of fingers and hand including all 

modalities and not specifing brain areas 

mapping  OR  somatotopy  OR  representation  AND  finger  OR  hand  AND  ( ecog  OR  

fmri  OR  mico  AND  array  OR  eeg  OR  meg) 

Scopus Pubmed Embase Biorxiv Google Scholar 

191 

2,826 

134 0 140,000 

Query returns a decent number of results 

 

 

Focusing finger activation on ipsilateral and contralateral including all modalities  

finger  AND  ( ecog  OR  fmri  OR  eeg  OR  meg  OR  micro  AND array )  AND  ipsilateral  

AND  contralateral 

Scopus Pubmed Embase Biorxiv Google Scholar 

2 2 2 0 7,340 

Query returns a decent number of results 

 

Attempt to look at the difference between contralateral and ipsilateral for the 

brain areas 

motor cortex AND sensory cortex AND contralateral AND ipsilateral AND finger  

Scopus Pubmed Embase Biorxiv Google Scholar 

69 4 4 11 29,600 

Query returns a decent number of results 

 

 

 

Looks at decoding of finger or hand or gestures from any modality, but looking at 

ipsilateral and contralateral 



Decoding OR classification AND finger OR hand OR gesture AND (ecog OR fmri OR eeg OR 

meg OR electrode array) AND ipsilateral AND contralateral  

Scopus Pubmed Embase Biorxiv Google Scholar 

0 342 468 1 29,600 

Query returns a decent number of results 

 

 

Strictly decoding or classification focused on ecog and o n fingers 

finger AND decoding OR classification AND ecog 

Scopus Pubmed Embase Biorxiv Google Scholar 

65 284 933 17 5,360 

 

 
 

Decoding of fingers with any modality but including ipsilateral and contralateral  

finger AND decoding OR classification AND ecog OR fmri OR eeg OR needle OR micro array 

OR meg) AND ipsilateral AND contralateral 

Scopus Pubmed Embase Biorxiv Google Scholar 

0 1387 2052 0 12,200 

 

 

 

Classification or decoding with any technique but including the terms of the brain 

areas 

finger AND decoding OR classification AND ecog OR fmri OR eeg OR needle OR micro array 

OR meg AND ipsilateral AND contralateral AND sensory cortex AND motor cortex 

Scopus Pubmed Embase Biorxiv Google Scholar 



0 9 10 4 4,220 

 

 

 

Classification or decoding with any technique but including the terms of the brain 

areas 

 ( functional  AND magnetic  AND resonance  AND imaging  OR  fmri  OR  mri  OR  

electrocorticography  OR  ecog  OR  encephalography  OR  eeg  OR  ieeg  OR  intracranial  

AND eeg  OR  micro  AND array  OR  needle  OR  magnetoencephalography  OR  meg )  

AND  ( encoding  OR  decoding  OR  classification )  AND  ( finger  OR  hand  OR  gesture 

) 

Scopus Pubmed Embase Biorxiv Google Scholar 

2 129 160 - 4,220 

 

 

  



 



E Classification Attempts in Litera-
ture

Author Modality Task Features Classifier
Contralateral
Hand

(Li et al., 2017)
(Branco et al., 2018a)
(Pan et al., 2018)
(Branco et al., 2017)
(Bundy et al., 2016)
(Fifer et al., 2011)
(Jiang et al., 2018)
(Chestek et al., 2013)
(Bleichner et al., 2016)
(Talakoub et al., 2017)

(Bleichner et al., 2014) (Waldert et al., 2007)
(Flint et al., 2017)
(Waldert et al., 2008)

(Waldert et al., 2008)

Contralateral
Fingers

(Liang and Bougrain,
2012)
(Saa et al., 2018)
(Flamary and Rakotoma-
monjy, 2012)
(Yang et al., 2014)
(Elango et al., 2017)
(Nakanishi et al., 2014)
(Elghrabawy and Wahed,
2012)
(Hazrati and Hofmann,
2012)
(Wang et al., 2010)
(Kubánek et al., 2009)
(Wang, 2011)
(Bougrain et al., 2009)
(Chen et al., 2014)
(Xie et al., 2018)
(Elgharabawy and Wahed,
2017)
(Marjaninejad et al., 2017)
(Samiee et al., 2010)
(Delgado Saa et al., 2016)
(Shenoy et al., 2007)
(Hotson et al., 2016)
(Acharya et al., 2010)
(Yanagisawa et al., 2011)
(Wissel et al., 2013)
(Liao et al., 2007)

(Nambu et al., 2015)
(Formaggio et al., 2008)
(Shen et al., 2014)

(Xiao and Ding, 2015)
(Quandt et al., 2012)
(Liao et al., 2014)

-

Ipsilateral
Hand

- - - -

Ipsilateral
Fingers

(Liu and Sharma, 2010)
(Non-Reproducible Re-
sults)

- - -

Contralateral
and Ipsilat-
eral Hands

(Jin et al., 2016)
(Fujiwara et al., 2017)

- (Cho et al., 2004) -

Contralateral
and Ipsilat-
eral Fingers

(Scherer et al., 2009) (Diedrichsen et al., 2013) (Pires et al., 2007)
(Liao et al., 2007)

(Kauhanen et al., 2006)

Table E.1: Overview of literature handling decoding of hand and finger movements sorted
per category and per measurement modality
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F Visualizations of Conjoined
Movements

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

thumb index middle ring little
0

1

2

3

4

5

6

thumb index middle ring little
0

1

2

3

4

5

6

thumb index middle ring little
0

1

2

3

4

5

6

thumb index middle ring little
0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
ax

im
um

 Z
-s

co
re

d 
D

efl
ec

ti
on

 [a
.u

.]
M

ax
im

um
 Z

-s
co

re
d 

D
efl

ec
ti
on

 [a
.u

.]
M

ax
im

um
 Z

-s
co

re
d 

D
efl

ec
ti
on

 [a
.u

.]

Contralalateral Thumb

Contralalateral Index

Contralalateral Little

Ipsilateral Thumb

Ipsiliteral Index

Ipsilateral Little

thumb index middle ring little

thumb index middle ring little

Figure F.1: The amount of conjoined movement of non-cued fingers during movement of
a cued finger for participant P1.
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Figure F.2: The amount of conjoined movement of non-cued fingers during movement of
a cued finger for participant P2.
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Figure F.3: The amount of conjoined movement of non-cued fingers during movement of
a cued finger for participant P3.
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Figure F.4: The amount of conjoined movement of non-cued fingers during movement of
a cued finger for participant P4.
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G ANOVA Comparison of Con-
joined Movements

For the ANOVA test, the H0 hypothesis denoted that the means of the maximum
movement amplitudes of the cued finger and the specific non-cued finger was equal
(µcued = µnon−cued. If the H0 hypothesis could be rejected, the alternative hypothesis
Ha could be accepted, which denoted that the movement amplitude of the cued finger
was significantly larger than that of the non-cued finger. The significance level was set at
α <0.01 and was Bonferroni corrected for multiple comparisons between the fingers.

Subj. Cued CT CI CM CR CL IT II IM IR IL
1 CT - < 0.01 < 0.01 < 0.01 < 0.01 - - - - -

CI < 0.01 - < 0.01 < 0.01 < 0.01 - - - - -
CL < 0.01 < 0.01 < 0.01 0.6355 - - - - - -
IT - - - - - - < 0.01 < 0.01 < 0.01 < 0.01
II - - - - - < 0.01 - < 0.01 < 0.01 < 0.01
IL - - - - - < 0.01 < 0.01 < 0.01 < 0.01 -

2 CT - < 0.01 < 0.01 < 0.01 < 0.01 - - - - -
CI < 0.01 - < 0.01 < 0.01 < 0.01 - - - - -
CL < 0.01 < 0.01 < 0.01 < 0.01 - - - - - -
IT - - - - - - < 0.01 < 0.01 < 0.01 < 0.01
II - - - - - < 0.01 - < 0.01 < 0.01 < 0.01
IL - - - - - < 0.01 < 0.01 < 0.01 < 0.01 -

3 CT - < 0.01 < 0.01 < 0.01 < 0.01 - - - - -
CI < 0.01 - 0.0283 < 0.01 < 0.01 - - - - -
CL < 0.01 < 0.01 0.832 < 0.01 - - - - - -
IT - - - - - - < 0.01 < 0.01 < 0.01 < 0.01
II - - - - - < 0.01 - < 0.01 < 0.01 < 0.01
IL - - - - - < 0.01 < 0.01 < 0.01 < 0.01 -

4 CT - < 0.01 < 0.01 < 0.01 < 0.01 - - - - -
CI < 0.01 - 1.0000 < 0.01 < 0.01 - - - - -
CL < 0.01 < 0.01 < 0.01 < 0.01 - - - - - -
IT - - - - - - < 0.01 < 0.01 < 0.01 < 0.01
II - - - - - < 0.01 - < 0.01 < 0.01 < 0.01
IL - - - - - < 0.01 < 0.01 < 0.01 < 0.01 -

Table G.1: P-values of the one-way ANOVA between the cued finger and non-cued fingers.
The abbreviations for the fingers are defined as Contralateral thumb (CT), Contralateral
Index (CI), Contralateral Middle (CM), Contralateral Ring (CR), Contralateral Little
(CL), Ipsilateral Thumb (IT), Ipsilateral Index (II), Ipsilateral Middle (IM), Ipsilateral
Ring (IR) and Ipsilateral Little (IL) The ”cued” column shows which finger was cued and
the columns following it show with which finger the one-way ANOVA comparison was
performed. Note that the dataglove was only placed on one hand during the contralat-
eral and ipsilateral tasks and therefore, contralateral and ipsilateral fingers could not be
compared. If the the p-value was smaller than 1x10−4, it is noted in this table as < 0.01.
P-values that were larger than the confidence value α of 0.01 are indicated in bold.
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H Visualizations of the ZPv,Tv,B

Spectral Power Modulations

Figure H.1: Visualization of the spectral modulations represented by ZPv,Tv,B
in the α, β

and HFB frequency bands during movement of the index finger performed by participant
P1. Modulations resulting from contralateral index finger movement are depicted in blue
and modulations resulting from ipsilateral index finger movement are depicted in red.
Each separate line denotes the signal of one channel. The dashed gray lines at t=0 seconds
denote the movement marker position. This Figure caption holds for the following figures
in this Appendix, which show the results for the other participants.

23



Figure H.2: Visualization of the spectral modulations represented by ZPv,Tv,B
in the α, β

and HFB frequency bands during movement of the little finger performed by participant
P1.

Figure H.3: Visualization of the spectral modulations represented by ZPv,Tv,B
in the α, β

and HFB frequency bands during movement of the thumb performed by participant P2.
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Figure H.4: Visualization of the spectral modulations represented by ZPv,Tv,B
in the α, β

and HFB frequency bands during movement of the index finger performed by participant
P2.

Figure H.5: Visualization of the spectral modulations represented by ZPv,Tv,B
in the α, β

and HFB frequency bands during movement of the little finger performed by participant
P2.
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Figure H.6: Visualization of the spectral modulations represented by ZPv,Tv,B
in the α, β

and HFB frequency bands during movement of the thumb performed by participant P3.

Figure H.7: Visualization of the spectral modulations represented by ZPv,Tv,B
in the α, β

and HFB frequency bands during movement of the index finger performed by participant
P3.
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Figure H.8: Visualization of the spectral modulations represented by ZPv,Tv,B
in the α, β

and HFB frequency bands during movement of the little finger performed by participant
P3.

Figure H.9: Visualization of the spectral modulations represented by ZPv,Tv,B
in the α, β

and HFB frequency bands during movement of the thumb performed by participant P4.
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Figure H.10: Visualization of the spectral modulations represented by ZPv,Tv,B
in the α, β

and HFB frequency bands during movement of the index finger performed by participant
P4.

Figure H.11: Visualization of the spectral modulations represented by ZPv,Tv,B
in the α, β

and HFB frequency bands during movement of the little finger performed by participant
P4.
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I Visualizations of the ZPv,Tv,B,Ef

Spectral Power Modulations

Figure I.1: Visualization of the spectral modulations of ZPv,Tv,B,Ef
in the α, β and HFB

frequency bands during movement of the thumb, index and little finger performed by par-
ticipant P2. Modulations during contralateral finger movement are depicted in blue and
modulations during ipsilateral finger movement are depicted in red. The solid lines denote
the grand average signal and the shaded areas show the standard deviation of the signal.
The dashed gray lines at t=0 seconds denote the movement marker positions. This cap-
tion holds for the other figures in this Appendix, which denote the results for the other
participants.

29



Figure I.2: Visualization of the spectral modulations of ZPv,Tv,B,Ef
in the α, β and HFB

frequency bands for participant P3.

Figure I.3: Visualization of the spectral modulations of ZPv,Tv,B,Ef
in the α, β and HFB

frequency bands for participant P4.
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J Channel R2 Values in the α and β
Bands

Figure J.1: Visualization of channel R2 Values in the α band for Participant P1. Channels
that showed no significant cortical activity as well as faulty channels are denoted in gray.
This Figure caption holds for the other figures in this Appendix.

Figure J.2: Visualization of channel R2 Values in the β band for Participant P1.
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Figure J.3: Visualization of channel R2 Values in the α band for Participant P2.

Figure J.4: Visualization of channel R2 Values in the β band for Participant P2.
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Figure J.5: Visualization of channel R2 Values in the α band for Participant P3.
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Figure J.6: Visualization of channel R2 Values in the β band for Participant P3.

Figure J.7: Visualization of channel R2 Values in the α band for Participant P4.

34



Figure J.8: Visualization of channel R2 Values in the β band for Participant P4.

35



K Channel R2 Values in the HFB

Figure K.1: Visualization of channel R2 values in the HFB band for participant P3.
Channels that showed no significant cortical activity as well as faulty channels are denoted
in gray. This Figure caption holds for the other figure in this appendix, which portrays
the results for participant P4.
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Figure K.2: Visualization of channel R2 Values in the HFB band for participant P4.
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L Low Dimensional t-SNE Visual-
izations of Pv,t,B
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Figure L.1: Visualization of the low-dimensional data distribution formed by the t-SNE
algorithm on the Pv,t,B data for participant P3. The purple, blue, red and green dots
indicate the datapoints corresponding to trials of rest, thumb movement, index finger
movement and little finger movement respectively. This Figure caption holds the other
figure in this Appendix, which shows the result for participant P4.39
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Figure L.2: Visualization of the low-dimensional data distribution formed by the t-SNE
algorithm on the Pv,t,B data for participant P4.
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M Confusion Matrices Baseline
Classification
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Figure M.1: Confusion matrices for the classification on the baseline feature vector with
the SVM classifier for each participant individually.
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Figure M.2: Confusion matrices for the classification on the baseline feature vector with
the NB classifier for each participant individually.
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Figure M.3: Confusion matrices for the classification on the baseline feature vector with
the RF classifier for each participant individually.
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N Overview of Classification Accu-
racies

Participant LDA SVM NB RF LDA SVM NB RF

Baseline [α, β,HFB]

P1 73.08 68.75 64.90 49.04 73.56 69.23 63.94 43.27
P2 76.92 67.79 62.50 40.38 79.81 69.23 63.94 48.56
P3 71.84 68.45 57.76 50.00 70.87 66.02 61.17 41.75
P4 65.97 67.54 56.02 49.21 61.78 63.35 53.93 43.98

[α, β] [HFB]

P1 44.23 47.60 38.94 39.42 72.60 68.75 64.90 44.23
P2 37.02 26.92 25.96 22.12 78.85 75.96 64.42 50.96
P3 39.81 34.95 35.92 30.58 70.87 63.11 58.25 31.07
P4 47.64 49.21 42.41 45.03 57.59 52.88 44.50 38.74

[α, β,HFB]B [α, β]B

P1 75.00 78.37 75.48 75.48 47.60 48.56 47.12 38.94
P2 87.02 82.69 85.10 85.10 42.30 36.54 39.42 28.85
P3 81.55 81.55 78.64 78.64 44.66 47.09 40.78 39.32
P4 73.30 76.44 75.92 75.92 55.50 56.54 52.88 47.64

[HFB]B

P1 81.25 76.92 80.29 74.52
P2 85.58 86.54 87.02 78.37
P3 81.07 83.98 80.58 79.13
P4 72.25 72.25 73.30 69.11

Table N.1: Overview of the classification accuracies of all classifiers on the different feature
vectors per participant separately.
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O Confusion Matrices on the
[α, β,HFB]B Feature Vector

SVM - P3 SVM - P4
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Figure O.1: Confusion matrices for the classification performed with the SVM classifier
for each participant individually on the [α, β,HFB]B feature vector.
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Figure O.2: Confusion matrices for the classification performed with the NB classifier for
each participant individually on the [α, β,HFB]B feature vector.
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Figure O.3: Confusion matrices for the classification performed with the RF classifier for
each participant individually on the [α, β,HFB]B feature vector.
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P Confusion Matrices on the
[HFB]B Feature Vector
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Figure P.1: Confusion matrices for the classification performed with the SVM classifier
for each participant individually on the [HFB]B feature vector.
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Figure P.2: Confusion matrices for the classification performed with the NB classifier for
each participant individually on the [HFB]B feature vector.
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Figure P.3: Confusion matrices for the classification performed with the RF classifier for
each participant individually on the [HFB]B feature vector.

50



Q Required Training Data: Baseline
feature vector

SVM - P3

SVM - P1 SVM - P2

SVM - P4
0

20

40

60

80

100

C
ro

ss
 V

al
id

at
ed

 A
cc

ur
ac

y 
[%

]

2 4 6 8 10 12 14 16 18 20
Number of samples in test set

0

20

40

60

80

100

C
ro

ss
 V

al
id

at
ed

 A
cc

ur
ac

y 
[%

]

2 4 6 8 10 12 14 16 18 20
Number of samples in test set

Figure Q.1: The evolution of the classification performance with the incremental inclusion
of trials of finger movement in the test set of the baseline feature vector. This figure
shows the results obtained by the SVM classifier for every participant separately. The
blue solid line and the blue shaded region respectively denote the classification accuracy
on the baseline feature vector and standard deviation thereof. The red solid line and the
red shaded region respectively denote the classification accuracy on random data and the
standard deviation thereof. The gray dashed line shows the 95th percentile of the empirical
chance level of classification at p < 0.05. This Figure caption holds for the other figures
in this Appendix, which show the results for the other classifiers.
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Figure Q.2: The evolution of the classification performance with the incremental inclusion
of trials of finger movement in the test set of the baseline feature vector. This figure shows
the results obtained by the NB classifier for every participant separately.
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Figure Q.3: The evolution of the classification performance with the incremental inclusion
of trials of finger movement in the test set of the baseline feature vector. This figure shows
the results obtained by the RF classifier for every participant separately.
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R Required Training Data:
[α, β,HFB]B feature vector
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Figure R.1: The evolution of the classification performance with the incremental inclusion
of trials of finger movement in the test set of the [α, β,HFB]B feature vector. This figure
shows the results obtained by the SVM classifier for every participant separately. The
blue solid line and the blue shaded region respectively denote the classification accuracy
on the baseline feature vector and standard deviation thereof. The red solid line and the
red shaded region respectively denote the classification accuracy on random data and the
standard deviation thereof. The gray dashed line shows the 95th percentile of the empirical
chance level of classification at p < 0.05. This Figure caption holds for the other figures
in this Appendix, which shows the results for the other classifiers.
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Figure R.2: The evolution of the classification performance with the incremental inclusion
of trials of finger movement in the test set of the [α, β,HFB]B feature vector. This figure
shows the results obtained by the NB classifier for every participant separately.

55



RF - P3

RF - P1 RF - P2

RF - P4
0

20

40

60

80

100

C
ro

ss
 V

al
id

at
ed

 A
cc

ur
ac

y 
[%

]

2 4 6 8 10 12 14 16 18 20
Number of samples in test set

0

20

40

60

80

100

C
ro

ss
 V

al
id

at
ed

 A
cc

ur
ac

y 
[%

]

2 4 6 8 10 12 14 16 18 20
Number of samples in test set

Figure R.3: The evolution of the classification performance with the incremental inclusion
of trials of finger movement in the test set of the [α, β,HFB]B feature vector. This figure
shows the results obtained by the RF classifier for every participant separately.
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S Required Training Data: [HFB]B
feature vector
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Figure S.1: The evolution of the classification performance with the incremental inclusion
of trials of finger movement in the test set of the [HFB]B feature vector. This figure
shows the results obtained by the SVM classifier for every participant separately. The
blue solid line and the blue shaded region respectively denote the classification accuracy
on the baseline feature vector and standard deviation thereof. The red solid line and the
red shaded region respectively denote the classification accuracy on random data and the
standard deviation thereof. The gray dashed line shows the 95th percentile of the empirical
chance level of classification at p < 0.05. This Figure caption holds for the other figures
in this Appendix, which shows the results for the other classifiers
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Figure S.2: The evolution of the classification performance with the incremental inclusion
of trials of finger movement in the test set of the [HFB]B feature vector. This figure shows
the results obtained by the NB classifier for every participant separately.
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Figure S.3: The evolution of the classification performance with the incremental inclusion
of trials of finger movement in the test set of the [HFB]B feature vector. This figure shows
the results obtained by the RF classifier for every participant separately.
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T Spatial Analysis: Informative Ar-
eas for Distinguishing between
Finger Movement and Rest

Figure T.1: Relative channel importance for distinguishing between finger movement and
rest for participant P3. Faulty channels are denoted in gray. Channels in red denote a
relatively high channel importance and channels in blue denote a relatively low channel
importance as indicated by the color bar. The inlay image at the far left depicts a schematic
representation of the electrode grid placement with respect to S1 and M1, separated by a
solid line representing the CS. This inlay serves as a reference for the exact electrode
locations on the cortical surface. This caption holds all figures in this Appendix.
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Figure T.2: Relative channel importance for distinguishing between finger movement and
rest for participant P4.
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U Spatial Analysis: Informative Ar-
eas for Distinguishing between
Individual Finger Movement of
the Same Laterality

Figure U.1: The relative importance of channels in distinguishing between movement of
a specific finger against movement of fingers of the same laterality for participant P3.
Faulty channels are denoted in gray. Channels in red denote a relatively high channel
importance and channels in blue denote a relatively low channel importance as indicated
by the color bar. The inlay image at the far left depicts a schematic representation of the
electrode grid placement with respect to S1 and M1, separated by a solid line representing
the CS. This inlay serves as a reference for the exact electrode locations on the cortical
surface. This caption holds for the other figure in this Appendix.
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Figure U.2: Relative channel importance in the classification between movement of a spe-
cific finger against movement of fingers of the same laterality for participant P4.
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V Spatial Analysis: Informative Ar-
eas for Distinguishing between
Movement of Contralateral and
Ipsilateral Finger Pairs

Figure V.1: Relative channel importance in the classification between movements of con-
tralateral and ipsilateral fingers separately for participant P3.

Figure V.2: Relative channel importance in the classification between movements of con-
tralateral and ipsilateral fingers separately for participant P4.
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W Spatial Analysis: Informative
Areas for Distinguishing be-
tween Movement of all Con-
tralateral and Ipsilateral Fin-
gers.

Figure W.1: Relative channel importance in the classification between movement of all
contralateral fingers versus movement of all ipsilateral fingers for participant P3.

Figure W.2: Relative channel importance in the classification between movements of all
contralateral fingers versus movement of all ipsilateral fingers for participant P4.
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