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“Artificial intelligence will not replace physicians. However, physicians who use Artificial In-

telligence will replace those who do not.” 

Bertalan Meskó MD, Director of the Medical Futurist Institute (2018) 

 

“The greatest opportunity offered by AI is not reducing errors or workloads, or even curing 

cancer: it is the opportunity to restore the precious and time-honored connection and trust—

the human touch—between patients and doctors.” 

Eric Topol MD, in his book Deep Medicine (2019) 
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Abstract 
 
Purpose: 

Major osteoporotic fractures (MOFs), defined as fractures from hip, wrist, spine and humerus, 

can have serious consequences regarding morbidity and mortality. Artificial intelligence gives 

new opportunities for fracture prediction and may aid in targeting preventive interventions to 

patients at risk of MOF. Primary objective of this study is to develop and compare several 

models, capable of predicting risk of MOF as a function of time in patients who already sus-

tained a fracture. 

Methods: 

Patients aged >50 visiting the osteoporosis screening clinic after sustaining a fracture were in-

cluded in this retrospective pilot study. We compared discriminative ability (concordance-in-

dex) for time to MOF prediction of a Cox regression model, a Random Survival Forest (RSF) 

model and an artificial neural network (ANN)-DeepSurv model. Missing data was imputed us-

ing multiple imputation by chained equations (MICE) and RSF’s imputation function. Analysis 

were performed for the total cohort and a subset; osteopenia patients without vertebral fracture. 

Results: 

7578 patients were included, 805 (11%) patients sustained a subsequent MOF. Highest con-

cordance-index in the total dataset was 0.697 (0.664-0.730), no significant difference was de-

termined between the models. In the osteopenia subset, Cox regression outperformed RSF 

(p=0.026 and p=0.036) and ANN-DeepSurv (p=0.042) with a c-index of 0.625 (0.562-0.689). 

Cox regression was used to develop a MOF risk calculator in this subset. 

Conclusion: 

We present adequate discriminative performance of different prediction models and show Cox 

regression to outperform RSF and ANN in osteopenia patients. We developed a user-friendly 

tool for risk calculation of subsequent MOF in patients with osteopenia. 
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1 Introduction 
Osteoporosis is a major cause of bone fractures in elderly. Globally, 158 million individuals 

older than 50 are estimated to be at high risk of osteoporotic fractures [1]. Consequently, 1 in 3 

women and 1 in 5 men older than 50 years of age will suffer from an osteoporotic fracture [2]. 

The risk of osteoporotic fracture is expected to have doubled in 2045 due to progressive ageing 

[1]. Major osteoporotic fractures (MOFs), defined as fractures from the hip-, wrist-, spine- and 

humerus [3], have the highest incidence in osteoporotic patients and can have serious conse-

quences. For example, hip fractures have a high rate of both mortality and morbidity [4]. 

Twenty to thirty-five percent of patients admitted to the hospital with a fractured neck of the 

femur die within one year [5].  Besides, studies suggest that costs of osteoporosis compared to 

other diseases are relatively high [6,7]. An international report quantified the cost of osteopo-

rosis and its consequences as 98 billion euro for the European Union in 2010, almost as high as 

the burdensome disease dementia (105 billion). The costs in the Netherlands alone for osteopo-

rosis were quantified at 2.7 billion and are expected to increase to 3.5 billion in 2025 [6].   

 

The WHO recognized and defined osteoporosis in 1991 as: “A disease characterised by low 

bone mass and microarchitectural deterioration of bone tissue, leading to enhanced bone fragil-

ity and a consequent increase in fracture risk” [8]. This definition was extended in 1994 with 

the establishment of four general diagnostic categories, based on bone mineral density (BMD), 

and still used nowadays:  

1. Normal bone mass, a BMD value of 1 standard deviation (SD) from the young adult 

reference mean.  

2. Osteopenia, a BMD value of more than 1 SD below the young adult reference mean but 

less than 2.5 SD below this value.  

3. Osteoporosis, a BMD value of 2.5 SD or more below the young adult reference mean.  

4. Severe osteoporosis, a BMD value of 2.5 SD or more below the young adult reference 

mean in the presence of one or more fragility fractures. [9] 

The value of BMD compared to the young adult reference mean is commonly known as the T-

score. 

 

Osteoporosis gained attention near the turn of the century and is now widely studied. The Uni-

versity Medical Centre Groningen (UMCG) opened the first Fracture and Osteoporosis outpa-

tient clinic in the Netherlands in 2003 to assess the presence of osteoporosis in patients at risk. 



- 2 - 
 

Schurink and colleagues (2007) demonstrated effectiveness of this outpatient clinic presenting 

a rise in BMD measurements of patients at risk from 14% to 75%. Moreover, they determined 

that 69% of the patients not screened for osteoporosis actually had an indication for treatment 

with bisphosphonates according to the osteoporosis guidelines [10]. Furthermore, patients with 

a prior fracture of any nature are well known to be at risk for a future fracture. Warriner et al. 

(2011) described a relative risk of subsequent fracture at any site of 2.1 (1.6 – 2.7) compared to 

no fracture, while the relative risk for a subsequent fracture after hip fracture, vertebral fracture 

or radius/ulna fracture is 3.2 (2.3 – 4.5), 3.0 (2.0 – 4.3), and 2.7 (1.9 – 3.7) compared to no 

fracture respectively [11]. The current Dutch guideline ‘Osteoporosis and fracture prevention’ 

recommends BMD screening by means of a dual-energy X-ray absorptiometry (DXA scan) in 

patients older than 50 with a recent non-vertebral fracture [12]. As a result, most hospitals now-

adays have Fracture and Osteoporosis outpatient clinics. 

 

Treatment decision for prevention of osteoporosis is currently based on general classification 

of patients. For example, patients with a T-score < -2.5 and/or a vertebral fracture are treated 

with bisphosphonates, while other patients not meeting this criterion are not. Recently, 

healthcare made a shift towards targeted prevention using more personalised medicine [13]. 

Personalised medicine is defined by the Horizon 2020 Advisory Group of the European Com-

mission as: “A medical model using characterisation of individuals’ phenotypes and genotypes 

(e.g. molecular profiling, medical imaging, lifestyle data) for tailoring the right therapeutic 

strategy for the right person at the right time, and/or to determine the predisposition to disease 

and/or to deliver timely and targeted prevention” [14]. In the field of fracture prevention, risk 

assessment tools aim to personalize future fracture risk to support treatment decisions. Forty-

eight fracture risk assessment tools were available in 2017. Three of those (FRAX®, Garvan 

and QFracture) have been tested in a population-based setting and focus on predicting direct 

fracture risk, with FRAX® being the most validated and used tool worldwide for hip fractures 

[15]. FRAX® uses twelve input parameters and is based on linear and non-linear combinations 

of risk-factors for future fracture [15]. However, it does not consider several important proven 

risk factors such as relevant comorbidities, patient’s history and prior fall(s), amongst others. 

Furthermore, it only incorporates the BMD of the hip, while measurement of BMD of the lum-

bar spine is more correlated to the risk of vertebral fractures [12]. Consequently, the current 

guideline in the Netherlands does not advice to use the FRAX®-tool or any other fracture risk 

assessment tool for clinical decision making, but only in risk-communication to patients with 

osteopenia [12].  
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Relatively new modelling techniques give rise to new opportunities for fracture prediction as 

they can handle large numbers of input variables simultaneously. Artificial neural networks 

(ANNs) are one of these new approaches, showing promising results in different studies. For 

example, Tseng et al (2013) designed an ANN outperforming standard logistic regression in 

the assessment of hip fracture risk in elderly patients [16]. Besides, Ho-le et al. (2017) showed 

that their ANN outperformed k-nearest-neighbour, support vector machine and logistic regres-

sion in the prediction of hip fracture in post-menopausal women [17]. Artificial intelligence 

(AI) based models will potentially capture underlying trends and patterns, making predictions 

more accurate and therefore more useful in clinical practice [18].  

 

The primary objective of this pilot study is to develop and compare several traditional and non-

traditional models, capable of predicting time to event of a subsequent MOF in patients who 

already sustained a (minor) fracture. The best performing model could possibly serve in a risk-

assessment tool in clinical practice for patients visiting a Fracture and Osteoporosis Outpatient 

Clinic. Such risk-assessment tool may be helpful in targeting preventive interventions for pa-

tients at high risk of MOF fracture who do not currently meet the criteria for bisphosphonate 

treatment. Secondary aim of this study is to identify predictors of subsequent fractures in this 

population. Cox proportional hazard regression is traditionally used to predict time to event in 

survival data, while Random Survival Forest (RSF) is a popular machine learning method used 

for this purpose [19]. Used models in this thesis are therefore Cox proportional hazard regres-

sion, RSF and an ANN.  
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2 Theoretical background 
Developing and validating a model requires completion of several steps, nicely outlined by 

Steyerberg (2019) [20]. Primarily, one must deal with missing values and correctly code the 

predictors. Next, the model needs to be specified with an appropriate selection of the main 

effects and an assessment of the assumptions considered. The model is then estimated and the 

performance of the model determined. Final steps include model validation (internal or exter-

nal) and presentation of the model to the audience. The latter is out of the scope of this research. 

Below, the theoretical background of the used methods is outlined. At first, methods to handle 

missing data are described as the dataset used was incomplete. Secondly, an introduction to 

survival data is given and three different models able to handle survival data are discussed. 

Lastly, background regarding evaluation methods for performance of the models are given. 

 

2.1 Dealing with missing data: Multiple imputation 
Incomplete data in retrospective studies are frequently occurring problems. It is caused by dif-

ferent factors, such as part of questionnaires not being answered, errors in data registration and 

outliers. Deleting missing data is a standard approach in handling this problem, known as list-

wise deletion [21]. However, as different variables might be missing in non-overlapping data, 

this can result in significant reduction of statistical power. According to Rubin (1976), missing 

data can be classified into three different categories:  

- Missing Completely At Random (MCAR): the probability that data is missing is con-

sidered the same for all individual patients.  

- Missing At Random (MAR): the probability of missing is the same for all individual 

patients within groups defined by the observed data.  

- Missing Not At Random (MNAR): the probability that data is missing is not considered 

the same for all individual patients due to reasons that are unknown to the researchers 

[22].  

Different methods can be used to impute missing data, including some simple methods such as 

mean imputation. These, however, have a serious drawback regarding the produced standard 

errors in the final analysis after imputation. Multiple imputation, first developed in 1987 by 

Rubin, is a technique able to solve this problem [21,23]. 

 

Van Buuren (2012) described that multiple imputation is generally accepted as the best method 

to deal with incomplete data and is often being used as benchmark to which newer methods are 

compared [21]. This simulation-based statistical technique consists of three important steps:  
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1. Imputation, in which several imputed datasets are created. In every dataset, all missing 

values are identified and replaced by plausible data values drawn from a modelled dis-

tribution. This modelled distribution is constructed using a prediction method combined 

with noise and parameter uncertainty. This step results in m complete datasets, with m 

reflecting the chosen number of datasets. These datasets are identical on the initially 

available data but differ in the values imputed.  

2. Completed-data analysis, where desired models are constructed and analysed for every 

imputed dataset separately.  

3. Pooling, in which results of separate completed-data analysis for every dataset is com-

bined into an overall result. This step applies the so-called Rubin’s rules, assuming nor-

mally distributed parameters [21].  

Above steps are illustrated in Figure 1. 

 

Figure 1: Overview of the steps of multiple imputation. Multiple imputed datasets (I1, I2, I3, …, Im) are created by replacing 

the missing values in the incomplete dataset with values drawn from a modelled distribution. Secondly, the desired analysis is 

performed for every completed dataset. Finally, the results of the separate complete-data analysis (A1, A2, A3, …, Am) are 

pooled into an overall result. The chosen number of datasets is reflected by m. 

We used a fully conditional specification approach, also known as multivariate imputation by 

chained equations (MICE), designed by Van Buuren and Groothuis-Oudshoorn (2000) [24,25]. 

This method defines a multivariate model through a set of univariate models with specific con-

ditions and imputes incomplete data points by values iterated from this conditional model. It 
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can handle data straightforward when MCAR or MAR is assumed [25]. In this research, missing 

data as assumed to be MAR. 

 

2.2 Survival analysis 
Survival analysis is a statistical technique capable of modelling time to event based on historical 

data. Survival data consist of two outcomes measures, event (yes/no) and the time till event.    

This type of data often contains censored data points, meaning that the time-to-event of these 

data points is unknown. Including these data without altering the statistical model results in an 

underestimation of the time to event [26]. Censoring can occur in different ways: 

1. Right censoring, for individuals in which an event is assumed to occur but occurs be-

yond the follow-up period. Possible causes of the end of follow-up period are termina-

tion of the study period, loss to follow-up or death.  

2. Left censoring, for individuals in which the time of the event is not exactly known, but 

only by its upper limit. The most important cause is a follow-up period with intervals. 

3. Interval censoring, for individuals in which the time of the event is not exactly known 

but its lower and upper limit are. 

Right censored data is most common and is properly dealt with by most statistical survival 

techniques [27]. 

 

Survival data can be described by different probabilities. The survival probability S(t) is defined 

as the probability that an individual survives from start of inclusion to a specified future time t. 

The hazard h(t) is the probability that an individual, who is under observation at time t, has an 

event at that time. Survival reflects the cumulative non-occurrence of an event, while the hazard 

is related to the incidence event rate. Both probabilities are related to each other. This relation 

is described by the following formula: 

(1) ℎ(𝑡) =  −
𝑑

𝑑𝑡
[log 𝑆(𝑡)] 

As there is no simple way to estimate h(t), the cumulative hazard H(t) is normally used in sta-

tistics. This is the area under the hazard function between times 0 and t, and is related to S(t) in 

the following way:  

(2) 𝐻(𝑡) =  −[log 𝑆(𝑡)] 

Different methods have been proposed to estimate the cumulative hazard function and more are 

currently being developed [26]. The three methods used in this thesis are described in the up-

coming sections.  
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2.3 Cox proportional hazard regression 
The most well-known technique is Cox proportional hazard regression model, developed in 

1972 [28]. This semi-parametric model, which unlike a full-parametric model leaves the de-

pendence on time unspecified defines the hazard function (3) of the Cox model as follows:  

(3) ℎ(𝑡, 𝑥, 𝛽) =  ℎ0(𝑡)𝑒𝑥1𝛽1+𝑥2𝛽2+ ...  + 𝑥𝑝𝛽𝑝 

with h0 defined as baseline hazard function; t as survival time; x1, x2, …, xp as covariates and 

β1, β2, …, βp, as coefficients of the corresponding covariates.  

The Cox proportional hazard regression model maximizes the partial likelihood to get the esti-

mate of the coefficient of a covariate. It assumes proportionality of hazards, meaning that the 

ratio of hazards remains constant over time [29]. The proportionality assumption can be tested 

using Schoenfeld’s residual correlation test [30]. Another important assumption is the linear 

effect of continuous variables on the log hazard function. This assumption can be tested in 

several ways, including fractional polynomials or splines and a graphical check using the log 

hazard ratio [29,31].  

 

2.3.1 Restricted cubic splines  
As discussed earlier, Cox proportional hazard regression model assumes a linear effect of con-

tinuous variables on the log hazard function. In other words, it is assumed that the effect is 

consistent for all values of the variable. However, not all continuous covariates might be line-

arly related to the log hazard function and therefore may lead to an inaccurate model. To use 

non-linear covariates in a regression model, covariates needs to be transformed. One very flex-

ible form of these transformation are spline functions [20]. 

 

Spline functions are polynomials on intervals used for fitting a curve. The higher the order of a 

spline, the more flexible it is. There are several forms of splines, one of interest for this research 

is the restricted cubic splines, sometimes referred to in literature as natural splines. The re-

stricted cubic spline is a piecewise polynomial with a high polynomial order and is therefore 

able to fit functions which are sharply shaped and not correctly fitted by traditional transfor-

mations. Knots are used to bend the spline function around. The number of knots is equal to the 

number of degrees of freedom for restricted cubic splines. The term ‘restricted’ relates to the 

tails of the spline, which is constrained to be linear [20,32]. Restricted cubic splines can there-

fore be used to model non-linear relationships in the Cox model.  
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2.3.2 Variable selection using LASSO 
One of the major risks in modelling is overfitting; when a model describes data of the sample 

used in the analysis very closely, but does not give valid predictions for new subjects [20]. 

Important topics related to overfitting are bias and variance. Definitions for bias and variance 

are clearly described by Ghojogh and Crowley (2019); bias describes how much the mean of 

the estimate deviates from the original mean, while variance is defined as the average deviation 

from the mean of the estimate [33].  Four illustrative examples of high and low bias and variance 

using a standard dartboard example are shown in Figure 2.  

 

Figure 2: Illustrative examples of bias and variance with: a) high bias and variance, b) high bias and low variance, c) low bias 

and high variance, d) low bias and low variance. 

In overfitting, variance is high while bias is low. Two important causes of overfitting in regres-

sion modelling are parameter uncertainty and model uncertainty. Parameter uncertainty results 

in overestimation of regression coefficients at the extremes of a linear predictor, this phenom-

enon can be explained by Stein’s paradox [20]. Stein (1956) determined that biased estimates 

are preferable over unbiased estimates to make better predictions in multivariate models [34]. 

Including some bias in the model, and thus reducing variance, might therefore result in a gain 

in predictive precision for new subjects outside training data. This issue is commonly referred 

to as the bias-variance trade-off in literature and is visually illustrated by Dankers et al. (2019) 

in the book Fundamentals of Clinical Data Science [35]. A copy of this illustration is shown in 

Figure 3.  
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Figure 3: The bias variance trade-off as illustrated by Dankers et al. (2019) [35]. A higher variance results in a more accurate 

match of the underlying relation in the training set, but can also raise the prediction error. The prediction error is the sum of 

bias and variance and needs to be minimized. 

The other cause of overfitting is model uncertainty, resulting from testimation bias. Testimation 

bias is overestimation of predictors’ effects, resulting from selection methods which only in-

clude predictors with a relatively large effect, such as stepwise selection methods. This results 

in a model with a higher variance and therefore causes overfitting.  Steyerberg (2019) advices 

to limit the use of traditional stepwise selection methods and include improved methods such 

as the least absolute shrinkage and selection operator (LASSO) [20]. 

 

LASSO is a modern estimation technique, which adds bias in the regression coefficients and 

thereby reduces variance of the model. LASSO does this by penalizing the sum of the absolute 

values of regression coefficients. This results in some coefficients becoming 0 and therefore 

being excluded from the model. The challenge however is to find the optimal bias-variance 

trade-off, resulting in the best predictive ability of the model for new subjects [20]. An optimum 

for the penalty factor (λ) can be determined by defining the minimum of the partial likelihood 

deviance using cross validation. λ is usually chosen as the minimum penalty factor plus one 

standard error as proposed by the author [36]. 
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2.4 Random survival forest 
RSF is, compared to the Cox model, a new statistical technique introduced by Ishwaran et al 

(2008). It is a decision tree-based method capable of estimating the cumulative hazard function 

of survival data [19]. Unique selling points of decision trees are its explainability and the easy 

way they can handle qualitative predictors. However, trees themselves are non-robust, meaning 

a small change in data results in a large change in the final estimate. Therefore they generally 

have a lower predictive ability than other models [37].   

 

Random forest is a technique combining bootstrap aggregating and decorrelation to build mul-

tiple decision trees, thereby reducing variance. Moreover, it can handle both classification and 

regression problems. Bootstrap aggregating, or in short bagging, is a technique in which multi-

ple bootstrap training data sets are created by taking repeated samples from the training dataset. 

The model is then trained on these newly created training sets and averaged to define the final 

prediction. Decorrelation is used to prevent one very strong predictor to annex all these trees, 

therefore reducing variance. For every split used to construct the decision trees, only a random 

sample of m predictors is used as split candidates instead of the full set of p predictors. m is 

mostly chosen as 𝑚 =  √𝑝  [37]. 

 

RSF, developed by Ishwaran et al. (2008), extends the method of random forest to right-cen-

sored survival data. This model constructs a cumulative hazard function for every tree and av-

erages these to obtain an ensembled cumulative hazard function. Besides, it can calculate the 

variable importance, giving insight in prediction model and its variates. The variable im-

portance of a specific variable is determined by analysing out-of-bag samples. A new model is 

developed which considers a random split instead of a split based on that specific variable. It 

therefore excludes this specific variable from the new model [19]. The prediction error of the 

new model is then compared to the original model. The variable importance is defined as the 

increase in prediction error of the new model compared to the original model [38]. Lastly, RSFs 

can impute missing data using a methodology specifically designed for Random Forests by 

Ishwaran et al (2008) [19]. 

 

2.5 Artificial neural network 
ANNs originate from mathematical theories used to describe the information processing of a 

neural system in an animal brain. Already in 1943, McCulloch and Pitts published a theory for 

so called nerve nets, a forerunner of the artificial neural networks used nowadays [39]. The fast 



- 11 - 
 

growth in computational capability in the last decades led to new opportunities on this topic 

and a huge increase in interest of different industries, including healthcare. ANNs are valued 

for their practical and flexible approach and are particularly useful when data entail complex 

interactions, violate specific assumptions or contain a large unexplained variance [40]. 

 

ANNs use multiple layers to describe the association between input and outcome. Typically, 

ANNs consist of 3 types of layers: 

- Input layer, which receives information from an external source such as a database. 

- Hidden layer, which is responsible for the internal processing of the data by the mean 

of weights. The optimal weights are defined by minimizing the average error between 

the real outcome and the prediction. 

- Output layer, which produces the final output of the model [41]. 

The type used in this research is a feed-forward neural network, meaning information flow in 

the model is unidirectional. Both input and output layer always comprise a single layer. When 

a hidden layer is present, it can consist of single or multiple layers.  

 

Katzman et al (2018) designed a Cox proportional hazards deep neural network, called Deep-

Surv [42]. It is a feed-forward neural network which estimates the hazard function by analysing 

the effect of the patient’s covariates parameterized by the weights of the network and is there-

fore able to deal with survival data. The input to the network is the patient’s data. The hidden 

layers are fully connected layers with a non-linear activation function [42]. Dropout is a regu-

larization method used in the hidden layer of the neural network during the training phase. It 

temporarily removes nodes and their connections at random, thereby reducing overfitting [43] 

The output layer of DeepSurv comprises an individual node estimating the log-risk function in 

a Cox proportional hazard model using linear activation [42]. An example of such a network is 

shown in Figure 4. 
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Figure 4: Example of a feed-forward neural network with 2 hidden layers. The output layer estimates the log-risk function in 

a Cox proportional hazard model. 

Gradient descent optimization is used to train the network minimizing the average negative log 

partial likelihood. The average negative log partial likelihood is a measure of the goodness of 

fit of the model for given data. The loss function of DeepSurv, the function used to evaluate the 

set of weights of the network, is defined as:  

(4) 𝚤(𝜃) ≔ −
1

𝑁𝐸=1
∑ (𝑖:𝐸𝑖=1 ℎ̂𝜃(𝑥𝑖) − log ∑ +𝜆 ∙ ‖𝜃‖2

2
𝑗∈𝜃ℜ(Τ𝒾)  

Hyper-parameters of the network are depth and size of the network, learning rate, ℓ2 regulari-

zation coefficient, dropout rate, exponential learning rate decay constant and momentum [42].  

 

The choice of hyper-parameters is crucial for the model’s performance, as a good set of hyper-

parameters maximizes the discriminative ability of the learning approach. Therefore, hyper-

parameter search is an important topic in machine learning research [44]. There are several 

optimization techniques, with grid search and manual search being most widely used. In grid 

search, the model is run for all combinations of a manually pre-specified subset of hyper-pa-

rameters, returning an evaluation of the model performance. The hyper-parameters from the 

best performing model are then used for the final model. A serious drawback of grid search is 

its large computational time, as the model needs to be constructed for all combinations of hyper-

parameters [45]. 
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2.6 Evaluation of model performance 
The most used statistic for discriminative performance in survival analysis is the concordance 

statistic (c-index). Concordance is derived from the Wilcoxon-Mann-Whitney U two sample 

rank test and is defined as the probability that the prediction goes in the same direction as the 

actual data. In case of a binary outcome measure, e.g. in logistic regression, the area under the 

(receiver operating characteristic) curve (AUC) equals the c-index [31,37,38].  

 

As discussed earlier, in survival analysis one needs to deal with both time-to-event data and 

censored data. Every subject at time t experiencing an event is compared to all other comparable 

subjects at risk. It uses three different sets of paired comparisons:  

- Event vs. non-event, comparing the predicted probability of the event and the non-event.   

- Event vs. event, comparing the predicted probability of both events with respect to the 

duration of time till the event. The patient who developed an event earlier is supposed 

to have a higher predicted probability for an event.  

- Event vs. censored, comparing the predicted probability of the event and the censored 

case only when the censored time is longer than the time till event.  

Next, these components are combined into an overall measure of discrimination. The c-index 

is the proportion of pairs in which the subject experiencing the event has a higher calculated 

risk of the event compared to the other subject [48]. Like AUC, a c-index of 0.5 is comparable 

to random guessing while a c-index of 1.0 reflects perfect discrimination. 

2.6.1 Validation 
Besides a good performance of the model on training data, a high predictive ability for new 

patients is essential. Model validation is a measure to assess model performance for new sub-

jects and can be done both internally and externally. Internal validation assesses validity of the 

model on data in the same setting as the model was trained on, while external validation uses 

samples which are fully independent from training data. As external validation is out of scope 

of this pilot study, we will focus on internal validation using cross-validation.  

 

Cross-validation is a widely known validation technique, splitting data in a training- and a test-

set and repeating this several times. It thereby makes sure there is no overlap in the test sets. 

The model is developed using training data, and consecutively evaluated using test data. The 

size of the training- and test-sets depend on the amount of repetitions used. For example, in a 

10-fold cross validation, the training-set is split in 90% and 10% for the training- and test-set 

respectively. This process is repeated ten times making sure all patients have served once as a 
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test object for the model [20]. An important risk in cross-validation is data leakage, defined as 

using data or information during model generation from the test set which leads to overfitting. 

For example, when doing both hyper-parameter search and model evaluation using cross-vali-

dation, the test sets of the hyper-parameter search and final model evaluation may overlap partly 

[35]. A solution to this violation of assumption is nested cross-validation, which uses an inner 

loop to find the optimal parameters of the model and an outer loop for evaluation of the model. 

It thereby prevents leakage of data from the test set [49]. Both LASSO and grid search should 

therefore ideally be performed using nested cross-validation. 
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3 Methods 
 

3.1 Summary of methods 

 

Figure 5: Summary of methods used in this research for every single dataset 

Four different models (Cox regression, RSF-MICE, RSF-regular and ANN-DeepSurv) were 

constructed and compared regarding their c-indexes to assess the best fit. Missing data points 

were imputed using MICE before applying Cox regression, RSF-MICE and ANN-DeepSurv, 

while RSF-regular made use of its own imputation method. An overview is given in Figure 5. 

All models were trained and tested on two datasets: the complete dataset and the osteopenia 

subset. Detailed information regarding used methods are given in the next sections. 

 

3.2 Study design 
This retrospective cohort study was performed in the Ziekenhuisgroep Twente (ZGT), location 

Almelo. It is a non-WMO subject study as it comprises a retrospective data analysis study. The 

local ethics review committee of the ZGT gave their approval for this study (appendix A). All 

consecutive patients that sustained a (minor) fracture and visited the osteoporosis screening 

clinic of the ZGT between July 2011 and November 2019 were included in this research. An 

exclusion criterion was age < 50 as the Dutch guideline ‘Osteoporosis and fracture prevention’ 

recommends screening for patients of 50 years and older [12]. The primary endpoint of the 

study was the time till the occurrence of a MOF, defined in line with Briot et al. (2013) as 

humerus-, wrist-, spine- or hip fracture [3].  
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3.3 Data extraction 
Data were extracted from the electronic health record using Structured Query Language (SQL) 

queries and were anonymised for analysis. Quality control was performed manually after every 

extraction for a random sample of 25 patients to ensure accuracy of the data. 

 

Time till the occurrence of a MOF was extracted using diagnosis treatment combinations 

(DBCs in Dutch) as defined and labelled by the Dutch healthcare authority [50]. DBCs are 

healthcare products used for financial administration and therefore are a solid source of regis-

tration. The starting date for all patients was their visit to the osteoporosis screening clinic. For 

patients with a DBC regarding MOF following their visit to the osteoporosis screening clinic, 

the registration date of the DBC was used to calculate the total time till the occurrence of a 

MOF. Patients with no DBC of a MOF were considered censored. Either the date of death or, 

when alive, the date of the end of the study (15-11-2019) was used to calculate the follow-up 

time of censored patients. 

 

DBCs and completed forms from the osteoporosis screening clinic were used to determine rel-

evant comorbidities. History of a comorbidity and presence of a current comorbidity could not 

be distinguished as DBCs only return information on the start of the diagnosis and therefore 

were combined into one single variable.  Both clinical parameters and parameters regarding 

lifestyle were extracted using osteoporosis screening clinic forms. Biochemical parameters 

were extracted using a time window of 6 months prior to the visit at the osteoporosis screening 

clinic until 1-week post visit. 

 

3.3.1 Predictors 
A literature study was performed to define risk factors for the occurrence of MOF. Databases 

consulted included Cochrane Central, Embase, MEDLINE, Pubmed, Scopus and Google 

Scholar. Search terms used were ‘major osteoporotic fracture’, ‘osteoporosis’, ‘subsequent frac-

ture’ and ‘risk factors’, amongst others. Abstracts of reviews, systematic reviews and meta-

analysis were read to assess the relevance of the article; all relevant articles were read to deter-

mine possible risk factors. The final set of predictors was selected based on expert opinion and 

retrospective availability. 

 

Demographic study parameters included age and gender of the subject. Relevant comorbidities 

selected were use of corticosteroids, diabetes mellitus, cardiovascular diseases, inflammatory 
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bowel disease, cerebral vascular accident, epilepsy, systemic auto-immune disease, rheumatoid 

arthritis, malabsorption disorder, renal insufficiency, collapse, delirium or dementia and ver-

tigo. A history of fall(s), ever being bedridden and a positive family history of a first-degree 

relative with either hip fracture or osteoporosis were considered for all patients. Number of 

children, use of combined oral contraceptive pill (COCP), breastfeeding to infants and duration 

of menopause were collected for all female patients. Clinical parameters collected included 

presence of vertebral fracture, reporting back pain, weight <67 kg, weight <60 kg, diminished 

length in recent years, length (cm), weight (kg) and moderate active hours per week. Radio-

graphic variables collected were T-scores of the hip and lumbar spine. Parameters regarding 

lifestyle included dietary daily calcium intake (milligram), >6 cups of coffee per day, frequent 

exposure to sunlight, diet includes fat fish (≥twice a week), vegetarian diet, use of vitamin sup-

plements, and daily use of margarine. Biochemical parameters included erythrocyte sedimen-

tation rate (ESR), plasma calcium, plasma albumin, plasma thyroid stimulating hormone (TSH), 

serum vitamin D3 and estimated glomerular filtration rate (eGFR1). 

 

3.3.2 Data preparation 
Variables which only apply to a subset of the patients were treated using two-part variables as 

described by Dziak and Henry (2017) [51]. A two-part variable is a method describing a varia-

ble as a pair of interrelated covariates. The first part is a dummy variable indicating if a covariate 

is relevant or not, while the second part gives the actual value if applicable. For all patients to 

which the variable does not apply, the actual value is set to zero [51].This two-part method was 

used for the variables number of children, use COCP, breastfeeding to infants and duration of 

menopause as these were only relevant for female patients. Besides, it was used for the eGFR 

as this variable contained both data points defined as ‘>90’ and numeric data points. Therefore, 

the eGFR was dichotomised in <90 mL/min/1.73m2 and ≥90 mL/min/1.73m2 as a dummy var-

iable, describing a normal kidney function and renal insufficiency respectively. Interactions 

terms were created and included in the database by taking the product of two variables. Prior to 

creating the interaction term, continuous variables were first mean centred. Interaction terms 

with the variable age were created for gender, moderate active hours per week and T-scores of 

the hip and lumbar spine. For gender, interaction terms were created with the variables moder-

ate active hours per week and the T-scores of the hip and lumbar spine. Outliers were identified 

using boxplots and were removed from the dataset.  

 
1 Determined with the CKD-EPI formula 
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3.3.3 Datasets 
Two separate datasets were created for analysis in this study. The first dataset comprised all 

included patients as described earlier and will from now on be referred to as ‘complete dataset’. 

As patients with a T-score < -2.5 or a vertebral fracture are already treated with bisphospho-

nates, patients of interest for targeting preventive measures are those with osteopenia. There-

fore, the second dataset used was a subset of the first dataset, containing only patients with 

osteopenia in the absence of a vertebral fracture. This dataset will be referred to as the ‘osteo-

penia subset’. All statistical procedures were performed for both datasets separately. 

 

3.3.4 Imputation of missing data 
The complete dataset had 2271 (30%) incomplete cases, while in the osteopenia subset 590 

(33%) cases were incomplete. Data was imputed using the MICE package in R. In line with the 

advice of White and Royston (2009) [52], the Nelson-Aalen estimator of the cumulative base-

line hazard and the event indicator were included in the imputation model. The predictor matrix 

for imputation was defined using the Quickpred function in the MICE package. The estimated 

hazard, the event indicator, gender and age were included as predictors for every variable, while 

time till event was excluded. The minimum threshold of absolute correlation (Pearson) was set 

to 0.1 and the minimum threshold for the proportion of usable cases to 0.5. This resulted in a 

mean of 30 predictors per variable in the complete dataset and a mean of 29 predictors per 

variable in the osteopenia subset, which is in line with the advice of Van Buuren and Groothuis-

Oudshoorn (2011) to include at least 15 to 25 predictors [25]. The ratio between the original 

terms and the interactions terms was maintained by passive imputation using the ‘meth’ defini-

tions in MICE. Numeric variables were imputed by predictive mean matching, while factor 

variables with two levels were imputed by logistic regression. As 30% (n=2271) of the cases 

were incomplete, the number of imputations used was set to 30. Fifty iterations were used, 

convergence was checked by plotting the mean of the synthetic data against the iteration num-

ber. The imputed data was checked using density plots to assess the model fit and possible 

distributional discrepancies. Furthermore, a stacked dataset of weighted observations was cre-

ated to perform various statistical tests, as the pool function in MICE is not compatible with a 

couple of other functions. The stacked dataset was created by merging all 30 datasets with a 

weight of 1/30 for each patient in line with Steyerberg (2019) [20]. 
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3.4 Statistics and used software 
Descriptive statistics are provided for both cohorts and were compared using the chi-square test 

for nominal variables and Mann-Whitney U test for continuous variables. P-values <0.05 are 

considered statistically significant. Software used for data preparation and analysis in this re-

search were R (R Core Team 2019) and PyCharm (Jetbrains 2019) [53,54]. 

 

3.4.1 Cox Proportional hazard regression model 
The Cox proportional hazard regression model was constructed using the coxph function from 

the survival package in R. The assumption of proportional hazard was checked using the 

Schoenfeld’s residual correlation test. The linearity assumption was tested using the likelihood 

ratio test and graphically checked by an effect plot of the log hazard ratio. Several transfor-

mations of continuous variables were considered and compared using the χ2-statistic of the uni-

variate Wald test. We considered the following transformations for variables x: log(x), log(x)2, 

x2, √𝑥, and restricted cubic splines of x with 3 or 4 degrees of freedom. Variables for the final 

model were selected using LASSO. In line with Steyerberg (2011), the penalty factor λ (or λ + 

1 standard error) was determined in each imputed dataset using 10-fold cross validation and 

subsequently averaged. This penalty factor was applied to the stacked dataset to select the co-

variates for the final model. The final model was run for every imputed dataset, results were 

pooled using the pool function of MICE. The coefficients of the variables transformed by a 

restricted cubic spline were calculated as demonstrated by Shepherd and Rebeiro (2018) using 

the stacked dataset [55]. 

 

3.4.2 Random Survival Forest 
Two RSF models were constructed in R. The first model was trained and validated on every 

single dataset created by the MICE algorithm, from now on referred to as RSF-MICE. The 

second model used the imputation data algorithm of the rsfrc function designed by Ishwaran et 

al. (2008) and will be referred to as RSF-regular. As both datasets were imbalanced, bs.gradient 

was used as a split rule. Variable importance was determined for both datasets. Due to incom-

patibility problems with the pool function of MICE, a single imputed dataset was used to de-

termine variable importance for RSF-MICE. 

 

3.4.3 Artificial neural network: DeepSurv 
We used the pysurvival library to construct the DeepSurv model (ANN-DeepSurv) using py-

thon. As DeepSurv is not able to handle missing data itself, imputation of missing data is re-

quired. However, Python has not as many options as R for imputation of missing data. Recently, 
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Kearney and Barkat (2019) started filling in this gap by designing a python package for multiple 

imputation called autoimpute. This package is currently compatible with linear regression and 

binary logistic regression but is not able to handle survival data nor ANNs [56]. For pragmatic 

reasons, we use the 30 completed datasets imputed by the MICE algorithm for the analysis 

using DeepSurv. Data was normalized prior to model development.  Hyper-parameters of Deep-

Surv were optimized using grid search with 10-fold cross-validation on a single imputed da-

taset. Constraints for the hyper-parameters were set manually, weighing both computational 

time and model performance. The optimization algorithm used was the Adaptive Moment Es-

timation (Adam), while l2-regularization was set to default (1e-4). The constraints used can be 

found in Table 1. Hyper-parameters of the model with the largest c-index were selected for final 

evaluation. 

Table 1: An overview of the hyper-parameters of ANN-DeepSurv with corresponding constraints used for grid search. 

Hyper-parameter Constraints used for grid search (start/stop/step) 

Learning rate 0.0001/0.01/0.001 

Dropout 0.0/0.5/0.1 

Number of nodes per layer 20/50/5 

Number of layers 1/2/1  

Activation function 1 layer: RELU or SELU 

2 layers: RELU/RELU, RELU/SELU, SELU/RELU, SELU/SELU 

Abbreviations: RELU = Rectified Linear Unit, SELU = Scaled Exponential Linear Unit 

 

3.4.4 C-index, cross-validation and pooling 
In this research, the c-index and its confidence interval were determined in R for the Cox re-

gression model and the RSF models using 10-fold cross validation by the cindex function of 

the pec package. As this function is not compatible with the pool function of MICE, this pro-

cedure was performed for every individual dataset and eventually averaged for the Cox regres-

sion and RSF-MICE model. Averaging the results was performed with respect to Rubin’s rules 

using the pool.scalar function in R. For the ANN-DeepSurv, 10-fold cross validation was used 

for model evaluation in every imputed dataset in Python using the concordance_index function 

of the pysurvival library and the Kfold function of scikit-learn library. The c-index and its con-

fidence interval were determined by averaging these results, again by using the pool.scalar 

function in R. The mean c-indexes were compared using an unpaired two-sample T-test (two-

sided). 
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4 Results 
 

In this study, 7578 patients were included, 5014 (74%) were female. In total, 805 (11%) patients 

sustained a subsequent MOF, while 6773 (89%) did not. Median time till event was 114 weeks 

(Interquartile range (IQR) = 224), while the median censored time was 192 weeks (IQR = 153). 

Median age for all patients was 68 (IQR = 17), and 74 (IQR = 15) and 67 (IQR = 16) for patients 

who sustained a subsequent MOF and censored patients, respectively. The osteopenia subset, a 

subset of the complete dataset, consisted of 1770 patients of which 1367 (77%) were female. 

In this subset, 165 (9%) patients sustained a subsequent MOF, while 1605 (91%) did not. Me-

dian time till event was 118 weeks (IQR = 147), while the median censored time was 159 (IQR 

= 217). Median age for all patients in the osteopenia subset was 67 (IQR = 17), and 72 (IQR = 

15) and 67 (IQR=16) for patients who sustained a subsequent MOF and censored patients, re-

spectively. 

 

Overall, 2271 (30%) cases were lacking information, while for the osteopenia subset 590 (33%) 

cases were incomplete. The percentage of missing values across all variables varied between 

0% and 23%. The primary endpoints, occurrence of a MOF and time till the occurrence of a 

MOF, were complete in both datasets. Percentages of missing data of each variable are given 

in Table 2. Density plots showed well matched distributions for the imputed and observed data 

for almost all variables in both datasets. Only the variables number of children and duration of 

menopause revealed a altered distribution for imputed and observed data at 0, as those variables 

were set to 0 for men. Density plots for all imputed continuous variables are attached in appen-

dix B. 

  

In the complete dataset, a significant correlation with MOF in univariate analysis was found in 

various covariates: age, gender, prior fall(s), current vertebral fracture, reporting back pain, 

number of children, use of COCP, breastfeeding to infant, duration of menopause, a history or 

presence of cardiovascular disease, epilepsy, rheumatoid arthritis, delirium or dementia, weight 

<67 kg and weight <60kg, change in length in recent years, moderate active hours per week, 

>6 cups of coffee per day, frequent exposure to sunlight, diet includes fat fish, ESR, plasma 

calcium, plasma albumin, serum vitamin D, eGFR, T-score of the lumbar spine and hip, weight 

and length. For the osteopenia subset, the variables age, prior fall(s), duration of menopause 

and change in length in recent years were significantly correlated with MOF. Descriptive sta-

tistics of both datasets stratified by MOF are shown in Table 2.  
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Table 2: Descriptive statistics for both the complete dataset (left) and the osteopenia dataset (right). 

  
Missing No MOF (n=6773) MOF (n=805) p-value Missing No MOF (n=1605) MOF (n=165) p-value 

>6 cups of coffee per day 5.2% 732 (11.4) 58 (7.7) 0.002 3.5% 166 (10.7) 15 (9.6) 0.757 

Age (years) 0.0% 67 [60, 76] 74 [66, 81] <0.001 0.0% 67 [59, 75] 72 [65, 80] <0.001 

Breastfeeding to infants 7.5% 2725 (43.4) 395 (53.4) <0.001 6.8% 688 (46.0) 74 (48.1) 0.692 

Cardiovascular disease 0.0% 2560 (37.8) 347 (43.1) 0.004 0.0% 590 (36.8) 74 (44.8) 0.05 

Cerebral vascular accident 0.0% 733 (10.8) 106 (13.2) 0.052 0.0% 165 (10.3) 17 (10.3) 1.000 

Daily use of margarine 3.8% 5979 (91.7) 709 (92.4) 0.511 3.2% 1416 (91.0) 142 (89.9) 0.745 

Decreased renal function 1.7% 4741 (71.2) 567 (71.8) 0.772 1.1% 1128 (71.1) 116 (71.2) 1.000 

Delirium or dementia 0.0% 202 (3.0) 46 (5.7) <0.001 0.0% 45 (2.8) 12 (7.3) 0.004 

Diabetes Mellitus 0.0% 837 (12.4) 119 (14.8) 0.057 0.0% 167 (10.4) 24 (14.5) 0.133 

Diet includes fat fish 6.8% 2376 (37.6) 248 (33.5) 0.031 5.8% 568 (37.5) 62 (40.8) 0.473 

Dietary daily calcium intake (milligram) 0.5% 865 [625, 1015] 845 [655, 1015] 0.804 0.2% 845 [625, 985] 810 [630, 970] 0.664 

Diminished length in recent years 8.6% 3498 (56.5) 526 (71.0) <0.001 7.4% 782 (52.6) 107 (70.4) <0.001 

Duration of menopause (years) 11.8% 13 [0, 24] 21 [9, 30] <0.001 11.1% 13 [0, 24] 19 [4, 29] 0.001 

eGFR (mL/min/1.73m2) 1.7% 79 [67, 90] 76 [63, 90] 0.001 1.1% 79 [68, 90] 77 [62, 90] 0.243 

Epilepsy 0.0% 122 (1.8) 37 (4.6) <0.001 0.0% 29 (1.8) 6 (3.6) 0.189 

Erythrocyte sedimentation rate (mm/h) 3.1% 9 [5, 18] 11 [5, 21] <0.001 2.1% 9 [5, 16] 8 [3, 15.50] 0.296 

Ever being bedridden 2.6% 618 (9.4) 83 (10.7) 0.249 1.8% 152 (9.7) 17 (10.4) 0.857 

Frequent exposure to sunlight 2.7% 5918 (89.7) 633 (82.2) <0.001 1.9% 1432 (90.9) 140 (87.0) 0.134 

Gender (female) 0.0% 5014 (74.0) 673 (83.6) <0.001 0.0% 1237 (77.1) 130 (78.8) 0.687 

History of collapse 0.0% 145 (2.1) 18 (2.2) 0.962 0.0% 40 (2.5) 5 (3.0) 0.874 

History of fall(s) 22.7% 1301 (24.8) 197 (32.2) <0.001 21.4% 293 (23.1) 40 (32.5) 0.026 

Inflammatory bowel disease 0.0% 79 (1.2) 7 (0.9) 0.565 0.0% 20 (1.2) 2 (1.2) 1.000 

Length (cm) 15.0% 168 [162, 174] 165 [160, 170.50] <0.001 16.7% 168 [162, 173] 166 [161, 171] 0.052 

Malabsorption disorder 0.0% 31 (0.5) 5 (0.6) 0.714 0.0% 12 (0.7) 1 (0.6) 1.000 

Moderate active hours per week 2.8% 21 [14, 40] 21 [14, 40] 0.009 2.0% 21 [14, 40] 21 [14, 40] 0.514 

Number of children 7.6% 2 [0, 3] 2 [1, 3] <0.001 7.5% 2 [0, 3] 2 [0, 3] 0.155 

Plasma albumin (g/l) 3.3% 38 [36, 40] 38 [35.50, 40] <0.001 2.2% 38 [36, 40] 38 [36, 40] 0.878 

Plasma calcium (mmol/l) 2.9% 2.38 [2.32, 2.45] 2.37 [2.31, 2.45] 0.017 2.1% 2.39 [2.33, 2.45] 2.39 [2.31, 2.46] 0.721 

Plasma TSH (mU/l) 2.5% 1.80 [1.20, 2.60] 1.80 [1.11, 2.70] 0.260 1.6% 1.80 [1.20, 2.60] 1.80 [1.10, 2.70] 0.938 

Positive family history 1.9% 1631 (24.6) 201 (25.3) 0.679 1.9% 429 (27.3) 39 (23.8) 0.384 

Presence of vertebral fracture 1.6% 1264 (19.0) 227 (28.5) <0.001 n/a n/a n/a n/a 

Renal insufficiency 0.0% 129 (1.9) 21 (2.6) 0.222 0.0% 32 (2.0) 4 (2.4) 0.934 

Reporting back pain 8.5% 2888 (46.5) 378 (51.9) 0.006 8.5% 526 (35.8) 57 (38.0) 0.657 

Rheumatoid arthritis 0.0% 249 (3.7) 42 (5.2) 0.040 0.0% 54 (3.4) 9 (5.5) 0.246 

Serum vitamin D3 (nmol/l) 9.7% 52 [36, 67] 47 [30, 65] <0.001 7.2% 53 [37, 68] 46 [32, 68] 0.082 

Systemic autoimmune disease 0.0% 268 (4.0) 26 (3.2) 0.361 0.0% 64 (4.0) 2 (1.2) 0.115 

T-score hip 3.8% -1.30 [-1.90, -0.60] -1.50 [-2.10, -0.90] <0.001 0.0% -1.60 [-1.90, -1.20] -1.70 [-2, -1.30] 0.019 

T-score lumbar spine 1.7% -1.50 [-2.30, -0.70] -1.70 [-2.50, -0.92] <0.001 0.0% -1.80 [-2.20, -1.40] -1.80 [-2.10, -1.50] 0.497 

Use of COCP 9.1% 2830 (45.8) 295 (41.6) 0.038 7.9% 736 (49.6) 63 (42.6) 0.121 

Use of corticosteroids 4.2% 415 (6.4) 55 (7.3) 0.364 3.8% 101 (6.5) 11 (6.9) 0.99 

Use of vitamin supplements 4.2% 2789 (42.9) 307 (40.8) 0.289 3.1% 713 (45.9) 62 (38.5) 0.089 

Vegetarian diet 5.2% 159 (2.5) 19 (2.5) 1.000 4.4% 46 (3.0) 3 (1.9) 0.592 

Vertigo 0.0% 125 (1.8) 14 (1.7) 0.941 0.0% 35 (2.2) 1 (0.6) 0.282 

Weight (kg) 13.8% 73.35 [65, 84] 70 [62, 80] <0.001 15.8% 70.60 [63, 80] 70.50 [64, 78] 0.758 

Weight <60 kg 2.5% 797 (12.1) 137 (17.7) <0.001 2.0% 205 (13.0) 18 (11.2) 0.586 

Weight <67 kg 2.7% 1845 (28.0) 273 (35.1) <0.001 2.1% 526 (33.5) 52 (31.9) 0.745 

Complete dataset Osteopenia subset 

Abbreviations: COCP = Combined Oral Contraceptive Pill, CI = Confidence Interval, eGFR = estimated Glomerular Filtration Rate, n/a = not applicable Categorical variables are described as number 
(percentage) while continuous variables are described as median [1st quartile – 3rd quartile]. 
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The overall survival rate with MOF as event at year 1, year 3 and year 5 were respectively 0.967 

(0.963-0.971), 0.914 (0.907-0.922), 0.866 (0.857-0.876) in the complete dataset. For the oste-

openia subset, this rate was determined as 0.974 (0.966-0.982) for year 1, 0.922 (0.908-0.937) 

for year 3 and 0.865 (0.844-0.887) for year 5. The survival rates over time are shown in Figure 

6, stratified by the median of age. 

 

Figure 6: Survival rates of the complete dataset (a) and osteopenia subset (b), stratified by the median of age with a 95% 

confidence interval  
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4.1 Cox regression 
Continuous covariates age, plasma albumin and the T-scores for both lumbar spine and hip 

appeared linear with the log hazard and therefore met the linearity assumption of Cox propor-

tional hazard regression. Other variables needed transformation to meet this assumption. The 

variables number of children and moderate active hours per week needed square root transfor-

mation, while ESR needed to be log squared. Duration of menopause, dietary daily calcium 

intake, plasma TSH and serum vitamin D were best fitted using restricted cubic splines with 3 

degrees of freedom. Plasma calcium needed transformation using restricted cubic splines with 

4 degrees of freedom. Cox proportional hazard assumptions were met (global chi-square of 53.3 

(p-value 0.777) for the complete dataset and global chi-square of 59.9 (p-value 0.516) for the 

osteopenia subset). The penalty factor λ of LASSO was determined to be log(-4.14) and log(-

4.41) for the complete dataset and osteopenia subset, respectively. This is shown in Figure 7. 

The minimum of λ was used in the osteopenia subset, instead of minimum λ plus 1 standard 

error, as the latter resulted in only one variable to be selected for final modelling. The c-index 

for the model selected with the minimum of λ, did not differ significantly from the model se-

lected with minimum λ plus 1 standard error.   

 

Figure 7: Illustration of the mean of the 10-fold Cross validation for the LASSO models in the complete dataset (left) and 

osteopenia subset (right), with the partial likelihood deviance on the y-axis and the natural logarithm of λ on the x-axis. The 

number above the graph describe the number of selected variables for logarithm of λ. The first dotted vertical line represents 

the minimum of λ, while the second dotted vertical line represents the minimum of lambda plus 1 standard error. 

 

Age, prior fall(s), current vertebral fracture, history of epilepsy and duration of menopause were 

all independently associated with occurrence of MOF in the complete dataset. Hazard ratio of 

these variables ranged from 1.010 to 2.159. Moreover, interaction of age and T-score of the hip 

was also independently associated with this primary outcome measure with a hazard ratio of 

1.010 (1.003 – 1.017). The variables frequent exposure to sunlight and T-score of the hip 

showed a reduction of risk for MOF, with a hazard ratio of 0.731 (0.602-0.888) and 0.386 

(0.233-0.639), respectively.  Duration of menopause was compared to the reference category 

of 10 years of menopause. Both 0 and 50 years of menopause showed a reduction of risk for 

Complete dataset Osteopenia subset 
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MOF (hazard ratio of 0.875 (0.836-0.917) and 0.853 (0.779-0.994), respectively). Results of 

the Cox regression in the complete dataset are shown in Table 3.   

Table 3: Results of Cox proportional hazard regression of the complete dataset 

Variable  Hazard Ratio (CI) p-value 

Age  1.052 (1.035-1.069) <0.001 

Gender (female) 1.329 (0.751-2.353) 0.329 

History of fall(s) 1.357 (1.128-1.631) 0.001 

Presence of vertebral fracture 1.425 (1.215-1.671) <0.001 

Epilepsy 2.159 (1.545-3.018) <0.001 

Frequent exposure to sunlight 0.731 (0.602-0.888) 0.002 

T-score hip 0.386 (0.233-0.639) <0.001 

Duration of menopause (years) <0.001 

  0 0.875 (0.836-0.917)  

 10* 1.000   

 20 1.075 (1.040-1.110)  

 30 1.034 (0.986-1.083)  

 40 0.941 (0.881-1.004)  

 50 0.853 (0.779-0.994)  
Interaction of age and T-score hip 1.010 (1.003-1.017) 0.004 

* used as reference category 

For patients in the osteopenia subset, prior fall(s), change in length in recent years, fat fish diet 

and renal insufficiency were significantly correlated with occurrence of MOF. The eGFR was 

compared to the reference category of 70 mL/min/1.73m2. The hazard ratio increased for di-

minishing renal function. Results of the Cox regression of the osteopenia subset are shown in 

Table 4. 

Table 4: Results of Cox proportional hazard regression of the osteopenia subset 

Variable  Hazard Ratio (CI) p-value 

Age  1.025 (0.963-1.092) 0.430 

Gender (female) 0.907 (0.615-1.337) 0.620 

History of fall(s) 1.577 (1.060-2.347) 0.025 

Cardiovascular disease  1.233 (0.885-1.718) 0.216 

Delirium or dementia  1.544 (0.823-2.895) 0.176 

Diminished length in recent years  1.558 (1.073-2.262) 0.020 

Moderate active hours per week 0.997 (0.986-1.008) 0.619 

Diet includes fat fish 1.495 (1.069-2.090) 0.019 

Renal insufficiency 3.218 (1.496-6.293) 0.003 

eGFR (mL/min/1.73m2)   <0.001 

 70* 1.000  
 50 1.343 (1.270-1.421)  

 30 2.095 (1.843-2.382)  

 10 3.268 (2.672-3.997)  
T-score hip 0.828 (0.059-11.56) 0.889 

Interaction of age and T-score hip 0.999 (0.964-1.035) 0.943 
* used as reference category 
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The Cox regression model returned a 10-fold cross validated c-index of 0.697 (0.664 – 0.730) 

for the total database and 0.625 (0.562 – 0.689) for the osteopenia subset.  

 

4.2 RSF – MICE  
As the total number of covariates is 46 and 45 for the different datasets, the RSF algorithm used 

seven variables as split candidates at every split. Cross validation (10-fold) returned a c-index 

of 0.688 (0.652-0.723) and 0.594 (0.536-0.651) for the complete dataset and osteopenia subset 

respectively. Age (0.022), T-score of the hip (0.014) and duration of the menopause (0.013) 

showed highest variable importance in the complete dataset. In the osteopenia dataset, age 

(0.020), duration of menopause (0.007) and the comorbidity delirium or dementia returned 

(0.006) the highest variable importance. The fifteen variables with largest variable importance 

are plotted in Figure 8 for both datasets.  

 

4.3 RSF – regular 
Like RSF-MICE, RSF-regular used seven variables as split candidates at every split. A c-index 

of 0.687 (0.679-0.695) for the complete dataset and 0.593 (0.577 – 0.608) for the osteopenia 

subset was determined with 10-fold cross-validation. Most important variables in the complete 

dataset were age (0.024), T-score of the hip (0.013) and current vertebral fracture (0.007). Age 

(0.019), cardiovascular disease (0.008) and eGFR (0.005) showed highest variable importance 

in the osteopenia subset. Again, the fifteen variables with largest variable importance are plotted 

in Figure 8 for both datasets.  
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Figure 8: Variable importance of the fifteen variables with highest variable importance for every RSF model 

 

4.4 ANN-DeepSurv 
Optimal hyper-parameters as determined by grid search are shown in Table 5 for both datasets. 

As the ANN-DeepSurv model showed large variance, 10 final models were constructed per 

dataset and subsequently averaged. A c-index of 0.670 (0.592 – 0.747) for the complete dataset 

and 0.588 (0.506 – 0.671) for the osteopenia subset were determined using 10-fold cross-vali-

dation. 

 

Table 5: Optimal hyper-parameter values in each dataset as determined using grid search 

Hyper-parameter Complete dataset Osteopenia subset  

Learning rate 0.0001 0.0001 

Dropout 0.2 0.2 

Number of nodes per layer 20 / 25 25 

Number of layers 2 1 

Activation function RELU / SELU RELU 

Abbreviations: RELU = Rectified Linear Unit, SELU = Scaled Exponential Linear Unit 
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4.5 Model comparison 
In the complete dataset, no significant difference was found between discriminative ability of 

the models. In the osteopenia subset, the Cox regression model significantly outperformed the 

RSF-MICE model (p=0.036), the RSF-regular model (p=0.026) and the ANN-DeepSurv model 

(p=0.042) on discriminative ability. Comparison of the c-indexes of the four models are given 

in Figure 9 for each dataset. 

 

 

Figure 9: Boxplot of the c-index of the predictive models: Cox regression, RSF-MICE, RSF-regular and ANN-DeepSurv. 

Corresponding p-value of the unpaired two-sample T-test for every individual comparison is shown. Sign * indicates statisti-

cal significance (p<0.05). 
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4.6 Major Osteoporotic Fracture Risk Calculator 
In the osteopenia subset, Cox regression model was used to develop a risk calculator, giving 

the 3- and 5-year risk of a MOF as an output. An example of this risk calculator is shown in 

figure 10. 

 

 

Figure 10: Major Osteoporotic Fracture Risk Calculator 
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5 Discussion 
This retrospective pilot study is, to the best of our knowledge, the first study to compare both 

traditional and non-traditional models capable of predicting the risk of sustaining a subsequent 

MOF in patients who already sustained a (minor) fracture. We developed four models that ad-

equately predict the risk of MOF as a function of time in these patients and determined the 

predictive ability of Cox regression model, RSF models and ANN-DeepSurv model for patients 

at the Fracture and Osteoporosis Outpatient Clinic to be comparable. The discriminative ability 

of all models in the osteopenia subset is found to be lower compared to the total dataset, with 

the Cox regression model outperforming the RSF and ANN-DeepSurv models in osteopenia 

dataset. Finally, we designed a MOF risk calculator for patients with osteopenia at an Osteopo-

rosis and Fracture Outpatient clinic.  

 

Both ANN-DeepSurv (c-index 0.670, CI: 0.592 – 0.747) and RSF (c-index 0.687, CI: 0.679-

0.695 / c-index: 0.688, CI: 0.652-0.723) did not outperform Cox regression (c-index: 0.697, CI: 

0.664 – 0.730) in this research and returned significantly lower c-indexes in the osteopenia 

subset. This contrasts to the original DeepSurv study of Katzman et al (2018), which showed a 

higher c-index on real life datasets for both RSF and DeepSurv [42]. Likewise, Kim et al. (2019) 

showed that RSF and DeepSurv outperformed Cox regression in survival prediction of oral 

cancer patients [57]. A possible explanation for this contrary finding might be the number of 

variables used in this research. We used 46 and 45 variables for the complete dataset and oste-

openia subset respectively, while these studies used 5 to 14 variables. Besides, our dataset was 

more imbalanced compared to the datasets of these studies. Furthermore, we used models in 

the context of fracture prediction, while Katzman et al. (2018) predicted survival in the fields 

of cardiology and oncology. These factors might have resulted in lower discriminative ability 

of these models. Another explanation might be the differences in development of the Cox re-

gression model. In this study, we used both LASSO and restricted cubic splines to optimize the 

bias-variance trade-off in the Cox regression model and met its assumption of linearity. 

Katzman et al. (2018) and Kim et al. (2019) did not specify if they optimized the Cox regression 

model, nor if they transformed variables to meet the linearity assumptions [42,57]. Therefore, 

the Cox regression models in their studies may not perform optimally. Besides, both studies 

only used single cross-validation to evaluate the model performance. Another remarkable find-

ing in this research was the broad confidence interval of the c-index for the ANN-DeepSurv 

model compared to the other models. Again, the number of variables and the class-imbalance 

may play an important part, as Mazurowski et al (2007) showed that class-imbalance severely 
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increases variability of performance in neural networks [58]. Cox regression outperforming the 

other models in the osteopenia subset may be caused by the lower sample size in this dataset 

compared to the complete dataset. 

 

Literature comparing machine learning principles with traditional statistics for prediction of 

MOF is scarce. Forgetta (2018) and Nissinen (2019) both used machine learning models to 

predict osteoporotic fractures, but limited themselves to use of genotypes and DXA imaging 

respectively [57,58]. Kruse (2017) and Tseng (2013) used multiple sources of information, but 

focused solely on hip fracture. However, they both concluded that machine learning techniques 

can outperform traditional statistics in hip fracture prediction [16,61]. Standard logistic regres-

sion analysis, although not able to handle censored data, is more often used to assess risk of 

MOF. Briot et al. (2013) analysed the predictive ability of the FRAX® tool for MOF over 6 

years in postmenopausal women [3], while Ensrud et al. (2009) compared the FRAX®-tool to 

the use of BMD and age alone for 10-years of follow-up [62]. The incidence rate of 10.6% of 

MOF in our study was relatively high compared to the 4.9% of Briot et al. (2013), most likely 

due to the selection of our population at the Fracture and Osteoporosis Outpatient Clinic. All 

patients sustained a recent fracture and are therefore known to be at risk of a new fracture [63]. 

Ensrud et al. (2009) reported an even higher incidence of 16.6%, but considered a longer follow-

up period. Briot et al (2013) returned a model with a c-index of 0.69 (0.63-0.75), while Ensrud 

et al (2009) report a likewise c-index of 0.69 (0.67-0.70). These results are comparable to our 

findings, with a maximum c-index of 0.70 (0.66 – 0.73) [3]. Reber et al (2018) used survival 

analysis by the means of a Cox proportional hazard regression model to develop a fracture risk 

assessment tool based on claims data. They report a low MOF incidence (2.6%), probably due 

to their short follow-up period of 2 years. They determined a c-statistic of 0.70 (0.69-0.71), but 

also noted a decrease in c-statistic for 5 year follow-up [64]. Again, this is comparable to our 

results. 

 

Moreover, we identified multiple risk factors of MOF for patients at the Fracture and Osteopo-

rosis Outpatient Clinic, which may be useful in predictive modelling. Epilepsy, history of 

fall(s), presence of vertebral fracture and duration of menopause were determined to be inde-

pendent risk factors for MOF, but are currently not used in the FRAX®-tool [65]. Frequent 

exposure to sunlight was determined as a protective factor in this study. For patients with oste-

openia, history of fall(s), diminished length in recent years, dietary use of fat fish and decrease 

in renal function were all significantly associated with the risk of MOF. Additionally, 
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cardiovascular comorbidity was determined as a contributing factor by the RSF model for os-

teopenia patients. Again, the FRAX®-tool does not take any of these factors into account. 

 

Most risk factors for MOF as identified in this study, such as history of fall(s) or presence of 

vertebral fracture, are well-known risk factors for future fracture [3,66,67,68]. An explanation 

for the increased hazard ratio of patients with epilepsy is given by Zhao et al (2015). They stated 

that these patients are at risk mostly due to (myoclonic) seizures [69]. Dietary use of fat fish as 

a risk factor for subsequent fracture, however, is not in line with current literature. Perna et al. 

(2017) performed a systematic review and concluded that a fish dietary pattern has no negative 

effect on bone quality [70]. Especially omega-3 fatty acids, which are high in fat fish, are known 

to have a protective effect on bone health and lower the risk of hip fracture in general population 

[71]. The negative effect of dietary use of fat fish in this study may be caused by specific advice 

given in our institute to patients with fractures, a diminished T-score or a lower serum vitamin 

D. We advise them to include fat fish in their diet to increase vitamin D level. This effect may 

therefore mimic a lower bone quality, as these patients may have received this advice in the 

years prior to inclusion in this study. However, this could not be verified as no data regarding 

this issue was available. The current vitamin D level of patients with dietary use of fat fish was 

significantly higher (54.4 vs. 51.6, p=0.02), while their T-score of the hip (-1.59 vs. -1.61, 

p=0.31) and lumbar spine (-1.76 vs. -1.77, p=0.65) did not differ. Therefore, the exact cause 

remains unknown.  

 

At a Fracture and Osteoporosis Outpatient Clinic, risk identification for patients with osteopenia 

in absence of vertebral fracture is most relevant, as these patients are not standardly treated with 

bisphosphonates. To the best of our knowledge, this is the first study to develop and compare 

several models capable of predicting the risk of a subsequent MOF for this specific group. The 

discriminative ability of our models in this population was lower compared to the total popula-

tion at the Fracture and Osteoporosis Outpatient Clinic. Less distinctive patient characteristics 

could explain this finding, as patients were pre-selected on their T-scores and absence of verte-

bral fracture. Both variables were important for the predictive models of the complete dataset, 

as reflected by their hazard ratio and variable importance. This study is a first step in the devel-

opment of models predicting the risk of a subsequent MOF for patients with osteopenia. We 

translated the best performing model to a user-friendly calculator for 3- and 5-year risk of a 

MOF. If further refined and both prospectively and externally confirmed, this risk calculator 
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might aid in the identification of patients at risk of subsequent fracture in this population and 

therefore help targeting treatment to patients at highest need. 

 

This study includes several limitations, which should be acknowledged. At first, several im-

portant variables were not available due to the retrospective design of the studies. For example, 

intoxications including smoking and alcohol use were not uniformly extractable from the elec-

tronic health record and could therefore not be considered. When clearly registered, several 

important variables might be added in future research and may increase the discriminative abil-

ity of the models. We recommend adding dose and frequency of glucocorticoids use, number 

of falls, smoking, use of alcohol, Charlson comorbidity index and living situation in future 

studies. Besides, the treatment decision for every patient was not clearly recorded. We therefore 

assumed that, in line with the protocol in our hospital, all patients with a T-score < - 2.5 or a 

vertebral fracture were treated with bisphosphonates while all others were not. Individual cir-

cumstances may however have led to different treatment decisions in the osteopenia subset and 

thereby trouble our results. Future research with a clear registration of the initiated therapy is 

needed to confirm and improve our results. Natural language processing may be a future solu-

tion to determine treatment choice retrospectively. Secondly, we experienced serious technical 

constraints of different software and packages in combination with survival data. Variable se-

lection using LASSO, the interpretation of the effects of the restricted cubic splines and hyper-

parameter optimization were therefore performed using a stacked dataset or a single imputed 

dataset. Especially the ANN-DeepSurv model may have suffered from this constraint, as the 

hyperparameter search was performed on a single dataset. Besides, we were technically not able 

to include nested-cross validation in both variable selection and hyper-parameter optimization. 

This might have led to leakage of test-data, as explained in the theoretical background. This 

could possibly result in too optimistic results for the models. Technical development of func-

tions for survival data is required to be able to deal with these problems properly in future 

research. Lastly, using financial information of DBCs of our hospital has some drawbacks. Alt-

hough most patients are loyal to our hospital, patients on the border of our catchment area might 

have been treated for a MOF in a nearby hospital and therefore incorrectly been labelled as 

event-free. The occurrence of MOF might therefore be underestimated in our study. DBCs also 

do not distinguish between a history of a comorbidity and presence of a comorbidity. Besides, 

using DBCs may result in a bias towards severe comorbidities, as patients with mild comorbid-

ities are treated by the general practitioner (GP). GPs in the Netherlands do not make use of 

DBCs. Hence, mild comorbidities were not registered. Financial data on the other hand is 
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verified by several institutions and might be more reliable than questionnaires, as the latter 

depends on patients’ memory in an aging population. We suggest that results of the comorbid-

ities are interpreted with caution and acknowledge the need of verification in future research. 

 

In conclusion, this pilot study is the first study to compare both traditional and non-traditional 

models capable of predicting the risk of sustaining a subsequent MOF in patients that already 

sustained a (minor) fracture. Besides, we are the first in this field of research to combine both 

clinical and financial data for predictive modelling. We show adequate and comparable dis-

criminative performance of a Cox regression model, RSF models and ANN-DeepSurv model 

in the population of a Fracture and Osteoporosis Outpatient Clinic. In patients with osteopenia, 

Cox regression outperformed both RSF and ANN-DeepSurv and we developed a user-friendly 

tool for risk calculation of a subsequent MOF within 3- and 5-years. Further research, with a 

clear registration of important variables and initiated therapy, is recommended to refine and 

validate this risk calculator and confirm our results. Although we acknowledge several limita-

tions in our research, this study may be the starting point for models which identify patients 

with osteopenia at risk of subsequent fracture and therefore help targeting treatment to patients 

at highest need. 

  



- 35 - 
 

6 References 
 

[1] A. Odén, E. V. McCloskey, J. A. Kanis, N. C. Harvey, and H. Johansson, “Burden of high 

fracture probability worldwide: secular increases 2010–2040,” Osteoporos. Int., vol. 26, no. 9, 

pp. 2243–2248, 2015. 

[2] O. Johnell and J. A. Kanis, “An estimate of the worldwide prevalence and disability associated 

with osteoporotic fractures,” Osteoporos. Int., vol. 17, no. 12, pp. 1726–1733, Oct. 2006. 

[3] K. Briot et al., “FRAX®: Prediction of Major Osteoporotic Fractures in Women from the 

General Population: The OPUS Study,” PLoS One, vol. 8, no. 12, p. e83436, Dec. 2013. 

[4] M. Jürisson et al., “Quality of life, resource use, and costs related to hip fracture in Estonia,” 

Osteoporos. Int., vol. 27, no. 8, pp. 2555–2566, Aug. 2016. 

[5] M. J. Goldacre, S. E. Roberts, and D. Yeates, “Mortality after admission to hospital with 

fractured neck of femur: database study.,” BMJ, vol. 325, no. 7369, pp. 868–9, Oct. 2002. 

[6] E. Hernlund et al., “Osteoporosis in the European Union: medical management, epidemiology 

and economic burden,” Arch. Osteoporos., vol. 8, no. 1–2, p. 136, Dec. 2013. 

[7] A. Singer et al., “Burden of Illness for Osteoporotic Fractures Compared With Other Serious 

Diseases Among Postmenopausal Women in the United States,” Mayo Clin. Proc., vol. 90, no. 

1, pp. 53–62, Jan. 2015. 

[8] R. Bouillon, P. Burckhardt, and C. Christiansen, “Consensus development conference: 

prophylaxis and treatment of osteoporosis.,” Am. J. Med., vol. 90, no. 1, pp. 107–10, Jan. 1991. 

[9] World Health Organization., “Assessment of fracture risk and its application to screening for 

postmenopausal osteoporosis : report of a WHO study group [meeting held in Rome from 22 to 

25 June 1992].,” World Health Organization. 1994. 

[10] M. Schurink, J. H. Hegeman, H. G. Kreeftenberg, and H. J. Ten Duis, “Follow-up for 

osteoporosis in older patients three years after a fracture.,” Neth. J. Med., vol. 65, no. 2, pp. 71–

4, Feb. 2007. 

[11] A. H. Warriner, N. M. Patkar, H. Yun, and E. Delzell, “Minor, Major, Low-Trauma, and High-

Trauma Fractures: What Are the Subsequent Fracture Risks and How Do They Vary?,” Curr. 

Osteoporos. Rep., vol. 9, no. 3, pp. 122–128, Sep. 2011. 

[12] “CBO Richtlijn Osteoporose en Fractuurpreventie-2011.” [Online]. Available: 

https://www.volksgezondheidenzorg.info/bestanden/documenten/cbo-richtlijn-osteoporose-en-

fractuurpreventie-2011. [Accessed: 21-Oct-2019]. 

[13] M. Weda, M. E. Jansen, and R. A. A. Vonk, “Personalised medicine - Implementatie in de 

praktijk en data-infrastructuren,” 2017. 

[14] “Personalised medicine | European Commission.” [Online]. Available: 

https://ec.europa.eu/info/research-and-innovation/research-area/health-research-and-

innovation/personalised-medicine_en. [Accessed: 24-Dec-2019]. 

[15] G. El-Hajj Fuleihan, M. Chakhtoura, J. A. Cauley, and N. Chamoun, “Worldwide Fracture 

Prediction,” J. Clin. Densitom., vol. 20, no. 3, pp. 397–424, Jul. 2017. 

[16] W. J. Tseng, L. W. Hung, J. S. Shieh, M. F. Abbod, and J. Lin, “Hip fracture risk assessment: 

Artificial neural network outperforms conditional logistic regression in an age- and sex-

matched case control study,” BMC Musculoskelet. Disord., vol. 14, no. 1, p. 1, 2013. 

[17] T. P. Ho-Le, J. R. Center, J. A. Eisman, T. V Nguyen, and H. T. Nguyen, “Prediction of hip 

fracture in post-menopausal women using artificial neural network approach.,” Conf. Proc.  ... 

Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf., vol. 2017, 

pp. 4207–4210, 2017. 

[18] U. Ferizi, S. Honig, and G. Chang, “Artificial intelligence, osteoporosis and fragility fractures,” 

Curr. Opin. Rheumatol., vol. 31, no. 4, pp. 368–375, Jul. 2019. 

[19] H. Ishwaran, U. B. Kogalur, E. H. Blackstone, and M. S. Lauer, “Random survival forests,” 

Ann. Appl. Stat., vol. 2, no. 3, pp. 841–860, Sep. 2008. 

[20] E. W. Steyerberg, Clinical Prediction Models. Cham: Springer International Publishing, 2019. 

[21] S. Van Buuren, Flexible Imputation of Missing Data. Taylor & Francis Group, LLC, 2012. 

[22] D. B. Rubin, “Inference and Missing Data,” Biometrika, vol. 63, no. 3, p. 581, Dec. 1976. 

[23] D. B. Rubin, Multiple Imputation for Nonresponse in Surveys. 1987. 



- 36 - 
 

[24] S. Van Buuren and C. G. M. Groothuis-Oudshoorn, “Multivariate Imputation by Chained 

Equations: MICE V1.0 User’s manual,” TNO report PG/VGZ/00.038. pp. 1–39, 2000. 

[25] S. van Buuren and K. Groothuis-Oudshoorn, “mice : Multivariate Imputation by Chained 

Equations in R,” J. Stat. Softw., vol. 45, no. 3, pp. 1–67, 2011. 

[26] T. G. Clark, M. J. Bradburn, S. B. Love, and D. G. Altman, “Survival Analysis Part I: Basic 

concepts and first analyses,” Br. J. Cancer, vol. 89, no. 2, pp. 232–238, 2003. 

[27] A. Hazra and N. Gogtay, “Biostatistics series module 9: Survival Analysis,” Indian J. 

Dermatol., vol. 62, pp. 251–7, 2017. 

[28] D. R. Cox, “Regression Models and Life-Tables,” J. R. Stat. Soc. Ser. B, vol. 34, no. 2, pp. 

187–220, Mar. 1972. 

[29] D. W. Hosmer, S. Lemeshow, and S. May, Applied Survival Analysis. 2008. 

[30] D. Schoenfeld, “Partial Residuals for The Proportional Hazards Regression Model,” 

Biometrika, vol. 69, no. 1, p. 239, Apr. 1982. 

[31] L. Karlsson, “An Evaluation of Methods for Assessing the Functional Form of Covariates in 

the Cox Model,” 2016. 

[32] F. E. Harell Jr., Regression modeling strategies: with applications to linear models, logistic 

regression, and survival analysis (second edition). 2015. 

[33] B. Ghojogh and M. Crowley, “The Theory Behind Overfitting, Cross Validation, 

Regularization, Bagging, and Boosting: Tutorial,” pp. 1–23, May 2019. 

[34] C. M. Stein, “Inadmissibility of the usual estimator of the mean of a multivariate normal 

distribution,” Proc. Third Berkeley Symp. Math. Stat. Probab. Vol. 1 Contrib. to Theory Stat., 

pp. 197–206, 1956. 

[35] F. J. W. M. Dankers, A. Traverso, L. Wee, and S. M. J. van Kuijk, “Prediction Modeling 

Methodology,” in Fundamentals of Clinical Data Science, Cham: Springer International 

Publishing, 2019, pp. 101–120. 

[36] R. Tibshirani, “The lasso method for variable selection in the Cox model,” Stat. Med., vol. 16, 

no. 4, pp. 385–95, Feb. 1997. 

[37] G. James, D. Witten, T. Hastie, and R. Tibshirani, Introduction to Statistical learning. 2017. 

[38] L. Breiman, “Random forest,” Mach. Learn., vol. 45, pp. 5–32, 2001. 

[39] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” 

Bull. Math. Biophys., vol. 5, no. 4, pp. 115–133, Dec. 1943. 

[40] N. Shahid, T. Rappon, and W. Berta, “Applications of artificial neural networks in health care 

organizational decision-making: A scoping review,” PLoS One, vol. 14, no. 2, p. e0212356, 

Feb. 2019. 

[41] F. Jiang et al., “Artificial intelligence in healthcare: past, present and future,” Stroke Vasc. 

Neurol., vol. 2, no. 4, pp. 230–243, Dec. 2017. 

[42] J. L. Katzman, U. Shaham, A. Cloninger, J. Bates, T. Jiang, and Y. Kluger, “DeepSurv: 

personalized treatment recommender system using a Cox proportional hazards deep neural 

network,” BMC Med. Res. Methodol., vol. 18, no. 1, p. 24, Dec. 2018. 

[43] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A 

Simple Way to Prevent Neural Networks from Overfitting,” J. Mach. Learn. Res., vol. 15, pp. 

1929–1958, 2014. 

[44] M. Claesen and B. De Moor, “Hyperparameter Search in Machine Learning,” pp. 10–14, Feb. 

2015. 

[45] R. Ghawi and J. Pfeffer, “Efficient Hyperparameter Tuning with Grid Search for Text 

Categorization using kNN Approach with BM25 Similarity,” Open Comput. Sci., vol. 9, no. 1, 

pp. 160–180, Jan. 2019. 

[46] S. J. Caetano, G. Sonpavde, and G. R. Pond, “C-statistic: A brief explanation of its 

construction, interpretation and limitations.,” Eur. J. Cancer, vol. 90, no. 1–2, pp. 130–132, 

Jul. 2018. 

[47] T. Therneau and E. Atkinson, “Concordance,” 2019. [Online]. Available: https://cran.r-

project.org/web/packages/survival/vignettes/concordance.pdf. [Accessed: 06-Mar-2020]. 

[48] N. Balakrishnan and C. R. Rao, Handbook of Statistics: Advances in Survival Analysis, vol. 23. 

. 

[49] S. Varma and R. Simon, “Bias in error estimation when using cross-validation for model 



- 37 - 
 

selection,” BMC Bioinformatics, vol. 7, no. 91, 2006. 

[50] “DIS open data.” [Online]. Available: https://www.opendisdata.nl/. [Accessed: 07-Feb-2020]. 

[51] J. J. Dziak and K. L. Henry, “Two-Part Predictors in Regression Models,” Multivariate Behav. 

Res., vol. 52, no. 5, pp. 551–561, 2017. 

[52] I. R. White and P. Royston, “Imputing missing covariate values for the Cox model,” Stat. Med., 

vol. 28, no. 15, pp. 1982–1998, Jul. 2009. 

[53] “R Core Team (2019). R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.” . 

[54] “PyCharm: the Python IDE for Professional Developers by JetBrains.” [Online]. Available: 

https://www.jetbrains.com/pycharm/. [Accessed: 28-Feb-2020]. 

[55] B. E. Shepherd and P. F. Rebeiro, “Assessing and interpreting the association between 

continuous covariates and outcomes in observational studies of HIV using splines,” J. Acquir. 

Immune Defic. Syndr., vol. 74, no. 3, pp. e60–e63, Mar. 2017. 

[56] “autoimpute · PyPI.” [Online]. Available: https://pypi.org/project/autoimpute/. [Accessed: 14-

Feb-2020]. 

[57] D. W. Kim, S. Lee, S. Kwon, W. Nam, I.-H. Cha, and H. J. Kim, “Deep learning-based 

survival prediction of oral cancer patients.,” Sci. Rep., vol. 9, no. 1, p. 6994, May 2019. 

[58] M. A. Mazurowski, P. A. Habas, J. M. Zurada, J. Y. Lo, J. A. Baker, and G. D. Tourassi, 

“Training neural network classifiers for medical decision making: the effects of imbalanced 

datasets on classification performance.,” Neural Netw., vol. 21, no. 2–3, pp. 427–36, 2012. 

[59] V. Forgetta et al., “Machine Learning to Predict Osteoporotic Fracture Risk from Genotypes,” 

bioRxiv, p. 413716, 2018. 

[60] T. Nissinen, “Convolutional neural networks in osteoporotic fracture risk prediction using 

spine DXA images,” no. March, 2019. 

[61] C. Kruse, P. Eiken, and P. Vestergaard, “Machine Learning Principles Can Improve Hip 

Fracture Prediction,” Calcif. Tissue Int., vol. 100, no. 4, pp. 348–360, Apr. 2017. 

[62] K. E. Ensrud et al., “A comparison of prediction models for fractures in older women: is more 

better?,” Arch. Intern. Med., vol. 169, no. 22, pp. 2087–94, Dec. 2009. 

[63] H. Johansson et al., “Imminent risk of fracture after fracture Europe PMC Funders Group,” 

Osteoporos Int, vol. 28, no. 3, pp. 775–780, 2017. 

[64] K. C. Reber et al., “Development of a risk assessment tool for osteoporotic fracture prevention: 

A claims data approach,” Bone, vol. 110, pp. 170–176, 2018. 

[65] “Frax® - Fracture Risk Assessment Tool.” [Online]. Available: 

https://www.sheffield.ac.uk/FRAX/tool.aspx. [Accessed: 07-Mar-2020]. 

[66] M. Egan, S. Jaglal, K. Byrne, J. Wells, and P. Stolee, “Factors associated with a second hip 

fracture: a systematic review.,” Clin. Rehabil., vol. 22, no. 3, pp. 272–82, Mar. 2008. 

[67] G. de Klerk, “Osteoporosis, identification and treatment in fracture patients,” 2017. 

[68] P. Haentjens, P. Autier, J. Collins, B. Velkeniers, D. Vanderschueren, and S. Boonen, “Colles 

fracture, spine fracture, and subsequent risk of hip fracture in men and women. A meta-

analysis.,” J. Bone Joint Surg. Am., vol. 85, no. 10, pp. 1936–43, Oct. 2003. 

[69] D. Zhao, P. Cheng, and B. Zhu, “Epilepsy and fracture risk: A meta-analysis,” Int. J. Clin. Exp. 

Med., vol. 9, no. 2, pp. 564–569, 2016. 

[70] S. Perna, I. Avanzato, M. Nichetti, G. D’Antona, M. Negro, and M. Rondanelli, “Association 

between dietary patterns of meat and fish consumption with bone mineral density or fracture 

risk: A systematic literature,” Nutrients, vol. 9, no. 9, 2017. 

[71] O. Sadeghi, K. Djafarian, S. Ghorabi, M. Khodadost, M. Nasiri, and S. Shab-Bidar, “Dietary 

intake of fish, n-3 polyunsaturated fatty acids and risk of hip fracture: A systematic review and 

meta-analysis on observational studies,” Crit. Rev. Food Sci. Nutr., vol. 59, no. 8, pp. 1320–

1333, 2019. 

 



- 38 - 
 

7 Appendix 
A) Approval of the local ethics review committee 

 
 

  



- 39 - 
 

B) Density plots for all imputed continuous variables 
 

 
 


