
UNIVERSITY OF TWENTE

An API for Intelligent Deployment of
Numerical Calculations

Master Thesis
Embedded Systems - CAES

March 24, 2020

Author Navoda Perera (s2005336)
Supervisors Dr. Daniel Ziener (UT)

Dr. Ignacio Alonso (ASML)
Dr. Artem Ivashko (ASML)

Abstract

Linear algebra is widely used in many scientific and engineering applications, where Basic Linear
Algebra Subroutines (BLAS) and Linear Algebra PACKage (LAPACK) libraries are generally used in
the back end for efficient calculations. There are hardware optimized versions of BLAS and LAPACK
provided by vendors such as Intel Math Kernel Library (MKL) for Intel processors and Nvidia
CuBLAS/CuSolver for Nvidia Graphical Processing Units (GPUs) respectively. As most of these
routines can benefit from parallel processing, they have been shown to yield better performance
on platforms that exploit parallelism such as GPUs and Field Programmable Gate Arrays (FPGAs)
than general purpose processors. However, exploring these gains is not a trivial task in terms of
software implementation.

This project explores the concept of an Application Programming Interface (API) for BLAS and
LAPACK routines which abstracts the hardware specific details from the user and provides a conve-
nient interface for deployment. A compute node with a CPU and a GPU connected through a PCI
Express link is considered in the study. In addition to the convenience of deployment, it employs a
model based approach to predict execution times and data transfer overheads based on input/out-
put data sizes. These predictions are used in the optional dynamic deployment mode, where the
deployment of a given routine will be decided at run time by the API. In addition, a data flow
analysis method, which is also based on the mentioned prediction models, is presented to further
improve the execution time of a given application code.

The API is shown to perform as expected with user-specified deployment, dynamic deployment and
the data flow analysis modes. The two latter modes use performance models derived through an
empirical approach to predict execution and data transfer times. Although considerable variations
in execution time are observed for arbitrary sized inputs/outputs, all models are shown to predict
with mean absolute percentage errors less than 20%.

Acknowledgements

I would like to sincerely thank my supervisors Dr. Daniel Ziener from the University and Dr. Ignacio
Alonso and Dr. Artem Ivashko from ASML for guiding me and providing me valuable advice from
the onset of my project. It had been a very interesting experience working at ASML in a corporate
environment, and I believe that it will greatly benefit my future career.

My heartfelt thank goes to Steven Van der Vlugt and Lennart Noordsij for the continuous feedback
and encouragement throughout the project. I am also grateful to the other students and colleagues
at ASML whose feedback and support had been very helpful. I take this opportunity to thank my
graduation committee members Dr. André Kokkeler and Dr. Arnd Harmanns for the feedback
provided on the project and the report.

Finally, I lovingly thank my family and friends for all the support given to me during my graduation
project as well as in every step of my Master’s program.

Navoda Perera
Eindhoven, Netherlands
March 24, 2020

Contents

1 Introduction 2

1.1 Problem Statement . 2

1.2 Approach . 4

2 Background 5

2.1 Linear Algebra libraries . 5

2.1.1 Linear Algebra Routines . 6

2.2 Performance Modeling . 7

2.3 ASML . 8

2.3.1 Previous Work . 8

2.4 Hardware Platforms . 9

3 Related Work 11

3.1 Hardware acceleration of BLAS/LAPACK . 11

3.2 Performance Modeling . 13

3.3 Task Scheduling with Data Dependency Graphs . 15

4 Approach 17

4.1 Test Setup . 17

4.2 Example Application . 18

4.3 API Overview . 20

4.3.1 GPU Deployment Approaches . 21

4.4 Dynamic Deployment . 23

5 Performance Modeling 25

5.1 Generating the Models . 29

6 Data Dependency Graphs 36

6.1 Constructing the graph . 37

6.2 Finding the optimal schedule . 39

6.2.1 Optimizing algorithm . 41

7 Results and Analysis 45

7.1 Test Case 1 . 45

7.1.1 Performance Model Accuracies . 46

7.1.2 Dynamic Deployment . 49

7.1.3 DAG Schedule . 51

7.2 Test Case 2 . 53

7.2.1 Limitations of the graph scheduling algorithm 54

8 Conclusion 55

8.1 Future Work . 56

References 61

Appendices 62

A Abbreviations . 63

B Performance Models . 64

B.1 Matrix-matrix multiplication - dgemm . 64

B.2 Matrix-vector multiplication - dgemv . 68

B.3 Cholesky factorization - dpotrf . 71

B.4 Triangular matrix system solver - dtrsm . 74

B.5 Triangular matrix copy - dlacpy . 78

B.6 Extended copies - excopy (mkl_domatcopy and cublasDgeam) 81

1

Chapter 1

Introduction

Linear Algebra is at the base of most science and engineering applications as it allows modeling
and computing many natural phenomena efficiently. Today, linear algebra is being used in appli-
cations including but not limited to control systems, data science, computer graphics and machine
learning.

The Basic Linear Algebra Subprograms (BLAS) [1] and Linear Algebra Package (LAPACK) [2] are
two libraries that implement frequently used calculations in linear algebra. These are widely
used in the backend of programs such as MATLAB [3] and libraries like Numpy [4] in Python.
Reference designs for BLAS/LAPACK based on FORTRAN are available from Netlib [5], which is a
common repository for numerical computing software. It is maintained by AT&T Bell Laboratories,
University of Tennessee and Oak Ridge National Laboratory.

However, as different computer architectures emerged over time, vendors started introducing opti-
mized implementations of BLAS and LAPACK for their hardware. With the advent of heterogeneous
computing, this has expanded from general purpose processors to other accelerator platforms such
as Graphical Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs). Some promi-
nent examples of customized libraries are Intel Math Kernel Library (MKL) [6], AMD Optimizing
CPU Libraries (AOCL) [7], Nvidia CuBLAS [8] and CuSolver [9] and Oracle’s Sun Performance
Library [10]. In addition, the active research in this area has further produced interesting work
to include and improve BLAS/LAPACK for CPUs, GPUs and FPGAs alike. These will be further
discussed in Chapter 3.

ASML [11] is a Netherland based company that manufactures photolithography systems for the
semiconductor industry. These are highly complex machines that consist of a number of physical
systems working in synchronization. Consequently, there is a large number of numerical calcula-
tions that happen in the software of the machine. This involves solving systems of linear equations,
linear least square problems and other linear algebra calculations such as matrix multiplication.
Hence, ASML maintains an internal Numerical Library that acts as a wrapper for BLAS and LAPACK
routines. This library takes care of memory management and error handling, while providing a
convenient interface for the programmers.

1.1 Problem Statement

With each new generation of ASML lithography machines, their computational requirements grow.
Hence, hardware acceleration of software components is considered in order to achieve better
performance. However, porting an application to a new hardware platform involves considerable
effort. In case of platforms such as FPGAs, this requires more specific knowledge for development.

Due to the compute intensive nature of linear algebra operations, for large data sizes, they are

2

often the bottleneck of an application. Therefore, considerable gains can be expected even by
accelerating just BLAS/LAPACK routines, instead of trying to port a whole application to a new
platform. This expectation is based on the fact that parallel architectures such as GPUs and FPGAs
have shown to produce gains of multiple orders of magnitude for most routines [8] [9] [12].

In addition, a key factor that affects performance gains with hardware deployment is data transfer
times. In most cases, the data for the calculation needs to be transferred to the specific hardware
from the host (CPU) through a high speed interconnect like PCI Express (PCIe). For smaller data
sizes, usually the data transfer time dominates the execution time. That is, it may be faster to do
the execution on the CPU, than to transfer to the GPU, execute and get the data back.

This phenomenon can be observed in Figure 1.1, in which the CPU and GPU execution times of
matrix-matrix multiplication is plotted for increasing input sizes. The computational complexity
(m × n × k) on the x-axis determines the number of operations involved in the calculation when
two matrices of sizes m×k and k×n are multiplied. An additional curve (green) is plotted, which
is the execution time on the GPU added with the input and output transfer times through the PCIe
link. In the highlighted region the execution time on the GPU is less than that of the CPU. But
when transfers are considered, the total time exceeds the CPU time. To the left of this region, the
CPU execution itself is faster than the GPU.

In applications with multiple routines, some of these data transfers may become redundant de-
pending on how they are deployed. For example, when the output of one routine is consumed by
another, executing both of them on the same platform will avoid the need to transfer the output of
the first routine. But this can be more complex when there are more routines and operations with
such data dependencies, specially when some of them are required to always execute on a spe-
cific platform (e.g. control logic executing on the CPU, which use the output values of a routine).
The design space becomes too large to explore different combinations manually as the number of
routines in an application increases.

Figure 1.1: Execution time of matrix-matrix multiplication (dgemm)

In this context, ASML is interested in exploring the feasibility of an Application Programming Inter-
face (API) which provides the convenience of quickly testing deployment options of BLAS/LAPACK
routines. The aim of the API is to abstract all hardware implementation details from the developer,
providing a simple interface to select the deployment platform for a given routine. The API needs
to handle all data transfers involved, ideally avoiding redundant ones.

3

In addition, the API intends to explore multiple methods to make deployment decisions automati-
cally. In our study we propose a runtime deployment feature and an offline deployment schedule
generation feature based on profiled data of an application. The schedule intends to improve the
performance of applications by minimizing the overhead of data transfers.

As mentioned earlier, the performance gains from deploying only BLAS/LAPACK routines may not
be as optimal as a hardware implementation of the full application. But the effort involved by the
application programmer is greatly reduced. This trade-off between design time and performance
is justified in most applications where time-to-market is critical.

This study explores the feasibility of implementing such an API, that bases its decision making on
performance models derived by an empirical method. The main research questions involved are:

1. How accurately can we predict the run time of BLAS/LAPACK routines for arbitrary input
sizes?

2. To what extent can we use model based predictions for runtime deployment decisions?

3. How can we minimize the overhead of data transfers to improve total execution time of an
application?

1.2 Approach

The scope of this project is limited to CPU and GPU platforms, although the implementation is such
that it can be easily extended to other platforms. The CPU will be considered as the baseline for
performance and as the main execution platform. The GPU is the hardware accelerator, which is
to be utilized when beneficial.

In the project, the ASML Numerical Library (NL) is extended in three stages to develop the afore-
mentioned API. First, for a selected set of functions, GPU implementations are introduced alongside
their CPU counterparts. A convenient interface allows the user to select the platform of execution
when calling these functions.

Then, the dynamic deployment feature is added, where the API will decide the best deployment
option for a given function at runtime. These decisions are based on prediction models derived for
the execution time of each routine on the CPU and the GPU, along with another model for the data
transfer overhead. An empirical method of performance modeling is used to obtain these models.

Finally, a data flow analysis method is used in an effort to minimize total execution time of an
application. The API will generate a data dependency graph of the linear algebra routines for a
given segment of the application code. Based on that, a graph optimization algorithm is used to
determine an optimized schedule of the routines to minimize total execution time, including data
transfers. The API can then use this schedule information in a subsequent run for deployment.

4

Chapter 2

Background

This chapter introduces a number of key concepts that are relevant for this project. Section 2.1
gives a brief introduction and history of the BLAS and LAPACK libraries and the routines that will
be used in this project. Sections 2.2 discusses the concept of performance modeling, while Section
2.3 provides a short description about ASML and a previous project in the company that is related
to this project. Finally, Section 2.4 explains the hardware platforms and their architectures that
are relevant to the study.

2.1 Linear Algebra libraries

As the use of numerical programming gained momentum in the 1970s, the usefulness of stan-
dard libraries was identified. As a result, BLAS was first published in 1979 for scalar-vector and
vector-vector operations (BLAS level-1) as a Fortran library. Subsequently, during the 1980s, BLAS
was updated with level-2 and level-3 operations for vector-matrix and matrix-matrix operations
respectively.

The linear algebra library LINPACK was developed on top of BLAS for analyzing and solving linear
equations and linear least-square problems. While BLAS was usually tailored for performance in
specific hardware platforms, LINPACK was able to benefit from these optimizations without any
modifications. Similarly, EISPACK was developed for numerical computation of eigenvalues and
eigenvectors of matrices.

However, with the introduction of level-3 BLAS routines, LAPACK was designed as a successor to
the above high level libraries. It combined the linear equation and linear least-square routines of
LINPACK and eigenvalue routines of EISPACK. LAPACK was later extended to include ScaLAPACK
[13], a subset which targets parallel distributed memory machines.

As the performance of BLAS and LAPACK routines became more critical, platform specific libraries
such as Intel MKL, AMD AOCL and Nvidia CuBLAS/CuSolver were introduced by hardware ven-
dors. There are also open source libraries like OpenBLAS [14] and ATLAS [15] with performance
comparable to those of vendor implementations.

In addition, there are a number of libraries and frameworks developed by the research community
targeting various hardware architectures. MAGMA [16] is one such project which is now avail-
able as a library [17] targeting heterogeneous architectures with multi-core CPUs and multi-GPU
systems. BLASX [18] is another such library focusing level-3 BLAS on Multi-GPU systems. Fur-
thermore, there are other implementations targeting FPGAs, GPUs and comparisons among the
platforms, which are discussed in Chapter 3.

In this project, only vendor libraries are considered for the CPU and GPU due to two reasons. One

5

is that they yield good performance on their respective platforms. The other is reliability, because
for ASML as a company, continuous maintenance and support of off-the-shelf libraries is important
when maintaining its own software. Thus, Intel MKL and Nvidia CuBLAS/CuSolver libraries were
used within the API.

2.1.1 Linear Algebra Routines

BLAS and LAPACK routines share similar naming structures for routines. The first character of the
name identifies the type of data the routine operates on. Thus, there are 4 versions of each routine
to handle each data type.

Character Data Type
s real, single precision
d complex, single precision
c real, double precision
z complex, double precision

Table 2.1: Data types in routine interfaces

In addition, there are more information included in the names such as whether the operation
is on a general (ge), triangular (tr) or Hermitian positive definite (po) matrix, or whether the
routine involves matrix-matrix (mm) or matrix-vector (mv) operations. A detailed explanation of
this naming scheme can be found in the Netlib website [5].

In this project, only double precision routines are considered mainly due to precision require-
ments. A subset of the routines was selected based on the their usage in the example application
(explained in Chapter 4). The routines are introduced in the below subsections as relevant to the
project scope. The full explanations of all features of each routine can be found with Netlib or MKL
documentation.

2.1.1.1 Matrix-matrix multiplication (dgemm)

The dgemm routine computes a scalar-matrix-matrix product and adds the result to a scalar-matrix
product. The operation is defined as:

C = αA ·B + βC

where A, B and C are m× k, k× n and m× n matrices respectively. These three dimension values
(m, n and k) are inputs to the routine. α and β are scalars, of which only α = 1.0 and β = 0.0
cases are considered in the project scope. Matrices A and B can be optionally transposed at input
using routine arguments transa and transb. The computational complexity of dgemm is given by
O(mnk).

2.1.1.2 Matrix-vector multiplication (dgemv)

This routine calculates a scalar-matrix-vector product and adds a scalar-vector product to it. The
general definition is given as:

y = αA · x+ βy

where A is an m× n matrix and x and y are n-element vectors. Here, m and n values are dimension
inputs. α and β are scalars of which we consider cases with α = 1.0 and β = 0.0. Similar to dgemm,
the matrix A can be optionally transposed at input using a flag argument. The computational
complexity of dgemv is O(mn).

6

2.1.1.3 Triangular matrix solver (dtrsm)

The dtrsm routine solves one of the following matrix equations:

A ·X = αB

X ·A = αB

where X and B are m×n matrices and A is a upper or lower triangular matrix of size m×m or n×n

(depending on whether A is on the left or the right). The position of A matrix and upper/lower
property are given by an additional side and uplo flags. m and n values are dimension inputs. α
is a scalar with α = 1.0 in the example application. Matrix A is only used in the lower triangular
arrangement and on the left side (size m × m). The computational complexity of dtrsm is defined
as O(m2n).

2.1.1.4 Cholesky factorization (dpotrf)

The cholesky factorization of a Hermitian positive definite matrix A can be obtained using dpotrf.

A = L · LT or

A = U · UT

The output will be overwritten on the input matrix A of dimensions m× m. The lower or the upper
triangular matrix can be chosen for the output using the uplo flag. The other half of the matrix
will contain garbage values. The computational complexity of dpotrf is O(m3).

2.1.1.5 Matrix copies (dlacpy, mkl_domatcopy and cublasDgeam)

In the example application there are a number of matrix copies that involve additional actions.
The dlacpy routine is used to copy all or part of a triangular matrix to another. The uplo flag
can be used to specify whether to copy the upper or the lower triangle. dlacpy requires only one
dimension argument as triangle matrices are square by definition. However, with current CuBLAS
version (CUDA 10.1), there is no implementation of dlacpy for the GPU. Therefore, a naive im-
plementation was used for the GPU, which performs a column-by-column copy of the triangular
matrix using the vector copy (cublasDcopy) routine. For convenience, this implementation would
be referred to as the GPU version of dlacpy in the report. However, it is to be noted that there
certainly may be better implementations.

The mkl_domatcopy and cublasDgeam routines are used for copying parts of matrices to another,
while optionally transposing and scaling the source matrix. Since there is no common BLAS routine
that performs this, the additional routines provided by Intel MKL and CuBLAS are used in this
project. The two routines are not identical in all their functionality. For example, cublasDgeam can
optionally perform matrix addition as well. However, they were analyzed as each other’s counter
part because they were used for the same functionality in the project. To maintain consistency, the
two routines will be commonly referred to as "Extended Copy (excopy)" in the report.

As all three routines involve copying 2D arrays, the computational complexity is taken as in the
order O(mn), where the (sub)matrix being copied is of size m× n.

2.2 Performance Modeling

Performance modeling [19] in the context of this project is the process of mathematically modeling
the behavior of software functions against various configurations. There are two main approaches
to performance modeling: Analytical and Empirical. In analytical modeling, knowledge about the
algorithm, underlying system and its architecture is used to derive a model. For example, the

7

execution time of a set of multiplications on a processor may be calculated by taking into account
the processor frequency, the instruction set architecture (ISA) of the processor, memory hierarchy
and speeds, etc. This obviously requires a deep understanding of the system and the models
will largely vary from one platform to another. In addition, an understanding of the steps and
operations in the algorithm is also required. However, when using closed source libraries such as
Intel MKL and Nvidia CuBLAS, this knowledge is not available.

Empirical modeling on the other hand aims at deriving a mathematical model based on past mea-
surements. For the above example, a set of execution time measurements may be taken for differ-
ent numbers of multiplications and a model can be approximated based on them.

In this project, we use the empirical approach to model the execution times of a selected set of BLAS
and LAPACK routines. This follows the work of a previous project at ASML which is explained in
Section 2.3.1

2.3 ASML

ASML develops a range of lithography systems, which addresses a critical step in the silicon fab-
rication process. It essentially projects light through a blueprint of the pattern that needs to be
printed on a silicon wafer. These blueprints are known as "masks" or "reticles". After the pattern is
printed/exposed, the wafer is moved slightly and another copy is made. This process is repeated to
cover the wafer and complete a single layer. In a usual microchip, there can be many such layers.
Modern EUV lithography machines use Extreme Ultra Violet (EUV) light which has a wavelength
of 13.5 nm, while older DUV machines use Deep Ultra Violet (DUV) light with a typical wavelength
of 193 nm. Both these systems are used in the chip making process today.

The precision of these patterning techniques has become one of the defining factors for keeping
up with the Moore’s Law [20], a prediction made by a co-founder of Intel, Gordon Moore in 1965.
His prediction was that the number of transistors placed in an IC will double about every two
years. This reduction in size is largely influenced by the wavelength of the light source used in
lithography.

In keeping up with this scaling and performance requirements, it has become critical for lithogra-
phy system manufacturers to squeeze out as much performance as possible from the state-of-the-art
technologies. A good example is this published study [21] of GPU acceleration for a real-time con-
trol loop in the ASML EUV lithography machine. The calculations that are being offloaded to the
GPU predict the deformations on the wafer due to heating. The study shows that with the large
amount of data and calculations involved, it is still more beneficial to compress the data, transfer
to the GPU, decompress and process, rather than to execute everything on the CPU.

2.3.1 Previous Work

Prior to this project, there was a previous study done at ASML on performance modeling of lin-
ear algebra routines for the GPU [22]. It targeted the modeling of three selected BLAS/LAPACK
routines: dgemm, dpotrf and dpotrs, which are matrix-matrix multiplication (BLAS), Cholesky
factorization (LAPACK) and Cholesky solver (LAPACK) respectively. An empirical approach was
used to obtain data transfer and execution time models for the GPU.

Measurements were made for square matrices of sizes ranging from 32×32 to 10000×10000. Then
polynomials were fitted to the measurements using a χ2 minimization method. For all three rou-
tines, polynomials of third order have given reasonably good fits, while the independent variable
used was the row/column size of the square matrices. This also falls in line with the fact that the
selected routines have cubic computational complexity.

In addition, it was shown that a linear model fits fairly well with the measured data transfer times

8

over the PCIe link. This was also supported by the work of Boyer et al. in [23]. At the end, the
models were able to predict with less than 20% relative error both for execution times and data
transfer times. Therefore, the method has proven to yield reasonable results, without the need of
having hardware specific knowledge as in the case for analytical modeling. More details about the
outcome of this study and how it is being used in this project is discussed in Chapter 4.

2.4 Hardware Platforms

The two main hardware platforms considered in this study are the CPU and the GPU. Our test setup
consists of an Intel Xeon processor and an Nvidia Tesla GPU, specifications of which are provided
in Section 4.1. A general introduction to CPUs, GPUs and the Xeon and Tesla architectures is given
in this section.

CPUs, also referred to as General Purpose Processors are designed to handle multiple types of
tasks sequentially. Derived from the Von Neumann architecture [24], CPUs commonly share the
concept of a centralized processing unit that executes a set of instructions from a stored program.
They are usually designed to finish a task at as low as possible latency while keeping the ability to
quickly switch between operations. Although there is a certain amount of parallelism introduced
by multiple processing cores in today’s CPUs, it is still comparatively limited.

From the initial single core CPUs operating in the megahertz frequency range, they have now
evolved to having multiple cores operating in the gigahertz range. Modern processors employ
techniques such as branch prediction, pipelining, speculative execution and vector instruction units
to gain performance improvements. The Intel Xeon [25] is a series of processors targeted at
workstation and server market, with up to 28 processor cores on a single chip. Each core in Xeon
processors has access to its own L1 and L2 caches and a shared L3 cache, also known as the Last
Level Cache (LLC).

Figure 2.1: Generic block diagram of a CPU [26]

GPUs on the other hand were originally introduced for processing graphics, which involves a large
number of calculations that could be done in parallel. Thus, they were designed to maximize the
throughput by executing similar operations on thousands of processing cores. Over time GPUs
were utilized in other applications that have massive data parallelism as well.

Nvidia Tesla is a range of GPUs targeting acceleration on data centers and servers. The Tesla V100
GPU that we use is based on the Volta architecture, which was introduced in 2017. The architecture

9

is based on an array of Streaming Multiprocessor (SM), each with 64 single precision (FP32) and
32 double precision (FP64) cores [27] (Figure 2.2). In addition, each SM contains multiple mixed-
precision Tensor Cores purpose-built for deep learning matrix arithmetic. The Tesla V100 contains
80 such SMs.

Figure 2.2: Volta GV100 Streaming Multiprocessor architecture [27]

In order to benefit from high processing power, it is also important to have complementing memory
bandwidths. The Intel Xeon Gold 6134 processor that we use supports DDR4 (Double Data Rate)
memory protocol, with a supported maximum bandwidth of up to 207.425 GB/s. In contrast, the
Tesla V100 GPU has HBM2 (High Bandwidth Memory) interfaces to access the memory. It deliver
memory bandwidths of up to 900 GB/s.

Another main factor influencing the performance of hardware accelerators is the interconnect used
for communication between the platforms. PCI Express is a commonly used bus interface for
communication on motherboards between the CPU and other peripherals such as GPUs. Multiple
generations of the standard had been introduced, with 3.0 being the commonly supported one in
latest devices. PCIe is able to detect the maximum version and the number of data lanes supported
by two devices that are communicating and work in a compatible way. So even if a single lane
device is connected to an 8 lane connector, the interface will work with the bandwidth of the
single lane. Similarly, a generation 3 device connected to a generation 2 bus will work with the
data rates of the latter. The PCIe generation 3.0 supports a single lane throughput of around 1.969
GB/s, with a combined throughput of 31.51 GB/s for 16 lanes [28].

10

Chapter 3

Related Work

3.1 Hardware acceleration of BLAS/LAPACK

Hardware acceleration of BLAS/LAPACK routines is an actively researched area. Apart from the
libraries provided by vendors, there are a number of libraries with full or part implementation
of BLAS/LAPACK developed by the open source community. Most of them are continuations of
research work. In addition, there are also a number of standalone studies that discuss hardware
acceleration of a few selected routines.

Figure 3.1: Scalability of sgeqrf and dgeqrf with multiple compute nodes using MAGMA [29]

MAGMA (Matrix Algebra on GPU and Multicore Architectures) [16] [17] is a library actively devel-
oped by by the team that developed LAPACK and ScaLAPACK (University of Tennessee), in collab-
oration with industry partners such as Nvidia, Intel, AMD and MathWorks. It focuses on exploiting
the compute power of heterogeneous systems with multiple many-core CPUs and multiple GPUs.
There are multiple implementations supporting the usage of GPUs with Nvidia CUDA and/or many
core CPUs with OpenCL and Intel Xeon Phi support. The library executes small non-parallelizable
tasks on the CPU and more parallelizable ones on a parallel architecture. Figure 3.1 shows how the
performance of QR factorization for single and double precision scales with the number of CPUs
(AMD Opteron) and GPUs (Nvidia Tesla) using MAGMA. However, this dynamic task scheduling
in MAGMA is limited to deploying BLAS routines that are being used inside LAPACK functions to

11

improve performance. In contrast, in our project we explore the concept of deploying BLAS and
LAPACK routines of an application in available platforms so that their individual execution times
are minimized. That is, both BLAS and LAPACK functions are considered as similar indivisible
execution units.

The MAGMA library also provides batched implementations for all BLAS level 3 routines and a
selected set of LAPACK routines. This is shown to yield a few orders of magnitude of performance
gains [30] compared to non-batched implementations. Applications which require calculations
with large numbers of small matrices (e.g. Deep learning, astrophysics, structural mechanics, etc.)
can specially benefit from batched calculations. In literature more studies can be found that try to
exploit performance gains from batched executions [31] [32] [33].

In [31] the authors propose a standardized interface for Batched BLAS, so that developers are able
to express many small BLAS operations as a single call. A comparison of performance between non-
batched and batched implementations of matrix multiplication is provided for the CPU and GPU
using MKL, CuBLAS and MAGMA libraries. The study makes use of batched BLAS implementations
in CuBLAS [8] and batched matrix-matrix product (Batch GEMM) [34] in MKL.

In [32], Tabik et al. explore the impact of fusing vector operations (level 1 BLAS) to improve global
runtime of iterative solvers on the GPU. The motivation is to reduce the inefficiency of doing those
computations individually. The study shows up to 1.27x speed up for an iterative biconjugate
gradient method (BCG) solver using this approach.

CLBlast [33] is an open-source library [35] providing optimized OpenCL BLAS routines operating
in multiple precision levels. It is claimed to have been tested with a large variety of OpenCL
devices and has an optional CUDA back-end. The routines can be auto-tuned or explicitly tuned
for specific problem sizes and platforms. In addition the library supports batched execution of
small calculations as well.

In our study, batched execution of routines was not included in the scope for manageability reasons.
However, it is suggested as a possible addition to the API as future work in Section 8.1.

PLASMA (Parallel Linear Algebra Software for Multicore Architectures) [36] [37] is another project
that is implemented by University of Tennessee along with other collaborators, including University
of Manchester (UK), University of Colorado Denver and King Abdullah University of Technology.
PLASMA focuses on using tiling algorithms to exploit parallel architectures more efficiently. The
library uses a Directed Acyclic Graphs (DAG) representation of LAPACK routines to asynchronously
schedule multiple operations on the available hardware. Similar to MAGMA, it only deals with
BLAS calls within LAPACK routines, and thus differs from our work. However, we use a similar
DAG related method to obtain deployment schedules for routines in an application.

When considering multi GPU systems, Nvidia provides its own implementation for level 3 BLAS
called NVBLAS [38]. The library claims to dynamically route BLAS calls to multiple GPUs, while
deploying to the CPU if the data transfer to the GPU is expected to be too high.

BLASX [18] is a similar implementation aimed at multi-GPU systems only for level 3 BLAS rou-
tines. In [18] the authors address techniques such as Peer-to-Peer (P2P) communication between
GPUs and overlapping communication with computations. The authors present experiment results
with up to 3 GPUs in the system, where BLASX had shown to out-perform MAGMA, cuBLAS-XT
and PaRSEC implementations. PaRSEC (Parallel Runtime Scheduling and Execution Controller)
[39] [40] is another framework maintained by Innovative Computing Lab (ICL) of University of
Tennessee, which is used for scheduling micro tasks on distributed many core systems

In our study we work with a hardware setup with a single CPU and a GPU. Therefore, multi-GPU
implementations were not considered in the scope. However, the API provides a generic interface
for the routines. Therefore, new implementations can easily be introduced in the API, with addi-
tional selection options to the user. For an example, a MAGMA or NVBLAS implementation can be
used if there are multiple GPUs in the system, so that it will utilize them for LAPACK calls with mul-
tiple BLAS routines. Similarly, the API can easily be extended to other computing platforms as well.
Therefore, for the sake of completion, here we include a few studies on FPGA implementations of

12

BLAS routines.

An open source FPGA implementation of all BLAS routines is provided in [41]. It is available as a li-
brary developed using High-level Synthesis (HLS) tools, enabling better reusability, maintainability
and portability across FPGAs. Moreover, the interfaces is designed to reduce off-chip communica-
tion when possible. The library yields execution times comparable with that of CPU, although it
performs worse for smaller input sizes. The FPGAs rank better in terms of energy efficiency when
compared against CPUs. The authors conclude that kernels that can be pipelined in multiple stages
generally perform better on the FPGA.

An FPGA implementation of matrix multiplication (dgemm) is presented in [42] along with a soft-
ware wrapper to transparently act as an accelerator. The design makes use of parallel multiply-
accumulate (MAC) units and blocking algorithms on a dual-FPGA configuration. The study demon-
strates a 60% performance gain over a CPU version of dgemm from the optimized ATLAS library.
The performance is measured taking the data transfers into account as well.

Partial reconfiguration in FPGAs is a topic that is gaining popularity in the research community
[43]. The work in [44] implements sdot and sgemm operations on a Xilinx Zynq SOC as a frame-
work for dynamically configuring the FPGA for acceleration. It is shown that the FPGA yields speed
ups of up to 7.26x compared to the CPU, while being more energy efficient.

A comparison of double precision performance and energy usage of BLAS on CPU, GPU and FPGA
is presented in [45]. For the CPU and GPU standard Intel MKL and CuBLAS libraries are used. For
the FPGA, custom implementations of dot product and matrix-vector multiplication are developed.
With the test setup of an Intel Core 2 Duo 3.16 GHz processor and an Nvidia Tesla C1060 GPU,
the CPU performs better for the gaxpy routine. However, only a limited range of input sizes are
presented in the results. More focus is given to the FPGA implementation and its power efficiency.

Thus, it is clear that hardware acceleration of linear algebra calculations is a topic with active
research and development. However, the concept of making deployment decisions for individual
routines at runtime based on available hardware is not explored much to the best of our knowledge.
This project explores the feasibility of the idea, using performance models to predict the execution
times in the available platforms. A brief discussion of related work in the area of performance
modeling is presented in the next section.

3.2 Performance Modeling

A comprehensive study on empirical modeling of BLAS/LAPACK routines for the CPU was done by
Elmar Peise in [46]. In his work, Peise extensively explores different factors affecting the execution
time of linear algebra routines including different input configurations and CPU conditions.

In the study, arguments to routines are broadly categorized into a few groups for analysis: flag,
scalar, leading dimension, increment, data and size.

Flag arguments usually specify actions or variations on the input/output matrices. They have 2
or more discrete values such as the transpose flag (T/N) on input matrices of dgemm or the
upper/lower triangle (U/L) flag on the output matrix in dpotrf. As shown in [46], the flags
have only a very slight influence on the execution time. However, in our project, we take the
trans flag into account when modeling dtrsm and mkl_domatcopy routines as both values
of the flag are used with those routines in the example application.

Scalar arguments are used to multiply vectors or matrices with scalar values. In [46], it is shown
that values 0 and 1 are treated as special cases in most routines. Of these, 0 appears to have
the most effect where they seem to avoid certain calculations altogether. However, since in
this project the scalar values are kept constant in the routines (0 and 1), the effect is not
explicitly explored.

13

Leading dimension determines the memory access strides of data. Since all data are represented
as 1-D arrays, when working on sub-matrices, leading dimension is used to identify row/col-
umn boundaries. These arguments have very little influence on the execution time.

Increment argument is similar to leading dimension. But it is used in the context of vectors. So for
general cases, the stride length specified by increment would be 1.

data arguments are pointers to data arrays. As studied in [46], the actual numerical values in
the data generally do not affect the runtime of routines. However, the fact whether the data
resides in the cache or the main memory has some effect. However, studying the influence
of caching is not included in the scope of this project to keep it manageable.

size arguments specify the dimensions of the input and output matrices/vectors. They determine
the minimal FLOP count of the routine and therefore directly influence the execution time.
These are the arguments used in our study for modeling and predictions.

These groups were used in our study when implementing the test framework to collect measure-
ment data for performance modeling. The grouping helped to make the C++ code more generic,
so that new routines could be introduced for measurement with minimal effort. The open-source
test framework [47] related with the above study was also referred during implementation.

In addition, the author uses a complex model generation process that derives multiple models
for the same routine based on discrete flag and scalar argument combinations. For example, if
a routine has two flag arguments: trans and uplo, the framework generates 22 = 4 models
with combinations of all the flag values (trans=(T,N), uplo=(U,L)). Similarly, for dtrsm and
mkl_domatcopy routines we use two models each for the two values of the trans flag, as the
execution times were found to be considerably different and both values are used in the exam-
ple application. However, as the application does not use differing flag values in the rest of the
routines, we do not generate multiple models for them.

The modeling process in [46] recursively determines a set of dimension values in a range, makes
measurements, fits a polynomial, checks if the model relative error is below a threshold of 1%
and if not, divides the input range in two and continues for the two halves. However, this mea-
surement and model generation method can be time consuming and when the framework tries to
continuously divide the ranges to achieve higher accuracies it may over-fit the models to the data.
Another drawback of having a large number of sub divisions for the same routine in our scope
is that it would incur more processing at run time to compare the dimension arguments against
the different ranges to determine the applicable polynomial to make a prediction. Due to these
reasons and the implementation complexity, we follow a simpler approach of dividing the input
ranges based on visual observations, focusing on absolute percentage errors below 20% (Section
5.1).

A comprehensive study on performance modeling for the CPU is also presented in [48] by Roman
Iakymchuk. There, a bottom-up approach is used for modeling, starting at the BLAS level and
then building up to higher levels using previous models. The author also explores empirical and
analytical methods for modelling. However, only small problem sizes with square matrices that
fit in the caches is used in the study. For empirical modeling, results for only LU factorization
is presented, using models for dscal and dger routines, which achieve relative errors less than
4%. For modeling, piecewise polynomials are used with 2 parabolas, one for each cache level
(L1 and L2) of the processors considered. In contrast, our work follows a more generic approach,
considering arbitrary input sizes that at times exceed cache sizes and present models for 7 selected
routines. In addition, we model the routines in a platform independent way, focusing on both CPU
and GPU in our implementation.

Another focus of [48] is modeling memory-bound algorithms, and thus a detailed study is con-
ducted on modeling memory stalls, which directly affects execution time. Similarly, the work in
[46] includes an effort to model the effect of caching on the execution time of routines. However,
this memory related modeling is not included in our study to keep the scope manageable. We
recommend including it in future work for our API, due to its considerable influence on model
accuracies as shown in the results (Chapter 7).

14

In [49], a supervised machine learning approach is used to predict GPU execution times based
on CPU runs. Support Vector Machines (SVM) and Nearest Neighbor with Generalized Exemplars
(NNGE) methods are considered for the purpose. Features such as number of ALU instructions,
SIMD instructions, memory loads and stores and branches in the program are collected by runtime
profiling. With this, Baldini et al. report an accuracy of 77% - 90% with their data sets. However,
when a new application is introduced, it needs to be instrumented to run first with the runtime
profiler. Then only the collected data can be used to predict the GPU execution time.

A comparison of machine learning based modeling and analytical modeling is presented for the
GPU by Amaris et al. in [50]. For machine learning, Multiple Linear Regression, SVM and Random
Forest are considered. The tests performed on multiple GPUs result in higher accuracy of analytical
models with relative errors below 20%. The Linear Regression and Random Forest methods yield
relative errors up to 50%. As both studies above require the application to be executed beforehand
to collect profiling data, they are not suitable for our project, specially for dynamic deployment
(Section 4.4) where the API predicts the execution times of BLAS/LAPACK routines at run time
regardless of the nature of the application.

3.3 Task Scheduling with Data Dependency Graphs

Graph optimization is an actively researched area [51] in the scientific world as it can be applied
in various fields. It is specially used in modeling the execution of parallel applications in homo-
geneous as well as heterogenous architectures. In our context, we represent the linear algebra
operations in a given application as a Directed Acyclic Graph (DAG), which is then used to obtain
an optimized deployment schedule of the routines on the CPU and GPU. Some of the most relevant
work in literature is discussed in this section.

In the DAG representation, nodes of the graph are BLAS/LAPACK routines and edges represent
data dependencies. The nodes are annotated with two costs: predicted execution time for the CPU
and the GPU. The cost annotated on edges represent the predicted data transfer time over the PCIe
link for the corresponding data size. This representation is discussed in more detail in Section 6.1.

The studies of scheduling dependent tasks can broadly be divided into the two categories of ho-
mogeneous [52] and heterogeneous architectures. We focus on the latter as our application needs
to schedule routines between the CPU and the GPU architectures. Finding the optimal schedule of
a DAG for heterogenous processors is an NP-complete problem even for two machines [53]. Thus,
there are many heuristics in literature for scheduling. A comprehensive comparison of 20 such
static heuristics is presented in [51].

Heterogeneous Earliest Finish Time (HEFT) [54] is a an often cited method for scheduling a set of
dependent tasks on a network of heterogenous architectures. The algorithm provides an optimized
schedule in O(|V |2p) time, where V and p are number of vertices and processing units respectively.
However, being a greedy algorithm it is shown to perform poorly in some cases, where making
short-term sacrifices may achieve better long term results [53].

In [55], the authors present a scheduling methodology which is able to take into account alterna-
tive implementations of the same component in different processing engines, as well as conditional
branches in an application. However, the algorithm also allows preemption of tasks to free com-
putation resources for higher priority tasks, which is not relevant for our application.

An algorithm (PEELSCHED) to schedule a set of tasks with precedence constraints and communi-
cation costs is presented in [52]. It is shown to produce schedules that are up to 29% longer than
the optimum schedule for 2 processors. The study assumes that the processors are homogenous,
meaning that the execution time of a given routines in each processor is identical. Therefore, it
cannot be used in a heterogeneous system as ours, with a CPU and a GPU.

SPAGHETtI [53] is another algorithm for static scheduling of tasks on unbounded heterogeneous
resources. It works in multiple steps. First the earliest start times of each node/task in the graph

15

is calculated with O(|V | + |E|) time, where |V | and |E| are the number of vertices and edges
respectively. Then a method is proposed to map the tasks to the available architectures, assuming
that there are unlimited instances of each architecture. This step takes O(|A|2|E|) time, where |A|
is the number of architectures (e.g. 2 if only CPU and GPU are considered). Then a final algorithm
iteratively reduces the inherent parallelism in the graph by adding extra edges between parallel
nodes, and re-calculates the schedule with the first two steps. This is repeated until the resulting
schedule can be executed with the available resources. The algorithm is shown to perform better
than HEFT, generating schedules with lower makespan, which is the time to execute the total
schedule. Thus, this method is closely related to our study.

However, even after reducing the graph to the single CPU and GPU instances, it is possible for the
above method to generate a schedule where there are nodes to be executed simultaneously on the
two platforms. Implementing such functionality inside the API is non trivial, and therefore is not
attempted in our study. Alternatively, it can be done by modifying the application code. But that
approach goes against our goal of abstracting hardware specific details from the user by minimizing
modifications outside the API. Furthermore, slight changes in input sizes or the application itself
may result in different schedules, which will lead to further modifications for parallel deployments.
Making such updates for each new schedule can be time consuming. Therefore, we only focus on
executing routines one after the other in the order they appear in the application, while deploying
each instance in an optimal way. Such a schedule cannot be generated using the SPAGHETtI
algorithm.

Thus, in our work we suggest an intuitive algorithm which deploys routines sequentially while
minimizing the total execution time of the application. Although it has certain limitations which
will cause it not to scale well for larger applications and systems, it is presented as a proof-of-
concept to demonstrate that the dependency graph can indeed be utilized to achieve better results
than simple dynamic deployment at runtime. The algorithm is presented in Chapter 6, and the
limitations are discussed in Section 7.2.1, after presenting the results of the study. However, within
the scope of this project an attempt was not made to compare it against implementations of other
algorithms in literature. Due to the large amount of research in this area, we recommend it to be
done as a separate comprehensive study. It may also be of value to explore methods where parallel
execution of multiple routines in available platforms is handled by the API as well.

16

Chapter 4

Approach

In this chapter, the test setup and the example application used to demonstrate the API is briefly
introduced first. Then an overview of the API is given, followed by a discussion of a few approaches
considered for the GPU implementation. Finally, the dynamic deployment mode of the API is
explained.

4.1 Test Setup

In this study, all measurements and tests were executed on a High Performance Cluster (HPC) node
with an Intel Xeon Gold 6134 [56] CPU and an Nvidia Tesla V100 SXM2 [57] GPU. The hardware
and software specifications of the system are summarized in Table 4.1.

CPU

Model Intel Xeon Gold 6134
Number of cores 8
Number of threads 16
Processor base frequency 3.20 GHz
L1 cache size 32 KB per core
L2 cache size 1 MB per core
L3 cache size 24.75 MB shared
Memory interface DDR4
Maximum memory bandwidth 207.425 GB/s

GPU

Model Nvidia Tesla V100 SXM2
No. of CUDA Cores 5120
Architecture Volta
Memory interface HBM2
Maximum memory bandwidth 900 GB/s

Interconnect
PCI Express version Generation 3.0
Number of lanes 16

Software

BLAS/LAPACK Library - CPU Intel MKL 2019 Update 3
BLAS/LAPACK Library - GPU Nvidia Cublas/Cusolver (CUDA 10.1)
C/C++ Compiler GCC 4.8.5
Operating system RedHat Enterprise Linux 7

Table 4.1: Test setup specifications

Only single thread executions were considered for the CPU in the project. The main reason for
this was to keep the project scope manageable. The previous study at ASML [22] showed that in-
creasing the number of threads does not always reduce the execution of of a routine. For example,

17

the run time of of dgemm with two 128 × 128 matrices was more than doubled when the number
of threads was increased from 4 to 24. And this kind of behavior differs from routine to routine.
Therefore, exploring the effect of multiple threads for all routines would have been a non trivial
task.

4.2 Example Application

Linear solvers are used in many systems in ASML software. In this project, in order to demonstrate
the API, a convex optimization problem using the Quadratic Programming (QP) active-set method
was selected as an example application. The objective in quadratic programming is to minimize/-
maximize a quadratic function of several variables subject to a set of linear constraints that define
the feasible region:

minimize
1

2
xTHx+ cTx

subject to Ax ≤ d

where,
c: an n - dimensional real vector
H: an n× n - dimensional real symmetric matrix
A: an m× n - dimensional real matrix
d: an m - dimensional real vector

It has been shown that the problem gets simplified when H above is positive definite and all
constraints are equality constraints. These equality constraints are also called the active-set. Then,
it can be shown that the solution to the problem is given by the linear system

MX = F

[
H AT

as

Aas 0

] [
x
λ

]
=

[
−f
d

]
(4.1)

where, λ is a set of Lagrange multipliers which are received along with the solution x. Aas is the set
of active constraints. In the active-set method of solving QP problems, first a feasible starting point
is selected in the feasible region. Then after determining the active set for the selected point, the
above system is solved to calculate a step within the boundaries. This is repeated until it satisfies
all conditions, reaching the optimal solution. Alternatively the algorithm can be stopped after a
predefined number of iterations, if the solution is already feasible.

However, in our implementation, we have not implemented convergence and bound checks that
are in a typical application of this algorithm [58], as the aim was to demonstrate the use of
BLAS/LAPACK routines with the NL API. In the tests, the data was randomly generated and the
number of constraints in the matrix equation was continuously increased to demonstrate an in-
creasing problem size.

The straightforward method to obtain the solution of the above problem is through LU factoriza-
tion. However, doing this in each iteration would be sub-optimal because the upper left part of
M with with H matrix remains fixed. However, when the H matrix is positive definite, it can be
shown that L and U matrices can be constructed using and re-using a set of smaller matrices:

L =

[
Lc 0
Bas L2

]
U =

[
LT
c BT

as

0 −L2

]
Where,
Lc = chol(H)

18

Bas = Aas · (LT
c)
−1

L2 = chol(Aas ·H−1 ·AT
as)

Here, Lc = chol(H), which is the cholesky factorization of H, can be pre-calculated as H does
not change during iterations. The sub-matrix Bas can be obtained by pre-solving Bt · Lc = A and
selecting the same constraints (rows) from Bt that correspond to the active-set, as Aas would have
been constructed from A. Finally, it can be shown that L2 is obtained by Cholesky factorization of
Bas ·BT

as:

Bas ·BT
as =

[
Aas · (LT

c)
−1] · [Aas · (LT

c)
−1]T

=
[
Aas · (LT

c)
−1] · [(LT

c)
−1]T ·AT

as

=
[
Aas · (LT

c)
−1] · [(LT

c)
T
]−1 ·AT

as

= Aas · (LT
c)
−1 · L−1c ·AT

as

= Aas · (Lc · LT
c)
−1 ·AT

as

= Aas ·H−1 ·AT
as

Matrix inverse and transpose rules used for above derivation are:

(A ·B)T = BT ·AT

(A ·B)−1 = B−1 ·A−1

(AT)−1 = (A−1)T

Algorithm 1: Quadratic Solver algorithm

/* n: Size of H matrix */

/* m: Total number of constraints / number of rows in A */

/* max_iter: maximum iterations */

// Calculate Lc and Bt matrices

1 Lc = choleksy(H)
2 Bt = tri_solve(Lc, A)

3 while iters < max_iter do
// Select active constraints from Bt

4 Bas = Bt[idxs]

// Calculate L2 matrix

5 L2 = Bas ·BT
as

// Construct L and U matrices
6

L =

[
Lc 0
Bas L2

]
U =

[
LT
c BT

as

0 −L2

]
// Forward and backward substitution

7 sf = tri_solve(L, f)
8 X = tri_solve(UT , sf)

// Additional calculations for representation

9 x := first n elements of X
10 adx = A · x
11 copy adx to another vector on CPU

12 iters++
13 end

19

For a given problem with H of size n × n and the number of constraints m, the algorithm of the
solver is presented in Algorithm 1.

The functions in the algorithm, cholesky() and tri_solve() represent cholesky factorization (dpotrf)
and triangular matrix solver (dtrsm) routines. Two additional calculations were added at the end
of each iteration, in order to represent the steps that follow the matrix equation solving in an ac-
tual application. The matrix-vector multiplication A · x is one of the steps in determining blocking
constraints at a given point of a QP solver. We include it in our application model due to its con-
siderable computation cost. The last copy of the resulting vector to the CPU is added to represent
any control logic that might happen on the CPU at the end of each iteration. This way, the result is
forced to be transferred back to the CPU regardless of where A · x is calculated.

4.3 API Overview

The ASML Numerical Library API already consisted of a number of functions that wrap BLAS/LA-
PACK routines. They were updated and more functions were added during the implementation of
this project. In addition, for all the functions involved, an optional deployment flag argument was
introduced. With this flag the user is able to specify the expected deployment platform (DEP_CPU,
DEP_GPU) for the function (Figure 4.1). Since the implementation including data transfers is han-
dled by the API, the application code does not need to be changed any further. When the value
is not given, the routine will execute on the CPU by default. Hence, the interface is backward
compatible.

Figure 4.1: Deployment flag functionality

In addition to direct deployment as above, the DEP_DYNAMIC value allows dynamic deployment of
the routine. With this flag value, the API predicts the input data transfer times, execution time
and the output data transfer times for the two platforms and chooses the faster option. These
predictions are made using the performance models that are explained in detail in Chapter 5. The

20

dynamic deployment feature itself is discussed in Section 4.4

The data flow analysis feature can be activated for a given part of an application code using the
dfa_start() and dfa_end() functions. The API will collect profiling information on parameter
sizes and the routines being called within the activated region at run time and write to a file. A
data dependency graph is generated from this collected data, from which an optimized schedule
can be derived. The dependency graphs and the scheduling algorithm are described in detail in
Chapter 6.

4.3.1 GPU Deployment Approaches

When adding the GPU counterparts to the API functions, multiple implementation methods were
considered. The main difference among these was how data transfers are handled through the PCI
Express link. After comparing the performance of each method, one was chosen to move forward
with in the study.

4.3.1.1 Naive transfers

The API uses a matrix data structure to handle the data for the functions. The data structure
contains dimension details of the matrix and a memory pointer to the data. When introducing the
GPU implementation, an additional data pointer was introduced to point to the GPU copy of the
data.

In this approach, all data transfers are naively performed for each routine. That is, first all input
data are transferred to the GPU and after the execution the results are transferred back to the CPU
immediately.

With this method, as all data transfers are known, a realistic prediction and comparison can be
done against the CPU execution time. But the drawback of this approach is that there can be many
avoidable data transfers happening for each routine. It will not try re-using data that is already
available on the GPU.

4.3.1.2 API managed conditional transfers

In this approach, two additional flag values are added to the matrix data structure (cpu_synced
and gpu_synced) to keep track of synchronization status in each device. The flags are updated
inside the API when the data objects get updated. For example, when a matrix is passed in for the
output parameter, if the routine gets executed on the GPU, the flag values are set as gpu_synced =

1 and cpu_synced = 0. So if a subsequent routine makes use of the same data object on the CPU,
it needs to be transferred. However, if the that routine is executed on the GPU, no transfers are
needed. Therefore, the transfers happen conditionally.

This method will minimize data transfers to an on-demand basis. That is, the outputs of routines
executed on the GPU will not be transferred to the host memory until they are needed for another
calculation. A disadvantage of this approach is that all data accesses need to be done through NL
functions. This is because even simple reads and writes to the data arrays need to be monitored in
order to update the sync flags.

There is also an impact on the predictions in the dynamic deployment mode. Transfer times for in-
put data can be successfully predicted by considering the sync flag of each data structure. However,
taking account of the output transfers in comparisons becomes difficult. For example consider Fig-
ure 4.2, where the dgemm routine is to be scheduled dynamically. It shows a case where the output
of the routine is expected to be used in the CPU. An assumption has to be made because there is no
knowledge of where the following routine will be deployed. In our study, we make the assumption

21

that the output of any routine will always be required subsequently on the CPU. Therefore, it will
be an over-estimation for chained GPU routines, where the output of one is consumed by another.

Figure 4.2: Deployment decisions with data transfers

4.3.1.3 CUDA managed conditional transfers

Similar to API managed conditional transfers, this approach also makes data transfers only when
needed, but at a more fine-grained level. The data synchronization is handled by the CUDA Unified
Memory feature introduced from CUDA version 6 [59]. It is supported by Nvidia GPUs with Kepler
and newer architectures. CUDA will manage a Unified Memory that is shared between the CPU
and the GPU and can be accessed without any explicit data transfers in the code by the user
(Figure 4.3). To use the Unified Memory, the memory allocations need to be done using CUDA’s
cudaMallocManaged() interface instead of the standard system malloc() function. Therefore,
there is no need of maintaining separate data pointers for the CPU and the GPU as in the Naive
transfers and API managed conditional transfers approaches. The unified memory uses a complex
page fault handling mechanism to transfer data through the PCIe link on demand [60]. Thus, if
only a part of a data pointer is accessed, it will transfer only the corresponding memory pages
instead of the full data array as was done with API managed conditional transfers.

Figure 4.3: CUDA Unified Memory [59]

The main advantage of this approach is that the data synchronization does not need to be per-
formed manually. Even if the data pointers are accessed directly, the CUDA memory management
will transfer the required chunks of data automatically. According to Nvidia, in terms of bandwidth
for large amounts of data, it does not perform as well as explicit memory transfers [60]. However
for our application, it was observed that for frequent usage of the GPU, this method performs better
than API managed conditional transfers.

22

In terms of disadvantages, in this method also we face the output transfer prediction issue. As
in the previous case, the output data transfers cannot be predicted without knowledge of future
calculations. In addition, even the accuracy of input transfer predictions could degrade as they are
automatically handled by CUDA, whereas, explicit transfers would be used when generating the
prediction models. However, in order to have some control over the predictions, the synchroniza-
tion flags can be used like before to keep track of required data transfers.

4.3.1.4 Comparison

In order to compare the three methods, the QP solver was executed for a range of problem sizes.
The size of H matrix was varied from 50 to 2500 with a step size of 20. For each size of H, the
number of constraints was iterated from half the size of H to (size_H - 1), with the same step size.
In Figure 4.4, the loop execution times of the solver is plotted for the extreme case of deploying all
functions to the GPU. For reference, an all CPU instance is also included.

Figure 4.4: Comparison of different GPU implementations

It is clear from the figure that Unified Memory performs much better than the other two options
for the application. We can also observe that the CPU performs better during around the first 250
iterations with lower sizes. This is because the time taken for the transfers to the GPU dominates
the total time taken, even though there are not many transfers. Due to the better overall perfor-
mance and scalability of the CUDA Unified Memory approach, it was chosen for GPU deployments
in the rest of the project.

4.4 Dynamic Deployment

The dynamic deployment/offloading feature makes use of the performance models to predict ex-
ecution and transfer times and make deployment decisions based on them. In ASML context, this
may be used at pre-design time for design space exploration as a convenient method to quickly

23

check performance gains that can be achieved by deploying suitable functions to accelerators. In
a more general use case, it may be used in a dynamic application where the data sizes change
substantially at run time. For such an application, the API would try to minimize the time taken
for each routine instance.

Figure 4.5: Comparison of different GPU implementations

As mentioned in Section 4.3.1, accurately predicting the transfer time becomes more complex with
the CUDA Unified Memory approach. On one hand there is the issue of estimating the output data
transfers due to having no knowledge of future deployments. For this, considering the CPU as the
baseline, the output of routines will be assumed to be needed subsequently on the CPU, which
is an overestimation for the GPU in some cases. Thus, in a scenario like in Figure 4.5 where the
deployment of dgemm is considered, the two expressions that will be compared by the API are:

predCPU = (input transfer) + (CPU execution time) + (output transfer)

= tin + execCPU + 0

and

predGPU = (input transfer) + (GPU execution time) + (output transfer)

= 0 + execGPU + tout

On the other hand, there is a further complication when only parts of data are accessed by routines
or direct read/writes, as unified memory only transfers the relevant pages of memory between the
devices. Because the API keeps track of the data using cpu_synced and gpu_synced flags, this only
gives a binary view for the full data array. Thus, using the flags to determine data transfer times
of the full array may result in another type of overestimation, specially when the data pointers are
accessed directly. However, for routines that operate only on a part of a data array (e.g. copying a
sub-matrix), the API will only use the size of the accessed elements for data transfer predictions.

Chapter 5 discusses the performance models used for predictions, while the data flow analysis
mode of the API is described in Chapter 6. Finally in Chapter 7, results are presented with perfor-
mance of all modes of the API.

24

Chapter 5

Performance Modeling

In this section, the performance modeling method is discussed in detail, which extends and makes
use of the previous study [22] done at ASML regarding performance modeling (Section 2.3.1).
That project was focused on using empirical modeling for GPU implementations of dgemm, dpotrf
and dpotrs routines for square matrix inputs. In this project the performance models are extended
in several ways:

1. Extend to more BLAS and LAPACK routines

2. Extend to modeling for the CPU

3. Extend to matrices of arbitrary sizes

Based on the usage in the example application, dgemm, dgemv, dpotrf, dtrsm, dlacpy and excopy

(mkl_domatcopy and cublasDgeam) routines are selected for modeling (introduced in Section
2.1.1). For each routine, separate models are derived for the CPU and the GPU.

Extending the modeling to arbitrary sizes required re-visiting the modeling methods. With square
matrices in the size range 32× 32 to 10000× 10000, the previous study was able to achieve relative
error rates less than 20% for dgemm, dpotrf and dpotrs.

Figure 5.1: Execution time of dgemm for square matrices

25

Figure 5.1 shows the execution time measurements with square matrices for dgemm. The execution
time is plotted against the row/column size of the square matrices. As can be observed, it shows a
fairly consistent trend and it was this relationship between the matrix size and the execution time
that was modeled in the previous study.

However, this method cannot be used for arbitrary sized matrices. For example, the dgemm routine
takes in three dimension inputs m, n and k. These values define the sizes of the input (m × k and
k×n) and output matrices (m×n) (Figure 5.2). Thus, they determine the amount of total operations
required to calculate the output. This fact is also reflected in the computational complexity of
dgemm, which is O(mnk). For square matrices (m = n = k), the complexity then would be O(m3).
Therefore, a single dimension value, as in the previous study, is enough to explain the execution
time. But for arbitrary sized matrices, we need to take all three dimensions into account.

Thus, the same measurements of dgemm for square matrices are plotted against the product of
dimensions (m × n × k) in Figure 5.3. Since it is also the computation complexity of the routine,
a linear relationship can be observed now with the execution time. A similar relationship was
observed for the other two routines (dpotrf and dpotrs) as well.

Figure 5.2: Relationship of dimension inputs to dgemm

Figure 5.3: Execution time of dgemm for square matrices (against computation complexity)

However, for this project, the models are required to be able to predict execution times for non-
square matrices as well. Therefore, for routines that accept more than one dimension argument
(dgemm, dgemv, dtrsm and excopy) additional measurements were made. Initially, the aim was to
observe the behavior in each routine.

First, a range of sizes was selected: powers of 2 in the range [32, ..., 4096] and multiples of 500 in
the range [500, 1000, ..., 4000]. Then for each value in the list, the computational complexity was
calculated, assuming all inputs are square matrices (e.g. O(m3) for dgemm). Based on these com-

26

plexity values, all combinations of dimensions that result in the same complexity were calculated.
As an example, for a size of 4, the complexity value of dgemm would be 43 = 64. Then the resulting
combinations that yield the same complexity are:

(2, 2, 16), (2, 4, 8), (2, 8, 4), (2, 16, 2), (4, 2, 8), (4, 4, 4), (4, 8, 2), (8, 2, 4), (8, 4, 2), (16, 2, 2)

Dimensions of 1 were ignored here so that vectors were not considered, and the matrix row/column
sizes were kept below 10000. This way, 2527 measurements were made for dgemm. For the other
routines which only take 2 dimension arguments, the number of combinations was as follows: For
dgemv and excopy with the complexity O(mn), it was 438 measurements. The complexity of dtrsm
is O(m2n). Consequently, it had only 135 data points.

The main observation from the results is that for all routines, execution time changes substantially
for different dimension combinations that result in the same complexity (Figure 5.4). This is
the case for both CPU (MKL) and GPU (CuBLAS). As a consequence, accurate modeling of these
routines becomes more complex.

It is not possible to pinpoint the exact reasons for these variations as both libraries are closed
source. However, in order to gain some insight on optimized implementations of BLAS, the open
source implementation of dgemm in the BLIS framework was referred [61]. As the performance
values of BLIS are comparable with that of MKL, it is reasonable to inspect this algorithm. Gener-
ally, how such a method improves the performance over a naive triple-nested-loop implementation
is by efficient use of the memory hierarchy of a CPU. The calculations are performed on small
blocks of matrices that fit in the L1, L2 and L3 caches, and the re-use of fetched data is max-
imized. Therefore, on the whole, the number of main memory accesses is minimized, yielding
better performance.

Consequently, a hypothesis for the execution time variations in routines is that the shapes of matri-
ces affect the number of cache misses for the data. Particularly high run times are recorded on the
CPU when n < 256, which results in "thin" matrices for the second input and the output arguments
of dgemm. These reasons are not explored any further, as the aim of the project was to generate
models using an empirical approach. Thus, some additional techniques are used to try and include
the variations in the performance models.

27

Figure 5.4: Execution time of routines with square and non-square matrices

28

5.1 Generating the Models

Primarily, we use a multiple regression method for modeling of routines with more than one di-
mension arguments, instead of simple regression with only computational complexity as an inde-
pendent variable. This way, it is possible to include individual dimension values and their com-
binations in the models. A linear model derived from multiple regression can be generalized as
below:

y = b1x1 + b2x2 + ...+ bnxn + c

Where, xi are independent variables and bi are their corresponding coefficients. c is the intercept
of the polynomial.

In addition, a piecewise polynomial method similar to that in [46] and [48] is used to improve the
fitting. Consequently, multiple polynomials are generated for each routine to predict for different
input ranges, through which varying behaviors could be captured in the models.

A "benchmarking" application is developed to conveniently measure the execution time of BLAS
and LAPACK routines. In the application, a high level Python (v2.7) interface acquires the routine
and test details from a configuration file, which is then used to invoke the C++ program that
handles executions and measurements.

The measured data is then used to generate the models using the scikit-learn [62] library for
Python. The LinearRegression method of scikit-learn supports both simple and multiple regres-
sion. It uses a sum of squared error minimization approach to fit the linear model to the provided
dataset.

minimize E =
∑
j

|yj − p(xj)|2

However, this often results in higher relative errors for smaller output sizes, which is not desirable
for this project. Therefore, an additional weight is introduced in the cost (error) function to take
this fact into account. The weight is defined to be the inverse of the sample values. This way, the
minimized cost function becomes the squared relative error:

minimize E =
∑
j

1

y2j
× |yj − p(xj)|2

For demonstration, the modeling process of CPU dgemv routine is discussed in this section, while
referring to other routines for comparisons. The metrics relative error and percentage error are
used to measure the accuracy of the models in the rest of the report, where the percentage error
is defined as (relative error × 100)%. Mostly the mean and maximum absolute percentage error
values are used when assessing the models.

Firstly, we present the model derived using simple regression for non-square inputs as in the pre-
vious study [22]. The obtained polynomial can be written as:

ypred = mn · 6.530410× 10−7 − 2.406923× 10−2 (5.1)

where, mn is the complexity of the routine calculated by multiplying the two dimension arguments
m and n.

In order to check how the model performs with the full dataset, it is visualized using three types
of plots as in Figure 5.10. The top-left graph shows the estimates plotted on top of the measured
execution times. The predictions for the first few complexity values are not present in the plot
because the values are negative and thus cannot be shown on a log scales. The model produces
negative values for smaller inputs due to the negative intercept in equation 5.1. The predicted
values are plotted against the expected ones in the top-right graph. Ideally, all predictions should
fall on the red reference line. Finally, the relative error for each prediction is presented in the
bottom graph, along with 20% references. From this, it can be seen that there are still a number of
outliers in the estimates. These are quantified by two metrics: maximum absolute percentage error

29

and the percentage of outliers that fall outside the 20% reference. For this particular model, the
two values are 55.54% and 2580%. The mean absolute percentage error is 51.03%.

Figure 5.5: Model accuracy with simple regression for dgemv on GPU

In contrast to simple regression as above, the modeling approach we propose goes through multiple
steps to determine suitable model parameters. As a first step, the measured execution times are
plotted against the computation complexity of each routine. This helps to identify any irregularities
in the execution behavior. For example, in Figure 5.6 a clear change in the pattern of measured
execution times can be observed when the complexity of dgemv on CPU exceeds 105. Based on this
visualization, several input ranges are determined to test the model accuracies with.

Figure 5.6: Execution time of dgemv on CPU

30

At the same time, visualizing the execution time for a given complexity with different input combi-
nations is useful in gaining insight on the influence of individual dimension arguments. As can be
seen in Figure 5.7, the execution time of dgemv on CPU has increased more than 2 times compared
to the square matrix case, when the matrix has dimensions 2× 39200.

Figure 5.7: Execution time of dgemv on CPU for varying dimensions with same complexity

Figure 5.8: Execution time of dgemm on CPU for varying dimensions with same complexity

Naturally, these behaviors are different for each routine. For example, Figure 5.8 shows a similar
graph for dgemm. There, the execution time increases substantially as the input matrices become
relatively thin in shape. Furthermore, these effects were also observed to change for different input
ranges even of the same routine. Thus, another (sub)division is considered within each complexity

31

range selected above. Dimension values that result in rather thin shapes are separated using a
"thinness ratio" value (r). For dgemv, the selection condition is defined as:

(m ∗ r < n)||(n ∗ r < m)

Subsequently, a range of values for r is also selected for testing model accuracies, including value
0, so that there is no division.

Another aspect to consider is choosing the independent variables (features) for multiple regression.
First, following the approach in [46], all combinations of dimension values up to the order of
complexity of the routine are selected as variables. For dgemv, these are m,n for the first order
and m2, n2,mn for the second order. However, the number of variables increase substantially for
3 dimension arguments. For dgemm, it results in 19 terms as follows:

1st order : m,n, k

2nd order : m2, n2, k2,mn,mk, nk

3rd order : m3, n3, k3,m2n,m2k, n2m,n2k, k2m, k2n,mnk

If all the terms are to be used in a model, it would require around 16 multiplications and 20 addi-
tions at the least just to calculate the prediction values for dgemm. For fairly small input sizes with
m,n, k ≤ 5, this will be substantial in comparison to the number of operations in the calculation.
In addition, some dimension combinations may contribute to the prediction in only a negligible
amount. Therefore, we include an effort to identify terms that most influence the model. If we are
to test the model accuracy with all possible combinations of x number of variables we would have
to consider 2x number of combinations. In order to minimize this to a manageable amount, the
variables are grouped together, so that for each routine a maximum of 4 groups are considered.
This way only up to 24 = 16 combinations need to be checked. In addition, with each group the
complexity of the routine is always used.

Figure 5.9: Model accuracy with different parameters for dgemv

Subsequently, separate models are made with the combinations of above selected feature groups

32

and input range divisions. Figure 5.9 demonstrates the mean absolute percentage errors of the
generated models for dgemv. The four lines are the relative errors of models with different param-
eters, using the feature sets given in the legend.

The x-axis of the figure contains different parameter combinations for the model. The first param-
eter is a list of division points for polynomials given in the form: [d0, d1, ...]. The next parameter
is the thinness ratio r. The blue and green curves provide the lowest relative errors in the graph,
with feature sets (m,n,mn) and (m,n,m2, n2,mn). In order to reduce the number of calculations
at prediction time, we choose the blue curve.

Now we focus on the left half of the graph (first 10 x-axis values), with the two division options
[1× 105, 1× 106] and [1× 105, 2× 106]. From these, the second one is chosen as it gives the lower
relative errors. The effect of the thinness ratio in this region is negligible, with only a very slight
drop from 0 to 100 and almost none after that. Therefore, the parameters chosen for the model
are divisions 1 × 105 and 2 × 106 with no additional division for thinness (r = 0). The predictor
variables are m,n,mn. The model can then be formally written as follows with the calculated
coefficients:

ypred =

b1 ·m+ b2 · n+ b3 ·mn+ b4 if mn < 105

c1 ·m+ c2 · n+ c3 ·mn+ c4 if 105 ≤ mn < 2× 106

d1 ·m+ d2 · n+ d3 ·mn+ d4 if mn ≥ 2× 106

b1 = 3.200676× 10−7 c1 = 6.711642× 10−7 d1 = 1.239206× 10−6

b2 = 2.094603× 10−6 c2 = 1.085442× 10−6 d2 = 1.791089× 10−6

b3 = 1.801089× 10−7 c3 = 3.652427× 10−7 d3 = 6.905138× 10−7

b4 = 1.662675× 10−3 c4 = 4.548914× 10−4 d4 = −8.179780× 10−1

Figure 5.10: Model accuracy with the selected parameters for dgemv on GPU

33

Figure 5.10 visualizes the accuracy of this model, as was done for the simple regression model in
Figure 5.5. The ranges 1, 2 and 3 in the top-left graph are predictions from the three polynomials
for regions divided at 1 × 105 and 2 × 106. It is evident from this plot that this model manages
to capture most of the variation introduced by non-square matrix inputs. The maximum absolute
percentage error and the percentage of outliers for this model are calculated to be 74.09% and 6.43%
respectively. In comparison, when the model that yields the minimum relative error in Figure 5.9
(green curve with divisions 1×105, 1×106 and r = 100) is used, the maximum absolute percentage
error and percentage of outliers go down to 69.95% and 3.52%.

This proposed modeling approach was taken to generate the models of the other routines as well.
Their corresponding models and related plots are provided in Appendix B. The relative errors of
the models are summarized in the box plots in Figure 5.11 and Table 5.1.

Figure 5.11: Relative error distribution of routine models

Routine trans flag Platform
Mean absolute

percentage error (%)
Maximum absolute

percentage error (%)
% Outliers

dgemm both notrans
CPU 9.11 139.28 11.96
GPU 11.72 117.88 17.42

dgemv trans
CPU 8.57 74.09 6.43
GPU 13.61 90.15 23.08

dpotrf NA
CPU 7.90 53.41 12.50
GPU 6.43 28.29 4.17

dtrsm

notrans
CPU 4.28 30.82 2.08
GPU 1.35 9.69 0.0

trans
CPU 4.76 18.76 0.00
GPU 1.38 4.56 0.0

dlacpy NA
CPU 5.12 57.48 6.60
GPU 0.28 1.34 0.0

excopy

notrans
CPU 3.24 54.29 0.94
GPU 7.19 45.03 2.62

trans
CPU 24.28 155.22 51.15
GPU 7.19 45.03 2.62

Table 5.1: Summary of model relative errors

34

As can be seen, there are two models each for dtrsm and excopy routines. These are based
on the value of the trans flag, which specifies whether the input matrix should be transposed
before execution. Similar to [46], this approach is used because the execution times demonstrate
substantial differences for the two values. This change in behavior can be observed in the model
accuracies specially for the CPU version of excopy (mkl_domatcopy). As can be seen in the Figure
16 in Appendix B, the execution time shows much variation for non square matrices when the
trans flag is set (trans = T). For the GPU version of excopy (cublasDgeam) however, the same
model is used as the variation is not substantial.

It is evident from the figure and the table that even though the mean percentage errors are
within limits, the routines behave substantially different with arbitrary input sizes. Specially
mkl_domatcopy still contains variations that are not captured well by the derived model. There
are outliers of almost all routines falling beyond the 20% reference. Therefore, as we suggest in
Section 8.1, more research can be done in terms of performance modeling to employ more so-
phisticated techniques to improve the accuracies. A good starting point would be to explore other
machine learning and statistical techniques than multiple regression.

35

Chapter 6

Data Dependency Graphs

A method based on data dependency graphs is presented in this chapter to achieving better per-
formance in applications by minimizing data transfer overhead. The Numerical Library API was
updated to include a profiling functionality, which can be activated for a given segment of the appli-
cation code. Each function call in the segment writes the parameter sizes and input dependencies
to a file at runtime. The file contains the information in the form of a Julia script describing the
data dependency graph. Julia language was chosen for this due to the availability of convenient
off-the-shelf graph implementation libraries. In addition to the convenience, the language claims
to provide performance that is comparable with C [63]. The version of Julia used in this project is
1.0.5.

The nodes of the graph represent BLAS/LAPACK routines, annotated with the predicted execution
times for the CPU (cpu_exec) and the GPU (gpu_exec). The edges of the graph represent data
dependencies between routines, and they are annotated with the transfer times for the correspond-
ing data. Figure 6.1 shows a simplified dependency graph of the routines within the loop of the
QP solver. Such a graph can be used to come up with a deployment schedule that minimizes the
total execution time of the application. This is a Directed Acyclic Graph (DAG) scheduling prob-
lem, which is an actively researched area in heterogenous computing. Since the problem is NP
complete, there are no algorithms to the best of our knowledge that achieve the optimal solution
within polynomial time.

In this study, an intuitive scheduling algorithm is suggested, which is shown to yield good results
for our system with only a CPU and a GPU. However, as mentioned in Section 3.3, the scope of this
project does not include comparing algorithms provided in literature and implementing the best
one. With the available time, this algorithm was proposed as a proof-of-concept to indicate the
benefits of a graph analysis feature.

In addition to acquiring a deployment schedule, the graph can also be useful at design time for
multiple other purposes:

1. To identify/visualize data dependencies and bottlenecks in a given application

2. To recognize parallelism in the application

3. To explore the impact of different problem/data sizes

36

Figure 6.1: Data Dependency Graph with node and edge weights

6.1 Constructing the graph

A graph such as the one in Figure 6.1 has several types of parallelism. There is the computation
parallelism that is relevant to the computation of each node in the graph. For example, there is
parallelism in the matrix-matrix multiplication, which is exploited by the GPU implementation of
dgemm. At the same time, there is a parallelism inherent in the graph. This is what is represented
in the graph by parallel nodes that do not have any dependency among each other (e.g. nodes
2, 3, 5 and 6). In order to exploit this parallelism there needs to be multiple compute units such as
combinations of multiple cores in the same CPU, multiple CPUs and/or multiple GPUs etc. Finally,
there is a parallelism involved with executions and data transfers, where some data transfers may
happen in the background while routines are being executed.

In this project, only computation parallelism is exploited for the sake of simplifying the scheduling
algorithm. Thus, graph parallelism is eliminated from the graph by adding extra edges between
subsequent nodes. These edges can be annotated with a transfer weight of 0 as they do not
represent data dependencies. After the transformation, the dependency graph also reflects the
order of execution in the program as it would happen on a single processor thread. Figure 6.2
shows the same graph as before, but with the parallelism removed in this way. Additional edges
have been added for example from nodes 2 to 3 and 5 to 6. The above process will be referred to
as "sequentializing" in this report for convenience.

The execution-transfer parallelism is ignored by the algorithm as well, which is again for the sake
of simplicity. However, despite these limitations, the algorithm is shown to yield considerable
improvements over dynamic deployment for the QP solver application.

37

Figure 6.2: Dependency graph after removing graph parallelism

38

6.2 Finding the optimal schedule

Consider a hypothetical dependency graph as in Figure 6.3 which is then sequentialized. For
demonstration, each node is annotated with a CPU execution time of 4 time units and GPU execu-
tion time of 2 time units. All data transfers between the CPU and GPU are assumed to take 1 time
unit. The init and end nodes are additionally added when creating the graph. The init node is
simply there to enforce the beginning to be on the CPU and also as a source node for any data that
are not generated by nodes within the graph. Similarly, the end node forces the program segment
to finish in the CPU and acts as a sink to the output data of the final calculation.

Figure 6.3: Graph sequentializing

The above graph can then be extended to represent the CPU and GPU deployment of each node
separately. This is done by duplicating all nodes in the graph, except init and end (Figure 6.4).
In addition, there may also be other nodes that are fixed to a specific platform by the user, which
are also not duplicated. In the figure, the nodes are appended with a letter "c" or "g" to mean
CPU or GPU deployment respectively. The effective data transfers are annotated on edges. For
example, they become valid only when the data needs to be moved from one platform to the other,
which is equivalent to diagonal edges in the graph. Also note that the diagonal edges with transfer
value of 0 are dummy edges that were added for sequentializing, and thus no data is transferred
between the nodes. The init and end nodes are simply "fixed" on the CPU and therefore transfer
cost becomes effective for edges that are only to/from a GPU node. The lists of values beside each
node is explained in the next section.

39

Figure 6.4: Extending the graph for separate representation of deployments

Finding the optimal deployment schedule for the routines now boils down to finding the least cost
path from init node to the end node with the constraint of visiting either the CPU or the GPU
instance of each routine. Due to this constraint, conventional shortest path algorithms cannot be
utilized to create a deployment schedule. For instance, when there are additional edges in the
graph such as the ones from 2 to 5 in Figure 6.4, a shortest path algorithm may pick these paths,
ignoring the cost of going through 3 and 4.

An important point to note when finding the path is that some transfer values on the edges may
become ineffective in certain schedules. For example, if the path is taken as 2c → 3g → 4g,
the data transfer of edge 2c → 4g becomes redundant. The reason is that the same data would
be transferred previously to the GPU when taking the 2c → 3g edge. Such transfer values are

40

annotated in brackets in the figure.

6.2.1 Optimizing algorithm

The algorithm works incrementally through the graph from the init node to the end node. First
consider node 1. The time to obtain the output of the calculation for the CPU and the GPU cases
are 1co1 = 0 + 4 = 4 and 1go1 = 1 + 2 = 3 respectively. The notation used here is to mean time
to output (o) of the xth path of the corresponding node (1cox or 1gox). These values are annotated
beside the 1c and 1g nodes within square brackets in Figure 6.4.

Once the two paths are calculated for 1, all output time possibilities for node 2 are calculated based
on them:

2co1(1c→ 2c) : 1co1 + e2c = 4 + 4 = 8

2go1(1c→ 2g) : 1co1 + t1c→2g + e2g = 4 + 0 + 2 = 6

2co2(1g → 2c) : 1go1 + t1g→2c + e2c = 3 + 0 + 4 = 7

2go2(1g → 2g) : 1go1 + e2g = 3 + 2 = 5

Where,
ex: Execution time associated with a node x
tx→y: Transfer time associated with an edge x→ y

The deployment possibilities (paths) now can be visualized as a binary tree, as shown in Figure
6.5. The time to the end of execution of each node is annotated beside them as calculated above.
The information of this tree can be represented using two lists. One that contains the time values
at the leaf level ([8, 6, 7, 5]) and another which maintains the list of "open" nodes ([1,2]).
The term open is used here to mean the nodes of which all deployment possibilities are kept open
at a given point in the algorithm. In addition to those two lists, another data structure needs to
keep track of the deployment assigned to each node in each path.

Figure 6.5: Deployment possibilities up to node 3 represented as a binary tree

After the values for 2 are calculated, we can minimize the the number of possibilities, given the
fact that node 1 has no influence on any future nodes (no additional edges from node 1 going past
the current node 2). This is done by choosing the paths with minimum time to reach 2c and 2g
nodes, while considering deployment of 1 as "do not care". That is, we choose one path from the
pair [(1c→ 2c), (1g → 2c)] and another path from [(1c→ 2g), (1g → 2g)].

41

2cmin = min(2co1, 2co2) = 2co1(1c→ 2c) = 7

2gmin = min(2go1, 2go2) = 2go2(1g → 2g) = 5

In terms of the binary tree, this is equivalent to eliminating the level 1 nodes and having only 2
nodes 2c and 2g (Figure 6.6). This elimination will be referred to as "pruning" from this point
onwards in the report. Given the list of leaf time values tlist, pruning of the n-th level of the tree
can be done using a recursive algorithm as shown in Algorithm 2.

Figure 6.6: Pruning level 1 of the binary tree

Algorithm 2: Prune level in binary tree

1 Function prune_level(tlist, n, curr_level):
/* tlist: The list of time values at the leaf level */

/* n: Level to be pruned */

/* curr_level: Current level. At start, value 1 is passed. */

2

3 if length(tlist) == 1 then
4 return tlist
5 else

// get lower and upper halves of tlist

6 ll, lu = divide_list(tlist)
7

8 if curr_level == n then
// get the element-wise minimum list from the two halves

9 new_tlist = elem_min(ll, lu)
10 return new_tlist
11 end
12

// recursively call for the next level

13 ll = prune_level(ll, n, curr_level+1)
14 lu = prune_level(lu, n, curr_level+1)
15 return concatenate(ll, lu);
16 end

Element-wise minimum in this context is defined as follows. Given two lists

l1 = [x1, x2, ..., xn] and

l2 = [y1, y2, ..., yn] ,

the element-wise minimum will be a new list lmin of size n:

lmin = [min(x1, y1),min(x2, y2), ...,min(xn, yn)]

42

It is visualized in Figure 6.6, where the element-wise minimum values of two lists ll=[8,6] and
lu=[7,5] have been chosen as the new leaf values ([min(8,7), min(6,5)] = [7,5]). Note that
it is these minimized tlist values that are annotated beside each node in Figure 6.4.

Once the pruning is done for node 1, only 2 will remain as an open node. Next, the tlist can be
calculated for node 3. At this point, we do not minimize 2 as it affects future nodes 4 and 5.

3co1(2c→ 3c) : 2co1 + e3c = 7 + 4 = 11

3go1(2c→ 3g) : 2co1 + t2c→3g + e3g = 7 + 1 + 2 = 10

3co2(2g → 3c) : 2go1 + t2g→3c + e3c = 5 + 1 + 4 = 10

3go2(2g → 3g) : 2go1 + e3g = 5 + 2 = 7

When calculating the leaf node values for node 4, previously mentioned redundant edge costs
come into effect. For example, when we consider the path 2c→ 3c→ 4g, the transfer cost of edge
2c → 4g needs to be considered, as the data would have to be transferred to the GPU. However,
if the path is 2c → 3g → 4g, the data would have already been transferred to the GPU before
execution of node 3. Thus, the cost of edge 2c→ 4g can be neglected.

4co1(2c→ 3c→ 4c) : 3co1 + e4c = 11 + 4 = 15

4go1(2c→ 3c→ 4g) : 3co1 + t2c→4g + t3c→4g + e4g = 11 + 1 + 1 + 2 = 15

4co2(2c→ 3g → 4c) : 3go1 + t3g→4c + e4c = 10 + 1 + 4 = 15

4go2(2c→ 3g → 4g) : 3go1 + e4g = 10 + 2 = 12

4co3(2g → 3c→ 4c) : 3co2 + e4c = 10 + 4 = 14

4go3(2g → 3c→ 4g) : 3co2 + t3c→4g + e4g = 10 + 1 + 2 = 13

4co4(2g → 3g → 4c) : 3go2 + t2g→4c + t3g→4c + e4c = 7 + 1 + 1 + 4 = 13

4go4(2g → 3g → 4g) : 3go2 + e4g = 7 + 2 = 9

At this point, we are able to prune level 2 of the tree, as node 3 does not affect any further nodes.
However, node 2 is still kept open. When pruning the second level, sub trees of node 3 are used
in comparison. That is, the element-wise minimum values of (ll1, lu1) and (ll2, lu2) pairs are
taken for the leaf nodes.

Figure 6.7: Purning level 3 of the binary tree

Once we calculate the leaf values for node 5, we are able to prune all previous levels in the tree.

43

With the above algorithm, the pruning will be done in two stages. First level 1 with node 2 options
is pruned. In the resulting tree, the new level 1 contains options for node 4. This level is pruned
in the next step (Figure 6.8).

Figure 6.8: Pruning in two stages at node 5

Finally, at the end node, one of the two resulting paths will be chosen. As the end node is fixed
to the CPU, comparisons are made between the path through 5c with 15 time units and the path
through 5g with 11 + 1 = 12 time units with the data transfer from GPU. So the chosen path that
takes 12 time units is:

1g → 2g → 3g → 4g → 5g

It is to be noted that this also represents a special case where a node in the middle of the graph
might have the deployment fixed to the CPU or the GPU. The comparisons would be similar to the
above case when we are calculating the options for that particular node. Another special case is
when doing the calculations for the node after a such a fixed node. Then it is similar to that of
node 1 above, where the init node was fixed on the CPU.

Limitations of this algorithm are discussed in detail in Section 7.2.1.

44

Chapter 7

Results and Analysis

In order to test the performance of the API, the QP solver was executed with two problem sizes
(Table 7.1). It can be seen in the solver algorithm (Algorithm 1) that the data is mostly generated
and used within the loop itself. This can be exploited when most of the routines are executed on a
single platform to minimize data transfers. Test case 1 was chosen to observe how the API manages
to capture that, in a large problem size where it is beneficial to deploy all routines on the GPU.
Test case 2 is a smaller one where for an initial number of iterations the CPU performs better than
the GPU and vice versa for later iterations. Thus, ideally the API should deploy the routines in the
initial iterations on the CPU and the rest on the GPU.

n m
Test case 1 1500 2000
Test case 2 600 800

Table 7.1: QP solver test sizes

For each problem size, the loop was executed by continuously adding constraints, so that the
execution time grows over time.

7.1 Test Case 1

Initially, the test case was executed in two runs, where all the routines were either deployed on the
CPU or the GPU. The solver was executed for multiple iterations with the number of constraints
in the system (nidxs) increasing at a step size of 50. The run time of each loop iteration was
measured and was plotted as in Figure 7.1.

It can be seen that the CPU only and GPU only cases yield substantially different execution times
for this problem size. The reason is as stated above, the data is used mostly within the loop itself,
in which case hardly any data transfers are needed when all routines are on the same platform.
Here, it is possible to see that the first iteration has taken longer than the second for the all GPU
case. This is due to the initial transfer of the large H, Bt and A matrices in Algorithm 1, which are
then re-used internally in the subsequent iterations.

45

Figure 7.1: Loop execution time of QP solver with all routines in CPU and GPU

7.1.1 Performance Model Accuracies

The predicted and actual execution times of each routine were logged during above runs. Figures
7.2 to 7.5 demonstrate the predicted and measured execution times for dgemm, dgemv, dpotrf and
dtrsm routines. The measured points were sorted according to execution time value and plotted
along with the ±20% margins. On each point, the corresponding prediction value is presented as
an error bar, which ideally should fall within the ±20% region.

An initial observation with dtrsm is that even for the same dimensions, the execution time differed
substantially when the coefficient matrix is transposed. The transposed version is used in each
iteration for backward substitution, where the U matrix is constructed as lower triangular and is
passed to dtrsm with the trans flag set. Due to this, two models were generated for dtrsm with
additional measurements for transposed and non transposed cases. The predictions seen in Figure
7.5 are from these two models, which are chosen at run time based on the trans argument value.
Similarly, two separate models based on transposition were made for mkl_domatcopy as well. The
accuracies of these models are presented in Section 5.1, with detailed measurements and models
provided in Appendix B.

In the measurements for dgemv, even though the input sizes are the same for all iterations, there
are a number of variations observed in the GPU execution time. After sorting, these appear toward
the right side of the GPU graph in Figure 7.3 (test point 13 onwards). It is non trivial to explore the
exact reasons for such variations as the library is closed source and the variations are not regularly
present in each run. Hence, this is not attempted in the scope of this project. Our assumption is
that it is due to the influence of other GPU activity.

46

Figure 7.2: Actual and predicted execution times dgemm

Figure 7.3: Actual and predicted execution times of dgemv

Figure 7.4: Actual and predicted execution times of dpotrf

47

Figure 7.5: Actual and predicted execution times of dtrsm

Figures 7.6 and 7.7 show the actual and measured times for the matrix copy routines. Compared
to the previous 4 routines, the CPU versions of both these copy functions demonstrate larger vari-
ations throughout the measured ranges. The reason is the effect of caching. This is most evident
with first usage of matrices that get created inside the loop in the QP solver loop (Algorithm 1). For
example, the L and U matrices are created with a new size and the lower triangle of Lc gets copied
to them using the dlacpy routine at the beginning of each iteration. When the two matrices are
accessed before the routine, the mismatches with the predicted values decrease substantially (Fig-
ure 7.8). However, this additional access is not done during the actual tests because it influences
the data flow within the application.

For dgemm, dgemv, dpotrf and dtrsm routines which involve calculations, the caching effect does
not seem to have much impact. On one hand, some of the memory fetching time in those routines
may get shadowed by the calculations, whereas in memory copies, the entire measured time is for
the memory operations. On the other hand, the nature of the application determines the order
of data accesses, where the routines may use data that is already in the cache. In either case, an
effort can be made in future work to include the effect of caching in the performance models as
was done in the works of [48] and [46]. It is not attempted in this project due to time constraints.

Figure 7.6: Actual and predicted execution times of dlcapy

48

Figure 7.7: Actual and predicted execution times of excopy

Figure 7.8: Actual and predicted execution times of dlcapy, with caching effect removed on CPU

7.1.2 Dynamic Deployment

Figure 7.9 shows the execution times of the solver with dynamic deployment, along with the CPU
and GPU only measurements from before. In the general case (light green), the API manages to
achieve a speed up of around 2x by later iterations when compared to the CPU only case. There
are multiple reasons that it does not achieve the execution time of the all GPU curve.

Firstly, the first two dlacpy routines of each iteration get deployed on CPU as the predicted per-
formance is better there1. These two routines are used while constructing the L and U matrices
in Algorithm 1. However, with the caching effect shown earlier, the CPU execution time is in fact
slightly worse than that of the GPU. But the decision to deploy the two copies on the CPU results
in subsequent routines that use those two matrices to get deployed on CPU as well, because the
cost of transferring them dominates the execution time gains. Furthermore, the fact that the API

1The dlacpy routine, uses a custom naive implementation for the GPU as explained in Section 2.1.1. As seen in Figure
13 in Appendix B, it performs worse than the CPU for the most part.

49

makes an overestimation for the output transfers as mentioned in Section 4.4 adds further bias on
choosing the CPU. Finally, the accuracy of the prediction models plays a part as well, when the
execution times for the CPU and GPU are not substantially different. A large over-prediction of the
faster option and an under-prediction of the slower option could cause the API to choose wrongly.

To observe the effect of the dlacpy routine deployment and the overestimation of the output trans-
fer time, another run was made. Here, the dlacpy routines were deployed on the GPU manually,
so the large input data transfers for L and U do not introduce the bias explained in the previous
paragraph. In addition, the output transfers were not considered when making the deployment
decisions. In Figure 7.9, execution time of this custom deployment run is plotted in dark green.

Figure 7.9: Loop execution time of QP solver (Test case 1) with dynamic deployment

The remaining gap between the custom deployment line and the all GPU line can be attributed to
the model accuracies and to the fact that when individual routines are considered, the input data
transfer time still may dominate the execution time. For example, the dgemv routine always gets
scheduled to the CPU as the input transfer time of the A matrix is much larger than the execution
time on the CPU.

The number of routines deployed to the GPU in each iteration is plotted in Figure 7.10 for the two
dynamic deployment tests (the total number of routines in a loop of the algorithm is 14). As can be
seen, manually deploying the dlacpy instances in the loop to the GPU and neglecting the output
transfers have caused more routines to be deployed to the GPU.

50

Figure 7.10: Count of GPU deployments in each iteration (Test case 1)

7.1.3 DAG Schedule

For the same problem size, a DAG was generated for the full program as explained in Chapter 6.
Since the graph includes all iterations of the loop, it represents a loop unrolled version of the solver.
Figure 7.11 shows the execution times of the CPU/GPU only and the general dynamic deployment
cases along with that of two graph schedules.

Figure 7.11: Loop execution time of QP solver (Test case 1) with DAG schedules

51

The schedule generated without any modifications is shown as case 1. As can be seen, the exe-
cution time is slightly worse than even that of the dynamic deployment curve at a low number of
constraints. Up to around nidxs = 201, the loop execution time is higher than the all CPU case
as well. This happens when the schedule chooses deployment combinations where intermediate
GPU instances add extra data transfer times. These decisions are caused by the variations in the
prediction accuracies. As mentioned in the dynamic deployment case, mis-predictions when the
CPU and GPU times are not substantially different can cause adverse decisions.

To examine whether the prediction issues of dlacpy has an effect, case 2 was introduced. The
only difference here was that the CPU predictions for the dlacpy was manually scaled to reduce
the difference with the actual measurements, so that the predictions roughly include the caching
effect (Figure 7.12). With the correction to predictions, it can be seen that the schedule performs
better than the dynamic deployment from the beginning. Thus, mis-predicting dlacpy to be faster
on the CPU, when in fact it wasn’t for the most part, has caused the schedule to deploy that and
other routines to the CPU, causing much worse results than expected.

Figure 7.12: Actual and predicted execution times of dlcapy, with manual scaling (×4.30) on CPU

However, even the case 2 does not deploy all routines to the GPU even when the calculations
become much bigger. The only substantial difference when nidxs ≥ 351 was found to be the
matrix vector multiplication (dgemv) at the end of the loop in Algorithm 1. Similar to dynamic
deployment, this is caused by the large input data transfer time involved for the A matrix which
holds all the constraints.

The transfer time of A to the GPU is predicted at roughly 5.10 ms for this test case. The execution
time predictions for the CPU and GPU are 1.26 ms and 0.06 ms respectively. In each iteration, as
the matrix copy routine that follows dgemv is fixed to the CPU, the algorithm minimizes the options
up to that point by choosing the CPU path which only takes 1.26ms compared to that of GPU taking
5.10+0.06 = 5.16ms. Now consider 5 iterations of the loop with only these two routines present in
it. With our algorithm, it will minimize options at the last matrix copy routine each time, choosing
the CPU option, which results in an overall run time of 1.26 × 5 = 6.30. However, if the A matrix
was transferred in the first iteration to the GPU, suffering the penalty, the matrix can be re-used
in the subsequent turns which leads to a full run time of only 5.10 + 0.06 × 5 = 5.40. Clearly, this
gain in execution time will only increase for more iterations and it is not exploited by the proposed
algorithm.

Finally, the total execution times of each test is presented in Table 7.2 for reference. It can be
observed that the total time of the graph schedule from case 2 only differs by around 38ms from
the all GPU deployment.

52

Deployment Total execution time (ms)
All routines CPU 1695.76
All routines GPU 149.63

All routines Dynamic 932.08
Schedule from graph (case 1) 491.04
Schedule from graph (case 2) 187.0

Table 7.2: Total execution time with different deployment options (Test Case 1)

7.2 Test Case 2

Similar to the Test Case 1, a number of tests are run with different schedules for the smaller
problem size of Test Case 2. The number of constraints in this test was increased by a step sizes
of 20. At this size, random variations in iteration time are more visible. These variations may be
caused by various reasons such as background processes running on the CPU.

In Figure 7.13 it can be seen that the loop execution time with all routines on the GPU is slightly
higher in the lower iterations than for the CPU. The dynamic deployment instance (green) stays
closer to the CPU curve in the lower iterations and then deviates to lower execution times by the
end.

In terms of the DAG schedule, the case 1 without any modifications perform worse than both
CPU only and GPU only instances the majority of the time. Since the execution times on the two
platforms are closer together in this region, it is easier for the API to make adverse decisions due
to prediction errors. This, together with more data transfers between the CPU and GPU, results in
worse execution times than single platform cases.

Figure 7.13: Loop execution time of QP solver (Test case 2)

For this problem size, the trigger was identified to be the accuracy of the mkl_domatcopy routine.

53

Similar to dlacpy in the previous case, another schedule was generated with the predictions of
mkl_domatcopy routine scaled by a factor of 2.0, which reduced the error margins. The case 2 curve
in the figure is for this test, which performs better than dynamic deployment when nidxs ≥ 161
and gets closer to the GPU only curve by later stages.

The total execution times of the solver with each mode are summarized in Table 7.3. A key
takeaway from the Test Case 2 is that the schedules are very sensitive to the accuracy of each
routine model, although the sensitivity may vary depending on the application. Since in general
larger relative errors are observed for lower input sizes in most routines, schedules generated for
such ranges may sometimes yield worse results than expected.

Deployment Total execution time (ms)
All routines CPU 131.11
All routines GPU 59.87

All routines Dynamic 98.55
Schedule from graph (case 1) 144.74
Schedule from graph (case 2) 80.29

Table 7.3: Total execution time with different deployment options (Test Case 2)

7.2.1 Limitations of the graph scheduling algorithm

The graph scheduling algorithm manages to find an optimized schedule for a sequential graph.
However, by sequentializing, we lose the opportunity to exploit the graph parallelism, as even with
a setup of a single CPU and a single GPU it may be possible to achieve faster execution times by
scheduling calculations simultaneously on both of them. Similarly, overlapping data transfers with
executions may also improve the total execution time. However, the given algorithm cannot scale
to address these issues without substantial modifications.

Although an algorithm such as SPAGHETtI [53] can be used to obtain a schedule that exploits graph
parallelism, as mentioned in Section 3.3, implementing the parallel executions in an application
will require modifications outside the API. Furthermore, such modifications will be required each
time a new schedule is generated. This goes against our goal of abstracting hardware details
from the user. However, further studies can be conducted on the feasibility of implementing such
functionality within the API itself as suggested in Section 8.1.

Another limitation of the algorithm is not being able to tolerate short term penalties in order to
achieve longer term performance gains. This is observed when a set of non-adjacent nodes have
a common parent node, with a large data transfer cost associated with the edge from that parent.
The issue explained previously in Section 7.1.2, with the dgemv routine getting scheduled to the
CPU in all iterations is an example of this limitation.

In addition, as explained in Section 6.2.1, the algorithm maintains all possible deployment options
for nodes that affect future nodes (having edges going past the current one). For an application
with many dependencies, the maintained list of time values will grow exponentially (2N , where
N is the number of previous nodes with edges going past a given stage). This will increase the
memory usage as well as the execution time of the algorithm.

54

Chapter 8

Conclusion

In this thesis, a framework for a hardware independent API is presented for BLAS and LAPACK
libraries. The API implements the CPU and GPU versions of a selected set of routines and provides
a convenient interface to the user for deployment in a selected platform. In addition, it contains
a dynamic deployment mode where the execution platform of corresponding routines are decided
at run time based on execution and data transfer models. The same performance models are used
in the data flow analysis mode to generate a data dependency graph of a marked segment of an
application, with nodes and edges annotated with predictions of CPU/GPU execution times and
data transfer times respectively. An intuitive algorithm is presented in the project as a proof-of-
concept to derive an optimized deployment schedule from the dependency graph, which minimizes
the execution time of the application segment.

In the course of developing the API the following research questions were addressed in the thesis:

1. How accurately can we predict the run time of BLAS/LAPACK routines for arbitrary input
sizes?
When the performance modeling method was extended to non-square matrices from the
square only case, additional approaches were required to keep the accuracy in the required
range. Multiple regression and piecewise polynomial techniques were employed to keep the
mean absolute percentage errors of the models below the 20 % margin. However, manual
intervention was required to determine the predictor variables and division points for poly-
nomials, as the behaviors differ per routine. Even with those approaches, models for dgemm,
dgemv and mkl_domatcopy routines showed more variance than the others. In addition, the
effect of caching was substantial for matrix copy routines. Therefore, it can be concluded
that generating accurate models to predict run time of routines for arbitrary input sizes is
non trivial, but possible with sufficient tests and analysis.

2. To what extent can we use model based predictions for runtime deployment decisions?
The answer to this question is linked with that of the previous one. With models predicting
with less than 20 % error, it is feasible to make run time deployment decisions when the
execution times on the platforms are sufficiently different from each other. Otherwise, over-
prediction on the faster platform and under-prediction on the slower platform could result in
adverse behavior. However, these margins can be taken into account in the decision making,
so that the faster option would be selected only if the performance gain is above a certain
threshold.

3. How can we minimize the overhead of data transfers to improve total execution time of an
application?
A method based on data dependency graphs was investigated to address limitations of dy-
namic deployment. The API was extended to collect routine information during run time,
which is used offline to generate a DAG. The algorithm presented in the project shows that
such a DAG can be used to make an optimized deployment schedule which takes into account
all data dependencies and corresponding transfer times in the application segment. This way,

55

the overhead of data transfers is minimized, yielding better overall execution times. How-
ever, as discussed in Section 7.2.1 the presented algorithm has its limitations. It does not
exploit parallelisms in the graph and does not try to transfer data in the background during
executions. It also does not tolerate short term penalties for long term gains in certain cases.
Furthermore, the algorithm does not scale well for large graphs when there are nodes with
many children. In the next section possible gains in adopting an improved algorithm are
pointed out.

8.1 Future Work

For further research and to improve and extend the concept of this API, we recommend the follow-
ing areas:

1. Improvements and extensions to performance models
In this project only simple and multiple regression were considered for the prediction models.
While it is sufficient for modeling only for square matrices, more advanced statistical and
machine learning approaches may produce more accurate models for arbitrary input sizes. In
addition, when selecting predictor variables for multiple regression, the same set of variables
were used in the piecewise polynomial set for a given routine. This was done for the sake
of simplicity. But the models may yield better predictions if the variables were determined
for each region separately, so that different behaviors for input ranges are captured more
precisely. This applies for the thinness ratio defined in Section 5.1 as well.

2. Modeling the effect of caching
As was observed in the test results, caching has a considerable influence on the execution
time of routines. Therefore, more research can be done in this direction to include the effects
of caching in the CPU models. Work in [48] and [46] on modeling the cache behavior and
memory stalls can be referred for this.

3. Extension to hardware implementations
In our project, a system with only a single CPU and a GPU were considered, with Intel MKL
and Nvidia Cublas libraries. However, as discussed in Section 3.1, hardware acceleration of
BLAS/LAPACK is a highly researched and developing area. Our API can easily be extended
to include more libraries while keeping the interface to the user unchanged. For example,
better performance may be achieved on a compute node with multiple GPUs using libraries
like MAGMA [17] and PLASMA [36]. Similarly, batched implementations of routines can be
included to be used in applications where there is a large number of calculations with small
data sizes. In addition, the API can also be updated with support to platforms such as FPGAs,
with suitable implementations on hardware.

4. Implementing a scheduler in the API
A suggested improvement on run time deployment is for a "scheduler" to maintain a queue
of routines as they are called at run time. The routines can then be deployed when the data
is required by a non-API function. If such a method can be implemented, it would benefit
applications like the QP solver where multiple routines execute in a chain. The scheduler
would have the dependency information of the adjacent routines, which can be used to
deploy them in an optimal way at runtime using a scheduling algorithm. In terms of the
graph scheduling mode of the API, having such a scheduler in place will help exploiting
graph parallelism of the DAG as well. It may be possible to deploy multiple non-dependent
routines simultaneously in available platforms, without further modifications by the user
in the application. This way, deployment schedules from algorithms in literature such as
SPAGHETtI [53] can be executed by the API itself.

5. Better graph scheduling algorithms
Section 3.3 discussed a number of DAG scheduling algorithms presented in literature. A
more comprehensive study can be done on suitable approaches that can exploit the inher-
ent graph parallelism, where utilization of the available compute resources is maximized.

56

The SPAGHETtI [53] is one such algorithm which can exploit parallelism in the graph. In
addition, the performance can be improved by overlapping executions and data transfers be-
tween the platforms. Frameworks such as StarPU [64] and DAGuE [65] may also provide
good insight on implementing such algorithms.

57

Bibliography

[1] C. Lawson, Richard Hanson, David Kincaid, and Fred Krogh. Basic linear algebra subpro-
grams for fortran usage. ACM Trans. Math. Softw., 5:308–323, 09 1979.

[2] E. Angerson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Hammarling,
J. Demmel, C. Bischof, and D. Sorensen. Lapack: A portable linear algebra library for high-
performance computers. In Supercomputing ’90:Proceedings of the 1990 ACM/IEEE Conference
on Supercomputing, pages 2–11, Nov 1990.

[3] MathWorks. Lapack in matlab. https://nl.mathworks.com/help/matlab/math/lapack-in-
matlab.html. Accessed: November 2019.

[4] Numpy.org. Numpy documentation - accelerated blas/lapack libraries.
https://numpy.org/devdocs/user/building.html. Accessed: November 2019.

[5] Oak Ridge National Laboratory AT&T Bell Laboratories, University of Tennessee. Netlib repos-
itory. https://netlib.org. Accessed: November 2019.

[6] Intel. Intel math kernal library (mkl). https://software.intel.com/mkl. Accessed: November
2019.

[7] AMD. Amd optimizing cpu libraries (aocl). https://developer.amd.com/amd-aocl/. Accessed:
January 2020.

[8] Nvidia. Nvidia cublas. https://developer.nvidia.com/cublas. Accessed: November 2019.

[9] Nvidia. Nvidia cusolver. https://developer.nvidia.com/cusolver. Accessed: November 2019.

[10] Oracle. Sun performance library for programs with intensive compuation.
https://docs.oracle.com/cd/E18659_01/html/821-2763/gjgis.html/. Accessed: November
2019.

[11] ASML. Asml official website. https://www.asml.com/en. Accessed: November 2019.

[12] Nvidia. Cuda 7.0 performance report. http://on-
demand.gputechconf.com/gtc/2015/webinar/gtc-express-cuda7-performance-overview.pdf.
Accessed: January 2020.

[13] L. S. Blackford, J. Choi, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. Scalapack: A portable lin-
ear algebra library for distributed memory computers - design issues and performance. In
Supercomputing ’96:Proceedings of the 1996 ACM/IEEE Conference on Supercomputing, pages
5–5, Jan 1996.

[14] Openblas. https://www.openblas.net/. Accessed: January 2020.

[15] Automatically tuned linear algebra software (atlas). http://math-atlas.sourceforge.net/. Ac-
cessed: January 2020.

[16] Emmanuel Agullo, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien Langou,
Hatem Ltaief, Piotr Luszczek, and Stanimire Tomov. Numerical linear algebra on emerging
architectures: The plasma and magma projects. In Journal of Physics: Conference Series,
volume 180, page 012037. IOP Publishing, 2009.

58

[17] ICL University of Tennessee. Matrix algebra on gpu and multicore architectures (magma).
https://icl.cs.utk.edu/magma/. Accessed: November 2019.

[18] Linnan Wang, Wei Wu, Zenglin Xu, Jianxiong Xiao, and Yi Yang. Blasx: A high performance
level-3 blas library for heterogeneous multi-gpu computing. In Proceedings of the 2016 In-
ternational Conference on Supercomputing, ICS ’16, pages 20:1–20:11, New York, NY, USA,
2016. ACM.

[19] Encyclopedia.com. Performance model. https://www.encyclopedia.com/computing/dictionaries-
thesauruses-pictures-and-press-releases/performance-model, Jan 2020. Accessed: March
2020.

[20] Gordon E Moore et al. Cramming more components onto integrated circuits, 1965.

[21] Mohamed A Bamakhrama, Alejandro Arrizabalaga, Frank Overman, Jean-Paul Smeets, Ko-
rnel van der Sommen, Remko van der Vossen, and John Wagensveld. Gpu acceleration of
real-time control loops. arXiv preprint arXiv:1902.08018, 2019.

[22] R.K. Gupta. Investigation of hardware acceleration of mathematical calculations, 2019.

[23] Michael Boyer, Jiayuan Meng, and Kalyan Kumaran. Improving gpu performance prediction
with data transfer modeling. In Proceedings of the 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing Workshops and PhD Forum, IPDPSW ’13, page 1097–1106,
USA, 2013. IEEE Computer Society.

[24] John von Neumann. Introduction to “the first draft report on the edvac”. Annals of the History
of Computing, 15(1):11–21, 1993.

[25] Intel. Intel xeon processors. https://www.intel.com/content/www/us/en/products/processors/xeon.html.
Accessed: February 2020.

[26] Niels Hagoort. Exploring the gpu architecture. https://nielshagoort.com/2019/03/12/exploring-
the-gpu-architecture, March 2019. Accessed: February 2020.

[27] Nvidia. Nvidia tesla v100 gpu architecture. https://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf. Accessed: February 2020.

[28] Wikipedia. Pci express. https://en.wikipedia.org/wiki/PCI-Express, February 2020. Ac-
cessed: February 2020.

[29] Emmanuel Agullo et al. Dynamic scheduling within magma.
http://www.einfrastructureforum.ac.uk/sites/default/files/uploads/ProjectFiles/ASEArch/magma.pdf,
April 2012. Accessed: February 2020.

[30] ICL University of Tennessee. High-performance batched computations.
http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/Batched-BLAS-
2016/Day1/04_Azzam_BBLAS_Approaches_App.pdf, May 2016. Accessed: March 2020.

[31] Jack Dongarra, Iain Duff, Mark Gates, Azzam Haidar, Sven Hammarling, Nicholas J Higham,
Jonathan Hogg, Pedro Valero Lara, Piotr Luszczek, Mawussi Zounon, et al. Batched blas
(basic linear algebra subprograms) 2018 specification. 2018.

[32] Siham Tabik, G Ortega, and Ester M Garzón. Performance evaluation of kernel fusion
blas routines on the gpu: iterative solvers as case study. The Journal of Supercomputing,
70(2):577–587, 2014.

[33] Cedric Nugteren. Clblast: A tuned opencl blas library. In Proceedings of the International
Workshop on OpenCL, IWOCL ’18, pages 5:1–5:10, New York, NY, USA, 2018. ACM.

[34] Intel. Introducing batch gemm operations. https://software.intel.com/en-
us/articles/introducing-batch-gemm-operations. Accessed: February 2020.

[35] Cedric et al. Nugteren. Clblast: The tuned opencl blas library.
https://github.com/CNugteren/CLBlast. Accessed: January 2020.

59

[36] ICL University of Tennessee et al. Parallel linear algebra software for multicore architectures
(plasma). https://icl.bitbucket.io/plasma/, February 2020. Accessed: February 2020.

[37] Emmanuel Agullo, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien Langou,
Hatem Ltaief, Piotr Luszczek, and Stanimire Tomov. Numerical linear algebra on emerging
architectures: The PLASMA and MAGMA projects. Journal of Physics: Conference Series,
180:012037, jul 2009.

[38] Nvidia. Nvidia nvblas. https://docs.nvidia.com/cuda/nvblas/index.html, November 2019.
Accessed: February 2020.

[39] ICL University of Tennessee. Parallel runtime scheduling and execution controller (parsec).
http://icl.utk.edu/parsec/. Accessed: February 2020.

[40] W. Wu, A. Bouteiller, G. Bosilca, M. Faverge, and J. Dongarra. Hierarchical dag scheduling
for hybrid distributed systems. In 2015 IEEE International Parallel and Distributed Processing
Symposium, pages 156–165, May 2015.

[41] Tiziano De Matteis, Johannes de Fine Licht, and Torsten Hoefler. Fblas: Streaming linear
algebra on fpga. arXiv preprint arXiv:1907.07929, 2019.

[42] Sébastien Rousseaux, Damien Hubaux, Pierre Guisset, and Jean-Didier Legat. A high per-
formance fpga-based accelerator for blas library implementation. Proc. of the Third Annual
Reconfigurable Systems Summer Institute (RSSI’07), 2007.

[43] Vipin Kizheppatt and Suhaib Fahmy. Fpga dynamic and partial reconfiguration: A survey of
architectures, methods, and applications. ACM Computing Surveys, 51:1–39, 07 2018.

[44] G. C. Cardarilli, L. Di Carlo, A. Nannarelli, F. M. Pandolfi, and M. Re. A framework for
dynamically-loaded hardware library (hll) in fpga acceleration. In 2015 IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT), pages 291–296, Dec
2015.

[45] S. Kestur, J. D. Davis, and O. Williams. Blas comparison on fpga, cpu and gpu. In 2010 IEEE
Computer Society Annual Symposium on VLSI, pages 288–293, July 2010.

[46] Elmar Peise. Performance modeling and prediction for dense linear algebra. arXiv preprint
arXiv:1706.01341, 2017.

[47] Elmar Peise. Experimental linear algebra performance studies (elaps.
https://github.com/HPAC/ELAPS. Accessed: November 2019.

[48] Roman Iakymchuk. Performance modeling and prediction for linear algebra algorithms. PhD
thesis, Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen,
2012.

[49] I. Baldini, S. J. Fink, and E. Altman. Predicting gpu performance from cpu runs using machine
learning. In 2014 IEEE 26th International Symposium on Computer Architecture and High
Performance Computing, pages 254–261, Oct 2014.

[50] M. Amarís, R. Y. de Camargo, M. Dyab, A. Goldman, and D. Trystram. A comparison of gpu
execution time prediction using machine learning and analytical modeling. In 2016 IEEE 15th
International Symposium on Network Computing and Applications (NCA), pages 326–333, Oct
2016.

[51] Louis-Claude Canon, Emmanuel Jeannot, Rizos Sakellariou, and Wei Zheng. Comparative
evaluation of the robustness of dag scheduling heuristics. In Grid Computing, pages 73–84.
Springer, 2008.

[52] Jörg Keller and Rainer Gerhards. Peelsched: a simple and parallel scheduling algorithm for
static taskgraphs. PARS: Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware, 28, 10
2014.

60

[53] Denis Barthou and Emmanuel Jeannot. Spaghetti: Scheduling/placement approach for task-
graphs on heterogeneous architecture. In Fernando Silva, Inês Dutra, and Vítor Santos Costa,
editors, Euro-Par 2014 Parallel Processing, pages 174–185, Cham, 2014. Springer Interna-
tional Publishing.

[54] H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Transactions on Parallel and Distributed Sys-
tems, 13(3):260–274, March 2002.

[55] Houssam-Eddine Zahaf, Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, and
Giuseppe Lipari. A c-dag task model for scheduling complex real-time tasks on heteroge-
neous platforms: preemption matters. arXiv preprint arXiv:1901.02450, 2019.

[56] Intel. Intel xeon gold 6134 processor. https://ark.intel.com/content/www/us/en/ark/products/120493/intel-
xeon-gold-6134-processor-24-75m-cache-3-20-ghz.html. Accessed: January 2020.

[57] Nvidia. Nvidia tesla v100. https://www.nvidia.com/en-us/data-center/v100/. Accessed:
January 2020.

[58] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business
Media, 2006.

[59] Nvidia. Unified memory in cuda 6. https://devblogs.nvidia.com/unified-memory-in-cuda-6/.
Accessed: January 2020.

[60] Nvidia. Maximizing unified memory performance in cuda.
https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/. Accessed:
January 2020.

[61] T. M. Smith, R. v. d. Geijn, M. Smelyanskiy, J. R. Hammond, and F. G. V. Zee. Anatomy
of high-performance many-threaded matrix multiplication. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages 1049–1059, May 2014.

[62] Scikit-learn. https://scikit-learn.org/stable/. Accessed: January 2020.

[63] Julia. Julia micro-benchmarks. https://julialang.org/benchmarks/. Accessed: January 2020.

[64] A unified runtime system for heterogeneous multicore architectures.
http://starpu.gforge.inria.fr/. Accessed: February 2020.

[65] ICL University of Tennessee. The direct acyclic graph environment.
https://icl.utk.edu/dague/overview/index.html. Accessed: February 2020.

61

Appendices

62

A Abbreviations

AOCL AMD Optimizing CPU Libraries

API Application Programming Interface

BLAS Basic Linear Algebra Subprograms

CPU Central Processing Unit

DAG Directed Acyclic Graph

DDR Double Data Rate

FLOPS Floating point Operations Per Second

FPGA Field-Programmable Gate Array

GPU Graphical Processing Unit

HBM High Bandwidth Memory

LAPACK Linear Algebra PACKage

LLC Last Level Cache

MKL Math Kernel Library

PCI Peripheral Component Interconnect

SIMD Single Instruction, Multiple Data

SVM Support Vector Machines

63

B Performance Models

This section provides the measured execution times of the selected routines and their finalized
models. The plots were explained in detail in Section 5.1, using dgemv as an example.

B.1 Matrix-matrix multiplication - dgemm

Attribute Values
Size range Initial values selected as powers of 2 in range [32, ..., 4096] and multi-

ples of 500 in range [500, 1000, ..., 4000]. Then all dimension combina-
tions that result in the same computation complexity was calculated
keeping the sizes within [1, 10000] range.

Number of measurements The above size range resulted in 1062 measurements.
Dimension arguments m,n, k
Complexity O(mnk)
Thinness condition m*r < n || m*r < k || n*r < m || n*r < k || k*r < m ||

k*r < n

Table 1: dgemm test attributes

Figure 1: Execution time measurements for dgemm

B.1.1 CPU Model

Features: m2n,m2k, n2m,n2k, k2m, k2n,mnk

ypred =

b1 ·m2n+ b2 ·m2k + b3 · n2m+ b4 · n2k + b5 · k2m+ b6 · k2n+ b7 ·mnk + b8 if mnk < 106

c1 ·m2n+ c2 ·m2k + c3 · n2m+ c4 · n2k + c5 · k2m+ c6 · k2n+ c7 ·mnk + c8 if 106 ≤ mnk < 109

d1 ·m2n+ d2 ·m2k + d3 · n2m+ d4 · n2k + d5 · k2m+ d6 · k2n+ d7 ·mnk + d8 if mnk ≥ 109

64

Where,

b1 = 3.188860E − 10 c1 = 9.823811E − 11 d1= 3.202378E − 11

b2 = 1.382362E − 10 c2 = 1.080467E − 10 d2= 1.817564E − 10

b3 = 2.265036E − 10 c3 = 9.100953E − 11 d3= 1.481524E − 11

b4 = 2.237570E − 10 c4 = 6.052924E − 11 d4= 7.690169E − 11

b5 = 1.287367E − 10 c5 = 1.014187E − 10 d5= 1.021577E − 10

b6 = 2.502405E − 10 c6 = 4.170197E − 11 d6= 4.735532E − 11

b7 = 1.729919E − 08 c7 = 2.360127E − 08 d7= 2.030274E − 08

b8 = 1.362984E − 03 c8 = 1.007329E − 02 d8= 2.972709E + 00

Figure 2: Accuracy of model dgemm - CPU

Metric Value
Mean absolute percentage error 9.11 %
Max absolute percentage error 139.28 %

Percentage of outliers 11.96 %

Table 2: dgemm CPU model accuracy

B.1.2 GPU Model

Features: m,n, k,m2, n2, k2,mn,mk, nk,mnk

65

ypred =

b1 ·m+ b2 · n+ b3 · k + b4 ·m2 + b5 · n2 + b6 · k2 + b7 ·mn
+b8 ·mk + b9 · nk + b10 ·mnk + b11 if mnk < 105

c1 ·m+ c2 · n+ c3 · k + c4 ·m2 + c5 · n2 + c6 · k2 + c7 ·mn
+c8 ·mk + c9 · nk + c10 ·mnk + c11 if 105 ≤ mnk < 107

d1 ·m+ d2 · n+ d3 · k + d4 ·m2 + d5 · n2 + d6 · k2 + d7 ·mn
+d8 ·mk + d9 · nk + d10 ·mnk + d11 if 107 ≤ mnk < 109

f1 ·m+ f2 · n+ f3 · k + f4 ·m2 + f5 · n2 + f6 · k2 + f7 ·mn
+f8 ·mk + f9 · nk + f10 ·mnk + f11 if mnk ≥ 109

Where,

b1 = −1.021454e− 05 c1 = −1.197942e− 06 d1 = 5.845717e− 07 f1 = 7.120777e− 05

b2 = −2.244785e− 05 c2 = 8.694128e− 07 d2 = 1.740683e− 06 f2 = 7.100771e− 05

b3 = 3.272036e− 05 c3 = 3.569870e− 05 d3 = 3.441209e− 05 f3 = 1.217734e− 04

b4 = −2.568222e− 09 c4 = 7.033282e− 11 d4 = 9.561252e− 11 f4 = −6.054775e− 09

b5 = −3.624547e− 10 c5 = 7.428646e− 11 d5 = −2.687771e− 11 f5 = −6.164011e− 09

b6 = −1.996822e− 08 c6 = −2.600823e− 09 d6= −2.534741e− 09 f6 = −6.992795e− 09

b7 = 6.642099e− 07 c7 = 1.538421e− 08 d7 = 3.186237e− 09 f7 = 4.566090e− 09

b8 = 2.712864e− 07 c8 = 1.921575e− 08 d8 = 8.909711e− 09 f8 = 1.617112e− 08

b9 = 9.195006e− 07 c9 = 3.271383e− 09 d9 = 7.064973e− 09 f9 = 1.624427e− 08

b10 = 0.000000e+ 00 c10 = 1.760548e− 09 d10 = 4.111111e− 10 f10 = 2.990509e− 10

b11 = 5.445280e− 03 c11 = 8.262003e− 03 d11 = 2.315747e− 02 f11= −2.063431e− 01

Metric Value
Mean absolute percentage error 11.72 %
Max absolute percentage error 117.88 %

Percentage of outliers 17.42 %

Table 3: dgemm GPU model accuracy

66

Figure 3: Accuracy of model dgemm - GPU

67

B.2 Matrix-vector multiplication - dgemv

Attribute Values
Size range Initial values selected as powers of 2 in range [32, ..., 4096] and multi-

ples of 50 in range [50, 1000..., 400]. Then all dimension combinations
that result in the same computation complexity was calculated keep-
ing the sizes within [1, 10000] range.

Number of measurements 3093 measurements.
Dimension arguments m,n
Complexity O(mn)
Thinness condition m*r < n || n*r < m

Table 4: dgemv test attributes

Figure 4: Execution time measurements for dgemv

B.2.1 CPU Model

Features: m,n,mn

ypred =

b1 ·m+ b2 · n+ b3 ·mn+ b4 if mnk < 105

c1 ·m+ c2 · n+ c3 ·mn+ c4 if 105 ≤ mnk < 2× 106

d1 ·m+ d2 · n+ d3 ·mn+ d4 if mnk ≥ 2× 106

Where,

b1 = 3.200676E − 07 c1 = 6.711642E − 07 d1 = 1.239206E − 06

b2 = 2.094603E − 06 c2 = 1.085442E − 06 d2 = 1.791089E − 06

b3 = 1.801089E − 07 c3 = 3.652427E − 07 d3 = 6.905138E − 07

b4 = 1.662675E − 03 c4 = 4.548914E − 04 d4= −8.179780E − 01

68

Figure 5: Accuracy of model dgemv - CPU

Metric Value
Mean absolute percentage error 8.57 %
Max absolute percentage error 74.09 %

Percentage of outliers 6.43 %

Table 5: dgemv CPU model accuracy

B.2.2 GPU Model

Features: m,n,mn

ypred =

{
b1 ·m+ b2 · n+ b3 ·mn+ b4 if mnk < 106

c1 ·m+ c2 · n+ c3 ·mn+ c4 if mnk ≥ 106

Where,

b1 = −1.719696E − 09 c1 = 9.268826E − 09

b2 = 2.256339E − 07 c2 = 2.151023E − 07

b3 = 1.931148E − 08 c3 = 1.254851E − 08

b4 = 9.730325E − 03 c4 = 2.506619E − 02

69

Figure 6: Accuracy of model dgemv - GPU

Metric Value
Mean absolute percentage error 13.61 %
Max absolute percentage error 90.15 %

Percentage of outliers 23.08 %

Table 6: dgemv GPU model accuracy

70

B.3 Cholesky factorization - dpotrf

Attribute Values
Size range Powers of 2 in range [32, ..., 4096] and multiples of 100 in range

[100, 200..., 4000]
Number of measurements 48 measurements.
Dimension arguments m
Complexity O(m3)

Table 7: dpotrf test attributes

Figure 7: Execution time measurements for dpotrf

B.3.1 CPU Model

Features: m,m3

ypred =

{
b1 ·m+ b2 ·m3 + b3 if m3 < 108

c1 ·m+ c2 ·m3 + c3 if m3 ≥ 108

Where,

bb1 = 4.116973E − 04 c1 = 1.493065E − 03

bb2 = 3.640432E − 09 c2 = 3.946053E − 09

bb3 = −9.154697E − 03 c3 = −1.782443E − 01

71

Figure 8: Accuracy of model dpotrf - CPU

Metric Value
Mean absolute percentage error 7.90 %
Max absolute percentage error 53.41 %

Percentage of outliers 12.50 %

Table 8: dpotrf CPU model accuracy

B.3.2 GPU Model

Features: m,m3

ypred =

{
b1 ·m+ b2 ·m3 + b3 if m3 < 2× 108

c1 ·m+ c2 ·m3 + c3 if m3 ≥ 2× 108

Where,

b1 = 8.361554E − 04 c1 = 1.836161E − 03

b2 = 3.513062E − 11 c2 = 6.072266E − 11

b3 = −3.895336E − 03 c3 = −3.843064E − 01

72

Figure 9: Accuracy of model dpotrf - GPU

Metric Value
Mean absolute percentage error 6.43 %
Max absolute percentage error 28.29 %

Percentage of outliers 4.17 %

Table 9: dpotrf GPU model accuracy

73

B.4 Triangular matrix system solver - dtrsm

Attribute Values
Size range First dimensionm given the values of powers of 2 in range [2, ..., 4096]

and multiples of 100 in range [100, 200..., 4000]. Only value 1 used for
the second dimension n as other values are not used in the example
application.

Number of measurements 48 measurements for both with and without input transposed cases.
Dimension arguments m,n
Complexity O(m2n)

Table 10: dtrsm test attributes

It should be noted that the measurements show much variance when n takes other values as
shown in Figure 5.4 in Chapter 5. Therefore, for a more general case, the modeling has to be done
including a range of values for n as well.

Figure 10: Execution time measurements for dtrsm

B.4.1 CPU Model

Model when trans flag is N (No transposing).
Features: m2, n2,mn,m2n

ypred =

b1 ·m2 + b2 · n2 + b3 ·mn+ b4 ·m2n+ b5 if m2n < 2× 105

c1 ·m2 + c2 · n2 + c3 ·mn+ c4 ·m2n+ c5 if 2× 105 ≤ m2n < 2× 106

d1 ·m2 + d2 · n2 + d3 ·mn+ d4 ·m2n+ d5 if m2n ≥ 2× 106

74

Where,

b1 = 1.344218E − 07 c1 = 1.240022E − 07 d1 = 1.661670E − 07

b2 = 0.000000E + 00 c2 = 1.323489E − 23 d2 = 0.000000E + 00

b3 = −3.479020E − 05 c3 = −7.498253E − 05 d3 = 4.856615E − 05

b4 = 1.344218E − 07 c4 = 1.240022E − 07 d4 = 1.661670E − 07

b5 = 4.704199E − 03 c5 = 4.745292E − 02 d5 = −2.080714E − 01

Model when trans flag is T (With transposing).
Features: m2, n2,mn,m2n

ypred =

b1 ·m2 + b2 · n2 + b3 ·mn+ b4 ·m2n+ b5 if m2n < 2× 105

c1 ·m2 + c2 · n2 + c3 ·mn+ c4 ·m2n+ c5 if 2× 105 ≤ m2n < 2× 106

d1 ·m2 + d2 · n2 + d3 ·mn+ d4 ·m2n+ d5 if m2n ≥ 2× 106

Where,

b1 = 1.295043E − 07 c1 = 1.003128E − 07 d1 = 1.431553E − 07

b2 = −2.646978E − 23 c2 = 0.000000E + 00 d2 = 0.000000E + 00

b3 = −1.913967E − 05 c3 = 2.392070E − 05 d3 = 2.498099E − 04

b4 = 1.295043E − 07 c4 = 1.003128E − 07 d4 = 1.431553E − 07

b5 = 3.688210E − 03 c5 = 1.351287E − 02 d5= −5.024207E − 01

Figure 11 shows the graphs only for the no transpose case as it is not very different from the one
with transposing.

75

Figure 11: Accuracy of model dtrsm - CPU

Metric Value (trans = N) Value (tans = T)
Mean absolute percentage error 5.73 % 4.76
Max absolute percentage error 47.66 % 18.76

Outliers 4.51 % 0.00

Table 11: dtrsm CPU model accuracy

B.4.2 GPU Model

Model when trans flag is N (No transposing).
Features: m,n,m2n

ypred =
{
b1 ·m+ b2 · n+ b3 ·m2n+ b4

Where,

b1 = 9.605335E − 05

b2 = 0.000000E + 00

b3 = −6.042791E − 10

b4 = 1.259568E − 02

76

Model when trans flag is T (With transposing).
Features: m,n,m2n

ypred =
{
b1 ·m+ b2 · n+ b3 ·m2n+ b4

Where,

b1 = 1.141587E − 04

b2 = 0.000000E + 00

b3 = 6.327967E − 09

b4 = 1.425764E − 02

Figure 12 shows the graphs only for the no transpose case as it is not very different from the one
with transposing.

Figure 12: Accuracy of model dtrsm - GPU

Metric Value (trans = N) Value (tans = T)
Mean absolute percentage error 1.35 % 1.38
Max absolute percentage error 9.69 % 4.56

Outliers 0.00 % 0.00

Table 12: dtrsm GPU model accuracy

77

B.5 Triangular matrix copy - dlacpy

Attribute Values
Size range Powers of 2 in range [32, ..., 4096] and multiples of 100 in range

[100, 200..., 4000]

Number of measurements 296* and 48 measurements for CPU and GPU respectively.
Dimension arguments m
Complexity O(m2)

Table 13: dlacpy test attributes

* In the measurements from the application, it was observed that even for the same size m, the
execution time slightly increased when the leading dimension of the destination matrix (ldb)
increased (dlacpy copies the Lc matrix of size n × n to the L and U matrices which increase in
size in each iteration, having the dimensions (n + nidxs) × (n + nidxs)). In order to capture this
effect when making measurements for modeling, for each size m, 6 ldb values were calculated to
span the range [m, 2m]. Thus, for the CPU 296 measurements were made.

Figure 13: Execution time measurements for dlacpy

B.5.1 CPU Model

Features: ldb,m2

ypred =

b1 · ldb+ b2 ·m2 + b3 if m2 < 105

c1 · ldb+ c2 ·m2 + c3 if 105 ≤ m2 < 2× 106

d1 · ldb+ d2 ·m2 + d3 if m2 ≥ 2× 106

Where,

b1 = 9.014109E − 06 c1 = 2.266375E − 05 d1 = 3.348356E − 05

b2 = 5.603457E − 07 c2 = 6.661555E − 07 d2 = 7.979377E − 07

b3 = 3.319108E − 03 c3 = −5.591714E − 02 d3 = −1.809488E − 01

78

Figure 14: Accuracy of model dlacpy - CPU

Metric Value
Mean absolute percentage error 5.12 %
Max absolute percentage error 57.48 %

Outliers 6.6 %

Table 14: dlacpy CPU model accuracy

B.5.2 GPU Model

Features: m

ypred =
{
b1 ·m+ b2

Where,

b1 = 2.720431E − 03

b2 = 3.559786E − 03

79

Figure 15: Accuracy of model dlacpy - GPU

Metric Value
Mean absolute percentage error 0.28 %
Max absolute percentage error 1.34 %

Outliers 0.0 %

Table 15: dlacpy GPU model accuracy

80

B.6 Extended copies - excopy (mkl_domatcopy and cublasDgeam)

Attribute Values
Size range Initial values selected as powers of 2 in range [32, ..., 4096] and multi-

ples of 50 in range [50, 1000..., 400]. Then all dimension combinations
that result in the same computation complexity was calculated keep-
ing the sizes within [1, 10000] range.

Number of measurements 3093 measurements for both with and without input transposed
cases.

Dimension arguments m,n
Complexity O(mn)
Thinness condition m*r < n || n*r < m

Table 16: excopy test attributes

(a) trans = N (b) trans = T

Figure 16: Execution time measurements for excopy

B.6.1 CPU Model

Model when trans flag is N (No transposing).
Features: m,n,m2, n2,mn

ypred =

b1 ·m+ b2 · n+ b3 ·m2 + b4 · n2 + b5 ·mn+ b6 if mn < 3× 104

c1 ·m+ c2 · n+ c3 ·m2 + c4 · n2 + c5 ·mn+ c6 if 3× 104 ≤ mn < 106

d1 ·m+ d2 · n+ d3 ·m2 + d4 · n2 + d5 ·mn+ d6 if 106 ≤ mn < 3× 106

f1 ·m+ f2 · n+ f3 ·m2 + f4 · n2 + f5 ·mn+ f6 if mn ≥ 3× 106

b1 = −2.729217E − 08 c1 = −5.551119E − 09 d1 = −3.591668E − 08 f1 = 2.805059E − 08

b2 = −2.860477E − 08 c2 = −1.158916E − 08 d2 = −3.701099E − 08 f2 = 2.023917E − 08

b3 = 5.939399E − 13 c3 = −4.811315E − 15 d3 = 1.659772E − 14 f3 = −2.934457E − 15

b4 = 6.880051E − 13 c4 = 3.735659E − 15 d4 = 1.631665E − 14 f4 = −2.014148E − 15

b5 = 2.122399E − 07 c5 = 6.406802E − 07 d5 = 1.407590E − 06 f5 = 1.803279E − 06

b6 = 2.571306E − 04 c6 = −1.858215E − 02 d6 = −8.570731E − 01 f6 = −1.566771E + 00

81

Model when trans flag is T (With transposing).
Features: m,n,mn

Let thin = (m ∗ r < n)||(n ∗ r < m) be the condition for thin matrices, where r = 10000 is the
thinness ratio as defined in Section 5.1.

ypred =

b1 ·m+ b2 · n+ b3 ·m2 + b4 · n2 + b5 ·mn+ b0 if mn < 3× 104 and thin = False

c1 ·m+ c2 · n+ c3 ·m2 + c4 · n2 + c5 ·mn+ c0 if 3× 104 ≤ mn < 106 and thin = True

d1 ·m+ d2 · n+ d3 ·m2 + d4 · n2 + d5 ·mn+ d0 if 3× 104 ≤ mn < 106 and thin = False

f1 ·m+ f2 · n+ f3 ·m2 + f4 · n2 + f5 ·mn+ f0 if 106 ≤ mn < 3× 106 and thin = True

g1 ·m+ g2 · n+ g3 ·m2 + g4 · n2 + g5 ·mn+ g0 if 106 ≤ mn < 3× 106 and thin = False

p1 ·m+ p2 · n+ p3 ·m2 + p4 · n2 + p5 ·mn+ p0 if mn ≥ 3× 106 and thin = True

q1 ·m+ q2 · n+ q3 ·m2 + q4 · n2 + q5 ·mn+ q0 if mn ≥ 3× 106 and thin = False

Where,

b1 = 9.408887E − 07 c1 = 9.976481E − 07 d1 = 7.506850E − 07 f1 = −9.977038E − 08

b2 = 6.543644E − 07 c2 = 7.363898E − 07 d2 = −6.604001E − 07 f2 = −4.407489E − 07

b3 = 1.923671E − 11 c3 = −3.631078E − 13 d3 = −8.533586E − 12 f3 = 9.185349E − 14

b4 = 5.492603E − 11 c4 = 2.305160E − 13 d4 = −1.442084E − 11 f4 = 5.170897E − 13

b5 = 3.197080E − 07 c5 = 5.061793E − 07 d5 = 8.794052E − 07 f5 = 1.691632E − 06

b6 = 1.698319E − 04 c6 = −4.869950E − 03 d6 = −2.437491E − 02 f6 = −9.950919E − 01

g1 = 7.098822E − 07 p1 = −2.113541E − 06 q1 = 5.793630E − 05

g2 = −1.682908E − 05 p2 = −2.872194E − 06 q2 = −5.801809E − 05

g3 = −5.820694E − 11 p3 = 1.353055E − 13 q3 = −2.332556E − 10

g4 = 3.384809E − 11 p4 = 2.713573E − 13 q4 = 7.456757E − 11

g5 = 3.028687E − 06 p5 = 2.288364E − 06 q5 = 3.796003E − 06

g6 = −2.053047E + 00 p6 = −8.427003E − 01 q6 = −3.766503E + 00

82

Figure 17: Accuracy of model without transpose excopy - CPU

Figure 18: Accuracy of model with transpose excopy - CPU

83

Metric Value (trans = N) Value (tans = T)
Mean absolute percentage error 3.15 24.18 %
Max absolute percentage error 54.29 151.29 %

Outliers 0.88 50.76 %

Table 17: excopy CPU model accuracy

B.6.2 GPU Model

For the GPU, the same model was used for transposed and non transposed cases.

Features: m,n,mn

ypred =

b1 ·m+ b2 · n+ b3 ·mn+ b4 if mn < 104

c1 ·m+ c2 · n+ c3 ·mn+ c4 if 104 ≤ mn < 3× 105

d1 ·m+ d2 · n+ d3 ·mn+ d4 if mn ≥ 3× 105

Where,

b1 = −1.208197E − 07 c1 = 8.095752E − 08

b2 = −4.358342E − 07 c2 = 1.559921E − 07

b3 = 2.616894E − 08 c3 = 2.342008E − 08

b4 = 6.016339E − 03 c4 = 8.330997E − 03

d1 = 9.679107E − 08

d2 = 1.415087E − 07

d3 = 2.163352E − 08

d4 = 1.855496E − 02

Metric Value (trans = N) Value (tans = T)
Mean absolute percentage error 7.74 % 7.19
Max absolute percentage error 65.15 % 45.03

Outliers 5.51 % 2.62

Table 18: excopy GPU model accuracy

84

Figure 19: Accuracy of model excopy - GPU

85

	Introduction
	Problem Statement
	Approach

	Background
	Linear Algebra libraries
	Linear Algebra Routines

	Performance Modeling
	ASML
	Previous Work

	Hardware Platforms

	Related Work
	Hardware acceleration of BLAS/LAPACK
	Performance Modeling
	Task Scheduling with Data Dependency Graphs

	Approach
	Test Setup
	Example Application
	API Overview
	GPU Deployment Approaches

	Dynamic Deployment

	Performance Modeling
	Generating the Models

	Data Dependency Graphs
	Constructing the graph
	Finding the optimal schedule
	Optimizing algorithm

	Results and Analysis
	Test Case 1
	Performance Model Accuracies
	Dynamic Deployment
	DAG Schedule

	Test Case 2
	Limitations of the graph scheduling algorithm

	Conclusion
	Future Work

	References
	Appendices
	Abbreviations
	Performance Models
	Matrix-matrix multiplication - dgemm
	Matrix-vector multiplication - dgemv
	Cholesky factorization - dpotrf
	Triangular matrix system solver - dtrsm
	Triangular matrix copy - dlacpy
	Extended copies - excopy (mkl_domatcopy and cublasDgeam)

