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Abstract

A case study is performed on the parking situation of the city center
of Kortrijk, in Flanders, Belgium, through a simulation of the study area.
Using SUMO, a simulation is built using five different data sources about
the parking situation in Kortrijk. This simulation creates the possibility
to have detailed data on the occupation of every parking space in the study
area, by equipping each simulated parking space with a simulated parking
occupancy sensor. The dataset generated by the simulation is used to de-
velop a baseline prediction algorithm using Long Short-Term Memory Re-
current Neural Networks. Throughout a series of experiments, variations
to the sensor coverage level, the geographical distribution of the sensors
and the demand for parking are made. Furthermore, induction loops that
count traffic are added in the simulation, and variations regarding the
prediction area size are made. The results from these experiments show
a linear relationship between the sensor coverage level and the accuracy
of the parking occupancy predictions. Adding alternative data sources
such as traffic counts further increases the accuracy of the predictions.
When using sensor information to predict parking occupancy, the optimal
prediction area size is found to be between 25 and 100 parking spaces.
To combat false negatives, where no parking spaces are available but the
prediction algorithm concludes there are, sensor coverage should be 100%
in the most congested areas with the highest demand for parking.
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1 Introduction

1.1 Background

In 2018, 55% of the world population resided in cities. This is forecast to
rise to 68% in 2050 [56]. With growing urbanisation, the number of vehicles
and, as a result, the demand for parking in cities will grow. Already, traffic
cruising around for a parking space makes up a significant amount of the total
traffic in central business districts of cities [51]. To combat the growing parking
problematics, smart parking solutions have started appearing. Variable Message
Signs (VMS) are in use worldwide since the introduction of the first Parking
Guidance and Information System (PGIS) in Aachen in the early 1970s [57].
This signalled the first foray into making parking search easier with the help of
technology.

The backbone of all smart parking implementations is data about parking
occupancy. For parking garages, this is relatively easy. With a limited number
of entry and exit points, simply counting the vehicles entering and exiting the
facility suffices to keep an accurate count. For on-street parking spaces, this is
not an option, as they are not closed off. Many different technologies to monitor
on-street parking space occupancy exist, including but not limited to stationary
magnetic parking sensors [33, 52, 63, 68], camera-based occupancy monitoring
systems [1, 2, 17, 28, 46, 64] and monitoring through probe vehicles equipped
with sensors [16, 25, 38, 43]. In an ideal world, the occupancy of all parking
spaces would be known and accurate predictions would be made based on that
data, allowing commuters and visitors to make informed decisions about where
to park, eliminating all traffic cruising for parking. In practice, there are very
few real-world applications of these on-street parking monitoring technologies,
as the costs for accurate systems are prohibitive [24].

There are a few examples of cities or districts where sensors are rolled out to
monitor on-street parking, which are discussed in Section 2.2.1. In these cases,
it becomes possible to make predictions about future parking occupancy and
the probability of finding a vacant parking space based on historical data. These
predictions, further discussed in Section 2.4, are rather accurate. However, they
do rely on 100% coverage of parking occupancy sensors in the area that is to be
predicted for. This raises the question whether it is possible to make accurate
predictions with fewer sensors. If it would be possible to retain accuracy in
parking occupancy predictions with only a limited number of sensors, this would
lower the costs of smart parking projects significantly.

1.2 Research Goal

The main goal of the research is to assess the impact that stationary parking
sensors have on the accuracy of parking predictions. This knowledge will help
make informed decisions about investments into smart parking through quantifi-
cation of the benefits of installing sensors and through insight into the optimal
spatial distribution and necessary penetration rate of these sensors.
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1.3 Research Questions

In order to achieve the research goal described above, the main research question
of this master’s thesis is stated as follows:

“What is the impact of varying penetration rates and distributions of
stationary sensors on the accuracy of parking predictions?”

To help answer this question, the following sub-questions are formulated:

1. What different data sources are used in parking prediction?
2. How does the availability of each data source influence the accuracy of the

prediction?
3. Which prediction algorithms are the state-of-the-art?
4. What are the effects of varying the spatial distribution and penetration rate

of stationary sensors?
5. What is the economic trade-off between accuracy and installing stationary

sensors for predictive analysis?

The methods and the approach used to research and answer these questions,
as well as the scope of the research, are described in detail in Chapter 3.

1.4 Contribution

The contribution of this research is twofold. Firstly, it quantifies the relationship
between parking sensor coverage and parking occupancy prediction accuracy. In
this process, insights into the geographical distribution of the parking sensors,
the impact of other data sources such as traffic counts, as well as the optimal
prediction area size are obtained. Secondly, this thesis proposes a novel re-
search method to research parking prediction. Using a simulation with parking
demand modeled on real-world data enables many methods of experimentation,
as variables can be easily tweaked and the generated data set is 100% accurate,
because the simulated parking sensors are infallible.

1.5 Outline

After introducing the background of the research and its associated questions
in Chapter 1, Chapter 2 will explore the work that has already been conducted
on this topic by scholars by discussing the history of parking research, smart
parking in literature and real-world implementations, parking simulation and
the different techniques used to predict parking occupancy. Chapter 3 describes
the methods that will be utilised to explore and answer the stated research
questions.

The chosen study area is described in detail in Chapter 4. After describing
the parking situation in the study area, Chapter 5 discusses all data that was
collected from the study area and the approaches taken to process and anal-
yse this data. The findings from this data analysis are then used to build a
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simulation that is as authentic as possible. This simulation, its components,
algorithms, scope and validation process are discussed in Chapter 6.

The simulation output is then used to build a baseline prediction algorithm.
Its architecture and performance are described in Chapter 7. This baseline is
used as the benchmark throughout the following chapters. In these, variations
regarding sensor availability and distribution and simulation parameters are
made. These experiments and their results are described in Chapters 8 and 9,
respectively.

Rounding up, Chapter 10 discusses the limitations of the research and the
real-world implications of the findings, quantifying the trade-off between invest-
ments into a smart parking sensor system and its prediction accuracy. Chapter
11 draws conclusions from the previous chapters and finally, Chapter 12 dis-
cusses the possible directions for future work.
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2 Related Work

In a prior research paper written as a preliminary literature review to prepare for
the research discussed in this paper, the smart parking landscape was analysed
[27]. Through a structured literature review process, in the end 228 papers were
read and analysed. The following is a short summary of the findings of that
literature review, tailored to the specific direction of this research.

2.1 History & Cruising for Parking

Since the inception of the automobile, there has been a need for parking when
said automobile is not in use. In fact, Bates et al. found that personal vehicles
are only in use 3,5% of the time, parked at home 80% of the the time, and parked
elsewhere the remaining 16,5% of the time [12]. With an increasing number of
vehicles comes the problem of where to store them. As early as 1923, a patent
for the vertical storage of vehicles was filed [44], strikingly similar to the vertical
parking garages currently ubiquitous in Japan. In 1927, Simpson published a
paper called Downtown Storage Garages [53] in an issue of the ANNALS of
the American Academy of Political and Social Science entirely dedicated to
city traffic and parking problems. Simpson calls the vehicle storage problem
in cities “the parking evil”. Simpson found that in two locations in Detroit,
traffic cruising while searching for a parking spot downtown accounted for 19%
and 34% of the total traffic, respectively. This shows that, by that time, the
parking of vehicles in the downtown areas of cities had become a problem worth
investigating and solving.

In his overview of the problem with vehicles cruising for a curbside parking
spot, Shoup [51] refers to several parking studies conducted throughout the
20th century. These studies have attempted to quantify the cruising problem
in various locations. The results vary wildly, which makes sense as most of
the time, none of the traffic will be cruising, but some of the time a lot of
the traffic in a city may be cruising while looking for a parking spot, Shoup
states [51]. This cruising has been extensively covered in scientific literature,
spurred on by Shoup’s 2006 paper Cruising for Parking [51]. Besides Shoup
[41, 50, 51], Anderson et al. [3] and Arnott et al. [4, 5, 6, 8] have written on
cruising extensively. In the early 2000s, research into parking has accelerated
as a direct result of Shoup’s pioneering work [51]. Many attempts to model,
simulate and analyse parking have been undertaken, and smart parking with
the help of technology started appearing.
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2.2 Smart Parking

Smart parking solutions operate on the basis of the availability of data. In order
to do any kind of data analysis, guidance to empty parking spaces or occupancy
prediction, data about parking space occupation has to be available. A multi-
tude of different sensor technologies exist to detect whether a parking spot is
occupied. Lin et al. identified eleven types of stationary sensor technologies,
as well as four more mobile technologies [36]. These technologies vary as far
as costs, accuracy and ease of installation are concerned. Of these 15 technolo-
gies, the most common and most accurate stationary sensor technologies are
magnetometers and camera-based sensor systems.

The most common stationary parking detection sensors are magnetometers
[36], which work by detecting a change in the Earth’s magnetic field as the
result of a ferromagnetic object (i.e. a vehicle) being placed in the vicinity
of the sensor. This sensing method is passive and thus requires no energy to
operate, with an accuracy of over 99% [63]. Magnetometers are the state-of-
the-art in parking occupancy detection and are the only sensor technology with
notable commercial implementations.

The best alternative to magnetometers are camera-based sensor systems.
Driven by the current interest in artificial intelligence, many recent research
efforts have been made into camera-based parking occupancy detection [17, 28,
46, 55, 64]. Amato et al. utilise a Raspberry Pi Smart Camera to monitor a
parking lot. They use deep learning with Convolutional Neural Networks [1, 2].
Using the same view for training and testing, error rates are under 1%. Using
a classifier trained on other views than used for testing, accuracies range from
82.88% to 98.81%, with most results hovering around the 88% mark.

Camera-based sensor systems are able to achieve a high degree of accuracy
when they are trained using training data with the same view as the operational
cameras. Challenges that still have to be solved include occlusions by objects
and shadows, the supply of power to wireless camera systems and security issues.

2.2.1 Smart Parking Projects

The three most notable examples of on-street parking space sensoring are the
SFPark project [45], the LA Express Park project [37] and the 4300 in-ground
sensors installed in Melbourne [20]. In all of these projects, magnetometers were
the sensors of choice. Of these three projects, the data from the SFPark project
and the sensors in Melbourne have been published as open data.

2.3 Simulation

Multiple attempts at simulating parking have been undertaken in literature.
The aforementioned Arnott [6, 7, 10] has pioneered parking simulation litera-
ture, by building on his own mathematical parking models. Dedicated parking
simulation software has also been written.

PARKAGENT is introduced in two papers, by Benenson et al. [14] and
by Levy et al. [35]. It is an agent-based model in which each driver has a
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specific origin and destination. The model links a geosimulation approach to a
Geographic Information System (GIS) database to simulate a real city, based
on three GIS layers; street network, buildings and off-street parking facilities.
PARKAGENT simplifies the first part of a driver’s journey, and focuses on
parking search & choice, the actual parking and driving out again. The valida-
tion performed in [35] shows that PARKAGENT closely resembles real-world
scenarios. The main contribution of PARKAGENT is that it accounts for the
contiguity of parking spaces and the autocorrelation that occurs when the oc-
cupancy rate rises and people start looking for parking spaces on the border
of congested areas. This has a profound effect on parking when the occupancy
rate rises to 95% and higher [35].

Dieussaert et al. describe SUSTAPARK [22]. Similar to PARKAGENT, it is
an agent-based spatio-temporal simulation model. Similarly to PARKAGENT,
GIS data is used to model the city. The parking choice and search algorithm
is less sophisticated than PARKAGENT, and involves the proposal of nearby
parking spaces based on their utility to the agent. Dieussaert et al. developed
SUSTAPARK for the use in a case study in Leuven [54]. The authors draw
many conclusions about parking modeling in general and about SUSTAPARK.
Foremost, they conclude that parking is a highly complex problem which relies
on many different aspects of city planning and mobility. The authors note that
it seems unlikely that all these aspects could be captured in a single model.

MATSim1 is an open-source framework for implementing large-scale agent-
based traffic simulations. Being a traffic simulator foremost, MATSim generally
does not simulate parking. It simply assumes drivers park with no delay at
the time of their arrival [60]. Waraich et al. extend MATSim with a parking
choice model [60]. They do not add a parking search model and lay out many
directions for future research. Waraich et al. expand on this research by adding a
parking search model in [61]. When comparing MATSim with the SUSTAPARK
and PARKAGENT, the main trade-off is simulation detail. Where MATSim is
a complex traffic simulator with options like mode choice, SUSTAPARK and
PARKAGENT lack detail and functionality in that area. However, they offer
more detail in road modelling and have better performance on high resolution
networks and with more agents.

SUMO2, or Simulation of Urban MObility, is an extensive, well-documented
open source traffic simulator that was developed in 2001. Out of the box, it
does not offer parking choice or parking route models. SUMO does not appear
often in the parking literature, but has been used by Lendak et al. [34] and
Mejri et al. [39]. In these two papers, SUMO is used to generate and simulate
routes and mobility traces, but not for the parking of vehicles. SUMO could
be extended to include parking behaviour, but other simulation software offers
more specialised options.

1https://matsim.org/ - Accessed 2019-04-19
2https://sumo.dlr.de/index.html - Accessed 2019-04-19
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2.4 Parking Prediction

In a lot of research, the parking predictions are based on historical off-street
parking lot occupancy data [11, 18, 19, 42, 65].

Multiple machine learning prediction models for on-street parking occupancy
have been proposed. The most recent is the work by Yang et al., who use
Graph-Convolutional Neural Networks to extract the spatial relations of traffic
flow in large-scale networks, and utilise Recurrent Neural Networks with Long-
Short Term Memory to capture the temporal features [66]. The basis for their
occupancy prediction is parking meter data, in line with Yang et al.’s earlier
work [67]. However, parking meter data suffers from accuracy errors due to
underpaid, overpaid and unpaid parking. This accuracy error combined with
the error in occupancy prediction leads to a 12% Mean Absolute Percentage
Error (MAPE).

Using real-time occupancy data from in-ground sensors installed in San-
tander, Spain, Vlahogianni et al. use neural networks to estimate parking oc-
cupancy 15 minutes into the future with up to 3.6% MAPE [59]. This shows
real-time information has a very positive effect on parking occupancy prediction.

Zheng et al. used data from the SFPark project and the sensors in Melbourne
as training data for a neural network, a regression tree and support vector
regression (SVR) [69]. They conclude that the regression tree method using a
feature set that includes the history of the occupancy rates along with the time
and the day of the week performs best for parking availability prediction.

Rajabioun et al. also used data from the SFPark project to develop a vec-
tor spatiotemporal autoregressive model to predict parking availability at the
expected time of arrival of a driver, in order to recommend the parking space
with the highest probability to be vacant [42]. The predictions achieve a MAPE
of 14% and the system is able to direct a vehicle to a parking area with a free
parking space 95% of the time.

Bock et al. propose a 2-step approach to predict parking availability [15].
Their first step handles the data processing, in which SVR’s are used to smooth
the raw parking data and extract a trend. The idea is that models are easier to
train on smooth trend curves than on raw, chaotic parking data. Their second
step is performing a standard regression, again using SVR, to predict parking
availability. Their approach is shown to outperform the standard regression
method of Zheng et al. discussed in the paragraph above, and is able to exploit
a longer history, while occupying only 40% of the space of raw data.

Ionita et al. propose a method that estimates parking availability in areas
without sensors by comparing their background data from Geographical Infor-
mation Systems [29]. They compute similarity values between neighbourhoods
with and without sensors based on the average visit duration to public ameni-
ties in those neighbourhoods. Neighbourhoods were clustered using k-means
clustering and several machine learning methods were used for the availability
prediction, with extreme gradient boosting being the best performing model.
The data from the SFPark project was used for this research.
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Pflügler et al. use Neural Networks to predict parking occupancy using
publicly available data such as traffic intensity and weather. They found that
location, time and weather were the most relevant categories to consider when
predicting parking occupancy [40].

Badii et al. use different data sources to train Recurrent Neural Networks
(RNN), Support Vector Regressions, Auto Regressive Integrated Moving Aver-
age models and Bayesian Regulated Artificial Neural Networks to predict oc-
cupancy in parking garages [11]. They find that the time of day and historical
occupancy data are the most important factors for predicting occupancy, and
notice an improvement to their predictions when including traffic flow informa-
tion. They reference that their findings are coherent with the findings of Pflügler
et al. for on-street parking [40]. They hypothesise that traffic flow information
would be less useful for predicting on-street parking prediction.

The research of Evenepoel et al. is, to the author’s best knowledge, the only
research to investigate the efficiency of a sampling approach for on-street parking
sensors [24]. They conclude that city-wide parking totals can be estimated with
great accuracy when equipping only a fraction of the parking spaces with sensors,
under the assumption that the parking vehicles are uniformly distributed over
the city.

2.5 Round-up

Many different techniques have been used in the literature for predicting the
occupancy of parking garages and on-street parking. There is no clear best
method, but it is clear that the most important features for predicting parking
occupancy are the time of day and historical parking data. Weather and traffic
flow information play smaller roles but do increase the accuracy of the predic-
tions. This answers the stated sub-questions 1 and 2. Many different methods
and algorithms are used to predict parking space occupancy. There is no clear
best approach, leaving sub-question 3 partly unanswered.
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3 Method

3.1 Approach

The approach that will be taken to answer the research questions described
above is as follows. After the structured literature review described in Chapter
2, a city or district will be chosen on which to base the research. A simulation
environment will be set up to simulate parking events in that chosen city or
district. Then, a prediction algorithm for parking occupancy will be written.
Finally, the gathered and simulated data and parking events will be used to
gauge the accuracy of the prediction algorithm. Each of these steps is briefly
detailed below.

3.1.1 Simulation Environment

Ideally, this research would have been conducted with the data from a parking
sensor network that covers every single parking space in a city. Unfortunately,
that sensor setup does not exist. Therefore, using as much real-world data as
possible, a city or district and all its parking events will be simulated. By using
realistic input parameters for the parking vehicles in the simulation, a realistic
depiction of the parking situation will be created.

Simulating the parking situation offers something no real-world data set can.
The simulation outputs 100% accurate and reliable parking occupancy data for
100% of the parking spaces in the simulated city. This offers great opportunities
for prediction and experiments, and will allow the research questions to be
answered. The decision regarding the simulation environment and the exact
approach regarding the setup of the simulated city is discussed in detail in
Section 6.1.

The simulation will undoubtedly have shortcomings that are not present
in traditional real-world parking datasets. On the other hand, it offers many
opportunities for experimentation. In the simulation, sensors do not fail and are
not obstructed or otherwise tampered with. Being a simulation, it offers ample
opportunities for experimentation that would not be possible in the real world.

Validation The simulation will be validated by comparing the results found
during the data analysis step with the simulation output. If the simulation be-
haves correctly, the simulated parking events should resemble these data analysis
results with respect to characteristics such as the number of parking vehicles,
their parking duration, and the average number of vehicles per parking spot.

3.1.2 Study Area

Because the goal was to simulate a city center as accurately as possible, the
choice for a study area relied heavily on the availability of data. This research
has been carried out in collaboration with Nedap, who develop magnetometers3

3https://www.nedapidentification.com/products/sensit/ - Accessed 2019-12-18
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for smart parking purposes, as discussed in Section 2.2.
Nedap’s largest parking project is in the municipality of Kortrijk, where

over 1000 sensors are deployed in so-called Shop&Go parking spaces4. These
are further discussed in Chapter 4. The data from these sensors was made
available for this research, providing a good starting point. After contacting
the municipal parking agency of Kortrijk, Parko5, they were able to supply a
wealth of data for the research. These datasets are further discussed in Section
5.1.

Alternatively, a decision could have been made to use one of the open parking
data sets provided by either the SFPark project [45] or the parking sensor project
in Melbourne [20]. These datasets have some data quality concerns however,
and given the combination of sensor data and the aggregated datasets by Parko,
Kortrijk was a natural choice as the study area for this research.

3.1.3 Prediction Algorithm

During the literature research, many different machine learning techniques were
found that can be used to predict parking occupancy. In order to answer the
stated research questions, the chosen architecture should support multiple types
of inputs. This will allow the impact of different data sources to be researched.
This choice of prediction algorithm architecture is described in detail in Section
7.1.

Validation The performance of this prediction algorithm will be compared to
two naive parking prediction methods, as well as to the state-of-the-art in the
literature. These naive prediction methods are the historical average parking oc-
cupancy of the prediction area, and simply using the observation of the parking
occupancy at the time of the prediction as the prediction. The proposed base-
line prediction method should at least perform better than those naive methods.
The goal is not to create a prediction method that outperforms or challenges
the state-of-the-art, but rather to create an efficient baseline prediction strategy
that is easy to adapt during the execution of the experiments.

3.1.4 Experiments

Finally, after performing the data analysis of the study area, setting up the
simulated environment and establishing a baseline prediction algorithm, the
experiments that are necessary in order to answer the research questions can be
executed. The planned experiments and variations are as follows:

4https://www.nedapidentification.com/cases/shop-go-zones-powered-by-parking-sensors/
- Accessed 2019-12-18

5http://www.parko.be/ - Accessed 2019-11-06
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• Varying spatial distributions and penetration rates of sensors
• Varying cluster size used for prediction
• Combining prediction clusters
• Varying the number of parking vehicles
• Adding other data sources (e.g. traffic counts via induction loops)

Finally, the gathered and simulated data and parking events will be used
to gauge the accuracy of the prediction algorithm. In order to answer the
research questions, predictions and simulations will be made with the following
variations. These experiments are described in detail in Chapter 8.

3.2 Scope

Parking prediction is an extremely multifaceted problem and can take an ex-
tensive amount of data sources as input. In order to achieve the research goal
in a reasonable time frame, the scope of this research has to be limited. Each
topic discussed above will be briefly touched on to describe the boundaries of
this research.

Firstly, the input for the simulation will be limited to that which can be
deducted from the data sets supplied by the municipal parking agency of the
study area and any open data sources. In the case of Kortrijk, this means
that some factors that are shown to have a serious impact on parking, such as
weather [11, 40], are left out of the scope of this research. The positive impact on
parking prediction accuracy of including weather data has already been proven
and including it would not help answer the research questions more effectively.

Secondly, regarding the simulation, the scope will be limited to only the
vehicles parking in on-street parking spaces. This means omitting all other forms
of traffic and all vehicles parking on private property or in parking garages. The
impact of this scope limitation is discussed in detail in Section 6.8.

Thirdly, as stated above, the focus during the development of the prediction
algorithm will not be on maximum performance, but on efficiency and creating
an approach suitable to the planned experiments.

Overall, this research will be limited to the pure technical aspect of park-
ing prediction. Solving the smart parking problem is extremely multifaceted,
and requires effort into data collection, data analysis and data processing and
prediction. Furthermore, even the best predictions are useless without a way
to act on those predictions, a way to efficiently guide traffic to parking spaces,
and without creating parking policies based on the insights gained by the smart
parking project. This research concerns itself with the first step in the smart
parking process, namely how to design a smart parking project as efficiently as
possible while sacrificing as little accuracy as possible.
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4 Parking in Kortrijk

This chapter will briefly describe the parking situation in the study area, which
is the city center of Kortrijk, located in Flanders, Belgium.

4.1 Parking Zones

In the study area, there are 9 parking garages, which are left out of the scope
of the research, as described in Section 6.8. There are 4443 on-street parking
spaces, which are divided into four categories. There are two paid parking zones,
KOR1 and KOR2. In the former, there is a maximum parking duration of 2
hours. In the latter, it is allowed to stay until the end of the day. In addition
to the two paid parking zones, there are two ways to park on-street for free in
Kortrijk. Firstly, there are the blue zones, in which parking vehicles have to
display a parking disc stating their arrival time. The maximum parking duration
in these zones is 2 hours. Secondly, scattered around the city are Shop&Go
parking spaces. These are special short-stay parking spaces, with a maximum
parking duration of 30 minutes. Figure 1 shows the parking zones KOR1, KOR2
and the blue zones in red, yellow and blue, respectively. The figure has been
edited manually to reflect the situation at the time of the simulation design,
as the zones have changed since the start of this research. Figure 2 shows the
location of the Shop&Go parking spaces in the study area. Table 1 summarises
the characteristics of the four parking zones in the study area.

Each Shop&Go parking space is outfitted with a magnetometer parking sen-
sor from the SENSIT system, developed by Nedap6, in order to monitor their
occupancy. When a vehicle has not left the parking space after the maximum
parking period, a notification is sent to nearby parking attendants who can write
a parking ticket, if applicable. The status of the Shop&Go parking spaces can
be viewed online on the website of the municipal parking agency, Parko7. This
is illustrated in Figure 2.

Zone Time limit Paid parking

KOR1 2 hours Yes
KOR2 End of day Yes
Blue 2 hours No
Shop&Go 30 minutes No

Table 1: Characteristics of parking zones in the study area

6https://www.nedapidentification.com/cases/shop-go-zones-powered-by-parking-sensors/
- Accessed 2019-12-18

7http://www.parko.be/ - Accessed 2019-11-06
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Figure 1: Parking zones in the Kortrijk city center.
Source: https://http://www.parko.be/bezoeken - Accessed 2019-11-06

4.2 Parking Permits

Two types of permits exist that exempt vehicles from paying for parking in
Kortrijk. Firstly, a handicap placard allows free parking without a duration
limit throughout the city. In the Shop&Go parking spaces, the time limit of
30 minutes was recently reinstated for handicap placard holders, as 50% of all
spaces were occupied by placard holders who did not have to adhere to the
time limit8. In the evaluations of the LA Express Park smart parking project,
parked cars using a handicap placard can make up over 90% of all parking time
on congested block faces [21]. Clinchant et al., Glasnapp et al. and Zoeter
et al. all report high levels of handicap placard use [21, 26, 70]. Non-paying
parkers do not only make up a large part of the parking population, but they
also park for disproportionally long times, not being bound by parking fees or
time restrictions. While of course not all handicap placard use is abuse, it is
likely a large proportion is, as argued by Shoup in [47]. Thus, reinstating the
time limit for placard holders in Kortrijk might greatly impact the availability
of parking spaces in Kortrijk.

8https://www.nieuwsblad.be/cnt/blkva 04449304 - Accessed 2019-12-18
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Figure 2: Live occupancy of Shop&Go parking spaces. Snapshot taken 2019-12-
18 11:09 Source: https://shop.parko.be/m/#/parking/shop go - Accessed 2019-12-18

Besides handicap placards, Parko supplies municipal parking permits for
inhabitants, health care providers, business owners and employees. These per-
mits vary in cost and are subject to conditions, but when purchased, provide
free parking in their designated parking zone without a time limit.
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5 Data Sources

In order to achieve a sufficiently realistic simulation to perform the prediction
experiments on, data about parking occupancy has to be analysed. The follow-
ing chapter discusses the data sources that were utilised in this research, their
characteristics and the steps undertaken to find the number of parking events
and their temporal and spatial distribution.

5.1 Data Sources

For this research, multiple data sources were acquired and utilised. They are as
follows.

• All parking areas in the Kortrijk city center in GIS format
• Mobile phone parking ticket sales

– Monthly averages from January 2012 until June 2019
– One month (June 2019) of all mobile phone parking transactions

• Parking meter ticket sales

– Monthly averages from January 2010 until June 2019

• One year (2019) of data from the Shop&Go stationary parking sensors
• 13 months (June 2018 - June 2019) of parking violation data from the

Kortrijk parking enforcers

Each of these data sources will be briefly discussed.

5.1.1 GIS data

The municipal parking agency in Kortrijk, Parko9, is currently working on map-
ping all parking spaces in the municipality in a Geographic Information System
(GIS). When the data was requested, this was still a work in progress. In col-
laboration with Parko, it was decided to limit the research to the city center
area, within the ring road R36. All on-street parking spaces within this area
have been mapped and are represented in the GIS data set. As no translation
between GIS data and the chosen simulation environment exists, all parking
spaces were placed in the simulation by hand. This process is further described
in Section 6.4. In total, the GIS data set consisted of 4443 parking spaces that
were placed in the simulation.

5.1.2 SMS & Meter ticket sales

There are two ways to pay for on-street parking in Kortrijk. Visitors can use
the stationary parking meters to buy a pay and display parking ticket, or use
their mobile phone to pay via SMS or a mobile website. Parko has supplied
monthly statistics for both these forms of payment, ranging back to January

9http://www.parko.be/ - Accessed 2019-09-23
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2010 for the parking meter data, and January 2012 for the mobile phone pay-
ment data. However, as the municipality of Kortrijk has decided to stimulate
underground parking and disincentivise on-street parking by removing parking
spaces and raising the parking tariffs, only the last two years of these datasets
are representative of the current situation and useful for this research. These
datasets consist of monthly total ticket sales per parking tariff zone.

Furthermore, a full month of detailed mobile phone parking sales have been
supplied, including start date and time, end date and time, the tariff zone and
the monetary parking charge.

5.1.3 Shop&Go sensor data

Nedap has placed 1068 stationary parking sensors in the Kortrijk municipality
in their short stay parking spaces. The maximum parking duration in these
spaces is 30 minutes, intended for a quick visit to a shop or other service. When
a vehicle is parked in one of these spaces for more than 30 minutes, a signal
is sent to a parking enforcement officer, who can write the offender a ticket.
All sensor data is logged in a database, and all data from 2019 has been made
available for this research.

This dataset has, for every parking event, a start time and date, end time
and date, parking sensor ID and, if applicable, the overstay time which was
spent in the parking space illegally. The dataset is not complete, as information
for some sensors is missing. Additionally, not all deployed sensors are in the
studied area within the R36 ring road. Finally, not all Shop&Go parking spaces
in the supplied GIS dataset are represented in this database.

In total, 493 Shop&Go parking spaces were found with a one-to-one mapping
to one of the 778 Shop&Go parking spaces in the GIS dataset that were placed
in the simulation.

5.1.4 Parking violation data

Kortrijk employs parking enforcement officers who patrol the city to enforce
parking payment. All cars that are checked are registered using a PDA. For
each vehicle, one record is registered, which includes a date, time, street, GPS
coordinates, license plate and, if applicable, a violation code and comments from
the parking enforcement officer. This data set was anonymised by removing the
license plate before it was supplied for this research.

5.2 Data Analysis

The datasets described above have formed the basis for the inputs of the sim-
ulation. The parking vehicles have been split into four categories, based on
their parking space selection. Within the city center of Kortrijk there are four
different possible parking zones, as described in Chapter 4. For each of the four
categories, distributions have been found for the parking duration and arrival
time. Then, the total amount of parking vehicles per category was estimated
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using a combination of the available data about ticket sales and parking viola-
tions. These processes are described below. Table 2 shows a summary of all the
found parking characteristics per zone.

5.2.1 Parking zones

KOR1 As described in Chapter 4, the tariff zone KOR1 allows short stay
parking with a maximum of two hours. The observed parking durations in the
datasets are heavily influenced by this restriction, as 30% of all ticket sales
are for the full two hours. This is very distinguishable in the histogram of
parking durations in Figure 3. In reality, the people who pay for the full 2
hours will either understay or overstay. In their study of parking occupancy
in San Francisco, Yang et al. found that there is a small tendency towards
underpaying, and thus overstaying for on-street parking [67]. The ratio between
understaying and overstaying varies significantly per district, time period, total
parking duration and day of the week. In total, during weekdays in the city
center, they find a slight tendency towards underpaying and thus overstaying.
It is tough to generalise these findings, as there are many factors that influence
the payment behaviour. For the purposes of the simulation, the assumption is
made that underpaying and overpaying averages out, as the found trends are
not severe. The parking duration in KOR1 is identically distributed throughout
the day and no correlation with the arrival time of the vehicle has been found.

The data set is split between parking events with a duration under and over
110 minutes. The former part is found to follow a close to uniform distribution
on the interval [0,110]. For generating the parking durations in the simulation,
the choice has been made to give any parking car in KOR1 a 30% chance to
pay for the full 120 minutes, and to follow a uniform distribution on [0,110]
otherwise. If the vehicle pays for the full 120 minutes, its actual parking time
is uniformly distributed on the interval [110,130] minutes.

KOR2 As described in Chapter 4, the tariff zone KOR2 allows parking until
the end of the day. Because of the way the tariff is set up, payments for this
zone have spikes around 60 minutes, 120 minutes and 180 minutes. Furthermore,
almost half of the parking events in KOR2 last until the end of the paid parking
period. In reality, people will understay or overstay this period. No data about
this is available however, so the assumption is made that the people who pay for
the full day, i.e. until 19:00, will stay until somewhere between 17:00 and 21:00.
For the parking events that do not last the entire day, the same assumption
about overpaying and underpaying is made as was made with regards to zone
KOR1. When removing the parking events that last until the end of the day,
no significant correlation between the arrival time of the vehicle and its parking
duration has been found, and the parking durations are identically distributed
throughout the day.

Accounting for the spikes at the tariff hikes and removing the parking events
that last until the end of the tariff period, the rest of the data follows an expo-
nential distribution with a mean of 102 minutes. For the generation of parking
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Figure 3: Histogram of parking durations in KOR1, in minutes

durations in the simulation, the assumption was made that the spikes because
of the tariff rates in reality even out. Therefore, similar to the approach for
KOR1, a split has been made. Each parking vehicle has a chance of 45% to stay
until the end of the day and thus leave somewhere between 17:00 and 21:00, and
the other vehicles have a parking duration that follows the found distribution.

Blue zone As described in Chapter 4, there is a free parking zone marked
by blue lines on the pavement in the Kortrijk city center. In this area, the
maximum parking duration is two hours, the same as in KOR1. Due to there
being no payment and no parking sensors, there is no specific data on parking
duration or parking totals for this area. However, some assumptions can be
made on the basis of the parking violation data set. This data set reveals that
the cars in the blue zone have the same percentage of parking violations as the
cars in KOR1. They are identically distributed through time to the cars in
KOR1. Therefore, the assumption has been made that the parking behaviour
is identical to the vehicles in KOR1. For the purposes of the simulation, this is
good enough.

Shop&Go With all the parking events on the Shop&Go spaces available, no
assumptions have to be made in this category. Once again, the timing restric-
tions on the parking space influence the parking behaviour. When removing
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20% of the parking records between 20 and 30 minutes long, the rest of the
data set follows a log-normal distribution with parameters µ = 6.16849 and
σ = 1.09427. This is illustrated in Figure 4. The records between 20 and 30
minutes make up 10% of the total amount of records. Therefore, for the pur-
pose of the simulation, a similar approach has been taken to KOR1 and KOR2.
2,5% of the generated vehicles will stay between 20 and 30 minutes, uniformly
distributed on that interval, and the rest of the vehicles will have a parking
duration that follows the found distribution.

Figure 4: Histogram of parking durations in Shop&Go parking spaces, in sec-
onds, with log-normal distribution fit

5.2.2 Day of the week

The day of the week can severely influence the amount of parking vehicles in
a city, as parking tariffs can differ between weekdays and the weekend, and
people will work less and shop more in the weekends. In the case of Kortrijk,
the parking tariffs are constant from Monday to Saturday, and parking is free
on Sunday. The dataset with the month of mobile phone parking ticket sales
as well as the dataset of Shop&Go sensor readings were analysed to investigate
the effect the day of the week has.

In the phone parking ticket sales, Thursday and Friday are roughly 10%
busier than Monday through Wednesday, and Saturdays are 24% less busy than
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the weekdays. As there are no ticket sales necessary on Sundays, these are not
represented in the data set. In the Shop&Go dataset, Wednesdays and Fridays
stand out as 7,5% busier than Mondays, Tuesdays or Thursdays, which are all
equally busy. Saturdays are 13% less busy than the weekdays. Sundays are 55%
less busy than the weekdays.

While some trends can be seen from this data, such as parking occupancy
increasing throughout the week and falling on Saturday, there is not enough data
to draw serious conclusions. To answer the research questions posed in Chapter
1, whether Thursday or Friday are a few percent busier than other weekdays
does not matter. Therefore, all weekdays are considered to be identical and the
weekend is not simulated. The effect of busier or less busy days on the accuracy
of predictions will be evaluated by varying the total amount of vehicles in the
simulation during the experiments, which will implicitly answer the question
whether the predictions are also accurate on the weekends.

5.2.3 Parking totals

The dataset of parking violation data encompasses 807.580 total records. Of
these, 16.533 are Shop&Go violations. Shop&Go spaces are only checked after
a notification of a parking offence is received. In order to estimate the to-
tal amount of parking events in the city, these are removed from the data set.
791.047 records of checked vehicles remain. Of these, 384327 possess a city park-
ing permit, and 33.971 were found to display a handicap placard. The records
of these vehicles in the parking violation dataset are spatially and temporally
similarly distributed to the paying vehicles. They have to follow the same rules
and are thus estimated to behave similarly to paying vehicles.

Disregarding these permit holders and handicap placard holders, 372.749
records of checked vehicles remain. Of these vehicles, 48.149 were found to be
in violation, meaning an offence rate of 12,93%. Of these violations, 7.271 did
buy a ticket, but it had already expired at the time of the check. As these
vehicles are already counted in the data discussed above, these are subtracted,
leaving 40.878 vehicles that did not buy a ticket. The offence rates between
parking zones are similar. The parking violation factor is defined as follows.

Total # Vehicles

Total # Vehicles - Vehicles without a ticket

This parking violation factor is 1, 1232. The total amount of vehicles in the
categories KOR1, KOR2 and the blue zone will therefore be multiplied with this
factor in order to obtain the actual amount of parking vehicles.

The hitherto disregarded vehicles with a permit or handicap placard also
play a significant role in the dataset. The parking permit factor is defined as
follows and is found to be 2, 1222.

Total # Vehicles

Total # Vehicles - Vehicles with a permit or placard
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Thus, to find the total amount of monthly parking events for KOR1 and
KOR2, the average monthly total over the last two years was taken from the
data sets of SMS and parking meter ticket sales. This number is then multiplied
by the parking violation factor and the parking permit factor.

The amount of parking vehicles in the blue zones is estimated by finding
the ratio of total observations of vehicles parked in a blue zone to the total
observations of vehicles parked in KOR1 and KOR2. The amount of parking
vehicles in the Shop&Go zones is simply taken as a monthly average from the
actual complete dataset. After this process, the characteristics found for each
parking zone are as follows.

Zone # vehicles
Mean parking
duration

Distribution Exception

KOR1 6193 60 minutes Uniform 30% stay 2 hours
KOR2 2433 102 minutes Exponential 45% stay until end of day
Blue 1389 60 minutes Uniform 30% stay 2 hours
Shop&Go 8982 6 minutes Lognormal 2.5% stay 20-30 minutes

Table 2: Overview of results of data analysis

5.2.4 Arrival times

From the month of detailed SMS ticket sales, hourly arrival rates were deduced
for KOR1 and KOR2. As mentioned earlier, the blue zone is assumed to behave
identically to KOR1 in terms of its temporal distribution. Hourly Shop&Go
arrival rates were taken from the data set. For each hour and each category, it
was verified that the inter-arrival times are exponentially distributed and thus
behave as Poisson processes. For the purposes of the simulation, each category
will generate arriving vehicles based on a Poisson process with a mean based on
these hourly averages.

5.2.5 Spatial distribution

Two datasets contain useful information to analyse the spatial distribution of
parking events through the city center of Kortrijk. Figures 5 and 6 contain
heatmaps of parking records in Shop&Go spaces and checked vehicles by parking
enforcement officers, respectively. Several things stand out.

Firstly, two main hot spots can be identified. The first is clearly visible
in Figure 6, and is situated near the train station. This location especially
stands out in this data set, as according to the municipal parking agency Parko,
the parking enforcement is more active in this area. They are more active
mostly because there is more parking activity. The heatmap therefore overes-
timates the difference between this location and the other areas, but that it is
more busy is clear. The second hot spot is the rightmost red area in Figure 5.
This is the location of the large shopping mall ”K in Kortrijk”. The Shop&Go
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spaces around the shopping mall have an average occupancy comparable to the
Shop&Go spaces around the train station.

These heatmaps give a slightly skewed perspective on the parking situation
in the city center, as the parking space density is not uniform throughout the
city center. When analysing the occupancy of the Shop&Go parking spaces
closer and accounting for the density of those spaces per area, six distinct areas
can be identified in which the parking occupancy differs substantially from one
another. Figure 7 shows these geographic partitions and the location of the
Shop&Go sensors in these districts. Besides the two already identified hot spots
around the station and the shopping mall in green and yellow respectively, the
city center was further divided in the area north of the river in pink, the area
south of the train tracks in red, the area in the west and center between the
train tracks and the river that acts as the central business district and shopping
district of Kortrijk, blue in Figure 7, and finally an area in the north east
that has fewer businesses in orange. The average amount of parking events per
parking space in a district ranges from 5 vehicles per parking space per day to
15, and are distributed as follows. On average, for every two parking vehicles in
the area north of the river, two will park south of the train tracks, four in the
northeast, five in the central business district and six in both the areas around
the station and the shopping mall.

Figure 5: Heatmap of parking events in
Shop&Go parking spaces

Figure 6: Heatmap of parking records
in parking enforcement dataset

The arrival times and parking durations do not show any relevant differences
between the districts, apart from the northernmost district, where the parking
duration distribution of the Shop&Go parking spaces has a mean of 20 minutes
instead of 12 minutes. The parking duration generation formula for the vehicles
visiting a Shop&Go space in the simulation is updated accordingly. No data
about the geographical distribution of parking durations for vehicles in the other
parking zones is available, and are assumed to be identically distributed over
the city, as there is no evidence this should be different. While the found
parking demand per district is a rough approximation, the exact distribution of
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Figure 7: The partitioned city districts and their corresponding Shop&Go sensor
locations

this parking demand is not of vital importance. For the purpose of predicting
the parking occupancy of a certain area, it is important that vehicles behave
realistically with respect to their arrival times and parking durations. The
exact parking pressure for that area is of lesser importance, and as long as
there is enough variation in parking pressure between streets and areas and the
prediction algorithm performs well on streets with varying parking pressures,
this approximation suffices for the purposes of distributing parking traffic across
the city in the simulation.
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6 Simulation

This chapter will describe the simulation environment that was used in the
research, the steps taken to construct and validate the simulation, and its scope.

6.1 SUMO

SUMO10, or Simulation of Urban MObility, is an extensive, well-documented
open source traffic simulator that was developed in 2001 by Krajzewicz et al.
[32] and described in detail by Behrisch et al. [13]. As a traffic flow simulator
first and foremost, SUMO does not appear often in the parking literature. The
few occurrences it has are by Lendak et al. [34] and Mejri et al. [39]. In these
two papers, SUMO is used to generate and simulate routes and mobility traces,
but not for the actual parking of vehicles.

For this research, SUMO was chosen in spite of more dedicated parking sim-
ulators such as PARKAGENT [14] or SUSTAPARK [22], as no working versions
of these simulators were available from their respective developers. SUMO on
the other hand, while not explicitly a parking simulator, is well-documented and
has an active community with an openly published mailing list with questions
and answers throughout its lifetime.

6.2 TraCI

TraCI, as described by Wegener et al. [62], is short hand for Traffic Control
Interface. It uses a TCP-based client/server architecture to provide access to
SUMO, by giving access to the simulated objects, offering value retrieval and be-
haviour manipulation. It offers a python interface that was used in the research
described in this paper.

TraCI’s main use case for this research is to generate vehicles based on the
simulation time, assign parking and reroute vehicles to other parking spaces.
SUMO is designed to use pre-generated routes or traffic flows, in which stops
have to be explicitly set. For a realistic parking simulation, the assignment of
parking spaces has to happen dynamically, and TraCI offers this opportunity.
This is further discussed in Section 6.5

6.3 Network

The first step in building a simulation scenario for the city center of Kortrijk
was importing the network. SUMO offers a tool called NETCONVERT which
converts data from OpenStreetMap11 (OSM) into a road network compatible
with SUMO. This proved a good starting point, but the generated network was
not completely free of problems.

Firstly, the streets outside of the city center for which no parking space
data was provided, were removed from the network to keep its size manageable

10https://sumo.dlr.de/index.html - Accessed 2019-11-08
11https://www.openstreetmap.org/ - Accessed 2019-11-08
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and not slow the simulation down unnecessarily. Secondly, several junctions
were not fully connected or not connected properly. These have been adjusted
manually. Thirdly, some roads that are dead ends did not allow for U-turns,
meaning vehicles would get stuck in simulations. Something similar happened
at two-lane roundabouts, where the inner lane had no connection to the outer
lane, so cars would get stuck going around in circles on the inner lane. These
connections have been added manually.

After these adjustments, the simulation was tested with random routes for
an extended period of time, and further adjustments were made while necessary,
until no vehicles would get stuck in the simulation any more.

6.4 Parking Spaces

As discussed in Section 5.1, the location of all parking spaces in the city center
of Kortrijk were provided as GIS data. No tool exists to translate this data
to a usable format within the SUMO environment. Therefore, the parking
spaces were placed manually. They were each given a name in the format
”Zone Street ID” in order to distinguish them within TraCI. The parking spaces
are defined as ParkingArea objects within SUMO, each with a capacity of one.
Their occupation status can be requested through TraCI. In total, 4443 on-
street parking spaces were placed in the simulation. These are split into 778
Shop&Go spaces, 1354 spaces in zone KOR1, 1675 spaces in zone KOR2 and
636 in the blue zone.

6.5 Routing

SUMO is designed to use pre-generated routes or traffic flows, in which stops
have to be explicitly set. By using TraCI, stops can be set dynamically after a
vehicle is generated. The routing of vehicles in the simulation is performed as
follows.

When a vehicle is generated in the simulation, it has to have an assigned
route. To this extent, ten routes are defined. These routes start at one of the
ten extreme edges in the road network, and end at the same edge. The route in
between the edges is computed dynamically via the Dijkstra routing algorithm
[23], which is the standard routing algorithm in SUMO12. The generated vehicle
is given a category (KOR1, KOR2, Blue, Shop&Go) based on the arrival rates
discussed in Chapter 5. Then, a parking space from that category is randomly
chosen from the full set of possible parking spaces. The vehicle is then rerouted
to that parking space. This means the vehicle will enter the simulation on one
of the extreme edges, as if it were driving into the simulation environment, drive
to its assigned parking space, stay there for an amount of time that is generated
via the relevant distribution, discussed in Section 5.2, and then drive back to its
entry edge and leave the simulation there. Figure 8 shows an screenshot of the
simulation, with multiple parked cars and cars on their way to their destination.

12https://sumo.dlr.de/docs/Simulation/Rerouter.html#rerouter - Accessed 2019-11-21
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Figure 8: Detail of the running simulation

There is the possibility that the assigned parking space is already taken when
the vehicle arrives. If this is the case, the rerouting algorithm is engaged. First,
it is checked whether there is a free parking space in the street that allows the
parking duration the vehicle is planning to stay. For instance, if the vehicle has
a set parking duration of 1550 seconds in a KOR1 parking space, it can also
park in a Shop&Go space in the same street, and vice versa. Would the set
parking duration be 3600 seconds, it can only park in KOR1, KOR2 or Blue
zones. When a vacant space that satisfies the parking duration is found, the
vehicle reroutes to this parking space and will attempt to park there.

If there is no vacant parking space on the original destination edge, the
vehicle will choose a random edge from the set of connected edges to its current
position. If a vacant parking space on that edge is found, the vehicle will drive to
that edge and park there. Otherwise, it will repeat the process recursively from
the previously chosen edge. If a vacant parking space is not found within 100
visited edges, the vehicle is assumed to be stuck and will leave the simulation.
To ensure the total amount of parking events mirrors reality, a new vehicle of
the same type is generated with a new destination. If a vacant parking space
that is found during cruising is already occupied when the vehicle arrives, the
process will start anew.

6.6 Runtime

Two concurrent runs of the simulation were performed, each simulating 40 week-
days. SUMO and TraCI are not optimised for multi-core processing, and run on
a single core. The runtime on an i5-4300U @ 2.5GHz dual core processor was 29
hours and 5 minutes, for an average of 43 minutes and 37 seconds per simulated
day. The runtime on an i7-2600k @ 4.5GHz quad core processor was 20 hours
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and 54 minutes, for an average of 31 minutes and 21 seconds per simulated day.
The majority of the simulation time is spent on the recursive rerouting algo-
rithm, which has been set to only run once per 60 simulation steps, i.e. once
per simulated minute, in order to keep the runtime of the simulation reasonable.
This does mean that traffic may get stuck behind a car that is waiting to be
rerouted for up to 59 seconds, reducing the total traffic throughput. 1,9% of
all vehicles encountered the problem of being stuck cruising, as described in the
paragraph above.

6.7 Validation

Without actual occupancy data available for the majority of the parking spaces
in Kortrijk, validating the simulation is difficult. The output of the simulation
can be verified by comparing the amount of duration of the simulated parking
events to the specified input described in Section 5.2. The Shop&Go dataset
does offer the opportunity to validate the simulation by comparing the simu-
lated occupancy and vacancy percentages to the actual occupancy and vacancy
percentages for different sets of parking spaces.

To validate the amount of parking events per zone and their arrival times,
two simulation runs of 40 weekdays were conducted, together totalling to 16
weeks of weekdays. Figures 9a and 9b show the average amount of vehicles
starting to park at each hour of the day, divided into the four vehicle categories.
The light colours show the input, and the dark colours show the simulation
output. Two things can be noted. Firstly and most apparently, the simulated
occupancy of parking events in KOR1 parking spaces is lower than the input
between 09:00 and 18:00, whereas it is higher in KOR2 and Shop&Go spaces.
This is explained by the fact that the cruising algorithm explained in Section
6.5 allows vehicles that find their assigned parking space occupied to reroute
to a parking space of a different type if it fits the vehicle’s parking duration
criterion. These vehicles that were originally assigned a KOR1 parking space
can relocate to a Shop&Go parking space or a KOR2 parking space. Secondly,
the simulated values appear to lag behind the input values a little bit. This is
explained by the fact that the vehicles do not park immediately at the moment
they are generated by the input function. After entering the simulation, they
take some time to drive to their parking space, meaning all parking events take
place later than the generation of the vehicles.

Figure 10 shows histograms for the simulated parking durations per vehicle
category, for a simulated run of 40 weekdays. Clearly visible are the vehicles that
stay the full 120 minutes in zone KOR1 and the blue zone and the vehicles that
stay until the end of the day in zone KOR2. These histograms are synchronous
to the input distributions specified in Section 5.2.

As the variance in the occupancy of single parking spaces is enormous, the
validation was performed on groups of Shop&Go parking spaces that are close
to each other. Figure 11 shows both the simulated and actual occupancy of the
17 Shop&Go parking spaces on Minister Tacklaan, located south of the train
tracks. Although the difference in absolute occupancy at any given moment
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(a) Simulation run one (b) Simulation run two

Figure 9: Validation of amount and arrival times of parking events

may differ a lot, the total amount of occupied spaces per minute over the entire
day is very similar, at 1, 87 and 1, 96 for the simulated environment and the
sensor readings from the database, respectively.

When comparing the simulation results to real sensor readings, e.g. in Fig-
ures 11 and 12, it is clear that the variance in occupancy and thus the parking
behaviour is accurately modeled. As the total occupancy percentage of the
parking spaces as a factor of time in the simulation also mirrors reality and the
distribution of parking durations mirrors the distributions found in Section 5.2,
the simulation is realistic enough to perform the intended experiments.

Figure 10: Histograms of simulated parking durations per zone
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Figure 11: One day of parking occupancy of Shop&Go spaces located on Min-
ister Tacklaan

Figure 12: One day of parking occupancy of Shop&Go spaces located on
Doorniksestraat
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6.8 Scope

The scope of the simulation model is intentionally limited. It focuses on on-street
parking exclusively, omitting all parking events in parking garages and closed-off
open surface parking lots. In a series of papers, Arnott et al. have shown that on-
street parking and off-street parking are not perfect substitutes for one another
[5, 8, 9]. In fact, Kobus et al. show that drivers are willing to pay a premium
for on-street parking as opposed to garage parking [31]. The data that was
available for this research is implicitly influenced by the availability of parking
garages and their occupancy, and the simulated amount of vehicles parking
on-street mirrors reality even in the absence of simulated parking garages. As
this research is focused on trying to reduce the number of sensors for on-street
parking occupancy prediction, off-street parking was left out of the scope.

The simulation omits not only the parking that happens in these off-street
parking garages and lots, but also the traffic that that would generate. Fur-
thermore, traffic that parks in a private parking space or garage, as well as the
through traffic that does not park in the city center but only drives through it,
are not simulated. For the latter category, most of this traffic would stick to the
ring road anyway, diminishing its effect. However, overall, the vehicles that are
simulated for on-street parking will suffer from less congestion than in real life,
as some categories of vehicles are not present in the simulation. As the main
goal of the study is not to study traffic patterns, but parking events, this is not
seen as a problem. The same is true for all other forms of transport, including
but not limited to trains, trams, buses, cyclists and pedestrians. These will
all have an impact on the traffic situation, but are left out of the scope of the
simulation for the same reason.

There is a near infinite amount of reasons a parking space could be inacces-
sible for a vehicle. Examples one could think of are delivery trucks, trash con-
tainers or bicycles taking up that space, a road or road segment being blocked
off for construction, an accident or an on-street event. Simulating all this is
nigh impossible, but mostly not of enough importance. By limiting the scope
to only simulating the vehicles that park in the city center, the research and the
experiments stay manageable at very little cost to the simulation accuracy.

Even with the limited scope, the simulation offers something no real-world
data set can. It outputs 100% accurate and reliable parking occupancy data for
100% of the parking spaces in the city center. This offers great opportunities
for prediction and experiments, and will allow the main research question to be
answered.
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7 Prediction Algorithm

In order to gauge the impact of the variations that will be implemented during
the experiments fairly, a baseline prediction has to be developed of which the
performance is similar to that of the state-of-the-art prediction methods. The
following chapter describes the architecture of the chosen baseline prediction
model and its performance.

7.1 Architecture

Predicting the occupancy of a set of parking spaces is, in essence, a time series
forecasting problem. There are many different approaches that work with time
series, but not all can be applied to this specific problem. It has a very specific
seasonality, with next to no relation between a certain day and the next. While
the parking occupancy will correlate strongly from day to day, the occupancy
throughout any day does not affect the occupancy of other days in any way.

Recurrent Neural Networks have certain properties that make them very
applicable to the planned experiments in this research. With RNN’s, it is easily
possible to make predictions when removing certain input data, in this case
the readings from specific sensors. It is also possible to add another category
of sensor data, such as traffic counts. There are multiple examples of parking
prediction using RNN’s with an LSTM architecture in the literature, which are
discussed in Section 2.4. The Long Short-Term Memory architecture for RNN’s
has feedback connections which help capture the temporal features in a data set,
which is very relevant for parking data. Furthermore, it is specifically designed
to work with sequence data, which is a natural way to represent time series. For
these reasons, the decision was made to use Recurrent Neural Networks with an
LSTM architecture.

Predicting the occupancy of a single parking space is neither easy to do
nor very useful. Predicting the total occupancy of a set of parking spaces that
are geographically close to each other is much more achievable and useful. In
the literature, these clusters of parking spaces differ in size, from the block
level of 8 - 30 parking spaces per cluster [66], to the regional level with more
than 100 parking spaces per cluster [59]. For the baseline prediction model, the
predictions are made and evaluated on the street level. The parking spaces were
grouped based on the street on which they are physically located. This resulted
in 133 sets of parking spaces. The smallest set has 2 parking spaces, whereas
the largest has 147. The sets have an average of 33.41 parking spaces. The
impacts this has on the performance of the prediction are discussed in detail in
Section 9.6.

To prepare the data for training, a 40-day simulation output was converted to
data sets with a value for each sensor for each minute, either a 1 if occupied, or a
0 if unoccupied. The 40 days of simulation are split into a training set of 30 days,
and a test set of 10 days. This means the training set for each group of parking
spaces has 43200 data points, one for each minute in those 30 days. Initially the
networks were trained on all sensor data, being a sequence of 1’s and 0’s for each
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minute. However, the networks were found to perform better on simpler input,
when training on aggregated sensor totals. Therefore, the input was converted
to the sum of the sensors per prediction set. Additionally, the time of the day
was given as input, to help the network train the aforementioned seasonality in
the data. To capture the cyclical nature of time, the time of day was converted
to a two-dimensional feature using a sine and cosine transformation as described
here13. These transformations are as follows, with sin time and cos time being
the two features used as input for the network, minutes being the amount of
minutes past midnight at the time that is being transformed, and minutes in day
being the amount of minutes in a day, 1440.
sin time = sin(2 ∗ π ∗minutes/minutes in day)
cos time = cos(2 ∗ π ∗minutes/minutes in day)

When inputting the raw number of minutes that have passed in a day as a
feature in the neural network, it seems like 23:55 (1435 minutes past midnight)
and 0:05 (5 minutes past midnight) are 23 hours and 50 minutes apart, whereas
in reality they are only 10 minutes apart. Using only a sine transformation
solves this problem and makes the time cyclical. However, it does result in the
same value for two different times of the day. The second dimension of the
cosine transformation solves this problem.

Parameter Value

Input minutes 10
Output minutes 30
LSTM layers 1
LSTM layer neurons 20
Optimiser Adam
Learning rate 0.001
Epochs 50
Early Stopping Patience 3

Table 3: Prediction network hyperparameters

Each of the 133 prediction areas is unique as far as its composition of park-
ing spaces is concerned. Prediction areas can have multiple types of parking
spaces in them, making a generic prediction model for all prediction areas very
ineffective. Therefore, an individual model for each of these 133 prediction area
has to be trained. Given this fact, and recognising that an order of magnitude
more models will be trained during the experiments, it is important to find a
neural network architecture that performs reasonably well and is trainable in a
reasonable time frame. The hyperparameters of the network were set using a
grid search approach, where all combinations of a set amount of hyperparameter
settings were considered. Table 3 shows the settings that proved to perform the
best.

13https://ianlondon.github.io/blog/encoding-cyclical-features-24hour-time/ - Accessed
2019-11-08
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With these hyperparameters, training models for all prediction sets takes
between 4 and 8 hours on a workstation with an i7 2600k @ 4.5GHz, 16GB DDR3
RAM and a mildly overclocked RTX2070 GPU. Given 100% sensor availability,
training times are towards the lower end of that spectrum, increasing as the
sensor penetration rate decreases and the uncertainty increases. The network
uses an input of the last 10 minutes to predict the next 30 minutes. While 10
minutes is not a lot, no significant improvements were made by increasing this
up to 60 or even 240 minutes, while training times did increase. A prediction
horizon of up to 30 minutes is the standard in parking prediction literature.

A network architecture with a single LSTM layer of size 20 followed by a
dense layer of size 30, as there are 30 minutes ahead to predict, was found to per-
form the best. Adding more LSTM layers, even when accompanied by dropout
layers to prevent overfitting, did not improve the network performance. Yang
et al. also find that fewer layers work better when training LSTM networks on
parking occupancy data [66]. Increasing or decreasing the size of the LSTM lay-
ers did not improve the performance either. The networks are trained with the
Adam [30] optimiser for 50 epochs, with an early stop if there is no improvement
in 3 epochs, to prevent overfitting and reduce runtime. In each epoch, the entire
training set of 30 days is passed through the network once. Figure 13 shows
the training and validation losses of one full set of 133 prediction models being
trained. Each blue line represents the loss value on the training dataset and has
a corresponding orange line that represents the loss value on the test dataset.
The point at which these lines terminate shows the early stopping point that
was used based on the early stopping patience value described above.

7.2 Performance

To assess the performance of the baseline prediction, it is compared to two
naive prediction methods, as well as a similar experiment in literature. The
two naive prediction methods are the historical average and the value of the
last observation. In the former, the predicted value is the historical average
over the training set for that time of the day, rounded to a whole number. In
the latter, the predicted value for t+x is the observation at t. Furthermore,
the baseline prediction method is evaluated against the best performing LSTM
from the 2019 Yang et al. paper [66].

In comparison with the two naive methods, the proposed baseline signifi-
cantly outperforms them at a prediction horizon of 30 minutes, as shown in
Table 4. Figure 14 shows the performance of the proposed baseline and the two
naive methods at prediction horizons of 5, 10, 15, 20, 25 and 30 minutes.

When compared to aforementioned best performing LSTM by Yang et al., a
lower Mean Absolute Error and higher Mean Absolute Percentage Error can be
observed. As Yang et al. state, ”In general, lower prediction errors are received
on blocks with larger parking capacities” [66]. Out of 133 prediction sets, 58
have under 20 parking spaces and perform worse than sets with more parking
spaces, relatively. Section 9.6 goes deeper into the impact of prediction area
size.
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Figure 13: Model training result

Besides the average error of the prediction, an important performance metric
is the performance near the occupancy limit. Table 5 shows confusion matrices
of the baseline and two naive predictions over the 133 test sets of 14400 minutes.
The proposed baseline has a false negative rate of 29.59%, where it predicts
there will be a free space even though parking on that street is saturated. It
outperforms both naive prediction methods on this metric. When analysing
these false negatives in-depth, they naturally only happen on streets where the
occupancy during the day is very close to the amount of parking spaces. During
the peak parking hours, these streets have an occupancy level of over 98%.

These situations close to full saturation is also where false positives occur,
where there is a vacant parking space, but the prediction result is that there
are none. Figure 16 shows the relationship between the occurrence of false
predictions and the occupancy of a parking area during peak parking hours,
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Model Test MAE Test MAPE

Proposed baseline 1.18 19.96%
Last observation 1.43 24.34%
Historical average 1.44 24.50%
2-layer LSTM [66] 1.87 14.6%

Table 4: Baseline performance comparison at t+30

(a) Absolute (b) Relative

Figure 14: Comparison of baseline prediction to naive prediction methods

from 09:00 - 19:00. False positives happen a small percentage of the time, as
most streets spend most of their time not close to full occupancy. Both false
positives and false negatives occur more in prediction sets with a high occupancy
percentage, and in prediction sets with a small amount of parking spaces. These
correlations will be further discussed in Sections 9.4 and 9.6, respectively.

False positives are less problematic than false negatives. When directing
traffic based on a false positive, parking lots may not be fully utilised. On the
other hand, when directing traffic based on a false negative, vehicles will not be
able to find parking in the street they are directed to. Combating these false
negatives is further discussed in Section 10.2.

Overall, outperforming the naive predictions and approaching the perfor-
mance of prediction models in the literature, the proposed baseline performs
well enough to gauge the impact of the experiments that are described in Chap-
ter 8.
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Actual value

Saturated Not saturated

P
red

icted
va

lu
e

Proposed baseline
Saturated 70.41% 0.39%

Not saturated 29.59% 99.61%

Last observation
Saturated 63.01% 0.49%

Not saturated 36.99% 99.51%

Historical Average
Saturated 47.86% 0.17%

Not saturated 52.14% 99.83%

Table 5: Baseline confusion matrix

(a) False Positives (b) False Negatives

Figure 15: False positives and negatives compared to prediction area size

(a) False Positives (b) False Negatives

Figure 16: False positives and negatives compared to occupancy
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8 Experiments

With a dataset generated in Chapter 6 and a baseline prediction method devel-
oped in Chapter 7, the following chapter will discuss the setup of the performed
experiments concerning that generated dataset and the developed prediction
method.

8.1 Sensor Penetration Rate

As part of the main research question, the sensor penetration rate will be varied.
To achieve this, a percentage of the sensors will not be used when training the
prediction models, as if they were switched off or not there in the first place.
Each sensor has an equal probability of being disabled for this experiment.
This experiment will be performed with a coverage of 50%, 25%, and 10%, and
evaluated against the baseline of 100% coverage.

8.2 Geographical Distribution

To find an optimal geographical distribution of sensors, the most important
question is what parking metrics influence the effectiveness of a sensor on the
prediction. To explore this, models will be trained using sets of sensors with
the longest parking duration, shortest parking duration, most parking events
and least parking events (i.e. highest and lowest turnover, respectively). The
coverage level will be chosen based on the results of the experiment described in
Section 8.1. These models will then be evaluated against the models from the
aforementioned experiment, that have an uniform geographical distribution.

8.3 Spatial Correlation

The baseline prediction method only uses data from the set of parking spaces
it is trying to forecast. Adding data from other parking areas that are close by
geographically may improve the accuracy of the prediction. Multiple cases will
be hand picked based on the road network topology. These will be evaluated
against the baseline models. These cases will also be tested with different sensor
penetration rates, including having no sensors in the prediction area, but only
using those from the areas around the prediction area.

8.4 Parking Pressure

To assess the impact of the amount of parking vehicles on the prediction accu-
racy, the simulation will be re-run with a modifier on the amount of generated
vehicles. Both half the original amount, and 1.5 times the original amount will
be tested. Then, new models will be trained according to the baseline method,
which are evaluated against the original baseline models.

37



8.5 Induction Loops

SUMO offers the ability to count traffic passing specific points in the road
network using simulated induction loops. The road network of the simulation
will be modified to accommodate these induction loops near the parking areas.
This data will be used as additional training data for the prediction models,
whose performance will be evaluated against the regular baseline models. This
experiment will be repeated with different parking sensor penetration rates, and
evaluated against the models from the experiment described in Section 8.1

8.6 Prediction Area Size

Finally, variations regarding the prediction area size will be made. As discussed
in Section 7.2, the amount of parking spaces in a prediction area is relevant for
the performance of the prediction model for that area. Smaller, geographically
co-located prediction areas will be combined into one data set for which one
model will be trained and one occupancy value will be predicted. The perfor-
mance of that model will be evaluated against the sum of the individual models.
This experiment will also be repeated for different parking sensor penetration
rates.
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9 Results

This chapter will discuss the results of the experiments stated in Chapter 8.
Throughout this chapter, several figures depict box plot graphs. The elements
in each box plot are the 133 different prediction areas described in Chapter 7.
Each prediction area has its own MAE, measured in amount of parking spaces,
and MAPE. The box plots show the minimum, 25th percentile, median, 75th

percentile and maximum of these errors. The average errors are given in the
text and the accompanying tables of results.

9.1 Sensor Penetration Rate

Figure 17 shows the absolute and relative errors of the models with different
penetration rates. Performance quickly drops off as the number of sensors is
decreased, with the sets under 50% coverage not outperforming the naive pre-
diction methods on a 30 minute prediction horizon, as can be seen in Table 6.
On a shorter prediction horizon, all models expect those with 10% coverage out-
perform the historical average, while being outperformed by the last observation
naive prediction method.

Table 6 shows the average performance of the models on a prediction horizon
of 30 minutes. When lowering the sensor coverage, the occurrence of false
negatives rises quickly. Curiously, at the lowest coverage level, the amount of
false negatives decreases again. Given the relatively low amount of prediction
areas where false negatives occur in the first place, this is likely to be an artifact
of the imperfect training progress. Overall, a linear reduction in error rates can
be seen as the coverage level is increased. Figure 18 shows this linear relationship
between the coverage level and the error rate.

Important to note about these naive prediction methods is that they are
generated from sensor data with 100% coverage. It is impossible to take the
value of the last observation without knowing the exact amount of parked vehi-
cles at any point. The historical average can be generated from parking meter
ticket sales, but this will bring an extra degree of uncertainty as there are vary-
ing degrees of people underpaying, overpaying and parking without a ticket, as
discussed earlier in Section 5.2.1.

Model Test MAE Test MAPE False Positives False Negatives

100% coverage 1.18 19.96% 0.39% 29.59%
75% coverage 1.28 22.38% 0.35% 33.22%
50% coverage 1.38 24.36% 0.32% 41.22%
25% coverage 1.46 26.57% 0.37% 42.24%
10% coverage 1.52 27.49% 0.31% 35.24%
Last observation 1.44 24.50% 0.49% 36.99%
Historical average 1.43 24.34% 0.17% 47.86%

Table 6: Performance of different penetration rates at t+30
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(a) Absolute

(b) Relative

Figure 17: Comparison of performance of different sensor penetration rates
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Figure 18: Relationship between coverage level and error rate at t+30

9.2 Geographical Distribution

Models were trained and tested using 25 and 50% of the sensors that experienced
the longest parking duration, the shortest parking duration, the highest turnover
and the lowest turnover. None of these experiments resulted in an improvement
on the average prediction accuracy of all streets. The performance of each set of
trained models was very close to the baseline of that sensor coverage level from
Section 9.1. The prediction areas which had the most parking spaces inside the
experiment set of parking spaces, whether they were high or low on turnover
or duration, performed better than the baseline, and the prediction areas with
fewer parking spaces performed worse. The geographical distribution has a
minimal effect, but the penetration rate of sensors has a profound effect. The
best all-round performance is found using a uniform distribution of sensors over
a city.

The question how sensors should be distributed geographically within a pre-
diction area cannot be answered, as the utilisation of parking spaces within
each prediction area is uniform in the simulation. The geographical distribution
within a prediction area will heavily rely on the destinations within that area of
the occupants of the parking vehicles. This requires either a very microscopic
simulation or a real-world case study, and is left to future research.
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9.3 Spatial Correlation

In the simulated dataset, no situations were found where adding data from
parking sensors on adjacent streets improved the performance of the prediction
model, at no sensor penetration level. When using zero sensors in the prediction
area, and information from 100% sensor coverage in the adjacent streets, the
models were not able to outperform the historical average prediction.

Other work in literature is able to improve on their predictions by adding
spatially correlated data such as parking meter transactions and traffic speed
on adjacent roads [66]. The data to replicate that approach is not present in
the case study of Kortrijk, but it proves that improvements can be made using
spatially correlated data.

9.4 Parking Pressure

Simulations were run using the parking totals found in Chapter 5 modified with
a factor 0.5 and 1.5. The simulation with factor 1.5 had a run time of over
two weeks, due to excessive clogging of the road network. When analysing the
output, it became apparent that due to the extreme congestion, there were more
vehicles that were unable to perform their scheduled parking stop than vehicles
that performed their scheduled stop. Nevertheless, insights can be gained from
analysing the performance of the prediction algorithm on the output of the
simulation run with half parking pressure, and from taking a detailed look at
the prediction areas that approach the maximum occupancy level in the original
dataset.

Figure 19: Comparison of performance with half parking pressure
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As one would expect, the MAE of the predictions on the dataset with half
the regular parking pressure are significantly lower, as the absolute parking
totals are lower, and thus the possible deviations from that. When comparing
the MAPE, Figure 19 shows that the medians of the mean absolute percentage
errors per street are generally lower. However, the averages are very similar, as
can be seen in Table 7.

Model
Test MAPE

regular
Test MAPE
0.5 pressure

100% coverage 19.96% 19.36%
25% coverage 24.36% 26.53%
Last observation 24.34% 21.61%
Historical average 24.50% 25.07%

Table 7: Performance with lower parking pressure at t+30

When analysing the performance of the prediction method close to the oc-
cupancy limit, there is no deterioration of performance when getting closer to
saturated parking. Figure 20 shows a scatter plot comparing the model per-
formance per prediction area compared to that area’s daytime occupancy level.
If anything, a slight improvement can be seen as the occupancy percentage in-
creases, but there is not enough data to draw that conclusion. As discussed in
Section 7.2, the absolute amount of false positives does increase when approach-
ing the occupancy limit. However, the relative amount of false negatives as a
percentage of the total amount of observations does not, when occupancy levels
rise. False negatives are more likely to occur closer to the occupancy limit, but
the ratio at which they occur does not increase.

Figure 20: Prediction performance compared to occupancy percentage
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9.5 Induction Loops

The road network used for the simulation was edited to include traffic counts for
every street segment with parking spaces. Induction loops have been manually
placed at the entrances to each street segment with parking spaces, to count
the traffic on that space. Figure 21 shows a few street segment with its parking
spaces in purple and induction loops in yellow. The traffic counts are then given
as an extra variable when training the prediction models.

Figure 21: Detail of simulation network including induction loops

This slightly improves model performance, especially at higher sensor cov-
erage levels and at shorter prediction horizons. Even though the median of the
set with 75% coverage and induction loops is higher than the set without traffic
count data, the MAPE at t+30 is lower at 22.21 versus 22.43. Interestingly,
using no parking sensor data but only traffic count data as input for the pre-
diction algorithm leads to better results than using purely the data from a 10%
coverage level of parking sensors. Table 8 and Figure 22 show the results of this
experiment.

Multiple other scholars report a positive influence on the prediction accuracy
when adding data from traffic volume sensors, such as Badii et al. [11] and Yang
et al. [66], strengthening the validity of these results.

Model Test MAE Test MAPE False Positives False Negatives
100% coverage 1.09 18.96% 0.39% 29.59%
75% coverage 1.28 22.21% 0.33% 41.20%
0% coverage 1.54 26.84% 0.35% 38.26%

Table 8: Performance of models with traffic counts at t+30
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(a) Absolute

(b) Relative

Figure 22: Comparison of performance of different sensor penetration rates with
and without traffic counts
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9.6 Prediction Area Size

To assess the impact of the prediction area size, combinations of adjacent streets
were made for which a single prediction model was trained. While there are quite
a few streets with fewer than 10 parking spaces, these are not often geograph-
ically close to each other. One example of adjacent small parking areas is at
the station. When combining 24 sensors on three streets into a single model
instead of three, a small improvement in prediction performance is found on
longer prediction horizons. This is illustrated in Figure 23. It shows the mean
absolute error of the prediction models for the three streets individually, those
seperate models combined in purple, and the newly trained combined model in
orange. The improvement is minimal, and disappears when reducing the sensor
coverage level.

When combining sets of larger parking spaces, the prediction accuracy suf-
fers. Training models for larger prediction sets is more difficult, and the archi-
tecture described in Section 7.1 is not sufficient to train on these large prediction
areas. The error rates go up when the prediction area size exceeds 200 parking
spaces. The lack of geographical correlation between the parking spaces may
play a role in this.

Figure 23: Prediction accuracy for combined prediction areas at the station
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When looking at the average error as a function of the prediction area size,
such as in Figure 24, it becomes apparent that very small prediction areas are
detrimental for the prediction accuracy. Furthermore, as shown in Section 7.2,
small prediction areas have a much higher rate of false negatives. Combining
smaller prediction areas that are inherently prone to false negatives can thus re-
duce the rate at which false negatives occur, at the expense of some geographical
accuracy, as the prediction is effectively for a larger area.

Figure 24: Prediction accuracy compared to prediction area size
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9.7 Round-up

When considering the deployment of a smart parking system in a city center,
there are a lot of factors to consider. The higher the amount of sensors you
install, the more accurate the prediction algorithm you can develop using the
gathered data will be. The performance remains constant with varying degrees
of parking pressure and parking space utilisation. With a coverage of under 25%
and not using any additional data sources, the prediction models are unable to
outperform two naive prediction methods. Of these naive prediction methods
however, the last observation method relies on 100% sensor coverage, and while
the historical average approach can be approximated using different data sources
such as parking ticket sales, it will be less accurate.

The prediction method performs best with a uniform geographical distribu-
tion of sensors over the study area. Additional data sources can improve the
prediction accuracy, compared to exclusively using the sensor data within the
prediction area. A positive impact was found when enriching the parking sen-
sor data with traffic count data from induction loops in the road network. In a
real-life smart parking deployment, other data sources such as floating cellular
data or surveillance cameras can be used to substitute the induction loops. In
this case study, no positive impact was found when enriching the data with
data from adjacent parking areas. However, findings from literature indicate
improvements can be made to the prediction by using a combination of data
sources regarding the adjacent road network, such as traffic speed, traffic volume
and the amount of parked vehicles.

The size of the prediction areas is very relevant for the performance of the
prediction. Small prediction areas lead to relatively higher error rates and more
false negatives. Combining adjacent areas to create areas of at least 25 parking
spaces will reduce the amount of false negatives at the expense of a small bit of
geographical accuracy. Conversely, there are diminishing returns on increasing
the prediction area size beyond 50 parking spaces. Thus, prediction areas larger
than 100 should be split into multiple prediction areas in order to increase the
geographical accuracy of the predictions.
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10 Discussion

This chapter will discuss the limitations of the performed research and delve into
the real-world implications of this research one has to consider when designing
a smart parking system.

10.1 Limitations

The conducted research has multiple limitations. Firstly, the scope of the sim-
ulation model is limited. The scope and the limitations to the accuracy of the
simulation were extensively discussed in Section 6.8. Furthermore, by using a
simulation, the impact of data sources such as the weather conditions, that are
found to be relevant for parking prediction, could not be analysed. The im-
pact of the weather on parking has to be quantified in a real-world scenario.
Researching the effect of weather on prediction accuracy in a simulation does
not make sense without knowing the relationship between weather and parking
behaviour. Besides the limitations inherent to the simulation, the research has
been conducted as a single case study on a single city. This is a limitation, and
the question is how well the results generalise to other cities.

Secondly, the prediction architecture is not fully designed for maximum ac-
curacy, but also takes efficiency and runtime into account. This allowed for the
training of many models to conduct many experiments, but does not always
achieve the maximum result. The architecture and models can be improved on,
but the goal of this research was to explore the impact of the variations and
conducted experiments within a reasonable time frame, not to achieve the max-
imum possible accuracy. For this purpose, the prediction architecture sufficed.

Finally, during the experiments, the limitations of the simulation became
apparent. Enriching data sets with spatially correlated data did not improve the
prediction accuracy, even though other scholars did find improvements by adding
this data. This may be a characteristic of the parking situation in Kortrijk, but
it is more likely it is a limitation of the simulation. Furthermore, the question
how sensors should be distributed geographically within a prediction area cannot
be answered, as the utilisation of parking spaces within each prediction area is
uniform in the simulation. Both these limitations can be overcome with a more
microscopic simulation where each simulated agent has a specific destination in
the city. This can be achieved by using a dedicated population activity model.
Finally, the simulation was not able to handle increased parking pressure, leaving
one experiment partly unfinished.
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10.2 Real-world implications

To fairly assess the real-world implications of the results of this research, one has
to consider the costs of a smart parking network. The deployment of a smart
parking network is expensive, as each sensor costs between e 350 and e 400 to
purchase, install and connect. This is excluding yearly network costs for their
communication. With an estimated lifespan of 10 years and including operating
costs and possibly necessary repairs, the costs of outfitting just the 4443 parking
spaces in the city center of a small city like Kortrijk with a smart parking
system for 10 years already exceed e 2,000,000. In larger cities or cities with
more parking spaces, costs can rise quickly. Reducing the necessary coverage
therefore is a very interesting method to reduce the total costs of the network.
Cutting down the sensor penetration rate to 25% can already save e 1,500,000 in
a small city like Kortrijk as opposed to a system based on 100% sensor coverage.

As shown in the experiments, reducing the sensor coverage leads to an in-
crease in the occurrence of false negatives, where the models predict a vacant
parking space, whereas there is no vacancy in reality. Reducing the amount
of false negatives is the most important metric in a real-world deployment of
a smart parking network, as predicting a false negative means drivers are sent
to an area without vacant parking spaces. False negatives occur exclusively
near the occupation limit, and with a lower penetration rate, false negative
ratios are close to naive prediction methods. To reduce the amount of false
negatives, 100% sensor coverage is necessary in the busiest parking areas. To
prevent sending drivers to areas without vacant parking spaces, user interfaces
for smart parking systems can be adapted to not show a vacancy, not only when
the predicted amount of vacancies is 0, but also when it is 1.

Enriching the data with additional data sources such as the weather and
traffic counts can improve the accuracy of the predictions, especially when the
sensor coverage is reduced. In this research, traffic counts from induction loops
were used, but there are other data sources that can provide similar data. Cities
may have access to traffic counts based on surveillance cameras, pneumatic
traffic counters and/or floating cellular data, which can all play a similar role
in enriching the data and improving the prediction accuracy.

When experimenting with a reduced sensor coverage, the models were trained
with the ground truth data that was obtained from the simulation. In a real
deployment of parking sensors, this ground truth data will not be available. Op-
tions include monitoring the prediction area to get aggregated parking counts for
training purposes, or simulating the events based on parking ticket sales similar
to the simulation conducted in this research. Regardless, this poses a challenge
in deploying smart parking systems with less than 100% sensor coverage.

In summary, when deploying parking sensors in a smart parking project with
the goal of predicting the occupancy of parking areas, the following guidelines
should be followed. Divide the city geographically in prediction areas so that
each area has between 25 and 100 parking spaces. Lower numbers will lead
to increased false negatives, whereas higher negatives will lead to decreased
geographical accuracy. In the areas where the parking utilisation is the highest
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and the most congested, 100% sensor coverage is necessary to prevent false
negatives. In the lesser congested areas that always have vacancies, an approach
using historical averages based on parking meter ticket sales data will suffice,
as the larger error rate is unlikely to lead to false positives or false negatives.
The areas that fall in between those two categories, which sometimes have no
vacancies but are not completely saturated daily, can benefit from a smart
parking system with a lower sensor coverage. Depending on the budget and the
required service level, the sensor coverage can be anywhere from 25% to the full
100%. Less than 25% coverage does not offer enough benefits. For all prediction
areas, adding additional data sources will improve the quality of the prediction.
Municipalities and cities investing in smart parking are likely to have access to
traffic counts, but can also use floating cellular data or other data sources.
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11 Conclusion

This thesis has explored an extensive case study on parking prediction in Ko-
rtrijk. By combining many data sources, a realistic simulation of the parking
situation was developed. Then, an architecture for a prediction algorithm based
on long-short term memory recurrent neural networks was developed and its per-
formance on a simulated data set of parking events evaluated. Finally, several
experiments were conducted to research how the prediction approach and the
simulation behave under different circumstances and the effects that has on the
prediction accuracy.

In Section 1.3, five sub-questions were stated. The first question, What
different data sources are used in parking prediction?, was answered through
literature research. The main data sources that are used for parking prediction
are historic parking data, live parking data, weather, and traffic counts and
traffic speed on the road network close to the prediction area. The second
question, How does the availability of each data source influence the accuracy of
the prediction?, is difficult to answer quantitatively. Different researchers find
different values for the impact of the different data sources. It is clear however,
that adding more data sources improves the accuracy of the prediction. Most
important are historic and live parking data, with the weather, traffic counts and
traffic speeds playing a smaller role. The answer to the third research question,
Which prediction algorithms are the state-of-the-art?, is that it depends heavily
on the availability of the data sources. Scholars find a specific machine learning
architecture that works best on their data sources. There are many different
options that can all work well, and experimentation with different architectures
is necessary to find the one that fits the data available for a specific use case.

The fourth research question, What are the effects of varying the spatial dis-
tribution and penetration rate of stationary sensors? has been partly answered
during the experiments. While no best practice for the spatial distribution of
the stationary sensors has been found, a clear linear relationship between the
coverage level of parking sensors and the error rate of the prediction was found.
Furthermore, reducing the coverage level leads to an increased amount of false
negatives in the predictions. These observations were also made when varying
the demand for parking and the geographical distributions of the sensors.

The final sub-question, What is the economic trade-off between accuracy and
installing stationary sensors for predictive analysis? ties into the previous ques-
tion and depends on the required service level of the smart parking system the
sensors are deployed in. As a linear relationship between the coverage level and
the prediction accuracy has been established and the costs of a smart parking
project scale linearly when increasing the number of sensors, there is also a
linear relationship between the costs of a smart parking project and its perfor-
mance. Adding other data sources such as traffic counts or weather data can be
a cheaper alternative to increasing the coverage level.
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Based on the findings from the experiments, when deploying parking sensors
in a smart parking project with the goal of predicting the occupancy of parking
areas, the following guidelines should be followed. Divide the city geograph-
ically in prediction areas so that each area has between 25 and 100 parking
spaces. In the areas where the parking utilisation is the highest and the most
congested, 100% sensor coverage is necessary to prevent false negatives. In the
lesser congested areas that always have vacancies, an approach using historical
averages based on parking meter ticket sales data will suffice, as the larger error
rate is unlikely to lead to false positives or false negatives. The areas that fall
in between those two categories, which sometimes have no vacancies but are
not completely saturated daily, can benefit from a smart parking system with a
lower sensor coverage. Depending on the budget and the required service level,
the sensor coverage can be anywhere from 25% to the full 100%. Less than 25%
coverage does not offer enough benefits. For all prediction areas, adding addi-
tional data sources will improve the quality of the prediction. Municipalities
and cities investing in smart parking are likely to have access to traffic counts,
but can also use floating cellular data or other data sources.
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12 Future Research

Throughout the duration of this research, multiple possible directions for future
research were discovered, either through a deliberate restriction of the scope of
the research, or through limitations of the data set or the taken approach.

Firstly, there are many directions one could go to improve the simulation.
The first step is to extend it to include variations between weekdays and sim-
ulate weekends. Then, including other forms of traffic and off-street parking
will improve the fidelity of the routing and congestion in the simulation. This
also means that traffic counts can be more realistically simulated, and floating
cellular data can be extracted from the simulation. The routing algorithm used
in the simulation can also be improved, to include actual destinations in the
network instead of having a certain parking space as a destination. The actual
destination can then be used to simulate a more realistic cruising behaviour
when the desired parking spot is occupied.

Due to the time and effort required to build the simulation, this research has
been conducted as a single case study on one city. Using the same approach on
a different city, with a different road network, parking space distribution and
parking regulations would be an interesting future research direction to validate
how well the results of this research can be generalised. Furthermore, the results
of this research can be validated by replicating the experiments on real-world
data.

During the data analysis, a serious impact on the occupancy of parking
spaces was found by people using handicap placards. Kortrijk has reported
handicap placard abuse and changed its policies accordingly 14. In other cities,
handicap placard abuse is likely to play a large role in the parking problem,
as also argued by Clinchant et al., Glasnapp et al., Zoeter et al. and Shoup
[21, 26, 47, 70]. Research into new policies to combat handicap placard abuse
can help alleviate the parking problem in cities.

Related to this is the issue of parking pricing. This topic is discussed in a lot
of parking literature, dating back to Vickrey’s pioneering work in 1954 [58], with
Shoup being the most vocal advocate for dynamic pricing [49, 51, 48]. Pilots
using dynamic pricing have been run, most notably in the SFPark project [45].
How real-time dynamic pricing can balance the demand for parking throughout
a city supported by parking sensors is a very interesting direction for further
research. This would also require research into the political feasibility of such a
pricing scheme.

During the experiments, the question how sensors should be distributed ge-
ographically within a prediction area could not be answered, as the utilisation
of parking spaces within each prediction area is uniform in the simulation. The
geographical distribution within a prediction area will heavily rely on the desti-
nations within that area of the occupants of the parking vehicles. This requires
either a very microscopic simulation or a real-world case study. A microscopic
simulation would also help answer the stated questions about the impact of

14https://www.nieuwsblad.be/cnt/blkva 04449304 - Accessed 2019-12-18
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combining data from spatially correlated parking areas to improve predictions.
No such relation was found in this research, but other scholars do report in-
creased accuracy when using spatially correlated data [66]. This more detailed
simulation or a real-world case study is left to future research.

Finally, despite being out of scope for this research, the question of how
to actually use parking predictions remains and has been a topic of discussion
often. Ideally, navigation applications would have access to predictions based on
sensor data and guide their users accordingly. A few of these applications exist,
most notably ParkNav15, but the areas in which they are active are limited, and
their userbase and thus impact are small. Designing a method to get parking
information and predictions to drivers and autonomous vehicles efficiently is a
big challenge and a good direction for future research.

15https://www.parknav.com/ - Accessed 2020-04-19
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