
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Experimental Work (191211249)
Assignment Report

Khaled Alaaeldin Abdelfattah Mustafa
s1918710

September 2018

Supervisor:
M.Sc. Ramy Hashem

Robotics and Mechatronics Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Statement of the problem . 3

2 Hardware Installation 5

3 Software Architecture 7
3.1 Running ros on multiple machines . 7
3.2 Secure shell (SSH) communication protocol 8
3.3 Running GUI programs remotely . 9
3.4 Catkin build on Odroid . 10
3.5 Launching mavros on ARM single board computers 11
3.6 Running a launch �le on a remote node . 11

4 Conclusion 15

References 15

2

Establishing wireless communication between a hexarotor

and the ground control station through ros nodes

Khaled Mustafa

September 19, 2018

1 Introduction

1.1 Motivation

Hexarotors realize one class of unmanned aerial vehicles (UAVs) which are attractive due
to their high manoeuvrability, variety of sizes, and ability to perform indoors and outdoors.
Recently, research on hexarotor UAVs has grown popular for di�erent applications, such
as, e.g., inspection [1], surveillance, environment monitoring and search-and-rescue [2].
As the market develops and the variety of applications expands, more requirements are
now being imposed on extending the �ight range and increasing the adaptability to the
complex missions of UAV systems. In missions such as surveillance and search-and-rescue,
UAV systems are usually required to operate in complicated environments while still being
able to maintain uninterrupted wireless communication with the ground control station for
the purpose of reporting, monitoring, and control. In addition to that, wirelessly driven
drones is a technology trend aiming to improve the e�ciency and reliability of drones while
reducing operational costs from maintenance by decreasing the amount and complexity of
its wiring.

1.2 Statement of the problem

Normally, for testing purposes, the development of aerial robots starts by conducting ex-
periments inside the lab for validation of the di�erent system components, e.g. controller,
sensor fusion subsystems ...etc. During this stage, the system runs using stationary power
suppliers and wired communication with the ground control station as shown in Figure 1.

Figure 1: The hexarotor setup at RAM

3

However, on the other hand, when it comes to practice, a wireless communication needs
to be deployed in order to increase the applicability of the system when it comes to work
outdoors. Thus, the main goal of this experimental work is to present an application of
wireless communication between multiple ros nodes running on di�erent machines to un-
manned aerial vehicle control. For this reason, a bi-directional wireless communication
between the hexarotor and the ground control station is established in order to contin-
uously send information from the on-board sensors to the ground control station and at
the same time by sending the control commands from the ground control station to the
controller nodes on the micro-computer (odroid) mounted on the hexarotor which in turn
controls the motion of the hexarotor through the PX4 �ight stack. This work is run as a
part of the SPECTORS project at RAM.

To achieve the aforementioned purpose, a wireless communication between a single board
computer (Odroid) mounted on a tilted-rotor hexacopter (gamma) and the ground station
(master PC) is established. In addition to that there is a serial communication between
the Odroid and the �ight controller (PX4). The framework of this work is established
based on ros. In order to realize this goal, the structure of this report is organized
as follows. In section 2, a brief description of both the Odroid and pixhawk and the
interconnection between them is introduced. Afterwards, the algorithm for running ros

on multiple machines is proposed in section 3.

4

2 Hardware Installation

In this section, the hardware architecture of the system is described. It mainly consists
of the master PC that works as the ground control station. In addition to that, a single
board computer (odroid) is mounted on the hexarotor and is connected to the pixhawk
through a USB cable.
Odroid-XU4 is a single board octa-core (ARM R© Cortex R© -A15TM up to 2.0GHz) com-
puter that is more powerful than the Raspberry Pi with a 2GB high speed RAM. The boot
partition can be stored on either a microSD card or the much faster embedded multi-media
controller (eMMC) module that is used for this application. An eMMC module is a type of
storage typically used in a smart phone, and is one of the most advanced compact media
devices available. There is a boot media selector (slide-switch) from which it is possible to
select either to boot from the microSD or the eMMC. The board can run various �avors
of Linux, including the latest Ubuntu 16.04 that is currently used.

Figure 2: Odroid single board computer
Figure 3: Pixhawk autopilot

There are di�erent types of autopilot hardware that can be used to run the PX4 �ight
stack. One of theses options is the pixhawk. The Pixhawk �ight controller is a further
evolution of the PX4 �ight controller system. Pixhawk consists of a PX4 controller and a
PX4-IO integrated on a single board with additional IO, Memory and other features. It is
equipped with advanced sensor pro�le including gyroscope, accelerometer and a compass
for determining orientation.
There are two possibilities for controlling the PX4. The �rst possibility is through the
�ight stack computing environment. In this case, it uses the �ight controller that is al-
ready implemented. On the other hand, the second possibility, is to control the PX4 outside
the �ight stack through a companion computer (Odroid) or other computing environment
(o�board control). In this case, a companion computer is used. This is allowed through
the robotics APIs. The communication between the APIs and PX4 is done through the
MAVLink protocol. For this reason, the MAVROS ros package is used to enable the commu-
nication between the PX4 �ight stack and the ros enabled companion computer (Odroid).

There are two ways in which the companion computer (Odroid) can be connected to the
autopilot (pixhawk). It can be either through the pixhawk's telemetry port Telem2 that
can be connected to one of the USB ports on the Odroid through an FTDI cable. The
other way, that is implemented here, is to connect the USB ports on both the Odroid and
the pixhawk by a typical USB cable.

5

ROS enabled computer

qGroundControl

wi�

odroid

USB Adapter

Pixhawk

MAVLink

MAVLink

MAVLink

Figure 4: Flow chart illustrating the hardware architecture of the setup

Here it should be noted that qGroundControl cannot be installed on Odroid since its oper-
ating system is based on ARM architecture. For this reason, the calibration of the pixhawk
and the �ight settings should be done on the master PC �rst.

The new software architecture will be as follows. Only the nodes required for the o�board
control will be implemented on the Odroid since it is directly connected to the pixhawk.
On other hand, the nodes related to the GUI that give the commands to the the hexarotor
are implemented on the main PC (master). Here, it should be noted that, due the limited
capability of the Odroid's processor, it is advisable to run only the necessary nodes on the
Odroid.

6

3 Software Architecture

In this section, a detailed description of the new adapted software architecture is given.
In the �rst sub-section, the procedures required to run ros on multiple machines is given.
Then, an introduction of the secure shell (SSH) communication protocol is given to allow
logging into the remote operating system securely. After that, it is shown how to run GUI
programs remotely which is crucial for running gazebo and rviz. Afterwards, the required
modi�cation to build package on odroid is given along with how to launch mavros on ARM
single board computers. Finally, two methods are provided to run the ros nodes on the
two di�erent machines.

3.1 Running ros on multiple machines

ros is a distributed computing environment [3]. Based on that, it is possible that a running
ros system can compromise hundred nodes running across multiple machines. In order to
do so, the following requirements need to be satis�ed:

(i) All machines must be in the same local network. Thus, both the master and client
servers should be connected to the same wi� network.

(ii) It is required to ensure a bi-directional connectivity between all pairs of machines on
all ports.

(iii) Each machine must advertise itself by a name that all other machines can resolve.

In order for the hostname to be resolved by other machines, it is required to edit the hosts
�le on each machine. The host �le is the �le that tells each machine how to convert speci�c
names into IP addresses. The hostname of a running machine is simply returned back by
the linux command hostname. To edit the hosts �le, the following command should be
written in the terminal:

$ sudo gedit /etc/hosts

The hosts �le will open and then it is possible to add the IP address of the other machine
followed by its hostname that was returned back by the command hostname. For example,
in case of the odroid, it should be something like this

130.89.231.112 master

where 130.89.231.112 is the IP address of the master PC. On the other hand, on the master,
it should be something like this

130.89.234.31 odroid

where 130.89.234.31 is the IP address of the odroid. Here it should be pointed out that
the IP address will di�er each time the communication to the local network is lost. Thus,
it is advisable to check the IP address of both machines and edit the hosts �le accordingly.
In order for the reader not to get confused, throughout this report, it will be assumed that
it is required to run a ros system on two machines with the following hostnames and IP
addresses respectively:

master : 130.89.231.112

odroid : 130.89.234.31

To make sure that the hosts �les were edited correctly, a basic ping test is done. Ping is
a utility that is used to test the reachability of a host on an IP network by checking that
Internet Control Message Protocol (ICMP) packets can get between the machines. Thus,
it is needed to ping each machine from the terminal of the other machine as shown below:
from master

7

$ ping odroid

from odroid

$ ping master

BIf there is a problem in the ping, then it means that both machines cannot see each
other. Then it is better to check the hosts �le to make sure that the IP addresses and
hostnames are written correctly.

3.2 Secure shell (SSH) communication protocol

SSH or Secure Shell is a protocol which is used to securely log into the remote operating
system. It is the most common way to access the remote Linux like server. Thus, it is �rst
required to make sure whether SSH is already installed on the operating system or not.
This is done by just writing the following command in the terminal window [4]

$ ssh

If an error occurs by running this command, then it is required to install the OpenSSH client
by writing the following command

$ sudo apt-get install openssh-client

By installing it, it is possible to access any operating system on the same local network by
just writing

$ ssh user@hostname

Thus, in this application if it is needed to access the odroid from the master computer,
write the following

$ ssh odroid@odroid

This is to verify if SSH client is installed. Now, let's see if the SSH server is installed on
the operating system which is OpenSSH server. This is done by trying to connect to the
localhost via the SSH. This is done by

$ ssh localhost

If the following response does appear, then it means that the OpenSSH is not installed on
the operating system.

$ ssh: connect to host 127.0.0.1 port 22: Connection refused

Therefore, it is required to install it in order to allow the other operating system (the one
on odroid for example) to access the running operating system on the master computer
via the terminal. In order to install it, just write

$ sudo apt-get install openssh-server

In order to check if the OpenSSH server is installed correctly, the following command is
written

$ sudo service ssh status

Then if in the given response, it is written that active (running), it means that it was
installed correctly. This time, if the command ssh localhost is written again, it will be
allowed to connect to the running operating system. After installing both OpenSSH client
and server on both machines, it will be possible to access one machine from the other via
SSH. If, for some reason, the message indicating the refusal of the connection still exists,
then try to force it to reload the con�guration by writing the following command in the
terminal window

8

$ sudo service ssh force-reload

Now, after checking the reachability of the machines on the same local network, it is
required to run ros across the multiple machines. To run ros across multiple machines,
the following requirements should be satis�ed:

(i) Only one master is required in order for all nodes to communicate with each other.

(ii) All nodes must be con�gured in such a way that they use the same master. This is
done through the environmental variable ROS_MASTER_URI.

ROS_MASTER_URI is an environmental variable that is required when the ros core is not
running on the localhost [5]. It is used by ros nodes in order to locate the master. Now,
it will be shown how to run a simple talker and listener nodes on multiple machines using
rosrun and afterwards it will be shown how to roslaunch a launch �le on another server
which is the case in this application.
As mentioned before, it is required that only one of the machines to be the master. In other
words to run the roscore command. In this case, it will be the master computer. Then a
new terminal should be opened and then it is needed to export the ROS_MASTER_URI and
start the listener node

$ export ROS_MASTER_URI=http://master:11311

$ rosrun rospy_tutorials listener.py

Then, on the other server (the odroid), it is required to have the same master in order
for all nodes to communicate with each other. Therefore, the same ROS_MASTER_URI is
exported. And the talker node is started.

$ export ROS_MASTER_URI=http://master:11311

$ rosrun rospy_tutorials talker.py

Now the listener on the master computer should start receiving the messages from the
talker node running on odroid. Here it should be pointed out that it is possible to add
the export of the ROS_MASTER_URI to the /.bashrc �le such that it will be exported every
time a new terminal is opened without the need to write it again.

3.3 Running GUI programs remotely

In order to access the GUI programs remotely, it is required to enable X11 forwarding
option in the OpenSSH. X11 is a network protocol to enable remote access to graphical
applications. Those graphical applications include gazebo, eclipse, rviz, etc. A machine
running an X windowing system can launch a program on a remote computer. All the CPU
processing happens on the remote computer but the display of the application appears on
the local machine. In order to activate X11 forwarding, it is required to edit the ssh_config
�le through the following command

$ sudo nano /etc/ssh/ssh_config

Then scroll down till the Host∗ does appear. The only thing that needs to be edited here
is to remove the pound sign in front of both ForwardX11 and ForwardX11Trusted and set
both of them to yes.

Host *

ForwardAgent no

ForwardX11 yes

ForwardX11Trusted yes

Then write it out and exit. Thus, now it is done for the client. The same should also be
done for the daemon. This is done by

9

$ sudo nano /etc/ssh/sshd_config

The only di�erence between the client and the daemon is to replace ssh with sshd. Scroll
down and make sure that both X11Forwarding and X11DisplayOffset do not have pound
sign in front of them and that X11Forwarding is set to yes.

X11Forwarding yes

X11DisplayOffset 10

Then, again, write it down and exit. After editing /etc/ssh/sshd_config �le, it is required
to restart the SSH daemon. For Ubuntu 16.04 this is done by

$ sudo systemctl restart ssh

Here it should be pointed out that it is important to make sure how the SSH daemon is
restarted since for some operating systems, the following command is used instead

$ sudo service ssh restart

After enabling X11 forwarding, the functionality of it, from the master computer for ex-
ample, can be accessed by typing

$ ssh -X master@master

In order to make sure that it is allowed to access GUI programs is by typing

$ ech $DISPLAY

If the below response does appear, then it means that it is done correctly, otherwise it will
not be possible to run GUI programs.

localhost:10.0

Now it is possible to run GUI programs remotely via SSH.

3.4 Catkin build on Odroid

Due to the limited capability of the single board computer (Odroid) compared to the main
computer (master), some problems might occur while catkin build ros packages. This is
especially related to its RAM size. While building ros packages, if the number of jobs
are not speci�ed explicitly by -jn for n jobs when calling catkin build, catkin gets the
number of jobs from the ROS_PARALLEL_JOBS environmental variable. -jn speci�es the
number of jobs (commands) to run simultaneously. Excessive parallelism in a large build
can exhaust system memory.
Thus if the catkin build command is being used on Odroid without limiting the number
of jobs, most probably it will result in an internal compiler error due to the shortage of
RAM size. Thus it is not possible to run various compilers in parallel This is the type of
error that is expected to appear

g++-4.8.real: internal compiler error: Killed (program cc1plus)- it seems

that there is not enough RAM

Another issue that may arise is the increase of the temperature of the Odroid causing it to
shut down when it reaches the maximum temperature. A possible solution to tackle this
problem is to limit the number of threads being used throughout. In this case, it might
take longer to catkin build the packages but it will be assured not to get an internal
compiler error nor an overheat of the Odroid. This is done by simply running the following
command

catkin build -j1

10

In this case, only one thread will be run at a time. Here it should be noted that every time
it is needed to build ros packages on Odroid, it is highly recommended to replace catkin
build with catkin build -j1. Another way to limit the number of threads being run is
to adjust the environmental variable ROS_PARALLEL_JOBS since by default catkin build

gets the number of jibs from it as mentioned before. This is done by

export ROS_PARALLEL_JOBS=-j1

But the �rst method is recommended.

3.5 Launching mavros on ARM single board computers

When trying to roslaunch the mavros launch �le on Odroid, an error due to segmentation
fault does appear causing mavros_node to die. This error actually doesn't appear when
launching mavros on the master computer. Thus it is due to the di�erence in the operating
system architecture since Odroid is based on ARM architecture.

[mavros-2] killing on exit

[rosout-1] killing on exit

[master] killing on exit

shutting down processing monitor...

... shutting down processing monitor complete

done

It turns out that this error is due to the HIL (hardware in the loop) plugin. A possible
solution to avoid this error is to blacklist the HIL plugin in the px4_pluginlists.yaml

inside the launch folder of mavros package to prevent the segfault error.

plugin_blacklist:

common

- safety_area

extras

- image_pub

- vibration

- distance_sensor

- rangefinder

- hil

plugin_whitelist: []

'sys_∗'

By doing so and then relaunching px4.launch �le, it should work without giving further
errors. Here it should be pointed out that this problem will not occur if the RotorS launch
�le is used instead of the px4 since HIL plugin is blacklisted in the apm_pluginlists.yaml
�le by default.

3.6 Running a launch �le on a remote node

This section describes the procedures and con�gurations required, when a distributed sys-
tem which consists of machines running ros is developed. There are two di�erent ways
to roslaunch a �le on a remote node (machine). Although on of these methods was not
implemented successfully for some reason, both methods will be discussed into details in
this section.

Method I
The �rst method is mainly based on the <machine> tag and SSH protocol. The <machine>
tag declares a machine on which ros nodes can run on. This tag is not needed if all the

11

nodes are launched locally. The <machine> tag is mainly used to declare SSH and ros

environmental variables settings for the remote machines.The attribute of the <machine>

tag are the name, user and the IP address of the remote machine. In addition to that
there is an env_loader �le included in the launch �le that tells ros to run the default ros
setup on the remote machine (Odroid). An example of a simple launch �le is shown below
that is used just to launch a listener and talker nodes on the local (master) and remote
(Odroid) machines respectively. This is the launch �le attempted to be used on the master
machine:

<launch>
<node name="listener" pkg="agitr" type="listener" output="screen" />
<group>
<machine name="odroid" address="130.89.234.31" user="odroid"

env−loader="/odroid/catkin_ws/envloader.sh" default="true" />
<include �le="$(�nd agitr)/launch/test.launch" />

</group>
</launch>

where test.launch includes the talker node. Here it should be pointed out that the
<group> tag is used in order to be able to include the launch �le on the remote machine
(Odroid). Thus, it is used as a container for the tags within. Due to the automated
nature of roslaunch, it avoids executing the users .bashrc on remote nodes and requires
an environment �le to assign remote environment variables. As mentioned before,the
envloader.sh �le on Odroid should declare the ros environmental variables including
ROS_MASTER_URI that should have the same IP address of the master. An example of the
env-loader script which is used in this case is:

#!/bin/bash

source /opt/ros/kinetic/setup.bash

source /home/khaled/catkin_ws/devel/setup.bash

export ROS_IP=130.89.234.31

export ROS_MASTER_URI=http://130.89.231.112:11311

export ROS_HOSTNAME="odroid"
exec "$@"

Save the environmental �le on the remote machine (odroid) in the same path as the one
written in the launch �le which is, in this case, /odroid/catkin_ws/envloader.sh. Then,
make sure that the ROS_MASTER_URI environmental variable is exported on the local ma-
chine (master).

export ROS_MASTER_URI=http://130.89.234.112:11311

Finally, launch the launch �le response.launch on the local machine under the launch �le
directory

roslaunch agitr response.launch

By applying this method in our application, then there will be only one launch �le on the
local machine (master) that include all other launch �les that need to be run. The launch
�les that should be run on the remote machine (Odroid), for example the controller node,
should be written under the <machine> tag.

Method II
The second method, the one that was successfully implemented, is based on the splitting
of the launch �le into two launch �les, one on the local machine (master) and the other on

12

the remote machine (Odroid). For this speci�c case, the launch �les that are run on the
local machine is the GUI node.

<?xml version="1.0"?>

<launch>

<!--***************** Arguments **************-->

<!-- UAV's Name -->

<arg name="vehicle" default="betaX"/>

<!--***************** Run GUI Node **************-->

<include �le="$(�nd spc_uav_comm)/launch/gui_omni_uav.launch">
<arg name="uav_type" value="hexacopter" />
<arg name="�ightMap" value="ramlab"/>

</include>
</launch>

On the other hand, the controller and simulation nodes are implemented on the remote
machine (Odroid).

<?xml version="1.0"?>

<launch>

<!--***************** Arguments **************-->

<!-- UAV's Name -->

<arg name="vehicle" default="betaX"/>
<!-- Gazebo World FileName -->

<arg name="world" default="$(�nd
spc_uav_simulator)/worlds/wall.world"/>

<!--***************** RUN SE3 Controller Node for rotorS simulation

**************-->

<include �le="$(�nd spc_uav_control)/launch/SE3_controller.launch">
<arg name="vehicle" value="$(arg vehicle)" />

<arg name="uav_type" value="tilt_hexarotor" />
<arg name="use_mavlink_interface" value="false" />
<arg name="use_experiment_interface" value="false" />
<arg name="dist_obs_type" value="1" />
<arg name="odometry_topic" value="/ground_truth/odometry" />
<arg name="dyn_recon�g_load" value="$(�nd

spc_uav_control)/con�g/dynamic/rotors/SE3_Control_Gains_$(arg
vehicle).yaml" />

</include>

<!--***************** RUN rotorS Simulation **************-->

<include �le="$(�nd spc_uav_simulator)/launch/rotors_gazebo.launch">
<arg name="vehicle" value="$(arg vehicle)" />
<arg name="world" value="$(arg world)" />

</include>

</launch>

13

Then, from the local machine (master), two terminals are to be opened. From the �rst
terminal, it is required to export the environmental variable ROS_MASTER_URI

export ROS_MASTER_URI=http://130.89.234.112:11311

Then roslaunch the launch �le on the local machine that will launch the GUI node.

roslaunch spc_uav_systems offboard_demo_10.launch

Here it should be pointed out that it is necessary to roslaunch the launch �le on the
master machine �rst, otherwise, an error will occur when launching the �le on the Odroid
indicating that it is not possible to connect to the roscore running on the master computer.
As a result, now, the GUI node should open on the local machine (master). Then, open
the second terminal and it is required to SSH to the remote machine (Odroid)

ssh odroid@odroid

Then in order to be able to roslaunch any launch �le on the Odroid, it is required to
run the rosmaster. As mentioned before, there should be only one rosmaster, thus it is
required to export the same ROS_MASTER_URI on the Odroid

export ROS_MASTER_URI=http://130.89.234.112:11311

By doing so it is now possible to roslaunch any launch �le on the Odroid from the local
machine using the processor capability of the Odroid. Thus by launching the launch �le,
gazebo will open on the local machine but using the processor power of the Odroid.

roslaunch spc_uav_systems offboard_demo_10.launch

As a result by adjusting the setpoint of the hexarotor from the GUI node, it will move
to the same point in the gazebo animation indicating that the wireless communication is
done successfully.

14

4 Conclusion

In this report, the experimental work for establishing a wireless communication between
the ros nodes running on the ground station computer (master) and the companion com-
puter mounted on the hexarotor (Odroid). In addition to that the serial communication
between the Odroid and the PX4. The entire interface was implemented using ros.The
communication was tested using the simulation launch �le and it works successfully. This
report summarizes all the necessary installations and steps that are required to establish
this communication.

References

[1] L. Marconi et al., �Aerial service robots: An overview of the AIRobots activity,�. in
Proceedings of the IEEE International Conference on Applied Robotics for the Power

Industry, 2012, pp. 76�77.

[2] �, �The SHERPA project: Smart collaboration between humans and ground-aerial
robots for improving rescuing activities in alpine environments,� in Proceedings of the

IEEE International Symposium on Safety, Security, and Rescue Robotics, 2012.

[3] ros Documentation,
http://wiki.ros.org/ROS/Tutorials/MultipleMachines

[4] ros Documentation,
http://wiki.ros.org/ROS/NetworkSetup

[5] ros Documentation,
http://wiki.ros.org/ROS/EnvironmentVariables

15

	Introduction
	Motivation
	Statement of the problem

	Hardware Installation
	Software Architecture
	Running ros on multiple machines
	Secure shell (SSH) communication protocol
	Running GUI programs remotely
	Catkin build on Odroid
	Launching mavros on ARM single board computers
	Running a launch file on a remote node

	Conclusion
	References

