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1

SAMENVATTING

Doel: Het ontwikkelen van een support vector machine (SVM) voor een actieve knieprothese om overgangen tussen
bewegingsmodi te voorspellen: intentieherkenning. De onderzochte bewegingsmodi zijn lopen op een vlakke ondergrond en
traplopen. Daarnaast wordt ook de meerwaarde van proefpersoonspecifieke SVM’s onderzocht. Een proefpersoonspecifieke
SVM houdt in dat alleen de data van die specifieke proefpersoon wordt gebruikt om te voorspellen of hij of zij gaat veranderen
van bewegingsmodus. Het is van belang dat deze overgangen op een veilige manier plaatsvinden, zodat de gebruiker niet
verstoord wordt in zijn balans. Daarnaast is het ook belangrijk dat de voorspelling nauwkeurig is, zodat de prothese niet op
onverwachte manieren beweegt.

Methode: Van drie proefpersonen is data verzameld tijdens het lopen, traplopen en overgangen hiertussen. Deze data gaven
informatie over de positie en oriëntatie van de gewrichten en de krachten die er op de prothese spelen. Er wordt geanalyseerd
wanneer de beslissing om van bewegingsmodus te veranderen gemaakt had moeten worden om een soepele overgang te
kunnen uitvoeren. Het effect van aanpassingen in de input data voor de SVM op de nauwkeurigheid van de voorspellingen is
geanalyseerd op drie aspecten: het aantal geanalyseerde proefpersonen, het deel van de loopcyclus dat bekeken wordt en het
aantal klasses waarin de data onderverdeeld wordt. Met het aantal klasses onderverdelen wordt bedoeld of de overgangen en
de modi zelf samengevoegd worden in één klasse of dat ze gesplitst worden in twee klasses.

Resultaten: Er zijn kleine onderlinge verschillen in de looppatronen van de verschillende proefpersonen, zoals de tijdsduur
per stap. Dit heeft een effect op het optimale tijdstip waarop de overgang tussen bewegingsmodi plaats moet vinden. Ook de
fase van de loopcyclus die het beste is om te gebruiken voor de voorspelling hangt af van de proefpersoon.

Conclusie: Proefpersonen vertoonden iets afwijkende bewegingspatronen ten opzichte van elkaar, waardoor het optimale
tijdstip persoonsafhankelijk is. Bovendien resulteerde een proefpersoonspecifieke SVM in de hoogste nauwkeurigheid van
intentieherkenning. Het scheiden van de data van overgangen tussen modi en de modi zelf verbeterde de nauwkeurigheid van
de intentieherkenning nauwelijks.

Relevantie: Deze studie suggereert dat de focus moet liggen op proefpersoonspecifieke SVMs voor het voorspellen van
overgangen tussen bewegingsmodi, in plaats van op algemene SVMs die op alle geamputeerden kunnen worden toegepast.
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Machine learning for intent recognition in a
powered knee prosthesis

S.H.G. Nies, s.h.g.nies@student.utwente.nl, s1559516, MSc student BME

Abstract—Objective: To develop a support vector machine
(SVM) to predict locomotion mode transitions between level-
ground walking and stair ascent, and to investigate the addi-
tional value of subject-specific SVMs. Methods: Training data
consisted of steady-state level-ground walking and stair ascent,
and transitions between them. The effect of input data on the
accuracy of the SVM has been analyzed with regard to three
aspects: the number of included subjects, the analyzed portion
of the gait cycle, and the number of classes. Results: Optimal
characteristics of the SVM input data, such as the selected portion
of the gait cycle, were subject-specific. The number of classes
did not strongly affect the accuracy of the prediction. Conclu-
sion: Subjects exhibited slightly different locomotion patterns,
affecting the optimal timing of the prediction. Furthermore, a
subject-specific SVM resulted in the highest accuracy of intent
recognition. Separating transitional and steady-state data into
two classes hardly improved the intent recognition accuracy.
Significance: This study suggests that the focus should be on
subject-specific models for intent recognition, rather than general
models that can be applied to all amputees.

Index Terms—Intention detection, locomotion modes, subject-
specific, transfemoral amputee

I. INTRODUCTION

TRANSFEMORAL Microprocessor-controlled Prosthetic
Knees (MPKs) are medical devices that restore walking

function for transfemoral amputees (TFAs). They mimic the
healthy biological knee function and control the movement
of the joint on a real-time basis by using sensory information
recorded from a variety of sensors, such as an inertial measure-
ment unit (IMU) and a load cell. These sensors give informa-
tion about the orientation and position of the joint and the ap-
plied forces and moments on the MPK, respectively. This can
be done by either passive knee prostheses (P-MPKs), which
have variable damping, or active prosthetic knees (A-MPKs)
which contain a motor. A-MPKs can actively extend the knee
and thereby permit the user to execute energy-demanding
tasks, such as standing up from a sitting position. Furthermore,
they permit additional locomotion modes, such as step-over-
step stair ascent. However, the differences between locomotion
modes are large. For instance, the knee flexes further during
stair ascent compared to walking (Appendix A-A). Therefore,
each locomotion mode requires a specific algorithm to control
the knee joint. [1]

Since there are multiple locomotion modes, transitions be-
tween these control algorithms are necessary. A sudden switch
between these may lead to excessive mechanical work by the
A-MPK. This can then disturb the balance of the user [2]. To
prevent this, smooth transitions between locomotion modes
are required. These transitions should not require cognition of

the user and should happen reliably and safely [3]. To obtain
smooth transitions, recognizing the user’s intent is crucial [4].

Two aspects are important for the user’s intent: the timing
of the decision and the decision itself. When the user decides
to switch locomotion mode, the control algorithm should be
switched accordingly and at the right moment, to prevent user
instability. This timing is referred to as the critical timing.
Huang et al. [5] analyzed the critical timing for transitions
between level-ground walking (LW) and stair ascent (SA). In
this study, critical timing has been defined as the beginning of
the swing phase for transitions to SA and the initial contact of
the prosthetic foot for transitions to LW [5]. However, Simon
et al. [6] have shown that a delay of 90 ms does not affect
the stability of the user. Furthermore, delaying the transitions
significantly increased the accuracy of the intent recognition
algorithm [6].

As for the decision of the locomotion mode switch: it can
be based on a combination of data from a variety of sensors.
Besides the aforementioned IMU and load cell, additional
equipment such as laser distance meters [7], [8], pressure
sensors under the sole [9], electrical sensors on the sound
leg [5] can be integrated. This additional equipment makes
the device more complex and therefore more challenging
to apply in daily use [5]. For example, electromyographic
(EMG) signals are not stationary [5] and acquisition and
implementation of lower limb prosthesis control during the
dynamic task of ambulation is challenging [10]. Furthermore,
the commercial market favors simplistic methods for intent
recognition [11]. Thus, additional sensors are not desirable.

When analyzing sensor data, intent recognition can be
implemented with two main approaches: a rule-based approach
and a machine learning model [1]. Rule-based systems thresh-
old parameters such as knee height to differentiate between lo-
comotion modes. Several variations of rule-based systems for
intent recognition have been proposed. For example, Grimes
et al. [12] have developed a rule-based system to transition
between LW and SA that was based on the knee angle at the
contact of the foot with the floor. Parri et al. [13] have used
a combination of ground reaction forces, joint angles of knee
and hip, and angular velocities of the thighs, shanks, and feet.
Jang et al. [14] have used the hip angle and absolute difference
between the hip angles to recognize transitions from LW to
SA. However, this algorithm resulted in a one-step delay of
locomotion mode recognition, which is not desirable. Li et
al. [15] have used a threshold on the vertical position of the
IMU and the pitch angle of the foot. These thresholds were
determined based on previously obtained data.

Rather than extracting and thresholding a specific combina-
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tion of parameters, one can apply machine learning to utilize
the entire data set. Machine learning models make predictions
by building a mathematical model based on training data. For
example, Huang et al. [5] and Zhang et al. [4] have combined
EMG signals with mechanical signals in a support vector ma-
chine (SVM). Huang et al. [16] used EMG signals in a linear
discriminant analysis (LDA) and an artificial neural network
(ANN) classifier. The LDA’s performance is comparable to
the ANN, but the LDA was found to be more computationally
efficient. For a more detailed overview, see appendices A-B
and A-C. Out of various approaches for intent recognition
with mechanical sensors and an IMU, previous work showed
that the SVM was the most successful at predicting transitions
between locomotion modes [17].

However, further investigation of data features is necessary
to optimize the system for practical use [5]. As mentioned
before, no consensus has been reached on the critical timing.
Similarly, Huang et al. [5] and Zhang et al. [4] used sliding
windows of 150 ms but did not report the reasoning for this
choice. Later, Zhang et al. [2] analyzed the effect of timing to
switch locomotion mode during transitions, but did not analyze
transitions between LW and SA. Further research on the timing
is crucial to improve the quality of intent recognition systems
for A-MPKs. SVM has shown to be the most successful at
predicting these transitions, and therefore should be best suited
to elucidate the effects of the timing on intent recognition
accuracy.

The objective of this study is to analyze the critical tim-
ing to switch locomotion modes and develop an SVM with
mechanical sensor input for intent recognition. This SVM can
differentiate between level-ground walking (LW), stair ascent
(SA), and transitions between the two. Optimization of the
SVM will be evaluated, along with the added value of subject-
specific classifiers.

II. METHODS

A. Materials

The A-MPK used in this study was the IntelLeg Knee (ILK),
equipped with an IMU and a load cell (fig. 1). Furthermore,
the ILK featured an embedded controller including control
algorithms for LW and SA. Parameters that were logged
during data acquisition were knee angles, knee velocity, knee
acceleration, load cell axial force and sagittal bending moment.

The algorithm to control the knee used a global state
machine with four different states: vertical tracking, powered
extension, damped state, and swing state (fig. 2). Vertical
tracking ensured a vertical shank orientation. The knee was
extended during the powered extension state. The damped state
supported the user during the stance phase. During swing state,
the knee flexed to provide ground clearance and subsequently
extended for foot placement.

The embedded control algorithms for LW and SA used
different combinations of states available in the global state
machine. The control algorithm for LW switched back and
forth between swing state and damped state. SA’s control
algorithm was slightly more extensive: once the foot was in
the swing state, the ILK would go to the vertical tracking

(a) Side view of the ILK and the
definitions of axes

(b) Definition of knee and thigh
angle. Thigh angles were esti-
mated based on the IMU and the
Madgwick algorithm

Fig. 1: ILK and the used definitions

Fig. 2: Global state machine and transitions between the states.

state. Once the foot was placed on the stairs, the ILK would
go to the damped state, after which the powered extension
state supported the user during step-over-step stair ascent.
Within the swing state, there were sub-states, which defined
the control algorithm for a specific locomotion mode. For
example, the minimum knee angle was around -60 degrees
during LW and -90 degrees during SA (θknee in fig. 1b).

As noted before, the ILK contained an embedded controller.
Besides supporting SA and LW, the controller featured a rule-
based switch to switch between these modes. The decision to
switch control algorithms was based on the vertical position
of the IMU. More specifically, the switch from LW to SA was
made when the IMU’s vertical position rose more than 7.5 cm.

Besides the ILK, further materials used to gather data are an
L-shaped socket, a body-weight support system, and a wired
connection with a laptop. The L-shaped socket was used in
combination with the ILK, to allow able-bodied subjects to
walk with the ILK. The body-weight support system (ZeroG,
Aretech LLC) was used for safety, of which the track had
a rectangular shape (fig. 3). The wired connection allowed
communication between Simulink and the ILK, to manually
trigger transitions between control algorithms. The sampling
frequency was 1000 Hz.

B. Participants and database generation

TABLE I: Summary of demographic information for the three
able-bodied subjects (H1-H3)

Length (m) Weight (kg) Age Gender
H1 1.83 85 32 M
H2 1.62 72 28 F
H3 1.71 67 25 F
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Fig. 3: Upper view of the track. The blue line represented
the rail of the body-weight support system, the brown object
represented the stairs with a horizontal part in the middle

Three able-bodied subjects (see table I for demographic
information), all familiar with using the ILK, were included in
the study. To gather training data, subjects performed 20 laps:
10 times clockwise, 10 times counter-clock-wise. To avoid
fatigue, subjects were allowed to rest, on request. Each lap
consisted of LW, a transition from LW to SA, steady-state
SA, transition from SA to LW, descending the stairs, and
level-ground walking until the starting point (fig. 3). Through
Simulink, the conductor of the experiment initiated the switch
between locomotion modes, which took place at toe-off. So,
for a transition from LW to SA, the control algorithm of LW
would be used, until the prosthetic foot left the floor. Toe-off
was detected if the bending rate of change was larger than 1
Nm/kgs and the axial load was smaller than -1% of the body
weight of the user.

Based on the IMU and load cell data, other variables were
calculated: yaw angle, pitch angle, roll angle, stride height,
stride length, stride velocity in the horizontal and vertical
direction.

C. Critical timing

The knee angle followed roughly the same pattern for LW
and for the transition between LW and SA, up to a certain point
in the gait cycle. The same holds for transitions from SA to
LW. A smooth transition occurred when the switch was made
before the difference between the control algorithms became
too large. To be more specific, in this study the threshold for
this difference was defined as an absolute difference of 10
degrees. The moment in time after toe-off that the difference
exceeds the threshold is defined as the critical timing.

D. Training the SVM classifier

The machine learning approach consisted of multiple parts
(fig. 4). The developed classifier was trained to decide before
the critical timing.

Fig. 4: Flowchart for training the classifier

1) Labels: steady-state LW, a transition from LW to SA,
steady-state SA, or a transition from SA to LW. Labeling was
done manually, by analyzing the combination of maximum
thigh flexion angles and minimum knee flexion angles for each
step and comparing them to those of the previous step.

2) Feature extraction: as noted before, data was gathered
at 1000 Hz. Furthermore, data during the complete gait cycles
was logged. However, only the data before the critical timing
was of interest for the intent recognition system. Therefore,
for every gait cycle, specific features were extracted from this
portion of the data. These features consisted of the minimum,
maximum, and mean value, and the standard deviation for each
logged and derived parameter from the IMU and load cell.

3) Dimension reduction: To reduce complexity of the
system, dimension reduction was used. LDA was used to
transform the data set, consisting of all the parameters, into a
lower-dimensional data set. LDA transformed the data, such
that the distances between classes were maximized (Appendix
A-C1). This resulted in an n by m matrix, with n the number
of analyzed gait cycles and m the number of classes minus
one.

4) SVM Classifier: hyperparameter optimization of the
SVM was done by the automatic optimization algorithm of
MATLAB, which uses Bayesian optimization.

E. Manual optimization of the SVM

Besides optimization of the SVM within MATLAB, changes
can be made to the input data as well. In this case, the effect of
the following aspects were analyzed: the number of subjects,
the window size and delay, and the use of sub-classes.

1) Number of subjects: data was gathered from three sub-
jects. By comparing the performance of the SVM trained on
all the subjects with the SVM trained on a specific subject,
the added value of subject-specific SVMs can be assessed.

2) Window size and delay: the effect of using various
portions of the data on the accuracy of the SVM was assessed
as well. First, from toe-off, a variable delay was introduced.
This delay ranged from -500 to 100 ms, in increments of 100
ms. From this point in time, data was selected within a window
of variable size. The used window sizes were 100, 200, 300,
or 400 ms. Based on the combination of the delay and window
size, a specific portion of the data was analyzed. The accuracy
of the optimized model was estimated for all the combinations
of delays and window sizes.

3) Number of classes: to assess the effect of the number of
classes on the accuracy of the SVM, two types of models were
used. The 4-class model consisted of steady-state LW and SA,
and the transitions between the two. For the 2-class model, the
steady-state data and the transitional data were merged into
one class. For example, data from steady-state LW and the
transition from SA to LW were merged into one class.

F. System evaluation

Various analyses were performed. First, a general analysis
of walking gait was done on the individual subjects. Then, the
critical timing was evaluated for each subject and compared
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to the timing of the embedded rule-based intent recognition
system.

The effects of the aforementioned factors (section II-E)
on the accuracy of the SVM were analyzed. Lastly, the
generalization of the models was evaluated. These effects were
tested with the following indicators of classification accuracy:

Accuracy =
# of correct classified observations

total # of observations
(1)

fSA =
# of falsely classified SA
total # of classified SA

(2)

fLW =
# of falsely classified LW
total # of classified LW

(3)

10-fold cross-validation was applied to obtain the confusion
matrix. The indicators were deduced from this confusion
matrix.

This resulted in a confusion matrix, from which the indi-
cators were deduced. The accuracy gave a general idea of
the performance of the SVM, which should be maximized.
Whereas the false SA rate (fSA) and the false LW rate (fLW)
indicated the origin of misclassification, which should be min-
imized. However, minimization of fSA should be prioritized,
since false SA classification was likely to result in the user
falling down. False LW classification was likely to result
in inability to ascend the stairs in a step-over-step manner.
This is inconvenient and uncomfortable for the user, but not
necessarily dangerous.

To analyze the generalizability of the subject-specific mod-
els, the data of the other subjects were used as input. The same
accuracy indicators were then calculated.

III. RESULTS

A. Analysis of locomotion modes

Fig. 5: Mean ± SD knee and thigh flexion angles of steady-
state LW. t=0 represents the toe-off event of the current step.
Maximum knee flexion reaches a knee angle of -60 degrees.
n was the number of steps that were analyzed per subject

Fig. 6: Mean ± SD knee and thigh flexion angles of steady-
state SA. t=0 represents the toe-off event of the current step.
Maximum knee flexion reaches a knee angle of -90 degrees.
n was the number of steps that were analyzed per subject

Each subject had a slightly different locomotion pattern (see
fig. 5 and fig. 6). The reached angles were comparable, but
the timing of the peaks varied. This might have consequences
for the critical timing and optimal window per subject. During
steady-state LW, H3 had a longer stance phase than the other
two subjects. Furthermore, H2 had a slight knee flexion during
the stance phase, while the other two subjects kept a knee angle
of approximately 0 degrees. During the steady-state SA, H3
needed more time to extend the knee. H2 had a slightly larger
thigh flexion and slightly smaller knee angle.

B. Critical timing

Transitions from SA should be made before 340 ms after
toe-off (fig. 7). The rule-based controller would have taken
this decision at 180 ms after toe-off. However, it can be seen
that the critical timing varied among subjects: between 340
and 370 ms after toe-off.

For transitions from LW, the decision should be taken a
little bit earlier: 230 ms after toe-off. The rule-based controller
would have decided 260 ms after toe-off (fig. 8). The critical
timing with the manual switch varies a bit more among the
subjects: between 220 ms and 300 ms after toe-off.

The smallest value of the critical timing was 220 ms after
toe-off. Therefore, the used windows ended at 200 ms after
toe-off.

C. Manual optimization of the SVM

1) Optimization per subject: The performance of the sub-
jects depended on the choice of window size and delay (fig. 9).
The locations and values of the maxima of the accuracy varied
among the subjects and used number of classes. The maximum
accuracy was for the 4-class model of H3: 99.81%. This model
uses a window of 0:100.
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Fig. 7: Critical timing for transitions from LW. The critical
timing varied for each subject. t=0 represents the toe-off event
of the current step. The upper half shows the results for
the manual transitions, the lower half shows the results for
the embedded rule-based controller. The left half shows the
averaged results, while the right half shows the results per
subject.

Fig. 8: Critical timing for transitions from SA. The critical
timing varies for each subject. t=0 represents the toe-off event
of the current step. The upper half shows the results for
the manual transitions, the lower half shows the results for
the embedded rule-based controller. The left half shows the
averaged results, while the right half shows the results per
subject.

a) H1: The 4-class and 2-class models all resulted in the
same value for accuracy: 99.79%. Furthermore, the values for
fSA and fLW were equal, 0% and 0.25% respectively. There
was one exception: for a window of -200:200, fSA was 1.20%
and fLW was 0%. Remarkably, the locations of the maxima
were equal for the 4-class and 2-class models.

b) H2: The 4-class model resulted in one model with an
accuracy of 99.40%. fSA was 1.85% and fLW was 0.36%. The
window for which this held was -100:200. The 2-class model
resulted in 10 possible models with an accuracy of 99.09%.
Four of those had the lowest possible fSA: 1.89% and a fLW
of 0.72%. The windows for which this held are -500:-300,
-400:-300, 0:200 and 100:200.

c) H3: The 4-class model resulted in one model with an
accuracy of 99.81%, fSA of 1.30%, and fLW of 0% for the
window -500:-100. For the 2-class models, 8 models resulted
in an accuracy of 99.63%, fSA of 2.56% and fLW of 0%. The
windows for which this held are -300:100, -200:100, -200:200,
-100:100, -100:200, 0:100, 0:200, and 100:200.

2) General model: The accuracy of the combined model
varied for the combination of window size, delay, and the
number of classes. The maximum accuracy for the 4-class
model was 99.41%, there was one model with this accuracy for
a window of -200:200. fSA was 2.78% and fLW was 0.18%.
For the 2-class model, the maximum accuracy was 99.33%.
There were 6 models with this accuracy, and they all had a
fSA of 2.79% and fLW of 0.26%. The windows were -200:100,
-200:200, -100:200, 0:100, 0:200, and 100:200.

The feature space (fig. 11) of the combined 4-class model
shows that there was variability among the subjects. The cloud
for the classes was more spread out and sometimes data points
cross clouds. For example, this can be seen fig. 11b, where
multiple data points from LW→ SA of H2 and H3 were closer
to the cloud with SA → LW than of their class.

3) Number of classes: The distances between the separate
classes in the feature space for the 4-class model were visible
(fig. 12), while these distances were less clear in the feature
space for the 2-class model. This could also be seen in the
accuracy of the models: the 4-class models were slightly
more accurate than the 2-class models (table II). The largest
difference was for H3: fSA was 1.30% for the 4-class model,
compared to 2.56% for the 2-class model. However, it should
be noted that these models used a separate delay and window
size (fig. 9). On the other hand, the number of possible models
for the combined data set with 2 classes was larger than for
the 4 classes, with slightly lower accuracy.

D. Generalization of the models

The optimum window changed strongly when the data of
the other subjects was used as input for the subject-specific
models (fig. 14). The overall accuracy of all the models
dropped: the highest accuracy of all models was 91.74%
(table III), compared to 99.81% for the subject-specific model.
Furthermore, fSA was a lot higher. The feature spaces of the
different subjects are shown in fig. 13. It can be seen that the
shape of the feature spaces was comparable, but the values
had a different offset.

IV. DISCUSSION

A. Interpretation of results

1) Critical timing: The critical timing of the transition from
SA was found to be 270 ms after toe-off but varied among
the subjects. The rule-based controller was slightly faster with
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Fig. 9: Accuracy of each cross-validated model for all subjects and combinations of window sizes, delays, and number of
classes

TABLE II: Overview of accuracy of 4-class models and 2-class models

4-class model 2-class model
# of models Accuracy (%) fSA (%) fLW (%) # of models Accuracy (%) fSA (%) fLW (%)

H1 19 99.79 0 0.25 18 99.79 0 0.25
H2 1 99.40 1.85 0.36 4 99.09 1.89 0.72
H3 1 99.81 1.30 0 8 99.63 2.56 0
Combined 1 99.41 2.78 0.18 6 99.33 2.79 0.26

Fig. 10: Accuracy of the cross-validated combined model for
all combinations of window sizes, delays, and number of
classes

a decision time of 230 ms after toe-off. The transition from
LW was 340 ms after toe-off, the rule-based controller was
faster with 250 ms after toe-off. This suggests that there is
more time to decide than the rule-based system uses.

Furthermore, there was some variability among subjects.
This suggests that the differences in locomotion patterns also
result in a unique value for the critical timing. This affects
the to be studied windows and delays: if a decision has to be
made earlier in the gait cycle, there is no use in analyzing the
data.

TABLE III: Summary of results of generalization of the
models

Model Accuracy
(%)

False
SA (%)

False
LW (%)

Window (ms
after toe-off)

H1, 4 classes 71.05 92.68 4.92 0:100
H1, 2 classes 85.71 2 14.38 -500:-300
H2, 4 classes 75.02 27.50 0 -500:-400
H2, 2 classes 83.78 51.78 7.68 -500:-400
H3, 4 classes 89.89 7.41 1.26 -500:-400
H3, 2 classes 91.74 16.50 7.06 -500:-400

Zhang et al. [2] seem to be the only ones that have tried to
quantify the critical timing of transitions as well, based on the
mechanical work that has been done by the A-MPK. However,
since that has not been analyzed in this study, it is not possible
to compare the criterion with the value used in this study.

2) Optimization of the classifier:
a) Subject-specific vs general model: The performance

of the classifier has been analyzed for a data set consisting
of one and a data set consisting of three subjects. For both
the 4-class model and the 2-class model, the accuracy was
lower for the combined model than for the individual subjects.
This suggests that subject-specific models outperform general
models. This is in agreement with Young et al. [18]

b) Number of classes: Combining the transitional data
and steady-state data in one class resulted in a slightly less
accurate model. However, the differences between the accu-
racy were less than 0.4%. The value of fSA was slightly higher
for the 2-class model. Furthermore, more models could result
in the same accuracy.

Young et al. [18] also analyzed the number of classes, but
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(a) Feature space of the combined model in 3D (b) Feature space of the combined model in 2D

Fig. 11: Feature space of the combined model for the window -200:200 ms after toe-off

Fig. 12: Comparison of the feature space for the 4-class model
(top) and 2-class model (bottom) and window -100:200

took a different approach. They built a 5-class model in which
transitional and steady-state data were merged into one class,
and they built a mode-specific model in which the steady-
state and transitional data were split into two classes. This
resulted in more accurate predictions for the mode-specific
model. However, no conclusion is drawn on whether or not
merging steady-state and transitional data into one class is
beneficial.

c) Window size and delay: The various data sets resulted
in diverse combinations of window size and delays. The

Fig. 13: Feature space for the model of H1 with 2 classes and
window -500:-300

models of H1 with 4 classes resulted in a lot of combinations
that all accurately predicted the locomotion mode. For the
other subjects and the 4-class models, only one model resulted
in the best accuracy. For the 2-class models, a minimum of 4
and a maximum of 18 models resulted in the best accuracy.
The window size and delay depended on the subject-specific
data set, which suggests that they depend on the gait pattern
of the user. Zhang et al. [4] used a sliding window of 150
ms. Huang et al. [5] report predictions of the classifiers
approximately 300-420 ms before the prosthetic foot left the
ground. In this study, it is possible to predict the intention
of the next step up to 400 ms before toe-off. Furthermore,
this study has shown that it is possible to do so after toe-off.
However, this is at the cost of accuracy.

d) Features used in classifier: The features used in this
study where the minimum, maximum, mean, and standard
deviation of the parameter for that specific window. Zhang
et al. [4] use the mean, standard deviation, minimum, and
maximum values of each parameter for the mechanical signals.
The used mechanical signals were the forces and moments
recorded by a 6-DOF load cell mounted on the prosthetic
pylon. Huang et al. [5] also use the minimum, maximum,
and mean value of each direction of force or moment. This
study shows that the prediction of locomotion mode can be
done by less complex system as well, which fits perfectly to
the conclusion of Fluit et al. [11]: simplistic methods with
mechanical sensors for intent recognition are favored by the
commercial market, which is the end goal for this product.
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Fig. 14: Accuracy of the model predicting the locomotion mode of the other subjects

e) Offline performance of machine learning approach:
For the data set with one subject, the classifier was able to
successfully predict the locomotion mode with an accuracy
of 99.81%. Huang et al. [5] reached an accuracy of 95% for
recognizing the transitional periods. Li et al. [15] obtained
an accuracy of at least 92%. This study resulted in higher
accuracy values for all models that were considered.

3) Generalization of model: It was shown that the accuracy
of the models drastically decreases if data of other subjects
are used for the subject-specific models. This supports the
earlier observation that a subject-specific model results in more
accurate results.

B. Limitations and recommendations
The amount of data that has been gathered was limited:

only three subjects have been included, with 15 samples of
the locomotion mode transitions. Variables such as walking
speed, different angles of approaching the stairs, or different
types of stairs, have not been taken into account. Therefore, the
models developed in this study might lack robustness in real-
life situations. Using a larger number of samples in various
environments should increase the robustness of the system.
On the other hand, there is a trade-off between the burden
on the user to obtain a large data set and the improvement
of accuracy and robustness. In future research, this trade-off
should be investigated.

As mentioned in the methods for participant and database
generation (section II-B), the conductor of the experiment
initiated the switch between locomotion modes. The switch of
control algorithms then took place at toe-off. As a result, the
subjects might move differently compared to when only the
LW control was used. This may have affected the acquired
data and therefore might have consequences for real-time
implementation. To solve this, data should be gathered where
the switch between locomotion modes takes place at the
critical timing rather than toe-off.

The threshold used to estimate the critical timing was 10
degrees. It was assumed that a threshold this strict would

result in smooth locomotion mode transitions. However, these
assumptions should be tested in real-time. Zhang et al. [19]
analyzed the mechanical work done by the prosthesis to predict
whether or not this transition would cause instability of the
user. This measure can be used to assess this assumption.

It was shown that a subject-specific model resulted in a
more accurate prediction than the general model. It might be
interesting to look at the possibilities of generating a general
model, which can be adapted to the user, to make it user-
specific. This can be done by for example reinforcement
learning or by expanding the training data set for the specific
user. This would reduce the burden on the user during initial
training.

The benefit of a machine learning approach over a rule-
based approach for intent recognition systems has not been
shown yet. Along with real-time implementation, it would
be interesting to analyze the differences and user preference
between the two approaches.

Lastly, to be able to bring this product to the market, several
steps have to be taken. First of all, rather than doing offline
analysis, the intent recognition algorithm should be executed
solely on the ILK and in real-time. Furthermore, support for
additional locomotion modes, such as ramp ascent, should
be implemented as well. However, this will make the intent
recognition system more complex, and will therefore need
more research.

V. CONCLUSION

An SVM to predict locomotion mode transitions between
LW and SA was developed. To do so, data of these transitions
has been gathered by manually switching between locomotion
modes at toe-off. To safely transition between the different
locomotion modes, the decision of the SVM must be made
before the critical timing of 220 ms after toe-off. This value
was subject-dependent and ranged between 220 ms and 300
ms.

Offline optimization of the SVM shows that estimating
the critical timing is feasible. Furthermore, characteristics
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of the SVM input data, such as window size and delay,
were subject-specific. A subject-specific SVM resulted in the
highest accuracy values. Finally, there was no large difference
between merging the transitional and steady-state data into one
class, compared to separating them into individual classes.
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APPENDIX A
LITERATURE STUDY

This literature study gives background information concern-
ing locomotion mode analysis and the differences between
level-ground walking and stair ascent. Furthermore, different
intention detection algorithms will be explained. Lastly, the
used machine learning algorithms will be elaborated.

A. Locomotion mode analysis

To find the differences between the different locomotion
modes and the best transition phases, it is important to un-
derstand the phases of the different locomotion modes. Level-
ground walking and stair ascent are included.

1) Level-ground Walking (LW): Human gait is a periodic
movement. There are two main phases in the gait cycle: stance
and swing phase. During the stance phase, the foot is on the
ground, while in the swing phase this foot is no longer in
contact with the ground and the leg is swinging, in preparation
for the next foot strike.
The stance phase can be subdivided into three phases [20]:
• First double support: Both feet are in contact with the

ground
• Single limb stance: One foot is swinging through, the

other is in contact with the ground
• Second double support: Both feet are in contact with the

ground again
The gait cycle has been further subdivided into eight events,

of which five are during the stance phase and three during the
swing phase. These events are based on the movement of the
foot. [20] Fig. 15 shows the visualization of the different gait
events.
• Heel strike/contact: Initiates gait cycle. Represents the

point at which the body’s center of gravity is at the lowest
position

• Foot-flat: The time when the sole touches the ground
• Mid-stance: When the swinging foot passes the stance

foot and the body’s center of mass is at the highest
position.

• Heel-off: The heel loses contact with the ground and
push-off is initiated by the calf muscles, which results
in pointing the foot downwards.

• Toe-off: Termination of stance phase as the foot leaves
the ground

• Acceleration: Starts as soon as the foot leaves the ground
and the subject activates the hip flexor muscles to accel-
erate the leg forward

• Mid-swing: When the foot passes directly beneath the
body, coincidental with mid-stance for the other foot

• Deceleration: Action of the muscle as they slow down
the leg and stabilize the foot in preparation for the next
heel strike.

However, it should be noted that this is the gait cycle for
healthy humans. Research has shown that unilateral lower-
limb amputees adapt their gait. They have a slower com-
fortable forward velocity, wider strides, and a shorter cycle.
Furthermore, they show an asymmetric walking pattern. The

Fig. 15: Visualization of gait events. [20]

prosthetic stance phase is shorter and the prosthetic swing
phase is longer. The unaffected side shows the opposite: a
longer stance phase and a shorter swing phase. The maximum
flexion of the unaffected knee is larger than the prosthetic
knee and the prosthetic step length is shorter. The prosthetic
knee is locked in extension during most of the stance phase.
Amputees show mediolateral displacement to keep the center
of mass over the prosthesis during prosthetic single support.
Lastly, the metabolic cost of walking is increased by 20 to
100%. [12], [5]

2) Stair ascent: There are different patterns to ascend stairs.
Healthy individuals use a step-over-step (SOS) gait pattern.
However, disabled populations may be forced to adjust their
gait pattern because of decrements in muscular strength, al-
tered balance mechanisms, etc. These populations often adopt
alternate gait patterns, such as increased handrail use, sideways
motion, or a step-by-step gait (SBS) gait pattern. For the
SBS pattern, subjects place both feet on the same step before
ascending or descending. The leading leg takes the step, the
trailing leg is then lifted onto the same step. [21]

For the SOS gait pattern, there is a cyclic pattern while
ascending stairs, visualized in Fig. 16. This cycle is divided
into two distinct phases: the stance phase and the swing
phase. During the ascent, the stance phase consists of
three sub-phases: weight acceptance, pull-up, and forward
continuance. During weight acceptance, the body is shifted
such that the body is in an optimal position to be pulled up.
During pull-up, the other leg is lifted and positioned on the
next step for forward continuance. The swing phase is divided
into two sub-phases: foot clearance and foot placement.
During foot clearance the leg is raised, during foot placement,
the swing leg is positioned for foot placement on the next
step. [22]

B. Intention detection (ID)

Different methods are available for intention detection, such
as echo control, rule-based detection, or machine learning
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Fig. 16: Visualization of phases of stair ascent. (Edited from
[22])

algorithms. All systems need input signals, such as input
from the user, the prosthesis, or both. Signals originated from
the body can be measured with an electromyography. The
input signals coming from the prosthesis depend on the type
of mechanical sensors that are available on the prosthesis.
Examples of this are load cells and IMU.
The combination of EMG and mechanical sensor information
outperformed the machine learning classifiers with only EMG
or mechanical sensor information. [5] However, using EMG
signals also results in a complex system: EMG signals are
not stationary [5], acquisition, and implementation of lower
limb prosthesis control during the dynamic task of ambulation
is challenging. This may result in a questionable quality
of EMG data. [10] Results of Huang et al. [16] suggest
that sufficient neural control information can be extracted
for accurate classification of locomotion mode from EMG
signals recorded from muscle above the knee in able-bodied
subjects and possibly individuals with long trans-femoral (TF)
amputations. Therefore, it is unclear whether this is feasible
in subjects with short amputations. Spanias et al. [10] show
that the additional value of EMG signals is marginal for an
adaptive model compared to a non-adaptive model.

1) Echo control: With this control scheme, the prosthetic
limb is controlled such that it will mimic the kinematics of
the previous cycle of the unaffected leg. This scheme is then
individualized and responds to the cadence of the user. It also
can deal with different locomotion modes, because it simply
mimics the movement of the other leg [5], [12]
This control scheme is based on the assumption that the
unaffected limb inputs a desirable input trajectory. However,
this might not be the case. As is mentioned in section A-A1,
pathological gait is not symmetric. [12] Another problem
could be if the user missteps: this will be imitated by the
prosthesis and can result in safety issues. For example, if the
user stumbles with the healthy leg, the prosthesis will mimic
this behavior.
Furthermore, additional instrumentation on the unaffected leg
is necessary. This restricts the use of the prosthesis to unilateral
amputees and also results in problems for an odd number
of steps: The prosthesis will always move one step if the
biological leg does so. To change the locomotion mode,

the biological leg must be in front. [5], [12] Furthermore,
additional sensors should be applied to the biological limb
to mimic its behavior.
The advantages of individualization and response to cadence
do not outweigh the disadvantages and risks.

2) Rule-based detection: Currently, manual mode switch-
ing schemes are implemented in many applications due to
simplicity and reliability. [15] This means, for instance, that
the user pushes a button and the devices switches between
modes. There is no available automatic gait mode recognition
scheme that is capable of reliably detecting all modes in
real-time and using a minimalist sensor array [15]. However,
several approaches have been taken. These methods use a rule-
based system: the designer defines the possible gait modes
and identifies a fixed set of rules that indicate the transition
between different modes. These rules may be based on the
sensed state of the user, device or the environment at a given
point in the gait cycle.[1]
These rules evaluate the value of different parameters, crite-
ria might be selected manually or through analytical means
[1]. For example, Grimes [12] used the knee angle at foot
contact. If this angle is larger than 62 degrees, stair ascent is
recognized. In case the knee angle is smaller than 30 degrees,
walking is recognized. This is always one step too late: the
foot is already on the stairs before the knee angle crosses the
threshold.
Parri et al. [13] use a combination of ground reaction forces,
joint angles of knee and hip and angular velocities of the
thighs, shanks, and feet. Since the algorithm needs the infor-
mation on both sides, IMUs are placed on the chest, thighs,
shanks, and feet.
Li et al. [15] used the vertical position of the IMU and the
pitch angle of the foot to recognize stair ascent. However, this
algorithm compares the orientation and position to a threshold.
This means that the threshold is only crossed if the subject is
already standing on the stairs, and therefore does not recognize
the transition itself.
Jang et al. [14] use a Fuzzy inference system to differentiate
between the different walking modes. For their system, they
use the hip angle and the absolute difference between the hip
angles. However, this means that they need information about
both hip angles.
To conclude, different parameters have been used, but often
in combination with additional equipment.

3) Detection by machine learning: The clear benefit of
using an automated classifier over one based on heuristic rules
is that data from a multitude of sensors can be input to the
classifier, from which additional features may be computed
and used to make classification decisions that are less biased
and potentially more accurate due to the high-dimensional in-
put. Manual identification of these decision boundaries would
likely be intractable otherwise [1].
Previous research has shown that machine learning algorithms
can be used for intention detection. An overview of the used
methods and products can be seen in TABLE IV. It can be
seen that different prostheses have been used, which come
with different sensors in the prosthesis. Furthermore, different
classifiers have been used. Huang et al [16] recommend using
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an LDA. It results in accuracies comparable to an ANN,
but needs a shorter time for training, is easy to design, and
computationally efficient for real-time prosthesis control [16].
However, this method focuses on surface EMG instead of
using mechanical sensor information. Furthermore, a support
vector machine (SVM) also seems promising.

C. Machine learning approach

A few terms are important for the performance of the
algorithms. First, the bias: this represents the simplifying
assumptions that have been made by a model to make the
target function easier to learn. [23] A low bias results in more
assumptions about the form of the target function, while high
bias results in fewer assumptions about the form of the target
function. High bias results in a fast-learning model and it is
easy to understand the model. However, it is less flexible [23]
Variance is the amount that the estimate of the target function
will change if a different training set was used. Low variance
suggests small changes to the estimate of the target function
with changes to the training dataset. High variance suggests
large changes to the estimate of the target function with
changes to the training data set. [23]
It is important to note that there is a relationship between the
variance and the bias: increasing the bias will decrease the
variance and vice versa. [23]
Another trade-off is the fitting of the data. Overfitting results in
a good performance on the training data, but a poor generaliza-
tion on other data. Underfitting results in poor performance on
the training data and a good generalization of other data. This
problem can be solved by resampling methods or a validation
data set. [23]

1) Linear Discriminant Analysis (LDA): Linear Discrimi-
nant Analysis (LDA) can be used for dimensionality reduction.
It is comparable to Principal Component Analysis (PCA), but
instead of only focusing on the largest amount of variance,
it also considers the labels of the class. This results in being
able to select the features with the largest differences between
classes. [24]

Equation (4) calculates the within scatter matrix, which
represents the amount of scattering within the class.
Equation (6) calculates the between-scatter matrix, which
represents the amount of scattering between classes. The
bigger the ratio between these two is, the easier to separate
between the classes. Therefore, the eigenvector of S−1W SB is
calculated. [25] Fig. 17 shows the different scenarios with
respect to the separability between the different classes.

SW =

c∑
i=1

Si (4)

Si =

n∑
x∈Di

(x−mi)(x−mi)
T (5)

SB =

c∑
i=1

ni(mi −m)(mi −m)T (6)

mi =
1

ni

n∑
x∈Di

xk (7)

With
ni Sample size for respective class
mi Mean vector of all features for respective class
m Mean vector of all classes

Fig. 17: (a) Classes with a small between-class distance and
small within-class variance. (b) Classes with small between-
class distance and large within-class variance. (c) Classes with
large between-class distance and small within-class variance.
[26]

The related eigenvalues are then sorted based on decreasing
value: the bigger the value, the larger amount of variance
this feature explains. By calculating the relative amount of
the variance it explains, the most important features can be
determined [27]. These features can then be transformed into
the the new feature space using equation (8).

Y = X×W (8)

With
Y The transformed data
X The original data
W Eigenvectors of the used features
2) Support Vector Machine (SVM): An SVM is a decision

machine, and will therefore not provide probabilities. It de-
cides whether a data point is part of a class based on a model.
equation (9) shows the equation for a linear model, in which
φ(x) denotes a fixed feature-space transformation, b is an
explicit bias parameter. For this linear model, the assumption
is made that the training data set is linearly separable in feature
space. Other options, such as a Gaussian or polynomial kernel
are also possible.
An SVM is more computationally efficient than other non-
linear classifiers such as an Artificial Neural Network (ANN)
[4]. Furthermore, the trade-off between the bias and the
variance can be tuned manually by changing the C-parameter,
which influences the number of violations of the margin is
allowed in the training data. [23]

y(x) = wTφ(x) + b (9)
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TABLE IV: Overview of prostheses and their used parameters and classifications

Research group Prosthesis Features Classifier Hyperparameters
Cooperation between insti-
tutions [5], [4]

Able-bodied: Walking
shoes
Amputees: Own prosthesis

EMG signals (mean abs, # of zero crossings, # of slope
sign changes, waveform length)
6 DOF load cell (mean, min, max)

SVM Nonlinear kernel (RBF)
One-against-one
Majority voting

University of Rhode Island
[16], [7], [8]

Able-bodied: Walking
shoes
Amputees: Own prosthesis

EMG signal, time-domain features (mean abs, # of zero
crossings, # of slope sign changes, waveform length)
EMG signal, auto regression features (features with three-
order auto-regression coefficients and root mean square of
a signal)

LDA

University of Rhode Island
[16]

Able-bodied: Walking
shoes
Amputees: Own prosthesis

EMG signal, time-domain features (mean abs, # of zero
crossings, # of slope sign changes, waveform length)
EMG signal, auto regression features (features with three-
order auto-regression coefficients and root mean square of
a signal)

ANN Fully connected two-layer
ANN
Training: standard back-
propagation
10 hidden units

Center for Bionic Medicine
[9]

VanDerBilt prosthesis
(knee and ankle)[28], [29]

Accelerometer and gyroscope on socket, two pressure
sensors under shoe sole (ball flat and heel)(mean, sd, min,
max)

LDA

Human Neuromechanics
Laboratory [30], [18], [31]

VanDerBilt prosthesis
(knee and ankle)

Potentiometers and encoders at knee and ankle, axial load
cell, six-axis IMU on shank. Knee and ankle positions,
velocity and torque, axial force, shank three-directional
accelerations and rotational velocities. (mean, sd, min,
max, initial, final)

DBN

Center for Bionic Medicine
[31]

VanDerBilt prosthesis
(knee and ankle)

relative knee and ankle positions, velocities, and com-
manded joint torques. 6DOF load cell, 6DOF IMU, thigh
angle, shank angle (mean, sd, min, max, initial, final)

ANN One hidden layer, 20 hidden
neurons
training: scaled conjugate gra-
dient learning algorithm and
hyperbolic tangent activation
function

VanDerBilt University
[32], [3]

VanderBilt Prosthesis Joint angles, angular velocities of the prosthesis joints,
interaction forces and torques between user and prosthesis,
interaction forces and torques between prosthesis and
environment. Acceleration and EMG measurements from
residual limb. (Mean and standard deviation, normalized)

GMM

VanderBilt University [10] VanderBilt prosthesis [33] 8 EMG channels, abs value, waveform length, zero cross-
ing, slope sign changes, autoregressive coefficients of
model
Knee and ankle joint kinematics, motor currents, calculated
thigh and shank inclination angles, 6DOF forces and
moments (mean, sd, min, max, initial, final)

DBN
Adaptive


