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Abstract
Background Significant changes in rhythm are visible on electroencephalography (EEG) recordings dur-
ing cardiac arrest. Our aim is to improve the understanding of underlying pathophysiological mechanisms
causing these EEG changes using computational modelling. To couple the computational outcomes to
clinical EEG recordings, we use a neural mass model. Hence, the primary objective of this study is to
construct and analyse an energy-dependent neural mass model based on ion concentrations to examine
the effect of energy depletion during cardiac arrest on neural activity.
Methods We constructed an ion-based neural mass model comprising an excitatory and inhibitory neu-
ral population and excitatory external input. Energy (adenosine triphosphate (ATP)) dependency was
accomplished by including ATP-dependent Na+-K+-ATPase (NKA) and an adapted firing rate function
for the two neural populations. In addition, a network of coupled spiking single cells was constructed
to which the outcome of the neural mass model was compared. NKAs were included in this second
model as well, offering the possibility to tune the strength of these pumps during simulation. We studied
the responses of both models to an excitatory external input, to different levels of ATP deprivation and
to recovery after deprivation and restoration of the ATP supply. We also investigated a mechanism to
promote this recovery. Furthermore, the outcome of both models was compared to the EEG signal of a
patient recorded during cardiac arrest. Lastly, both models were analysed to gain more insight into the
dynamic behaviour of the models.
Results Periodic behaviour is observed in both models as a response to transient external input indicat-
ing normal behaviour of the models under physiological conditions. The strength of the external input
determines the qualitative dynamics of the models. The response of the models to ATP deprivation
depends on the depth of this deprivation. ATP levels below a critical point lead to depolarization of
the membrane potential, which is visible on the simulated EEG signals as a large slow wave. Based on
the real EEG signal, the hypothesis was to observe slowing of the simulated EEG signals during ATP
deprivation. However, the frequency of the periodic behaviour initially increased in both models. In case
of total ATP cessation, this was followed by EEG suppression. Besides, the membrane potentials of the
network model recovered after ATP deprivation only if voltage-gated sodium channels were blocked. The
membrane potentials of the neural mass model recovered as soon as ATP levels increased, even without
blocking voltage-gated sodium channels.
Conclusion The newly constructed models provide a unique extension in the field of computational neu-
roscience by including NKAs and ATP dependency at a macrosopic level. Both models show similar
behaviour as other computational models. However, complete ATP cessation results in changes of the
EEG rhythm in both models which do not correspond to the changes seen in the real EEG. We recommend
further research to extend the models e.g. by incorporating more ATP-dependent processes, to improve
the understanding of the EEG changes visible during cardiac arrest. Although there is still a gap between
the models and clinical use, this study provides a starting point for future models to investigate and un-
derstand pathophysiological mechanisms of neural diseases caused by ATP deprivation and/or imbalance
of ion concentrations.
Keywords Cardiac arrest, ATP, Na+-K+-ATPase, neural mass model, ion-based, Gibbs-Donnan, mem-
brane depolarization
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1 | Introduction

Cardiac arrest is a catastrophic event causing abrupt cessation in delivery of oxygen and glucose affecting
the human brain almost immediately [81]. Inadequate supply of oxygen and glucose can lead to severe
damage of brain tissue and a state of unconsciousness called postanoxic coma [48]. Incidence rate of
out-of-hospital cardiac arrest in Europe is 84 per 100,000 persons per year. Approximately 50% of the
patients in postanoxic coma never regain consciousness due to severe brain damage [22,64].

Hypoxia results in reversible, and ultimately irreversible, damage to neurons. The outcome depends on
the duration and severity of oxygen and glucose deprivation (OGD) leading to insufficient energy supply
to the brain [47]. During cardiac arrest, significant rhythmic changes are visible on electroencephalography
(EEG) recordings. Nowadays, physicians use EEG more frequently to assist in outcome prediction for
comatose patients after cardiac arrest [72]. For approximately 50% of the patients, a reliable prediction
based on visual assessment of the EEG by experienced clinical neurophysiologist cannot be made [68]. Up
to now, neural processes underlying the EEG changes observable during energy depletion caused by cardiac
arrest, remain largely unknown. A better understanding of underlying pathophysiological mechanisms can
contribute to an improved understanding of these changes and an improved outcome prediction. Enlarged
pathophysiological knowledge can also be of added value for more targeted treatment of patients suffering
cardiac arrest.

Gaining more pathophysiological knowledge can be accomplished using neural mass models (NMMs).
These computational models allow for simulation and investigation of macrosopic neural behaviour, which
is reflected by EEG signals. Previously, a NMM was constructed by Ruijter et al. (2017) to relate neural
dynamics in the postanoxic brain to EEG observations [58]. Although multiple computational models exist
to investigate the immediate effects of energy deprivation on a microscopic scale, no NMM describing
these effects at a macroscopic level has been constructed yet [17,79]. Such a macroscopic model can link
the computational outcomes to clinical EEG results. Moreover, diminished levels of energy cause mal-
functioning of multiple energy dependent processes like Na+-K+-ATPase (NKA), which, in turn, affects
neural activity. It is important to keep track of ion concentrations to study the resulting effects. To the
best of our knowlegde, no NMM exists that comprises these ion concentrations. The primary objective of
this study is to construct and analyse an energy-dependent NMM based on ion concentrations to exam-
ine the effect of energy depletion during cardiac arrest on neural activity. Based on clinical EEG results,
we expect the simulated EEG signals to show slowing of the signal frequencies during energy depletion [20].

Chapters 2 and 3 provide clinical and mathematical background information. Our energy-dependent
NMM is introduced in Chapter 4. Also, we elaborate on an additional network model consisting of
coupled spiking single cells. Both models are described in detail in this chapter. The results of the models
are presented in Chapter 5. In Chapter 6, results, limitations and clinical relevance of this study are
discussed and recommendations for further research are given. We finish with our conclusion of this study
in Chapter 7.
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2 | Clinical Background

The human brain consumes almost 20% of the total body oxygen, although its weight accounts for only
2% of the total body weight [56]. As our brain highly depends on oxygen to maintain normal function,
global anoxia can cause severe brain damage. This chapter elaborates on cardiac arrest and neural
consequences of this event. In addition, information about EEG and EEG changes visible during cardiac
arrest is provided. Furthermore, Appendix D contains more background information about cell biological
topics relevant for this research.

2.1 Cardiac arrest and neural consequences

Cardiac arrest is defined as functional cardiac mechanical activity loss together with an absence of sys-
temic circulation [48]. There are several causes for an unexpected cardiac arrest like sudden failure of the
heart due to infarction, cardiac arrhythmia, acute circulatory obstruction and cardiovascular rupture [39].
Yearly, approximately 8000 cases of out-of-hospital cardiac arrest occur in the Netherlands [24]. Even after
successful return of spontaneous circulation, a majority of the patients remain comatose [64].

Postanoxic encephalopathy is one of the main determinants of the outcome after cardiac arrest and is
associated with considerable neurological damage [61]. Cerebral blood flow (CBF) provides oxygen and
glucose to neurons. The mitochondria of the neurons use this oxygen and glucose for the production of
adenosine triphosphate (ATP), which is the primary energy carrier in the human body. OGD following
cardiac arrest therefore inevitably results in a decrease of cellular ATP levels in the brain [78]. Levels of
ATP of 95% of baseline value can still be provided in early stages of ischemia [35]. ATP buffers are spent
in five minutes leading to ATP levels dropping below 10% of baseline and eventually becoming 0%.

Multiple neuronal processes require ATP to function properly. Experimental studies show that mild to
moderate hypoxia results in synaptic failure due to presynaptic and/or postsynaptic failure [27]. A shortage
of ATP also diminishes the strength of NKAs. The primary role of these enzymes, located in the mem-
brane of neurons, is to maintain specific ion gradients of sodium (Na+) and potassium (K+). If hypoxia
persists and perfusion rates drop to approximately 18 mL/100g/min, NKAs can no longer maintain ion
gradients [20,62]. Neurons reach their threshold potential resulting in anoxic oscillations and release of
large amounts of neurotransmitters, which is toxic in high concentrations. Furthermore, the loss of con-
trol of influx of sodium and efflux of potassium can lead to cell swelling [25]. Especially the ion exchanger
SLC26A11 is thought to play a significant role in this neuronal swelling. It is highly expressed in cortical
neurons of the central nervous system and acts as a voltage-gated chloride (Cl−) channel. Opening of this
channel occurs when the membrane potential depolarizes. The efflux of potassium can, to some extend,
compensate the osmotic imbalance caused by the inflow of sodium. However, the influx of chloride cannot
be counteracted as the anionic intracellular environment mainly consists of impermeable anions. The re-
sulting increase of the intracellular osmolarity leads to water entering the cell [59]. The extracellular space
(ECS) is now depleted from sodium, chloride and water and the gradients of these molecules across the
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capillary membranes change. As a result, constituents from the intravascular space enter the brain and
the neuronal tissue swells [40]. This so-called cerebral edema is observed in some patients and considered
to indicate severe brain injury [18].

If all energy-dependent (active) ion transport is absent, a new distribution of the diffusible ions takes
place and the membrane potential of neurons evolves to another equilibrium potential. This so-called
Gibbs-Donnan (GD) equilibrium is independent of specific ion permeabilities. The Nernst potentials of all
permeant ions equal the (new) membrane potential. The GD equilibrium is usually around -20mV. This
is due to the presence of impermeant charged ions [17,36,63].

Although a decrease of ATP affects multiple processes in the brain, we decided to focus on the effect of
ATP deprivation on NKAs and the resulting effects of failure of these pumps. The NKA is an electrogenic
ion transporter of sodium and potassium. Ion gradients of sodium and potassium are disturbed during
an action potential as there is influx of sodium and efflux of potassium. The NKA consumes ATP while
restoring the gradients of these ions [11]. At the cost of one ATP molecule, the pump exports three sodium
ions and imports two potassium ions per pump cycle, thereby generating a net transmembrane current [17].
In physiological state, the KCl cotransporter KCC2 maintains low intracellular chloride concentrations [49].
The protein is expressed throughout the central nervous system. This transporter uses the potassium
gradient generated by NKA to extrude chloride from the neurons. Problems with NKAs thus affect KCC2
as well. The extracellular potassium concentration can influence the working direction of the symporter.
The transport of both potassium and chloride can be reversed by a moderate or high increase of the
potassium concentration in the ECS [10].

2.2 Electroencephalography
EEG measures the electrical brain activity. The EEG signal shows waveforms of several µV reflecting
the weighted sum of dendritic currents. These currents originate from cortical pyramidal cells close to
the EEG electrodes on the scalp. EEG has multiple clinical applications such as detection of seizures,
investigation of sleep disorders and monitoring coma and brain death. Changes in the EEG rhythm are
closely connected to levels of CBF. The relation between CBF, EEG and cellular response was summarized
by Foreman et al. (2012) (See Figure 2.1) [20]. During cerebral ischemia, loss of faster frequencies can be
observed on the EEG. When CBF levels drop below 18 mL/100g/min, the EEG shows a gradual increase
of slower frequencies. Below this ischemic threshold, NKAs begin to fail which results in loss of membrane
gradients and the consequences of this.
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Figure 2.1: Relation between CBF, EEG and cellular responses. EEG changes are observed when CBF declines,
leading to different cellular responses. CBF levels below the ischemic threshold of approximately 18 mL/100 g/min
result in failure of NKAs. Figure from Foreman et al. (2012) [20].
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3 | Computational modelling of neurons
and neural networks

Computational models shed light on fundamental mechanisms underlying neural processes. We investigate
multiple existing computational models to gain a better understanding of the models suitable as a base
for this study. These computational models exist at different spatial scales. We considered several single
cell models (microscopic scale) and NMMs (macroscopic scale) relevant for our research and provide more
information about these models in this chapter. Single cell models are detailed and focus on the level of
information exchange between single neurons, while NMM describe brain dynamics at the scale of large
populations of neurons.

3.1 Single cell models

A range of single cell models describing the spiking behaviour and dynamics of single cortical neurons,
exist. We aim to mimic the effect of ATP depletion on the brain, for which a so-called conductance based
model is preferable. Such a model is based on an equivalent circuit representation of a cell membrane as
shown in Figure 3.1. Conductors represent ion channels, batteries represent concentration gradients of
ions, and capacitors represent the ability of cell membranes to store charge. A conductance-based model
is chosen when a biophysically detailed model is desired. A drawback of this type of model is the intrinsic
complexity making it harder to analyze the model [31].

Figure 3.1: Equivalent circuit representation of a cell membrane. A conductance-based model is based on
an equivalent circuit representation. The circuit consists of membrane capacitance Cm, membrane potential Vm,
conductance gX of ion X, ion current IX through ion channels of ion X and equilibrium potential VX of ion X
with X ∈ {Na+,K+}. IL is the leak current and gL and VL are the corresponding conductance and equilibrium
potential, respectively. Conductors represent ion channels, batteries represent concentration gradients of ions, and
the capacitor represents the ability of the cell membrane to store charge.
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As a start, this section discusses the model of Hodgkin and Huxley. This is a highly acclaimed example
of a conductance-based model and often serves as a base for other models such as those of Zandt et al.
(2011) [79] and Dijkstra et al. (2016) [17]. These two models focus on the effect of ATP depletion on the
behaviour of a single cell. Secondly, we provide more information about these two models as well and
come back to this at the end of Section 3.2.

3.1.1 Hodgkin-Huxley model

The Hodgkin-Huxley (HH) model is a computation model describing the voltage changes across a single
cell membrane which can result in the generation of action potentials. Three major currents are incorpo-
rated in the HH model: voltage-gated sodium current INa, voltage-gated potassium current IK and leak
current IL, mostly representing chloride [31]. The following coupled ordinary differential equations (ODEs)
describe the dynamics of membrane potential Vm:

Cm
dVm
dt

= Im − IK − INa − IL,

= Im − gKn4(Vm − VK)− gNam3h(Vm − VNa)− gL(Vm − VL),
dn

dt
= αn(Vm)(1− n)− βn(Vm)n,

dm

dt
= αm(Vm)(1−m)− βm(Vm)m,

dh

dt
= αh(Vm)(1− h)− βh(Vm)h,

where gX and VX denote the maximal conductance and Nernst potential of ion X, respectively, with
X ∈ {Na+,K+}. Furthermore, there is a maximum leak conductance gL and equilibrium potential of
the leak population VL, activation variable n for potassium, activation variable m for sodium, inactivation
variable h of sodium and voltage-dependent rate constants αz and βz with z ∈ {n,m, h} [26,31]. Equations
for αz and βz are provided in Chapter 4. INa is transient as the corresponding channel contains both
activation and inactivation gates. Potassium channels do not have inactivation gates. This result in a
persistent IK [31].

The HH model allows for simulation of action potentials. A constant input current I(t) = I0 for t > 0 can
be applied to the model. Spiking activity can be observed when I0 exceeds a specific threshold current
Ith. This critical value is the minimal current necessary to reach a depolarization threshold. However,
it should be kept in mind that the HH model can be a bistable model. A bistable model has two stable
coexisting attractors (also called equilibrium states or stable solutions). The initial values of the system
determine if the HH model exhibits bistability because trajectories starting from different initial conditions
are attracted by different solutions of the system [8]. Figure 3.2 shows examples of the HH model dynamics.
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Figure 3.2: Dynamics of Hodgkin-Huxley model. A continuous external input current I is provided to the model
starting at t = 200 ms (dashed grey line). Action potentials are generated when input current I exceeds threshold
current Ith. A. I < Ith and no action potentials are generated. B. I ≈ Ith and a spike train is observed. Each
action potential is followed by an absolute and relative refractory period. C. I > Ith leads to rhythmic generation
of action potentials.

3.1.2 Modelling ‘Wave of Death’

Zandt et al. (2011) simulated a high amplitude slow brain wave as observed in the EEG of rats (Fig-
ure 3.3) [79]. As this pattern occurs one minute following decapitation, potentially reflecting the syn-
chronous death of neurons, it is called the ‘Wave of Death’. The model is based on the HH model.
Dynamics of sodium and potassium channels are incorporated, as well as a leak current for sodium,
potassium and chloride. There is preservation of the total amount of sodium in the model. The ex-
tracellular potassium concentration changes due to buffering by glial cells and diffusion from and into
the capillaries. Chloride concentrations are kept constant under physiological conditions, but not under
pathophysiological conditions. Furthermore, the NKA maintains ion homeostasis. OGD is simulated by
setting the pump current to zero and stopping glial uptake and diffusion of potassium simultaneously.
ATP dependency of the NKA is not modelled explicitly.

Figure 3.3: EEG recordings of nine rats during and after decapitation. The EEG is recorded from 10 seconds
before decapitation till 120 seconds after. The ‘Wave of Death’ is visible as a large, slow wave between 40 and 60
seconds post decapitation. Movements artifacts due to decapitation result in amplitude changes at t = 0. Figure
adapted from Van Rijn et al. (2011) [73].

9



Interaction between neurons is important in the determination of neural behaviour. Therefore, modelling
a realistic EEG signal is usually not possible with only one single cell model. However, the neurons receive
no input from other neurons as synaptic transmission stops in the model of Zandt et al. (2011) and so,
it is stated that the dynamics can be simulated by a single cell, assuming that most neurons show similar
behaviour as the modelled one [79]. In this case, the mean membrane potential serves as a proxy for the
raw EEG signal as shown in Figure 3.4. Zandt et al. (2011) showed that a sudden depolarization of the
membrane voltage is indeed visible after severe OGD. However, this depolarization does not necessarily
imply irreversible damage or neuronal death. Thus, it is disputable if the name, ’Wave of Death’, is
appropriate as restoring the ATP levels can revive cell dynamics [79]. ATP reserves are not incorporated
in the model. Including ATP reserves probably would have led to a delayed onset of the simulated wave.

Figure 3.4: Mean membrane potential and corresponding EEG signal. The dashed line shows the mean
membrane potential V . A flat distribution with a width of 300 ms was chosen. Applying a second order Butterworth
filter with a cut-off frequency of 0.1 Hz leads to the EEG signal shown by the solid line. Figure from Zandt et al.
(2011) [79].

3.1.3 Modelling cytotoxic cell swelling

Tissue swelling, following swelling of neurons, leads to cerebral cytotoxic edema. This happens as a result
of OGD as described in Section 2.1. Dijkstra et al. (2016) developed a biophysical model to simulate
cytotoxic cell swelling and to study key determinants [17]. The model consists of one neural compartment
surrounded by an infinite ECS. Intracellular chloride levels and remaining activity of the NKA turn out
to play a crucial role in the emergence of cytotoxic edema. Cell volume increases enormously when the
strength of the NKA exceeds a critical value. This leads to a GD equilibrium from which recovery of
the neuron is not possible. Transitioning from rest to GD equilibrium follows the shutdown of the NKA.
Cytotoxic edema can only be reversed by restoration of energy together with blocking the voltage-gated
sodium channels, leading to functional recovery [17].

The dependence of the model on the strength of the NKA is studied using bifurcation analysis. A
bifurcation of a dynamical system is a qualitative change in dynamical behaviour of the system, caused
by varying a single or multiple parameter(s). The critical value of the pump strength turns out to
be approximately 65% of the initial pump strength. Further decreasing of the pump strength leads to
disappearance of the physiological state via a so-called saddle-node (SN) bifurcation. A stable equilibrium
collides with an unstable equilibrium at a SN bifurcation. Near such a bifurcation, sudden and huge shifts
in the systems behaviour can occur as a response to small changes. Figure 3.5A shows the corresponding
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bifurcation diagram. Furthermore, the size of the neuron has a high dependency on the strength of the
pump when the cell converges to the pathological equilibrium. A change of the strength leads to major
differences in the level of cell swelling. The pathological state is stable for pump strengths below 185%
of baseline strength. A subcritical Hopf bifurcation occurs at approximately 185%. The system loses its
stability and returns to the physiological state at this point (Figure 3.5B) [17].

Figure 3.5: Bifurcation diagram of NKA strength, membrane potential and neuronal volume. The strength
of the NKA was taken as the free parameter. The solid lines indicate stable equilibria and the dotted lines indicate
unstable equilibria. A. The physiological resting state is lost via a saddle-node bifurcation (SN, orange) when the
pump strength is approximately 65% of its baseline strength. Further decrease of the pump strength leads to
convergence of the cell to a depolarized GD equilibrium. The pathological state is stable for pump strengths below
185% of the baseline strength. At approximately 185%, there is a subcritical Hopf bifurcation (H, blue) and the
system loses stability. B. When the cell is in the physiological resting state, its volume is almost constant regardless
of pump strength. However, when the cell converges to the pathological equilibrium, changes in the pump strength
lead to large differences in cell volume. Figure from Dijkstra et al. (2016) [17].

3.2 Neural mass models
The brain consists of a large number of neurons. We would encounter several difficulties when trying
to accurately capture the behaviour of a population of neurons by simulating each neuron individually.
First, the model would be computationally very expensive. Secondly, a high number of parameters would
be involved in the model. Analyzing the influence of the parameters and setting the initial values is,
therefore, very complicated [21]. An alternative is to model the average behaviour of large populations
of neurons with a NMM. The principle behind these models is comparable to how EEG measures the
brain: EEG focuses on voltage measurements of synchronously firing populations of neurons in the brain
(called neural masses). This allows us to gain more insight into the communication between different
brain regions [4]. An advantage of this approach is the possibility to greatly reduce the dimensionality
of the model. An important step in this reduction in NMMs is replacement of all individual spikes by
a population firing rate. This macrosopic variable reflects the average spiking behaviour of all neurons
within a population [70]. A limitation of current NMMs is the absence of details regarding underlying
neurophysiological processes.

Separate masses describing multiple neural populations are the building blocks of NMMs. The masses
are coupled to each other to simulate the behaviour of larger brain structures. Each mass within a NMM
has an average membrane potential V (t), which is the state variable. This average membrane potential
results from different inputs received by the neural mass. These inputs are described as average pulse
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densities (mean pre-synaptic firing rate) and result from external inputs and other neural masses. Hence,
the output of a neural mass is also an average pulse density, i.e. mean firing rate. With a NMM we focus
on synaptic activity at a large scale. A NMM can be seen as a slow filter overlying fast dynamics (e.g.
action potentials of individual neurons). Capturing fast dynamics with a NMM is therefore not possible.

The next section starts with a brief overview followed by a description of the NMMs that we considered
as a base for our own NMM. The section finishes with a summary of the most important aspects of the
existing NMMs for the construction of an ATP-dependent NMM. Appendix E contains more information
about the general principles of a NMM.

3.2.1 Overview of neural mass models

NMMs were introduced in the 1970s. Nowadays, a wide variety of NMMs exists. The models are used
to examine large-scale brain dynamics in health and disease. The model of Wilson and Cowan (1972) is
seen as one of the most influential NMMs. It describes the activity of an excitatory population coupled
to an inhibitory one [76]. In 1974, Lopes da Silva et al. developed an initial model to simulate α-rhythms
(8 - 13 Hz) [43]. This work was followed by the Zetterberg model (1978) which gained more attention
thanks to Jansen and Rit [32,33,82]. Wendling et al. (2002) extended the model of Jansen and Rit with
slow inhibition and focused on simulating dynamics of an epileptic brain [75]. Another important model
to mention is the model of Liley which incorporates the role of the (synaptic) equilibrium potential [12].

Wilson-Cowan model

The Wilson-Cowan model describes the evolution of mean activity of neuronal populations over time [76].
The model consists of one excitatory population and one inhibitory population which is the minimum
representation of a NMM [13,60]. The measure of activity of the populations is the key quantity. Interactions
between the neural masses are represented by a sigmoidal function (Equation E.2) [15]. Either one or both
neural masses receive external input. The masses are synaptically coupled to each other and themselves.
Due to reciprocal connections, the model can produce oscillations (see Figure 3.6B) [65]. Mainly the
recurrent projection of the excitatory population to itself is important for these oscillations [50].

Jansen-Rit model

The Jansen-Rit model is a type of NMM that simulates cortical columns. Cortical columns are considered
to be the basic functional units of the cerebral cortex. The model consists of three neural masses: pyrami-
dal neurons, excitatory interneurons and inhibitory interneurons as shown schematically in Figure 3.7A [32].
All connections between the neural masses are excitatory, except for the input from inhibitory interneurons
received by pyramidal cells. Pyramidal cells also receive (excitatory) external input. This input originates
from other cortical columns and background activity. The mathematical description of the model consists
of a system of three second order DEs: 1). for the excitatory postsynaptic potential (EPSP) from the
pyramidal neurons to both masses of interneurons, 2). for the EPSP entering the mass of pyramidal
neurons, and 3). for the inhibitory postsynaptic potential (IPSP) entering the mass of pyramidal neurons.
The difference between the EPSP and IPSP entering the pyramidal cell population is proportional to an
EEG signal [65]. The Jansen-Rit model simulates different types of activity, like a (noisy) α-rhythm (see
Figure 3.7B), slow periodic activity and evoked potentials. The type of activity simulated with the model
can be tuned by the strength of inhibition [23].
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Figure 3.6: Wilson-Cowan model. A. Schematic overview of the Wilson-Cowan model. The model consists of two
coupled neural masses: one excitatory (E) and one inhibitory (I) mass. The strength of the synaptic connections
between two neural populations is modelled with constants Clk with l, k ∈ {I, E}. The double subscripts depict
the presynaptic population followed by the postsynaptic population. Arrows indicate excitatory connections and
spheres indicate inhibitory connections. External inputs to both masses are represented by pE(t) for the excitatory
population and pI(t) for the inhibitory population. Figures B.-E. show output activity of the excitatory population
(red) and inhibitory population (green) for different inputs (B. 0.2, C. 0.4, D. 0.7, E. 1.18) received by the excitatory
population only. Figures B.-E. adapted from Onslow et al. (2014) [50].

Liley model

Liley et al. (2002) proposed an electrocortical model, constructed at the scale of cortical columns [41].
This is a spatially homogeneous neural field model. NMMs describe how neural activity evolves over
time, while neural field models characterize activity over time and space [55]. Figure 3.8A shows the
topology of the Liley model. The Liley model consists of an excitatory and inhibitory population which
are interconnected. All neural populations receive external (subcortical) input. The mean excitatory
membrane potential is taken as a proxy for the EEG signal [6]. The neural populations are modelled as
conductance-based neurons, while the populations of the Wilson-Cowan model and Jansen-Rit model
are convolution-based [46,54]. The fundamental difference between convolution-based and conductance-
based models is that the latter have nonlinear dynamics. Moreover, modelling of synaptic currents is
biologically more realistic in conductance-based models. The Liley model reproduces key features of the
human EEG e.g. chaotic and noise driven oscillatory activity at the frequency of the α-rhythm, cortical
evoked potentials, travelling waves and threshold type spike activity (see Figure 3.8B) [41]. The model is
used to gain a better understanding of e.g. the effect of anesthesia on the EEG or burst suppression [5,6].
Furthermore, Ruijter et al. (2017) used an adapted version of the Liley model to investigate the underlying
pathophysiological mechanisms of EEG abnormalities in postanoxic patients [58].
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Figure 3.7: Jansen-Rit model. A. Schematic overview of the Jansen-Rit model. The strength of the synaptic
connections between two neural populations is modelled with constants Ci with i ∈ {1,2,3,4}. Arrows indicate
excitatory connections and spheres indicate inhibitory connections. External input to pyramidal neurons is repre-
sented by p(t). B. Examples of activity curves simulated with the Jansen-Rit model for multiple values of C, with
C = C1, C2 = 0.8C, C3 = 0.25C and C4 =0.25C. From top to bottom: C equals 68, 128, 135, 270, 675. The
input was uniform noise between 120 and 320 Hz. Alpha-like activity shows for C = 135 (third curve). Figure from
Jansen and Rit (1995) [32].

3.2.2 ATP-dependent neural mass model

To study the effects of ATP shortage on neural behaviour, we would like to gain more insight into changes
in ion concentrations. These concentrations depend heavily on the strength of ATP-dependent NKAs as
shown by Zandt et al. (2011) [79] and Dijkstra et al. (2016) [17]. We considered using one of the previously
discussed NMMs and variants of these NMMs as a base for our ATP-dependent NMM. All of these NMMs
are based on membrane potentials and, as desired, the output of all models can be compared to EEG sig-
nals. An important feature of NMMs is the population firing rate replacing the individual spikes of single
cell models. This rate is influenced by the Nernst equilibrium potential of sodium and potassium. Current
NMMs assume that ion concentrations and thus the Nernst equilibrium potentials, remain constant. This
is indeed the case if supply of ATP is sufficient, but it no longer holds during ATP deprivation [80]. As far as
we know, none of the existing NMM is formulated in terms of ion concentrations and adapting the Nernst
equilibrium potential and firing rate in not possible in these models. However, this is required to study
the neural response to ATP depletion. Moreover, we prefer a biophysiologically plausible model like the
Liley model to understand the effect of ATP depletion on neural dynamics and to link the outcome to real
EEG results of patients. As none of the existing NMM met our requirements, we constructed a new NMM.

From the previously described single cell models we learned how ion concentrations are modelled and
what behaviour to expect at a single cell level during ATP depletion as shown by Zandt et al. (2011) [79]
and Dijkstra et al. (2016) [17]. Both the strength of the NKAs and levels of intracellular chloride are
important in the emergence of cytotoxic edema. Chloride levels and pump strength were included in
our model. However, we decided to disregard any volume changes to limit the complexity of the model.
Based on existing NMMs we know which components are essential to incorporate in our model and which
components should be adapted. For example, the sigmoidal activation function (or firing rate function) is
adjusted in our model to simulate membrane depolarization. After depolarization, the firing rate should
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Figure 3.8: Liley model. A. Topology of the Liley model. The model consists of two neural populations: one
excitatory (E) and one inhibitory (I) population. Both the left and right side of the picture represent a single cortical
column. All neural populations receive external input. The excitatory and inhibitory connections are marked by red
and blue circles, respectively. The number of synaptic connections is denoted by Nlk with l, k ∈ {i, e}. The double
subscripts depict the presynaptic population followed by the postsynaptic population. Connections between two
cortical columns are represented by Φek. External (subcortical) inputs are marked by pek and local (intracortical)
connections are indicated by Sl. Figure from Bojak et al. (2015) [6]. B. Example of activity generated with the
Liley model: wave-spike activity of the mean excitatory soma membrane potential he(t) for a mean external input
of 2975s−1. Figure adapted from Liley et al. (2002) [41].

become zero and long-lasting depolarizations (depolarization block) should occur. This requires the firing
rate to become zero after reaching its maximal value. In accordance with the Wilson-Cowan model
and Liley model, EEG signals can already be reproduced by including one excitatory and one inhibitory
neural mass. Lastly, at least the excitatory neural mass should receive an external (excitatory) input and
reciprocal connections should be included to produce oscillations. The production of oscillations as a
response to external input is used as a check of the model behaviour at physiological ATP levels.
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4 | Methods

Before explaining the newly constructed NMM, we provide more information about cell biological topics
relevant for this research. Computational models are often compared to experimental data. As experi-
mental data were not available for this study, we created a network model of coupled spiking single cells
prior to the NMM and compared the outcome of both models to each other. This chapter provides a
detailed description of both models. The NMM is linked to the underlying microscopic neurodynamics
of a single cell. This allows for adjusting the strength of the NKAs based on the amount of available
ATP, while tracking the changes in ion concentrations at population level. An important part of our
work involved deriving a new equation for the firing rate based on (varying) Nernst equilibrium potentials.
Although the model is largely based on single cell dynamics, heterogeneity is created within the firing
rate. This chapter describes the derivation of this new firing rate function as well. Lastly, we elucidate
the validation of the NMM.

N.B. To distinguish between excitatory, inhibitory, extracellular and intracellular, the following notation
is used throughout this report: excitatory (E), inhibitory (I), extracellular (e) and intracellular (i).

4.1 Cell biology
The most important ion species present in the intracellular space (ICS) and ECS are sodium, potassium,
chloride and calcium. These ion species were incorporated in the models, except for calcium. Calcium
mostly plays a role in secondary processes which were not considered in this study. Ion currents are
yielded by leak channels and voltage-gated channels. Ion pumps and other transporters in the cellular
membrane maintain specific ion gradients. Figure 4.1 shows a schematic overview of one neuron including
the components considered in this study. The components are leak channels of sodium, potassium and
chloride, voltage-gated channels of sodium, potassium and chloride, NKA and KCL cotransporter KCC2.
These components were incorporated in the network model of coupled spiking single cells and the NMM.

The neurotransmitters involved in chemical synaptic transmission in the central nervous system are gluta-
mate and γ-aminobutyric acid (GABA). Glutamate is an excitatory neurotransmitter which activates the
fast α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptors. The inhibitory neurotransmit-
ter GABA activates the fast GABAA receptors [38]. The AMPA and GABAA receptors are incorporated in
the NMM.

4.2 Network of coupled spiking single cells
This model consists of a network of coupled spiking single cells. Firstly, this section discusses all assump-
tions, choices and requirements relevant for this network model. Secondly, it elaborates on the different
model components and how to combine them into this network.
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Figure 4.1: Schematic overview of a representative neuron. The cellular membrane (blue line) surrounds th ICS
(blue circle). The grey square represents the (finite) ECS. The ICS and ECS are electroneutral. Typical intracellular
and extracellular ion concentrations of sodium, potassium and chloride are shown. A− denotes negatively charged
impermeable anions. Leak channels (green) and voltage-gated channels (orange) result in ion currents. The
Na+-K+-ATPase (NKA, pink), and the KCL cotransporter KCC2 (yellow) counterbalance these currents. NKA
consumes ATP to pump sodium and potassium against their electrochemical gradient. The KCL cotransporter uses
the resulting potassium gradient to move chloride to the ECS.

4.2.1 Model assumptions, choices and requirements

The following assumptions and choices were incorporated in the design of the model:

• The ECS is finite.
• All neurons share the same ECS.
• Excitatory and inhibitory cells have the same size.
• Volume changes are not considered in the model.
• The number of excitatory and inhibitory cells (and connections) is not equal. An E:I-ratio of

approximately 80:20 was chosen [37,77].

The new model had to meet the following requirements:

• As a closed system is considered in which ions cannot leave nor enter, conservation of ions is
guaranteed.

• To check stability of the model during rest, the resting membrane potential of the neurons is
approximately -65 mV when the firing rate is zero.

• Applying external input results in rhythmic behaviour.
• The system settles at a nonzero GD equilibrium after depolarization following ATP deprivation.
• A high amplitude slow wave is visible in the simulated EEG signal after complete ATP cessation.
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4.2.2 Model components

The network was based on the work of Zandt et al. (2011) [79] and Hübel et al. (2014) [30]. To get
a network model of twenty HH-based neurons with an E:I-ratio of 80:20, we created sixteen excitatory
neurons and four inhibitory neurons. All neurons were interconnected, but there was no self-connection.
Figure 4.2 shows an example of a smaller network of four neurons. Each excitatory neuron received exter-
nal input. This input varied slightly per neuron to create a heterogeneous neural population. Table B.1
summarizes the values of these inputs.

Figure 4.2: Example overview of network model of coupled spiking single cells. The model consisted of two
types of spiking neurons: excitatory (E) and inhibitory (I) cells. In total, the model contained sixteen excitatory
neurons and four inhibitory ones. All neurons were interconnected and each excitatory neuron received external
input.

Ion concentrations

The total amount of each ion species NX , with X ∈ {Na+,K+, Cl−}, was conserved in the model:

NX = We[X]0e +Wi

20∑
l=1

[X]0i,l, (4.1)

where [X]0e and [X]0i were the initial extracellular and intracellular concentrations of ion X, respectively.
Subscript l referred to each individual cell, We denoted the extracellular volume and Wi denoted the
intracellular volume, which was equal for all neurons.

The intracellular concentrations [X]i of sodium, potassium and chloride were determined with the DEs
as described in subsection 4.2.3. Knowing the values of these intracellular concentrations, we calculated
the extracellular concentrations [X]e, as follows:

[X]e = NX −Wi
∑20
l=1[X]i,l

We
. (4.2)
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Ion currents

The sodium and potassium currents consisted of a voltage-gated current and a leak current. The chloride
current consisted of a leak current only. The equations for each neuron were as follows:

INa = gNam∞(V )3h(t)(V − ENa(t)) + gNaL(V − ENa(t)), (4.3)
IK = gKn(t)4(V − EK(t)) + gKL(V − EK(t)), (4.4)
ICl = gClL(V − ECl(t)), (4.5)

where gX and gXL denoted the maximum conductances for the voltage-gated currents and leak currents,
respectively. The Nernst equilibrium potentials EX of sodium, potassium and chloride were determined
with

EX = RT

zXF
ln
( [X]e

[X]i

)
, (4.6)

where R was the universal gas constant, F was the Faraday constant, T was the absolute temperature
and zX was the valence of ion X.

The gating variables were modeled similar as in Zandt et al. (2014) [81]:

αm = 0.1(V + 30)
1− exp

(
−
(
V+30

10

)) , βm = 4 exp
(
−
(
V + 55

18

))
,

αh = 0.07 exp
(
−
(
V + 44

20

))
, βh = 1

1 + exp
(
−
(
V+14

10

)) ,
αn = 0.01(V + 34)

1− exp
(
−
(
V+34

10

)) , βn = 0.125 exp
(
−
(
V + 44

80

))
,

(4.7)

The gates n and h were described by

dn

dt
= φ[αn(V )(1− n)− βn(V )n],

dh

dt
= φ[αh(V )(1− h)− βh(V )h].

(4.8)

where φ was the gating time constant.

The activation variable m has very fast dynamics. By setting the gating variable to its steady state
value, we obtained a reduced amount of dynamical variables while preserving the dynamical features of
the model [29]:

m = m∞(V ) = αm(V )
αm(V ) + βm(V ) . (4.9)
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KCl cotransporter KCC2

The KCL cotransporter KCC2 is an electroneutral symporter responsible for maintaining low intracellular
concentrations of chloride. It uses the potassium gradient generated by the NKA to extrude chloride
ions. Therefore, it influences the amount of intracellular and extracellular concentrations of potassium
and chloride. The molar transmembrane ion flux JKCL generated by KCC2 was determined as follows [17]:

JKCl = UKCl
RT

F
ln
( [K]i[Cl]i

[K]e[Cl]e

)
, (4.10)

where UKCl was the strength of the cotransport. This strength depended on the flux parameter of the
KCL cotransporter gKCL and Faraday’s constant, as follows [17,67]:

UKCl = gKCl
F

. (4.11)

Na+K+-ATPase

The NKA depends on the concentration of intracellular sodium and extracellular potassium as follows [3]:

Ip = ρpA

(
1 + exp

(25− [Na]i
3

))−1 (
1 + exp

(5.5− [K]e
1

))−1
, (4.12)

where ρp was the maximal pump current and A was the membrane surface of a neuron.

As mentioned earlier in this chapter, the external input varied moderately per neuron. To maintain a
heterogeneous neuronal population, even when no external input is applied, each neuron had a slightly
different maximal pump current. Table B.1 summarizes the values of the maximal pump currents.

It is not fully known how the NKA depends on the amount of available ATP. We assumed there is a linear
relationship between the strength of the pump and ATP. A decrease of ATP influences the strength of the
NKA which, in turn, leads to changes in intracellular and extracellular ion concentrations. The amount
of ATP was incorporated in variable δ as follows:

δ = ATP

ATP +KATP
, (4.13)

where ATP was the amount of available ATP and KATP was the dissociation constant of the ATP
binding with the pump [11].

Synaptic coupling

All neurons were coupled via synaptic connections. Following Dayan et al. (2001), this type of coupling
was modeled with [14]

Isyn,k =
∑
l

εklrl(t)(Vk,syn − Vk), (4.14)

where εkl was the coupling strength between neurons k and l for 1 ≤ (k, l) ≤ N with N the total number
of neurons in the network, rl was the fraction of open receptors of neuron l, Vk,syn was the synaptic
reverse potential and Vk was the membrane potential of neuron k at time t [14]. If neuron l was coupled
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to neuron k, εkl > 0, else εkl = 0. If both neurons were excitatory εkl = εEE , while if both neurons were
inhibitory εkl = εII . Moreover, we set εkl = εEI if neuron k was excitatory and neuron l was inhibitory
and εkl = εIE if neuron k was inhibitory and neuron l was excitatory.

Vk,syn was either equal to the Nernst equilibrium potential of AMPA V eq
k,AMPA or GABAA V eq

k,GABAA
.

V eq
k,AMPA was sensitive to changes in the Nernst equilibrium potentials of both sodium and potassium

and determined as follows:

V eq
k,AMPA = ENa,k + EK,k

2 . (4.15)

The Nernst equilibrium potential of chloride strongly influenced V eq
k,GABAA

. Thus,

V eq
k,GABAA

= ECl,k. (4.16)

To determine the fraction of open receptors, the following equation was used:

drl
dt

=
( 1
τr
− 1
τd

) 1
1 + exp

(
−
(
Vl−10
ks

))(1− rl)−
1
τd
rl, (4.17)

where ks was the slope parameter and τr and τd were the rise and decay time constant of the synapse,
respectively.

4.2.3 Model overview

We combined all equations described above to determine the ODEs of the model, keeping in mind that
the first four neurons were inhibitory and the other sixteen were excitatory. Each neuron consisted of the
following set of equations:

Cm
dVk
dt

= −INa,k − IK,k − ICl,k − Ip,k + Iapp,k + 1
N I

4∑
l=1

εklrl(t)(Vk,GABAA − Vk)

+ 1
NE

20∑
l=5

εklrl(t)(Vk,AMPA − Vk),

dnk
dt

= φ[αnk(Vk)(1− nk)− βnk(Vk)nk],
dhk
dt

= φ[αhk(Vk)(1− hk)− βhk(Vk)hk],
drk
dt

=
( 1
τr
− 1
τd

) 1
1 + exp

(
−
(
Vk−10
ks

))(1− rk)−
1
τd
rk,

d[Na]i,k
dt

= − γ

Wi
(INa,k + 3δIp,k) ,

d[K]i,k
dt

= − γ

Wi
(IK,k − 2δIp,k + FJKCl) ,

d[Cl]i,k
dt

= γ

Wi
(ICl,k − FJKCl) ,

(4.18)
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where Cm was the specific membrane capacitance, Iapp,k was the external current applied to neuron k,
N I was the total number of inhibitory neurons and NE was the total number of excitatory neurons.
Conversion of the ion currents to ion fluxes was denoted by γ. This value depended on A and F [30]:

γ = A

F
. (4.19)

We performed all simulations with Matlab, using the stiff solver ODE15s for solving the DEs. Table A.1
contains all parameter values used in the network model.

Changes in ATP were modeled with sigmoid curves to avoid sudden changes. The initial amount of ATP
ATP 0, the fraction of ATP depletion fATP and the duration of the ATP depletion influenced the shape
of the curve as follows:

ATP = ATP 0
[
1− fATP

(
1 + exp

(
0.1
(
−t+ tstartATP

)))−1 (
1 + exp

(
0.1
(
t− tendATP

)))−1
]
, (4.20)

where tstartATP was the time at which the ATP depletion started and tendATP was the time at which the amount
of ATP was restored.

An external current was applied to the model using a similar equation:

Iapp = Imaxapp

(
1 + exp

(
0.1
(
−t+ tstartapp

)))−1 (
1 + exp

(
0.1
(
t− tendapp

)))−1
, (4.21)

where Imaxapp was the maximal applied current and tstartapp and tendapp were the start and end times between
which the external current was applied to the model.

Gibbs-Donnan equilibrium

Explicitly including intracellular anions was not necessary to attain a GD equilibrium with this model.
Although the ion rate equations implied that all ion currents should disappear to settle at an equilibrium,
there was also a constraint on the charge concentration Qi,k for the ICS [30]. This constraint was based
on Equation 4.18 for Iapp,k = 0 and Ip,k = 0:

∆Qi,k : = ∆Nai,k + ∆Ki,k −∆Cli,k
= γ

Wi
Cm∆Vk,

(4.22)

where the difference between the initial and final value of each variable is denoted by ∆.

Simulating EEG

Instead of taking the difference between EPSP and IPSP as for example done in the Jansen-Rit model,
we determined the EEG of the network of coupled spiking single cells by taking the difference between
the mean excitatory postsynaptic current (EPSC) and mean inhibitory postsynaptic current (IPSC) of
the excitatory neurons. The EPSC and IPSC were the ion flows causing an EPSP and IPSP to occur,
respectively:

EPSC = 1
NE

20∑
k=5

(
1
NE

20∑
l=5

εklrl(t)[Vk,AMPA − Vk]
)
,

IPSC = 1
NE

20∑
k=5

(
1
N I

4∑
l=1

εklrl(t)[Vk,GABAA − Vk]
)
,

EEG = EPSC - IPSC.

(4.23)
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We filtered the simulated EEG signal using a second order Butterworth bandpass filter with cut-off
frequencies at 0.5 and 30 Hz.

4.3 Neural mass model based on ion concentrations

The newly constructed NMM was based on the dynamics of a single HH neuron. This section discusses
all essential parts of this model. The structure of this section is similar to the previous one. Also, we
elaborate on the derivation of the new firing rate function.

4.3.1 Model assumptions, choices and requirements

The new NMM had to meet the same requirements as the previously discussed network model and the
same assumptions and choices applied to the NMM. Several additional assumptions and choices were
important for the NMM model, namely:

• The neurons have a semi-permeable membrane and impermeant anions are present. This was
required such that the neurons settled at a nonzero GD equilibrium when all energy-dependent ion
transport was absent.

• The EEG signal of patients with postanoxic coma after cardiac arrest showed no visible differences
between the EEG channels. Thus, a spatially homogeneous model was assumed to be appropriate.

• It was assumed that each neuron, on average, shows the same behaviour. Hence, the NMM was
based on the dynamics of a single neuron, while heterogeneity was created within the firing rate.

4.3.2 Model components

Similar to the Wilson-Cowan model and Liley model, this NMM consisted of one excitatory population,
representing the pyramidal neurons, and one inhibitory population, representing the interneurons (Fig-
ure 4.3). The two neural populations were connected to each other and themselves via excitatory and
inhibitory projections. The excitatory mass received external excitatory input.

This section starts by introducing each component of the model individually. Next, all components are
combined to construct the NMM.

Figure 4.3: Overview of ATP-dependent neural mass model. The model consists of two neural masses:
one excitatory (E) and one inhibitory (I) mass. The number of synaptic connections is denoted by Nlk with
l, k ∈ {e, i}. The double subscripts depict the presynaptic population followed by the postsynaptic population.
External excitatory input to the excitatory neural mass is marked with fext. Table A.2 provides more information
about model parameters.
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Ion concentrations

The total amount of each ion was conserved in this model and calculated with

NX = [X]0eWe + ([X]E,0i + [X]I,0i )Wi. (4.24)

Similar to the network model, we determined intracellular concentrations of sodium, potassium and chlo-
ride with DEs, as shown in subsection 4.3.3.

Based on the intracellular concentrations, we determined the extracellular concentrations with

[X]e =
NX −

(
[X]Ei + [X]Ii

)
Wi

We
. (4.25)

Leak currents

The HH equations for the leak and voltage-gated currents are derived from the Goldman-Hodgkin-Katz
(GHK) flux equations. As we used these latter equations in the NMM, this NMM is called an ion-based
model instead of the previously explained conductance based model.

The cell membrane is considered to be a homogeneous plate which can be crossed instantaneously by
(permeable) ions. The flux inside this cell membrane depends on two ‘forces’: the difference in ion
concentrations in ICS and ECS (leading to diffusion of ions from high to low concentration) and the
potential difference across the membrane (resulting in an electrical field and drift of ions). The diffusion
component is described by Ficks law, and the electrical drift is described by Ohm’s law. These processes
together lead to the GHK flux equation, which was used to determine the leak currents [19,45]:

IL,qX = PL,qX

z2
XF

2V q

RT

[X]qi − [X]qe exp
(
− zXFV

q

RT

)
1− exp

(
− zXFV q

RT

) , (4.26)

where PL,qX was the fixed leak permeability with q ∈ {E, I}. This equation should not be confused with
the GHK voltage equation.

Voltage-gated currents

Besides the leak currents, we also included voltage-gated currents. We focused on the dynamics of the
synapses by describing the mean behaviour of the neurons as a result of the mean membrane potential
and mean inputs. Incorporation of fast dynamics of the activation and inactivation gates was therefore
not possible in the NMM. Instead, steady state versions of all gates were implemented. The equations
for the opening (α) and closing (β) rates of the activation gates m for sodium and n for potassium and
the inactivation gate h for sodium were equal to those used in the network model (Equation 4.7). Steady
states were determined with

nq∞ = αqn
αqn + βqn

, mq
∞ = αqm

αqn + βqm
, hq∞ = αqh

αqh + βqh
. (4.27)
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The model contained a transient sodium current IT,qNa , a delayed rectifier potassium current ID,qK , and a
voltage-gated chloride current IG,qCl . Dijkstra et al. (2016) fitted a function to the experimental data
of Rungta et al. (2015), who discovered that the ion exchanger SLC26A11 acts as a voltage-gated
chloride channel [59]. The equations for the voltage-gated currents were adapted versions from the model
of Dijkstra et al. (2016) [17]:

IT,qNa = P T,qNam
3
∞h∞

F 2V q

RT

[Na]qi − [Na]e exp
(
−FV q

RT

)
1− exp

(
−FV q

RT

) , (4.28)

ID,qK = PD,qK n4
∞
F 2V q

RT

[K]qi − [K]e exp
(
−FV q

RT

)
1− exp

(
−FV q

RT

) , (4.29)

IG,qCl = PG,qCl

1 + exp
(
−V q+10

10

) F 2V q

RT

[Cl]qi − [Cl]e exp
(
FV q

RT

)
1− exp

(
FV q

RT

) , (4.30)

where P T,qNa was the maximal transient sodium permeability, PD,qK was the maximal delayed potassium
permeability and PG,qCl was the maximal voltage-gated chloride permeability.

Na+K+-ATPase and KCL cotransporter KCC2

Both NKA and KCC2 were explained in subsection 4.2.2. However, the corresponding equations are
slightly different as the NMM consisted of an excitatory and inhibitory population instead of single cells.
The equations of the pump and cotransporter for the NMM were

Iqp = ρqp

(
1 + exp

(
25− [Na]qi

3

))−1 (
1 + exp

(5.5− [K]e
1

))−1
, (4.31)

JqKCl = UKCl
RT

F
ln
(

[K]qi [Cl]
q
i

[K]e[Cl]e

)
. (4.32)

Note that we used the same extracellular concentrations for both neural masses, but different intracellular
concentrations of sodium, potassium and chloride as these were specific for each neural mass.

Firing rate

The firing rate, often modelled with a sigmoid curve, is influenced by three factors: the synaptic current
I, the Nernst equilibrium potential of sodium ENa and the Nernst equilibrium potential of potassium
EK

[80,81]. As most modelers consider the Nernst equilibrium potentials to be constant, adapting the
sigmoid curve is not necessary. However, we were interested in the effects of a decreased ATP level
on the ion concentrations, which causes the Nernst equilibrium potentials of sodium and potassium to
change which can lead to a depolarization block. Therefore, we determined a new expression for the
firing rate curve including I, ENa and EK . Note that ECl was not included. To determine the firing
rate curve, the same single HH cell was used as mentioned by Zandt et al. (2011) [79]. It was decided to
consider only continuous spiking activity and to disregard transient spikes. Continuation of periodic orbits
in MatCont offered a fast option to filter the stationary spikes from the transient spikes as the latter
are non-periodic [16]. The period between consecutive spikes was determined with this method. Next, the
firing frequency was calculated by taking the reciprocal of the period.
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Before performing this continuation, we defined the range of values of I, ENa and EK for which the
curve was valid. This decision was based on so-called Hopf branches. An (Andronov-)Hopf bifurcation is
a critical point where the stability of a system switches and a limit cycle (periodic solution) is born. Limit
cycles, and thus stationary spikes, cannot arise for values of I, ENa and EK lying outside the area of the
Hopf branches. Hence, we set the firing rate function to zero for these values. The firing rate function
was valid for I ∈ {−100, 500}, ENa ∈ {−20, 80} and Ek ∈ {−95, 25}. Figure 4.4A shows an example of
a bifurcation diagram of the HH model. A supercritical Hopf bifurcation gives rise to a stable limit cycle,
resulting in periodic behaviour of the model. Moreover, the firing rate became zero when I exceeded the
value at which the Hopf bifurcation occurred. This corresponded to simulation of a depolarization block.

Based on all simulations and continuations with the HH neuron, the following form of the equation was
chosen:

FRq(Iq, EqK , E
q
Na) =

κq
√
Iq − Iqth(1−H(Iq − Iqth2)) for Iq ≥ Iqth,

0 for Iq < Iqth,
(4.33)

where H denoted a Heaviside step function. The two thresholds Iqth and Iqth2 were the cut-off points as
shown in Figure 4.4B. The first threshold Iqth corresponds to a homoclinic bifurcation of the HH cell. At
this point, the firing rate decreased to 0.

The firing rate curve was smoothed to avoid numerical instabilities and to create neural heterogeneity.
This was achieved by convoluting with the kernel:

g(x) = 1√
2πσ

e

(
−x

2
σ

)
, (4.34)

with standard deviation σ.

This resulted in

FRqsmooth(Iq, EqK , E
q
Na) = (g ∗ FRq)(Iq)

=
∫ ∞
Iq
th

g(Iq − τ)FRq(τ)dτ for FR, g : [Ith,∞)→ [0,∞) . (4.35)

To find appropriate values for our function, we performed curve fitting with the curve fitting toolbox of
Matlab (Matlab R2018b, Mathworks Inc., Massachusetts, USA). This resulted in

κq(EqNa, E
q
K) = q00 + q10E

q
K + q01E

q
Na + q20(EqK)2 + q11E

q
KE

q
Na + q02(EqNa)

2 + q30(EqK)3

+ q21(Eqk)2EqNa + q12E
q
K(EqNa)

2 + q03(EqNa)
3,

(4.36)

Iqth(EqNa, E
q
K) = p00 + p10E

q
K + p01E

q
Na + p20(EqK)2 + p11E

q
KE

q
Na + p02(EqNa)

2 + p30(EqK)3

+ p21(Eqk)2EqNa + p12E
q
K(EqNa)

2 + p03(EqNa)
3,

(4.37)

Iqth2(EqNa, E
q
K) = r00 + r10E

q
K + r01E

q
Na + r20(EqK)2 + r11E

q
KE

q
Na + r02(EqNa)

2 + r30(EqK)3

+ r21(Eqk)2EqNa + r12E
q
K(EqNa)

2 + r03(EqNa)
3.

(4.38)

The values of the coefficients of the polynomials κ, Ith and Ith2 are provided in Table A.3. Figure 4.5
shows the quality of the fit of the two thresholds.

27



-100 -50 0 50 100 150 200 250

I ( A/cm2)

-80

-60

-40

-20

0

20

40

60

V
m

 (
m

V
)

A.

LP

LP

H

0 50 100 150 200 250

I ( A/cm2)

0

0.2

0.4

0.6

0.8

1

1.2

F
re

q
u
e
n
c
y
 (

1
/m

s
)

B.

I
th2I

th

Figure 4.4: Overview of constructing F(I)-curve. A. Bifurcation diagram of the HH model as a function of
external input I, for EK = -65 mV and ENa = 50 mV. Solid red lines denote stable equilibria. The dotted blue
line denotes unstable equilibria. The green and yellow line indicate the maximum and minimum values of Vm at
the stable limit cycle, respectively. The H indicates a supercritical Hopf bifurcation (first Lyapunov coefficient of
-9.67e-3), corresponding to Ith2. B. Example of an F(I)-curve with EK = -65 mV, ENa = 50 mV and thresholds
Ith and Ith2. The frequency becomes 0 when I > Ith2 as a depolarization block occurs.
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Figure 4.6: Examples of influence of ENa and EK on F(I)-curve. A. F(I)-curves with ENa = 20 mV and
varying values of EK in mV. An increased EK leads to an increased neural excitability. B. F(I)-curves with EK =
-45 mV and varying values of ENa in mV. Decrease of ENa results in a smaller excitability range.

Figure 4.6 shows the effects of changing Nernst potentials on the firing rate. An increase of EK led to a
decrease of Ith and an increase of the firing frequency. Thus, the neuron became more excitable. In some
cases, Ith even became negative indicating spontaneous generation of action potentials. (Figure 4.6A).
Only inhibition of the neurons can prevent them from this behaviour. An increase of EK leads to a smaller
value of Ith2. Hence, a depolarization block would occur earlier in this case. Similar to an increased EK ,
a decrease of ENa led to a lower value of Ith2. However, it decreased the firing rate and increased Ith.
Thus, a decrease of ENa resulted in a smaller excitability range of the neurons (Figure 4.6B).

AMPA and GABAA receptors

In most NMMs, the postsynaptic currents (PSCs) or postsynaptic potentials (PSPs) are modeled by an
alpha function. However, instead of using convolution to transform the pre-synaptic firing rate into a
PSC or PSP, we used kinetic models. Although these models are not able to mimic the smallest details
of synaptic currents, they are appropriate for building network simulations as they provide a good approx-
imation of most features. Examples of these features are rise, decay and voltage dependence [38].

Kinetics of the fast AMPA receptors at a cellular level can be approximated by the following two-state
diagram:

C + T
α
�
β

O, (4.39)

where binding of the unbound form of the receptor C to one molecule of transmitter T leads to opening
of the receptor. The open form is represented by O and the opening and closure rates are represented by
α and β, respectively [38].
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These kinetics can be described by a first-order kinetic equation:

drA
dt

= αA[T](1− rA)− βArA, (4.40)

where rA is the fraction of open AMPA receptors [38].

We replaced T by firing rate FR to determine the kinetics at a population level:

drA
dt

= αA[FRA](1− rA)− βArA, (4.41)

αA[FRA] = αmaxA FRA
FRA + 15 , (4.42)

where αmaxA was the maximum opening rate of the AMPA receptor and FRA = FRE + fext .

The postsynaptic current IA depended on the fraction of open AMPA receptors, as follows:

IA = ḡArA([Na]e − [Na]i), (4.43)

where ḡA was the maximal conductance [38]. The opening of the AMPA receptors, and thus the generation
of IA, led to an influx of sodium ions [2].

Similar equations applied to GABAA receptors as well:

drG
dt

= αG[FRG](1− rG)− βGrG, (4.44)

αG[FRG] = αmaxG FRG
FRG + 100 , (4.45)

where αmaxG was the maximum opening rate of the GABAA receptor and FRG = FRI .

The postsynaptic current IG depended on the fraction of open GABAA receptors, as follows:

IG = ḡGrG([Cl]e − [Cl]i), (4.46)

where ḡG was the maximal conductance [38]. The opening of the GABAA receptors, and thus generation
of IG, led to an influx of chloride ions [42].

Membrane potential

Membrane potential V depended on charge Q and membrane capacitance C as follows:

V = Q

C
with C = Cm ·A, (4.47)

where Cm was the specific membrane capacitance and A was the surface area of the cell.
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Charge Q was determined by multiplying F and intracellular molar amounts NX of sodium, potassium and
chloride. We kept track of the intra- and extracellular ion concentrations and computed the intracellular
molar amounts as follows: [17]:

NX = [X]i ·Wi. (4.48)

The difference between intra- and extracellular ion concentrations determined the membrane potential:

V q = FWi

C

(
([Na+]qi − [Na+]qe) + ([K+]qi − [+K]qe)− ([Cl−]qi − [Cl−]qe)− ([A−]i − [A−]e)

)
, (4.49)

where [A−]i and [A−]e were the intracellular and extracellular impermeant anion concentrations, respec-
tively.

The presence of impermeant charged A− was necessary for the GD effect to occur. Electroneutrality of
the bulk cannot be guaranteed as we were specifically interested in the membrane potential, but did not
make a distinction between the bulk solution and the ion solution close to the membrane. Nevertheless,
the electroneutrality principle was used to determine the order of magnitude of the ion concentrations:

[Na+]0i + [K+]0i + [Cl−]0i + [A−]i = [Na+]0e + [K+]0e + [Cl−]0e + [A−]e. (4.50)

By choosing an initial resting membrane potential of -65 mV and fixing the initial concentrations of intra-
and extracellular sodium, potassium and chloride and the extracellular concentration of impermeable
anions, we determined the new value for the intracellular concentration of impermeable anions [A−]i as
follows:

V 0 = FWi

C

(
([Na+]0i − [Na+]0e) + ([K+]0i − [K+]0e)− ([Cl−]0i − [Cl−]0r)− ([A−]i − [A−]e)

)
. (4.51)

4.3.3 Model overview

Combining all equations, the ion-based NMM consisted of the following coupled DEs:

d[Na]Ei
dt

= 1
WiF

(
−IL,ENa − I

T,E
Na − 3δIEp

)
+ 1
C

(
gA,EENEErA

(
[Na]e − [Na]Ei

))
,

d[Na]Ii
dt

= 1
WiF

(
−IL,INa − I

T,I
Na − 3δIIp

)
+ 1
C

(
gA,EINEIrA

(
[Na]e − [Na]Ii

))
,

d[K]Ei
dt

= 1
WiF

(
−IL,EK − ID,EK + 2δIEp

)
− 1
Wi

JEKCL,

d[K]Ii
dt

= 1
WiF

(
−IL,IK − ID,IK + 2δIIp

)
− 1
Wi

JIKCL,

d[Cl]Ei
dt

= 1
WiF

(
IL,ECl + IG,ECl

)
− 1
Wi

JEKCL + 1
C

(
gG,IENIErG

(
[Cl]e − [Cl]Ei

))
,

d[Cl]Ii
dt

= 1
WiF

(
IL,ICl + IG,ICl

)
− 1
Wi

JIKCL + 1
C

(
gG,IINIIrG

(
[Cl]e − [Cl]Ii

))
,

drA
dt

= αA[FRA](1− rA)− βArA,
drG
dt

= αG[FRG](1− rG)− βGrG,

(4.52)
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where Nlk was the number of synaptic connections between population l and population k with l, k ∈
{E, I}. The effective conductances g were: gA,EE = ḡA/NEE , gA,EI = ḡA/NEI , gG,IE = ḡG/NIE and
gG,II = ḡG/NII .

We performed all simulations with Matlab, using the stiff solver ODE15s for solving the ODEs. Table
A.2 contains all parameter values used in the network model. Changes in ATP were modeled with
Equation 4.20. We used a similar equation to apply an external input to the NMM:

fext = fmaxext

(
1 + exp

(
0.02

(
−t+ tstartext

)))−1 (
1 + exp

(
0.02

(
t− tendext

)))−1
, (4.53)

where fmaxext was the maximal external input and tstartext and tendext were the start and end times between
which the external input was applied to the model.

The input currents IE and II to determine FRE and FRI , respectively, were:

IE = FWi

500CAi

(
gANEErA([Na]e − [Na]Ei )− gGNIErG([Cl]e − [Cl]Ei )

)
, (4.54)

II = FWi

500CAi

(
gANEIrA([Na]e − [Na]Ii )− gGNIIrG([Cl]e − [Cl]Ii )

)
. (4.55)

We considered IE as a proxy for the EEG signal of the NMM. This simulated EEG signal was filtered
with a second order Butterworth bandpass filter using cut-off frequencies at 0.5 and 30 Hz.

4.4 Model validation
To examine the behaviour of the network model and NMM under physiological and pathophysiolocial
conditions, the models underwent the following tests:

1. Response to external input,
2. Response to ATP depletion,
3. Response to ATP depletion while receiving external input,
4. Recovery of neurons after ATP depletion plus the response to an external input.

During these tests, we also checked if both models satisfied the requirements summarized in subsec-
tions 4.2.1 and 4.3.1. The network of coupled spiking single cells was used to validate the NMM by
comparing the behaviour of both models to each other. In addition, this would show if the underlying
single cell behaviour of the NMM corresponded to the single cell behaviour of the network model. Similar
to Dijkstra et al. (2016), the effect of blockage of voltage-gated sodium channels on neural recovery was
also tested during the fourth test. Table 4.1 and 4.2 summarize the specific test values for the network
model and NMM, respectively.

Moreover, we collected a 30s epoch from a continuous EEG recording of one patient from Medisch
Spectrum Twente (a large hospital in Enschede, The Netherlands). The patient was admitted to the
intensive care unit after a cardiac arrest and died after suffering a second cardiac arrest. The EEG was
recorded during this second arrest. We selected this patient since the EEG still showed a continuous
rhythm after the first arrest. The EEG signal was filtered with a band pass filter between 0.5 Hz and
30 Hz to remove possible artifacts. Furthermore, this EEG sample was used to validate our models by
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comparing it to the simulated signal of both models during complete ATP depletion. Lastly, we performed
bifurcation analysis of the NMM to gain more insight into the dynamic behaviour of the model. This
analysis was performed using MatCont [16].

Table 4.1: Overview of values used for conducting tests with network of single cells.

Test Imaxapp (µA/cm2) tstartapp (ms) tendapp (ms) fATP tstartATP (ms) tendATP (ms)
1a 0.9 1000 2000 - - -
1b 1.0 1000 2000 - - -
2a - - - 0.9 1000 -
2b - - - 1.0 1000 -
3a 0.9 1000 2500 0.2 2000 -
3b 0.9 1000 2500 1.0 2000 -
4a 1.0 20000 20500 1.0 2000 6000
4b* 1.0 20000 20500 1.0 2000 6000

* Voltage-gated sodium channels were blocked for t ∈ [6000, 17000].

Table 4.2: Overview of values used for conducting tests with NMM.

Test fmaxext (ms−1) tstartext (ms) tendext (ms) fATP tstartATP (ms) tendATP (ms)
1a 0.02 1000 2000 - - -
1b 0.05 1000 2000 - - -
2a - - - 0.9 1000 -
2b - - - 1.0 1000 -
3a 0.02 1000 2500 0.2 2000 -
3b 0.02 1000 2500 1.0 2000 -
4a 0.02 20000 20500 1.0 2000 6000
4b 0.02 4000 5000 1.0 2000 6000
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5 | Results

This chapter shows the results of all tests performed with the network of coupled spiking single cells and
the NMM: firstly, the response to external input; secondly, the response to ATP depletion; thirdly, the
response to ATP depletion while receiving external input and lastly, the recovery of the neurons after ATP
depletion followed by the response to an external input. The simulated EEG results of the third test were
compared to a real EEG signal. Moreover, we compared the outcome of both models to each other per
test. Next, we present the results of the (bifurcation) analysis of the models.

5.1 External input
Network model
The network of coupled spiking single cells shows a continuous resting membrane potential of -65 mV
prior to applying an external input (Figure 5.1). An external input of 0.9 µA/cm2 results in spike activity
with a frequency of 11.5 Hz (Figure 5.1A). Applying a stronger input of 1.0 µA/cm2 leads to an increased
spike frequency of 21 Hz and prolonged spiking behaviour (Figure 5.1B). This difference in frequency is
also observed in the EEG signals.

NMM
The membrane potential of both neural masses is stable and has a value of approximately -65 mV during
rest. Applying a transient input of 0.02 ms−1 to the NMM results in small oscillations of the membrane
potentials of both neural populations with a frequency of 11.1 Hz (Figure 5.2A). The frequency of these
oscillations increases to 21.8 Hz when a stronger external input of 0.05 ms−1 is applied (Figure 5.2B). The
oscillations are also visible in the simulated EEG signals. Opening of (a fraction of) the AMPA receptors
results in an increase of the firing rate of both neural populations. Inhibition occurs when the GABAA
receptors open.

Comparison
The models show comparable results. They are both stable during rest and, as a requirement, the resting
membrane potentials are -65 mV in both models. Moreover, applying an external input results in (alpha-)
rhythmic behaviour which is also visible in the simulated EEG signals of the network model and NMM.
Due to the sigmoid curves of Equation 4.21 and 4.53, there is a gradual increase and decrease of the
external input. As a result, prolonged spiking behaviour occurs for higher external inputs as the threshold
for spiking is crossed earlier when the input increases and crossed later when the input decreases. Thus,
the longer duration of the spiking behaviour is not solely the result of the stronger external input itself.
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Figure 5.1: Response of network model to external input. The color bar indicates the strength of the external
input. The upper panels show the behaviour of the inhibitory neurons, the middle panels show the behaviour of
excitatory neurons and the bottom panels show the simulated EEG signal. The membrane potential of each single
neuron is plotted. The mean values of ENa, EK and ECl of the inhibitory and excitatory neurons are shown. Insets
show a zoomed-in view of the (heterogenic) spiking behaviour. A. Response to an external input of 0.9 µA/cm2

applied between 1000 en 2000 ms. The resulting spike frequency is 11.5 Hz. B. Response to an external input of
1.0 µA/cm2 applied between 1000 en 2000 ms. The resulting spike frequency is 21 Hz.
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Figure 5.2: Response of NMM to external input. The color bar indicates the strength of the external, excitatory
input. The upper panels show the behaviour of the inhibitory mass and the panels on the second row show the
behaviour of the excitatory mass. The panels on the third and fourth row show the behaviour of the firing rate
and the fraction of open AMPA and GABAA receptors, respectively. The bottom panels show the simulated EEG
signal. Insets display a zoomed-in view of the periodic behaviour. A. Response to an external input of 0.02 ms−1

applied between 1000 en 2000 ms. The frequency of the oscillations is 11.1 Hz. B. Response to an external input
of 0.05 ms−1 applied between 1000 en 2000 ms. The frequency of the oscillations is 21.8 Hz.
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5.2 ATP depletion

Network model
In this second experiment, the amount of available ATP was lowered during simulation. During a 50%
deprivation of ATP, the resting membrane potential of all neurons increases to approximately -63.5 mV,
making the neurons slightly more excitable. When the amount of available ATP drops below 24%, depo-
larization of the membrane potentials occurs. In addition, an almost immediate increase of the membrane
potentials of approximately 7 mV is observed when the amount of ATP is below 24%. Lowering the
ATP supply to 10% of baseline value results in depolarization of the membrane potentials approximately
650 ms after ATP depletion (Figure 5.3A). Complete cessation of ATP supply accelerates the time till
depolarization, which now occurs 380 ms after ATP depletion (Figure 5.3B). After depolarization, the
membrane potentials settle at a new equilibrium of approximately -13 mV. Changes in ECl are delayed
and difficult to see. These changes are more clearly visible in subsection 5.4. Moreover, a wave-like
pattern can be observed in the simulated EEG signals during depolarization of the membrane potentials.
Again, this is more clearly visible during recovery, as discussed in subsection 5.4.

NMM
We also lowered the ATP levels during simulation of the NMM. Decreasing the amount of ATP to 10%
of baseline leads to a minor increase of the membrane potentials, EK and ECl of both neural popula-
tions (Figure 5.4A). A small decrease of ENa is observed as well. There is no increase of the firing rate
as the receptors of AMPA and GABAA do not open and the corresponding EEG signal is flat. When no
ATP is left, the receptors of AMPA and GABAA open, which results in a fast increase of the firing rate.
This leads to depolarization of the membrane potential. Soon after, the receptors close, the firing rate
becomes zero and the membrane potentials, including the Nernst potentials, of both neural masses settle
at a new, GD equilibrium of approximately -19 mV (Figure 5.4B). Furthermore, the simulated EEG signal
shows a large amplitude wave when the membrane potentials depolarize.

Comparison
Both models meet the requirements: the membrane potentials settle at a nonzero GD equilibrium after
depolarization following ATP deprivation and the simulated EEG signals show a high amplitude slow wave
after complete ATP cessation. Comparison of both models shows that depolarization of the membrane
potentials occurs already at ATP levels of 24% or lower in the network model of coupled spiking single
cells, but only at 0% in the NMM.

5.3 External input plus ATP depletion

Network model
Applying external input and simultaneously lowering the amount of available ATP can show how neural
activity is affected by ATP depletion. We applied an external input of 0.9 µA/cm2 to the network of
coupled spiking single cells. Lowering the amount of ATP to 80% of normal values leads to an increase
of the spike frequency from 11.5 Hz to 26.2 Hz (Figure 5.5A). Complete cessation of ATP supply leads
initially to an increase of the spike frequency from 11.5 Hz to 30.2 Hz. This is followed by depolarization
of the membrane potential and flattening of the simulated EEG signal (Figure 5.5B).

NMM
Lowering the amount of available ATP to 80% hardly has an effect on (the frequency of) the oscil-
lations (Figure 5.6A). Only a complete stop of ATP supply results in depolarization of the membrane
potentials of both neural masses and a resulting depolarization block (Figure 5.6B).
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Figure 5.3: Response of network model to ATP depletion. The color bar indicates the amount of available ATP.
The initial (baseline) value of ATP was 20 mM. The upper panels show the behaviour of the inhibitory neurons, the
middle panels show the behaviour of the excitatory neurons and the bottom panels show the simulated EEG signal.
The membrane potential of each single neuron is plotted. The mean values of ENa, EK and ECl of the inhibitory
and excitatory neurons are shown. The insets show a zoomed-in view of the spiking behaviour at approximately
1800 ms. A. The amount of ATP was lowered to 10% at 1000 ms. Depolarization occurs at 1650 ms. A large
wave is visible in the EEG signal during depolarization. B. The amount of ATP was lowered to 0% at 1000 ms.
Depolarization occurs at 1380 ms. A large wave is visible in the EEG signal during depolarization.
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Figure 5.4: Response of NMM to ATP depletion. The color bar indicates the amount of available ATP. The
initial (baseline) value of ATP was 20 mM. The upper panels show the behaviour of the inhibitory mass and the
panels on the second row show the behaviour of the excitatory mass. The panels on the third and fourth row show
the behaviour of the firing rate and the fraction of open AMPA and GABAA receptors, respectively. The bottom
panels show the simulated EEG signal. A. The amount of ATP was lowered to 10% at 1000 ms. B. The amount
of ATP was lowered to 0% at 1000 ms. This results in depolarization of the membrane potentials. A large wave is
visible in the EEG signal during depolarization.
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Figure 5.5: Response of network model to external input during ATP deprivation. The first color bar indicates
the strength of the external input. In both figures, an external input of 0.9 µA/cm2 was applied for t ∈ [1000,2500].
The second color bar indicates the level of available ATP. The initial (baseline) value of ATP was 20 mM. The
upper panels show the behaviour of the inhibitory neurons, the middle panels show the behaviour of the excitatory
neurons and the bottom panels show the resulting EEG signal. The insets show a zoomed-in view of the spiking
behaviour after ATP deprivation at approximately 2100 ms. A. The amount of ATP was lowered to 80% at 2000
ms. The spike frequency increases from 11.5 to 26.2 Hz. B. The amount of ATP was lowered to 0% at 2000 ms.
The spike frequency increases from 11.5 Hz to 30.2 Hz. This is followed by depolarization of the potentials.
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Figure 5.6: Response of NMM to external input during ATP deprivation. The first color bar indicates the
strength of the external input. In both figures, an external input of 0.02 ms−1 was applied for t ∈ [1000,2500]. The
second color bar indicates the level of available ATP. The initial (baseline) value of ATP was 20 mM. The upper
panels show the behaviour of the inhibitory mass and the panels on the second row show the response of excitatory
mass. The panels on the third and fourth row show the behaviour of firing rate and the fraction of open AMPA
and GABAA receptors, respectively. The bottom panels show the simulated EEG signal. A zoomed-in view of the
periodic behaviour is displayed in the grey insets. A. The amount of ATP was lowered to 80% at 2000 ms. This
does not change the frequency of the oscillations. B. The amount of ATP was lowered to 0% at 2000 ms. This
results in depolarization of the membrane potentials. A large wave is visible in the EEG signal during depolarization.
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Comparison
Similar to the results of the second test, the network of coupled spiking single cells is more sensitive to a
change in ATP supply compared to the NMM. During complete ATP cessation, both models show similar
results regarding the frequency of the periodic behaviour. The next paragraph explains this in more detail.

Comparison to real EEG signal
A second cardiac arrest was captured during EEG recordings, as shown in Figure 5.7. The dotted red
lines indicate transitions in the EEG rhythm. After the first line, slowing of the EEG rhythm is ob-
served. This is followed by silencing of the signal, visible after the second line. The electrocardiogram
signal, indicating the electrical activity of the heart, was measured as well. However, the signal is not
shown here as the electrodes were probably not properly attached, resulting in a signal with many artifacts.

Neither the simulated EEG signal of the network of single cells, nor the simulated EEG signal of the NMM
during full ATP depletion shows a result comparable to the real EEG signal. The variation of frequency
over time during cessation of ATP is shown in Figure 5.8. The frequency of both the network model and
NMM initially increases when ATP levels drop, while slowing was expected based on the real EEG signal.
Silencing of the simulated EEG signals of both models is eventually also visible.

Figure 5.7: EEG recording of a (second) cardiac arrest. Changes in EEG rhythm are indicated by the dotted
red lines. Slowing of the EEG signal is observed (first line), which is followed by suppression of the signal (second
line). The first and ninth channel contain artifacts, mainly visible after the second red line.

5.4 Recovery after ATP depletion
Network model
The network of coupled spiking single neurons shows that the membrane potentials do not return to
their resting state when ATP levels are fully restored and the pumps have regained their original strength
(Figure 5.9A). A delayed increase of ECl up to the new equilibrium of approximately -13 mV is now
more clearly visible. Additionally, the model does not respond to an external input of 1.0 µA/cm2 which
was applied after recovery of ATP levels. According to Dijkstra et al. (2016), (partial) depolarization of
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Figure 5.8: Effect of complete ATP depletion on EEG frequency. The time-frequency plots have a frequency
resolution of 0.82 Hz and a time resolution of 313 ms. In both plots, the power of higher frequencies initially
increases after ATP depletion. This is followed by a decrease of the EEG frequency and silencing of the simulated
EEG signal. A. Frequency response of network of coupled spiking single cells. An external input of 0.9 µA/cm2

was applied. B. Frequency response of NMM. An external input of 0.02 ms−1 was applied.

the membrane potential is associated with an increased sodium permeability. The NKAs might not be
able to overcome the resulting sodium current [17]. The recovery of membrane potentials is stimulated by
blocking the voltage-gated sodium channels. The membrane potentials return to their resting value of
-65 mV after a temporal, but complete blockade of the transient sodium current. Thereby we mimicked
the effect of administering a sodium channel blocker like tetrodotoxin. After removing the blockade, we
observe a response to an external current of 1.0 µA/cm2 (Figure 5.9B). Furthermore, a large slow wave is
observed on the simulated EEG of the network model during ATP depletion which resembles the "Wave
of Death" as simulated by Zandt et al. (2011) (See Figures 3.4 and 5.9) [79].

NMM
Restoring the ATP supply in the NMM leads to an immediate response of the system (Figure 5.10A).
The membrane potentials of both neural masses hyperpolarize, due to a dip in EK , before they settle
at the resting value of -65 mV. Applying an external input of 0.02 ms−1 after restoring ATP levels,
results in a response of the NMM. Recovery of the membrane potential already happens without blocking
voltage-gated sodium channels. Blocking the channels does not result in a different response and so,
no result of this test is shown. Instead, we applied an external input of 0.02 ms−1 while the membrane
was depolarized (Figure 5.10B). As expected from the result of the network model, the NMM shows no
response to this stimulus. Furthermore, a "Wave of Death"-like signal is observed on the simulated EEG
of the NMM during depolarization of the membrane potential. This is visible on the bottom panels of
Figure 5.10.
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Figure 5.9: Recovery of network model after complete ATP depletion. The first color bar indicates the
strength of the external input and the second color bar indicates the level of available ATP. The upper panels
show the behaviour of the inhibitory neurons, the middle panels show the behaviour of the excitatory neurons and
the bottom panels show the resulting EEG signal. A. The amount of ATP is fully restored after t = 6 s. No
response to an external input applied for t ∈ [20,20.5] is visible. B. Together with fully restoring the amount of
ATP after t = 6 s, the effect of e.g. tetrodotoxin is simulated by blocking voltage-gated sodium channels for
t ∈ [6,17]. The membrane potentials return to their baseline values and a response to an external input applied
between t ∈ [20,20.5] is visible. The insets show a zoomed-in view of the response to the external input.
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Figure 5.10: Recovery of NMM after complete ATP depletion. The first color bar indicates the strength of the
external input and the second color bar indicates the level of available ATP. The upper panels show the response
of the excitatory mass and the panels on the second row show the response of inhibitory mass. The panels on
the third row show the behaviour of the firing rate and the bottom panels show the fraction of open AMPA and
GABAA receptors. A. An external input of 0.02 ms−1 is applied after recovery of the membrane potential. The
insets show a zoomed-in view of the response to this external input. B. An external input of 0.02 ms−1 is applied
while the membrane potentials are still depolarized. No response is visible.
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Comparison
The initial response of both models to ATP depletion is similar. However, the models respond differently
to restoration of the ATP supply. An immediate recovery of the membrane potentials of the NMM is
visible, while the membrane potentials of the network of coupled spiking single cells only recover when
voltage-gated sodium channels are temporarily blocked.

In both models, a large slow wave can be observed on the simulated EEG signal during depolarization of
the membrane potentials. The membrane potentials can still recover after occurrence of this wave.

5.5 Model analysis
Figure 5.11 shows the response frequency of the network model of coupled spiking single cells and the
NMM to external input. Both models react to an external input when this input exceeds a threshold value
of approximately 0.85 µA/cm2 for the network of coupled spiking single cells and approximately 0.016
ms−1 for the NMM. The shapes of the graphs are similar: an increase of the external input leads to an
increase of the response frequency. A more rapid increase of the response frequency is visible when the
input is higher than 2.0 µA/cm2 for the network of coupled spiking single cells and approximately 0.052
ms−1 for the NMM. Furthermore, the response frequency becomes zero after reaching a maximal input
value, indicating the occurrence of a depolarization block.
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Figure 5.11: Response frequency to external input. ATP levels are at baseline value of 20 mM. When the
external input exceeds a specific threshold, the models react to this input. After reaching a maximal input value,
the response frequency becomes zero and a depolarization block occurs. A. (Mean) response frequency of excitatory
cells in network of spiking single cells. B. Response frequency of NMM.

We studied the dependency of the NMM on the external input using bifurcation analysis. Figure 5.12
shows the corresponding bifurcation diagram with fext as a free parameter. The strength of external
input fext determines the qualitative dynamics of the model. Three possible responses of the membrane
potentials are observed when external input is applied. These responses, plus the observed simulated EEG
signals, are:
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1. a small increase of the membrane potential, simulated EEG is flat,
2. continuous periodic behaviour, simulated EEG shows continuous periodic behaviour,
3. transient periodic behaviour, simulated EEG shows transient periodic behaviour.

The continuous, periodic behaviour arises from a supercritical Hopf bifurcation. The closer fext is to the
Hopf bifurcation, the smaller the amplitude of the periodic behaviour. When fext exceeds the correspond-
ing value of the Hopf bifurcation, transient periodic behaviour is visible.
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Figure 5.12: Bifurcation diagram of ATP-dependent NMM with fext as free parameter. Stable equilibria are
denoted by a solid red line, and unstable equilibria are denoted by a dashed blue line. The green and yellow lines
indicate the maximum and minimum values of rAMP A at the stable limit cycle, respectively. The H indicates a
supercritical Hopf bifurcation, giving rise to a stable limit cycle. At an external input of 0.196 ms−1 or higher, the
system shows periodic behaviour. The insets show qualitative dynamics of the membrane potential of the excitatory
mass with the y-axis in mV at different positions in the bifurcation diagram. Transient periodic behaviour is visible
when fext is higher than the value corresponding to the Hopf bifurcation.
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6 | Discussion

To the best of our knowledge, we are the first to construct a network model of coupled spiking single
cells and NMM including NKAs. This is achieved by an ion-based formulation. Our models offer the
possibility to tune the amount of available ATP, and thus, the strength of the NKAs, during simulations
to examine the effect of ATP depletion on the neural activity at macroscopic scale. We derived a new
equation for this firing rate based on the dynamics of a single cell as the Nernst potentials of sodium and
potassium influence the population firing rate.

A lot of computational models exist in the field of neuroscience, but models focusing on ATP deprivation
are scarce. Our models show similar behaviour as the single cell models of Zandt et al. (2011) [79] and
Dijkstra et al. (2016) [17] during deprivation of ATP. The so-called "Wave of Death" is visible in our
network model and NMM. Furthermore, both models show depolarization of the cell membrane towards a
GD equilibrium as well. However, several differences between our models and other computational models
exist as well. First, it is possible to tune the amount of ATP during the simulations with our models
which is not possible in the model of Zandt et al. (2011). Hence, the behaviour of our model prior
to complete cessation of ATP can be investigated. Secondly, there is a difference in scale. Our models
provide a unique extension by including the NKA and ATP dependency at a macroscopic scale, while
the two previously mentioned models are both at microscopic scale. Thirdly, a big difference between
our NMM and previously constructed NMMs is the fact that ion concentrations are the base instead of
average membrane potentials. This paves the road for a new kind of models and their study. Section 6.2
further discusses the clinical relevance of this approach.

As shown in Figure 3.5A, the physiological state disappears in the network of coupled spiking single cells
when the amount of available ATP drops below 24% and the membrane potential depolarizes. This is
similar to the model behaviour described by Dijkstra et al. (2016). The membrane potential settles at
a new (pathological) equilibrium potential. This corresponds to the GD equilibrium state, which is also
named a ’state of free energy-starvation’ due to the almost complete dissipation of energy [17]. Only the
change in ECl is much slower compared to changes in EK and ENa. Hence, it takes longer before ECl
equals the GD equilibrium potential. Possible causes of this delayed ECl are the smaller permeability of
chloride and a less dominant influence of the KCL cotransporters compared to the NKAs. In accordance
with Dijkstra et al. (2016), we show with our network of single cells that membrane potentials return
to physiological values after blocking the voltage-gated sodium channels [17]. Without blocking these
channels, NKAs are not able to compensate for the sodium currents. Initially, no difference is visible on
the simulated EEG signal between the situations with and without blocking the channels. By applying an
external current, the underlying differences become visible as the neurons only respond to the stimulus
when membrane potentials have returned to their physiological baseline. This corresponds to the clinical
use of electrophysiological brain responses to a stimulus. These responses are used for assessing the brain
function and predicting the outcome of comatose patients as they may be indicative of recovery after
(postanoxic)coma [71]. Furthermore, it is remarkable that the NMM shows a mild response when ATP
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levels reach 10% of baseline. Only complete cessation of ATP leads to a depolarization block in the NMM
and settling of the potentials at a GD equilibrium. The membrane potentials and Nernst potentials of
both neural populations recover as soon as ATP increases. Blocking voltage-gated sodium channels does
not provide different results. A potential cause of these deviant responses are the strengths of the NKAs.
In contrast to the pumps of the network of single spiking cells, the pumps of the NMM are strong enough
to overcome the sodium current. As explained in Appendix C, the strength of the pumps influences the
leak permeabilities as well. By decreasing the pump strengths, the constraints (PLNa > 0, PLK > 0 and
PLCl > 0) could not be satisfied. Moreover, lowering the ATP levels to 10% has less impact on these
stronger pumps compared to the ones of the network. During other, yet unpublished, research at the
University of Twente, it was shown that the size of the ECS influences the response of the neuron during
recovery of ATP levels. The smaller the ECS, the harder it is for a neuron to recover. We investigated
if the size of the ECS had influence on our model as well. Changing the size of the ECS resulted in
no difference at all or a (numerical) error which could not be resolved. The results are therefore not
published in this report. In addition, an initial increase of the membrane potential was visible when the
ATP levels dropped below 24% in the network model or when the ATP levels were 0% in the NMM. This
value corresponds to the direct electrogenic contribution of NKAs to the membrane potential which is
approximately 5 to 10 mV [1].

As required, both models show normal neural activity under physiological conditions. The network of cou-
pled spiking single cells responds to an external input current by producing spikes. The spike frequency
depends on the strength of the input current. This spiking behaviour cannot be simulated with the NMM
as it requires fast dynamics of the activation and inactivation gates m,n and h, whose steady-state
versions were used in the NMM. In our NMM model, continuous periodic behaviour of the membrane
potential are observed in response to an external input. This behaviour arises once the system undergoes
a (supercritical) Hopf bifurcation. During such a bifurcation, the stability of the system switches and a
limit cycle is born. This behaviour was also observed in the HH cell used to determine the new firing rate
curve. The periodic behaviour becomes transient when the input exceeds the value corresponding to the
Hopf bifurcation.

Similar to Zandt et al. (2011), we did not consider any ATP buffers [79]. Incorporating these reserves
would postpone the response of the models to ATP depletion. It is thought that this does not change
the dynamics of the model. Moreover, the strength of the NKAs is immediately affected by a decrease
of ATP. However, it is questionable if the maximal pump strengths are reached under normal ATP levels
and normal activity levels or if the pump strengths can (temporarily) become higher when necessary, e.g.
during ATP depletion. This could potentially postpone depolarization of the membrane potentials. It is
thought that this has no impact on the model behaviour.

Although the network of spiking cells and the NMM show behaviour comparable to each other and other
computational models, their outcome does not correspond to the real EEG signal shown in Figure 5.7.
An initial increase of the firing frequency is observed in the computational models, while the EEG shows
slowing of the frequencies. Also literature reports that slowing of the EEG signal is expected (see Fig-
ure 2.1) [20]. We ascribe the increased firing rate to an increased neural excitability. This happens due
to a decrease of the strength of the NKAs resulting in an increase of EK and a decrease of ENa. Ap-
parently, a decreased function of the NKAs alone, does not result in the expected behaviour. Hence,
the question remains which underlying mechanisms are responsible for the slowing of the EEG rhythm.
Mild to moderate ischemia can result in synaptic failure [28]. This failure might result from presynaptic
damage associated with impaired transmitter release and is a potential candidate for the slowing of the
EEG signal. We have shortly tested this with our network of single neurons by diminishing the fraction of
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open (AMPA) receptors during ATP depletion. As none of the outcomes shows a decrease in firing rate,
the results are not published in this report. It is recommended to investigate the mechanisms behind loss
of fast frequencies and increase of slower frequencies further. Suggestions are changes in the synaptic
coupling strengths and the loss of synchrony between neurons. According to Coombes and Byrne (2019),
a change in power of the EEG signal can be due to variation of synchrony within a neural mass [12].
Moreover, ATP depletion has a similar effect on all inhibitory and all excitatory neurons in our models.
However, different types of neurons have different sensitivity to ischemia which can play a role in the
slowing of EEG as well [20].

We observe a large slow wave in both of our models. As the neurons can still recover once ATP is
restored, we agree with Zandt et al. (2011) that calling this wave ‘cerebral anoxic depolarization’ might
be more appropriate than ‘Wave of Death’ [79]. The wave occurs much earlier in our models compared to
the one of Zandt et al. (2011). This difference can be ascribed to differences is parameter values, e.g.
the ratio between ICS and ECS. The connections between the neurons might play a role in accelerating
depolarization as well. Remarkably, during previous (unpublished) research at Medisch Spectrum Twente,
it was concluded that the "Wave of Death" is not visible in real EEG signals after cardiac arrest. It
is speculated that simultaneous loss of resting membrane potential causes the wave [73]. As suggested
earlier, loss of synchrony might be the reason why the wave is not visible on the human EEG. However, it
is yet unknown why the human EEG does not show this behaviour, while experimental (animal) studies
confirm the existence of the wave.

6.1 Limitations
One of the obvious limitations of our models, and computational models in general, is simplification of
the neural network. First, we only considered temporal aspects and disregarded all spatial aspects. We
assumed a spatially homogeneous model to be appropriate as a cardiac arrest results in diffusely disturbed
CBF [58]. Extending the NMM to a spatio-temporal NMM offers the opportunity to use the model for
research regarding local CBF-related conditions like cerebral infarction. Secondly, only the NKA was
considered while many more ATP-dependent processes are affected during ATP depletion. Due to the
extensiveness of the project, this was out of the scope of this research. We elaborate on this topic in
Section 6.3.

Furthermore, experimental data for calibration and validation of our NMM were scarce. This complicated
finding proper values for our variables. Therefore, we determined several values based on empirical find-
ings. The computational models were also compared to EEG data of only one patient. More EEG data of
patients during a cardiac arrest are difficult to acquire as the occurrence of such an event is unpredictable
and rare. Chances are small that a second cardiac arrest is captured on the EEG of patients in postanoxic
coma who still have rhythmic output. Nevertheless, the EEG is in accordance with literature and thus,
we consider it useful for our research [20]. Other options to acquire more data for further research are to
compare the outcome of this study to EEG data of patients undergoing carotid surgery, undergoing a tilt
table test or with the outcome of animal studies. Besides, we assumed that our excitatory and inhibitory
neuron are representative to simulate the mean behaviour of an excitatory and inhibitory population in
the NMM. Moreover, the firing rate curve is based on one single HH neuron only. By smoothing the
curve, we did not only avoid numerical instabilities, but we also introduced spreading in the behaviour of
the neural population and thus, heterogeneity, to correct for this limitation.
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Although we based parts of our models on the cytotoxic cell swelling model of Dijkstra et al. (2016),
we have chosen not to incorporate cell swelling itself to limit the complexity of the model. However, a
strong predictor of functional outcome of comatose patients after cardiac arrest is the occurrence and
severity of cerebral edema [66]. Therefore, we recommend to implement cell swelling mechanisms in the
model during future research.

6.2 Clinical relevance
The network of single neurons and the NMM provide insight in the neural activity during ATP deprivation
following cardiac arrest. This contributes to understanding the underlying pathophysiological mechanisms,
which is of great importance for improving the outcome prediction and treatment of several medical con-
ditions like cardiac arrest. However, we cannot (yet) match the computational models to the real EEG
signal and the NMM should be optimized to produce the desired behaviour. Therefore, the gap between
the NMM and clinical use is still quite big. Nevertheless, its clinical potential is large. Not only can it
lead to new research possibilities in the medical field concerning cardiac arrests, it can also be of major
benefit for research regarding ischemic cerebral infarction, brain hemorrhage and other medical conditions
in which a lack of oxygen and glucose causes serious problems to the brain.

As far as we know, this is not only the first NMM containing NKAs, but also the first NMM based
on ion concentrations. This model provides a base for studying neural activity in diseases in which ion
concentrations deviate from normal, e.g. in Alzheimer’s Disease. In this disease, a decreased level of NKAs
together with impaired clearance of glutamate can result in an impairment of cellular ion homeostasis [74].
Moreover, we tested the effect of blocking the voltage-gated sodium currents during restoration of ATP
levels. The ion-based NMM can be used to simulate the effect of drugs targeting ion channels or
channelopathies on neural activity.

6.3 Recommendations
We focused on the effects of ATP deprivation on NKAs and the resulting effects of failure of these pumps.
However, ATP depletion affects many more processes in the brain. As we have not yet uncovered the
underlying mechanisms responsible for slowing of the EEG rhythm during cardiac arrest, we recommend
to extend the model by incorporating other ATP-dependent processes as well. Synaptic failure can oc-
cur, which might be caused by presynaptic malfunctioning and impaired release of neurotransmitters [27].
Moreover, the effects of extracellular glutamate can be considered as well. Approximately 90% of all
extracellular glutamate is removed by astrocytes. This clearance happens after glutamate diffuses from
the synaptic cleft to the ECS and requires ATP [44]. According to Orfila et al. (2018), there is an enor-
mous increase of extracellular glutamate within minutes after the onset of ischemia. Reverse glutamate
uptake by astrocytes occurs in isolated Müller cells. This happens after strong membrane depolarization
due to failure of the NKA in tissue exposed to ischemia [57]. Excessive amounts of extracellular gluta-
mate induces so called ischaemic long-term potentiation. This is the strengthening of the connection
between neurons [52]. Ruijter et al. (2017) incorporated long-term potentiation in their model [58]. The
new NMM might eventually even be linked to this previously published NMM to gain additional insights
in the response of neuronal populations to ATP depletion and the aftermath of this depletion. A final
extension of the model is modelling the neurovascular coupling (NVC). Neural activity and CBF are linked
by a mechanism known as NVC. Although it is suggested that brain integrity and functionality can be
compromised due to failure of the NVC caused by low oxygen levels during cardiac arrest, the effect of
hypoxia on the NVC is not fully known, neither are the possibilities to restore the coupling mechanism.
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Furthermore, we have chosen to construct a NMM consisting of only two neural populations. This is the
minimum representation of a NMM. We did not make a distinction within the excitatory nor inhibitory
population as was done in the Jansen-Rit model [33]. They included a population of excitatory interneu-
rons. The Wendling model, which is an extension of the Jansen-Rit model, even has two inhibitory
populations: slow and fast inhibitory interneurons. More types of activity can be simulated with these
models. We recommend to investigate if this improves the NMM.

Our last recommendation is to perform a more extensive bifurcation analysis on the NMM. This can
be of added value to expose underlying dynamics and further deepen the understanding of the model
behaviour. To show slowing of the frequencies, as seen in the real EEG signal, we expect to find a
homoclinic bifurcation. We recommend a slow-fast analysis to investigate this hypothesis. The NMM can
be divided in a slow and fast subsystem: ion dynamics of the NMM are much slower than the synaptic
dynamics. By regarding the ions as slow parameters, it might be possible to find a homoclinic bifurcation
or other bifurcations in the fast subsystem. As the slow manifold is six dimensional, this will probably be
a difficult task.
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7 | Conclusion

In conclusion, our models fill a gap in the field of computational neuroscience. We constructed two macro-
scopic models consisting of ATP-dependent NKAs. Moreover, the NMM was based on ion concentrations.
We showed how the models react to external input and ATP depletion and investigated the response to
recovery of ATP levels. The behaviour of the models is similar to the behaviour of other computational
models. However, their behaviour during cessation of ATP does not correspond to a real EEG signal and
thus, the underlying mechanisms responsible for slowing of the EEG rhythm during cardiac arrest remain
unknown. We recommend to perform further research to discover these mechanisms, e.g. expanding
the models by incorporating more ATP-dependent processes and implementing cell swelling. Although
we acknowledge several limitations in our research, this study is a starting point for future models to
investigate and understand underlying pathophysiological mechanisms of neural diseases influenced by
ATP deprivation and/or an imbalance of ion concentrations.
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A | Model Parameters

The physiological interpretation of the parameters and their values are given in Table A.1 for the network
model and Table A.2 for the NMM.

Table A.1: Overview of model parameters, symbols and values of network of single cells

Parameter Description Value Unit
V0 Resting membrane potential -65 mV
Wi / We Intracellular / extracellular volume 2160 / 720 [30] µm3

F Faraday’s constant 96485.333 [17] C·mol−1

R Universal gas constant 8.3144598 [17] C·V·mol−1K−1

T Absolute temperature 310 [17] K
gKCl Flux parameter of KCl cotransporter 7e-3[E] Ω−1·cm−2

τEr / τ Ir Rise constant of excitatory / inhibitory synapse 0.2 / 0.5 [7] ms
τEd / τ Id Decay constant of excitatory / inhibitory synapse 2 / 10 [7] ms
ks Slope parameter 10[E] mV
Cm Specific membrane capacitance 1 [79] µF·cm−2

gNa Maximum gated sodium conductance 100 [79] mS·cm−2

gNaL Sodium leak conductance 0.0175 [79] mS·cm−2

gK Maximum gated potassium conductance 40 [79] mS·cm−2

gKL Potassium leak conductance 0.05 [79] mS·cm−2

gClL Chloride leak conductance 0.05 [79] mS·cm−2

εEE Coupling strength (from excitatory to excitatory neuron) 0.01 [7] mS·cm−2

εEI Coupling strength (from excitatory to inhibitory neuron) 1.0 [7] mS·cm−2

εIE Coupling strength (from inhibitory to excitatory neuron) 0.5 [7] mS·cm−2

εII Coupling strength (from inhibitory to inhibitory neuron) 0.1 [7] mS·cm−2

NE / NI Number of excitatory / inhibitory neurons 4 / 16[E] -
φ Time constant of gating variables 3 [79] ms−1

ATP0 Initial neuronal ATP concentration 20 [11] mM
KATP Dissociation constant of ATP binding with NKA 170 [11] mM
ρp NKA rate 36.73[E] µA·cm−2

[Na+]0i Initial intracellular sodium concentration 29.36[E] mM
[Na+]0e Initial extracellular sodium concentration 111.33[E] mM
[K+]0i Initial intracellular potassium concentration 125.99[E] mM
[K+]0e Initial extracellular potassium concentration 5.02[E] mM
[Cl+]0i Initial intracellular chloride concentration 10.72[E] mM
[Cl+]0e Initial extracellular chloride concentration 115.51[E] mM

superscript [E] indicates that the value was found empirically.
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Table A.2: Overview of model parameters, symbols and values of NMM.

Parameter Description Value Unit
V E mean excitatory soma membrane potential n.a. mV
V I mean inhibitory soma membrane potential n.a. mV
r radius of spherical neuron 7.82 µm
A membrane surface of neuron 767.66 µm2

Wi Volume of neuron / Volume of intracellular space 2000 [17] µm3

We Volume of extracelllular space 478.92 µm3

C membrane capacitance 20 [17] pF
F Faraday’s constant 96485.333 [17] C·mol−1

R universal gas constant 8.3144598 [17] C·V·mol−1K−1

T absolute temperature 310 [17] K
ATP0 initial neuronal ATP concentration 20 [11] mM
KATP dissociation constant of the ATP binding with NKA 170 [11] mM
ρp NKA rate 54.5 [17] pA
αA /βA opening / closing rate of AMPA receptor 2 / 0.5[E] ms−1

ḡEA maximal conductance of AMPA (to AMPA) 0.17[E] nS
ḡIA maximal conductance of AMPA (to GABAA) 0.1 [38] nS
αG / βG opening / closing rate of GABAA receptor 14 / 0.03[E] ms−1

ḡEG maximal conductance of GABAA (to AMPA) 0.1[E] nS
ḡIG maximal conductance of GABAA (to GABAA) 0.05[E] nS
NEE number of synaptic connections from E to E population 3000 [58] -
NEI number of synaptic connections from E to I population 3000 [58] -
NIE number of synaptic connections from I to E population 500 [58] -
NII number of synaptic connections from I to I population 500 [58] -
gKCl Flux parameter of KCl cotransporter 125.43[E] Ω−1·cm−2

[A−]i Intracellular impermeant anion concentration 148.0067[E] mM
[A−]e Extracellular impermeant anion concentration 35[E] mM
[Na+]E,0i Initial intracellular sodium concentration of E population 10 mM
[Na+]I,0i Initial intracellular sodium concentration of I population 10 mM
[Na+]0e Initial extracellular sodium concentration 150 mM
[K+]E,0i Initial intracellular potassium concentration of E population 145 mM
[K+]I,0i Initial intracellular potassium concentration of I population 145 mM
[K+]0e Initial extracellular potassium concentration 5 mM
[Cl−]E,0i Initial intracellular chloride concentration of E population 7 mM
[Cl−]I,0i Initial intracellular chloride concentration of I population 7 mM
[Cl−]0e Initial extracellular chloride concentration 120 mM
PLNa sodium leak permeability 1132[E] µm3· s−1

PLK potassium leak permeability 13555[E] µm3· s−1

PLCl chloride leak permeability 1931[E] µm3· s−1

P TNa Maximal transient sodium permeability 800 [17] µm3· s−1

PDK Maximal delayed rectifier potassium permeability 400 [17] µm3· s−1

PGCl Maximal voltage-gated chloride permeability 19.5 [17] µm3· s−1

σ standard deviation 1[E] ms−1

superscript [E] indicates that the value was found empirically.
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Table A.3: Coefficients of polynomials Ith, κ and Ith2

Coefficient (Ith) Value Coefficient (κ) Value Coefficient (Ith2) Value
p00 -213.8 q00 0.287 r00 -185.9
p10 -8.404 q10 0.01094 r10 -4.877
p01 -3.007 q01 0.001027 r01 -3.674
p20 -0.1111 q20 0.0001692 r20 -0.002785
p11 -0.07862 q11 -8.42e-6 r11 -0.1044
p02 -0.001213 q02 -4.839e-5 r02 0.01561
p30 -0.0005002 q30 8.167e-7 r30 -1.17e-5
p21 -0.0005221 q21 -3.156e-7 r21 1.897e-5
p12 -1.483e-6 q12 -4.421e-7 r12 0.0006927
p03 3.779e-5 q03 2.764e-7 r03 0.0001089
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B | Additional information: network of
coupled spiking single cells

Here we provide additional information about creating heterogeneity in the network of coupled spiking
single cells. We created a heterogeneous neural population by varying the external input per neuron. To
maintain this heterogeneity if no external input was applied, each neuron had a slightly different pump
strength. The mean values used, can be found in Table A.1. The variations per neuron are summarized
below in Table B.1.

Table B.1: Variations per neuron relative to the mean external current and mean pump strength.

Neuron External current Pump strength
1 - +0.1
2 - -0.1
3 - +0.2
4 - -0.2
5 +0.0010 +0.1
6 -0.0010 -0.1
7 +0.0015 +0.2
8 -0.0015 -0.2
9 +0.0020 +0.3
10 -0.0020 -0.3
11 +0.0025 +0.4
12 -0.0025 -0.4
13 +0.0030 +0.5
14 -0.0030 -0.5
15 +0.0035 +0.6
16 -0.0035 -0.6
17 -0.0040 +0.7
18 -0.0040 -0.7
19 +0.0045 +0.8
20 -0.0045 -0.8
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C | Additional information: ATP-dependent
neural mass model

Here we provide additional information on determining the size of the leak currents in the NMM. The
NMM should settle at the resting membrane potential of -65 mV when ATP levels are normal and no
external current is applied. To guarantee this, we determined the leak currents based on the strength of
NKAs, the strength of the KCL cotransporters and the size of the voltage-gated currents. We started by
setting the DEs of KE

i , NaEi and ClEi of Equation 4.52 to zero. Next, we assume that all AMPA and
GABAA receptors are closed at t = 0 and so, both rA and rG are initially zero. This leads to

IL,ENa = −IT,ENa − 3δIEp ,
IL,EK = −ID,EK + 2δIEp − FJIKCL,
IL,ECl = −IG,ECl + FJEKCL.

Solving this equations leads to the values of PLNa, PLK and PLCl, required for equilibrium of the system.
Thereby, the following constraints have to be kept in mind: PLNa > 0, PLK > 0 and PLCl > 0. The outcome
is the same for the inhibitory population as the initial conditions are similar to those of the excitatory
population.
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D | Additional background information:
cell biology

We start by providing a general introduction to the structure of the human brain and neurons. Next, we
provide more background information about cell biological topics used in this research. We focus on neural
activity and the contributing role of ion channels, NKA, KCL cotransporter KCC2 and transmembrane
receptors AMPA and GABA.

D.1 Introduction to human brain and neurons

The human brain contains approximately 1011 neurons and even more glial cells. Four different domains
can be distinguished in the structure of neurons, namely: dendrites, cell body (or soma), axon and presy-
naptic terminals. Figure D.1 shows the structure of a typical neuron. All four parts play a specific role
in the neural communication by sending signals to and receiving signals from other neurons. The neural
information flows from the dendrites to the cell body to the axon. There it is passed on to target cells via
synapses. A synapse contains the presynaptic terminal, the postsynaptic membrane (of the target cell)
and the synaptic cleft (space between two cells) [9].

The intra- and extracellular solution of a neuron are electroneutral. However, a potential difference across
the neuronal membrane exists due to separation of charge near both sides of the membrane itself. This
potential difference across the neuronal membrane is referred to as membrane potential. A neuron has a
resting membrane potential of approximately -65 mV.

D.2 Nernst potentials

Transmission of electrical signals and propagation of signals depends on ionic currents through the neu-
ronal membrane. Some ion channels, called leak channels, are opened in resting neurons. Permeable
ions can cross the neuronal membrane via these channels which results in leak currents. Besides the
leak currents, there are voltage-gated currents. A change in membrane potential near the voltage-gated
channel can open or close the channel, thereby allowing or blocking ions to flow in or out of the cell [31].
Ions move through open membrane channels depending on the ion concentrations on both sides of the
membrane and electrical potential gradients. Diffusion of ions happens down-gradient. However, neurons
also contain impermeable anions. If positively charged ions diffuse out of the cell, the ICS has a net
negative charge. Now an electrical potential gradient across the membrane is created due to accumula-
tion of positive and negative charges on both sides sides of the membrane surface. This transmembrane
potential results in attraction of positive ions to the negatively charged membrane interior and repulsion
from the positively charged membrane exterior. The net-cross membrane current becomes zero when the
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Figure D.1: Structure of neuron. The structure of the neuron can be divided into four domains: dendrites, cell
body (= soma), axon and presynaptic terminals. The synapse exists of the presynaptic terminal, the postsynaptic
membrane and the synaptic cleft. Here, signals are transmitted from one neuron to the target cell. Modified figure
from [51].

electrical potential gradient and the concentration gradient counterbalance each other and an equilibrium
is reached. This point is called the Nernst equilibrium potential [31]. The intracellular and extracellular ion
concentrations and the Nernst equilibrium potentials of typical mammalian neurons are listed in Table D.1.

D.3 Action potentials

Voltage-gated channels play a role during generation of action potentials. Action potentials are brief
electrical impulses causing the membrane potential to rise by approximately 100 mV. When the mem-
brane depolarizes, voltage-gated sodium channels open and sodium ions can enter the cell. This results
in a rapid increase of the membrane potential. Shortly after, these channels close and voltage-gated
potassium channels open. Potassium rushes out of the cell and the membrane potential drops quickly
(repolarisation). The membrane potential even becomes slightly more negative than its resting potential
as voltage-gated potassium channels close slowly. This is called after-hyperpolarisation.

Table D.1: Ion concentrations and Nernst equilibrium potentials. The intracellular and extracellular concen-
trations of typical mammalian neurons and the corresponding Nernst equilibrium potentials at a temperature of
37°C. Impermeant anions do not have an equilibrium potential as this is only applicable to permeant ions. [X]
denotes the concentration of ion X with X ∈ {Na+,K+, Cl−, A−}. Values from Izhikevich (2007) [31].

Ion species Intracellular [X] (mM) Extracellular [X] (mM) Equilibrium potential (mV)
Sodium (Na+) 5 to 15 145 61 to 90
Potassium (K+) 140 5 -90
Chloride (Cl−) 4 110 -89
Anions (A−) 147 25 x
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D.4 Neurotransmitters
During chemical synaptic transmission, neurotransmitters are released from the presynaptic terminal.
These molecules bind to receptors of the postsynaptic cell after diffusion across the synaptic cleft. Due
to the generation of ion flow, this process results in a change in the membrane potential at the side of
the postsynaptic cell, called a postsynaptic potential (PSP). Excitatory neurotransmitters generate an
inward current across the membrane which leads to depolarization. A PSP produced this way is called
an excitatory postsynaptic potential (EPSP). An inhibitory postsynaptic potential (IPSP) is created by
inhibitory neurotransmitters. They generate an outward current leading to a more negative membrane
voltage (hyperpolarization). If the incoming signals lead to significant PSPs, amplification of the signals
by voltage-gated channels can occur and action potentials are generated [31]. The fast EPSPs in the brain
are mediated by AMPA receptors. These receptors have a rise time between 0.4 and 0.8 ms in cortical
pyramidal cells and a decay time constant of approximately 5 ms [38]. AMPA receptors have an almost
equal permeability to both potassium and sodium. This result in an equilibrium potential near 0 mV as
it is driven equally towards the Nernst potential of potassium (-90 mV) and sodium (60 to 90 mV) [31].
GABAA receptors mediate the fast IPSP and are sensitive to chloride. The equilibrium potential of the
GABAA receptors is thus equal to the Nernst equilibrium potential of chloride [31,34].

D.5 Types of neurons
We focused on pyramidal neurons and interneurons in this research. Pyramidal neurons are the principal
excitatory neurons in the cortex. These cells receive both excitatory and inhibitory input. Interneurons
are mostly inhibitory, although there exist excitatory interneurons as well. Approximately 20-30% of the
cortical neurons are inhibitory neurons. These neurons connect to pyramidal cells and other interneurons.
Moreover, they play an important role in the regulation of the dynamics of neuronal networks [53,69].
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E | General principles of neural mass model

Conversion of the average membrane potentials and average pulse densities is performed with two oper-
ators: the synaptic response and the potential-to-rate function. Figure E.1 shows a schematic overview
of the conversion operators of a neural mass and the order of usage.

Figure E.1: Schematic overview of the conversion operators of a neural mass model. The synaptic response
transforms the mean pre-synaptic firing rate Qin into an average membrane potential V (t). The potential-to-rate
function, or activation function, converts the average membrane potential into a mean firing rate Qout.

The mean pre-synaptic firing rate Qin(t) transforms into an average post-synaptic potential V (t) by linear
convolution with the impulse response of the synapses:

V (t) = h ∗Qin(t), (E.1)

where ∗ denotes the convolution operator and h denotes the impulse response.

Characteristics of the impulse response are a rapid rise and a slow decay. Common choices for h(t) are a
difference of exponentials (hd) or the α-function (hα):

hd(t) =
( 1
α
− 1
β

)−1 [
e−αt − e−βt

]
H(t),

hα(t) = α2te−αtH(t),

for t ≥ 0, where α > 0 and β > 0 are the synaptic decay and rise rate, respectively. In case α = β,
we get hα instead of hd. H(t) denotes a Heaviside step function. Figure E.2A shows an example of the
impulse response function hd.

The differential equation (DE) corresponding to the impulse response function of the convolution (Equa-
tion E.1) is: (

1 + 1
α

d

dt

)(
1 + 1

β

d

dt

)
V = Qin.

The second operator, the potential-to-rate function S(V ), transforms the average membrane potential to
a mean firing rate. This function is also known as the activation function. It is a non-linear function and
typically, has the following properties:
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Figure E.2: Examples of both conversion operators of a neural mass model. A. Second order impulse response
function hd(t). B. Sigmoid function S(V ) with Qmax the asymptotic maximal value and V0 the potential at which
half of the population fires. For V = V0 we get S(V0) = 0.5Qmax.

• It is non-decreasing, so S′(V ) > 0.
• It converges to zero as V → −∞, so lim

V→−∞
S(V ) = 0.

• It is bounded from above by the maximum firing rate Qmax, so lim
V→∞

S(V ) = Qmax.

The population firing rate is often modelled by a sigmoid function:

S(V ) = Qmax
1 + er(V0−V ) , (E.2)

where r is the slope of the sigmoid and V0 is the potential at which half of the population fires. An
example of this sigmoid function is plotted in Figure E.2B.
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