
Using Temperature and Humidity Sensors
to Propose a New Form of Flat Roof

Leakage Detection

Francis Robson

29/04/2020

Contents

1 Abstract 4

2 Introduction 5

3 Background & Current Works 7
3.1 Active Measurement Methods . 7

3.1.1 Flood Testing . 7
3.1.2 Low Voltage Testing . 8
3.1.3 High Voltage Testing . 8
3.1.4 Thermal Imaging . 9
3.1.5 Capacitance Testing . 10

3.2 Passive Measurement Methods . 11
3.2.1 Embedded Moisture Sensors . 11
3.2.2 Comparison of Measurement Methods 12

4 Research Hypotheses & Questions 13
4.1 Technical Problem Statement . 13
4.2 Hypotheses . 13
4.3 Research Questions . 14

5 Experiment Design 15
5.1 System Requirements . 16

5.1.1 Hardware Requirements . 16
5.1.2 Mechanical Setup . 17
5.1.3 Software . 17

5.2 Hardware Setup Design . 17
5.2.1 Humidity & Temperature Sensors 17
5.2.2 Experiment Housing . 18
5.2.3 Microcontroller . 19
5.2.4 Full Hardware Setup . 19

5.3 Software Setup . 20
5.3.1 Microcontroller Software . 20
5.3.2 Serial Reading & Writing . 20

5.4 Outline of Experiments . 21
5.5 Difficulties Encountered . 23

6 Experiment Results 24
6.1 Data Analysis & Trends . 24
6.2 Modelling . 32

6.2.1 Regression Analysis . 32
6.2.2 Linear Humidity Regression Analysis 33
6.2.3 Humidity Model . 34

1

7 Conclusions, Discussion & Future Works 38
7.1 Discussion . 38
7.2 Conclusion, Proposed System & Future Works 39

References 41

8 Appendices 43

A Arduino Microcontroller Code 43

B Python Receiver Code 46

C Python File Splitter 47

D Regression Graphs 54

List of Figures
1 Layers of a Flat Roof [2] . 6
2 Flood Testing in Progress [3] . 7
3 Low Voltage Testing Schematic [3] . 8
4 High Voltage Testing Schematic [3] . 9
5 High Voltage Testing Equipment [3] . 9
6 Roof Viewed Through Thermal Imaging [3] 10
7 Roof Viewed Through Thermal Imaging 2 [10] 10
8 Sensor & Entry Point Layout . 16
9 Adafruit AM2302 Sensor [16] . 17
10 3D Housing Design . 18
11 3D Mounting Design . 18
12 Hardware Setup Schematic . 19
13 Full Hardware Setup, Including Wiring . 19
14 Microcontroller Software Flowchart . 21
15 Placings e1-e3 (Black Text) . 22
16 Placings e4-e6, with Funnel (Red Text) 22
17 Ambient Top Humidity Readings . 26
18 Ambient Top Temperature Readings . 26
19 Ambient Top Heat Coefficient Results . 26
20 Ambient Middle Humidity Readings . 27
21 Ambient Midldle Temperature Readings 27
22 Ambient Middle Heat Coefficient Results 27
23 Ambient Low Humidity Readings . 28
24 Ambient Low Temperature Readings . 28
25 Ambient Low Heat Coefficient Results . 28
26 12345e2 Top Humidity Readings . 29
27 12345e2 Top Temperature Readings . 29

2

28 12345e2 Top Heat Coefficient Results . 29
29 12345e2 Middle Humidity Readings . 30
30 12345e2 Middle Temperature Readings . 30
31 12345e2 Middle Heat Coefficient Results 30
32 12345e2 Low Humidity Readings . 31
33 12345e2 Low Temperature Readings . 31
34 12345e2 Low Heat Coefficient Results . 31
35 Humidity Model Visualisation . 36
36 12345e2 Comparison: Model to Data High Sensors 37
37 12345e2 Comparison: Model to Data Middle Sensors 37
38 12345e2 Comparison: Model to Data Low Sensors 37
39 12345e2 High Humidity Sensors + Regression 54
40 12345e2 Middle Humidity Sensors + Regression 55
41 12345e2 Low Humidity Sensors + Regression 56
42 12345e2 High Temperature Sensors + Regression 57
43 12345e2 Middle Temperature Sensors + Regression 58
44 12345e2 Low Temperature Sensors + Regression 59
45 12345e4 High Humidity Sensors + Regression 60
46 12345e4 Middle Humidity Sensors + Regression 61
47 12345e4 Low Humidity Sensors + Regression 62
48 12345e4 High Temperature Sensors + Regression 63
49 12345e4 Middle Temperature Sensors + Regression 64
50 12345e4 Low Temperature Sensors + Regression 65
51 16278e5 High Humidity Sensors + Regression 66
52 16278e5 Middle Humidity Sensors + Regression 67
53 16278e5 Low Humidity Sensors + Regression 68
54 16278e5 High Temperature Sensors + Regression 69
55 16278e5 Middle Temperature Sensors + Regression 70
56 16278e5 Low Temperature Sensors + Regression 71

3

1 Abstract

The research highlights several existing methods for flat roofing leakage detection. The
majority of implemented leakage detection methods are inefficient active methods which
require regular testing; passive methods, while more efficient, are costlier to implement.
In the first section of the paper, these individual methods are highlighted and compared
with one another. From this, several hypotheses about the behaviour of moisture within
flat roofing insulation are formulated, and these are used to formulate several research
questions. These research questions are used to design experiments to investigate these
behaviours of roofing insulation further, and these experiments and their findings are
presented in the next section. From these experimental results, a model is proposed
which aims to use the findings to passively locate roofing leakages more effectively and
in a more cost-efficient manner, based predominantly around the behaviours in change
of humidity within an insulation block. Conclusions are then drawn, and further works
required to fully implement this model, as well as any possible improvements suggested,
are then discussed. It is hoped the research can contribute towards a greater under-
standing of the behaviours of roofing insulation, and assist with the development of a
more cost-efficient and accurate passive leakage detection system.

4

2 Introduction

For the majority of human history, pitched roofing was quintessential with the majority
of human architecture. This was largely out of necessity rather than stylistic choice,
as for many years, drainage technology was simply not equipped to deal with adverse
weather conditions, and thus sloped roofing was used in order to allow gravity to drain
rainwater naturally. However, in recent centuries, drainage technology has advanced to
the point wherein flat, or more commonly slightly pitched, roofing is possible. Indeed,
as globalisation spreads, flat roofing has become a necessity in commercial buildings, for
several key reasons. The first of these is the crowding of urban areas which accompa-
nies the sharp upturn in population growth in the past century; this has led building
developers to increase the average height of buildings, as the horizontal land mass is
quite often simply not available. Secondly, is the complexity of ventilation of buildings
of this size; HVAC (Heating, Ventilation and Air Conditioning) systems are required in
order to maintain safe air standards for commercial and public buildings, and the central
units of all these systems require housing in a well-ventilated area. As such, the common
practise has simply become to house these central units on the roof areas of any large
commercial building; this is why flat roofing has become synonymous with commercial,
industrial, and other public buildings, while the standard for residential housing remains
largely pitched or sloped.

However, as previously mentioned, drainage of a flat surface presents its own unique
difficulties; water may remain present on a flat surface for significantly longer than it
would remain on a pitched or sloped surface, which presents a much greater strain on
the roof coverings, insulation, and any other components of the roofing. Commonly, the
load-bearing of flat roofing will be undertaken by structural joists above the ceiling of
the highest floor. Above this will be a decking of some kind of material (largely either
wooden or metal in construction), a water retardant layer, and a layer of insulation,
above which the various layers of waterproof membrane or other roofing material will be
attached. An example of this layout can be seen in Figure 1.

While the waterproof membrane is intended to be fully waterproof, a variety of different
factors can negatively influence this. For example, human error in application of the
membrane, wear from a variety of different weather conditions, or loosening adhesive,
could all lead to breaches within the membrane’s surface. However, these breaches
may often be invisible to the naked eye, and are often housed on the roof of large
buildings, which are very seldom inspected for such leaks. This may lead to breaches
going undetected for long periods of time, allowing moisture from weather conditions
to seep through the insulation material, which will be porous in nature. If moisture is
allowed to reach the decking, joists, or ceiling, this can manifest as damp, leading in
extreme cases to potential structural damage, or leaks into the floor below. Repairs of
this type of damage are often very costly, as in order for these repairs to be carried out,
all upper layers must be removed, and then subsequently replaced once the repairs are

5

Figure 1: Layers of a Flat Roof [2]

completed. As such, there is significant demand for any kind of leak detection systems,
which may alleviate significant repair costs in the future. For example, [1] over a 9 year
period on a large university building complex, found their average roofing replacement
costs to be approximately $30/square metre over that time. However, this cost was
largely concentrated in one period of time, with $2.6million out of a total $4.5million
spent across a 2 year span, when full replacement works rather than simple repair works
were required. The study also found that each building could expect approximately 5.2
leakage incidents per year, and the insufficient warning was what required these much
more costly replacement works.

This paper aims to analyse the currently existing forms of active and passive flat roof
leakage detection systems, and then propose and test a form of flat roof leakage detection
based upon humidity and temperature sensors, through analysing and modelling mois-
ture’s effect on flat roof insulation. System requirements will be analysed, a hardware
and software system will be designed and built, data collected, results analysed, a model
constructed, and conclusions drawn and future works proposed.

6

3 Background & Current Works

Currently existing forms of leakage detection systems for flat roofing and flat roofing
insulation take one of two forms; active or passive detection systems. Active systems
rely on a building owner proactively and regularly searching for leaks, with little to no
prior knowledge of whether a search may be successful. Passive systems instead alert
the building owner whenever a leakage is detected, and thus are much more desirable.
However, the majority of existing systems take the form of active systems, as all passive
systems consist of significantly more recent technology, wherein costing is still very much
an issue. This section will assess existing passive and active leak detection systems, and
use them to propose the research questions that will inform the remainder of this paper.
A comparison of each detection method can be seen in Table 1.

3.1 Active Measurement Methods

3.1.1 Flood Testing

Flood testing is the simplest form of testing for a breach in the membrane: all drains
available to the roof surface are closed and the roof is temporarily dammed off, then
water is added to the surface and retained there for 24 hours, after which the below
surface is inspected for any signs of leakages, as seen in Figure 2. The principle behind
this method is that such a prolonged period of time exposed to continuous water pressure
will expose any breaches, as this will immediately become the path of least resistance
for the water to follow. This method has several obvious disadvantages, principally
the difficulty in transporting large volumes of water to a rooftop, especially of a high
building, then removing it again, as well as the inconvenience of having to block all
drainage outlets and render the roof inaccessible for a 24-hour period. Additionally,
there is no more reliable method of discovering leaks at the close of the 24-hour period
than the human eye, so it can still be deeply unreliable. [3, 4, 5]

Figure 2: Flood Testing in Progress [3]

7

3.1.2 Low Voltage Testing

Low voltage testing is one testing method based on the principle that many roofing
membranes are water-retardant as well as electrical insulators, so in theory a fully intact
roofing membrane will allow no electrical current to flow through it. However, in the
case that there is a breach, the water present through the insulation will act as an
electrical conductor, completing the circuit between the two sides of the membrane.
In order to quantifiably measure this, a small depth of water is applied across a roof
membrane, which then has a small current applied across it. The current is grounded
to the roof decking below the insulation, so in order for this method to be undertaken,
the roof decking must be an electric conductor. This principle is shown in Figure 3.
Through taking a series of measurements, the operator can pinpoint locations on the
roof membrane where current has been allowed to flow, and from here deduce or find the
exact locations of the breaches and note them for repair. However, there are still flaws
with this method of testing; it does not give exact results as to where a breach is located,
only results for an operator to analyse, thus putting the method to be only as successful
as the operator is proficient. Additionally, in scenarios where a breach is recent, there is a
possibility that water has not fully permeated through to the decking; in these scenarios,
this test will not return any results, so it does not have a fully successful capture rate.
[3, 6, 7]

Figure 3: Low Voltage Testing Schematic [3]

3.1.3 High Voltage Testing

High voltage testing operates on exactly the same principles as low voltage testing,
wherein the decking must be an electrical conductor, and the roof membrane must be
an electrical insulator, and only in the presence of the breach can a current flow between
the two, as seen in Figure 4. However, instead of a low voltage being applied across the
entire membrane, instead a high voltage handheld appliance is run across the membrane
in vertical lines, while also again being grounded to the conducive decking below, an
example of which is shown in Figure 5. In the scenario that a current is allowed to flow,
the device is programmed to immediately cut off the voltage and alert the test operator
of the breach. Having made a note of the vertical co-ordinate of the test succeeding, the
operator will then scour the membrane in horizontal lines, with any intersections being
noted down as breach co-ordinates. This method is distinctly more convenient than low

8

voltage testing due to the single handheld appliance required with no external water
having to be applied; however, it suffers from several of the flaws low voltage testing
demonstrates, namely the reliance on the individual operator’s skill, as well as a breach
having permeated fully in order to be detected. [3, 8]

Figure 4: High Voltage Testing Schematic [3]

Figure 5: High Voltage Testing Equipment [3]

3.1.4 Thermal Imaging

Thermal imaging is one of the few active detection methods which does not rely on the
principle of electric conductance. Instead, it relies on the property of heat transfer; water
is slower to transfer thermal energy than air, so upon surverying an area of roof insulation
through an infrared camera, any patches of moisture located within the insulation will
show up at a cooler temperature than the rest of the roof. Alternately, by surveying
the roof at the end of the day after the sun has been shining, any patches of moisture
will show up as warmer than the surrounding areas, due again to the slowed rate of
energy transfer. Examples of the images produced by this can be observed in Figures
6 & 7. However, this method suffers from much the same issue as the other listed
active measurement methods, in that it only provides the operator with measurements
that they must decipher individually. Additionally, this method only locates pockets of
moisture; it does not account for any kind of possibility that the water is within the
insulation layer for a reason besides a breach in the roof membrane. [3, 9]

9

Figure 6: Roof Viewed Through Thermal Imaging [3]

Figure 7: Roof Viewed Through Thermal Imaging 2 [10]

3.1.5 Capacitance Testing

Capacitance testing again works upon the principle that moisture will be conducive
through a membrane, however it does so through somewhat different methods to high
or low voltage testing. In capacitance testing, a small, handheld device emits a low-
frequency electronic signal, measuring the area below’s conductivity; comparisons with
known ‘dry’ and ‘wet’ areas of the same materials can lead to accurate assumptions about
whether moisture is present in the roof. Again, there are several flaws to this active
measurement system; it is impossible to carry out while a roof membrane is wet due to
the inherent conductivity present in surface water, and accurate readings are only present
when roof materials and layers are of a uniform distribution and thickness. Additionally,
measurements are carried out with a small handheld device, with a greater number of
readings leading to a more coherent measurement picture, leading to a time-consuming
measurement process, which is again heavily reliant on the skill of the operator. [3,
11]

10

3.2 Passive Measurement Methods

3.2.1 Embedded Moisture Sensors

Embedded, passive measurement methods to detect leaks without the need for active
measurements are very recent developments, with the majority of technology being de-
veloped in the past 10 years. [12, 13] is one such development, utilising the principles
of low voltage testing to create a grid of conductive tape embedded within the roof,
on the vapour control layer, to continuously monitor the roof for any signs of electri-
cal conductivity. The grid network can pinpoint the location of the breach to within a
reasonable degree of accuracy, however, the major downside to this method is that it
requires a continuous power source and a great deal of wiring; while this may be a suit-
able method for very large scale operations, it may be too costly or inefficient for smaller
buildings. [14] presents an inductive-capacitive resonant circuit, implanted within a de-
sired hard-to-reach area such as behind a drywall. The presence of water vapour in the
air surrounding the sensor increases the capacitance of the spiral inductor, reducing the
sensor’s resonant frequency, which is being monitored from the other side of the wall.
The major downside of this method is it only monitors a very specific location; while
it may be suitable for within a wall, for across a wide space of roof it would be a great
deal less effective.

[12, 13, 14] indicate that there is some success to be potentially found through investi-
gating the thermal properties of insulation. The founding principle of Thermal Imaging
is the tenet that areas of insulation containing greater concentrations of moisture will
tend towards a cooler temperature. Additionally, voltage and capacitance testing rely
on the principle that additional moisture present in an insulation block will increase the
potential for electrical current to flow. As humidity is simply defined as a measurement
of moisture content, the hypothesis presided over in this paper is that a knowledge of
temperature and humidity readings within a block of insulation can be used to formulate
accurate predictions about the presence of a leakage in the roofing membrane above that
insulation block.

11

3.2.2 Comparison of Measurement Methods

Measurement Name Active or Passive Pros Cons

Flood Testing Active - Quite straightforward concept

- Lengthy process
- Reliant on operator
- Unreliable results
- Difficult to transport water to and from test
- Long setup required

Low Voltage Testing Active - Requires relatively little setup

- Does not detect if not fully permeated
- Lengthy process
- Roof membrane must be insulator
- Roof decking must be conductor

High Voltage Testing Active
- Relatively fast process
- Only requires handheld device
- Requires no setup

- Does not detect if not fully permeated
- Roof membrane must be insulator
- Roof decking must be conductor

Capacitance Testing Active
- Only requires handheld device
- Requires no setup

- Cannot be used on wet surfaces
- Reliant on operator
- Does not detect if not fully permeated

Thermal Imaging Active

- Non-intrusive
- More accurate detection of water
- Relatively fast process
- Requires no setup

- Results still require processing
- Does not account for why water would be present

Embedded Moisture Sensors Passive
- Does not require operator
- Continuous measurements over large area
- More reliable results

- Require roof to be electrified
- High cost
- If damaged/faulty, roof must be replaced to fix

Table 1: Comparison of Leak Detection Methods

12

4 Research Hypotheses & Questions

4.1 Technical Problem Statement

This thesis aims to propose a low-energy, passive leakage detection system for flat, com-
mercial roofing, making use of readily available sensor technology.

Current detection technologies are either active and too reliant on operator ability and
regular checks, or are passive and have much greater cost and energy costs. Through
this, many leakages are missed, and preventable amounts are spent on roofing repairs
and replacements each year.

Through evaluating appropriate sensor readings and measurements, this thesis will es-
tablish whether temperature and humidity readings are suitable as a passive sensor
network to accurately monitor roof membrane leakage.

4.2 Hypotheses

Currently existing methodologies reviewed in Section 3 imply several hypotheses regard-
ing the behaviour of moisture within flat roofing insulation, which should be ratified into
any new leakage detection system. These core hypotheses are listed below, and used to
formulate the key research questions listed in Section 4.3:

• 1) Humidity and Temperature remain constant through a block of flat roofing in-
sulation in relation to ambient outdoor temperatures when no moisture is present
within the block, as is the founding principle behind all the reviewed testing meth-
ods.

• 2) Humidity within a block of flat roofing insulation increases to a set maximum the
closer measurements are to a leakage entry point, as implied by Thermal Imaging
(3.1.4).

• 3) Temperature is inversely proportional to humidity, as implied by Thermal Imag-
ing (3.1.4).

• 4) Moisture disperses evenly in all directions within a block of flat roof insulation
when block is completely flat, as implied by Flood Testing (3.1.1).

• 5) Moisture disperses at a constant rate from a leakage entry point within a block
of flat roof insulation; this is slower than the rate of dispersal through air,as implied
by Flood Testing (3.1.1).

13

4.3 Research Questions

• 1) How suitable are temperature and humidity sensors for leakage detection?

– What is the temperature and humidity distribution model throughout a block
of insulation?

– How does the presence of moisture within an insulation block impact the
temperature and humidity distribution model?

• 2) If temperature and humidity sensors are suitable, where should these sensors be
located?

– How does distance from moisture affect sensor readings?

– How does depth within a block affect sensor readings?

• How suitable is this model for a future leakage detection system?

– Within the model, how should sensors be placed in order to eliminate areas
of no coverage?

– What future works and improvements are necessary for such a system?

14

5 Experiment Design

In order to validate the proposed hypotheses and answer the research questions formu-
lated in Section 4.3, a system of temperature and humidity sensors must be designed
and assembled. Data which highlights the thermal characteristics within the blocks of
insulation must be collected, with respects to control variables such as distance from en-
try point, depth, and time. This section details the design process of these experiments,
with regards to choice of hardware, software design, and experiment strategy, as well as
detailing any issues encountered through the design and construction phases. Section
5.1 highlights some formulated System Requirements.

For these experiments, 30x30x8cm blocks of ‘Recticel Insulation Eurothane GP PIR
Insulation Board’, hereafter referred to as PIR, will be used. Traditionally, insulation
comes in 60x60cm blocks as an industry standard, however in order to reduce overall
experiment duration, the dimensions of each block were halved, so as to increase the
amount of material available. This decision is based upon the assumption that as roofing
insulation is a highly standardised industry, a smaller block would still retain the same
attributes as a larger block, as internal characteristics should be close to identical, and
measured attributes will scale in a linear fashion.

PIR, or polyisocyanurate, is a thermosat plastic, which is commonly produced as a foam
block and used as rigid thermal insulation in the construction industry [15].

Two different sets of 5 groupings of 3 sensors, ‘12345’ and ‘16278’ were decided upon
to go within the insulation block. The locations of these sensors with relation to the
insulation block can be seen in Figure 8. These locations were decided on in order to
allow the most variety with distance from moisture entry point within data collected.
Within each grouping of 3 sensors, a sensor will be located at 3cm, 5cm and 7cm from
the surface of the insulation block. 6 different moisture entry points will be used, also
shown in Figure 8; points e1 - e6. Using both sets of sensor placements for each mois-
ture entry point will result in 12 different data sets, with time, horizontal distance and
vertical distance being used for relative measurement.

15

Figure 8: Sensor & Entry Point Layout

5.1 System Requirements

There are several categories of System Requirements. Firstly, hardware requirements
detail the physical capabilities of the designed system, while the mechanical requirements
detail the physical properties of a chosen setup. The software requirements detail the
required capability of any software developed for the testing setup.

5.1.1 Hardware Requirements

• Capable of reading 15 digital temperature/humidity sensors concurrently.

• Capable of data transmission for all sensor readings.

• Operating Humidity measurement range of 0-100%.

• Operating Temperature measurement range of 0-50◦C.

• Operating accuracy error of ±5% maximum.

16

• Capable of sampling at a suitable sampling frequency (estimated at 0.2Hz or
slower)

5.1.2 Mechanical Setup

• 15 sensors can fit within a 30x30cm block of roofing insulation.

• 15 sensors can be connected to a single microcontroller.

• All hardware components fit within a budget of 200 EUR.

• All hardware components within the block can withstand expected humidity and
moisture levels (estimated up to 80%humidity).

5.1.3 Software

• Capable of reading all transmitted data streams.

• Capable of data writing to permanent storage for purposes of analysis.

• Capable of splitting stored data into meaningful components.

5.2 Hardware Setup Design

5.2.1 Humidity & Temperature Sensors

The sensors chosen for these experiments were the Adafruit AM2302 Humidity & Tem-
perature Sensors, as seen in Figure 9.

Figure 9: Adafruit AM2302 Sensor [16]

These were chosen due to their suitability with regards to the Hardware and Mechanical
System Requirements, as outlined in Section 5.1:

• Cost: 15 sensors can be purchased within the specified budget, allowing for addi-
tional purchase of a microcontroller to power the sensor network.

17

• Size: 15 sensors can fit comfortably within a block of 30c30cm block of roofing
insulation.

• Wiring: These sensors have 1 digital output, so can be connected to a single
microcontroller.

• Humidity Measurement Range: Humidity measurement range of 0-100%.

• Temperature Measurement Range: Temperature measurement range of 0-50◦C.

• Sampling Frequency: Capable of sampling at rates of 0.5Hz or slower.

• Durability & Housing: The AM2302 is a DHT22 humidity & temperature sensor,
contained within a semi-waterproof protective chassis with extruding wires, with
the required pullup resistor also housed.

5.2.2 Experiment Housing

A housing was constructed of several layers of laser cut fibreboard and sealed with wood
glue, while mountings for the sensors to maintain their depth within the insulation were
3D printed from Acrylonitrile Butadiene Styrene (ABS). Design models for the housing
can be seen in Figure 10, and for the sensor brackets in Figure 11. In order to fit the
sensors and their mountings, holes were cut in the lower half of the blocks of insulation,
so it can be placed directly over the top of the installation, with the moisture inserted
from above.

Figure 10: 3D Housing Design
Figure 11: 3D Mounting Design

18

5.2.3 Microcontroller

In order to facilitate the concurrent reading of 15 temperature and humidity sensors,
an Arduino Mega 2560 Microcontroller was chosen. This complies with the formulated
System Requirements, as outlined in Section 5.1:

• Cost: Alongside the 15 humidity & temperature sensors, fits within the specified
budget of 200 EUR.

• Capable of reading 15 data streams concurrently, as the microcontroller has over
15 digital input/output ports.

5.2.4 Full Hardware Setup

A schematic of the setup of the connections for each individual sensor (to be repeated for
all 15 AM2302 Sensors) can be seen in Figure 12. A picture of the full setup, including
the experiment housing and all wiring, can also be seen in Figure 13.

Figure 12: Hardware Setup Schematic

Figure 13: Full Hardware Setup, Including Wiring

19

5.3 Software Setup

With a hardware setup, it was also necessary to assess requirements for the software
aspect of the experiments. The software is divided into two areas. The first area is the
microcontroller software, which is responsible for accurate timing, reading the sensors,
and relaying all data through the USB Serial port. The second area is responsible for
monitoring the USB Serial Port, determining whether any data is being received, and if
so writing the received data into a .txt file to be analysed later. A second aspect to the
second area was later determined to be required, which would break the whole .txt file
down into a multitude of single data stream files, to allow for faster analysis.

5.3.1 Microcontroller Software

The Microcontroller software was written in the Arduino IDE, largely using the public
domain ”DHT.h” library. This provides functions to read the temperature in both
Fahrenheit and Celsius, read the humidity as a percentage, and to compute the ‘Heat
Index’, which is the temperature perceived by the human body, taking humidity’s effect
into account. The software reads all 15 sensors at intervals of 5 seconds, meeting the
system requirements outlined in Section 5.1.1, taking the humidity, temperature and
heat coefficient readings. It uses two arrays to calculate the differential between the
current reading and the previous reading, and then prints the readings of Temperature,
Change of Temperature, Humidity, Change of Humidity, and Heat Coefficient over the
USB Serial Port. The full code can be seen in Appendix A. A basic representation of
the software’s functionality can be seen in Figure 14.

5.3.2 Serial Reading & Writing

The Serial receiving software was written in Python, due to its meeting of the software
system requirements outlined in Section 5.1.3. Through the ‘serial’ library, communi-
cations with the USB Serial port could be established, and Python allows for simple
programs with the ability to read and write text files. The program would monitor the
Serial port for incoming data, decode the incoming string from binary to a readable
UTF-8 format, and then write this decoded string to a specified .txt file. If the notifier
‘7205000ms’ appears, this is equivalent to 2 hours in milliseconds, so the program then
terminates. The code can be seen in Appendix B.

After the experiments had been written into .txt files, a second program was required to
separate the 5 written strings by sensor and by type of reading. A program which would
open a specified file and break it into the individual composite pieces, sorted by sensor
location and reading type, can be seen in Appendix C. This returns individual sensor
readings, which can be fed into another program for analysis and modelling.

20

Figure 14: Microcontroller Software Flowchart

5.4 Outline of Experiments

12 experiments were conducted in the data acquisition phase. 6 experiments were each
conducted with the sensor layouts ‘12345’ and ‘16278’, as laid out in Section 5. Each
of these consisted of a 2 hour experiment duration, wherein 10ml of water was inserted
at one point of ‘e1’ to ‘e6’, as laid out in Figures 15 & 16, in a 30mm hole, with any
excess water remaining in a funnel above the surface to trickle down throughout the
experiment. It was deemed necessary to use such a minimal amount of water within a
drilled hole due to PIR’s high levels of water retardation, in order to artificially accelerate
the permeation process to reach a level where noticeable metrics could be observed.
After each experiment, the block was drained of any residual water and dried, and a
dry block was used for the next experiment. In order to maintain controlled conditions,
all experiments were conducted in a room at a controlled temperature of 21.5◦C, and
in between all experiments the housing and sensors were manually dried and allowed to
return to ambient temperature.

21

Figure 15: Placings e1-e3 (Black Text)

Figure 16: Placings e4-e6, with Funnel (Red Text)

22

5.5 Difficulties Encountered

After the experimental phase had been completed, it was noted that in some final data
sets, a lack of computational power had resulted in a series of missed readings and
writings, either through taking too long to complete a writing stage, or for another
unknown reason. Unfortunately, due to significant timing constraints, it was impossible
to redo the experiments, as the errors were discovered later on in the data analysis
section. However, the issue was at the computer end of the Serial communications, so
all data that was written was otherwise correct, however significant interpolation must
be used when observing trends with these data sets. In future experiments, the ‘print’
line of the Python Serial code would be removed to solve this issue.

23

6 Experiment Results

6.1 Data Analysis & Trends

Once all experiments had been completed and data separated according to sensor group-
ing, moisture entry point and individual sensor, these data collections were fed individ-
ually into Microsoft Excel in order to easily generate graphical representations of the
data, to visualise trends and identify any correlations, and identify the relationships
between readings. For purposes of comparison, figs. 17 to 25 show the ambient read-
ings of the ‘12345’ sensor group at the 3 different measurement heights, while figs. 26
to 34 show the same sensor groupings and positionings, with moisture entry at point ‘e2’.

It is now possible to refer to the 5 hypotheses formulated in Section 4.2, and confirm
whether these hypotheses can be considered validated. Firstly, viewing the ambient
readings, humidity and temperature appear to remain close to constant without the
presence of moisture, confirming hypothesis 1. Secondly, a large increase in humidity
appears to correlate directly to a decrease in measured temperature. This aligns with
the principles of heat transfer outlined in Section 3.1.4, and with formulated hypothesis
3. As the water content in the air present around the sensors increases, the transfer of
heat through those air particles slows, leading to a decrease in measured temperature.
Thirdly, the sensors closer to the entry point of the moisture, appear to demonstrate a
faster increase in humidity, as hypothesized in hypothesis 2. Finally, as expected from a
material of uniform characteristics, the outwards dissipation of moisture which is mea-
sured through an increase in humidity at a sensor location, appears uniform regardless
of direction from entry point; as hypothesized in hypothesis 4. With the presence of a
slight incline, it would be expected to skew results slightly.

Additionally, some anomalous results occurred, however these can also be explained
through the predicated hypotheses. The humidity values for sensor grouping ‘1’ visi-
ble in figs. 26, 29 and 32 increase at a significantly faster rate than the other sensor
groupings, however the rate of increase quickly slows to be in line with the other sensor
groupings. It is likely that some of the moisture accidentally entered through another
hole in the insulation, directly above the ‘1’ sensor grouping, at the beginning of the
tests, causing a spike in humidity readings which later stabilised with expected growth
in readings. This suggests the validation of hypothesis 5, as the rate of dispersal through
the block remained uniform, and only changed noticeably when accidentally allowed to
travel through air. In figs. 29 and 32, it can also be observed that towards the end of
the 2 hour period, particularly on the low sensors, the rate of change transforms from
a logarithmic rate of change to a linear increase. It is possible that some moisture had
travelled through a hole in the insulation indirectly, and had saturated the base of sensor
grouping 4. One suggested area of future works is the effect saturation has on rate of
change, and if this is the expected effect. If so, this further emphasises the need for
early detection systems; such a rapid increase in humidity would hugely facilitate damp,

24

increasing the prospect of property damage were this state to be reached.

Observing the results obtained for temperature readings across the different sensors
(figs. 18, 21 and 24), much greater levels of fluctuation, possibly caused by external
changes in temperature, can be seen. These fluctuations present enough discrepancy in
the data, even with relatively small changes in external or ambient temperatures, that
the answer to the proposed research question in Section 4.3 ‘how suitable are tempera-
ture sensors for leakage detection’ must be considered that they are insufficient. This is
theorised to be due to the significantly more complex relationship between temperature
and moisture, as the relationship between change in temperature can only be predicted
accurately with much greater control over the internal and external temperatures, which
is infeasible for any roofing system. Greater detail in readings, with additional data
measuring external temperature as well as internal, may be required in order to accu-
rately model temperature behaviour within roofing insulation. However, the results for
humidity readings suggest that a model for humidity change can be derived from the
findings. This model is expanded on in Section 6.2.3.

25

Figure 17: Ambient Top Humidity Readings Figure 18: Ambient Top Temperature Readings

Figure 19: Ambient Top Heat Coefficient Results

26

Figure 20: Ambient Middle Humidity Readings Figure 21: Ambient Midldle Temperature Readings

Figure 22: Ambient Middle Heat Coefficient Results

27

Figure 23: Ambient Low Humidity Readings Figure 24: Ambient Low Temperature Readings

Figure 25: Ambient Low Heat Coefficient Results

28

Figure 26: 12345e2 Top Humidity Readings

Figure 27: 12345e2 Top Temperature Readings

Figure 28: 12345e2 Top Heat Coefficient Results

29

Figure 29: 12345e2 Middle Humidity Readings

Figure 30: 12345e2 Middle Temperature Readings

Figure 31: 12345e2 Middle Heat Coefficient Results

30

Figure 32: 12345e2 Low Humidity Readings

Figure 33: 12345e2 Low Temperature Readings

Figure 34: 12345e2 Low Heat Coefficient Results

31

6.2 Modelling

With the formulated hypotheses presented in Section 4.2 validated and data obtained
to answer the research questions put forward in Section 4.3, it is now possible to use the
collected data to formulate a model of the behaviour of moisture within a block of flat
roof insulation. This model will be based on the collected data, and can be used in a
future system which monitors humidity within an insulation system to extrapolate from
readings, and estimate the distance of a leak from a sensor, the time that has elapsed
since the leak became present. Through combining multiple sensor extrapolations, it
should also become possible to estimate the exact location, through triangulating the
combinations of distances available, given the validation of hypothesis 5 in Section 4.2,
wherein moisture disperses at a constant rate from a leakage entry point.

6.2.1 Regression Analysis

In order to construct a suitable model of the thermal characteristics of roofing insulation
and the behaviours of moisture within it, as well as the effects of moisture within an
insulation block, regression analysis was carried out on the data collected in Section 6.
As hypothesized in Section 4.2, moisture within an insulation block tends towards an
unknown saturation point. In order to model this behaviour, the model is based on a
simple lograithmic linear regression. The collected data, including regressions, for three
full data sets, ‘12345e2’, ‘12345e4’, and ‘16278e5’, can be seen in Appendix D.

The linear equations for the collected humidity values, and their respective horizon-
tal and vertical distances from the moisture entry point, as well as the coefficient of
determination R2, are summarised in Table 6.2.2.

32

6.2.2 Linear Humidity Regression Analysis

Horizontal
Distance

(mm)

Vertical
Distance

(mm)

Total
Distance

(mm)

Multiplication
Coeffi-

cient

Addition
Coeffi-

cient

R2

145.1 30 148.1688564 1.5577 37.523 0.893

145.1 30 148.1688564 2.2036 38.855 0.9206

150 30 152.9705854 2.9804 34.566 0.9334

145.1 50 153.4731573 1.6356 36.588 0.9101

145.1 50 153.4731573 2.5267 37.746 0.9208

150 50 158.113883 2.8373 38.091 0.9507

145.1 70 161.1024829 1.9807 35.578 0.9672

145.1 70 161.1024829 3.3156 36.507 0.9786

150 70 165.5294536 3.7576 42.692 0.975

165.6 30 168.2954545 3.3595 30.03 0.8752

165.6 30 168.2954545 4.6751 25.262 0.8667

165.6 50 172.9836987 3.5267 30.683 0.8969

165.6 50 172.9836987 5.0726 26.562 0.9081

165.6 70 179.7869851 3.6969 35.003 0.912

165.6 70 179.7869851 4.9018 33.823 0.99395

225 30 226.9911893 7.0095 28.012 0.96

225 30 226.9911893 0.9427 42.297 0.9729

225 50 230.4886114 4.2527 59.48 0.9951

225 50 230.4886114 0.9568 40.254 0.9568

225 70 235.6374334 2.7503 74.698 0.8241

225 70 235.6374334 1.2093 36.184 0.9387

306.2 30 307.6661177 0.5907 42.309 0.964

306.2 50 310.2554431 1.1416 37.969 0.9523

306.2 70 314.099411 0.8365 39.889 0.9532

324.2 30 325.5850734 1.5534 39.593 0.9519

326.5 30 327.8753574 2.7168 36.826 0.8892

324.2 50 328.0329861 2.0108 36.403 0.9223

326.5 50 330.3062972 3.3453 36.195 0.9243

324.2 70 331.6709815 2.0624 38.392 0.9714

326.5 70 333.9195262 3.8193 39.366 0.9781

397.4 30 398.5307516 2.7076 31.334 0.9026

397.4 30 398.5307516 3.5635 28.941 0.8964

397.4 30 398.5307516 0.4484 43.653 0.8955

397.4 50 400.5330948 2.6411 31.619 0.9203

397.4 50 400.5330948 3.4094 29.551 0.9169

397.4 50 400.5330948 0.708 40.493 0.9523

397.4 70 403.5179798 2.6411 31.619 0.9203

397.4 70 403.5179798 2.9985 35.14 0.9459

397.4 70 403.5179798 0.7635 41.482 0.9306

493.1 30 494.0117509 0.3385 41.106 0.6164

493.1 50 495.6285 0.5743 39.695 0.7821

493.1 70 498.0437832 0.685 39.898 0.8152

591 30 591.7609315 -0.145 43.793 0.1999

591 50 593.111288 0.1294 43.82 0.1777

591 70 595.131078 0.302 43.553 0.46

6.2.3 Humidity Model

Based on the collected data and regression analysis presented in 6.2.2 and D, an ag-
gregated model was constructed representing the humidity behaviour within a block of
flat roof insulation. This was based on all data with a determination coefficient higher
than 0.85. The addition coefficient is based on the linear relationship between starting

humidity and crossing point on the y-axis, and can be approximated by
w

1.2381
.

The multiplication coefficient was identified as having several key behaviours. Having
confirmed the key hypothesis that rate of dispersal of moisture within a block is uniform,
the two factors which contribute to the rate of dispersal at a given point in a block are
the starting humidity, and the distance from a leakage entry point. As such, the model

for the multiplication coefficient is approximated at 2.4672 × 2
m−100

200 × w.

As can be seen in Table 6.2.2, readings at a distance of over 500mm significantly de-
crease in determination coefficient and reliability, so it is expected this model will not
be sufficient for distances of over 500mm.

Thus, the proposed model for humidity within a flat insulation block when moisture is
present at a given entry point distance m from the sensor taking measurements is as
follows:

h = 2.4672w × 2
m−100

200 log2(x) +
w

1.2381

Where:

• h = Humidity (%)

• x = Time (ms)

• w = Ambient/Beginning Humidity (%)

• m = Distance between sensor and entry point (hypotenuse of horizontal & vertical
distance) (mm)

Without the presence of a leakage, insulation block humidity should remain constant,
and approximate:

h = w

34

A visualisation of this model at distances from an entry point 100mm, 300mm and
500mm, and at starting humidities 30% (green), 35% (purple), 40% (black), 50% (red),
and 75% (blue) can be seen in Figure 35. For each humidity, the lowest humidity is
at 500mm, with the highest at 100mm. From this, it is possible to see how the rate of
increase changes more greatly at closer distances to the entry point.

In figs. 36 to 38 the comparison between the real collected data for sensor grouping
‘12345’ and entry point ‘e2’ and the model’s projected humidity values is displayed;
given the information on ambient humidity for each sensor placing, and distance from
the leakage entry point. The red lines correspond to the real collected data, and the
blue lines correspond to the model’s predicted values. In a comparison for all values
within this data set, the model was accurate to within 8% on average, with the sensors
at placement ‘1’ accounting for 37.5% of all individual error. This can be partially ex-
plained by the likelihood that some moisture came into direct contact with the sensors,
leading to some errant readings, explaining the slightly higher inaccuracy.

When the other 2 data sets were analysed in a corresponding way, it was found that the
overall accuracy for the sensor grouping ‘12345’ placement ‘e4’ was accurate to within
1%, while the accuracy for sensor grouping ‘16278’ and placement ‘e5’ was to within
12%. These findings also align with the earlier suggestion that this model holds to sen-
sor placings of up to 500mm; the sensor placings in this grouping of 500mm or over total
distance account for 4% of individual error.

35

Figure 35: Humidity Model Visualisation

36

Figure 36: 12345e2 Comparison: Model to Data
High Sensors

Figure 37: 12345e2 Comparison: Model to Data
Middle Sensors

Figure 38: 12345e2 Comparison: Model to Data
Low Sensors

37

7 Conclusions, Discussion & Future Works

7.1 Discussion

In order to assess the success of this research, it is important to discuss the results with
relation to the initial Research Questions posed in Section 4.3.

1) How suitable are temperature and humidity sensors for leakage detection? Findings
of this paper suggest that humidity in particular is suitable for leakage detection. Tem-
perature is too susceptible to external changes in temperature affecting its behaviours,
so it can be considered insufficient.

– What is the temperature and humidity distribution model throughout a block of in-
sulation? The humidity distribution model is shown in Section 6.2.3. The collected
temperature data was insufficient to generate a temperature distribution model.

– How does the presence of moisture within an insulation block impact the temperature
and humidity distribution model? This paper’s findings suggest that without the pres-
ence of moisture, humidity and temperature readings remain constant, regulating around
the initial ambient temperature. When moisture is present, humidity and temperature
change in relation to time and distance from the moisture entry point.

2) If temperature and humidity sensors are suitable, where should these sensors be
located? These sensors should ideally be placed at several depths within the insulation
blocks, spaced 500mm away from one another.

– How does distance from moisture affect sensor readings? Past distances of approx-
imately 500mm, the accuracy of the model diminishes. However, further tests over a
longer period of time may show increased accuracy with a prolonged period of moisture
dissipation.

– How does depth within a block affect sensor readings? Readings correlate with the
hypotenuse calculated from both horizontal and vertical distance. Thus, several depths
of sensors at each point can allow for better accuracy of leak point calculation.

How suitable is this model for a future leakage detection system? This model appears
to be suitable for a rudimentary leakage detection system.

– Within the model, how should sensors be placed in order to eliminate areas of no
coverage? In order to eliminate areas of no coverage and to maximise the model’s
effectiveness, sensors should be placed in a grid pattern, with 500mm spacing between
each set of 3 sensors.

– What future works and improvements are necessary for such a system? An algorithm
which can calculate the meeting point of 4 models is necessary in order for this model to
be usable as a leakage detection system, as this model currently only be used to calculate
the hypotenuse distance from one sensor set. Additionally, it may be possible to refine
this model further using a variable logarithmic base rather than a set base of 2.

38

7.2 Conclusion, Proposed System & Future Works

This research has established several trends between the presence of moisture within a
block of roofing insulation and the thermal characteristics of that block, most notably
an uptick in humidity levels, correlating with a downward trend in ambient temperature
within the insulation block and thus the heat coefficient. However, while clear math-
ematical correlation between the humidity levels and the presence of moisture inserted
through a single point in a block, as if to model a leak, has been observed, the scope of
experiments undertaken have not fully shown the range of that correlation.

As demonstrated in Section 6.1, the internal humidity of a block of roof insulation with
regards to the block’s moisture content can be approximately modeled upon a logarith-
mic curve, with increase slowing as the block reaches an unknown saturation point. A
more precise modeling of insulation behaviour could be obtained in future works through
experiments testing one grouping of sensor placements over a significantly increased time
duration, in order to ascertain how behaviour changes, if at all, when this saturation
point is fully realised. However, as this paper aimed to propose a form of early leakage
detection, knowledge of this behaviour may not be required, and the logarithmic rep-
resentation is suitable. These experiments centring around extended duration should
also be used to ascertain if extended duration increases the accuracy of further placed
sensors, and whether such an extended duration of time leads to any part of the block
becoming overly saturated.

Additionally, this research aimed to establish a model which demonstrated the charac-
teristics of change in temperature when moisture is present within an insulation block.
However, through the discrepancies introduced by external changes in temperature, the
data collected was insufficient, and a model was not produced. Such a model could be
produced through continued experimentation, which also measures external tempera-
tures as well as internal temperatures. Temperature behaviours can be influenced by a
wide variety of external factors, most notably sunlight. Further works investigating the
effects of solar rays and outdoor conditions on the temperature model may be required
in order to investigate further.

As such, this research proposes using temperature and humidity sensors to actively
monitor humidity readings within a set of blocks of insulation, through a grid of sensors
(at 3 depths of 30mm, 50mm and 70mm) spaced 500mm apart. Sensors maintaining
ambient temperature and humidity readings can be assumed to not be within range of
a leakage entry point. Conversely, any given leakage detection point should be detected
by 4 surrounding sensor sets; through comparisons to the modelled behaviour discussed
in this paper and the ambient temperature, triangulation of the leakage location point
between these 4 sensors and calculation of the time a leakage has been present should be
possible. The principle area of future works thus centres around the development of the

39

proposed model into a leakage detection system. An algorithm which can approximate
a meeting point between 4 different modeled points is required in order for this model
to be applicable as a leakage detection and location system for a sensor network within
a set of blocks of insulation. With this, the model proposed in this paper should suffice
as a form of flat roof leakage detection.

40

References

[1] D. P. Coffelt, C. T. Hendrickson “Life-Cycle Costs of Commerical Roof Systems”
Journal of Architectural Engineering, Vol. 16, Issue 1

[2] insulationsuperstore.co.uk: “Insulating a Flat Roof”, [https://www.

insulationsuperstore.co.uk/pages/insulating-a-flat-roof.html], Ac-
cessed 17/01/2020.

[3] wbdg.org: “Integrity Testing for Roofing and Water-
proofing Membranes”, [https://www.wbdg.org/resources/

integrity-testing-roofing-and-waterproofing-membranes], Accessed
17/01/2020.

[4] nrca.net: “Flood Test”, [http://www.nrca.net/Technical/Search/

GlossaryDetails/308/Flood-test], Accessed 17/01/2020.

[5] constructionspecifier.com: “Everything Leaks: Testing roofs to ensure wa-
tertightness at the outset”, [https://www.constructionspecifier.com/

everything-leaks-testing-roofs-to-ensure-watertightness-at-the-outset/

], Accessed 17/01/2020.

[6] K. Roberts “The Electrical Earth Leakage Technique for Locating Holes in Roof
Membranes”, Proceedings of the Fourth International Symposium on Roofing Tech-
nology, 1997.

[7] D. Vokey “A Method to Detect and Locate Roof Leaks Using Conductive Tapes”,
Moisture Measurement, Session WB8-2.

[8] atlanticleak.com “High Voltage Leak Detection”, [https://atlanticleak.com/

high-voltage-leak-detection/], Accessed 17/01/2020.

[9] S. Wood “Non-Invasive Roof Leak Detection Using Infrared Thermography”, Infra-
Mation 2004 Proceedings, 2004.

[10] infraredimagingservices.com “Infrared roof Moisture Surveys” [http://www.

infraredimagingservices.com/roof-scan-ir], Accessed 17/01/2020.

[11] roofingcontractor.com “Technical Details: How to Properly Determine Moisture
Content in Roof Systems” [https://www.roofingcontractor.com/articles/

83510-technical-details-how-to-properly-determine-moisture-content-in-roof-systems],
Accessed 17/01/2020.

[12] detecsystems.com “PermaScan”, [https://detecsystems.com/

leak-detection-system/]

[13] D. Vokey “Moisture Monitoring System for Buildings”, Patent #US7768412B2,
[https://patents.google.com/patent/US7768412]

41

[14] A. DeRouin, S. Terierweiler, B. Pereles, B. Lippi, K. Ghee Ong “A Low Cost, Wire-
less Embedded Sensor for Moisture Monitoring in Hard-to-Access Places”, Sensor
Letters, Vol. 11, Number 9, pp. 1573-1578, 2013.

[15] buildingscience.com “Guide to Insulating Sheathing” [https://www.

buildingscience.com/sites/default/files/migrate/pdf/GM_Guide_

Insulating_Sheathing.pdf], Accessed 19/01/2020.

[16] adafruit.com “AM2302 (wured DHT22) temperature-humidity sensor” [https://

www.adafruit.com/product/393], Accessed 17/01/2020.

42

8 Appendices

A Arduino Microcontroller Code
1 #inc lude ”DHT. h”
2
3 // Sensor Input Pins
4 #de f i n e DHTPIN1 2
5 #de f i n e DHTPIN2 3
6 #de f i n e DHTPIN3 4
7 #de f i n e DHTPIN4 5
8 #de f i n e DHTPIN5 6
9 #de f i n e DHTPIN6 7

10 #de f i n e DHTPIN7 8
11 #de f i n e DHTPIN8 9
12 #de f i n e DHTPIN9 10
13 #de f i n e DHTPIN10 11
14 #de f i n e DHTPIN11 12
15 #de f i n e DHTPIN12 13
16 #de f i n e DHTPIN13 14
17 #de f i n e DHTPIN14 15
18 #de f i n e DHTPIN15 16
19
20 // Sensor Type
21 #de f i n e DHTTYPE DHT22
22
23 // I n i t i a l i z e DHT senso r s .
24 DHT dht1 (DHTPIN1, DHTTYPE) ;
25 DHT dht2 (DHTPIN2, DHTTYPE) ;
26 DHT dht3 (DHTPIN3, DHTTYPE) ;
27 DHT dht4 (DHTPIN4, DHTTYPE) ;
28 DHT dht5 (DHTPIN5, DHTTYPE) ;
29 DHT dht6 (DHTPIN6, DHTTYPE) ;
30 DHT dht7 (DHTPIN7, DHTTYPE) ;
31 DHT dht8 (DHTPIN8, DHTTYPE) ;
32 DHT dht9 (DHTPIN9, DHTTYPE) ;
33 DHT dht10 (DHTPIN10 , DHTTYPE) ;
34 DHT dht11 (DHTPIN11 , DHTTYPE) ;
35 DHT dht12 (DHTPIN12 , DHTTYPE) ;
36 DHT dht13 (DHTPIN13 , DHTTYPE) ;
37 DHT dht14 (DHTPIN14 , DHTTYPE) ;
38 DHT dht15 (DHTPIN15 , DHTTYPE) ;
39
40 // Float ar rays to s t o r e data
41 f l o a t h [1 6] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
42 f l o a t hPrevious [1 6] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
43 f l o a t hD i f f e r enc e [1 6] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
44 f l o a t t [1 6] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
45 f l o a t tPrev ious [1 6] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
46 f l o a t tD i f f e r e n c e [1 6] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
47 f l o a t h i c [1 6] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
48
49 //Timing va r i a b l e s
50 unsigned long p r e v i o u sM i l l i s = 0 , c u r r e n tM i l l i s ;
51 const long i n t e r v a l = 5000;
52
53 void setup () {
54 S e r i a l . begin (19200) ;
55 S e r i a l . p r i n t l n (F(”Program Beginning ”)) ;
56
57 //Begin Sensors
58 dht1 . begin () ;
59 dht2 . begin () ;
60 dht3 . begin () ;
61 dht4 . begin () ;
62 dht5 . begin () ;
63 dht6 . begin () ;
64 dht7 . begin () ;
65 dht8 . begin () ;
66 dht9 . begin () ;
67 dht10 . begin () ;
68 dht11 . begin () ;
69 dht12 . begin () ;
70 dht13 . begin () ;
71 dht14 . begin () ;
72 dht15 . begin () ;
73 }
74
75 void loop () {
76
77 // time s i n c e program e lapsed

43

78 c u r r e n tM i l l i s = m i l l i s () ;
79
80 // i f i n t e r v a l had e lapsed
81 i f (c u r r e n tM i l l i s − p r e v i o u sM i l l i s >= in t e r v a l){
82
83 p r e v i o u sM i l l i s = cu r r e n tM i l l i s ;
84
85 S e r i a l . p r i n t (p r e v i o u sM i l l i s) ;
86 S e r i a l . p r i n t l n (F(”ms”)) ;
87
88 f o r (i n t i =1; i <16 ; i++){
89 readSensors (i) ;
90 i f (i snan (h [i]) | | i snan (t [i])){
91 S e r i a l . p r i n t (F(” Fa i l ed to read from DHT sensor ”)) ;
92 S e r i a l . p r i n t l n (i) ;
93 } e l s e {
94 p r i n tRe su l t s (h [i] , hD i f f e r ence [i] , t [i] , tD i f f e r e n c e [i] , h i c [i]) ;
95 hPrevious [i]=h [i] ;
96 tPrev ious [i]= t [i] ;
97 }
98 }
99 }

100 }
101
102 void readSensors (i n t i){
103 i f (i==1){
104 h [i] = dht1 . readHumidity () ;
105 t [i] = dht1 . readTemperature () ;
106 h i c [i] = dht1 . computeHeatIndex (t [i] , h [i] , f a l s e) ;
107 S e r i a l . p r i n t (F(”2T ”)) ;
108 } e l s e i f (i==2){
109 h [i] = dht2 . readHumidity () ;
110 t [i] = dht2 . readTemperature () ;
111 h i c [i] = dht2 . computeHeatIndex (t [i] , h [i] , f a l s e) ;
112 S e r i a l . p r i n t (F(”2M ”)) ;
113 } e l s e i f (i==3){
114 h [i] = dht3 . readHumidity () ;
115 t [i] = dht3 . readTemperature () ;
116 h i c [i] = dht3 . computeHeatIndex (t [i] , h [i] , f a l s e) ;
117 S e r i a l . p r i n t (F(”2B ”)) ;
118 } e l s e i f (i==4){
119 h [i] = dht4 . readHumidity () ;
120 t [i] = dht4 . readTemperature () ;
121 h i c [i] = dht4 . computeHeatIndex (t [i] , h [i] , f a l s e) ;
122 S e r i a l . p r i n t (F(”5T ”)) ;
123 } e l s e i f (i==5){
124 h [i] = dht5 . readHumidity () ;
125 t [i] = dht5 . readTemperature () ;
126 h i c [i] = dht5 . computeHeatIndex (t [i] , h [i] , f a l s e) ;
127 S e r i a l . p r i n t (F(”5M ”)) ;
128 } e l s e i f (i==6){
129 h [i] = dht6 . readHumidity () ;
130 t [i] = dht6 . readTemperature () ;
131 h i c [i] = dht6 . computeHeatIndex (t [i] , h [i] , f a l s e) ;
132 S e r i a l . p r i n t (F(”5B ”)) ;
133 } e l s e i f (i==7){
134 h [i] = dht7 . readHumidity () ;
135 t [i] = dht7 . readTemperature () ;
136 h i c [i] = dht7 . computeHeatIndex (t [i] , h [i] , f a l s e) ;
137 S e r i a l . p r i n t (F(”1T ”)) ;
138 } e l s e i f (i==8){
139 h [i] = dht8 . readHumidity () ;
140 t [i] = dht8 . readTemperature () ;
141 h i c [i] = dht8 . computeHeatIndex (t [i] , h [i] , f a l s e) ;
142 S e r i a l . p r i n t (F(”1M ”)) ;
143 } e l s e i f (i==9){
144 h [i] = dht9 . readHumidity () ;
145 t [i] = dht9 . readTemperature () ;
146 h i c [i] = dht9 . computeHeatIndex (t [i] , h [i] , f a l s e) ;
147 S e r i a l . p r i n t (F(”1B ”)) ;
148 } e l s e i f (i ==10){
149 h [i] = dht10 . readHumidity () ;
150 t [i] = dht10 . readTemperature () ;
151 h i c [i] = dht10 . computeHeatIndex (t [i] , h [i] , f a l s e) ;
152 S e r i a l . p r i n t (F(”4T ”)) ;
153 } e l s e i f (i ==11){
154 h [i] = dht11 . readHumidity () ;
155 t [i] = dht11 . readTemperature () ;
156 h i c [i] = dht11 . computeHeatIndex (t [i] , h [i] , f a l s e) ;
157 S e r i a l . p r i n t (F(”4M ”)) ;
158 } e l s e i f (i ==12){
159 h [i] = dht12 . readHumidity () ;
160 t [i] = dht12 . readTemperature () ;

44

161 h ic [i] = dht12 . computeHeatIndex (t [i] , h [i] , f a l s e) ;
162 S e r i a l . p r i n t (F(”4B ”)) ;
163 } e l s e i f (i ==13){
164 h [i] = dht13 . readHumidity () ;
165 t [i] = dht13 . readTemperature () ;
166 h i c [i] = dht13 . computeHeatIndex (t [i] , h [i] , f a l s e) ;
167 S e r i a l . p r i n t (F(”3T ”)) ;
168 } e l s e i f (i ==14){
169 h [i] = dht14 . readHumidity () ;
170 t [i] = dht14 . readTemperature () ;
171 h i c [i] = dht14 . computeHeatIndex (t [i] , h [i] , f a l s e) ;
172 S e r i a l . p r i n t (F(”3M ”)) ;
173 } e l s e i f (i ==15){
174 h [i] = dht15 . readHumidity () ;
175 t [i] = dht15 . readTemperature () ;
176 h i c [i] = dht15 . computeHeatIndex (t [i] , h [i] , f a l s e) ;
177 S e r i a l . p r i n t (F(”3B ”)) ;
178 } e l s e {
179 }
180 hDi f f e r ence [i]=h [i]−hPrevious [i] ;
181 tD i f f e r e n c e [i]= t [i]− tPrev ious [i] ;
182 }
183
184 void p r i n tRe su l t s (f l o a t h , f l o a t hDi f f e r ence , f l o a t t , f l o a t tD i f f e r enc e , f l o a t h i c){
185 S e r i a l . p r i n t (h) ;
186 S e r i a l . p r i n t (F(” ”)) ;
187 S e r i a l . p r i n t (hD i f f e r ence) ;
188 S e r i a l . p r i n t (F(” ”)) ;
189 S e r i a l . p r i n t (t) ;
190 S e r i a l . p r i n t (F(” ”)) ;
191 S e r i a l . p r i n t (tD i f f e r e n c e) ;
192 S e r i a l . p r i n t (F(” ”)) ;
193 S e r i a l . p r i n t l n (h i c) ;
194 }

45

B Python Receiver Code

1 import s e r i a l
2
3 s e r i a l p o r t = ’COM4’
4 baud rate = 19200 #In arduino , S e r i a l . begin (baud rate)
5 w r i t e t o f i l e p a t h = ”12345 e2 . txt ”
6
7 o u t p u t f i l e = open (w r i t e t o f i l e p a t h , ”w+”)
8 s e r = s e r i a l . S e r i a l (s e r i a l p o r t , baud rate)
9

10 whi le True :
11
12 l i n e = se r . r e ad l i n e ()
13 l i n e = l i n e . decode (” utf −8”) #se r . r e ad l i n e r e tu rns a binary , convert to s t r i n g
14 pr in t (l i n e)
15 o u t p u t f i l e . wr i t e (l i n e)
16
17 i f (l i n e [0:9]==”7205000ms”) :
18
19 ex i t ()
20 p r in t (”Program Ended”)

46

C Python File Splitter

1 pathway = ’12345 e2 . txt ’
2
3 timepath = ’ timestamps . txt ’
4 timeout = open (timepath , ”w+”)
5
6 hum2tpath = ’hum2t . txt ’
7 hum2tout = open (hum2tpath , ”w+”)
8 hum2tdeltapath = ’ hum2tdelta . txt ’
9 hum2tdeltaout = open (hum2tdeltapath , ”w+”)

10 temp2tpath = ’ temp2t . txt ’
11 temp2tout = open (temp2tpath , ”w+”)
12 temp2tdeltapath = ’ temp2tdelta . txt ’
13 temp2tdeltaout = open (temp2tdeltapath , ”w+”)
14 temp2tcpath = ’ tempc2t . txt ’
15 temp2tcout = open (temp2tcpath , ”w+”)
16
17 hum2mpath = ’hum2m. txt ’
18 hum2mout = open (hum2mpath , ”w+”)
19 hum2mdeltapath = ’ hum2mdelta . txt ’
20 hum2mdeltaout = open (hum2mdeltapath , ”w+”)
21 temp2mpath = ’temp2m . txt ’
22 temp2mout = open (temp2mpath , ”w+”)
23 temp2mdeltapath = ’ temp2mdelta . txt ’
24 temp2mdeltaout = open (temp2mdeltapath , ”w+”)
25 temp2mcpath = ’ tempc2m . txt ’
26 temp2mcout = open (temp2mcpath , ”w+”)
27
28 hum2bpath = ’hum2b . txt ’
29 hum2bout = open (hum2bpath , ”w+”)
30 hum2bdeltapath = ’ hum2bdelta . txt ’
31 hum2bdeltaout = open (hum2bdeltapath , ”w+”)
32 temp2bpath = ’ temp2b . txt ’
33 temp2bout = open (temp2bpath , ”w+”)
34 temp2bdeltapath = ’ temp2bdelta . txt ’
35 temp2bdeltaout = open (temp2bdeltapath , ”w+”)
36 temp2bcpath = ’ tempc2b . txt ’
37 temp2bcout = open (temp2bcpath , ”w+”)
38
39 hum5tpath = ’hum5t . txt ’
40 hum5tout = open (hum5tpath , ”w+”)
41 hum5tdeltapath = ’ hum5tdelta . txt ’
42 hum5tdeltaout = open (hum5tdeltapath , ”w+”)
43 temp5tpath = ’ temp5t . txt ’
44 temp5tout = open (temp5tpath , ”w+”)
45 temp5tdeltapath = ’ temp5tdelta . txt ’
46 temp5tdeltaout = open (temp5tdeltapath , ”w+”)
47 temp5tcpath = ’ tempc5t . txt ’
48 temp5tcout = open (temp5tcpath , ”w+”)
49
50 hum5mpath = ’hum5m. txt ’
51 hum5mout = open (hum5mpath , ”w+”)
52 hum5mdeltapath = ’ hum5mdelta . txt ’
53 hum5mdeltaout = open (hum5mdeltapath , ”w+”)
54 temp5mpath = ’temp5m . txt ’
55 temp5mout = open (temp5mpath , ”w+”)
56 temp5mdeltapath = ’ temp5mdelta . txt ’
57 temp5mdeltaout = open (temp5mdeltapath , ”w+”)
58 temp5mcpath = ’ tempc5m . txt ’
59 temp5mcout = open (temp5mcpath , ”w+”)
60
61 hum5bpath = ’hum5b . txt ’
62 hum5bout = open (hum5bpath , ”w+”)
63 hum5bdeltapath = ’ hum5bdelta . txt ’
64 hum5bdeltaout = open (hum5bdeltapath , ”w+”)
65 temp5bpath = ’ temp5b . txt ’
66 temp5bout = open (temp5bpath , ”w+”)
67 temp5bdeltapath = ’ temp5bdelta . txt ’
68 temp5bdeltaout = open (temp5bdeltapath , ”w+”)
69 temp5bcpath = ’ tempc5b . txt ’
70 temp5bcout = open (temp5bcpath , ”w+”)
71
72 hum1tpath = ’hum1t . txt ’
73 hum1tout = open (hum1tpath , ”w+”)
74 hum1tdeltapath = ’ hum1tdelta . txt ’
75 hum1tdeltaout = open (hum1tdeltapath , ”w+”)
76 temp1tpath = ’ temp1t . txt ’
77 temp1tout = open (temp1tpath , ”w+”)
78 temp1tdeltapath = ’ temp1tdelta . txt ’
79 temp1tdeltaout = open (temp1tdeltapath , ”w+”)
80 temp1tcpath = ’ tempc1t . txt ’
81 temp1tcout = open (temp1tcpath , ”w+”)

47

82
83 hum1mpath = ’hum1m. txt ’
84 hum1mout = open (hum1mpath , ”w+”)
85 hum1mdeltapath = ’ hum1mdelta . txt ’
86 hum1mdeltaout = open (hum1mdeltapath , ”w+”)
87 temp1mpath = ’temp1m . txt ’
88 temp1mout = open (temp1mpath , ”w+”)
89 temp1mdeltapath = ’ temp1mdelta . txt ’
90 temp1mdeltaout = open (temp1mdeltapath , ”w+”)
91 temp1mcpath = ’ tempc1m . txt ’
92 temp1mcout = open (temp1mcpath , ”w+”)
93
94 hum1bpath = ’hum1b . txt ’
95 hum1bout = open (hum1bpath , ”w+”)
96 hum1bdeltapath = ’ hum1bdelta . txt ’
97 hum1bdeltaout = open (hum1bdeltapath , ”w+”)
98 temp1bpath = ’ temp1b . txt ’
99 temp1bout = open (temp1bpath , ”w+”)

100 temp1bdeltapath = ’ temp1bdelta . txt ’
101 temp1bdeltaout = open (temp1bdeltapath , ”w+”)
102 temp1bcpath = ’ tempc1b . txt ’
103 temp1bcout = open (temp1bcpath , ”w+”)
104
105 hum4tpath = ’hum4t . txt ’
106 hum4tout = open (hum4tpath , ”w+”)
107 hum4tdeltapath = ’ hum4tdelta . txt ’
108 hum4tdeltaout = open (hum4tdeltapath , ”w+”)
109 temp4tpath = ’ temp4t . txt ’
110 temp4tout = open (temp4tpath , ”w+”)
111 temp4tdeltapath = ’ temp4tdelta . txt ’
112 temp4tdeltaout = open (temp4tdeltapath , ”w+”)
113 temp4tcpath = ’ tempc4t . txt ’
114 temp4tcout = open (temp4tcpath , ”w+”)
115
116 hum4mpath = ’hum4m. txt ’
117 hum4mout = open (hum4mpath , ”w+”)
118 hum4mdeltapath = ’ hum4mdelta . txt ’
119 hum4mdeltaout = open (hum4mdeltapath , ”w+”)
120 temp4mpath = ’temp4m . txt ’
121 temp4mout = open (temp4mpath , ”w+”)
122 temp4mdeltapath = ’ temp4mdelta . txt ’
123 temp4mdeltaout = open (temp4mdeltapath , ”w+”)
124 temp4mcpath = ’ tempc4m . txt ’
125 temp4mcout = open (temp4mcpath , ”w+”)
126
127 hum4bpath = ’hum4b . txt ’
128 hum4bout = open (hum4bpath , ”w+”)
129 hum4bdeltapath = ’ hum4bdelta . txt ’
130 hum4bdeltaout = open (hum4bdeltapath , ”w+”)
131 temp4bpath = ’ temp4b . txt ’
132 temp4bout = open (temp4bpath , ”w+”)
133 temp4bdeltapath = ’ temp4bdelta . txt ’
134 temp4bdeltaout = open (temp4bdeltapath , ”w+”)
135 temp4bcpath = ’ tempc4b . txt ’
136 temp4bcout = open (temp4bcpath , ”w+”)
137
138 hum3tpath = ’hum3t . txt ’
139 hum3tout = open (hum3tpath , ”w+”)
140 hum3tdeltapath = ’ hum3tdelta . txt ’
141 hum3tdeltaout = open (hum3tdeltapath , ”w+”)
142 temp3tpath = ’ temp3t . txt ’
143 temp3tout = open (temp3tpath , ”w+”)
144 temp3tdeltapath = ’ temp3tdelta . txt ’
145 temp3tdeltaout = open (temp3tdeltapath , ”w+”)
146 temp3tcpath = ’ tempc3t . txt ’
147 temp3tcout = open (temp3tcpath , ”w+”)
148
149 hum3mpath = ’hum3m. txt ’
150 hum3mout = open (hum3mpath , ”w+”)
151 hum3mdeltapath = ’ hum3mdelta . txt ’
152 hum3mdeltaout = open (hum3mdeltapath , ”w+”)
153 temp3mpath = ’temp3m . txt ’
154 temp3mout = open (temp3mpath , ”w+”)
155 temp3mdeltapath = ’ temp3mdelta . txt ’
156 temp3mdeltaout = open (temp3mdeltapath , ”w+”)
157 temp3mcpath = ’ tempc3m . txt ’
158 temp3mcout = open (temp3mcpath , ”w+”)
159
160 hum3bpath = ’hum3b . txt ’
161 hum3bout = open (hum3bpath , ”w+”)
162 hum3bdeltapath = ’ hum3bdelta . txt ’
163 hum3bdeltaout = open (hum3bdeltapath , ”w+”)
164 temp3bpath = ’ temp3b . txt ’

48

165 temp3bout = open (temp3bpath , ”w+”)
166 temp3bdeltapath = ’ temp3bdelta . txt ’
167 temp3bdeltaout = open (temp3bdeltapath , ”w+”)
168 temp3bcpath = ’ tempc3b . txt ’
169 temp3bcout = open (temp3bcpath , ”w+”)
170
171
172 with open (pathway , ” r ”) as temp :
173
174 l i n e c n t = 0
175 whole = temp . r e a d l i n e s ()
176
177 whi le whole :
178
179 i f whole [l i n e c n t] == ’\n ’ :
180
181 l i n e c n t += 1
182
183 e l s e :
184
185 l i n e = whole [l i n e c n t]
186 s t r cn t = 0
187 xcnt = 0
188 xcnt1 = 0
189 xcnt2 = 0
190 xcnt3 = 0
191 xcnt4 = 0
192 xcnt5 = 0
193 sensor = []
194
195 newl ine = ”\n”
196
197 f o r x in l i n e :
198
199 i f x == ” ” :
200
201 s t r cn t += 1
202
203 i f s t r cn t == 1 :
204
205 s t r i n g = (l i n e [0 : xcnt]) . s t r i p ()
206
207 i f s t r i n g == ”2T” :
208 sensor = s t r i n g
209 i f s t r i n g == ”2M” :
210 sensor = s t r i n g
211 i f s t r i n g == ”2B” :
212 sensor = s t r i n g
213 i f s t r i n g == ”5T” :
214 sensor = s t r i n g
215 i f s t r i n g == ”5M” :
216 sensor = s t r i n g
217 i f s t r i n g == ”5B” :
218 sensor = s t r i n g
219 i f s t r i n g == ”1T” :
220 sensor = s t r i n g
221 i f s t r i n g == ”1M” :
222 sensor = s t r i n g
223 i f s t r i n g == ”1B” :
224 sensor = s t r i n g
225 i f s t r i n g == ”4T” :
226 sensor = s t r i n g
227 i f s t r i n g == ”4M” :
228 sensor = s t r i n g
229 i f s t r i n g == ”4B” :
230 sensor = s t r i n g
231 i f s t r i n g == ”3T” :
232 sensor = s t r i n g
233 i f s t r i n g == ”3M” :
234 sensor = s t r i n g
235 i f s t r i n g == ”3B” :
236 sensor = s t r i n g
237
238 xcnt1 = xcnt
239
240 e l i f s t r c n t == 2 :
241
242 s t r i n g = (l i n e [xcnt1 : xcnt]) . s t r i p ()
243 xcnt2 = xcnt
244
245 i f s enso r == ”2T” :
246 s t r i n g = s t r i n g + newl ine
247 hum2tout . wr i t e (s t r i n g)

49

248 i f s enso r == ”2M” :
249 s t r i n g = s t r i n g + newl ine
250 hum2mout . wr i t e (s t r i n g)
251 i f s enso r == ”2B” :
252 s t r i n g = s t r i n g + newl ine
253 hum2bout . wr i t e (s t r i n g)
254 i f s enso r == ”5T” :
255 s t r i n g = s t r i n g + newl ine
256 hum5tout . wr i t e (s t r i n g)
257 i f s enso r == ”5M” :
258 s t r i n g = s t r i n g + newl ine
259 hum5mout . wr i t e (s t r i n g)
260 i f s enso r == ”5B” :
261 s t r i n g = s t r i n g + newl ine
262 hum5bout . wr i t e (s t r i n g)
263 i f s enso r == ”1T” :
264 s t r i n g = s t r i n g + newl ine
265 hum1tout . wr i t e (s t r i n g)
266 i f s enso r == ”1M” :
267 s t r i n g = s t r i n g + newl ine
268 hum1mout . wr i t e (s t r i n g)
269 i f s enso r == ”1B” :
270 s t r i n g = s t r i n g + newl ine
271 hum1bout . wr i t e (s t r i n g)
272 i f s enso r == ”4T” :
273 s t r i n g = s t r i n g + newl ine
274 hum4tout . wr i t e (s t r i n g)
275 i f s enso r == ”4M” :
276 s t r i n g = s t r i n g + newl ine
277 hum4mout . wr i t e (s t r i n g)
278 i f s enso r == ”4B” :
279 s t r i n g = s t r i n g + newl ine
280 hum4bout . wr i t e (s t r i n g)
281 i f s enso r == ”3T” :
282 s t r i n g = s t r i n g + newl ine
283 hum3tout . wr i t e (s t r i n g)
284 i f s enso r == ”3M” :
285 s t r i n g = s t r i n g + newl ine
286 hum3mout . wr i t e (s t r i n g)
287 i f s enso r == ”3B” :
288 s t r i n g = s t r i n g + newl ine
289 hum3bout . wr i t e (s t r i n g)
290
291 e l i f s t r c n t == 3 :
292
293 s t r i n g = (l i n e [xcnt2 : xcnt]) . s t r i p ()
294 xcnt3 = xcnt
295
296 i f s enso r == ”2T” :
297 s t r i n g = s t r i n g + newl ine
298 hum2tdeltaout . wr i t e (s t r i n g)
299 i f s enso r == ”2M” :
300 s t r i n g = s t r i n g + newl ine
301 hum2mdeltaout . wr i t e (s t r i n g)
302 i f s enso r == ”2B” :
303 s t r i n g = s t r i n g + newl ine
304 hum2bdeltaout . wr i t e (s t r i n g)
305 i f s enso r == ”5T” :
306 s t r i n g = s t r i n g + newl ine
307 hum5tdeltaout . wr i t e (s t r i n g)
308 i f s enso r == ”5M” :
309 s t r i n g = s t r i n g + newl ine
310 hum5mdeltaout . wr i t e (s t r i n g)
311 i f s enso r == ”5B” :
312 s t r i n g = s t r i n g + newl ine
313 hum5bdeltaout . wr i t e (s t r i n g)
314 i f s enso r == ”1T” :
315 s t r i n g = s t r i n g + newl ine
316 hum1tdeltaout . wr i t e (s t r i n g)
317 i f s enso r == ”1M” :
318 s t r i n g = s t r i n g + newl ine
319 hum1mdeltaout . wr i t e (s t r i n g)
320 i f s enso r == ”1B” :
321 s t r i n g = s t r i n g + newl ine
322 hum1bdeltaout . wr i t e (s t r i n g)
323 i f s enso r == ”4T” :
324 s t r i n g = s t r i n g + newl ine
325 hum4tdeltaout . wr i t e (s t r i n g)
326 i f s enso r == ”4M” :
327 s t r i n g = s t r i n g + newl ine
328 hum4mdeltaout . wr i t e (s t r i n g)
329 i f s enso r == ”4B” :
330 s t r i n g = s t r i n g + newl ine

50

331 hum4bdeltaout . wr i t e (s t r i n g)
332 i f s enso r == ”3T” :
333 s t r i n g = s t r i n g + newl ine
334 hum3tdeltaout . wr i t e (s t r i n g)
335 i f s enso r == ”3M” :
336 s t r i n g = s t r i n g + newl ine
337 hum3mdeltaout . wr i t e (s t r i n g)
338 i f s enso r == ”3B” :
339 s t r i n g = s t r i n g + newl ine
340 hum3bdeltaout . wr i t e (s t r i n g)
341
342 e l i f s t r c n t == 4 :
343
344 s t r i n g = (l i n e [xcnt3 : xcnt]) . s t r i p ()
345 xcnt4 = xcnt
346
347 i f s enso r == ”2T” :
348 s t r i n g = s t r i n g + newl ine
349 temp2tout . wr i t e (s t r i n g)
350 i f s enso r == ”2M” :
351 s t r i n g = s t r i n g + newl ine
352 temp2mout . wr i t e (s t r i n g)
353 i f s enso r == ”2B” :
354 s t r i n g = s t r i n g + newl ine
355 temp2bout . wr i t e (s t r i n g)
356 i f s enso r == ”5T” :
357 s t r i n g = s t r i n g + newl ine
358 temp5tout . wr i t e (s t r i n g)
359 i f s enso r == ”5M” :
360 s t r i n g = s t r i n g + newl ine
361 temp5mout . wr i t e (s t r i n g)
362 i f s enso r == ”5B” :
363 s t r i n g = s t r i n g + newl ine
364 temp5bout . wr i t e (s t r i n g)
365 i f s enso r == ”1T” :
366 s t r i n g = s t r i n g + newl ine
367 temp1tout . wr i t e (s t r i n g)
368 i f s enso r == ”1M” :
369 s t r i n g = s t r i n g + newl ine
370 temp1mout . wr i t e (s t r i n g)
371 i f s enso r == ”1B” :
372 s t r i n g = s t r i n g + newl ine
373 temp1bout . wr i t e (s t r i n g)
374 i f s enso r == ”4T” :
375 s t r i n g = s t r i n g + newl ine
376 temp4tout . wr i t e (s t r i n g)
377 i f s enso r == ”4M” :
378 s t r i n g = s t r i n g + newl ine
379 temp4mout . wr i t e (s t r i n g)
380 i f s enso r == ”4B” :
381 s t r i n g = s t r i n g + newl ine
382 temp4bout . wr i t e (s t r i n g)
383 i f s enso r == ”3T” :
384 s t r i n g = s t r i n g + newl ine
385 temp3tout . wr i t e (s t r i n g)
386 i f s enso r == ”3M” :
387 s t r i n g = s t r i n g + newl ine
388 temp3mout . wr i t e (s t r i n g)
389 i f s enso r == ”3B” :
390 s t r i n g = s t r i n g + newl ine
391 temp3bout . wr i t e (s t r i n g)
392
393 e l i f s t r c n t == 5 :
394
395 s t r i n g = (l i n e [xcnt4 : xcnt]) . s t r i p ()
396 xcnt5 = xcnt
397
398 i f s enso r == ”2T” :
399 s t r i n g = s t r i n g + newl ine
400 temp2tdeltaout . wr i t e (s t r i n g)
401 i f s enso r == ”2M” :
402 s t r i n g = s t r i n g + newl ine
403 temp2mdeltaout . wr i t e (s t r i n g)
404 i f s enso r == ”2B” :
405 s t r i n g = s t r i n g + newl ine
406 temp2bdeltaout . wr i t e (s t r i n g)
407 i f s enso r == ”5T” :
408 s t r i n g = s t r i n g + newl ine
409 temp5tdeltaout . wr i t e (s t r i n g)
410 i f s enso r == ”5M” :
411 s t r i n g = s t r i n g + newl ine
412 temp5mdeltaout . wr i t e (s t r i n g)
413 i f s enso r == ”5B” :

51

414 s t r i n g = s t r i n g + newl ine
415 temp5bdeltaout . wr i t e (s t r i n g)
416 i f s enso r == ”1T” :
417 s t r i n g = s t r i n g + newl ine
418 temp1tdeltaout . wr i t e (s t r i n g)
419 i f s enso r == ”1M” :
420 s t r i n g = s t r i n g + newl ine
421 temp1mdeltaout . wr i t e (s t r i n g)
422 i f s enso r == ”1B” :
423 s t r i n g = s t r i n g + newl ine
424 temp1bdeltaout . wr i t e (s t r i n g)
425 i f s enso r == ”4T” :
426 s t r i n g = s t r i n g + newl ine
427 temp4tdeltaout . wr i t e (s t r i n g)
428 i f s enso r == ”4M” :
429 s t r i n g = s t r i n g + newl ine
430 temp4mdeltaout . wr i t e (s t r i n g)
431 i f s enso r == ”4B” :
432 s t r i n g = s t r i n g + newl ine
433 temp4bdeltaout . wr i t e (s t r i n g)
434 i f s enso r == ”3T” :
435 s t r i n g = s t r i n g + newl ine
436 temp3tdeltaout . wr i t e (s t r i n g)
437 i f s enso r == ”3M” :
438 s t r i n g = s t r i n g + newl ine
439 temp3mdeltaout . wr i t e (s t r i n g)
440 i f s enso r == ”3B” :
441 s t r i n g = s t r i n g + newl ine
442 temp3bdeltaout . wr i t e (s t r i n g)
443
444 i f x == ’\n ’ :
445 s t r i n g = (l i n e [xcnt5 : xcnt]) . s t r i p ()
446
447 i f s ensor == [] :
448 time = s t r i n g
449 i f time != ”Program Beginning ” :
450 s t r i n g = time + newl ine
451 timeout . wr i t e (s t r i n g)
452 e l s e :
453 i f s enso r == ”2T” :
454 s t r i n g = s t r i n g + newl ine
455 temp2tcout . wr i t e (s t r i n g)
456 i f s enso r == ”2M” :
457 s t r i n g = s t r i n g + newl ine
458 temp2mcout . wr i t e (s t r i n g)
459 i f s enso r == ”2B” :
460 s t r i n g = s t r i n g + newl ine
461 temp2bcout . wr i t e (s t r i n g)
462 i f s enso r == ”5T” :
463 s t r i n g = s t r i n g + newl ine
464 temp5tcout . wr i t e (s t r i n g)
465 i f s enso r == ”5M” :
466 s t r i n g = s t r i n g + newl ine
467 temp5mcout . wr i t e (s t r i n g)
468 i f s enso r == ”5B” :
469 s t r i n g = s t r i n g + newl ine
470 temp5bcout . wr i t e (s t r i n g)
471 i f s enso r == ”1T” :
472 s t r i n g = s t r i n g + newl ine
473 temp1tcout . wr i t e (s t r i n g)
474 i f s enso r == ”1M” :
475 s t r i n g = s t r i n g + newl ine
476 temp1mcout . wr i t e (s t r i n g)
477 i f s enso r == ”1B” :
478 s t r i n g = s t r i n g + newl ine
479 temp1bcout . wr i t e (s t r i n g)
480 i f s enso r == ”4T” :
481 s t r i n g = s t r i n g + newl ine
482 temp4tcout . wr i t e (s t r i n g)
483 i f s enso r == ”4M” :
484 s t r i n g = s t r i n g + newl ine
485 temp4mcout . wr i t e (s t r i n g)
486 i f s enso r == ”4B” :
487 s t r i n g = s t r i n g + newl ine
488 temp4bcout . wr i t e (s t r i n g)
489 i f s enso r == ”3T” :
490 s t r i n g = s t r i n g + newl ine
491 temp3tcout . wr i t e (s t r i n g)
492 i f s enso r == ”3M” :
493 s t r i n g = s t r i n g + newl ine
494 temp3mcout . wr i t e (s t r i n g)
495 i f s enso r == ”3B” :
496 s t r i n g = s t r i n g + newl ine

52

497 temp3bcout . wr i t e (s t r i n g)
498 xcnt += 1
499 l i n e c n t += 1

53

D Regression Graphs

Figure 39: 12345e2 High Humidity Sensors + Regression

54

Figure 40: 12345e2 Middle Humidity Sensors + Regression

55

Figure 41: 12345e2 Low Humidity Sensors + Regression

56

Figure 42: 12345e2 High Temperature Sensors + Regression

57

Figure 43: 12345e2 Middle Temperature Sensors + Regression

58

Figure 44: 12345e2 Low Temperature Sensors + Regression

59

Figure 45: 12345e4 High Humidity Sensors + Regression

60

Figure 46: 12345e4 Middle Humidity Sensors + Regression

61

Figure 47: 12345e4 Low Humidity Sensors + Regression

62

Figure 48: 12345e4 High Temperature Sensors + Regression

63

Figure 49: 12345e4 Middle Temperature Sensors + Regression

64

Figure 50: 12345e4 Low Temperature Sensors + Regression

65

Figure 51: 16278e5 High Humidity Sensors + Regression

66

Figure 52: 16278e5 Middle Humidity Sensors + Regression

67

Figure 53: 16278e5 Low Humidity Sensors + Regression

68

Figure 54: 16278e5 High Temperature Sensors + Regression

69

Figure 55: 16278e5 Middle Temperature Sensors + Regression

70

Figure 56: 16278e5 Low Temperature Sensors + Regression

71

