

Assessment of Ultrasonic Tissue Characterization

A. (Arianna) Girardi

MSc Report

Committee: Prof.dr.ir. C.H. Slump F. van Limbeek-van den Noort, MSc Dr. A.T.M. Bellos-Grob Ing. G. Weijers

January 2019

002RAM2019 Robotics and Mechatronics EE-Math-CS University of Twente P.O. Box 217 7500 AE Enschede The Netherlands

UNIVERSITY OF TWENTE.

Contents

1	Intr	oduction	1
	1.1	Anatomy and Function of the Pelvic Floor	1
	1.2	Pelvic Floor Imaging	3
	1.3	Ultrasonic Tissue Characterization	3
	1.4	Aims and Outline	5
2	Ult	asonic Tissue Characterization Method	7
	2.1	Ultrasound Imaging	7
		2.1.1 Interaction of Ultrasound with Tissue	7
		2.1.2 Ultrasound Image Formation	9
	2.2	Ultrasound Tissue Characterization data	11
	2.3	Ultrasound Tissue Characterization Methods	11
		2.3.1 Integrated Backscatter Coefficient	12
		2.3.2 Attenuation Coefficient	13
		2.3.3 Speed of Sound	13
		2.3.4 Scatterer Size	15
		2.3.5 Envelope Statistics	16
	2.4	Discussion	18
	2.5	Conclusions	20
3	Mat	erials	21
	3.1	US Machine	21
	3.2	Tissue Mimicking Phantom	22
	3.3	Biceps	22
	3.4	Pork Fillet	23
4	Qua	lity Assessment of the US Machine	25
	4.1	QA4US	25
		4.1.1 Performance and Postprocessing of US Machine	26

		4.1.2 From RF to B-mode	30		
	4.2	Statistics Distribution	34		
	4.3	Conclusions	39		
5	Infl	uence of US Acquisition Parameters on Nakagami Images	41		
	5.1	Nakagami Imaging Method	41		
		5.1.1 Window Size	41		
	5.2	Biceps Data	43		
		5.2.1 Results	43		
		5.2.2 Discussion	46		
	5.3	Pork Fillet Data	48		
		5.3.1 Results	48		
		5.3.2 Discussion	49		
	5.4	Conclusions	49		
6	Infl	uence of US Postprocessing on Nakagami Images	51		
	6.1	Post-processed Data	51		
		6.1.1 Methods	51		
		6.1.2 Results	52		
		6.1.3 Discussion	52		
	6.2	New Envelope Data	55		
		6.2.1 Methods	55		
		6.2.2 Results	55		
		6.2.3 Discussion	56		
	6.3	Conclusions	58		
7	Con	clusions and Future Remarks	61		
	7.1	Future Remarks	63		
Appendices					
Bi	Bibliography				

Abstract

During delivery, a trauma of the levator ani muscles (LAM) may occur causing, within time, urinary incontinence and pelvic organ prolapse. Since it is unclear how pregnancy and delivery change the pelvic floor muscles, it is necessary to provide more information about their structure to better understand their (dys)function. Ultrasonic tissue characterization (UTC) is used to characterize biological tissue and can probably be used to better understand the pelvic floor muscles structure. The echointensity parameter was already used on the LAM to better understand the structure of the pelvic floor but this parameter was found to change significantly depending on the scan operator. Here we show how the Nakagami method can be used to characterize skeletal muscles with parameters that are less operator and machine dependent. It was shown that the Nakagami results did not depend on the orientation of the transducer probe, on the different experimental set up and on the different stretching of the muscle. However, the results changed between different subjects. In literature, the Nakagami method is mainly applied on the envelope of the radio frequency (RF) data. In fact, on B-mode data, the results were found to lose most of the structure information. The Nakagami method was used on B-mode data which was transformed back into RF data. This shows similar results to the original RF data. Our results demonstrate how Nakagami imaging can give structural insights into the skeletal muscle with less dependency on the user and the machine. To use it for clinical purposes, we applied the Nakagami method on B-mode data.