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Chapter 1

Introduction

The aim of the project is to build a quadruped robot than can run fast and

in an energy efficient way. Because we would like to achieve energy efficiency

it is natural to take a look at the animal world and because the other goal is

to achieve fast running we have chosen the cheetah as model for our robot.

The idea is to build a robot in which the locomotion is provided by body,

the mechanical design and brain, the control system, in order to mimic what

happens in nature. Unlike most of the renowned quadruped robots [10, 11,

13], in which the main body is rigid and the legs are multi-actuated, this

robot generates locomotion using oscillators, the legs, coupled to a compliant

spine to allow relative motion between the limbs. The work of the brain is to

provide synchronization of the legs and to control the energy injected through

springs into the system. With a relatively simple mechanical structure and

a small amount of energy injected every period, thanks to the presence of

numerous passive elements, we are able to generate locomotion. The first step

was change and improve the simulation model in order to strongly speed-up

the simulations, then, starting from the mechanical structure of a two-legged

cheetah robot [7], we redesigned and enhanced the controller to make it able

to control the energy of the system then we coupled two identical two-legged

robots in order to obtain a four-legged robot and eventually a controller, with

the same principles of the previous one, was implemented to allow running.

A very suitable approach to model these kind of systems [5, 6], in which
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the main focus is on the energy and the power that bodies exchange, is

using the Port-Hamiltonian systems theory and the Bond-Graph notation

[4]. The whole model was built adopting these tools. Firstly, we are going to

present the theoretical instruments necessary and used for the realization of

the simulation models (Chapter 2), secondly, an analysis of the two-legged

model and prototype will be shown including the improved model and the

controllers implemented (Chapter 3), thirdly, we are going to exhibit the work

on the four-legged simulation model and prototype (Chapter 4). Last, but

not least we are going to discuss the results obtained, with advantages and

disadvantages of the proposed solutions and possible improvements (Chapter

5). We propose few appendices in order to highlight some interesting aspects

of the project as the Dirac structures, the electronic and electric structure,

the ground-contact model implemented and the gait analysis (Appendices A,

B, C, D).
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Chapter 2

Theoretical background

The studies has been done by using an energetic approach of modelling

dynamical systems, that is described pretty well by the so-called Bond-Graph

notation, the homogeneous matrices and the concepts of twist and wrench

for a rigid body [4].

2.1 Twist and wrench for a rigid body

In order to talk about twist and wrench for a rigid body, we need first to

introduce the notion of homogeneous matrix.

2.1.1 Homogeneous coordinates

Let’s start by considering a generic point P and its coordinates in the Euclidean

space.

P =

pxpy
pz

 (2.1)

To describe the generic motion, the rotational matrices are not enough be-

cause we need to include also translations. Thus, we need to move first to

the so-called homogeneous coordinates and we can equivalently write the

coordinates of P by just adding a fourth coordinate equal to 1.
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P =


px

py

pz

1

 (2.2)

It is worth to highlight that with this representation, we can characterize

even points at infinity by simply setting the fourth coordinate to 0.

2.1.2 Homogeneous matrices

Let’s suppose now to know the coordinates of point P with respect to the

reference system Ψi, the relative rotation, described by the rotational matrix

Rj
i and the relative translation, described by the vector Oj

i , with respect to

another reference system Ψj. How can we express P in Ψj? We can easily

answer if we introduce the homogeneous matrices.

P j = Hj
i P

i (2.3)

where

Hj
i =

(
Rj

i Oj
i

03 1

)
(2.4)

The matrix Hj
i is 4 by 4 and it is composed by a rotational matrix 3 by

3, Rj
i , a translational vector 3 by 1, Oj

i , a 0-vector 1 by 3, 03 and a scalar

term, 1. Thanks to the structure , the homogeneous matrices are invertible

and we can also apply the so-called chain rule, that is very useful in robotic

modelling. We need to set just a starting point and then build the whole

transformations of the model by only multiply matrices.

(Hj
i )−1 = H i

j (2.5)

Hn
a = Hn

mH
m
l ...H

b
a (2.6)

From a geometrical point of view, R belongs to the special orthonormal
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group, SO(3), that for definition is the group of matrices with determinant

equal to 1 and in which R−1 = RT , while H belongs to the special euclidean

group, SE(3), where:

SE(3) = {

(
R O

03 1

)
such that R ∈ SO(3), O ∈ R3} (2.7)

2.1.3 Twist

The velocity of point mass P in the Euclidean space with respect to an

observer not moving with respect to Ψ can be easily computed by the time

derivative of its coordnates.

(x, y, z) ∈ R3 7−→ (ẋ, ẏ, ż) ∈ R (2.8)

For rigid bodies everything is much more complicated because in the most

general case we can have 3 rotations and 3 translations. However we can

associate a configuration of the body to an homogeneous matrix. If we con-

sider Ψi fixed to body I and Ψj fixed to body J , it is possible to describe their

relative configuration by the relative configuration of the 2 frames which is

represented by Hj
i using their change of coordinates. We can also see that

Hj
i represents the change of coordinates from frame Ψi to Ψj, but also the

physical motion which brings Ψj to Ψi for points expressed in either of the

2 frames. As we said before, for point mass, the velocity is easily computed

by the time derivative of its coordinates, so one could think that this holds

also for H-matrices, but actually is not true because:

• Ḣ has many more elements than necessary to express 6-dimensional

infinitesimal motion

• from the information of Ḣ would not possible to have an idea of the

relative motion without knowing H

• if we consider interconnected bodies, the velocity Ḣ could not be used

since each of the bodies would have a different configuration H and

different Ḣ
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So in order to describe the motion of a rigid body we will introduce the

notion of twist. A twist or generalized velocity is a real geometrical object,

belonging to se(3) which describes the relative instantaneous motion of the

body rigidly connected to frame Ψi with respect to the body rigidly connected

to frame Ψj expressed numerically as a vector in the frame Ψk:

kT j
i =

(
ω

v

)
(2.9)

or in the matrix form as:

kT̃ j
i =

(
ω̃ v

03 0

)
(2.10)

The twist vector T is composed by the vector that represents the angular

velocities, ω and the vector that represents the linear velocities v. It is also

possible to change coordinates of a twinst using the so-called Adjoint matrix:

kT j
i = AdHk

l

lT j
i (2.11)

where

AdHk
l

=

(
Rk

l 0

p̃klR
k
l Rk

l

)
(2.12)

An important feature of twists is that they are independent of the configura-

tion of the body and can therefore be used to describe the relative motions

of any body and are the key to define power ports in rigid multi-body me-

chanical systems.

2.1.4 Wrench

The dual element of a twist, T , is a wrench of generalized force, W . Its

dimension is the same as a twist, it belongs to se∗(3) and its product with

a twist correspond to a scalar quantity that represents the power exchanged

by a wrench with relative motion represented by the twist. A wrench in a

vector form can be represented by:
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kW j
i =

(
τ f

)
(2.13)

while the power:

P = WT =
(
τ f

)(ω
v

)
= τω + vf (2.14)

where τ represents the torque and f the linear force transmitted.

2.2 Energetic approach of modelling physical

systen: the Bond-Graph notation

First of all we need to introduce the notion of port. A port is simply an

interaction between submodels. In the physical domain such interaction is

coupled to an exchange of energy i.e. power. In a domain-free terminology

we can call it power bond. The power in every domain can be expressed as

the product of the variables named effort e and flow f :

P = e× f (2.15)

In the physical domain, for example, the effort is a force or in a more general

framework a wrench while the flow is a velocity or again in the most general

case a twist. In this context we can now introduce the Bond-Graph notation

that fits very well with the problem of modelling dynamical system by using

an energetic approch.

Let’s start by defining the basic elements that we can use to build a model.

2.2.1 Edges

The edges of the graph are the bond and they represents the signals of effort

and flow that the nodes of the graph exchange. Their grafical representation

is an half-arrow:

⇁ (2.16)
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Positive orientation of the half-arrow

The half-arrow just represents positive orientation of the power that the

nodes of the graph exchange.

2.2.2 Nodes

Then we can define the types of nodes of the graph and we can classify them

in five groups of basic physical behaviour.

Storage type

Storage elements are the one that can store energy reversibly and they are

of two type:

• C-type elements

• I-type elements

C-type storage elements are the ones in which the flow is integrated into a

generalized dispacement and related to the conjugate effort while I-type are

the ones in which the effort is integrated in a generalized momentum and

related to the conjugate flow. These two elements are dual in sense that they

can be transformed in each other by interchanging the roles of the conjugate

variables effort and flow. C-types are:

• ideal spring

• ideal capacitor

• ideal reservoir

• ideal heat capacitor

While I-types are:

• ideal mass

• ideal inductor

• ideal fluid inertia

8



Irreversible transformations

Irreversible transformantions are 1-port elements that dissipates energy. The

term ”irreversible” comes from the entropy principle of thermodynamics and

it means that they are elements that are going to increase the entropy. Some

examples are:

• ideal electric resistor

• ideal friction

• ideal fluid resistor

• ideal heat resistance

But also more complex ones as:

• diodes

• non linear friction in a mechanical contact

Reverisble transformations

Reversible transformations can be divided in 2 categories: the so-called tran-

formers, TF , if they relate the effort of both port or the flow of both port

and the so-called gyrators, GY , if they relate the flow of one port with the

effort of the other or viceversa. Some examples of transformer are:

• ideal electric transformer

• ideal lever

• ideal gearbox

• ideal piston-cylinder combination

• ideal positive displacement pump

And some examples of gyrators are:

9



• ideal centrifugal pump

• ideal turbine

• ideal electric motor

Supply and demand

Supply and demand are elements that can generate or drain energy. They

can also be considered storage elements that are infinitely large with respect

to the storage process of interest. They can be divided in source of effort, Se

and sorce of flow, Sf . Some examples of sources of effort are:

• ideal voltage source

• ideal pressure source

While sources of flow are:

• ideal current source

• ideal velocity source

Distribution

The 0-junction and the 1-junction are the most powerful features of the

Bond-Graph representation. In a 0-junction all efforts have to be identical

and the flows sum equal to 0 while, dually, in a 1-junction all flows have to

be identical and the efforts sum equal to 0.

2.2.3 Causalities

Ports and bonds show that two bilateral signals are involved in a relation, but

there is no need to make a priori choice of the direction of the corresponding

signals. A particular choice of the direction or causality is needed before a

set of computable relations can be found or some particular analysis can be

performed. The symbol is called ”causal stroke” and it indicates where the

10



effort signal comes out i.e. where it enters the connection port. In figure 2.1

we can see examples of causal strokes.

Figure 2.1: Examples of causal strokes. The effort direction (green arrow)
determines the position of the stroke (green), while the flow (red arrow) will
get the opposite direction. Figure reproduced from [4].

Fixed causalities

Some nodes has fixed causalities. For example sources of effort always has

an effort as output signal i.e. the causal stroke is attached to the end of the

bond that is connected to rest of the system. For sources of flow the opposite

holds.

Preferred causalities

For some component the integral form is preferred so the causality is pre-

ferred too. We prefer the integral much more than the derivative formulation

because the latter amplifies noises and also we can’t set an initial condition

as we can do with the integral. An example is the C-element, a capacitor in

particular, that you can see in figure 2.2.
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Figure 2.2: Example of preferred causality in which we can see that we prefer
and chose the flow as input variable and the effort as output one in order to
have the constitutive equation in the integral form. Figure reproduced from
[4].

Arbitrary causalities

We deal with arbitrary causalities when the causality in neither fixed or

preferred as in the case of irreversible transformations.

u = Ri⇔ i =
u

R
(2.17)
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Chapter 3

Two-legged cheetah robot

The work started on a two-legged cheetah robot [7] that could run on a

circumference around a pole, sustained by a boom because it couldn’t stand

on its own. Despite the running phase was decent, the controller could be

far more developed in order to control the energy injected and the stability

of the run. Before the design of the new controllers, the software model was

simplified in order to speed up heavily the simulations.

3.1 Simulation model

The starting model were developed on 20-sim [1], as you can see in figure 3.1

and it was structured in five principal submodels. These five submodels were

chosen to emphatize the legs, the ”hoppers”, the spine and the support of the

robot, the ”boomguide” and the connection between them, the ”backbones”.

In more details we will show:
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Figure 3.1: 20-sim initial model in which we can highlight the two legs,
called HopperPosterior and HopperAnterior, the backbones, i.e. the bodies
that connect spine and legs and the BoomGuide that combines the spine
joint, the boom and the carriage necessary to substain the robot.

1. BoomGuide: the ”boom-guide” block includes the parts relative to the

”carriage” and to the ”boom” that support the cheetah and to the

”spine” joint that connects them. The spine plays a central role in the

locomotion so it deserves few words. The elastic spine of the cheetah

[14] can be modelled as a rotational joint with springs connected in a

way to generate chosen level of stiffness in its free degree of freedom. It

is important also to highlight that the asymmetric position of the spine

with respect to the legs is fundamental to induce a preferred-direction

locomotion. It is noticed that symmetrical configurations of the spine

do not generate locomotion, while asymmetric, but lower in terms of

height still generate locomotion, but with a smaller speed.

2. backbone P: it is the rigid body that connects posterior leg and spine.

It’s shape and dimensions are different from the backbone A because we

need to introduce asymmetry of the spine to generate locomotion. It’s

worth to notice that every rigid body of the cheetah is modelled as the

scheme in figure 3.2 in which we can highlight six principal elements:

• I-type storage: it is the block that describes the mass and the

inertial properties of that mass.

• Se or source of effort: it is a force generator and in that specific

case it generates the gravity force.

14



• RTF or rotational transformer: it is a transformation that allow

us to set the gravity force always applied toward the vertical axis

even if the body rotates.

• MTF or modulated transformer: it is a transformation that allows

us to study the body in the baricentral frame where the inertia

matrix is diagonal.

• MGY or modulated gyrator: it is a transformation that allows us

to represents the Coriolis forces applied on the body.

• 1-junction: it constraints the velocities to be the same and
∑

effort = 0.

It is necessary in order to connect this body with others.

Figure 3.2: 20-sim rigid body model. It includes all the matrices
transformations necessary to apply the gravity force in the correct way and
to study the body in the reference frame fixed to its baricenter, in which the
the inertia matrix is diagonal and more handy.

3. backbone A: identical to backbone P in terms of model, but the pa-

rameters of the body, mass and inertia, are different, again to induce

the asymmetry of the spine.

4. Hopper Posterior: the ”hopper” is the model of the leg it includes five

rigid bodies, modelled exacly as the ”backbones” and five joints, as

15



shown in figure 3.3. A model that describes well the behaviour of a

leg is called SLIP [15]. Basically, the leg is modelled as a mass-spring

system. The idea in our model is to constrain the foot so that it can

jump up and down on a straight line while a spring, in series with the

foot, accumulates energy, by compressing itself, every impact with the

ground. That amount of energy will be given back to the system during

the liftoff of the foot. The spring reduces the energy injected by the

motor and it is a good way to mimic what muscles do. The bodies that

constitute the leg are:

• Pelvis: rigid body fixed to backbone and femur.

• Femur: rigid body in which the servomotor is installed. It is con-

nected rigidly to pelvis and fibula, while it is connected through

a rotational joint to the tibia.

• Fibula: together with tibia, they constrain the motion of the foot

to a straight line. It is fixed to femur and connected to foot

through a revolute joint.

• Tibia: together with fibula, they constrain the motion of the foot

to a straight line. Is is connected to foot and femur through two

rotational joints.

• Foot: It is the body that it is in contact with the external environ-

ment. It is connected to tibia and fibula through two rotational

joints.

While the joints are:

• Hip: fixed joint that connects pelvis and femur.

• Fibh: fixed joint that connects fibula and femur.

• Knee: rotational joint that connects femur and tibia.

• Heel: rotational joint that connects foot and fibula.

• Ankle: rotational joint that connects foot and tibia.
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Figure 3.3: 20-sim leg model. We can highlight that the five rigid bodies
are connected each other through the joints mentioned above. This model
reflects exactly the prototype design.

The joints, for the exception of the ”knee” one, were modelled as in fig-

ure 3.4. If we overlook at the transformation between reference frames,

used to set the center of compliance of the joints and their positions

in the space with respect to the other rigid bodies, we can see that

they are modelled as resistive-dissipative, R-type, elements connected

to C-type storage, i.e. springs.
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Figure 3.4: 20-sim non-actuated joints model. The joint is modelled as a
6-dimensional elastic-dissipative system with low stiffness in the free motion
direction and high stiffness in the constrained one. The MTFs are used to
choose the position of the center of compliance of the joints.

The ”knee” joint is particular because it is actuated. The motor can

inject energy into the system through this joint. Its model almost the

same of the non-actuated one, with the exception of an extra transfor-

mation, STF, to connect the output power of the motor and in particu-

lar its rotational speed, 1-dimensional, with the free degree of freedom

of twist the joint, as shown in figure 3.5.

Figure 3.5: 20-sim actuated joints model. The trasformation, STF block,
injects in the joint the power coming from the motor. Because the power of
the motor is a scalar value, it is also select the suitable degree of freedom in
which inject this amount, i.e. the free rotation allowed by the joint.

5. Hopper Anterior: identical to Hopper Posterior in model and physical

dimensions.
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3.2 Prototype design

The legs of the cheetah were mechanically designed keeping in mind the

Evans mechanism, shown in figure 3.6. As result, the leg allows the foot to

translate along a line thanks to three revolute joints. The only actuated joint

is the knee one, but it is not directly actuated by the motor. The energy is

injected into the system through a spring, that is in series with the motor,

from here the acronym SEA or series elastic actuation. There is also another

spring, in parallel with the previous one, necessary to prevent over-extension

of leg. The stiffness of two parallel springs can be expressed by equation 3.1:

Kequivalent = Kspring +Ksupport = 2570 + 175 = 2745 N/m (3.1)

Where:

• Kequivalent: overall stiffness of the equivalent spring.

• Kspring: stiffness of SEA spring.

• Ksupport: stiffness of the support spring.

It is easy to see that the final stiffness is mostly due to the SEA spring.

That’s the reason why we can neglect the presence of the other one and why

we can claim that the energy is injected int the system just through the SEA

spring.
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Figure 3.6: Cheetah leg. Starting from the Evans mechanism, the leg of the
cheetah were designed. The tip of the foot can only move along a straight
line (dashed line). The SEA spring is connected through suitable supports
to the knee joint and motor. Figure reproduced from [7].

The two legs are connected though the so called ”pelvis”, anterior and poste-

rior, to the ”backbone”, anterior and posterior respectively. The ”backbones”

are fixed to the ”spine” joint as you can see in figure 3.7.

Figure 3.7: Cheetah main body. It comprehends ”pelvises”, ”backbones”
and ”spine”. Figure reproduced from [7].
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The ”spine” joint is simply a rotational joint, made by four bearings, with a

certain degree of stiffness due to the presence of four springs with stiffness of

500 N/m each, connected to their supports. The whole mechanical structure

is shown in figure 3.8.

Figure 3.8: Cheetah prototype. Figure reproduced from [7].

The feet were redesigned in order to increment the stability of the robot by

increasing the area of contact with the terrain, to increase the push-forward

force trasmitted to the ground by changing their shape, to reduce the impact

force by build them with an elastic material and to slightly improve the

energy efficiency because the feet now can store and release a small amount

of energy due to their elasticity. The new design is shown in figure 3.9.

Figure 3.9: Foot design. The feet were 3D-printed with different materials.
An elastic layer (black) and a rigid core (transparent).
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The final setup used in the tests is shown in figure 3.10. It includes the

robot, the electronic and electric parts (in appendix B you can find more

details about), the boom, the carriage and the power supply.

Figure 3.10: Cheetah setup. The cheetah runs on a black rubber carper to
increase the friction between feet and ground in order to help the locomotion.

3.3 Simulation-model simplification

The initial model, developed on the software 20-sim, of the two-legged cheetah

was terribly slow, around fifteen minutes of computations for fifteen seconds

of simulation, because of the high number of bodies and joints implemented.

Because the goal of the research is to design and control a four-legs cheetah

and for efficiency reasons, a strong speed up was necessary. The model sim-

plification lies in the fact that the cheetah can be modeled schematically as

two bodies, anterior and posterior, asymmetrically connected by a rotational

joint, the spine. Futhermore each of the body is connected through a spring

to a foot, as shown in figure 3.11.
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Figure 3.11: Cheetah physical model. The complexity of the spine of the
animal can be represented well through an elastic rotational joint. The an-
terior and posterior halves are instead modeled as systems mass-translation
spring-mass. Where the two masses are the one of the feet and the mass of
the upper bodies. Figure reproduced from [7].

The focus was mainly on the ”Hopper” block. The bodies called ”femur”

and ”pelvis” are fixed, because the ”hip” joint is fixed, so first of all, in

order to reduce the complexity of the model, we could substitute these two

bodies with the equivalent one, called simply ”body”, i.e. the body with

mass equal to the sum of the masses and inertial properties defined thanks

to SolidWorks. Then we replaced ”foot”, ”tibia” and ”fibula” with a new

body, with very small mass and parallelepipedal shape, called simply ”foot”.

In this configuration the ”knee” joint, that connect ”foot” and ”body”, is

a linear joint with passive elements, rather than a rotational one. So how

could we adapt the controller, without changing it, to inject the equivalent

amount of energy as before? The ”not changing the controller” part deserves

few words: the goal now is to find an equivalent model of the previous one.

To do that we kept the control parts as they were and we just changed the

mechanical parts, then the ”model validation” was done by comparing the

behavior of the two models. If the final behaviors would be enough similar

it means that the new model is good. In the original model, the motor

injected energy in the knee joint through the SEA and because the knees

were revolute joints we needed to impose an angular speed, θ̇. Now we need
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a transformation from the angular velocities to the equivalent linear one.

That kind of mapping can be find using equation 3.2.

v = 2 ∗ lleg ∗ ω ∗ cos θ (3.2)

where:

• v is the linear velocity

• lleg is the physical leg lenght

• θ is the angular position

In figure 3.12 is shown the equivalent model of the legs designed.

Figure 3.12: Equivalent leg model. The complexity and the number of bodies
and joints is hightly decreased. Now we have just two bodies, representing
upper-body and foot, connected by an elastic translational joint. The knee
joint is still actuated and the amount of energy injected by the motor is
mapped from rotation to translation by a suitable transformation.
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3.4 Equivalent-model validation and final con-

siderations

The validation of the new model were done by comparing the new behaviour

with the older one, remembering that the controller was kept untouched. In

particular in figure 3.13 and 3.14 the feet positions (x(t), y(t), z(t)) compar-

ison is shown.

Figure 3.13: New model feet motion. You can see the position with respect
to time of the anterior foot (respectively green, orange and red) and the
position with respect to time of the posterior foot (respectively black, grey
and brown).
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Figure 3.14: Old model feet motion. You can see the position with respect
to time of the anterior foot (respectively green, orange and red) and the
position with respect to time of the posterior foot (respectively black, grey
and brown.)

The positions where extracted from the homogeneous matrices of each body

and in particular considering the elements:

• H[1, 4] correspondent to x(t).

• H[2, 4] correspondent to y(t).

• H[3, 4] correspondent to z(t).

While in figure 3.15 and 3.16 the upper bodies positions (x(t), y(t), z(t))

comparison is shown.
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Figure 3.15: New model upper bodies motion. You can see the position
with respect to time of the anterior upper-body (respectively green, orange
and red) and the position with respect to time of the posterior upper-body
(respectively black, grey and brown).
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Figure 3.16: Old model upper body motion. You can see the position with
respect to time of the anterior upper-body (respectively green, orange and
red) and the position with respect to time of the posterior upper-body (re-
spectively black, grey and brown).

It is easy to see that the behaviour is pretty much the same. There is only a

light speed difference between them, the older model is a little big faster in

terms of speed of the cheetah. However we can claim that the new model is

a good equivalent one for the original model. Thanks to the new model we

achieved a speed up in the simulation of a factor bigger than five and that

was exactly what we wanted.
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3.5 Old controller structure and introduced

improvements

From previous sperimental trials it was discovered a possible running fre-

quency i.e. a phase difference between feet touchdowns that allows locomo-

tion. The period of the gait is equivalent to 0.36 s with an average estimated

touchdown time of 0.16 s, a flight phase of 0.2 s and a delay between the

touchdown time of the legs of 0.05 s, for an overall running frequency around

3 Hz. The idea of the developed controller, already implemented on the

cheetah before the start of the project, was to keep the above-mentioned

phase difference by injecting a controlled and suitable amount of energy into

the system through an hysteresis controller. The first step was to measure

the current phase difference between the feet through the estimation of the

contact event between feet and ground. In order to do that we looked at the

”knee” sensors: overcoming a certain threshold means that a compression of

the spring occurred and that means that the foot touched the ground be-

cause there can’t be compression in any other situations. After computing

the touchdown time of each foot we computed the measured phase difference

as:

ψm =
TouchdownAnteriorFoot− TouchdownPosteriorFoot

GaitPeriod
(3.3)

It’s a reactive controller because every time we detects the ground we reacts

with a certain energy injection. Because we have servomotors we can change

the position of the motors in order to compress more or less the springs with

an hysteresis control. We simply check at every period if the measured phase

difference is smaller or bigger that the ideal one, used as setpoint, then we

apply two different control inputs if we are in a case or in the other. Although

well designed, this controller shows its main drawback in the stability of the

run. The run is pretty instable and the cheetah often stumbles in the ground.

This is due to two big problems of the reactive controller:

• non-smoothness of the control action
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• rough estimation of the ground contact events

In the first case it was implemented a PI controller to improve the control

action, while in the second case it was used a low-pass filter to filter the

sensors outputs and to be able to choose more precise thresholds that reduced

the ground contact event estimation error. Even with the improvements

introduced the ”reactive” controller was not stable and reliable enough to

be implemented on the four-legged robot, but it was really useful because it

allowed to discover the running frequency of the robot and the correlation

between the good running behaviour of the cheetah and the constancy of the

peaks of the ”knee” sensors outputs. These notions were used to implement

the energy control.

3.6 Energy control

Working on the ”reactive” controller, we figured out the running frequency

or natural frequency of the robot and we noticed that if the compression of

the SEA springs was held constant the cheetah could run in a very stable

way without falling or stumbling. With these ideas in mind, we developed

the ”energy” controller which focus is to excite the system with prefixed

frequency inputs, to control the energy injected and to keep the energy level of

the system constant. The cheetah can move thanks its mechanical dynamics,

but because of the energy losses it is necessary to injected energy through

the SEA springs by the motors. So two main questions arise:

• exciting the system natural frequency is enough to provide the wanted

phase difference?

• can we control the energy injected i.e. can we control the potential

energy of the springs?

To excite the system, we generate clock-based setpoints for the servomotors

i.e. square waves with period equal to the gait period, duty cycle equal to

the ratio between touchdown time and period of the gait and delay between
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each other equal to the phase difference between the legs. Unfortunately

only exciting the system with this fixed-frequency setpoints with constant

amplitude is not enough for steady run, but if we combine it with the energy

control, that regulates the amplitude of the square wave i.e. the energy

injected, we can induce stable locomotion. The proposed controllers were

tested through software simulations and on the ”half-cheetah” prototype.

3.6.1 ”Energy”

To introduce the energy control we need first to take into account the springs

and their potential energy. By previous studies, it was proved that the energy

stored in the SEA springs is proportional to the energy of the overall system

[6]. If we consider a linear spring, its potential energy can be expressed in

function of the dispacement.

E(x) =
1

2
kx2 (3.4)

For a non-linear spring, instead, the potential energy is expressed as the

integral of its force.

E(x) =

∫ x

0

f(u)du (3.5)

where:

• k: spring elastic constant.

• x: spring displacement.

• u: integration variable for the displacement.

• f(u): non linear function in function of the displacement representing

the force of the non-linear spring.

In the cheetah design the springs are hightly non-linear, the idea is to control

an amount of energy that is proportional to the potential energy. The choosen

term is pretty similar to the potential energy for linear spring equation, but
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without considering the spring stiffness k or if you prefer by keeping the

stiffness of the spring equal to the constant 1.

E(x) =
1

2
x2 (3.6)

This reasoning holds because a strong proportionality exists between the

spring, linear or non linear, compression and its potential energy, as shown

in equation 3.4 and 3.5. To measure the displacement of the spring we use the

sensors (see Appendix B for more details) placed on the knees that generate

an output that is proportional to the spring compression.

3.6.2 Controller

The final goal is to design an energy-efficient running cheetah, so the con-

troller job should be injecting, into the system through the springs, an

amount of energy equal to the one lost because of the frictions, i.e. the me-

chanical dissiaptions that are present. Unfortunately measuring the losses in

the prototype is not doable, but if the controller would keep the energy level

or at least an estimated energy level of the system constant, the half-cheetah,

thanks also to its own dynamics, would run. In order to generate the correct

phase difference between the front and rear legs, two square waves genera-

tors generate fixed-frequency setpoints for the motors. The servomotors used

have a position controller implemented on them, so we can control easily the

position of the rotor. The choice was to let the motors work only to aid the

compression of the springs, though a suitable variation of angular position.

The posterior setpoint is delayed by 0.05 s with respect to the anterior one

in order to generate ”forward” locomotion. The period and the width of the

pulses are fixed respectively to 0.36 s and to 0.16 s while the amplitude is

variable and it is correct every period by the ”energy” controller. In partic-

ular the controller generates a correction of a ”compression” offset. In figure

3.17 and 3.18, it is possible to see the controller design.
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Figure 3.17: Control scheme (part 1). Starting from the reading of the ”knee”
sensor, we measure through the block ”amplitude sensor” the maximum val-
ues of the signal coming from the encoders. Then we generate using a gain,
suitably defined, the ”measured energy” term. We compare this signal with
a setpoint to generate and error and to feed the controller. It is worth to
notice that the signal form the sensors is a PWM wave so we need to convert
it in radians before elaborating it.
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Figure 3.18: Control scheme (part 2). The control action pass through a
signal limiter in order to avoid that the correction changes the working of
the motor. We only want to compress the springs and not overextend them.
Then the correction generated will change the amplitude of the square wave.
The offset of the motors them is summed in order to fix the suitable initial
conditions. Eventually we convert the signal to PWM in order to feed the
motors.

The only real measures that has been used are the angular positions of two

sensors, two encorders, placed on the ”knees” of the cheetah. Then, throught

the 20-sim blocks ”amplitude sensor” it has been possible to figure out the

maximum peak of the ”knees” sensors signals and by just squared and di-

vided, by the constant 2, those signals, we have been able to obtain the

”measured-energy” term. These new signals are compared with a constant

”energy setpoint” in order to generate errors that feed the controllers. Then,

two conceptually different proportional controllers have been developed:
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• A proportional controller with constant gain

• A proportional controller with variable gain

It is worth to notice that the initial condition was choosen with the cheetah

that is still on the ground, of course, so a problem arises: how can we excite

the cheetah to put it in motion? The proposed controllers solve in different

ways the problem of the initial energy transient i.e. it is necessary to provide

the cheetah a bigger amount of energy than in the ”running” phase.

3.6.3 Proportional controller with constant gain

Because we can’t choose a relatively big gain for the controller because it

would drive the system to instability, we need to find a way to excite the

system such that the springs potential energy is close to the setpoints. In

particular in the simulations it happens that the cheetah overturns, event

hardly found on the prototype. The idea is to get close to the energy setpoint

by injecting for the initial four pulses a bigger amount of energy through four

fixed-amplitude pulses, then the controllers, even with a relatively small gain

can track well the setpoints. The generated corrections directly act and

adjust the amplitude of the pulses.

3.6.4 Proportional controller with variable gain

To improve the previous controller, in particular to remove the initial fixed

amplitude pulses and to have more flexibility on the initial conditions, we

choose to use a variable gain, proportional to the error, i.e. for big errors we

will have big gains and viceversa.

K = k(error) (3.7)

where K is the variable gain and k is a suitable defined constant.

The advantages of these controller with respect to the previous one are mainly

two:

35



1. The control of the very initial energy injected i.e. the removal of the

initial open-loop big injection of energy.

2. The controller now can adjust its own energy so the starting is auto-

matic and totally due to the energy controller work. The initial position

does not matter anymore and it is also possible to stop it during its

run then freed it and it can keep on running.

The only disadvantage is that the run is slightly more instable.

3.6.5 Controllers tuning

It deserves attention the tuning of the controllers. The system is hightly

chaotic due to the presence of many passive non-linear elements and because

of its interaction with the environment through the ground. Because of that,

the errors at steady state will not be null, but if they are small enough, so

if the errors lie in a zone enough close to zero without big variations i.e. the

energy of the system is held almost constant, the cheetah can move forward

pretty well. The tuning of the controllers was done mainly by heuristical

methods and paramenters sweep methods. Surprisingly the tuning of the

prototype controllers were much easy than the simulation controllers setup.

The hypothesis may be many, but the most likely ones are:

• Energy dissipation differences: the mechanic dissipation of the pro-

totype are larger than the ones of the model. This leads to a small

tuning-margin, in the simulations, because even a small surplus of en-

ergy can let the cheetah fall down, while in the prototype this was not

noticed because, for example, an higher jump generated by an higher

amount of energy injected will be compensated with more losses.

• Integration errors of the solver algorithm due to the ground contact

model: every time the feet touch or better penetrate the ground, they

feel a force due to the reaction of the ground itself. Because the po-

sition of the feet change every step it means that the forces changes

every step and in particular the initial condition for the integration
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algorithm changes every step. Different initial conditions and different

”background” roundings in the simulations can lead to big variation of

the behaviour and this make the simulations more unpredictable than

the prototype. You can see more details in Appendix C.

3.7 Simulations results for the energy control

In this section, the simulation and the prototype results will be presented,

taking in mind that the controllers tuning in the simulation, oddly, required

much more time that the controller tuning in the prototype for the reason

discussed above. In particular in this section, the results of the previous

controllers will be shown, considering that the tuning in the simulations is

different, of course, from the tuning on the prototype. In order to understand

the results of the simulations and, in particular, the charts of the position

of the feet and the bodies we need to remember that the ”half-cheetah” is

constrained to run on a circumference by the boom, attached to it, for evident

standing problems, so the coordinates on the 2D-motion plane, x(t) and y(t),

will vary almost as sinusoids, if the cheetah runs properly.

3.7.1 Constant gain controller

In figures 3.19, 3.20, 3.21 and 3.22, you can see the results of the simulations

using the energy controller with the constant gain.
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Figure 3.19: Simulation results. Positions with respect to time of the feet
and the upper bodies. You can see x(t) of the anterior foot and upper-body
in green (left chart and right chart respectively), y(t) of the anterior foot and
upper-body in orange (left chart and right chart respectively), z(t) of the an-
terior foot and upper-body in red (left chart and right chart respectively)x(t)
of the posterior foot and upper-body in black (left chart and right chart re-
spectively), y(t) of the posterior foot and upper-body in grey (left chart and
right chart respectively), z(t) of the posterior foot and upper-body in brown
(left chart and right chart respectively)
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Figure 3.20: Simulation results. In the left chart, you can see the z(t) posi-
tions of the anterior and posterior feet (pink and blue respectively) and the
anterior and posterior motors setpoints (green and red). In the right chart
you can see instead the anterior and posterir ”knee” sensors measuraments
(pink and blue) and the output elaborated by the amplitude sensors (green
and orange).

Figure 3.21: Simulation results. In the left chart you can see the anterior
motor position (pink) and the posterior one (blue), while on the right you
can see the energy error of the posterior leg (blue) and of the anterior one
(pink).
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Figure 3.22: Simulation results. In the left chart you can see the elaborated
signal coming from the amplitude sensors of posterior half (blue), the energy
setpoint (red) and the measured energy (pink), while in the right chart you
can see the elaborated signal coming from the amplitude sensors of anterior
half (blue), the energy setpoint (red) and the measured energy (pink).

Because of the high complexity of the tuning, we were able to achieve a

”good-run”, i.e. we were able to keep the energy level on the springs quite

constant, for just 15 s for a global distance of half a round, but it was enough

to be confident on the potentialities of the controller.

3.7.2 Variable gain controller

In figures 3.23, 3.24, 3.25 and 3.26 we show the results with the variable gain

controller.
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Figure 3.23: Simulation results. Positions with respect to time of the feet
and the upper bodies. You can see x(t) of the anterior foot and upper-body
in green (left chart and right chart respectively), y(t) of the anterior foot and
upper-body in orange (left chart and right chart respectively), z(t) of the an-
terior foot and upper-body in red (left chart and right chart respectively)x(t)
of the posterior foot and upper-body in black (left chart and right chart re-
spectively), y(t) of the posterior foot and upper-body in grey (left chart and
right chart respectively), z(t) of the posterior foot and upper-body in brown
(left chart and right chart respectively)
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Figure 3.24: Simulation results. In the left chart, you can see the z(t) posi-
tions of the anterior and posterior feet (pink and blue respectively) and the
anterior and posterior motors setpoints (green and red). In the right chart
you can see instead the anterior and posterir ”knee” sensors measuraments
(pink and blue) and the output elaborated by the amplitude sensors (green
and orange).

Figure 3.25: Simulation results. In the left chart you can see the anterior
motor position (pink) and the posterior one (blue), while on the right you
can see the energy error of the posterior leg (blue) and of the anterior one
(pink).
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Figure 3.26: Simulation results. In the left chart you can see the elaborated
signal coming from the amplitude sensors of posterior half (blue), the energy
setpoint (red) and the measured energy (pink), while in the right chart you
can see the elaborated signal coming from the amplitude sensors of anterior
half (blue), the energy setpoint (red) and the measured energy (pink).

In this case we were able to provide just 7 s of ”good-run” for a global

distance of a quarter of a round, but it deserved to be prensented due to the

”controlled-start” and for flexibility reasons that were already introduced

above.

3.8 Prototype results for the energy control

With the prototype we were able to achieve much better results, indeed, for

both of the controllers proposed, the half-cheetah can run for a full round

and we are confident even more, but for wires lenght problems it was not

possible to test it. In figure 3.27 is shown the position with respect to time

measured by the encoder on the pole (in blue) and linearly mapped on the
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circumference in order to assess the real runned distance in meters (in green),

while in figure 3.28 it is shown the average speed in m/s.

Figure 3.27: Prototype position with respect to time. In blue you can see
the output of the encoder placed on the pole around which the cheetah runs,
while in green the actual position measured in meters.

Figure 3.28: Prototype average speed with respect to time in m/s. We used
the mean value to make the speed more readable.
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Furthermore in figure 3.29 is sequentially shown the lap running.

Figure 3.29: Prototype results. It’s a 6-steps sequence that shown the setup
and the running phase.

3.8.1 Constant gain controller

The run with, this kind of controller, is very smooth and stable so much that

we like to think that it can keep running indefinitely. Because of its goodness

it is the controller implemented on the four-legged cheetah.

3.8.2 Variable gain controller

With this controller too, the cheetah can run, but slightly roughter and in

a more instable way than with the other controller. However it can still
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complete the full round and it could even run more. This controller offers

the possibility of stopping the run of the cheetah, for example by lifting it

and when freed it can keep on running. This thing was not always possibile

with the previous controller.

3.9 Cost of transport for the half cheetah

Eventually we computed the cost of transport [8], or briefly CoT, of our

robot. The CoT is a dimensionless quantity that measures and quantifies

the energy efficiency of transporting an animal, a vehicle or a robot from a

position to another. It can be computed as:

CoT =
E

mgd
=

P

mgv
(3.8)

where:

• E is the input energy

• m is the mass

• g is the gravity constant

• d is the traveled distance

• P is the input power

• v is the speed

It is easy to foresee that we would like a value as lower as possible because

that means that the power or the energy injected are relatively small with

respect to the velocity or the distance travelled. With our setup we are

able to achieve an high energy efficiency and an average CoT equal to 0.36,

measured in a time interval of 10 s, because, although we are not able to

achieve high speed, we inject a very low amount of energy inside our system

thanks to its mechanics and in particular to the numerous passive elements

present, figure 3.30.
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Figure 3.30: Cost of transport of the two-legged robot measured as P
mgv

In order to compute the cost of transport, using in particular the second

formulation, we need to figure out what is the actual electrical power input,

i.e. the power that the cheetah absorbes. The electrical power is the product

of the voltage and the corrent and its equation can be written as:

P = V ∗ I (3.9)

To measures these two values we used an oscilloscope, tool to measure volt-

ages and a very small resistor, typically called shunt. The input voltage, V ,

will be equal to the voltage measured at the beginning of the voltage wire

in a position close to the power supply, while for the current absorbed, I,

although we cannot measure it directly, we can measure the potenzial drop

due to the resistor and then compute the current by dividing this value for

the resistance itself. We chose to record data in an interval of 10 s with a

resolution of 400µs, so in the end we collected 25000 samples of our physical

quantities, enough for a good accuracy. In figure 3.31 is shown the average

input power in function of the samples collected, while in figure 3.32 and

3.33 the input voltage and the average current in function of the samples.
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To conclude we scaled the robot to measure its mass, equal to 1240.5 g.

Figure 3.31: Average input power measured in Watt. We computed and
show it mean value to increase the readability of the chart.

Figure 3.32: Input voltage measured in Volt. The motor are powered with
12 V DC (see Appendix B for more details).
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Figure 3.33: Average input current measured in Amphere. We computed
and show it mean value to increase the readability of the chart.
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Chapter 4

Four-legged cheetah robot

The natural further step of an ”half-cheetah” robot is to make a four-legged

one. This chapter will be divided in two principal sections:

1. Work on the simulations

2. Work on the prototype

4.1 Work on the simulations

In this section we will present the work on the simulations and in particular

the new model structure, the controllers implemented and the results achieved.

4.1.1 Simulation model

The most straightforward way to extend the model of the two-legged robot

to the four-legged one was to add another half, perfectly equal in terms of

mass and dynamic properties to the first one, as shown in figure 4.1.
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Figure 4.1: Four-legged cheetah model. We can highlight the presence of
the four legs, for ”backbones” and a single spine to connect the two halves
together.

The model was structured in a similar way of the previous one, we can

highlight nine principal blocks:

• Connection Spine: it includes all the parts related to the connection of

the halves.

• Backbone Posterior Left: rigid body that connects left posterior leg to

the spine.

• Backbone Anterior Left: rigid body that connects left anterior leg to

the spine.

• Backbone Posterior Right: rigid body that connects right posterior leg

to the spine.

• Backbone Anterior Right: rigid body that connects right anterior leg

to the spine.

• Hopper Posterior Left: left posterior leg.

• Hopper Anterior Left: left anterior leg.

• Hopper Posterior Right: right posterior leg.

• Hopper Anterior Right: right anterior leg.
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While most of the blocks were kept the same, in order to connect the two

halves, the new block called ”Connection spine” was designed. In particular,

using the Bond-Graph notation, we improved the connection between front

and rear halves throught the ”spine” joint. Then we connect the boom

to the ”spine” joints in order to keep the halves as free as possible to

have relative motion between each other. It is worth to highlight what the

”spine” joint is and how it was modelled. Starting from the video analysis

of a running cheetah and studying its physical model, it is straightforward

to model the spine as a rotational joint with passive elements, springs in

particular, to mimic the compression and extension phases. In figure 4.2

is shown its model on 20-sim in which you can recognize the power flow

from the anterior to the posterior bodies, purple arrows and the addition of

a compliant element, C-type and a dissipative element, R-type, intrinsic in

every mechanical device.

Figure 4.2: ”Spine” joint model. The joint is a rotational joint, modeled
as the one showed in Chapter 3. It is connected to a C-type and to a R-
type element in order to apply the desired compliance. This joint connects
anterior and posterior bodies of the robot.

Futhermore, the starting boom lenght was choosen equal to 0.5 m because in

this configuration we obtained the maximum stability of the cheetah. This
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lenght will be reduced when the running sessions would be sufficiently good.

In figure 4.3 you can see the whole model of the spine for the four-legged

cheetah, in which it is possible to add extra degrees of freedom in the boom-

”spine” joint connection. Several trials were done by changing the degrees of

freedom of the spine.

Figure 4.3: Overall spine model. On the left you can see the two ”spine”
joints that connect front and rear of each half, while on the left the connection
of the boom with the two halves. It is still an elastic-dissippative connection,
but with very high stiffness. The boom is modelled as a rigid body. The
”spine” joints are the same as the ones explained in Chapter 3

We made a simple 3D visualization of the robot to improve the readability

of the results, but also it helps to understand where the model simplification

lies on. In figure 4.4 you can see easily the bodies that compose the cheetah,

from down to top:

• Feet

• Main bodies

53



• Backbones

• Boom

Figure 4.4: 3D visualization of the cheetah. On the left side (yellow) and on
the right side (green) you can see from bottom to top feet, the upper-bodies,
the backbones and the boom (black). The front is distinguishable from the
rear because the ”backbones” are significantly smaller.

4.1.2 Work on the controller

Now we are considering a four-legged robot so it is worth to highlight an

interesting topic: the type of gait [16]. The gait is basically the syncronization

of the legs necessary in order to provide locomotion, in Appendix D you will

find more details about. There exists a lot of different gaits in nature, but in

our case we will focus our work on the bound gait. The bound gait is one of

the easiest gait to implement because the two halves are mirrowed in terms

of movements, the two front legs have the same touchdown, liftoff and flight

times as well as the rear ones, figure 4.5.

54



Figure 4.5: Bound gait footsteps. The black strips represent the time in
which the feet are in contact with the ground.

If you would look carefully at figure 4.5, actually, in nature, the lift-off and

consequently the flight times of the hind legs are not perfectly the same, but

in our case we neglected this difference because it did not introduce limita-

tions of the motion. Starting from the energy control with the constant gain

of the half-cheetah, we implemented three different controller configurations:

1. Single controller for both halves.

2. Independent controllers for every half.

3. Independent controllers for every half with an extra supervisor to reduce

the energy levels errors of the two sides.

Single controller for both halves

Because the two halves are perfectly equal and because the bound gait is

a symmetrical gait, the idea is to copy the control action signals from the

controller of one side directly as motor setpoints of the other. So we have a

single controller, with feedback just from the sensors of one half, that controls

the four legs. In figure 4.6, 4.7 and 4.8 you can see some charts that shows

the behaviour of the cheetah with this kind of controller.
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Figure 4.6: Single controller results. Positions with respect to time of the left
feet and left upper bodies. You can see x(t) of the anterior foot and upper-
body in green (left chart and right chart respectively), y(t) of the anterior foot
and upper-body in orange (left chart and right chart respectively), z(t) of the
anterior foot and upper-body in red (left chart and right chart respectively),
x(t) of the posterior foot and upper-body in black (left chart and right chart
respectively), y(t) of the posterior foot and upper-body in grey (left chart
and right chart respectively), z(t) of the posterior foot and upper-body in
brown (left chart and right chart respectively)

Figure 4.7: Single controller results. Positions with respect to time of the
right feet and right upper bodies. You can see x(t) of the anterior foot and
upper-body in green (left chart and right chart respectively), y(t) of the an-
terior foot and upper-body in orange (left chart and right chart respectively),
z(t) of the anterior foot and upper-body in red (left chart and right chart
respectively)x(t) of the posterior foot and upper-body in black (left chart
and right chart respectively), y(t) of the posterior foot and upper-body in
grey (left chart and right chart respectively), z(t) of the posterior foot and
upper-body in brown (left chart and right chart respectively)
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Figure 4.8: Single controller results. In the left chart you can see the elabo-
rated signal coming from the amplitude sensors of posterior half (blue), the
energy setpoint (red) and the measured energy (pink), while in the right
chart you can see the elaborated signal coming from the amplitude sensors
of anterior half (blue), the energy setpoint (red) and the measured energy
(pink).

In this configuration the cheetah can run for almost two meters then mis-

alignments and consequently lost of synchronization degrade its race. In this

case we are defenseless against these problems because one side of the robot

is ”open-loop”. Again, during the ”good” run, from 8 s to 12 s, you can no-

tice that the energy levels are quite constant and close to the setpoints, the

knee sensors peaks are quite close each other as well as the motors setpoints.

Although the results for this kind of controller are quite interesting, it’s nec-

essary to consider this controller unpractical for the prototype because the

two halves will not be identical even though they will be built to be very

similar. However this tests on the single controller were useful to prove the

effectiveness and the flexibility of the energy controller. Although developed

for the two-legged cheetah, with a new tuning it works pretty well in the

four-legged case.

Independent controllers for every half

In order to partially solve the problems of the single controller, a new control

scheme was developed. Every side has its own energy control that computes

a controller action starting from the feedback of the sensors of its own half.

With this kind of controller we are able to achieve a faster initial transient
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with respect to the single controller case, i.e. a shorter time to reach the

”good” run in which again the energy levels are close to their respective

setpoints and the forward locomotion is guaranteed. In figures 4.9, 4.10 and

4.11 we show the best behaviour achieved with this configuration.

Figure 4.9: Independent controllers results. Positions with respect to time
of the left feet and left upper bodies. You can see x(t) of the anterior foot
and upper-body in green (left chart and right chart respectively), y(t) of the
anterior foot and upper-body in orange (left chart and right chart respec-
tively), z(t) of the anterior foot and upper-body in red (left chart and right
chart respectively), x(t) of the posterior foot and upper-body in black (left
chart and right chart respectively), y(t) of the posterior foot and upper-body
in grey (left chart and right chart respectively), z(t) of the posterior foot and
upper-body in brown (left chart and right chart respectively)
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Figure 4.10: Independent controllers results. Positions with respect to time
of the right feet and right upper bodies. You can see x(t) of the anterior
foot and upper-body in green (left chart and right chart respectively), y(t)
of the anterior foot and upper-body in orange (left chart and right chart
respectively), z(t) of the anterior foot and upper-body in red (left chart and
right chart respectively)x(t) of the posterior foot and upper-body in black
(left chart and right chart respectively), y(t) of the posterior foot and upper-
body in grey (left chart and right chart respectively), z(t) of the posterior
foot and upper-body in brown (left chart and right chart respectively)
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Figure 4.11: Independent controllers results. In the left chart you can see the
elaborated signal coming from the amplitude sensors of posterior half (blue),
the energy setpoint (red) and the measured energy (pink), while in the right
chart you can see the elaborated signal coming from the amplitude sensors
of anterior half (blue), the energy setpoint (red) and the measured energy
(pink).

In this case the cheetah can run for 2.5 meters and that is a very beautiful

result, yet the problem of the lost of synchronization occurs starting from 9

s and the difference tends to increase until the fall, without any possibility

to regain it. That problem is pretty normal because the two controllors are

totally independent so when the synchronization is lost the controller can’t

do anything about it.

Independent controllers for every half with an extra supervisor to

reduce the energy levels errors of the two sides

In order to solve or actually reduce the lost of syncronization problem another

controller block called ”Supervisor” was designed. This new controller, as

shown in figure 4.12 , is in charge of reduce the energy level difference between

the two halves starting from the comparison between the energy mean values.
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Figure 4.12: ”Supervisor” controller. The mean values of the energy of each
side is compared in order to generate an error that feeds a controller that
generates an extra correction.

This extra controller computes the difference between the mean values of the

left anterior leg energy and the right anterior leg one, then it generates a

correction, thanks to a suitable tuned proportional controller, for the right

anterior motor setpoint. The same procedure is applied to generate a cor-

rection for the right posterior motor. In figures 4.13 and 4.14 we instead

show the new structure of the controller of the right side of the cheetah, in

which it is introduced the measuraments of the mean value of the energy

error, term naturally proportional to the energy level. With this structure

the amplitudes of our setpoints are generated by the following law:

Amplitude = Constant term− Energy controller term + Supervisor term

(4.1)

Setpoint = Amplitude ∗ Square wave (4.2)

Where:

• Constant term: it is an offset necessary to guarantee that the motors
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work properly only in compression of the springs and not in extension.

• Energy controller term: it is the correction generated by the energy

controller.

• Supervisor term: it is the correction generated by the supervisor.

• Square wave: it is the square wave with the suitable frequency with

amplitude from 0 to 1, properly shifted to guaranteed the correct initial

condition of the motors.

Figure 4.13: ”Supervisor” controller structure (part 1). Starting from the
reading of the ”knee” sensor, we measure through the block ”amplitude sen-
sor” the maximum values of the signal coming from the encoders. Then we
generate using a gain, suitably defined, the ”measured energy” term. We
compare this signal with a setpoint to generate and error and to feed the
controller. It is worth to notice that the signal form the sensors is a PWM
wave so we need to convert it in radians before elaborating it.
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Figure 4.14: ”Supervisor” controller structure(part 2). The control action
pass through a signal limiter in order to avoid that the correction changes
the working of the motor. We only want to compress the springs and not
overextend them. Then the correction generated will change the amplitude
of the square wave. The offset of the motors them is summed in order to fix
the suitable initial conditions. Eventually we convert the signal to PWM in
order to feed the motors. We also compute the mean value of the error in
order to feed the ”supervisor” controller.

The cheetah can still run for more than 2.5 meters and also the degradation

due to the losing of the phase is limited. Unfortunately this controller cannot

stop completely the losing synchronization problem, but considering what

happened for the half-cheetah, in which the prototype was more tolerant

than the simulation model, we will implemented it. However we still have

the possibility in the prototype to constrain more the two halves with some

suitable mechanical devices in the worst case scenario. In figures 4.15, 4.16

and 4.17 we show the global behaviour.
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Figure 4.15: Controller results. Positions with respect to time of the left feet
and left upper bodies. You can see x(t) of the anterior foot and upper-body
in green (left chart and right chart respectively), y(t) of the anterior foot and
upper-body in orange (left chart and right chart respectively), z(t) of the
anterior foot and upper-body in red (left chart and right chart respectively),
x(t) of the posterior foot and upper-body in black (left chart and right chart
respectively), y(t) of the posterior foot and upper-body in grey (left chart
and right chart respectively), z(t) of the posterior foot and upper-body in
brown (left chart and right chart respectively)

Figure 4.16: Controller results. Positions with respect to time of the right feet
and right upper bodies. You can see x(t) of the anterior foot and upper-body
in green (left chart and right chart respectively), y(t) of the anterior foot and
upper-body in orange (left chart and right chart respectively), z(t) of the an-
terior foot and upper-body in red (left chart and right chart respectively)x(t)
of the posterior foot and upper-body in black (left chart and right chart re-
spectively), y(t) of the posterior foot and upper-body in grey (left chart and
right chart respectively), z(t) of the posterior foot and upper-body in brown
(left chart and right chart respectively)
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Figure 4.17: Controller results. In the left chart you can see the elaborated
signal coming from the amplitude sensors of posterior legs (blue and green),
the energy setpoints (red and orange, they overlap) and the measured energies
(pink and black), while in the right chart you can see the elaborated signal
coming from the amplitude sensors of anterior legs (blue and green), the
energy setpoint (red and orange,they overlap) and the measured energy (pink
and black).

4.1.3 Results achieved during the simulations

Thanks to the proposed controller we were able to implement the bound

gait for a maximum runned distance of 3 m with a speed around 0.42 m/s.

This result could not seem amazing, but it’s quite reassuring considering the

problems of the simulation mentioned in Chapter 2 and deepen in Appendix

C. However we were able to achieve a very good mechanical energy efficiency

in the simulations as the mechanical cost of transport shows. In figures 4.18

and 4.19, you can see the instantaneous mechanical cost of transport and its

mean value measured on an interval of 4 s. The average cost of transport in

the time span considered is slightly smaller than 0.25. Although the result

is very good, we need to remember that this value was computed starting

from the simulations so we can’t conclude anything about the actual cost of

trasport, but we can consider this value a good estimation of the mechanical

cost of transport of our robot.
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Figure 4.18: Mechanical cost of transport. It was measured by extracting
the mechanical power from the motors and by dividing this value for mass ∗
speed ∗ g (with g equal to the gravity acceleration).

Figure 4.19: Mean value of the MCot. In order to increase the readability of
the results we computed the mean value.
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Another simulated topic was to add more degrees of freedom to our spine.

The idea was to build a center of compliance in the middle of the boom to

figure out if new spine configurations could help the locomotion with different

gaits. A lot of simulations were also performed in order to implement two

more kind of gaits and in particular the transverse gallop and the rotary gal-

lop. Unfortunately two big problems emerged: although the simplifications

introduced, moving to the four-legged model slows down a lot the simula-

tions, so much that now fifteen seconds of simulation last fifteen minutes and

also, because of the four legs, the unpredictability of the system due to the

ground contact model increases exponentially. Because of these problems

and because the goal of the project is to built a running prototype it was not

possible to implement those two concepts in the simulations. However the

same trials will be done on the prototype, hopefully with better results.

4.2 Work on the prototype

In order to conclude the research, we built a four-legged prototype. In this

section we will present three different configurations of the robot and the

analysis of the results obtained, including the measuraments of the cost of

transport.

4.2.1 Prototype design

Starting from the two-legged robot, we built another half, equal to the previ-

ous one, but mirrored in terms of motors and SEA springs position in order

to balance as much as possible the whole system. We used a rigid metal

boom to connect the two halves from spine to spine in order to force the

parallelism, but allowing relative rotation. Since the halves could slide on

the boom, we fixed them with four nuts. We left the possibility to change

the distance between the two sides of the robot and we studied what may

happen, with respect to the cost of transport and stability of the run, if we

change this distance. In particular, we focused on three configurations:

1. Distance between the two halves equal to 40 cm.
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2. Distance between the two halves equal to 30 cm.

3. Distance between the two halves equal to 24 cm.

The configurations were tested using two different controllers. In particular

we used an ”open-loop” control law in which we injected energy though

sending to the motors fixed frequency and amplitude setpoints forgetting

about the feedback from the knee sensors, then we implemented the energy

controller shown in the previous sections. We chose to implement the ”open-

loop” controller because we would like to test if exciting the system with

its natural frequency was enough to provide locomotion, while we used the

energy control to generate locomotion too and to improve the stability of the

run if necessary and possible. We started with a distance of 40 cm since,

theoretically, it should be more stable than shorter ones. In figure 4.20 we

show the configuration design.

Figure 4.20: Second configuration of the robot. The distance between the
two halves now it’s equal to 40 cm.

Because the behaviour was good enough, we tried to reduce the lenght of the

boom of 10 cm and see if we still could achieve locomotion. In figure 4.21 we

show the configuration design.
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Figure 4.21: Second configuration of the robot. The distance between the
two halves now it’s equal to 30 cm.

Eventually we reduced again the gap up to 24 cm. In figure 4.22 we show

the appearance of the robot.

Figure 4.22: Third configuration of the robot. The distance between the two
halves now it’s equal to 24 cm.

4.2.2 Results achieved on the prototype

In this section we are going to present the results achieved with respect to

the three robot configurations and the analysis of the cost of transport for

each configuration.
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First configuration

We started by trying to generate locomotion by using the ”open-loop” control

law in which we send to the motors fixed frequency and amplitude square

waves as setpoints. Of course, the frequency chosen is the running frequency

discovered during the studies on the two-legged robot. Surprisingly, this

was enough to achieve a very stable running phase on an almost-straight

line. The cost of transport was measured in order to have an index of the

efficiency of the robot, taking in mind that no particular optimizations were

done to reduce the energy injected and to measure the speed we measured

the distance travelled with respect to the time, considering that the robot

would run on a perfect straight line even though it was not really true, so

the speed values should be likely increased by at least 10-15%. The cost of

transport in this case is equal to 1.54, taking into account that the mass of

the robot is equal to 2.66 kg and the average speed measured is 0.27 m/s. In

figures 4.23, 4.24, 4.25, we show respectively the cost of transport, the power

and the current absorbed in a time window of 5 s.

Figure 4.23: Cost of transport (blue line) and its mean value (black line)
measured in a time window of 5 s. The Cot is measured as: Powerin

mgv
.
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Figure 4.24: Power absorbed in Watt (blue line) and its mean value (black
line). The power was measured as: (Vdc − Ri) ∗ i where Vdc is considered
constant and equal to 12 V and the currend is measured by measuring the
voltage drop on a resistor and then divided by the resistor value itself.

Figure 4.25: Current absorbed in Amphere (blue line) and its mean value
(black line). The current was measured as: voltage drop

R
where R is equal to

0.47 Ω.
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While in figure 4.26, we show the outputs of the encoders placed on the knee

joints. They are an index of the stability of the run: if the run is stable the

peaks of the waves have not big variations.

Figure 4.26: Knee sensors outputs of the robot left side (left plot) and right
side (right plot). The encoders measure the rotation of the knee joints.

Because the running phase was really stable, we tried to see what would

happen if we would increase the amplitude of the setpoints, i.e. increasing the

springs compressions. We noticed that up to certain limit values the run was

still stable and the speed increased too, up to 0.32 m/s, but more important

the cost of tranport decreased to 1.4. This is a very interesting result because

it means that by compressing more the springs we actually increase the energy

efficiency. In figures 4.27, 4.28 and 4.29, we show respectively the cost of

transport, the power and the current absorbed measured in a time window

of 5 s.
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Figure 4.27: Cost of transport (blue line) and its mean value (black line)
measured in a time window of 5 s. The Cot is measured as: Powerin

mgv
.

Figure 4.28: Power absorbed in Watt (blue line) and its mean value (black
line). The power was measured as: (Vdc − Ri) ∗ i where Vdc is considered
constant and equal to 12 V and the currend is measured by measuring the
voltage drop on a resistor and then divided by the resistor value itself.
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Figure 4.29: Current absorbed in Amphere (blue line) and its mean value
(black line). The current was measured as: voltage drop

R
where R is equal to

0.47 Ω.

While in figure 4.30, we show the outputs of the encoders placed one the

knee joints. In this case too, we can observe that the peaks are quite similar

each other.

Figure 4.30: Knee sensors outputs of the robot left side (left plot) and right
side (right plot). The encoders measure the rotation of the knee joints.
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Increasing the amplitude of the setpoints, so increasing the amplitude of the

motors movements and compressing more the springs reduces the cost of

transport, unfortunately the drawback is the increment of the instabilty of

the run. As last trial, we tried to compress even more the springs and use

the energy controller to stabilize the run. With this configuration we were

able to achieve a cost of transport of 1.3 with an average speed of 0.35 m/s.

In figures 4.31, 4.32, 4.33, we show respectively the cost of transport, the

power and the current absorbed measured in a time window of 5 s.

Figure 4.31: Cost of transport (blue line) and its mean value (black line)
measured in a time window of 5 s. The Cot is measured as: Powerin

mgv
.
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Figure 4.32: Power absorbed in Watt (blue line) and its mean value (black
line). The power was measured as: (Vdc − Ri) ∗ i where Vdc is considered
constant and equal to 12 V and the currend is measured by measuring the
voltage drop on a resistor and then divided by the resistor value itself.

Figure 4.33: Current absorbed in Amphere (blue line) and its mean value
(black line). The current was measured as: voltage drop

R
where R is equal to

0.47 Ω.
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In figure 4.34, we show the sensors outputs. We can notice now that the

peaks, especially of the right side, tend to vary more than the previous cases,

but still not to much to compromize the global stability of the run.

Figure 4.34: Knee sensors outputs of the robot left side (left plot) and right
side (right plot). The encoders measure the rotation of the knee joints.

Second configuration

With this configuration, in which the distance between the two halves is 30

cm, we implemented just the ”open-loop” control with low energy injected.

The behaviour is more instable than the first configuration and consequently

the cost of transport is higher and equal to 1.64. We didn’t try to use the

energy controller because we preferred to work on the first configuration,

but nothing avoids us to think that the energy controller may improve the

stability of the run in this case too. In figures 4.35, 4.36, 4.37 and 4.38, we

show respectively the cost of transport, the power and the current absorbed

and the knee sensors outputs measured in a time window of 5 s.
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Figure 4.35: Cost of transport (blue line) and its mean value (black line)
measured in a time window of 5 s. The Cot is measured as: Powerin

mgv
.

Figure 4.36: Power absorbed in Watt (blue line) and its mean value (black
line). The power was measured as: (Vdc − Ri) ∗ i where Vdc is considered
constant and equal to 12 V and the currend is measured by measuring the
voltage drop on a resistor and then divided by the resistor value itself.
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Figure 4.37: Current absorbed in Amphere (blue line) and its mean value
(black line). The current was measured as: voltage drop

R
where R is equal to

0.47 Ω.

Figure 4.38: Knee sensors outputs of the robot left side (left plot) and right
side (right plot). The encoders measure the rotation of the knee joints.

From figure 4.38, we can observe the instability increment due to the different

configuration.
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Third configuration

The last cofiguration is the most instable one and the one with the worse

cost of transport, 1.87, but it still deserves to be prensented since locomotion

was achieved. In figures 4.39, 4.40, 4.41 and 4.42, we show respectively the

cost of transport, the power and the current absorbed and the knee sensors

outputs measured in a time window of 5 s. As in the previous case, we

implemented just the ”open-loop” control law since we preferred to focus on

the most naturally stable one. In figure 4.42, we can notice the instability

problem in the peaks of the waves since they are quite difference.

Figure 4.39: Cost of transport (blue line) and its mean value (black line)
measured in a time window of 5 s. The Cot is measured as: Powerin

mgv
.
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Figure 4.40: Power absorbed in Watt (blue line) and its mean value (black
line). The power was measured as: (Vdc − Ri) ∗ i where Vdc is considered
constant and equal to 12 V and the currend is measured by measuring the
voltage drop on a resistor and then divided by the resistor value itself.

Figure 4.41: Current absorbed in Amphere (blue line) and its mean value
(black line). The current was measured as: voltage drop

R
where R is equal to

0.47 Ω.
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Figure 4.42: Knee sensors outputs of the robot left side (left plot) and right
side (right plot). The encoders measure the rotation of the knee joints.

Conclusive summary

In table 4.1, we present the cost of transport values obtained with respect to

the configurations of the robot and the controllers implemented in order to

summarize the results.

Configuration Control law Best Cot Average speed

1 Open-loop 1.4 0.32 m/s
1 Energy controller 1.3 0.35 m/s
2 Open-loop 1.64 0.26 m/s
3 Open-loop 1.87 0.23 m/s

Table 4.1: Cost of transport values obtained for the different configurations
of the robot.

4.2.3 Manual navigation

We tried also to implement different gaits than the bound, unfortunately

with no success. Nevertheless we noticed that when the phase between the

two halves grew, the bound gait implicitly assumes phase equal to 0, the

robot, rather than changing the gait, started to turning in relation of which
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side is delayed. With this idea in mind using a simple potentiomenter as

input we can steer the robot to right or left. Starting from the signal from

the potentiometer, from 0 to 5 V, we map it from -0.025 to 0.025 since the

maximum delay allowed to generate locomotion is 0.05 and because we don’t

want to delay totally one side with respect to the other, but rather we want

to delay and anticipate both of half the value. In figure 4.43, we show the

procedure to generate the square waves that we can dalay manually through

the potentiometer.

Figure 4.43: Generation of the variable delay square waves. The signal from
the potentiometer is mapped from -0.025 to 0.025 and then it is sent to the
pulse generator blocks as input in order to change the phase.

In figure 4.44, we show a left turning sequence. After the turn, it is still

possible to keep running on a straight line or turning again in both directions.
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Figure 4.44: 90 degrees turning sequence.

4.2.4 Final considerations

The best cost of transport achieved is equal to 1.3, but nothing forbids us to

think that it may be even lowered by just slightly increasing the compression

of the springs and by correcting the stability with a stronger control action.

We need to remember that for the two-legged robot the cost of transport was

equal to 0.36, since it was easier to control just two legs even if we would

compress much more the springs. In the four legs case we were more limited

in doing that because the instability grows exponentially. Another possible

reason for its high value is that the servomotors, beacuse of the gears that

have inside, are not very energy efficient. We need more electrical power

that the ideal one in order to have the right mechanical power to move the
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robot. We don’t have also to forget that the speed measuraments are not very

accurate, but also very pessimistic since we consider the runnnig perfectly

along a straight line, thing that doesn’t actually happen. Last, but not least,

we need to remember that no optimization operations were performed to

find the optimal frequency, width or amplitude of the pulses. If we sum all

together, we can claim that we still have margins of improvement for the cost

of transport and the energy efficiency of the robot even though the results

are already quite good. Possible improvements could be to optimize the

running frequency with repect to the cost of transport to decrease it even

more and to improve the mechanical structure by redesigning it in order to

build something more cheetah-resembling in terms of joints and movements

and to achieve much higher running speeds.
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Chapter 5

Conclusions

The goal of the project was to build and control a quadruped robot that

can run fast and in an energy efficiency. Although we have not been able to

achieve fast running, the average speed is equal to 0.35 m/s, mainly due to

the limits of the mechanical structure, since the legs in the end can just jump

on the same spot, we have been able to achieve running with the bound gait

in a quite efficient way, the cost of transport is equal to 1.3, and the possibility

to steer the robot to left or right through a simple manual input. In order

to do that, we don’t have to forget the previous steps, necessary to complete

the research and in particular the theoretical background (Chapter2) and all

the work done on the two-legged robot (Chapter 3), with which we achieved

a very good value for the cost of transport, 0.36, with average running speed

equal to 0.35 m/s, fundamental for the design of the control concepts used

in the final prototype (Chapter 4). It is relevant to notice that combining an

elastic spine with jumping legs and a controller that, through a clock-based

pulses motors setpoints, excites the system with its own running frequency

is enough to provide energy efficient locomotion. If we combine it with a

control system that changes the amplitude of these pulses in relation to the

energy stored in the SEA springs, we achieve very stable locomotion even

with lower cost of transport. This work proves once more that in order to

increase the efficiency of legged robots it is possible to add passive elements

that can store and release energy during the walk or the running in order to
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mimic what the animal muscles do. Mimic the main features of the animal

world help us to build robots that are much more energy efficient.
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Appendix A

Dirac structures

Because we dealt with Port-Hamiltonian system and Bound-Graph notation,

it is worth to introduce the concept of Dirac structure [4]. In order to do

that, we have to define two abstract finite dimension structures:

• F: space of flows. Its elements are called flow vectors f ∈ F

• E: space of efforts. Dual space of F⇔ E = F∗

The resulting space will have dimension F× E⇔ F× F∗ and we will call it

the space of port variables. On the space of port variables we can define the

power as:

P =
〈
e|f
〉

(f, e) ∈ F× F∗ (A.1)

where
〈
e|f
〉

indicates the dual product. If f is a column vector and e is a

row vector then the power is simply the product ef . So because also the

effort is a column vector, the power can be written eventually as:

P = eTf (A.2)

Now we are able to give a definition of Dirac structure: a Dirac structure on

F× F∗ is a subspace D ⊂ F× F∗ such that:

1.
〈
e|f
〉

= 0 (f, e) ∈ D
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2. dimD = dimF

The first property corresponds to the power-conservation and expresses the

fact that the total power entering or leaving a Dirac structure is 0. It can

also be shown that the maximal dimension of any subspace D ⊂ F×F∗ that

satisfies property 1 is equal to dimF.
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Appendix B

Electronic structure

In this section the electronic structure used for the prototype will be pre-

sented. We will focus our attention on three aspects:

1. The motors

2. The sensors

3. The boards

B.1 The motors

The motor used are HerkuleX servomotors model DRS-0602 of Dongbu Robot

with parameters shown in table B.1.

Dimensions 56mm(W) X 35mm(D) X 46mm(H)
Weight 145g

Input voltage 9.5 - 14.8 V
Rated voltage 12 V
Stall torque 7.6 Nm
Max speed 0.164s/60 degrees

Encoder resolution 12960 steps/360 degress

Table B.1: Servomotor main parameters.

These servomotors can be progammed easily through the suitable software

in order to choose the type of control, proportional, proportional-integral
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or proportiona-integral-derivative, the gain of the controller, the range of

positions allowed and other motor parameters. We choose to work with

only a proportional controller because we don’t require particular dynamic

performances. As shown in figure B.1, every motor has four input/output

wires:

• GND: connected to the ground pin of the power supply.

• VDD: connected to the positive voltage pin of the power supply.

• TXD: output signal of the servomotor.

• RXD: input signal of the servomotor.

Figure B.1: DRS-0602 sketch in order to hightlight input and output pins of
the motor.

In order to communicate with the motors, we wrote a code on the Arduino

Mega 2560. This code will be explained in the next section.

B.2 The sensors

The sensors used, AS5600 by ams, one for each leg, measure the rotation

of the ”knee” rotational joint. These sensors are magnetic rotary position
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sensors with a resolution of 12-bits, 4096 steps over 360 degress. You can see

a schematic draw to highlight the pins in figure B.2.

Figure B.2: AS5600 schematic draw to highlight the pins.

The only three pins that we need are the voltage, VDD, the ground, GND

and the sensor output, OUT. In figure B.3 is shown the sensor placed on its

board, the printed circuit and the three wires above mentioned.

Figure B.3: AS5600 installed on its board. The sensors are placed on the
knee joints.

94



B.3 The boards

The brain of the cheetah is essentially composed by two boards:

• Arduino Mega 2560

• RaMstix

The Arduino Mega 2560 [2] is used to communicate with the motors. Herkulex

motors have a library of function in order to be controlled through and Ar-

duino. Below we show the code written ad in particular the loop reading

and writing action performed. The Arduino recieves the input signals for

the motors from the RaMstix, board in which all the computations are done.

Unfortunately the RaM stix has just two DAC outputs, so for the other two

motors we use the PWM pins. In the first four line of code you can see the

functions ”analogRead()” and ”pulseIn()” that read and acquire the signal

from the RaMstix.

adcval = analogRead(adcpin);

adcval2 = analogRead(adcpin2);

pwmleftanterior = pulseIn(adcpin3,HIGH);

pwmleftposterior = pulseIn(adcpin4,HIGH);

Then, using the function ”Herkulex.getPosition()”, the position of each mo-

tor is read and assigned to a runtime variable.

motorpos = Herkulex.getPosition(motorid);

motorpos2 = Herkulex.getPosition(motorid2);

motorpos3 = Herkulex.getPosition(motorid3);

motorpos4 = Herkulex.getPosition(motorid4);

Now we map the control signals, coming from the RaMstix, to motors set-

points in suitable ranges and assign those values to the variables ”motorset-

point”, while the motors positions are mapped in a PWM signal from 0 to
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255.

motorsetpoint = map(adcval,minadcval,maxadcval,minmotorposright,maxmotorposright);

motorsetpoint2 = map(adcval2,minadcval,maxadcval,minmotorposright,maxmotorposright);

motorsetpoint3 = map(pwmleftanterior,0,2000,minmotorposleft,maxmotorposleft);

motorsetpoint4 = map(pwmleftposterior,0,2000,minmotorposleft,maxmotorposleft);

pwmval = map(motorpos,minmotorposright,maxmotorposright,0,255);

pwmval2 = map(motorpos2,minmotorposright,maxmotorposright,0,255);

pwmval3 = map(motorpos3,minmotorposleft,maxmotorposleft,0,255);

pwmval4 = map(motorpos4,minmotorposleft,maxmotorposleft,0,255);

Eventually the motors position are written on the used pins through ”analogWrite()”

and the commands to the motors are sent through the function ”Herkulex.moveOne()”.

analogWrite(pwmpin,pwmval);

analogWrite(pwmpin2,pwmval2);

analogWrite(pwmpin3,pwmval3);

analogWrite(pwmpin4,pwmval4);

Herkulex.moveOne(motorid, motorsetpoint, 1, LEDGREEN);

Herkulex.moveOne(motorid2, motorsetpoint2, 1, LEDBLUE);

Herkulex.moveOne(motorid3, motorsetpoint3, 1, LEDBLUE);

Herkulex.moveOne(motorid4, motorsetpoint4, 1, LEDGREEN);

Furthermore, the Arduino is powered by 5V DC and, as we said before, it is

connected to motors and RaMstix. The control system is instead managed

by the RaMstix [12], figure B.4 and in particular by the FPGA installed on

it. The sensors are directly connected to the RaMstix and we communicate

with it in order to start and stop the robot.
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Figure B.4: RaMstix.
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Appendix C

Ground contact model

It is worth to spend few words on the ground contact model used in our

simulations and understand why it is the main reason of their slowness and

unpredictability. The foot-ground contact is modelled with elastic-dissipative

relations in the 3-dimensional space, so we will consider more than one con-

tributes in our studies. If we study effort vector:

P =



0

0

0

Fcx

Fcy

Fnz


(C.1)

We neglect the rotations contributes, while along the three main axis of

translation, x, y and z we have three different terms dependend of the vertical

position of the foot. In particular if the event contact occurs:


Fcx = −µ ∗ (−K ∗ z) ∗ tanh(slope ∗ vx)

Fcy = −µ ∗ (−K ∗ z) ∗ tanh(slope ∗ vy)

Fnz = −K ∗ z −D ∗ abs(z) ∗ vz

(C.2)

Elsewhere:
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
Fcx = 0

Fcy = 0

Fnz = 0

(C.3)

where:

• K: elastic coefficient of the ground. It is equal to 1e6 in order to have

maximum deflection for 1 mm of displacement.

• D: damping coefficient of the ground. It is set equal to 1e6.

• µ: Coulomb friction, an empirical property of the materials in contact.

It is equal to 1.

• slope: coefficient choosen to detect the sign of vx and vy. It is set equal

to 1e3.

The last think we need to analyse is the ground contact event and its oc-

curence. When z, vertical position of the foot, is less than zero the boolean

variable contact is set to its positive value and the feet immediately start to

feel a force described by relations D.2. The feet will be pushed back by an

high order-dynamic spring with a very big stiffness and damping coefficients,

while, reaching a positive z position, they will be freed by these forces be-

cause the contact does not exist anymore. The slowdown of the simulations

is due to the fact that, in the moment in which the ground contact event

is activated, the foot becomes in contact with a high order-dynamic spring

so the solver algorithm requires much more time to solve those equations

because much more complex. This explains the slowness of the simulations.

Consequently moving to the four-legged cheetah will slow down everything

much more because we need to consider the contact between four feet and

the ground. The unpredictability is instead explained by the fact that the

z position measured that activates the ground contact event changes every

step, so our forces will change at every step and the starting point of the

algorithm that solves the system will change at every step. This leads to an
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high unpredictability of the model that makes the simulations much more

complex and unreadable that the results obtained on the prototype.
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Appendix D

Gait analysis

The gait [9] is the sequence of movements of the limbs of animals, humans and

legged-robots necessary to provide locomotion. There exists a huge number of

different gaits, in particular for quadrupeds and the animal can choose among

them in relation with their speed, the type of the ground and the energy

consumption. We are going to analyse in details five different quadrupeds

gaits:

1. Bound

2. Walk

3. Trot

4. Transverse gallop

5. Rotary gallop

D.1 The bound

The bound is one of the most easy-patter gaits. The two anterior legs are

coupled as the posterior ones and the period is composed by a simultaneous

touchdown of the rear limbs, a flight phase, the simultaneous touchdown of

the front feet and a final flight phase, see figure D.1.
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Figure D.1: Bound pattern. Figure reproduced from [9].

D.2 The walk

The walk is the least tiring-gait for every animal in which they alternate a

two-limbs ground contact to a three-limbs one as shown in figure D.2. Of

course the speed of the animals while they walk is low and limited.

Figure D.2: Walk pattern. Figure reproduced from [9].

The walk has two main variants:

• Power walk: three feet simultaneously touch the ground and the two-

limbs ground contact phase is not present anymore.

• Quick walk: only two feet touch the ground simultaneously while the

three-limbs ground contact phase is not present anymore.

D.3 The trot

The trot is a two-limbs ground contact gait with a flight phase in the middle

in which the feet on the diagonal touch the terrain simultaneously. It is

typically use by animal on irregular and rough land or to travel very long

distances at a quide good speed. There are a lot of type of trot depepnding

on the animal, but they will not be analysed. In figure D.3 is shown the trot

pattern.
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Figure D.3: Trot pattern. Figure reproduced from [9].

D.4 The transverse gallop

The transverse gallop allows reaching high speed, but it is very energy-

comsumer. It is a kind of gait in which just one foot touches the ground

every time with a flight phase at the end of every period, i.e. the touchdown

of the four feet. In figure D.4 is shown this pattern.

Figure D.4: Transverse gallop pattern. Figure reproduced from [9].

D.5 The rotary gallop

Rotary gallop is the gait that allows reaching the highest speed among the

other gaits, but it is also the most energy-consumer. As in the transverse

gallop only one foot touches the ground every time, but here we have twice

the flight phases, i.e. two flight phases every period. It is the typical gait of

cheetahs, figure D.5.

Figure D.5: Rotary gallop pattern. Figure reproduced from [9].
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D.6 Energy consumption and energy efficiency

It’s well-known that animals and humans are very energy efficient in the field

of locomotion [3], that’s why legged robot try to mimic their energy efficient

features to achieve energy efficiency too. Although there are a lot of tools

that the nature uses to achieve energy efficiency we would like to focus on the

relation among type of gait, energy required, in term of oxigen consumption

and moving speed. An exhaustive plot is shown in figure D.6.

Figure D.6: Relation between energy consumpion of the gait and moving
speed Figure reproduced from [3].

From experiments on a horse, some researchers collected data and draw the

graph above. It’s worth to notice that the velocity increment leads the animal

to change its gait. However the most interensting thing is the moment in

which its gait changes. It was discovered that the horse, but more in general

animals, moves with the type of gait that is the least energy consuming for

their travel speed. In the plot you can see exactly this concept, with the

speed that keeps increasing, in the moment in which the walk becomes more

energy consuming than the trot, the horse starts to trot rather than walk

and the same thing happen in the moment in which the trot becomes more

energy consuming than the gallop.
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