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ii Reduction in Controlled DOF for a Cable Driven Variable Stiffness Actuator

Summary

Variable Stiffness Actuators (VSAs) are a class of actuators that are implemented in dynamic
environments which very often involve human interaction. VSAs can change their stiffness
without changing the equilibrium position which makes them suitable for the purposes of im-
itating physical activity of humans. Traditional stiff actuators cannot achieve such response
due to their inability to interact with an unknown environment. Hence, VSAs are highly useful
in these aforementioned areas where the functions of traditional actuators are inadequate.

A cable driven Variable Stiffness Actuator (VSA) proposed by Groothuis et al. (2020) contains
multiple (four) degrees of freedom (DOFs). The presence of multiple actuated DOFs deems the
system to be unusable as it is for its final purpose, which is to utilise it on an arm support. This
system is therefore studied to evaluate the motion of the DOFs and couple them to reduce the
actuated DOFs. The internal forces are investigated and are seen to be negated with coupling.
The flow of energy in the system has been evaluated to do so. The total input power in the
system is also assessed to check the energy-efficiency of the system.

The losses in the new system (friction) are calculated using a black-box model for analysing
the efficiency of the input power. A physical prototype of the reduced DOF system is proposed
whose losses are calculated. This is referred to as the theoretical model and its results are com-
pared to the black-box model. In order to make the system energy-efficient, compensation
springs were proposed, which when incorporated into the new system, would reduce these
losses. The results of using compensation springs has also been analysed and it suggests that
they can been used to compensate the frictional losses in the system.

This theoretical model of the new proposed system lays the groundwork for building a phys-
ical prototype and conducting experiments in the future. Recommendations are provided for
practically evaluating the system’s behaviour and effectively reducing its size.
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1 Introduction

1.1 Context

The current robotics industry mostly comprises of robots that are stiff and work in a structured
environment such as automation and assembly lines. Recent trends however have shown an
increase in research for robotics in the fields of assistive, social and medical domain. Robots
here are expected to perform tasks that would ease the burden of the human user by taking
over control partially or as a whole from the user himself. In other words, they should behave
in a similar manner to the humans while performing a physical task.

Human beings can effortlessly change the stiffness of muscles and joints to perform daily tasks.
Traditional robots have their drawbacks due to their issues with stiffness and rigidity. They are
therefore incapable of reproducing such movements as seamlessly as humans do. The char-
acteristic that distinguishes this physical behaviour of humans to robots is known as variable
stiffness. In order to replicate this behaviour in robots, variable stiffness actuators have been
developed to solve the problem, wherein the robots will be able to perform the tasks which are
undertaken by human beings by changing the apparent stiffness of muscles and joints.

Variable Stiffness Actuators (VSAs) are intricately designed mechatronic devices which belong
to a class of compliant actuators, which means they can undergo elastic deformation. These
actuators are capable of changing their apparent stiffness independent of their output position.
They comprise of a number of actuated degrees of freedom (DOFs) and elastic elements in the
system. The DOFs help realize the elastic elements at the actuator output. The compliant
nature of the elastic elements allow energy storage which can be leveraged to achieve energy
efficient actuation. The changing of the apparent stiffness can be deemed useful for various
applications such as humanoid robots, manipulators and exoskeletons.

1.2 Problem Description

Figure 1.1: Existing VSA with four actuated DOFs (Groothuis et al. (2020))

A newly designed VSA having the capability of changing the stiffness while keeping the applied
torque constant has been discussed in the paper of Groothuis et al. (2020). The current design
of this VSA, as seen in Figure 1.1, is composed of four actuated degrees of freedom (DOFs).
However, the system can be optimized if it were possible to reduce the number of actuated
DOFs. VSAs mentioned in other literature such as Albu-Schäffer et al. (2010), Groothuis et al.
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2 Reduction in Controlled DOF for a Cable Driven Variable Stiffness Actuator

(2016), Wolf et al. (2015),Vanderborght et al. (2013) incorporate two actuated DOFs, one to con-
trol the equilibrium position and the other to control the stiffness, independently.

This VSA comprises of four linear motors which are connected to the pulleys (DOFs). When
excited, the motors drive the pulleys (DOFs) horizontally over a rack and pinion. The pulleys
(DOFs) are referred to as q11, q12, q21, q22 as indicated in Figure 1.1. There are cables routing
through the pulleys, connecting them to each other, on either side of the setup which form
the left and the right tendons. They are further connected to the two springs via idlers located
on either tendons. The spring ends are then connected to the fixed world. The top end of the
cables on either sides are connected to the output (horizontal) bar. Relocating the pulleys on
the rack changes the cable tension and causes the output bar to rotate by a certain angle. This
results in a change in the transmission ratio between the output bar and the springs which
consequently alters the stiffness of the mechanism.

Figure 1.2: Various Configurations of the VSA

The zero configuration of the system is shown in Figure 1.2b when all the components are
aligned in a straight line. At this configuration the energy content of the system is zero. In
the case where the top or bottom pulleys are moved simultaneously with a particular motion
profile, it results in change in the stiffness (Figure 1.2a), but there in no change in the equilib-
rium position of the system which is indicated by the output bar. It is to be noted here that
the change from zero configuration to a changed stiffness configuration requires some initial
power injection. The system after reaching the changed stiffness configuration has a fixed non-
zero energy content which should stay unchanged while any other stiffness change occurs over
a period of time. This would deem the system to be energy efficient (Jafari et al. (2016),Visser
et al. (2011)). A non-zero configuration with a particular energy content in the system caters
to a specific change in the stiffness of the system. The range of the achievable stiffness for this
energy level is dependent on the chosen stiffness change profile, which contributes to the mo-
tion of the DOFs and the torque around the output bar. The calculations behind this is further
discussed in detail in Chapter 3.

The equilibrium position of the existing setup can be changed by relocating the DOFs un-
equally on either sides, left or right (Figure 1.2c). This will cause the output bar to move and a
change in angle will occur. The outcome of change in equilibrium position of the output bar
is identical to VSAs with lever mechanism (Groothuis et al. (2013), Jafari et al. (2011)). This sig-
nifies that on changing the point of application of the spring force, load or lever fulcrum, the
apparent stiffness can be adjusted since it varies the transmission ratio between the output and
the elastic element.

Sanlap Nandi University of Twente



CHAPTER 1. INTRODUCTION 3

The elastic elements (springs) contribute to the internal forces acting in the current system.
The extension and contraction of the elastic elements is a result of the movement of the pulleys
(DOFs). The elastic elements (springs) store the energy that is supplied through the DOFs to
the output bar. Due to the extension of these elastic elements (springs), a force is experienced
by the pulleys (DOFs). These are the internal forces that are present in the system which act
through the cables that are attached to the extended springs. The presence of internal forces
on the DOFs means that there should be some force requirement in the opposite direction to
counteract them in order to hold the pulleys (DOFs) in position. This also demands some work
to be done against the forces in order to actuate the DOFs, that means there should be some
injection of power at the input in order to change the stiffness. This goes against the working
principle of an energy efficient system.

If the internal forces were balanced, there would be no requirement of control power to hold the
pulleys (DOFs) in their position. It would then only be required to move the pulleys. Presently
that is being done with the help of the linear motors that enables the pulleys to act as DOFs
individually. The linear motors not only help change the equilibrium position and stiffness of
the VSA, but also help compensate the internal forces which are present at each pulley (DOF)
by doing work against them and holding the pulleys in position.

However having four actuated DOFs is a problem as it makes the system more complex and
hence more difficult to control simultaneously during operation. From the perspective of aes-
thetics and compatibility, the overall system becomes bulky when four motors are used. This
will become a difficulty if the system were to be integrated along with another device which
may include arm supports, active prosthetics or manipulators. Therefore at present it is incon-
venient to be used as it is for application purposes which involve interaction with an unknown
and dynamic environment such as humans due to the large amount of DOFs present and hefti-
ness of the overall system.

A possible solution to the problem of having excessive DOFs would be to couple them mech-
anically. Replacing the multiple actuated DOFs with a reduced DOF system will require some
coupling mechanism. The internal forces which were being mitigated by the motors would re-
quire some other mechanism to compensate them. In practicality there will be losses due to
factors such as friction which need to be reduced.

The purpose of the setup as mentioned in Groothuis et al. (2020) is primarily for its use in
an arm support. The requirement for such an application is to reduce the effort on the arm
for lifting or carrying a load which can demonstrate the feasibility of resembling the elbow
joint motion mechanism. The motion of the elbow is controlled by the stiffness change which
modulates and maintains the position (Manourat (2019)). Similarly, the VSA must be able to
resemble the same operation when it is linked to the arm support. For a human being, the
co-contraction of muscles on the arm help change the stiffness when holding a heavy object.
This requires some effort on part of the person carrying the load on his/her arm. If a variable
stiffness mechanism like the aforementioned is implemented on an arm support device, the
effort generated by the person can be significantly reduced. Thus this type of device helps
adjust the stiffness of the arm support to compensate the load. To follow the elbow’s physiology,
the change in stiffness when carrying a load should be accompanied by no change in the net
torque on the elbow. Hence a choice of keeping the torque constant has been made for the
design of the VSA.

Robotics and Mechatronics Sanlap Nandi



4 Reduction in Controlled DOF for a Cable Driven Variable Stiffness Actuator

1.3 Goal

The design goals are:

(1) To reduce actuated degrees of freedom (DOFs) in the system. In order to achieve this
we should analyse whether the actuated DOFs in the current system can be coupled and a
mechanism can be designed to accomplish this. It has to be done for a chosen stiffness profile
that we want to track. The data obtained from the system’s kinematic relations will be used
to execute this task. This will help in solving the motion trajectories of the DOFs and analyse
the power flow. Changing the chosen stiffness profile will lead to a change in the system’s
kinematics, which will hence provide us with a different set of results.

(2) To design an energy-efficient system. The current system loses power due to friction and
due to the heating of the windings in the motors. It is essential to mitigate these losses in order
to establish an energy-efficient system. For accomplishing this objective, the internal forces in
the system need to be investigated initially. The losses in the system which are proportional
to the internal forces can then be evaluated and a mechanism can be proposed to reduce the
losses.

(3) The design should also comply to the usage objectives which are rudimentary to a VSA.
They are necessities that a VSA should follow to in a specific scenario. These usage objectives
are required in order to execute physically compliant behaviour in the VSA to achieve robust
stiffness control and proper energy efficiency. The three usage objectives are:

1. To maintain a constant change in torque while changing the stiffness.

2. The stiffness as observed from the environment should be controlled to a desired stiff-
ness, or, we can state that the change of stiffness should be controlled as desired.

3. The power input into the VSA through which the internal DOFs can be regulated, should
be nearly equal to zero.

In order to comply to these usage objectives, the new system should follow suit of the existing
system in which these objectives have already been attained. The mathematical expressions of
these criteria are later discussed in section 3.1.1.

1.4 Contributions and Approach

The thesis is a continuation of the work of Groothuis et al. (2020) on Cable Driven VIAs. The
following are the contributions to the already existing work:

1. Designing a reduced DOF system by coupling the existing DOFs. This would require
modelling a new system that would have the same characteristics as the current sys-
tem, while removing the four motors and replacing them with a single input. In order
to build this we must study the kinematics of the existing system and apply them to the
new system to check the feasibility.

The approach mentioned above is a forward kinematic approach. By knowing the kin-
ematics of the system, we can get an idea of the various motions and forces which govern
it. This is helpful in deciding on a mechanism that can physically represent the system.

2. Identifying the losses and proposing a mechanism to compensate those losses which will
help achieve the goal of having zero control power at the input, and hence establish an
energy efficient system.
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CHAPTER 1. INTRODUCTION 5

In order to achieve this, an estimated model of the losses and the efficiency of the new
system will be computed without knowing the mechanism of the system, essentially a
black-box model where we have no idea of how the system looks like. After the mech-
anism of the new system is defined, we can develop a clearer theoretical model of the
losses and efficiency based on the mechanics. The results of this theoretical model will
be compared to the estimates of the black-box model to check for its efficacy.

1.5 Outline

Following is a brief summary of the chapters in the report:

Background
Chapter 2 deals with the literature review of papers that deal with compliant actuation and
variable impedance actuators (VIAs) in general. It provides a comparison between stiff and
compliant actuation, the various categories of compliant actuation and variable stiffness ac-
tuators (VSAs) in particular. It also discusses the use cases of the VSAs presently in research.
The concept of static balancing has been highlighted in this chapter as well which is an energy
efficient force compensation technique.

System Modelling and Analysis
Chapter 3 dwells into the mathematical modelling of the VSA in question. The basic mathem-
atical and kinematic calculations have been derived from the work of Groothuis et al. (2020),
which forms the foundation of this chapter. It starts from the kinematics behind the existing
system. Followed by the mathematical explanation of the usage objectives of the VSA and the
flow of energy in the system. From the obatined datapoints we can then compute the motion
trajectories and their corresponding equations are established and the internal forces to be
compensated can be determined. These are done to inspect if coupling the system using the
obtained data would result in a system whose specifications will be identical to the current
system. The constancy between the input and output power has also been enumerated. An
estimation has been calculated for determining the power loss in the system and the efficiency.
Also it has been examined if and how compensation springs can be effective in reducing these
losses.

Synthesis of DOF Reduction
Chapter 4 highlights the choice behind the design of the new system and the various compon-
ents that are required to realize the system both mathematically and physically. It explains why
mechanisms already present cannot be manifested to replicate the four actuated DOF model
of the VSA. An overview of the new proposed system is shown. The design calculations for
the components have been presented along with the explanation of how the components are
going to be placed. Evaluation for the effect of friction have been done. The theoretical power
loss has been compared to a black-box model in Chapter 3. The distinction between the results
of the calculated losses and efficiency have been explained. The effect of the compensation
springs and the efficiency of the new system has been established.

Conclusion and Future Prospects
Chapter 5 provides an insight into the conclusions that can be drawn from the research, what
experiments can be performed on the new design, what results can be expected and recom-
mendations that can help in the future developments of the system.

Robotics and Mechatronics Sanlap Nandi



6 Reduction in Controlled DOF for a Cable Driven Variable Stiffness Actuator

2 Background

2.1 Stiff vs Compliant Actuation

In certain instances of human-robot interactions, robots are required to assist humans in per-
forming tasks or are required to perform tasks that humans can do conscientiously without
any difficulty as such. Devices such as arm supports, exoskeletons, surgical robotic instru-
ments, and humanoid robots and their subsequent actuation are all based around this concept
in general which requires mimicking human attributes physically. Humans can change the ap-
parent joint stiffness by co-contraction of agonist and antagonist muscles, the robots that are
supporting such behaviour must also possess the same characteristics. This is to ensure that
the robots that are assisting humans in performing the tasks can imitate the movements and
perform these actions in conjunction to the users.

In traditional industries the robots that are used have a fixed compliance and are therefore
stiff. The high rigidity enables precision in positioning or tracking of predefined trajectories,
but does not allow enough mitigation of shock absorption or explosive movements which is
essential constituent of physical human behaviour. Also once the actuator reaches a certain
position, it remains stationary there, irrespective of the force (within the limits of the device)
applied on it. If excessive force is applied, it can lead to dysfunctional behaviour and may cause
damage the robot or even worse harm the user - the human, causing serious injuries (Liu et al.
(2019), Ham et al. (2009)).

Keeping in mind all these limitations of such stiff actuators, a different class of actuators were
proposed in order to mimic physical human behaviour. These are known as compliant actu-
ators or variable impedance actuators (VIAs) (Ham et al. (2009)), which solved the problems
that arise as a result of the rigidity, and the safety issues that are related to the traditional ac-
tuators. Inherent compliance actuators that constitute a subgroup of VIAs comprise of passive
or intrinsic compliant element connected in series with an actuator. This can be further clas-
sified as fixed compliance for eg. Series Elastic Actuators (SEAs)(Pratt and Williamson (1995)),
which cannot change its stiffness and adaptable compliance for eg. Variable Stiffness Actuators
(VSAs), where stiffness can be changed by re-configuring the system mechanically (Spagnuolo
et al. (2017),Vanderborght et al. (2013)).

VIAs are actuators that can change their equilibrium position and rely on forces acting extern-
ally and mechanical characteristics of the actuators such as stiffness, damping and inertia. All
these three factors contribute to the impedance and hence the name. They have a high range
of bandwidth and accuracy as opposed to stiff actuators. Amongst them are VSAs and SEAs
that are different in nature to each other. SEAs have a compliant element attached in series to
a rigid material and doesn’t change its stiffness. On the other hand VSAs have the capability of
changing the stiffness of their elastic element (Spagnuolo et al. (2017)).

The benefit of VSAs (not all VIAs in general) is that equilibrium position and apparent stiffness
can be changed independently. By controlling the energy flow from the motors, the stiffness
can be regulated and improve force accuracy while interacting with the operator which can
help in keeping collisions and effect of external forces in check (Jafari (2014)).

However in Groothuis et al. (2020), SEAs are not categorized under VIAs. Rather the classific-
ation states that compliant actuators fall under two categories, fixed i.e SEAs and variable i.e.
VIAs. VSAs and Variable Damping Systems fall under the subcategory of VIAs.

Besides passive mechanical compliance as described above, compliant behaviour may also be
achieved through control. The compliant performance of such a system is limited by high fre-
quency or high speed operations.
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CHAPTER 2. BACKGROUND 7

Passive compliance has the advantages of energy efficiency, quick response and simplistic con-
trol. It is subdivided further into three modes, referred to in Liu et al. (2019):

1. Varying the effective length of the elastic material
2. Lever mechanism Principle
3. Antagonistic Principle

2.2 Active and Passive Compliance

This section emphasizes on the general characteristics of the VSAs at present that describe their
mechanical behaviour such as stiffness, impedance, admittance, compliance and damping. It
describes how this makes them different from the rigid actuators already present for robotic
applications. These attributes enable the VSAs to replicate the physical movements of a human
or animal, thus making it more suitable for such purposes as mentioned in Vanderborght et al.
(2013).

2.2.1 Active Impedance

Active impedance involves the imitation of an impedance behaviour with the help of a control-
ler which is a software (Loughlin et al. (2007)). The output state is measured and the error is
corrected by the controller that can then be utilized by the actuator. The drawback though of
this kind of an approach is its energy efficiency as it cannot store energy. Since energy cannot
be stored, this technique cannot be implemented for energy efficient actuation such as passive
robots or actuators which will require the help of external energy. Also the bandwidth is quite
limited which will make it problematic for shock absorption. Limited bandwidth may cause the
mechanisms such as gearboxes and bearings to break under the influence of high peak torques
or cause fatigue on the entire structure. The control is often complicated and requires metic-
ulous models for system dynamics. The benefit of active impedance however is its ability to
adapt to the varying damping and stiffness (impedance) of the system on a theoretical level,
which means it can be adjusted online depending on the situation. The mechanical system as-
sociated with such an approach is also not complex because there are no extra elastic elements
required, nor any additional DOFs to achieve this.

2.2.2 Fixed Compliance

The fixed compliant actuators that are being dealt in this section are ones having elastic ele-
ments connected to actuators or drive trains in series. The most common example of an actu-
ator with fixed compliance is the Series Elastic Actuator (SEA) (Liu et al. (2019)). It comprises of
a spring attached to a stiff actuator in series. The choice of the spring determines the stiffness
of the actuator and hence the physical stiffness cannot be adjusted during operation. Such
mechanisms usually comprise of a more complex system design that involve energy storage
and shock absorption as resulting system properties with the addition of elastic elements. They
usually have low intrinsic damping and makes the use of an extra damping component or the
damping is effectuated with the help of control (Petit and Albu-Schäffer (2011)).

2.2.3 Adjustable Compliance

Adjustable compliance refers to the control of stiffness by the reconfiguration of mechanical
components present in the system. This also involves of the use of elastic elements for storing
and releasing energy. Variable stiffness actuators (VSAs) are an example of actuators that
implement adjustable compliance for achieving their desired behaviour. Unlike stiff actuators
it has the liberty to change its equilibrium position due to the influence of forces acting extern-
ally and the mechanical characteristics of the actuator such as stiffness or damping. Such an
approach additionally increases the bandwidth that enables better shock absorption. In such
cases two motors that are required, one to control the equilibrium position while the other to
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8 Reduction in Controlled DOF for a Cable Driven Variable Stiffness Actuator

Figure 2.1: Antagonistic setup of a VSA (Groothuis et al. (2020))

control. This can be further classified into the following categories as defined in Vanderborght
et al. (2013):

Spring pre-load: The pre-load or pretension on the spring is adjusted in order to change the
stiffness. This comprises of the following subcategories :

• Antagonistic springs with antagonistic motors: Refer to Figure 2.1. Requires two non-
linear springs, where the springs and the motors are placed in an antagonistic setup. The
motors move in the opposite direction to change the equilibrium position and in the
same direction to change the stiffness.

• Antagonistic springs with independent motors: Almost same as the previous type but
the motors decouple the control of stiffness and equilibrium position partly. It comprises
of two motors which have to work in a synchronous manner to change either the stiffness
or the equilibrium position. This means that if one of the parameters is being adjusted
the other can’t be done so simultaneously.

• Pre-load adjustment of single spring: Comprises of two motors. It does not belong to
the antagonistic class. The stiffness is controlled by a motor attached to one linear spring
whose pre-load is altered while the other motor changes the equilibrium position.

The VSA at present is an antagonistic setup (Laffranchi et al. (2009),Petit et al. (2010)) that com-
prises of linear springs and two motors on either side (four in total). The system is symmetric so
that means there are two motors on the left and two on the right tendons as seen in Figure 1.1.
Considering the left side, one of the motors control the stiffness and the other one to changes
the equilibrium position for the left side. While the other two motors on the right side work in
the exact identical fashion. When all the four motors are actuated at the simultaneously, all the
four DOFs act together to change the position and stiffness.

Changing Transmission between load and spring: This comprises of systems that change the
transmission ratio between the output and the internal spring which adjusts the stiffness. In
such a system there is no pretension on the spring. The force on the spring is perpendicular
to its displacement and hence no external energy is required for changing the stiffness (dot
product of two perpendicular vectors is zero) in the ideal case. In real world applications how-
ever, some external energy is required to overcome friction which can be reduced by techniques
such as material choice. The transmission ratio can be changed in three ways namely, chan-
ging the pivot point on the output, changing the point of application of force on the output or
changing the position of the spring on the output. Lever-arm based VSAs (refer to figure 2.2)
use this type of an approach.

Physical Properties of the spring: The stiffness of a spring (K ) is given by K = E A
L , where E is the

Young’s modulus, A is the cross-section area and L is the effective length of the spring. Either
of them can be changed to alter the physical characteristics of the spring. But changing the
physical properties of the spring other than its length or area would require choosing materials
whose Young’s Modulus (E) can be altered effectively by the application of external paramet-

Sanlap Nandi University of Twente
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Figure 2.2: Lever-arm Based VSA (Groothuis et al. (2020))

ers such as change in temperature or pressure. But such measures are extremely difficult and
therefore there are no examples of VSAs implementing such approach.

2.3 Present VSAs and their Usage

2.3.1 Use Cases

The work done in the paper, Wolf et al. (2015), deals with VSAs in general, use cases are the
applications for which VSAs are intended to be used. These are considered as the stepping
stones for the designing of the VSAs including choice of parameters and components. These
most common use cases are as follows:

• Shock absorption : It is the ability of a material to resist impacts without sustaining dam-
age. In robots there maybe high peak torques on the actuator output as a result of the
large inertial forces and fast operations. Even with very stiff robots the impact of the
collisions cannot be mitigated. VIAs are used as buffers to absorb the shock or impact
that the robots face. They are connected in between the output link of the robots and the
gearbox. This is different in traditional robots where the link would be directly connected
to the gearbox. The VIAs comprise of an elastic unit that acts as a shock absorber. They
can be a spring, a damper or a combination of both. VSAs are basically VIAs with only a
spring component and no damping component.

• Stiffness variation at constant load : For effective force/torque interactions with the ex-
ternal world, the stiffness variation at constant load is required. The surface structure
determines what stiffness setup would suit it the best and minimize the error. A surface
with large stick-slip friction will be well suited for higher stiffness setups, whereas an un-
even surface can make the use of less stiffness.

• Stiffness variation at constant position : Similar to muscular co-contraction, changing
stiffness at constant load is done to obtain a low position error which may occur as a
result of disturbance. Take the example of a hand holding a glass of water in free space
and an external object hits the hand, the muscles will co-contract and stiffen in order to
not let go of the glass or spill the water. So this kind of technique is primarily used to
optimize the disturbances.

• Cyclic movements: These involve the repetitive acceleration and deceleration of the ro-
bots. The advantage of such movements are that the positioning motors that drive the
actuators have to execute smaller movements as compared to the desired output traject-
ory which would make the system energy efficient. For cases where a trajectory that is
perfectly matching only friction and damping losses of the VSA have to be compensated
by the motors. Walking and jumping are some examples of cyclic movements. But fur-
thermore such movements can be adapted accordingly and changed in robots by tuning
the motor parameters with the help of controls.
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10 Reduction in Controlled DOF for a Cable Driven Variable Stiffness Actuator

• Explosive movements: The characteristic of explosive movements in robots is a result
in high acceleration at the output due to a large increase in the velocity over a relatively
short period of time. VSAs have the ability to drive the motors at a velocity above their
peak velocity thus accelerating the actuator output. By blocking the actuator output and
using the motors to apply a torque it is possible to store potential energy in the springs by
pre-loading them. This energy can then be released by unblocking the output in the form
of kinetic energy. It is important for the VSA to have a good energy storing capability. It
is useful to therefore start with a low stiffness and then gradually increasing it during the
operation phase. The maximum output velocity is defined as the sum of the maximum
velocity of of the joint positioning motors and the velocity gained by unloading the max-
imum potential energy of the spring (Wolf et al. (2015)). Changing the gear ratio of the
positioning motor can change the output velocity but will effect the maximum output
torque. If the motor torque is high and stiffness is large, then the bandwidth of the VSA
will be large.

2.4 Static Balancing

Since the system which has been proposed is approximated to be quasi-static in nature, the
work of Herder on static balancing is of significance. In these systems force and energy bal-
ancing becomes the highlight as the system has to be actuated by conserving energy. These
can be observed from the works in the papers Herder et al. (2011), Barents et al. (2011), Herder
(2001).

Concepts regarding the principles have been discussed in the paper Herder et al. (2011). The
example of a basic gravity balancer is a simple way of demonstrating a physical model where
the static balancing condition can be met.

mg L = kar (2.1)

where m = mass of the balancer payload, g = acceleration due to gravity, L = length of the
balancer, a = Vertical length from fixed end of balancer to fixed end of spring, r = Distance
between fixed end of balancer and point where the spring is attached to the balancer.

Figure 2.3 shows a gravity balancer and its various components. It is a fundamental example
of a statically balanced system. From equation 2.1 the balance condition of the system with
respect to the gravity can be observed. The left side of the equation represents the force acting
on the system (which is basically a horizontal bar) due to gravity multiplied by the length of
the bar. This provides a torque component of the bar. To balance this out on the right hand
side of the equation the variables k, a and r are present which also provides another torque
component that helps in balancing the system. When the torques are equal or in other words
the net torque is zero, the system is statically balanced. On changing the values of a and r the
balance conditions of the system can be altered accordingly. Also values of k,L and different
masses m can affect the conditions, but more often the change of the length of the balance
spring s which is dependent on a,r and the output angle φ which is the angle between a and r
as shown in Figure 2 and given by the equation:

s =
√

a2 + r 2 −2ar cosφ (2.2)

Statically balanced systems can actuate in the presence of considerable amount of forces, but
don’t require any operating force or energy because the resulting net force is (close to) zero. The
exchange of energy between the storage elements present in the system are considered per-
fect and hence the only energy that is required for operation is external to compensate losses
such as friction, and also accelerate or decelerate the process. Henceforth they are designed
to maintain constant potential energy throughout their range of motion making use of springs
and counterweights.
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Figure 2.3: Static Balancing of a Gravity Balancer

2.4.1 Application of Static Balancing to VSA Mechanisms

The present setup of the VSA comprises of springs which contributes to forces acting on the
DOFs along the cables that connect them. The profiles of these forces were found to be non-
linear as will be discussed in detail later in the report. There will be losses due to friction that
will be proportional to these forces. Due to the losses on the DOFs, work has to be done to
actuate the DOFs, which involves generating force from an external input like a hand crank or
motor. Using static balancing techniques to the DOFs may be a remedy to this. If designed
properly this will enable the compensation of losses which would mean the energy required to
actuate the system is close to or equal to zero.

Figure 2.4: Spring to spring balancer

The most probable design for force balancing in the current system would be the use of spring
to spring balancers as mentioned in Barents et al. (2011). This comprises of a gravity balancer
with springs on each side compensating each other. Since there is no effect of gravity on the
VSA due to its planar orientation, such an implementation of spring balancers may prove useful
in counteracting the losses that are acting on the system. This is illustrated in Figure 2.4 and
the balance condition can be computed as follows:

k1a1r1 = k2a2r2 (2.3)

where k1 = Stiffness of first spring, k2 = Stiffness of second spring, a1 = Vertical length from
fixed end of balancer to fixed end of first spring, a2 = Vertical length from fixed end of balancer
to fixed end of second spring, r1 = Distance between fixed end of balancer and point where the
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12 Reduction in Controlled DOF for a Cable Driven Variable Stiffness Actuator

first spring is attached to the balancer, r2 = Distance between fixed end of balancer and point
where the second spring is attached to the balancer.

Since the system at hand is symmetric the net torques are likely to cancel out each other when
springs are attached. So the system will always be in equilibrium at its starting position.

2.5 Conclusion

The literature study related to the work done in the fields of compliant actuation and mech-
anisms related to force balancing which are closely related to the topic at hand, have been
presented in this chapter. Based on the aforementioned, a clear idea can be gained on how to
proceed with the system. The knowledge can be implemented to acquire a system which would
have reduced actuated DOFs where the internal forces are statically balanced. Energy efficient
actuation has been a field of study in a few of these papers, where the apparent stiffness change
will not change or influence the overall potential energy that is stored in the elastic elements of
the system. But to achieve this energy efficiency along with the former challenges of reducing
the actuated DOFs and compensating reaction forces from the cables is something that has not
been attempted by any of these researches and is henceforth a matter to be investigated.
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3 System Modelling and Analysis

In this chapter we will deal with the existing system and its kinematics. The kinematic equa-
tions and mathematical conditions up until the end of Section 3.1.1 will implement the work
of Groothuis et al. (2020). The data obtained from his work will be useful to determine the mo-
tion trajectories of the individual DOFs, which is essential for obtaining the stiffness change
profile identical to the existing system, for a new system with reduced DOFs. Furthermore, we
will compute the internal forces in the system to inspect the losses in the reduced DOF system.
This essentially will help in deciding whether there is a use for any compensation techniques
in order to negate these forces. For this reason, the power loss of the system will be modelled.
An estimate of the efficiency of the power input will be calculated to establish an idea for the
new system.

3.1 Kinematics of the Existing system
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(a) Schematic Diagram of Existing VSA (b) Existing VSA in real life

Figure 3.1: Schematic Diagram vs Real Life Model Comparison of the Existing VSA.

Figure 3.1 shows the comparison schematic model and the physical model of the existing VSA.
In figure 3.1a, the two springs attached to the end of the cables are denoted as k1 and k2. The
cable routing all the components is assumed to be infinitely stiff (zero compliance) such that it
has ideally zero effect on the system’s performance due to its negligible elasticity.

As discussed in the Chapter 1, there are four movable pulleys in the entire system which are
the internal degrees of freedom, referred to as q . They are positioned such that the system is
in the equilibrium condition and can be moved horizontally along the dashed lines which are
indicated in the Figures 3.1a and 3.1b. When the actuated DOFs along with the springs are
aligned in a straight line with respect to each other, it is denoted as the zero configuration of
the system that is q11 = q12 = q21 = q22 = 0 (Figure 1.2 (b)). At this configuration the length of
the tendons are the shortest since the spring extension is minimal. The system is constructed
such that dθ = lθ, where dθ is the length between the endpoints of the cables connected on the
output bar and lθ is the length of the output bar (refer to Figure 3.1a).

Changing the positions of the internal DOFs causes a deflection of the output bar, that results
in a change in the output angle θ (indicated in Figure 3.1a) and also the output stiffness Kθ
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14 Reduction in Controlled DOF for a Cable Driven Variable Stiffness Actuator

(refer to Groothuis et al. (2020)). The desired output- stiffness change profile is a choice the
user makes and can be chosen so as to the keep the desired stiffness change within a certain
range. For the above model, K̇θdes = Am cos(t ), where Am is the amplitude of the stiffness in
Nm/rad/s and t is the time period in seconds, was chosen for an initial configuration (which is
a non-zero configuration as seen in Figure 1.2 (a)) where the system would be at an equilibrium
position for time t = 0.

The motion trajectories of the DOFs due to the choice of the stiffness profile are also dependent
on the length of the tendons. The change in length of the tendons is a consequence of the
change in length of the springs attached to the ends of the cables.

The value of the extended spring length, si , is determined by:

si = Li (q ,θ)−Li (3.1)

Where Li is the equilibrium configuration in which the spring is in a zero-deflection state and
the angle of the output bar θ is 0. This implies that at the zero configuration state there is no
energy stored in the spring. This is true when si = 0, which means at this instance Li (q,θ) = Li .
Energy of a spring is mathematically expressed as H(si ) = 1

2 ki s2
i . So if si = 0 then H(si ) = 0.

From Figure 3.1a the value of the length of the tendons on the left and right side denoted by L1

and L2 respectively are calculated by:

L1(q ,θ) = d1 +
√

c2
1 +q2

11 +
√

b2
1 + (q11 +q12)2 +

√
(−lθ+dθ cosθ+q12)2 + (a1 − lθ sinθ)2 (3.2)

L2(q ,θ) = d2 +
√

c2
2 +q2

21 +
√

b2
1 + (q21 +q22)2 +

√
(−lθ+dθ cosθ+q22)2 + (a2 + lθ sinθ)2 (3.3)

where, L1,L2 = Total length of the tendons on the left and right sides respectively.
a1,b1,c1,d1 and a2,b2,c2,d2 = individual length of the cables and springs that constitute the
tendons of the left and right sides respectively as seen in Figure 3.1a.

The output stiffness and torque can be derived from the total energy stored in the system. Con-
sidering elastic elements to be linear, the Hamiltonian Energy can be defined as a function of
the elastic elements (extended spring lengths s1 and s2), which is the sum of the left and right
stored potential energies.

H(s1, s2) :=1

2
k1s2

1 +
1

2
k2s2

2 (3.4)

H(s1, s2) =1

2
k1(L1(q ,θ)−L1)2 + 1

2
k2(L2(q ,θ)−L2)2 (3.5)

The output torque can then be written as:

τθ(q ,θ) = ∂H(s1, s2)

∂θ
= k1(L1(q ,θ)−L1)

∂L1(q ,θ)

∂θ
+k2(L2(q ,θ)−L2)

∂L2(q ,θ)

∂θ
(3.6)

The change in the output stiffness is dependent on the change in the output torque (τθ) of the
output bar with respect to the change in the angle θ. The output stiffness linearized around a
configuration θ and modelled as a function of the pulley positions q has been mathematically
represented as:

Kθ(q ,θ) = ∂τθ(q ,θ)

∂θ

∣∣∣
θ=θ (3.7)

3.1.1 Satisfying Usage Objectives

This subsection comprises of the mathematical expressions of the usage objectives of a VSA
explained previously in section 1.3. Therefore the new system that is to be designed must fit
the requirements of :
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• Having a controlled change in the stiffness from the environment such that it equals the
desired change in stiffness.

• Keeping the torque constant.

• Keeping the change in energy constant.

The above requirements can be formulated as:

K̇ (t ) = K̇des(t ) (3.8)

Where K̇ (t ) is the stiffness change obtained from the environment at the output of the system
and K̇des(t ) is the desired change in stiffness, both at a time t .

Due the change in stiffness the output torque, (or force) changes if it is non-zero. The change
should be regulated as desired:

τ̇(t ) = τ̇des(t ) (3.9)

Where τ̇(t ) is the initial change in the output torque as defined by the model in equation 3.6
and τ̇des(t ) is the desired change in torque, both at a time t .

The injection of energy or power (Pcontrol) into the VSA through the control port must be ideally
equal to zero. The control port is the input of the system through which energy is provided to
help actuate the DOFs. It helps control the configuration of the internal DOFs of the system.
Mathematically over a time period t , this can be represented as:∫ t

0
Pcontrol(ζ)dζ= 0 (3.10)

The flow of energy has been described more elaborately in section 3.4.

In the work of Groothuis et al. (2020) it was considered that the output stiffness could be
changed without changing the output force or torque i.e.:

τ̇(t ) = 0 (3.11)

This was simply a choice and was also followed for the new proposed design of the VSA.

3.2 Degree of Freedom Motions

The usage objectives, as discussed in section 3.1.1 were already proven in Groothuis et al.
(2020). It is mentioned from his work that a system with n number of elastic elements when
plugged into the equations 3.8, 3.10, 3.9 resulted in a set of first degree, first order, non linear
differential equations. This comprised of a set of data points or values that were interpolated
over a certain time window and plotted.

Since the differential equations were non-linear in nature, of the form f (q)q̇ = 0, it could not
be solved for q analytically. Hence, they had to be solved numerically. The plots were obtained
from the work of Groothuis et al. (2020), where a certain stiffness profile change was chosen in
order to numerically solve the individual equations for each of the internal DOFs.

The equations of motion have to be periodic in nature since the initial desired stiffness
K̇θdes =0.5cos(t ) was chosen as such 1. The simulated motion trajectory that was already avail-
able from the obtained data points are seen in Figure 3.2. The present system motion already

1In the paper of Groothuis et al. (2020), K̇θdes
= 0.3cos(t ). With the corresponding dimensions of the existing sys-

tem, it was difficult to realize a new physical model with reduced DOF. The values of the dimensions were therefore
increased and a larger amplitude Am could be chosen to fit the components.
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16 Reduction in Controlled DOF for a Cable Driven Variable Stiffness Actuator

met the conditions for the stiffness profile change, output torque and power injection at the
control port (Figure 3.3). The range of the stiffness is dependent on the energy content (dis-
cussed later in 3.4) of the system. The stiffness change can be seen in the plot to have max-
imum and minimum value since it follows a periodic trajectory. The range of the stiffness is
dependent on many factors which includes choice of the stiffness change profile, the length
of the tendons and also the choice of the stiffness of the elastic elements attached at the end.
All these factors cumulatively contribute to the limits of the achievable stiffness for that energy
level. The data points used for plotting these motion trajectories were available and there-
fore could be used to find an approximate function or equation that governs the motion of the
system mathematically. The differential equations describing the mathematical model of the
system were solved numerically.
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Figure 3.2: The q trajectories that solve the three objectives simultaneously for a desired stiffness change
profile of K̇θdes

= 0.5cos(t ).
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Figure 3.3: Stiffness profile, output torque and power injection with respect to time for K̇θdes
= 0.5cos(t ).

A curve fitting was applied to a set of data points using MATLAB that were already available
from the data points plotted in Figure 3.2. In this case a Fourier series was chosen to approx-
imate the data points on the curve to obtain an analytical equation. Due to the fact that the
desired stiffness change profile was a cosine function, it would make sense that the resulting
trajectories of the DOFs that define this change would be periodic in nature. A Fourier series
is a periodic function comprising of a summation of sinusoids that would suit the given condi-
tions. Hence, the curve fitting using a Fourier series was the best way to derive an approximate
analytical equation that would satisfy the motion of the system, which can later help in further
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studying the system and analysing the results of its behaviour. This resulted in an approxim-
ated Fourier series function for the motion of the pulleys with the following expression:

q = a0 +a2 cos(t )+a4 cos(4t )+b1 sin(t )+b3 sin(3t )+b5 sin(5t ) (3.12)

where, q = position of the pulley (DOF); a0,a2,a4,b1,b3,b5 = Co-efficients of the function for the
analytical equation.

The Fourier series comprised of values upto the fifth harmonics of the base frequency, and the
values have been truncated to 6 terms since the higher frequency components are negligibly
small 2. The q values define the position of the the DOFs (pulleys) traversed, in meters.

In reference to plots in Figure 3.2, it can be observed that the trajectories of bottom DOFs, q11

and q21 are the same whereas, the DOFs at the top, q12 and q22 are alike (but slightly different
from the top two pulleys) and 180◦ out of phase when compared to the other two. This beha-
viour in motion occurs due to the fact they are aligned symmetrically at a starting position of
q11 = q12 = q21 = q22 = 0.04 m at time t = 0. The starting position can be verified in Figure 3.2.
The phase shift is due to the reason that the top two DOFs traverse inwards as compared to the
bottom two which move outwards.

By using curve fitting the approximate analytical equations of these trajectories for a time t
were found to be:

q11(t ) = q21(t ) =0.0387178+0.00131169 ·cos(2t )−0.0000305498 ·cos(4t )+
0.0175825 · sin(t )−0.00015739 · sin(3t )+5.28572 ·10−6 · sin(5t ) (3.13)

q12(t ) = q22(t ) =0.0397704+0.00023253 ·cos(2t )−3.0255 ·10−6 ·cos(4t )−
0.0172983 · sin(t )+0.0000551443 · sin(3t )−4.64409 ·10−7 · sin(5t ) (3.14)

The output stiffness, output torque and input power can be calculated when these trajectories
are used as motion profiles for the DOFs. The motion profiles of the top two pulleys and simil-
arly the bottom two pulleys are identical in nature. The resulting functions are non-monotonic
many-to-one (cyclic). They are synchronous to each other, where the motion of top two DOFs
are 180◦ out of phase with the bottom ones, but has the same frequency. There is no phase dif-
ference between q12 and q22 and likewise between q11 and q21. These conditions of synchron-
icity make it possible to couple the DOFs by mechanical means in order to actuate simultan-
eously as a function of time by the help of reduced (one or two) actuated DOFs. The difference
in the motion profiles between the top and the bottom pulleys is by design.

3.3 Internal Forces and Compensation

The force on the system generated by the springs, k1 and k2, that are attached to the end of
the bottom pulleys as seen in Figure 3.1a due to the elongation is caused by the re-positioning
of the pulleys (DOFs) during the operation of the system. The spring force is given by Hooke’s
Law:

Fi = ki si (3.15)

where, Fi = Spring force, ki = Stiffness constant (100 N/m), si = Extended length of spring, and
i ∈ {1,2}

Due to the force generated by the springs, the cables attached to the DOFs(pulleys) exert a
force on them. The force acting on the pulleys can be divided into the horizontal and vertical
components. The vertical component is however compensated by a counteracting force that
constrains the pulleys from moving out of their horizontal DOFs. The horizontal forces can be
calculated for either side and they are equal in magnitude due to the symmetric design of the

2The neglected values comprised of those having a value of <10−7. The relative error due to this was 0.12%.
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system. Therefore considering the left side, the force acting on each of the pulleys is calculated
as (refer to Figure 3.4) :

Fnetq12
= Fi (cosα+cosβ) (3.16)

Fnetq11
= Fi (cosβ+cosγ) (3.17)

where, α and β are the angles of the cable/tendon with respect to the horizontal, for the seg-
ment originating from the pulley corresponding to the DOF q12. Similarly γ is the angle cor-
responding to the DOF q11 respectively. Owing to the geometry of the system the angle β is a
corresponding angle (hence equal) and is observed at two places. It is formed by the cable/ten-
don with respect to the horizontal and corresponds to q12 at the top and q11 at the bottom.
Fnetq12

is the net force acting on q12 and Fnetq11
is the net force acting on q11.

Figure 3.4: Schematic cut section diagram of the decomposition of forces acting on the pulleys on the
left side of the system as seen in Figure 3.1a.

The values of the various angles that are projected by the pulleys can be calculated depending
on the values of the constant perpendicular lengths of the the cables as denoted by ai ,bi ,ci

where i ∈ {1,2} to indicate right or left side and the value of the position of the DOF (pulley) qi j

(where i , j ∈ {1,2}) which indicates which pulleys are taken into consideration.

Therefore, we can find the angles for the left side of the system as follows:

α= arctan

(
ai

q12

)
(3.18)

β= arctan

(
bi

q12 +q11

)
(3.19)

γ= arctan

(
ci

q11

)
(3.20)

Similarly, for the right side the angles can be calculated in the identical manner.

Since the system is symmetric, the forces on the left side are equal to ones on the right and can
therefore be expressed as:
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Fnetq12
= Fnetq22

(3.21)

Fnetq11
= Fnetq21

(3.22)

Plotting the net forces with respect to time as seen in Figure 3.5 it can be observed that the
forces acting at the top pulleys are identical to each other as expected. Same goes for the two
bottom pulleys. In the existing system, these forces are compensated with the help of mo-
tors. If these motors were to be removed in order to reduce the DOFs, there would be need for
a mechanism to compensate these forces provided the system is imperfectly coupled, which
means the internal forces are not statically balanced or cancelled out by the coupling mech-
anism that is being implemented. A coupling mechanism will implement a mechanical device
that will essentially connect the four DOFs together such that they can be actuated simultan-
eously. Nonetheless, if a perfect coupling of DOFs can be achieved keeping the angle θ = 0, thus
keeping the change in energy content of the system zero, these forces would be counteracted
as a result.

Figure 3.5: Net forces acting on DOFs (pulleys) with respect to time.

By perfect coupling we mean a lossless system in this case which is 100% efficient. The forces
need to be counteracted in order to keep the system energy efficient otherwise there will be
a requirement of additional power at the input to drive the system. As for a lossless system
there needs to be net zero force when the system is in motion, which means no power is lost
to the environment. But since perfect coupling is difficult to be implemented in the real world
due to losses in the system such as friction, mechanisms such as compensation springs may
be used to counter these probable losses. Compensation springs will allow the absorption and
release of energy during the to and fro motion of the DOFs. As the DOFs move outward from
the away from the springs attached to them, and move against the frictional forces, the springs
will stretch and release the stored energy that will allow the DOFs to move against this fric-
tional force. Again when the DOFs retreat towards the springs, they will compress allowing the
absorption of energy to take place. In doing so the springs provide a force equal and opposite
to the frictional force which helps in achieving an ideally lossless system.

The losses in the existing system are due to friction between the rack and pinion and the loss
due to the heating of the motors. When the motors are removed and the mechanical coup-
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ling is realised, the losses as a result of friction will occur due to the rolling and sliding of the
mechanical components in the system. Due to the displacement of the DOFs there will be a
loss of power as a result of the frictional forces causing reduction in the efficiency. Hence, as
mentioned above there might be requirement of some additional devices to reduce such losses.

The plot in 3.5 represents the magnitude of the forces with time and the maximum force that
is caused due to spring elongation. The losses will be proportional to these forces that can be
statically balanced with the help of springs. Since static balancing employs springs to counter-
act forces, the force on the system should be a function of the displacement of the DOFs and
not time. It is therefore essential to parameterise the forces over the absolute position of the
DOFs (i.e. F ∝ q). This can be seen in Figure 3.6. For each point on each of the force plots with

Figure 3.6: Force with respect to change in position of DOF and their corresponding linear fits.

respect to the distances (qi j , where i , j ∈ {1,2}), the stiffness of the spring can be computed,
K = ∂F

∂q . As seen in Figure 3.6, the curves are slightly non-linear in nature when compared to
a linear curve and hence a linear spring cannot be utilized to follow such behaviour. In order
statically balance the system in a perfect manner the non-linear behaviour of the forces has to
be reproduced. This can essentially be done in two ways:

• Either a non-linear spring has to be designed as such that it fits the requirements.

• Or a linear spring has to driven in such a way that its displacement replicates the traject-
ory of q , for example forcing it along a spiral.

In order to execute the second method, a motion mechanism can be implemented using a
linear spring which makes the deflection non-linear. Since the non-linearity is not really large
in comparison to a linear fit, it is possible to implement such a technique using a cam profile.
This is further discussed in section 4.2.2.
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3.4 Flow of Energy

Figure 3.7: Total energy contained in the system over a period of time which is relatively constant.

Energy efficiency is an important criteria in robotic applications. For a system to be energy effi-
cient the total output power must be close to the total input power. This is always not possible
in a non-ideal scenario where there are losses such as friction. However for devices such as
VSAs the power supplied must be employed for doing useful work at the actuator output and
not to change the apparent output stiffness. This means that it should be feasible to change the
apparent output stiffness of the actuator without the injection or extraction of energy to and
from the elastic elements (Visser et al. (2011)).

A theoretical power analysis has been developed to verify the energy efficiency of the existing
system. The total power in the system is derived from the energy and has been presented in the
following subsection.

3.4.1 Total Power present in the system

The total energy content of the system as mentioned in equation 3.4 should remain constant for
an energy efficient system (Figure 3.7) 3. Keeping this in mind the time derivative of the energy
was calculated which resulted in the total power of the system. Since the energy content of the
system is constant, the rate of change of energy which is power should result in zero. This can
be expressed as:

d H(s)

d t
= k1(L1(q ,θ)−L1)

d

d t
(L1(q ,θ))+k2(L2(q ,θ)−L2)

d

d t
(L2(q ,θ)) (3.23)

Therefore,Ptotal = F1L̇1(q , q̇ ,θ)+F2L̇2(q , q̇ ,θ) (3.24)

3The sinusoidal waveform of the energy content is due to the periodic nature of the forces in the system. But
since the variations in the amplitude are minuscule, the energy system can be approximated to be constant over
time. The maximum change with respect to the average value of the energy was calculated to be 0.0033%.
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where,

L̇1(q , q̇ ,θ) =
d

d t
(L1(q ,θ)) = q11q̇11√

c2
1 +q2

11

+ (q11 +q12)(q̇11 + q̇12)√
b2

1 + (q11 +q12)2
+ q̇12(dθ cosθ− lθ+q12)√

(a1 − lθ sinθ)2 + (dθ cosθ− lθ+q12)2

(3.25)

L̇2(q , q̇ ,θ) =
d

d t
(L2(q ,θ)) = q21q̇21√

c2
2 +q2

21

+ (q21 +q22)(q̇21 + q̇22)√
b2

2 + (q21 +q22)2
+ q̇22(dθ cosθ− lθ+q22)√

(a2 + lθ sinθ)2 + (dθ cosθ− lθ+q22)2

(3.26)

F1 and F2 are the forces due to the elongation of the springs k1 and k2 respectively (refer to
Equation 3.15).

The total power (Ptotal) in the system was calculated from the above equations and was found
to be in the order of 10−5 which is close to zero. The residual error is due to the Fourier ap-
proximation of the q trajectories. The DOF motions were computed to ensure zero change in
energy content, therefore this result is expected and by construction. Hence this result con-
firms achievement of the design goal of changing stiffness without changing energy content
i.e. d H(s)

d t = 0. It affirms that since the total energy content of the system remains unchanged,
the rate of change of energy which is power will be zero. This is indicated in Figure 3.8 which
shows the change in power in the system which is constant when plotted over time.

The above calculations are done keeping the value of θ = 0. If θ was a non-zero value, the equi-
librium position of the system would change due to the deflection of the output bar. During
such a state it is unpredictable as to how the system will behave since its energy content would
change. This would mean that changing the stiffness in a deflected state without changing the
equilibrium position would require d H(s)

d t 6= 0. The DOF trajectories need to be recomputed if θ
was a non-zero value, and it would change accordingly if θ was changing. This indicates that
for a certain stiffness change configuration, there maybe different DOF trajectories i.e. differ-
ent q values for different values of θ. This would make the system more complex, hence, θ = 0
was chosen to simplify the calculations.
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Figure 3.8: Total power content in the system obtained from d H(s)
d t =0.

3.4.2 Use of compensation springs

The next case is the use of the force compensation springs in the system. The forces computed
in 3.16 and 3.17 which are a result of the extension of the tendon lengths are identical to these
kinematically obtained expressions as represented Equations 3.29 to 3.32. As a result if there
would be no coupling, springs could be introduced to compensate these forces acting on the
DOFs. This indicates that the net zero force will have a spring compensation that generates
equal force but opposite in direction for each configuration. These force expressions are es-
sential to show the flow of energy generated as a result of the force from the springs k1 and
k2.

F (q ,θ) =∂H(s)

∂q
(3.27)

F (q ,θ) =k1(L1(q ,θ)−L1)
∂L1(q ,θ)

∂q
+k2(L2(q ,θ)−L2)

∂L2(q ,θ)

∂q
(3.28)

The forces on DOFs q11 and q12 are dependent only on the energy stored in the elastic element
k1. Similarly the forces on DOFs q21 and q22 are dependent on k2. This is due to the output link
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being fixed, i.e. θ = 0. Hence their respective force equations will be as follows:

Fq11 =k1(L1(q11,θ)−L1)
∂L1(q11,θ)

∂q11

=k1(L1(q11,θ)−L1)

 q11√
q2

11 + c2
1

+ q11 +q12√
b2

1 + (q11 +q12)2

 (3.29)

Fq12 =k1(L1(q12,θ)−L1)
∂L1(q12,θ)

∂q12

=k1(L1(q12,θ)−L1)

 q11 +q12√
b2

1 + (q11 +q12)2
+ dθ cosθ− lθ+q12√

(a1 − lθ sinθ)2 + (dθ cosθ− lθ+q12)2

 (3.30)

Fq21 =k2(L2(q21,θ)−L2)
∂L2(q21,θ)

∂q21

=k2(L2(q21,θ)−L2)

 q21 +q22√
b2

1 + (q21 +q22)2
+ dθ cosθ− lθ+q22√

(a2 + lθ sinθ)2 + (dθ cosθ− lθ+q22)2

 (3.31)

Fq22 =k2(L2(q22,θ)−L2)
∂L2(q22,θ)

∂q22

=k2(L2(q22,θ)−L2)

 q21√
q2

21 + c2
2

+ q21 +q22√
b2

2 + (q21 +q22)2

 (3.32)

The forces computed from the equations are equal to each other for the DOFs in both the top
and the bottom halves respectively as expected due to symmetry around θ = 0. The change
in the energy content as seen in the previous section was evaluated to be zero which means
the forces balance each other out when the DOFs are coupled around this configuration. Since
such a circumstance occurs, it can hence be concluded that the compensation springs in this
case aren’t necessary for counteracting the internal forces. This means theoretically the coup-
ling is perfect and no additional compensation mechanisms are required. However, as pre-
viously discussed, compensation springs might be necessary to reduce the losses that would
occur in the system due to friction. It is to be noted that if we would not couple the DOFs and
keep the four separate motors, then the force compensation springs will reduce the individual
powers required from these motors. Springs will significantly help in mitigating the losses and
help compensate the internal forces along with the motor.

3.4.3 Power, Work Done and Efficiency

In order to establish the energy efficiency of the system, the power injected into each of the
DOFs were calculated and their sum total were checked if they were close to zero or not. This
can be represented as the product of the internal forces Fq and velocity q̇ of the DOF:

Pq = Fq · q̇ (3.33)

This graphical representation of the individual powers acting on each of the the four actuated
DOFs can be seen in Figure 3.9. The power acting on each of the DOFs Pq that was found was
a function of time t .

The individual power of the DOFs is non-zero. Theoretically the sum total of these values
should be zero i.e. ΣPq = 0, which it was found to be for this system as seen in Figure 3.10,
since the total power flowing into the system must be equal to the total output power. This is
due to construction as the total energy content cannot change.
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Figure 3.9: Power input into each of the four actuated DOFs in the VSA.

The work done W (q ,θ) on the individual DOFs can be calculated as the integral of the power
(Pq ) over time. This can also be defined as the integral of the product of the force acting on the
DOFs due to the springs over a time period from 0 to T and the velocity q̇ , formulated as:

W (q ,θ) =
∫ T

0
Pq (t )d t =

∫ T

0
Fq (q(t ),θ(t ))q̇(t )d t (3.34)

Since the force is variable, we need to compute the work done by a variable force over a dis-
placement q of a DOF. The work done by a force over a relative displacement can then be de-
noted as:

W (q ,θ) =
∫ q(t=T )

q(t=0)
Fq (q(t ),θ(t ))d q (3.35)

The trapezoidal rule was used to compute the individual work done by finding the area under
the curve. The trapezoidal rule finds the area under the curve for a by approximating the region.
Since both the force and the displacement of the DOFs were varying, it could not be integrated
without normalising the force. The error was calculated for this rule and was found to be of the
order 10−9, which means the values obtained through this method were highly accurate. The
sum total of the individual work done by the DOFs was effectively found to be zero.

As the total power in the system under the condition of θ = 0 was found to be zero ( d H(s)
d t = 0),

changing the stiffness requires zero power. This should hold true if in the proposed system, the
DOFs are coupled. With perfect coupling the above condition where total work done is zero
and zero input power can be achieved. Then as a result the force compensation springs will
not be of any use. However, as mentioned previously in section 3.3, perfect coupling occurs
only in ideal conditions as in the real world the system would face losses due to friction. There-
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Figure 3.10: Total power injection into the VSA through the control port with respect to time.

fore compensation springs will help reduce the losses thereby making the system more energy
efficient.

To make an estimate of the losses after coupling the system, a black-box model has been es-
tablished. It is a black-box model since we are not sure what kind of system it will be other
than the fact there will be periodic movement of the actuators based on some rotational in-
put with some phase angle. Let Flosses be the force on the DOFs due to the various losses in
the system and Fcomp be the spring compensation force. Considering that Flosses is dependent
on the forces Fq and friction to be the only factor that contributes to these losses, they can be
computed as (Van Geffen (2009)):

Flosses =µFq cos(t )sign(q̇) (3.36)

The value of µ is the frictional constant between two surfaces, in this case polyoxymethylene
(POM) and steel and was found to be 0.14 (Tri (2020))). The force, Fq cos(t ), is the the normal
force exerted by the surfaces on each other, which varies non-linearly due to the to and fro
movement of the DOF in the left and the right direction for a certain time period from 0 to 2π.
The value of sign(q̇) represents the dependence of the force due to losses on the DOF’s velocity.

In such circumstances the compensation springs will mitigate these losses such that Pcontrol = 0
i.e. Fcomp + Flosses = 0. Otherwise injection of power at the input will be a requirement for
actuating the DOFs. Friction is deemed as the biggest contributor to losses in the case of the
proposed system. Hence a friction model has been derived in order to estimate its effect and
the contribution of the compensation springs in section 4.3. However it is just an estimate
and due to the nature of friction, there may be cases where the forces are out of bounds of
the minimum and maximum expected force and the springs are not able to compensate any
further.

The efficiency (η) at each DOF of the system can be found out by calculating their individual
power loss (Plosses) which can be formulated as:

Plosses =Flosses · q̇ (3.37)
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The efficiency (η) (as %) can then be calculated as:

η=Power Output

Power Input
×100 (3.38)

η= Pq

Pq +Plosses
×100 (3.39)

The above calculation was done for the new proposed system with coupled DOFs assuming the
system is completely mechanical. The losses occur as a result of the movement of the DOFs as
they slide against some surface when actuated by some mechanical input. In case of the exist-
ing system mentioned in Groothuis et al. (2020), it is electromechanical due to the servomotors
present for actuating the DOFs. In that case the losses will also include the heating losses due
to resistance in the armature.

From the values that were obtained, the estimated losses and the efficiency for the new system
were calculated. The comparison of the input power with the losses is illustrated in the plots
in Figure 3.11. The results of the calculated power loss from the next chapter will be compared
with these plots.

Figure 3.11: Estimated power loss in the DOFs for the new system. Comparison between input power
(Pij), input power with losses(Pij+Pijloss) and the power loss(Pijloss), where i,j ∈ {1,2}.

The efficiency plots are shown in Figure 3.12. It shows the increase in efficiency up until a point
where there is no input power on the DOFs and then again drops when the DOFs start returning
to their initial configuration. This repeats for every cycle. This is due to their periodic to and
fro motion of the DOFs over a time period of 0 to 2π. The mean efficiency (η) over the period
of time corresponding to all the DOFs was calculated to be 91.96%. The efficiency calculations
are an essential foundation for defining the results of the friction model. It is to be seen how
much these values deviate or the plots behave in comparison to these estimated results when
the synthesis for the new system along with the friction calculation is done in the next chapter.
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Figure 3.12: Estimated Efficiency of the power input on the DOFs for the new system.

3.5 From Analysis to Synthesis

From this chapter it was deduced that hypothetically the four DOF system can be made more
compact by coupling the actuated DOFs. Therefore a mechanism has to be designed that real-
izes the specific motions that follows the equation 3.12 or in particular the trajectory of the
motions as seen in Figure 3.2. The individual motors are removed when the DOFs are coupled.
If the coupling is perfect then there is no requirement for any additional mechanisms as the
internal forces will be balanced out. However, due to the losses in any physical system, force
compensation springs maybe required to nullify them. The force equations 3.16 and 3.17 can
help design springs that generates reaction forces to reduce these losses. So compensation
springs will be used to improve the efficiency of the system. As shown in the plots in Figure
3.11, there is some additional power required at the input to actuate the DOFs. This means that
energy is required at the input to do work against the losses. The use of compensation springs
can help mitigate this by storing and releasing energy to work against the losses. The calcula-
tions can be verified to this estimate after the friction model is developed in the next chapter to
understand whether the assumptions made were correct or not.

It is to be noted that coupling the DOFs would necessarily mean that the modes of operation
of the system will be limited. This means that the equilibrium position of the system cannot be
changed. There will be only one mode of operation present, i.e. changing the stiffness.

The results in this Chapter define the trajectories of the DOFs that need to be executed and
coupled so a single, reduced DOF model, can be manifested. Hence it enables us to define the
parameters of the new mechanism.
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4 Synthesis of DOF Reduction

To realize a physical model for the reduced DOF system, it is essential to analyse how the mo-
tion trajectories can be reproduced mechanically. In order to achieve that goal, a brief introduc-
tion of straight line mechanisms that could have been possibly implemented will be explored
in order to get an idea to build the system. The major drawbacks of these conventional systems
will be discussed and a new system altogether will be proposed comprising of spirals, cam pro-
files and grooves. Springs will be introduced for compensating the losses that were discussed in
the previous chapter. A theoretical friction model of the system will be established which will
be compared to the estimated model in the previous chapter. Along with these, the efficiency of
the system will also be verified with the estimate and the effectiveness of the springs to negate
the losses will be studied.

4.1 Straight Line Motion Mechanisms

A variety of motion mechanisms exist which convert a rotation to a straight line motion. Some
examples are the slider crank mechanism, Cardan gear mechanism and hypocycloid mech-
anism. The slider crank uses a simple rotational disk or gear that drives a shaft connected
to a piston producing a harmonic output with some constant additional terms. The Cardan
gear mechanism comprise of sun and planet gear with the latter having a diameter half of the
former. The planet gear is connected to a secondary planet gear of equal diameter. A link runs
from the centre of the sun gear to the centre of the secondary planet gear. There is another
link or shaft attached to the secondary planet gear that therefore follows a straight line motion
when all the gears are actuated.

The hypocycloid mechanism is similar to the Cardan in terms of operation, the difference lies
in the fact that it consists of a ring gear and an inner planet gear with a diameter of half of the
ring gear. The approach has already been implemented for the construction of a rotational VSA
(Groothuis et al. (2012), Groothuis et al. (2013)), essentially for conversion of rotational to linear
motion. Even though the straight line motion can be reciprocated from such mechanisms, they
are mostly simple harmonic in nature and therefore are not able to reproduce the identical
motion that is required as mentioned in Equation 3.12.

q = a0 +a2 cos(t )+a4 cos(4t )+b1 sin(t )+b3 sin(3t )+b5 sin(5t )

Unless the aforementioned trajectory is reproduced the stiffness profile of the system will no
more be the desired one and will be effect to change as a result of the alterations in the motion
profile.

In order to obtain the correct trajectory along with reducing the actuated DOFs, we proposed
spirals that would be grooved onto the wheels/gears to replicate the motion of the pulleys as in
the current system. The spirals can be defined as the polar plots obtained from the Cartesian
coordinates of the q trajectories obtained in Equations 3.13 and 3.14 for the bottom and the top
pulleys respectively. Pins can act as the DOFs as a substitute to the pulleys. These pins can be
placed at the junction of horizontal straight grooves (carved on a flat plate, placed on top of the
wheels/gears) and the spiral grooves carved out on a rotating gear/wheel. These will produce
periodic straight line motions with trajectories identical to aforementioned q trajectories. This
proposed mechanism is further elaborated in the next section.

4.2 System Design

Since the conventional straight line motion mechanisms could not be implemented to replicate
the present system, a different approach was required to reproduce the results of the four DOF
system. The system design of this comprises of four major parts in particular namely: Motion
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Spirals, Force Spirals (which are cut on wheels/gears), Straight Grooves that limit the motion of
the pin to a linear motion and the Pin which will be the actuated DOF for the system. But before
that it is important to have a brief discussion on the drawbacks and advantages of reducing the
DOFs. The aim of the project is to reduce the actuated DOFs to less than or equal to two. With

Figure 4.1: New Proposed VSA design with reduced actuated DOFs.

two DOFs, there would be two motors involved in the setup. In a traditional VSA, the advantage
of having two motors is that one is used to control the stiffness, whereas other controls the
position. Reducing this to one DOF will therefore not provide independent control over the
two parameters. Also for the system at hand, the two motors would allow the individual control
of the left and the right limbs. This means that actuating the pulleys (DOFs) q11 and q21 only
would be possible without disturbing the pulleys (DOFs) q12 and q22 and also the vice versa.
Obtaining such a behaviour from just one motor is not possible, as it will actuate all the DOFs
simultaneously. Since the primary goal is to inspect whether the coupling of the DOFs and
compensation of forces are possible in the system, only one DOF will suffice for the time being.
In order to do so, the motion of the pulleys (DOFs) must be such that they have trajectories that

Sanlap Nandi University of Twente



CHAPTER 4. SYNTHESIS OF DOF REDUCTION 31

are identical to the ones that were obtained from the already existing system as seen in Figure
3.2.

A schematic diagram of the proposed system with its various components has been presented
in Figure 4.1. It contains the wheels/gears with the spirals. The straight grooves and the pins are
also indicated along with it. The straight grooves (as shown in Figure 4.1) are present to limit
the movement of the DOF to a straight line motion that follows the trajectories obtained from
the system presented in Groothuis et al. (2020). These grooves can be cut on a flat plate which is
to placed on the top and bottom of the setup. A straight (horizontal) groove is positioned at the
junction of the spiral groove end and the DOF is fit into it. When the wheels/gears containing
the spiral groove rotates, the straight groove restricts the motion of the DOF and only allows a
linear to and fro motion of a periodic nature based on the configuration of the spiral, providing
a motion profile identical to the ones in Figure 3.2.

In the case of the new system, the DOF is a pin that would be actuated due to the rotation of the
wheels/gears. These pins will be placed at the junction of the spirals and the straight grooves to
move along the desired trajectory. The stiff cables attached to the horizontal (output) bar will
be connected to the pins both on the left and right side of the system as seen in the Figure 4.1.
Forces act upon these pins due to the elastic elements (springs k1 and k2) through the cables
which are required to be compensated. Therefore these pins will also act as the attachment
points for the springs between the force and motion spirals for force compensation and will act
accordingly to counteract the forces. Since in our case the system by construction compensates
the internal forces, the springs will be used to mitigate the losses due to friction.

It is to be noted that the length of the straight grooves should be long enough for the pulley to
traverse, which is atleast equal to the difference between the maximum and the minimum po-
sitions along which the pins (DOFs) move. Although it is always safer to keep them longer. The
width of the straight grooves is (equal to the width of the spirals) dependent on the dimension
of the pin (DOF) to which the cable is attached.

The wheels/gears for the force and motion spirals will be connected to each other with the
help of a timing belt. These will be driven by an input wheel/gear with the help of a hand
crank, that will act as a rotational input, which is the single actuated DOF in the newly designed
system. The actuation of the rotational input will enable the other parts of the setup to actuate
simultaneously to obtain the desired behaviour.

Thus, such a mechanism was chosen over the previous straight line motions as it would keep
the stiffness profile intact and also fulfill the objectives. The parametric design of these spirals
are further discussed in the following subsections.

4.2.1 Definition of Motion Spirals

Figure 4.2: Schematic diagram of a proposed Motion Spiral groove on a wheel/gear.
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In Figure 4.2, a wheel/gear can be observed with a groove cut out in the shape of a spiral with a
particular thickness. The spiral is plotted on the x-y coordinate from ψ=−π/2 to π/2 with the
centre of the wheel located at the origin. It is oriented in such a way that the pin is situated at
(q,0) away from the centre. This is a physical representation of a motion spiral with the straight
groove and the pin.

Figure 4.3: Motion Spirals obtained from the polar coordinates of the q trajectories. The dimension of
the coordinates are in mm.

The motion spirals (Figure 4.3) are to be used as a substitute mechanism for obtaining the
motion profiles in place of the linear motors. They are supposed to carved onto gears or wheels
in the form of grooves. In order to appropriately get the correct trajectory, the polar coordinates
of the trajectories were calculated. The trajectories are symmetric, which means that only half
of a spiral on a wheel/gear needs to be created to get the entire motion. For obtaining a single
DOF, a rotational input will be used with a certain angle of rotation ψ. It is to be coupled to
some transmission elements that would give us the desired output of the various elements of
q . The equations of the x and y coordinates of the motion spiral are given by with respect to the
input angle ψ:

xm = rm(ψ)cosψ (4.1)

ym = rm(ψ)sinψ (4.2)

Such that the configuration of each DOF qi j is given by the radius of its corresponding motion
wheel rmi j at the current input angle ψ. The radius of the wheel/gear is determined by the
largest value of rm and should be > rm to properly fit onto it leaving some space at the edges.
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As a result of the rotation of the input wheel the value of q will be a function of ψ and can be
expressed as:

q(ψ) = a0 +a2 cos(ψ)+a4 cos(4ψ)+b1 sin(ψ)+b3 sin(3ψ)+b5 sin(5ψ) (4.3)

What the motion spiral does is it creates a cam profile for the DOF (in this case a pin) to follow
and is limited to a periodic to and fro motion in the x-axis which replicates the trajectories
which are obtained in Figure 3.2 depending on which spiral the pin is located. There are many
instances where the use of cam profiles to obtain a particular linear or rotational motion for
VSAs were deemed useful such as Spagnuolo et al. (2017) and Sun et al. (2018). Hence this
method was thought of in order to tackle the problem at hand.

4.2.2 Definition of Force Spirals

Figure 4.4: Schematic diagram of proposed Force Spiral grooves on a wheel/gear.

Similar to a motion spiral, a schematic representation of two force spirals on a single
wheel/gear is shown in Figure 4.4 plotted from ψ = −π/2 to π/2. The center is located at the
origin and the pins on either left and right spirals are located at (−s,0) and (s,0) respectively.
The straight groove which restricts the pins to move in a horizontal direction is also indicated.
The idea of having two force spirals on a single disc is to reduce the size of the hardware and is
feasible due to the symmetry of the system.

In order to increase the efficiency of the system and reduce the losses, compensation springs
were proposed to achieve this. As seen in Figure 3.6, the change in the forces acting on the DOFs
with respect to their absolute position is slightly non-linear. Since the losses in the system due
to friction are presumed to be proportional to these forces, springs can be used to reduce these
losses. In theory, non-linear springs can be used for getting the identical profiles of these forces.
But designing non-linear springs is difficult. Hence the force spirals in the aforementioned
paragraph was proposed. The force spirals similar to the motion spirals can act as cam profiles
to guide a linear spring along a non-linear path (Figure 4.5). One end of the linear spring will
be attached to a pin at position q of a motion wheel, while the other end on a pin at position s
of the force spiral (as seen in Figure 4.1). The elongation of the spring along the spiral with its
end points attached to the positions q and s can help realize the non-linear force profile.

The internal forces present in the system can be written as a function of the input angle ψ,
which is varied from 0 to π. Let K be a chosen spring constant value of a linear spring 1. The
maximum spring force will be equal to K times the difference between the position of the pins

1The value of K in this case was chosen to be 140 N/m based on the hardware specifications. The choice of K
value is dependent on the force (F0) at rest length of the spring (L0) which was mentioned in the specification by the
manufacturer. The minimum force to be compensated must be higher than the the force (F0). It was found that any
spring above 70 N/m would suffice, but 140 N/m was chosen because it would be the optimum size for our system.
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Figure 4.5: Force Spirals obtained from the polar coordinates of the s′(ψ) for the different q trajectories.
The dimension of the coordinates are in mm. Of course two force spirals can be clubbed together into
one wheel/gear as shown in Figure 4.4.

at q and s. The maximum force is the internal force Fq . The value of pin position s can therefore
be determined from the following:

K (q(ψ)− s(ψ)) =−Fq (ψ) (4.4)

q(ψ)− s(ψ) =− Fq (ψ)

K
(4.5)

s(ψ) =q(ψ)+ Fq (ψ)

K
(4.6)

s(ψ) is the position of the other end of the force compensation spring when the origin (zero
position) of the coordinate system is considered to be the center of the motion spiral wheel.
Since in the setup, all spirals wheels should be located at an optimum distance from each other,
the shape of the force spiral needs to be taken and placed on a wheel/gear. After which the
wheel/gear needs to be placed at a desired distance. In order to attach the springs on the pins
(DOFs), there must be attachment points which will take up some space between the motion
and force wheels/gears. This would result in having to place the force spirals at a position
farther away from the center than the actual position, which means we need to provide an
offset to the value of s. Then a contact point can be created on each of the pins located at s and
q which would occupy the space created by the offset to attach the spring. This is to ensure
the relative distance between the two points doesn’t change. An offset is chosen as the distance
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from the center of the wheel to the shortest distance the force compensation pin has to move
and is determined by the following:

s′(ψ) = s(ψ)− (min(s(ψ))−0.01) (4.7)

where s′(ψ) is the relative distance from the center to the wheel to the shortest distance after
applying an offset of 0.01.

The equations of the x and y coordinates of the force spiral are given by with respect to the
input angle ψ, same as the one for the motion spirals:

x f = s′(ψ)cosψ (4.8)

y f = s′(ψ)sinψ (4.9)

Like the motion spirals, the radius of the wheels/gears for the force spirals is decided by the
largest value of the s′ and should be > s′.

4.3 Effect of Friction

The presence of friction affects the performance in mechanical systems. Even though the best
efforts are made to keep them to minimum, it can never be completely negated. Since our
new system is a completely mechanical system, friction plays a dominant role in the losses.
Mitigation techniques such as using materials that cause less friction and smoothing the con-
tact surfaces can be implemented to reduce these losses. However, to make the system energy
efficient we have proposed the use of compensation springs to negate these losses.

A likely location in the system where a significant effect of friction can be witnessed is between
the pins and the side walls of the spiral grooves on which they are placed. This section deals
with the effect the friction plays on the output of the system. A theoretical analysis of the fric-
tion model is presented. The amount of extra work that is to be done to overcome these losses
to obtain the desired output can also be expressed mathematically.

Figure 4.6: Depiction of Frictional force in the spirals

For the mathematical model to calculate the friction, we require the normal force (Fn) acting
on the surface between the pin and the spiral. As the spiral will rotate, it will force the pin to
change its position horizontally because it is restricted by the horizontal grooves. For every
rotation there will be a relative amount of friction between the pin and the spiral walls that will
contribute to some losses. For friction between the pins and the horizontal grooves, there will
be a lot of factors of hardware specifications such as mass of the pins, the material used for the
pins and the grooves and the area of contact between them. Therefore, they have been left out
for the time being and briefly discussed in the next chapter. The system can be approximated
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such that the point where the pin touches the wall of the spiral can considered a line tangent
to a curve which is the spiral (Figure 4.6). The frictional force (F f ) will act along this tangent.
Finding the slope of the tangent drawn to the curve can help determine the angle of the sine
component of the internal force on the DOF. This can be done using the polar coordinates of
the motion spirals with respect to the rotation angle ψ. Hence, we can write the equations as
the following:

x = q cosψ, y = q sinψ (4.10)

q being the distance from center of the wheel/gear to the center of the spiral.

Therefore, the slope of the tangent is given by

d x

dψ
= q̇ cosψ−q sinψ (4.11)

d y

dψ
= q̇ sinψ+q cosψ (4.12)

d y

d x
= q̇ sinψ+q cosψ

q̇ cosψ−q sinψ
(4.13)

For ψ = t, at ω = 1 rad/s

d y

d x
= q̇ sin t+q cos t

q̇ cos t−q sin t (4.14)

By definition, slope = tanδ, therefore,

tanδ= d y
d x (4.15)

tanδ= q̇ sin t+q cos t
q̇ cos t−q sin t (4.16)

δ= arctan
(

q̇ sin t+q cos t
q̇ cos t−q sin t

)
(4.17)

The net forces acting due to the springs which are the internal forces are already know in the
form of Fq (Equations 3.29 to 3.32). The normal force Fn is the cosine component of the internal
force Fq with the angle (90-δ) as depicted in Figure 4.6. Hence the frictional force as depicted
in the Coulomb’s model (Van Geffen (2009)) can be written as:

F f = µFnsign(q̇) (4.18)

F f = µ(Fq cos(90−δ))sign(q̇) (4.19)

Where F f = Frictional force, µ = Co-efficient of friction (0.14), Fn = Normal Force, δ = Angle
found from the slope of the tangent to the curve given by the sine component of the net force.

4.3.1 Loss of Power

Consequently the power loss at each DOF can also be calculated. This is with reference to the
power loss and efficiency calculations mentioned in Section 3.4.3. The theoretical power loss
at each of the DOFs can be computed as:

Plosses =F f · q̇ (4.20)

Let Pinput = Pq be the input power on the DOF without the losses. Due to losses, the input
power should change to Pinput = Pq +Plosses.
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In order to find the efficiency of the DOFs individually, as stated in equation 3.37, the output
power from the DOF is considered Pq , then we can formulate it as:

η=Power Output

Power Input
×100 (4.21)

η= Pq

Pq +Plosses
×100 (4.22)

A plot of the aforementioned in comparison to the values of Pq has been presented in Figure
4.7. We can see here the power input, power loss and the power input with the addition of the
losses. In comparison to the results in Chapter 3 (Figure 3.11), the plots are similar in nature
and have an identical magnitude. The nature of the losses of this theoretical analysis seem to
follow a similar pattern to that of the black-box model.

Figure 4.7: Comparison between input power (Pij), input power with losses(Pij+Pijloss) and the power
loss(Pijloss), where i,j ∈ {1,2}.

4.3.2 Efficiency of the new system

The efficiency plots of the DOFs for the new proposed model is shown in Figure 4.8. The mean
efficiency of the DOFs q12 and q22 was calculated to be 93.03% and for the DOFs q11 and q21

was found to be 93.39%. In comparison to the results obtained at the end of chapter 3, the
mean efficiency of the theoretical model is higher in comparison to the black box model. The
efficiency plots are slightly different as the peaks in the theoretical model. Like the plots in
Figure 3.12, the peaks here are not as sharp. Also for q11 and q21, there is a cluster of three
peaks. These behaviours are likely due to the geometry of the spirals along which the DOFs are
guided.
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Figure 4.8: Efficiency of power input on the DOFs over time.

4.3.3 Use of Compensation Springs

With the inclusion of compensation springs these losses can be reduced, thereby allowing the
system to achieve maximum efficiency. This means that the springs can overcome the loss
of power in the DOFs i.e. Flosses +Fcomp = 0. This is illustrated in Figure 4.9. This results in
zero power loss in the DOFs. It indicates that the resultant power input at the control port is
zero. The idea of using compensation springs comes from static balancing mechanisms which
are mentioned at the end of Chapter 2, especially the spring to spring balancer mentioned in
Figure 2.4. The efficiency plot of the effect of the spring compensation can be seen in Figure
4.10.
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Figure 4.9: Power on the DOFs using compensation springs.

Figure 4.10: Efficiency of power input on DOFs using compensation springs.
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4.4 Inference

The synthesis of the DOFs with the help of different mechanical components can help realize
the motion trajectories. Also it can achieve the objectives of reducing the DOFs by coupling
them and compensate the reaction forces. The motion trajectories can be manifested with
the help of the motion spirals. Making a hollow cut out of the entire profile on a wheel/gear
would be practically impossible. Therefore a part of the spiral can be carved out in the form
of a groove with a certain thickness. This can be done considering the lines shown in the plots
as the center, that would deem suitable to attain the goal. An example of a CAD design of a
wheel containing a spiral is shown in Figure 4.11. The choice behind having the motion spirals
from angles −π/2 to π/2 is to have a rotation of 180◦ both in the clockwise and anticlockwise
direction respectively. Therefore it would account for a full rotation. A non-hollow groove
maybe chosen but that would lead to increased frictional losses.

Figure 4.11: CAD design of a hollow spiral groove carved on a wheel (diameter =13 cm).

The same applies to the force spirals. Also it is convenient to have two force spirals on one
wheel/gear to compensate the forces on either of motion spirals on the left and right side. This
would reduce the number of components and the overall size of the system.

Friction always plays an important role in any mechanical system. For the current system the
friction model has been calculated and the estimated range for the compensation forces is
shown. Nonetheless, when this developed into hardware, the losses due to friction may not be
uniform at all instances as it will also depend on the physical properties such as the amount of
contact between the two surfaces, smoothness/roughness of the material use, etc. So there is
chance that it may deviate at certain instances in comparison to the plots obtained currently.
There can be probable peaks and troughs in the compensation force plots which will depict
the non-uniform behaviour of the system due to fricition when the system is implemented in
real life. The loss of power can hence be calculated to check the efficiency of the system. The
role of the compensation springs has been illustrated as to how to make up for this lost power.
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5 Conclusion and Future Recommendations

This chapter presents the conclusion of the research, discusses limitations of the new proposed
design and the recommendations that can possibly be implemented in the future.

5.1 Conclusion

Variable stiffness mechanisms are employed in the field of robotics for tasks mainly dealing
with replicating human movement. Traditional robots are unable to achieve this behaviour
due to their fixed compliance properties and their stiff nature. In this report we discuss such
a mechanism that utilises variable stiffness, i.e a cable driven Variable Stiffness Actuator (VSA)
and aim to satisfy the design goals.

There already exists a system with a certain stiffness change profile which has four actuated
DOFs. But the presence of multiple DOFs deemed it unfeasible to be used as it is for assist-
ive applications due to design complications. The first design goal was to reduce these DOFs
and device a mechanism with reduced actuated DOF. The results of the motion trajectories
obtained from the current system suggested that system can be coupled to achieve the desired
stiffness change without changing the equilibrium position. This can be done mechanically us-
ing a timing belt to connect the wheels/gears with the cam profiles of the motion trajectories.
The system was therefore designed keeping the output angle (θ = 0) and change in the output
torque (τ̇= 0). The choice of keeping the change in torque constant was done keeping in mind
the use of the VSA in an arm support. If we consider the elbow at an angle of 90◦, then the
force due to gravity of an object placed on the hand or palm is balanced out by the mechanism.
Keeping the change in torque constant would suggest that the force remains unchanged when
the stiffness changes, thereby suggesting there is no acceleration. Meaning that there would be
no oscillations. Usually the damping of oscillations is essentially done with the help of controls.
But since this project doesn’t deal with it, making this choice simplifies the objective.

The second goal was to make the system more efficient. Initially it was thought that removal
of the four servomotors (that drove the DOFs) would lead to the internal forces to act on the
DOFs. This would require some energy injection at the input if not compensated. So static
balancing techniques such as compensation springs would be required. However, this was not
the case. This is by construction and the choice of keeping θ=0 as mentioned in the above
paragraph. Hence, the compensation springs are not required to balance the internal forces.
The energy content of the coupled system was calculated to be constant which meant that the
control power was zero. What required attention was the loss due to friction that were a result
of the interaction between the various parts of the system.

The results of section 3.4.3 indicated that the computed losses could be mitigated with the
help of compensation springs. An estimate of the loss was computed using a black-box model
in Chapter 3 to which the theoretical model of the new system was compared. Comparing the
power plots of the two models it could be observed that the results of the theoretical model were
close to the black-box model. However, it differed in certain instances, the average deviation of
the losses in the black-box model being 10−3 W higher than the theoretical model.

There are discrepancies noticed while comparing the efficiency plots 3.12 and 4.8 in Chapter
3 and 4 respectively which meant the theoretical results were not the exact same as the black-
box model. This is due to the fact that the geometry of the spirals designed in Chapter 4 and
their contact with the DOFs (pins) were not accounted for in the black-box model, which was
estimated to be a regular circular motion. This is why the mean efficiency of the theoretical
model was higher than the black-box model.
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The results obtained for the inclusion of the compensation springs conclude that the losses
due to friction can be mitigated. Since the condition that was chosen for Pcontrol = 0 was
Fcomp + Flosses = 0, the springs were able to mitigate the losses completely and this resulted
in establishment of an ideal system. The DOFs are considered as mass-less or point masses,
so there is no loss due to damping ideally. But in practicality, there will be damping losses res-
ulting in some non-zero power input. Also the arrangement of the practical setup may change
the frictional forces. There will also be some friction losses due to the pin sliding against the
straight grooves. In those cases there may be instances of deviation from the theoretical model,
but by and large the springs should be able to compensate for the unexpected increase in losses
if they are within a certain range. In the real model, the input power through the control port
must be observed in order to estimate how close it is to the ideal model. To make a more real-
istic estimate of the system, the mass of the pins must be know to calculate the damping loss.
Also the material of the straight groove should be considered which is explained in detail in the
next subsection.

5.1.1 Discussion

The use of a single actuated DOF input that causes the equilibrium position to remain un-
changed can be seen as a design limitation. This was done for simplification purposes and
can be solved with having two actuated DOFs for either tendons. This could further help study
how the stiffness change will occur at a different equilibrium position. Or whether the same
stiffness change profile can be chosen for a different equilibrium position i.e. θ 6= 0, corres-
ponding to a particular energy content. Hypothetically, the system should at a changed equi-
librium configuration be able to achieve a desired stiffness profile, but the motion trajectories
would completely change. When changed to a different stiffness, the motion trajectories would
change once again. Combination of multiple trajectories for different configurations may lead
to difficulty in realising the system on a single disc.

The loss that was not accounted for in the system was the friction between the pin and the
straight (horizontal) grooves. Even though the contact between the two will be lesser than that
in comparison to the one between the pin and spirals, there will be some effect on the losses.
In order to calculate this loss, the mass of the pin must be known along with the material of
the straight (horizontal) groove and the area of contact between the two surfaces. These losses
must be added to the already existing friction loss in the system to get a better estimate of the
losses and efficiency. Also this would test the effectiveness of the springs to mitigate the losses.
This can only be estimated if all the parameters of the hardware are known and would result in
a much accurate theoretical model for the losses.

In order to make a theoretical analysis of these losses, let us consider the mass of the pin of
mass m. Let g the acceleration due to gravity. The normal force (N ) is given by:

N = mg (5.1)

Let µh be the friction constant between the pin and the straight groove. The friction force (Fh)
can then be computed by:

Fh =µh N sign(v) (5.2)

where v is the sliding velocity of the pin. In our friction model we consider Fh << F f

(where F f is the frictional force between the pin and the spiral wall, refer to Equation 4.18)
and hence it is neglected for the reasons mentioned above. But to obtain a more accur-
ate model for the losses in the system the total loss should be written as Flosses = F f + Fh +
Damping losses from the springs. This can done only when all the parameters stated above are
known when the model is physically built. The damping loss factor can then also be computed
to determine the actual losses in the system for a non-ideal case. This is why the theoretical
model was designed only using F f as a loss.
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5.2 Future Recommendations

The first step would be to build the new system as proposed with the motion and force
wheels/gears, timing belt, pins and springs. Additional equipment such as bearings maybe
used to constrain the motions and reduce the internal frictional losses. After the construction
is done, experiments for measurement of input force/torque and power must be done with
and without the springs. An estimated outcome from the experiments should be the use of
the springs to reduce the losses. It must be inspected how well and to what extent they mitigate
these losses. The power input must be closer to zero for the case with the springs in comparison
to the experiment without them. The force and torque can be measured by using a F/T sensor
through which can be mounted on top of the input. It would rotate as an when the input hand
crank is rotated. The consequent power input can the be calculated.

The new system is deemed to be larger in size than the already existing one. This is because
the system is a proof of principle for achieving the aforementioned goals of the project. If the
prototype is in sync with the results of the theoretical analysis, then further research needs to
be done to downsize the system. This would require kinematic calculations in 3D as opposed to
the 2D calculations done for this research. The implementation of such a system would have
the force spiral wheel/gear elevated as compared to the motion spiral wheels/gears to save
space. In that way the system can be made more compact.
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A Appendix 1: Uncompensated Internal Forces

In a case where the internal forces in the system are not compensated due to construction of
the VSA. Or if the system is asymmetric which results in the internal forces to be present in the
system, the compensation force from the springs will always range between a maximum and
minimum value. Any added force beyond its maximum limit cannot be compensated for by it.
This can be computed as follows:

From the friction calculations in Chapter 3 Section 4.3 calculations the values for the factors A
and B could be determined by plugging in the values of the corresponding data.

The factors in general can be calculated as a ratio of the difference between the force applied
by the cable on the DOFs (Fq ) and the frictional force (F f ) to the force applied by the cable on
the DOFs (Fq ). A general equation for a ratio factor RF can be expressed as:

RF = Fq −F f

Fq
(A.1)

Consequently the values for A and B can be found by finding out the minimum and maximum
values within the range respectively i.e. A=min(RF ) and B=max(RF ).

Figure A.1: Range of the compensation force due to friction for q11 and q21.
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Figure A.2: Range of the compensation force due to friction for q12 and q22.

It was found for a friction coefficient (µ) = 0.14 between the pin (made of steel) and the spiral
(made of POM), the spring compensation force for DOFs q11 and q21 was between (Figure A.1):

0.86 ·Fcable ≤ Fcomp ≤ 1.14 ·Fcable (A.2)

And for the DOFs q12 and q22, the values for the spring force lie between (Figure A.2):

0.84 ·Fcable ≤ Fcomp ≤ 1.16 ·Fcable (A.3)

From the above calculations it can be inferred that the compensation force will never be equal
to Fq as there will be losses incurred due to friction.
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B Appendix 2: Dimensions of the Reduced DOF Model

Figure B.1: Dimensions of the reduced DOF Model

Dimensions of the existing model in Groothuis et al. (2020) are as follows:
lθ = dθ = 90 mm (total length of the output bar = 180 mm)
a1 = a2 = 90 mm
b1 = b2 = 100 mm
c1 = c2 = 80 mm
d1 = d2 = 140 mm

Dimensions of the new proposed model:
lθ = dθ = 150 mm (total length of the output bar = 300 mm)
a1 = a2 = 90 mm
b1 = b2 = 150 mm
c1 = c2 = 90 mm
d1 = d2 = 140 mm
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C Appendix 3: MATLAB Script� �
1 %% qdot
2 clear a l l ;
3 c l c ;
4 load q11 . mat
5 load q12 . mat
6 load q21 . mat
7

8 x = [ ] ; %t o t a l time period ( s )
9 k =0;

10 for t = 0 : 0 . 0 0 1 : 2 * pi %range f o r time period
11 k=k +1;
12 x ( k ) = t ;
13 end
14

15 %% q11dot
16

17 %%Kdes =0.5 cos ( t )
18 %c o e f f i c i e n t s f o r the Fourier s e r i e s f o r q11 and q21
19 a0 =0.0387178;
20 a2=0.00131169;
21 a4=−0.0000305498;
22 b1=0.0175825;
23 b3=−0.00015739;
24 b5=5.28572*10^(−6) ;
25

26

27 q11=a0 + a2 * cos (2* x ) +a4 * cos (4* x ) + b1* sin ( x ) + b3* sin (3* x ) + b5*
sin (5* x ) ; %Motion equation f o r q11

28 q11dot=5*b5* cos (5* x )−4*a4 * sin (4* x ) +3*b3* cos (3* x )−2*a2 * sin (2* x ) +b1*
cos ( x ) ;%V e l o c i t y equation f o r q11

29 figure ;
30 plot ( x , q11 ) ; %Displacement plot
31 xlabel ( ’Time( s ) ’ ) ;
32 ylabel ( ’ Displacement (m) ’ ) ;
33 t i t l e ( ’Motion of pulley ( q11 ) ’ ) ;
34 figure ;
35 plot ( x , q11dot ) ;%V e l o c i t y plot
36 xlabel ( ’Time( s ) ’ ) ;
37 ylabel ( ’ Velocity (m/ s ) ’ ) ;
38 t i t l e ( ’ Velocity of pulley ( q11 ) ’ ) ;
39 q11per=abs ( Val1−q11 . ’ ) ; %Displacement d i f f e r e n c e
40 per11 =[6284 ,1] ;
41 for i =1:6284
42 per11 ( i ) =( q11per ( i ) / Val1 ( i ) ) *100; %Displacement d i f f e r e n c e ( in

%)
43 end
44

45 %Kdes =0.5 cos ( t )
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46 %c o e f f i c i e n t s of the Fourier s e r i e s f o r q12 and q22
47 a0x =0.0397704;
48 a2x =0.00023253;
49 a4x=−3.0255*10^(−6) ;
50 b1x=−0.0172983;
51 b3x=0.0000551443;
52 b5x=−4.64409*10^(−7) ;
53

54 q12= a0x + a2x * cos (2* x ) + a4x * cos (4* x ) +b1x* sin ( x ) + b3x* sin (3* x ) +
b5x* sin (5* x ) ;%Motion equation f o r q12

55 q12dot=5*b5x* cos (5* x )−4*a4x * sin (4* x ) +3*b3x* cos (3* x )−2*a2x * sin (2* x ) +
b1x* cos ( x ) ;%V e l o c i t y equation f o r q12

56 figure ;
57 plot ( x , q12 ) ;%Displacement plot
58 xlabel ( ’Time( s ) ’ ) ;
59 ylabel ( ’ Displacement (m) ’ ) ;
60 t i t l e ( ’Motion of pulley ( q12 ) ’ ) ;
61 figure ;
62 plot ( x , q12dot ) ;%V e l o c i t y plot
63 xlabel ( ’Time( s ) ’ ) ;
64 ylabel ( ’ Velocity (m/ s ) ’ ) ;
65 t i t l e ( ’ Velocity of pulley ( q12 ) ’ ) ;
66 q12per=abs ( Val2−q12 . ’ ) ;%Displacement d i f f e r e n c e
67 per12 =[6284 ,1] ;
68 for i =1:6284
69 per12 ( i ) =( q12per ( i ) / Val2 ( i ) ) *100;%Displacement d i f f e r e n c e ( in %)
70 end
71 q22=q12 ; %Equality between q22 and q12
72 q21=q11 ; %Equality between q21 and q11
73 q21dot=q11dot ; %Equality between q21dot and q11dot
74 q22dot=q12dot ; %Equality between q22dot and q12dot
75 %% Force P r o f i l e
76 %Dimensions of the tendons of the current system
77 a1 =0.09;
78 a2 =0.09;
79 b1 =0.15;
80 b2 =0.15;
81 c1 =0.09;
82 c2 =0.09;
83 d1 =0.14;
84 d2 =0.14;
85 l t h e t a =0.15; %t o t a l length of the output bar
86 dtheta =0.15; %t o t a l length between the attachment points on the

output bar
87 theta =0;
88 Lbar =0.445; %pretension
89 k=100;
90 L1=d1+sqrt ( c1^2+q11 . ^ 2 ) +sqrt ( b1^2+(q11+q12 ) . ^ 2 ) +sqrt ((− l t h e t a +

dtheta * cosd ( theta ) +q12 ) .^2+( a1−l t h e t a * sind ( theta ) ) . ^ 2 ) ; %L e f t
tendon dimension
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91 L2=d2+sqrt ( c2^2+q21 . ^ 2 ) +sqrt ( b2^2+(q21+q22 ) . ^ 2 ) +sqrt ((− l t h e t a +
dtheta * cosd ( theta ) +q22 ) .^2+( a2+ l t h e t a * sind ( theta ) ) . ^ 2 ) ; %Right
tendn dimension

92 s1=L1−Lbar ; %change in cable length f o r L1
93 s2=L2−Lbar ; %change in cable length f o r L2
94 F1=k* s1 ; %Force on l e f t tendon
95 F2=k* s2 ; %Force on r i g h t tendon
96 figure ;
97 plot ( x , F1 ) ; %Force on l e f t tendon plot
98 xlabel ( ’Time( s ) ’ ) ;
99 ylabel ( ’ Force (N) ’ ) ;

100 t i t l e ( ’ Force on l e f t side of the system ’ ) ;
101 figure ;
102 plot ( x , F2 ) ; %Force on r i g h t tendon plot
103 xlabel ( ’Time( s ) ’ ) ;
104 ylabel ( ’ Force (N) ’ ) ;
105 t i t l e ( ’ Force on r i g h t side of the system ’ ) ;
106 alpha =[1 ,6284] ;
107 beta =[1 ,6284] ;
108 gamma=[1 ,6284] ;
109 delta =[1 ,6284] ;
110 for i =1:6284
111 alpha ( i ) =atand ( a1/q12 ( i ) ) ; %angle extended between a1 and q12
112 beta ( i ) =atand ( b1 /( q12 ( i ) +q11 ( i ) ) ) ; %angle extended between b1 and

q12 & q11
113 gamma( i ) =atand ( b1 /( q11 ( i ) +q12 ( i ) ) ) ; %angle extended between c1 and

q12 & q11
114 delta ( i ) =atand ( c1/q11 ( i ) ) ; %angle extended between c1 and q11
115 end
116 %Internal f o r c e s
117 Fnetq12=F1 . * cosd ( alpha ) +F1 . * cosd ( beta ) ; %Force on q12
118 Fnetq11=F1 . * cosd (gamma) +F1 . * cosd ( delta ) ; %Force on q11
119 Fnetq21=F2 . * cosd (gamma) +F2 . * cosd ( delta ) ; %Force on q21
120 Fnetq22=F2 . * cosd ( alpha ) +F2 . * cosd ( beta ) ; %Force on q22
121

122 figure ;
123 plot ( x , Fnetq12 ) ; %Forces on q12 and q22
124 xlabel ( ’Time( s ) ’ ) ;
125 ylabel ( ’ Force (N) ’ ) ;
126 t i t l e ( ’ Force exerted by the cables on the pulleys ’ ) ;
127 hold on ;
128 plot ( x , Fnetq11 ) ; %Forces on q11 and q21
129 xlabel ( ’Time( s ) ’ ) ;
130 ylabel ( ’ Force (N) ’ ) ;
131 hold on ;
132 legend ( ’ Fnetq12 & Fnetq22 ’ , ’ Fnetq11 & Fnetq21 ’ ) ;
133 Fnet=Fnetq12+Fnetq11 ; %Total net f o r c e
134 %% Force vs Displacement
135 figure ;
136 l in12= 52.24*q12 + 3 . 2 5 3 ; %Linear f i t f o r q12 and q22
137 l in11= 54.5* q11 + 3 . 1 6 4 ; %Linear f i t f o r q11 and q21
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138 % P l o t t i n g a l l f o r c e s with r e s p e c t to t h e i r absolute distances
139 subplot ( 2 , 2 , 1 )
140 plot ( q12 , Fnetq12 , ’ red ’ ) ;
141 hold on
142 plot ( q12 , lin12 , ’ black ’ ) ;
143 xlabel ( ’ q12 (m) ’ ) ;
144 ylabel ( ’ Fnetq12 (N) ’ ) ;
145 t i t l e ( ’ Fnetq12 vs q12 ’ ) ;
146 legend ( ’ Fnetq12 vs q12 ’ , ’ Linear F i t ’ ) ;
147 subplot ( 2 , 2 , 2 )
148 plot ( q22 , Fnetq22 , ’ red ’ ) ;
149 hold on
150 plot ( q12 , lin12 , ’ black ’ ) ;
151 xlabel ( ’ q22 (m) ’ ) ;
152 ylabel ( ’ Fnetq22 (N) ’ ) ;
153 t i t l e ( ’ Fnetq22 vs q22 ’ ) ;
154 legend ( ’ Fnetq22 vs q22 ’ , ’ Linear F i t ’ ) ;
155 subplot ( 2 , 2 , 3 )
156 plot ( q11 , Fnetq11 , ’ red ’ ) ;
157 hold on
158 plot ( q11 , lin11 , ’ black ’ ) ;
159 xlabel ( ’ q11 (m) ’ ) ;
160 ylabel ( ’ Fnetq11 (N) ’ ) ;
161 t i t l e ( ’ Fnetq11 vs q11 ’ ) ;
162 legend ( ’ Fnetq11 vs q11 ’ , ’ Linear F i t ’ ) ;
163 subplot ( 2 , 2 , 4 )
164 plot ( q21 , Fnetq21 , ’ red ’ ) ;
165 hold on
166 plot ( q11 , lin11 , ’ black ’ ) ;
167 xlabel ( ’ q21 (m) ’ ) ;
168 ylabel ( ’ Fnetq21 (N) ’ ) ;
169 t i t l e ( ’ Fnetq21 vs q21 ’ ) ;
170 legend ( ’ Fnetq21 vs q21 ’ , ’ Linear F i t ’ ) ;
171 %% Spiral
172 % Polar coordinates of the displacements of the various DOFs
173 x11=q11 . * cos ( x ) ;
174 y11=q11 . * sin ( x ) ;
175 x12=q12 . * cos ( x ) ;
176 y12=q12 . * sin ( x ) ;
177 x21=q21 . * cos ( x ) ;
178 y21=q21 . * sin ( x ) ;
179 x22=q22 . * cos ( x ) ;
180 y22=q22 . * sin ( x ) ;
181

182 % Polar p l o t s of the displacements of the various DOFs that can be
transformed into a s p i r a l

183 figure ;
184 subplot ( 2 , 2 , 1 )
185 plot ( x12 , y12 ) ;
186 xlabel ( ’ q12cos ( x ) [m] ’ ) ;
187 ylabel ( ’ q12sin ( x ) [m] ’ ) ;
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188 t i t l e ( ’Motion S p i r a l q12 ’ ) ;
189

190 subplot ( 2 , 2 , 2 )
191 plot ( x22 , y22 ) ;
192 xlabel ( ’ q22cos ( x ) [m] ’ ) ;
193 ylabel ( ’ q22sin ( x ) [m] ’ ) ;
194 t i t l e ( ’Motion S p i r a l q22 ’ ) ;
195

196 subplot ( 2 , 2 , 3 )
197 plot ( x11 , y11 ) ;
198 xlabel ( ’ q11cos ( x ) [m] ’ ) ;
199 ylabel ( ’ q11sin ( x ) [m] ’ ) ;
200 t i t l e ( ’Motion S p i r a l q11 ’ ) ;
201

202 subplot ( 2 , 2 , 4 )
203 plot ( x21 , y21 ) ;
204 xlabel ( ’ q21cos ( x ) [m] ’ ) ;
205 ylabel ( ’ q21sin ( x ) [m] ’ ) ;
206 t i t l e ( ’Motion S p i r a l q21 ’ ) ;
207 %% Force Spiral
208

209 % coordinates of the distance traversed by the compensation springs
210 s_theta12_k2=q12+Fnetq12 /140;
211 s_theta21_k2=q21+Fnetq21 /140;
212 s_theta11_k2=q21+Fnetq21 /140;
213 s_theta22_k2=q12+Fnetq12 /140;
214

215 % adding a s h i f t in coordinates of the distance traversed
216 s_theta12_shi f t =s_theta12_k2−(min( s_theta12_k2 ) −0.01) ;
217 s_theta21_shi f t =s_theta21_k2−(min( s_theta21_k2 ) −0.01) ;
218 s_theta11_shi f t =s_theta11_k2−(min( s_theta11_k2 ) −0.01) ;
219 s_theta22_shi f t =s_theta22_k2−(min( s_theta22_k2 ) −0.01) ;
220

221 % Polar coordinates of the distances traversed by the compensation
springs f o r

222 % q12
223 ssxk12= s_theta12_shi f t . * cos ( x ) ;
224 ssyk12= s_theta12_shi f t . * sin ( x ) ;
225

226 %q21
227 ssxk21= s_theta21_shi f t . * cos ( x ) ;
228 ssyk21= s_theta21_shi f t . * sin ( x ) ;
229

230 %q11
231 ssxk11= s_theta11_shi f t . * cos ( x ) ;
232 ssyk11= s_theta11_shi f t . * sin ( x ) ;
233

234 %q22
235 ssxk22= s_theta22_shi f t . * cos ( x ) ;
236 ssyk22= s_theta22_shi f t . * sin ( x ) ;
237
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238 % Polar coordinates of the distances traversed by the compensation
springs

239 subplot ( 2 , 2 , 1 )
240 plot ( ssxk12 , ssyk12 ) ;
241 t i t l e ( ’ Force s p i r a l for q12 ’ ) ;
242 xlabel ( ’ scos ( x ) [m] ’ ) ;
243 ylabel ( ’ ssin ( x ) [m] ’ ) ;
244

245 subplot ( 2 , 2 , 2 )
246 plot ( ssxk22 , ssyk22 ) ;
247 t i t l e ( ’ Force s p i r a l for q22 ’ ) ;
248 xlabel ( ’ scos ( x ) [m] ’ ) ;
249 ylabel ( ’ ssin ( x ) [m] ’ ) ;
250

251 subplot ( 2 , 2 , 3 )
252 plot ( ssxk11 , ssyk11 ) ;
253 t i t l e ( ’ Force s p i r a l for q11 ’ ) ;
254 xlabel ( ’ scos ( x ) [m] ’ ) ;
255 ylabel ( ’ ssin ( x ) [m] ’ ) ;
256

257 subplot ( 2 , 2 , 4 )
258 plot ( ssxk21 , ssyk21 ) ;
259 t i t l e ( ’ Force s p i r a l for q21 ’ ) ;
260 xlabel ( ’ scos ( x ) [m] ’ ) ;
261 ylabel ( ’ ssin ( x ) [m] ’ ) ;
262

263 %Curve f i t f o r the cartesian coordinates of the f o r c e s p i r a l s f o r
v e r i f i c a t i o n

264 s s h i f t 1 2 =0.03479+1.588*10^(−6) * cos ( x ) +0.000977* cos (2* x )
+1.933*10^(−8) * cos (3* x ) −0.02374* sin ( x ) −5.671*10^(−7) * sin (2* x )
+5.804*10^(−5) * sin (3* x ) ;

265 s s h i f t 2 1 =0.0372−3.992*10^(−7) * cos ( x ) +0.002479* cos (2* x )
+1.719*10^(−8) * cos (3* x ) +0.02438* sin ( x ) +2.257*10^(−7) * sin (2* x )
−0.0002841* sin (3* x ) ;

266

267 %% F r i c t i o n
268 %q11 and q21
269 dy21=( q21dot . * sin ( x ) +q21 . * cos ( x ) ) ; %dy f o r q21 and q11
270 dx21=( q21dot . * cos ( x )−q21 . * sin ( x ) ) ; %dx f o r q21 and q11
271 tangent21 =[1 ,6284] ;
272 si21 =[1 ,6284] ;
273 for i =1:6284
274 tangent21 ( i ) = dy21 ( i ) /dx21 ( i ) ;%slope of the tangent
275 si21 ( i ) =atand ( tangent21 ( i ) ) ;%angle of the slope of the tangent
276 end
277 Fcomp21= 0 . 1 4 . * Fnetq21 . * cosd(90−si21 ) . * sign ( q21dot ) ;%F r i c t i o n a l

f o r c e on q21 and q11
278 Fcomp21copy= 0 . 1 4 . * Fnetq21 . * cosd(90−si21 ) ;
279 fact21 =[1 ,6284] ;
280 for i =1:6284
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281 fact21 ( i ) =( Fnetq21 ( i )−Fcomp21( i ) ) /Fnetq21 ( i ) ;%Ratio f a c t o r f o r q21
and q11

282 end
283 maxlimit21=max( fact21 ) ; %maxlimit B f o r q21 and q11
284 minlimit21=min( fact21 ) ; %minlimit A f o r q21 and q11
285 figure ;
286 plot ( x , maxlimit21 * Fnetq21 ) ; %plot of maxlimit
287 hold on ;
288 plot ( x , Fnetq21 , ’−− ’ ) ; %plot of optimum f o r c e
289 hold on ;
290 plot ( x , minlimit21 * Fnetq21 , ’ black ’ ) ;%plot of minlimit
291 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
292 ylabel ( ’ Force (N) ’ , ’ FontSize ’ ,15) ;
293 legend ( ’ Fcable (min) ’ , ’Fcomp11/21 ’ , ’ Fcable (max) ’ , ’ FontSize ’ ,12) ;
294 t i t l e ( ’Compensation force for bottom pulleys q11 and q21 ’ ) ;
295

296 % q12 and q22
297 dy12=( q12dot . * sin ( x ) +q12 . * cos ( x ) ) ; %dy f o r q12 and q22
298 dx12=( q12dot . * cos ( x )−q12 . * sin ( x ) ) ; %dx f o r q12 and q22
299 tangent12 =[1 ,6284] ;
300 si12 =[1 ,6284] ;
301 for i =1:6284
302 tangent12 ( i ) = dy12 ( i ) /dx12 ( i ) ;%slope of the tangent
303 si12 ( i ) =atand ( tangent12 ( i ) ) ;%angle of the slope of the tangent
304 end
305 Fcomp12= 0 . 1 4 . * Fnetq12 . * cosd(90−si12 ) . * sign ( q12dot ) ;%F r i c t i o n a l

f o r c e on q12 and q22
306 Fcomp12copy= 0 . 1 4 . * Fnetq12 . * cosd(90−si12 ) ;
307 fact12 =[1 ,6284] ;
308 for i =1:6284
309 fact12 ( i ) =( Fnetq12 ( i )−Fcomp12( i ) ) /Fnetq12 ( i ) ;%Ratio f a c t o r f o r q12

and q22
310 end
311 maxlimit12=max( fact12 ) ; %maxlimit A f o r q12 and q22
312 minlimit12=min( fact12 ) ; %minlimit A f o r q12 and q22
313 figure ;
314 plot ( x , maxlimit12 * Fnetq12 ) ; %plot of maxlimit
315 hold on ;
316 plot ( x , Fnetq12 , ’−− ’ ) ; %plot of optimum f o r c e
317 hold on ;
318 plot ( x , minlimit12 * Fnetq12 , ’ black ’ ) ; %plot of minlimit
319 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
320 ylabel ( ’ Force (N) ’ , ’ FontSize ’ ,15) ;
321 legend ( ’ Fcable (min) ’ , ’Fcomp12/22 ’ , ’ Fcable (max) ’ , ’ FontSize ’ ,12) ;
322 t i t l e ( ’Compensation force for top pulleys q12 and q22 ’ ) ;
323

324 %% Power
325 % P l o t t i n g the power acting on the individual DOFs
326 figure ;
327 p11=Fnetq11 . * q11dot ; %power on q11
328 subplot ( 2 , 2 , 3 )
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329 plot ( x , p11 ) ;
330 xlabel ( ’Time( s ) ’ ) ;
331 ylabel ( ’Power (W) ’ ) ;
332 t i t l e ( ’Power input on q11 ’ ) ;
333

334 p12=Fnetq12 . * q12dot ; %power on q12
335 subplot ( 2 , 2 , 1 )
336 plot ( x , p12 ) ;
337 xlabel ( ’Time( s ) ’ ) ;
338 ylabel ( ’Power (W) ’ ) ;
339 t i t l e ( ’Power input on q12 ’ ) ;
340

341 p21=Fnetq21 . * q11dot ; %power on q21
342 subplot ( 2 , 2 , 4 )
343 plot ( x , p21 ) ;
344 xlabel ( ’Time( s ) ’ ) ;
345 ylabel ( ’Power (W) ’ ) ;
346 t i t l e ( ’Power input on q21 ’ ) ;
347

348 p22=Fnetq22 . * q12dot ; %power on q22
349 subplot ( 2 , 2 , 2 )
350 plot ( x , p22 ) ;
351 xlabel ( ’Time( s ) ’ ) ;
352 ylabel ( ’Power (W) ’ ) ;
353 t i t l e ( ’Power input on q22 ’ ) ;
354

355 p = [ ] ;
356 for i =1:6284
357 p( i ) =p11 ( i ) +p12 ( i ) +p21 ( i ) +p22 ( i ) ; %t o t a l power
358 end
359 figure ;
360 plot ( x , p , ’ LineWidth ’ , 2 ) ; %plot of t o t a l power vs time
361 xlabel ( ’Time( s ) ’ ) ;
362 ylabel ( ’Power (W) ’ ) ;
363 ylim ([−0.1 0 . 1 ] )
364 t i t l e ( ’ Total input power in the system ’ ) ;
365

366 E=0.5* k * ( s1 .^2+ s2 . ^ 2 ) ; %Energy content of the system
367 figure ;
368 plot ( x , E , ’ Linewidth ’ , 2 ) %plot of the energy content over time
369 xlabel ( ’Time( s ) ’ ) ;
370 ylabel ( ’ Energy ( J ) ’ ) ;
371 ylim ( [ 0 . 3 8 4 0.3842])
372 t i t l e ( ’ Total Energy content of the system ’ ) ;
373

374 q11temp1 = [ ] ;
375 q11temp2 = [ ] ;
376 q21temp1 = [ ] ;
377 q21temp2 = [ ] ;
378 q12temp1 = [ ] ;
379 q12temp2 = [ ] ;
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380 q22temp1 = [ ] ;
381 q22temp2 = [ ] ;
382 v1temp1 = [ ] ;
383 v1temp2 = [ ] ;
384 v1temp3 = [ ] ;
385 v1 = [ ] ;
386 v2 = [ ] ;
387 P1 = [ ] ;
388 for i =1:6284
389 q11temp1 ( i ) =q11 ( i ) / sqrt ( q11 ( i ) ^2+c1^2) ;
390 q11temp2 ( i ) =(q11 ( i ) +q12 ( i ) ) / sqrt ( b1^2+(q11 ( i ) +q12 ( i ) ) ^2) ;
391 Fq11 ( i ) =F1 ( i ) * ( q11temp1 ( i ) +q11temp2 ( i ) ) ; %Force on q11
392

393 q21temp1 ( i ) =q21 ( i ) / sqrt ( q21 ( i ) ^2+c2^2) ;
394 q21temp2 ( i ) =(q21 ( i ) +q22 ( i ) ) / sqrt ( b2^2+(q21 ( i ) +q22 ( i ) ) ^2) ;
395 Fq21 ( i ) =F2 ( i ) * ( q21temp1 ( i ) +q21temp2 ( i ) ) ; %Force on q21
396

397 q12temp1 ( i ) =(q11 ( i ) +q12 ( i ) ) / sqrt ( b1^2+(q11 ( i ) +q12 ( i ) ) ^2) ;
398 q12temp2 ( i ) =( dtheta * cosd ( theta )−l t h e t a +q12 ( i ) ) / sqrt ( ( a1−l t h e t a *

sind ( theta ) ) ^2+( dtheta * cosd ( theta )−l t h e t a +q12 ( i ) ) ^2) ;
399 Fq12 ( i ) =F1 ( i ) * ( q12temp1 ( i ) +q12temp2 ( i ) ) ; %Force on q12
400

401 q22temp1 ( i ) =(q21 ( i ) +q22 ( i ) ) / sqrt ( b2^2+(q21 ( i ) +q22 ( i ) ) ^2) ;
402 q22temp2 ( i ) =( dtheta * cosd ( theta )−l t h e t a +q22 ( i ) ) / sqrt ( ( a1−l t h e t a *

sind ( theta ) ) ^2+( dtheta * cosd ( theta )−l t h e t a +q22 ( i ) ) ^2) ;
403 Fq22 ( i ) =F2 ( i ) * ( q22temp1 ( i ) +q22temp2 ( i ) ) ; %Force on q22
404

405 v1temp1 ( i ) =(q11 ( i ) * q11dot ( i ) ) / sqrt ( c1^2+q11 ( i ) ^2) ;
406 v1temp2 ( i ) = ( ( q11 ( i ) +q12 ( i ) ) * ( q11dot ( i ) +q12dot ( i ) ) ) / sqrt ( b1^2+(

q11 ( i ) +q12 ( i ) ) ^2) ;
407 v1temp3 ( i ) =((− l t h e t a +dtheta * cosd ( theta ) +q12 ( i ) ) * q12dot ( i ) ) /(

sqrt ( ( a1−l t h e t a * sind ( theta ) ) ^2+(− l t h e t a +dtheta * cosd ( theta ) +
q12 ( i ) ) ^2) ) ;

408 v2 ( i ) = ( ( q21 ( i ) * q21dot ( i ) ) / sqrt ( c2^2+q21 ( i ) ^2) +( ( q21 ( i ) +q22 ( i ) )

* ( q21dot ( i ) +q22dot ( i ) ) ) / sqrt ( b2^2+(q21 ( i ) +q22 ( i ) ) ^2) +((−
l t h e t a +dtheta * cosd ( theta ) +q22 ( i ) ) * q22dot ( i ) ) /( sqrt ( ( a2+
l t h e t a * sind ( theta ) ) ^2+(− l t h e t a +dtheta * cosd ( theta ) +q22 ( i ) )
^2) ) ) ;

409 P1 ( i ) =F1 ( i ) * ( v1temp1 ( i ) +v1temp2 ( i ) +v1temp3 ( i ) ) ; % t o t a l power
in l e f t tendon

410 P2 ( i ) =F2 ( i ) * v2 ( i ) ; %t o t a l power in r i g h t tendon
411 end
412 % Work done on individual DOFs
413 Wq11=trapz ( q11 , Fq11 ) ;
414 Wq21=trapz ( q21 , Fq21 ) ;
415 Wq12=trapz ( q12 , Fq12 ) ;
416 Wq22=trapz ( q22 , Fq22 ) ;
417 Wtotal=Wq11+Wq12+Wq21+Wq22;
418

419 figure ;
420 plot ( x , P1+P2 , ’ Linewidth ’ , 2 ) ; %plot of t o t a l power in the system
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421 xlabel ( ’Time( s ) ’ ) ;
422 ylabel ( ’Power (W) ’ ) ;
423 ylim ([−0.1 0 . 1 ] )
424 t i t l e ( ’ Total power present in the system ’ ) ;
425

426

427 % Kr=tau_theta . / ;
428 % f i g u r e ;
429 % plot ( x , Kr ) ;
430 % xlabel ( ’ Time ( s ) ’ ) ;
431 % y l a be l ( ’ S t i f f n e s s range (Nm/ rad ) ’ ) ;
432

433 Px=Fq11 . * q11dot+Fq12 . * q12dot ; %Power on l e f t tendon
434 Py=Fq21 . * q21dot+Fq22 . * q22dot ; %Power on r i g h t tendon
435 %% Power l o s s and e f f i c i e n c y
436 % Power l o s s on various DOFs and t h e i r p l o t s vs time
437 Ploss11=Fcomp21 . * q11dot ; %power l o s s on q11
438 Ploss21=Fcomp21 . * q21dot ; %power l o s s on q21
439 Ploss12=Fcomp12 . * q12dot ; %power l o s s on q12
440 Ploss22=Fcomp12 . * q22dot ; %power l o s s on q22
441

442 p11min=minlimit21 . * p11 ; %min power l o s s on q11
443 p11max=maxlimit21 . * p11 ; %max power l o s s on q11
444 figure ;
445 subplot ( 2 , 2 , 3 )
446 plot ( x , p11 , ’−− ’ ) ;
447 hold on
448 plot ( x , p11min) ;
449 hold on
450 plot ( x , p11max) ;
451 xlabel ( ’Time( s ) ’ ) ;
452 ylabel ( ’Power (W) ’ ) ;
453 t i t l e ( ’Power input with springs on q11 ’ ) ;
454 legend ( ’Optimum Power ’ , ’Pmin ’ , ’Pmax ’ ) ;
455

456 p12min=minlimit12 . * p12 ;%min power l o s s on q12
457 p12max=maxlimit12 . * p12 ;%max power l o s s on q12
458 subplot ( 2 , 2 , 1 )
459 plot ( x , p12 , ’−− ’ ) ;
460 hold on
461 plot ( x , p12min) ;
462 hold on
463 plot ( x , p12max) ;
464 xlabel ( ’Time( s ) ’ ) ;
465 ylabel ( ’Power (W) ’ ) ;
466 t i t l e ( ’Power input with springs on q12 ’ ) ;
467 legend ( ’Optimum Power ’ , ’Pmin ’ , ’Pmax ’ ) ;
468

469 p21min=minlimit21 . * p21 ;%min power l o s s on q21
470 p21max=maxlimit21 . * p21 ;%max power l o s s on q21
471 subplot ( 2 , 2 , 4 )
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472 plot ( x , p21 , ’−− ’ ) ;
473 hold on
474 plot ( x , p21min) ;
475 hold on
476 plot ( x , p21max) ;
477 xlabel ( ’Time( s ) ’ ) ;
478 ylabel ( ’Power (W) ’ ) ;
479 t i t l e ( ’Power input with springs on q21 ’ ) ;
480 legend ( ’Optimum Power ’ , ’Pmin ’ , ’Pmax ’ ) ;
481

482 p22min=minlimit12 . * p22 ;%min power l o s s on q22
483 p22max=maxlimit12 . * p22 ;%max power l o s s on q22
484 subplot ( 2 , 2 , 2 )
485 plot ( x , p22 , ’−− ’ ) ;
486 hold on
487 plot ( x , p22min) ;
488 hold on
489 plot ( x , p22max) ;
490 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,12) ;
491 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,12) ;
492 t i t l e ( ’Power input with springs on q22 ’ ) ;
493 legend ( ’Optimum Power ’ , ’Pmin ’ , ’Pmax ’ ) ;
494 %% Losses Plot
495 % P l o t s f o r the various l o s s e s in the system
496 figure ;
497 subplot ( 2 , 2 , 3 )
498 plot ( x , p11 ) ; %power on q11
499 hold on
500 plot ( x , p11+abs ( Ploss11 ) ) ; %power on q11+ l o s s
501 hold on
502 plot ( x , abs ( Ploss11 ) , ’ black ’ ) ; %l o s s on q11
503 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
504 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
505 t i t l e ( ’Power input on q11 ’ ) ;
506 legend ( ’ P11 ’ , ’ P11+P11loss ’ , ’ P11loss ’ , ’ FontSize ’ ,12) ;
507

508 subplot ( 2 , 2 , 1 )
509 plot ( x , p12 ) ;%power on q12
510 hold on
511 plot ( x , p12+abs ( Ploss12 ) ) ;%power on q12+ l o s s
512 hold on
513 plot ( x , abs ( Ploss12 ) , ’ black ’ ) ;%l o s s on q12
514 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
515 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
516 t i t l e ( ’Power input on q12 ’ ) ;
517 legend ( ’ P12 ’ , ’ P12+P12loss ’ , ’ P12loss ’ , ’ FontSize ’ ,12) ;
518

519 subplot ( 2 , 2 , 2 )
520 plot ( x , p22 ) ;%power on q22
521 hold on
522 plot ( x , p22+abs ( Ploss22 ) ) ;%power on q22+ l o s s
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523 hold on
524 plot ( x , abs ( Ploss22 ) , ’ black ’ ) ;%l o s s on q22
525 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
526 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
527 t i t l e ( ’Power input on q22 ’ ) ;
528 legend ( ’ P22 ’ , ’ P22+P22loss ’ , ’ P22loss ’ , ’ FontSize ’ ,12) ;
529

530 subplot ( 2 , 2 , 4 )
531 plot ( x , p21 ) ;%power on q21
532 hold on
533 plot ( x , p21+abs ( Ploss21 ) ) ;%power on q21+ l o s s
534 hold on
535 plot ( x , abs ( Ploss21 ) , ’ black ’ ) ;%l o s s on q21
536 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
537 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
538 t i t l e ( ’Power input on q21 ’ ) ;
539 legend ( ’ P21 ’ , ’ P21+P21loss ’ , ’ P21loss ’ , ’ FontSize ’ ,12) ;
540

541 %% With Springs
542 %Compensation of l o s s e s using springs
543 figure ;
544 %Losses f o r q11
545 subplot ( 2 , 2 , 3 )
546 plot ( x , p11min) ;%min power using spring
547 hold on
548 plot ( x , p11+abs ( Ploss11 ) ) ; %power on q11+ l o s s
549 hold on
550 plot ( x , p11max , ’ black ’ ) ;%max power using spring
551 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
552 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
553 t i t l e ( ’Power input on q11 ’ ) ;
554 legend ( ’Min spring power ’ , ’ P11+P11loss ’ , ’Max spring power ’ , ’

FontSize ’ ,10) ;
555

556 %Losses f o r q12
557 subplot ( 2 , 2 , 1 )
558 plot ( x , p12min) ;%min power using spring
559 hold on
560 plot ( x , p12+abs ( Ploss12 ) ) ;%power on q12+ l o s s
561 hold on
562 plot ( x , p12max , ’ black ’ ) ;%max power using spring
563 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
564 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
565 t i t l e ( ’Power input on q12 ’ ) ;
566 legend ( ’Min spring power ’ , ’ P12+P12loss ’ , ’Max spring power ’ , ’

FontSize ’ ,10) ;
567

568 %Losses f o r q22
569 subplot ( 2 , 2 , 2 )
570 plot ( x , p22min) ;%min power using spring
571 hold on
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572 plot ( x , p22+abs ( Ploss22 ) ) ;%power on q22+ l o s s
573 hold on
574 plot ( x , p22max , ’ black ’ ) ;%max power using spring
575 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
576 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
577 t i t l e ( ’Power input on q22 ’ ) ;
578 legend ( ’Min spring power ’ , ’ P22+P22loss ’ , ’Max spring power ’ , ’

FontSize ’ ,10) ;
579

580 %Losses f o r q21
581 subplot ( 2 , 2 , 4 )
582 plot ( x , p21min) ;%min power using spring
583 hold on
584 plot ( x , p21+abs ( Ploss21 ) ) ;%power on q21+ l o s s
585 hold on
586 plot ( x , p21max , ’ black ’ ) ;%max power using spring
587 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
588 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
589 t i t l e ( ’Power input on q21 ’ ) ;
590 legend ( ’Min spring power ’ , ’ P21+P21loss ’ , ’Max spring power ’ , ’

FontSize ’ ,10) ;
591

592 %% E f f i c i e n c y
593 %calculating the e f f i c i e n c y of the power input on the various DOFs
594 eta11 = [ ] ;
595 eta12 = [ ] ;
596 eta21 = [ ] ;
597 eta22 = [ ] ;
598 for i =1:6284
599 eta11 ( i ) =abs ( p11 ( i ) ) / ( abs ( p11 ( i ) ) +abs ( Ploss11 ( i ) ) ) ; %e f f i c i e n c y on

q11
600 eta12 ( i ) =abs ( p12 ( i ) ) / ( abs ( p12 ( i ) ) +abs ( Ploss12 ( i ) ) ) ; %e f f i c i e n c y on

q12
601 eta21 ( i ) =abs ( p21 ( i ) ) / ( abs ( p21 ( i ) ) +abs ( Ploss21 ( i ) ) ) ; %e f f i c i e n c y on

q21
602 eta22 ( i ) =abs ( p22 ( i ) ) / ( abs ( p22 ( i ) ) +abs ( Ploss22 ( i ) ) ) ; %e f f i c i e n c y on

q22
603 end
604

605 %plot of the power e f f i c i e n c y of the various DOFs
606 figure ;
607 subplot ( 2 , 2 , 3 )
608 plot ( x , eta11 *100)%plot of e f f i c i e n c y of q11
609 xlabel ( ’Time( s ) ’ )
610 ylabel ( ’ E f f i c i e n c y (\ eta ) (%) ’ ) ;
611 t i t l e ( ’ E f f i c i e n c y of power input on q11 ’ ) ;
612 subplot ( 2 , 2 , 1 )
613 plot ( x , eta12 *100)%plot of e f f i c i e n c y of q12
614 xlabel ( ’Time( s ) ’ )
615 ylabel ( ’ E f f i c i e n c y (\ eta ) (%) ’ ) ;
616 t i t l e ( ’ E f f i c i e n c y of power input on q12 ’ ) ;
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617 subplot ( 2 , 2 , 4 )
618 plot ( x , eta21 *100)%plot of e f f i c i e n c y of q21
619 xlabel ( ’Time( s ) ’ )
620 ylabel ( ’ E f f i c i e n c y (\ eta ) (%) ’ ) ;
621 t i t l e ( ’ E f f i c i e n c y of power input on q21 ’ ) ;
622 subplot ( 2 , 2 , 2 )
623 plot ( x , eta22 *100)%plot of e f f i c i e n c y of q22
624 xlabel ( ’Time( s ) ’ )
625 ylabel ( ’ E f f i c i e n c y (\ eta ) (%) ’ ) ;
626 t i t l e ( ’ E f f i c i e n c y of power input on q22 ’ ) ;
627

628 %% Assumption Power Loss and E f f i c i e n c y Calculation
629

630 theta =−180:(360/6283) : 1 8 0 ; %f a c t o r of l o s s
631 c =0.14;
632 % P11loss=c . * Fnetq11 . * q11dot . * cos ( x ) . * sign ( q11dot ) ;%estimated power

l o s s in q11
633 % P12loss=c . * Fnetq12 . * q12dot . * cos ( x ) . * sign ( q12dot ) ;%estimated power

l o s s in q12
634 % P21loss=c . * Fnetq21 . * q21dot . * cos ( x ) . * sign ( q21dot ) ;%estimated power

l o s s in q21
635 % P22loss=c . * Fnetq22 . * q22dot . * cos ( x ) . * sign ( q22dot ) ;%estimated power

l o s s in q22
636

637 P11loss=c . * Fnetq11 . * q11dot . * cosd ( theta ) . * sign ( q11dot ) ;%estimated
power l o s s in q11

638 P12loss=c . * Fnetq12 . * q12dot . * cosd ( theta ) . * sign ( q12dot ) ;%estimated
power l o s s in q12

639 P21loss=c . * Fnetq21 . * q21dot . * cosd ( theta ) . * sign ( q21dot ) ;%estimated
power l o s s in q21

640 P22loss=c . * Fnetq22 . * q22dot . * cosd ( theta ) . * sign ( q22dot ) ;%estimated
power l o s s in q22

641

642 % plot of the estimated power l o s s e s
643 figure ;
644 subplot ( 2 , 2 , 3 )
645 plot ( x , p11 ) ;%power on q11
646 hold on
647 plot ( x , p11+abs ( P11loss ) ) ;%power on q11+estimated l o s s
648 hold on
649 plot ( x , abs ( P11loss ) , ’ black ’ ) ;%estimated power l o s s on q11
650 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
651 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
652 t i t l e ( ’ Estimated power l o s s vs power input on q11 ’ ) ;
653 legend ( ’ P11 ’ , ’ P11+P11loss ’ , ’ P11loss ’ , ’ FontSize ’ ,12) ;
654

655 subplot ( 2 , 2 , 1 )
656 plot ( x , p12 ) ;%power on q12
657 hold on
658 plot ( x , p12+abs ( P12loss ) ) ;%power on q12+estimated l o s s
659 hold on
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660 plot ( x , abs ( P12loss ) , ’ black ’ ) ;%estimated power l o s s on q12
661 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
662 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
663 t i t l e ( ’ Estimated Power l o s s vs power input on q12 ’ ) ;
664 legend ( ’ P12 ’ , ’ P12+P12loss ’ , ’ P12loss ’ , ’ FontSize ’ ,12) ;
665 ylim ([−0.1 0 . 1 5 ] )
666 subplot ( 2 , 2 , 2 )
667 plot ( x , p22 ) ;%power on q22
668 hold on
669 plot ( x , p22+abs ( P22loss ) ) ;%power on q22+estimated l o s s
670 hold on
671 plot ( x , abs ( P22loss ) , ’ black ’ ) ;%estimated power l o s s on q22
672 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
673 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
674 t i t l e ( ’ Estimated power l o s s vs power input on q22 ’ ) ;
675 legend ( ’ P22 ’ , ’ P22+P22loss ’ , ’ P22loss ’ , ’ FontSize ’ ,12) ;
676 ylim ([−0.1 0 . 1 5 ] )
677 subplot ( 2 , 2 , 4 )
678 plot ( x , p21 ) ;%power on q21
679 hold on
680 plot ( x , p21+abs ( P21loss ) ) ;%power on q21+estimated l o s s
681 hold on
682 plot ( x , abs ( P21loss ) , ’ black ’ ) ;%estimated power l o s s on q21
683 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
684 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
685 t i t l e ( ’ Estimated power l o s s vs power input on q21 ’ ) ;
686 legend ( ’ P21 ’ , ’ P21+P21loss ’ , ’ P21loss ’ , ’ FontSize ’ ,12) ;
687

688 Rx11=(Fnetq11−c . * Fnetq11 ) . / Fnetq11 ; % Ratio f a c t o r f o r q11 and q21
689 Rx12=(Fnetq12−c . * Fnetq12 ) . / Fnetq12 ; % Ratio f a c t o r f o r q12 and q22
690

691 A11=min( Rx11 ) ; % Min Ratio f a c t o r f o r q11 and q21
692 B11=max( Rx11 ) ; % Max Ratio f a c t o r f o r q11 and q21
693 A12=min( Rx12 ) ; % Min Ratio f a c t o r f o r q12 and q22
694 B12=max( Rx12 ) ; % Max Ratio f a c t o r f o r q12 and q22
695

696 figure ;
697 plot ( x , B11* Fnetq11 ) ; %Max spring f o r c e l i mi t f o r q11 and q21
698 hold on ;
699 plot ( x , Fnetq11 , ’−− ’ ) ; %Spring f o r c e optimum estimated
700 hold on ;
701 plot ( x , A11* Fnetq11 , ’ black ’ ) ; %Minimum spring f o r c e l i mi t f o r q11

and q21
702 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
703 ylabel ( ’ Force (N) ’ , ’ FontSize ’ ,15) ;
704 legend ( ’Fqmax ’ , ’ Fspring11 /21 ’ , ’Fqmin ’ , ’ FontSize ’ ,12) ;
705 t i t l e ( ’ Estimated Compensation force for bottom pulleys q11 and q21 ’

) ;
706

707 figure ;
708 plot ( x , B12* Fnetq12 ) ;%Maximum spring f o r c e l i mi t f o r q12 and q22
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709 hold on ;
710 plot ( x , Fnetq12 , ’−− ’ ) ; %Spring f o r c e optimum estimated
711 hold on ;
712 plot ( x , A12* Fnetq12 , ’ black ’ ) ;%Minimum spring f o r c e l i mi t f o r q12 and

q22
713 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
714 ylabel ( ’ Force (N) ’ , ’ FontSize ’ ,15) ;
715 legend ( ’Fqmax ’ , ’ Fspring12 /22 ’ , ’Fqmin ’ , ’ FontSize ’ ,12) ;
716 t i t l e ( ’ Estimated Compensation force for bottom pulleys q12 and q22 ’

) ;
717 %% Estimated E f f i c i e n c y
718 e11 = [ ] ;
719 e12 = [ ] ;
720 e21 = [ ] ;
721 e22 = [ ] ;
722 for i =1:6284
723 e11 ( i ) =abs ( p11 ( i ) ) / ( abs ( p11 ( i ) ) +abs ( P11loss ( i ) ) ) ; %Estimated power

e f f i c i e n c y f o r q11
724 e12 ( i ) =abs ( p12 ( i ) ) / ( abs ( p12 ( i ) ) +abs ( P12loss ( i ) ) ) ; %Estimated power

e f f i c i e n c y f o r q12
725 e21 ( i ) =abs ( p21 ( i ) ) / ( abs ( p21 ( i ) ) +abs ( P21loss ( i ) ) ) ; %Estimated power

e f f i c i e n c y f o r q21
726 e22 ( i ) =abs ( p22 ( i ) ) / ( abs ( p22 ( i ) ) +abs ( P22loss ( i ) ) ) ; %Estimated power

e f f i c i e n c y f o r q22
727 end
728 %P l o t s of the estimated e f f i c i e n c i e s of power input on the various

DOFs
729 figure ;
730 subplot ( 2 , 2 , 3 )
731 plot ( x , e11 *100)%plot of estimated e f f i c i e n c y on q11
732 xlabel ( ’Time( s ) ’ )
733 ylabel ( ’ E f f i c i e n c y (\ eta ) (%) ’ ) ;
734 t i t l e ( ’ Estimated E f f i c i e n c y of power input on q11 ’ ) ;
735 subplot ( 2 , 2 , 1 )
736 plot ( x , e12 *100)%plot of estimated e f f i c i e n c y on q12
737 xlabel ( ’Time( s ) ’ )
738 ylabel ( ’ E f f i c i e n c y (\ eta ) (%) ’ ) ;
739 t i t l e ( ’ Estimated E f f i c i e n c y of power input on q12 ’ ) ;
740 subplot ( 2 , 2 , 4 )
741 plot ( x , e21 *100)%plot of estimated e f f i c i e n c y on q21
742 xlabel ( ’Time( s ) ’ )
743 ylabel ( ’ E f f i c i e n c y (\ eta ) (%) ’ ) ;
744 t i t l e ( ’ Estimated E f f i c i e n c y of power input on q21 ’ ) ;
745 subplot ( 2 , 2 , 2 )
746 plot ( x , e22 *100)%plot of estimated e f f i c i e n c y on q22
747 xlabel ( ’Time( s ) ’ )
748 ylabel ( ’ E f f i c i e n c y (\ eta ) (%) ’ ) ;
749 t i t l e ( ’ Estimated E f f i c i e n c y of power input on q22 ’ ) ;
750 %% Compensation Springs
751 %Compensation of l o s s e s using springs
752 figure ;
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753 Pcomp11=Fcomp21 . * q11dot ;
754 Pcomp12=Fcomp12 . * q12dot ;
755 Pcomp21=Fcomp21 . * q21dot ;
756 Pcomp22=Fcomp12 . * q22dot ;
757

758 % Pcomp11=( Fnetq11 ./140 −0.01) . * q11dot ;
759 % Pcomp12=( Fnetq12 ./140 −0.01) . * q12dot ;
760 % Pcomp21=( Fnetq21 ./140 −0.01) . * q21dot ;
761 % Pcomp22=( Fnetq22 ./140 −0.01) . * q22dot ;
762 %Losses f o r q11
763 subplot ( 2 , 2 , 3 )
764 plot ( x , p11+abs (Pcomp11) , ’ LineWidth ’ , 1 ) ;%power with compensation

springs
765 hold on
766 plot ( x , p11+abs ( Ploss11 ) , ’−− ’ , ’ LineWidth ’ , 2 ) ; %power on q11+ l o s s
767 hold on
768 plot ( x , abs ( Ploss11−Pcomp11) , ’ black ’ ) ;%power l o s s
769 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
770 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
771 t i t l e ( ’Power input on q11 ’ ) ;
772 legend ( ’ P11+P11comp ’ , ’ P11+P11loss ’ , ’ P11loss ’ , ’ FontSize ’ ,12) ;
773

774 %Losses f o r q12
775 subplot ( 2 , 2 , 1 )
776 plot ( x , p12+abs (Pcomp12) , ’ LineWidth ’ , 1 ) ;%power with compensation

springs
777 hold on
778 plot ( x , p12+abs ( Ploss12 ) , ’−− ’ , ’ LineWidth ’ , 2 ) ;%power on q12+ l o s s
779 hold on
780 plot ( x , abs ( Ploss12−Pcomp12) , ’ black ’ ) ;%power l o s s
781 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
782 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
783 t i t l e ( ’Power input on q12 ’ ) ;
784 legend ( ’ P12+P12comp ’ , ’ P12+P12loss ’ , ’ P12loss ’ , ’ FontSize ’ ,12) ;
785

786 %Losses f o r q22
787 subplot ( 2 , 2 , 2 )
788 plot ( x , p22+abs (Pcomp22) , ’ LineWidth ’ , 1 ) ;%power with compensation

springs
789 hold on
790 plot ( x , p22+abs ( Ploss22 ) , ’−− ’ , ’ LineWidth ’ , 2 ) ;%power on q22+ l o s s
791 hold on
792 plot ( x , abs ( Ploss22−Pcomp22) , ’ black ’ ) ;%power l o s s
793 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
794 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
795 t i t l e ( ’Power input on q22 ’ ) ;
796 legend ( ’ P22+P22comp ’ , ’ P22+P22loss ’ , ’ P22loss ’ , ’ FontSize ’ ,12) ;
797

798 %Losses f o r q21
799 subplot ( 2 , 2 , 4 )
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800 plot ( x , p21+abs (Pcomp21) , ’ LineWidth ’ , 1 ) ;%power with compensation
springs

801 hold on
802 plot ( x , p21+abs ( Ploss21 ) , ’−− ’ , ’ LineWidth ’ , 2 ) ;%power on q21+ l o s s
803 hold on
804 plot ( x , abs ( Ploss21−Pcomp21) , ’ black ’ ) ;%power l o s s
805 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,15) ;
806 ylabel ( ’Power (W) ’ , ’ FontSize ’ ,15) ;
807 t i t l e ( ’Power input on q21 ’ ) ;
808 legend ( ’ P21+P21comp ’ , ’ P21+P21loss ’ , ’ P21loss ’ , ’ FontSize ’ ,12) ;
809 %% E f f i c i e n c y using compensation springs
810 ecomp11 = [ ] ;
811 ecomp12 = [ ] ;
812 ecomp21 = [ ] ;
813 ecomp22 = [ ] ;
814 for i =1:6284
815 ecomp11( i ) =(abs ( p11 ( i ) ) +abs (Pcomp11( i ) ) ) /( abs ( p11 ( i ) ) +abs ( Ploss11 ( i

) ) ) ; %Estimated power e f f i c i e n c y f o r q11
816 ecomp12( i ) =(abs ( p12 ( i ) ) +abs (Pcomp12( i ) ) ) /( abs ( p12 ( i ) ) +abs ( Ploss12 ( i

) ) ) ; %Estimated power e f f i c i e n c y f o r q12
817 ecomp21( i ) =(abs ( p21 ( i ) ) +abs (Pcomp21( i ) ) ) /( abs ( p21 ( i ) ) +abs ( Ploss21 ( i

) ) ) ; %Estimated power e f f i c i e n c y f o r q21
818 ecomp22( i ) =(abs ( p22 ( i ) ) +abs (Pcomp22( i ) ) ) /( abs ( p22 ( i ) ) +abs ( Ploss22 ( i

) ) ) ; %Estimated power e f f i c i e n c y f o r q22
819 end
820 %P l o t s of the estimated e f f i c i e n c i e s of power input on the various

DOFs
821 figure ;
822 subplot ( 2 , 2 , 3 )
823 plot ( x , ecomp11 , ’ LineWidth ’ , 1 . 5 )%plot of e f f i c i e n c y on q11 using

springs
824 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,12)
825 ylabel ( ’ E f f i c i e n c y (\ eta ) ’ , ’ FontSize ’ ,12) ;
826 t i t l e ( ’ q11 ’ ) ;
827 subplot ( 2 , 2 , 1 )
828 plot ( x , ecomp12 , ’ LineWidth ’ , 1 . 5 )%plot of e f f i c i e n c y on q12 using

springs
829 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,12)
830 ylabel ( ’ E f f i c i e n c y (\ eta ) ’ , ’ FontSize ’ ,12) ;
831 t i t l e ( ’ q12 ’ ) ;
832 subplot ( 2 , 2 , 4 )
833 plot ( x , ecomp21 , ’ LineWidth ’ , 1 . 5 )%plot of e f f i c i e n c y on q21 using

springs
834 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,12)
835 ylabel ( ’ E f f i c i e n c y (\ eta ) ’ , ’ FontSize ’ ,12) ;
836 t i t l e ( ’ q21 ’ ) ;
837 subplot ( 2 , 2 , 2 )
838 plot ( x , ecomp22 , ’ LineWidth ’ , 1 . 5 )%plot of e f f i c i e n c y on q22 using

springs
839 xlabel ( ’Time( s ) ’ , ’ FontSize ’ ,12)
840 ylabel ( ’ E f f i c i e n c y (\ eta ) ’ , ’ FontSize ’ ,12) ;
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841 t i t l e ( ’ q22 ’ ) ;� �
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