
Towards component-based, sensor-independent
and back-end independent SLAM

J. (Jeroen) Minnema

MSC ASSIGNMENT

Committee:
dr. ir. J.F. Broenink
dr. ir. D. Dresscher

dr. ir. G.A. Folkertsma
dr. F.C. Nex

 May, 2020

015RaM2020
Robotics and Mechatronics

EEMCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

1

CONTENTS

I Introduction 2

II Related work 2

III Anaylsis of Modularity in SLAM 3
III-A Sensor types . 3

III-A1 Idiothetic sensors . 3
III-A2 Allothetic sensors . 3

III-B SLAM Algorithms . 4
III-B1 EKF SLAM . 4
III-B2 FAST SLAM 1.0 . 4
III-B3 Graph-based SLAM . 4

III-C Key principles that facilitate Modular SLAM . 4

IV Modular framework design 5
IV-A Sensor–back-end interface . 6
IV-B Landmark extraction and association . 6

V Implementation & Demonstration of modularity 6

VI Discussion 7

VII Conclusion 7

References 8

Appendix A: Background on Kalman-based SLAM 9

Appendix B: Background on Particle filter-based SLAM 12

Appendix C: Background on Particle filter-based SLAM 16

Appendix D: Framework Design 19

Appendix E: Mathematical sensor description 34

Appendix F: Simulation environment 38

Appendix G: ArUco Markers 40

2

Towards component-based, sensor independent and
back-end independent SLAM

Jeroen Minnema, Douwe Dresscher, Gerrit A. Folkertsma and Jan F. Broenink

Abstract—Simultaneous Localization and Mapping (SLAM) is
the process of simultaneous pose estimation and map creation
for mobile robots. Over the years, a lot of research has gone
into improving computational efficiency and robustness of SLAM
algorithms. This has lead to SLAM implementations tailored to
specific algorithms and sensor setups with limited reusability and
modularity. The effort required to implement new or modified
SLAM implementations—for instance with a different sensor
set-up, algorithm or operating environment—is therefore often
large and implementation specific optimizations often lead to
sub-optimal realizations for different set-ups. This work aims
at contributing towards widespread practical implementation of
SLAM by investigating the interfaces between sensors and SLAM
algorithms in order to come up with a generalized sensor—
back-end interface. This is done by analyzing different types
of idiothetic and allothetic sensors relevant for SLAM as well
as how these are used by both filter-based and graph-based
SLAM algorithms. The presented interface provides insight in the
influence of sensors and SLAM algorithms on the modularity of
SLAM and is used to develop a proof of concept level framework
that demonstrates modularity in sensor inclusion and algorithm
use.Simulations are used to demonstrate the sensor and algorithm
modularity.

I. INTRODUCTION

S IMULTANEOUS Localization and Mapping (SLAM)
is the process of estimating a robot’s location while

concurrently creating a map of the environment. SLAM
is a well-studied problem in the field of robotics and is
widely regarded as one of the fundamental steps on the road
towards fully autonomous mobile robots [1]. Large scale,
robust and real-time mapping and localisation is a complex
task and therefore traditionally, SLAM related research has
been focused on algorithmic improvements with the goal of
improving robustness and reducing computational costs [2].
Because of this, many SLAM implementations have been
developed in a research context with the goal of showcasing
novel algorithms or improvements on existing ones. These
algorithms are often optimized for a single use case; i.e.
a specific combination of sensors, robot and operating
environment. Consequently, different configurations of these
SLAM implementations need to be developed with limited
reuse of (parts of) previous efforts. In addition, optimizations
have led to algorithmic dependencies between parts of the
SLAM system that limit reusability and modularity of the
SLAM framework.
On the other hand, advances in fields such as self-driving
cars [3], unmanned aerial vehicles [4] as well as medical
robots [5] resulted in a diverse range of potential robotic
platforms—with an equally wide range of sensor and
operational requirements—that could potentially benefit from
SLAM technology. Moreover some SLAM algorithms are

inherently more suited for certain situations than others due to
advantages in the area of robust data association (e.g. particle
filters [6]), the ability to do offline SLAM (graph SLAM
[7]) or low computational costs (Kalman-based SLAM [8]).
Effective and efficient implementation of SLAM in these
emerging application areas requires reusable and flexible
SLAM solutions that reduce the effort required to modify the
sensor configuration and SLAM algorithms.

A widespread practical implementation of modular SLAM
requires an analysis of the interface and interaction between
various sensors and SLAM algorithms. This includes
analyzing the different information sources (idiothetic and
allothetic sensors), the way this information is handled by
the various SLAM back-ends and—depending on the sensor
configuration—data association and landmark extraction. The
result is a generic “Sensor–back-end interface” integrated in
a‘modular SLAM framework that is both sensor and back-end
independent. The contribution of this work is therefore
twofold: A) increased understanding of the information being
exchanged by the different sensors and SLAM-algorithms
and the corresponding interfaces. And B): a proof of concept
of a sensor and back-end independent modular SLAM
framework. In order to limit the scope of this work and to
facilitate multiple well-known algorithms, it was chosen to
limit this work to 2D feature-based SLAM. Although the
framework is designed such that it allows generalization to 3D.

The outline of the paper is as follows: in Section II
related work is discussed, followed by an analysis of
SLAM interfaces (Section III). Based on this analysis a
SLAM framework design is presented IV as well as the
implementation in Section V. Finally, Sections VI and VII
evaluate the framework and compare it with related work.

II. RELATED WORK

Several contributions aimed at improving the modularity of
SLAM implementations have been made. Often these focus
on either sensor modularity–the ability to add or replace
additional sensor to a SLAM system– or on developing a
SLAM implementation that consists of individual components
that can be easily changed or replaced, i.e. a component-based
architecture. Firstly, sensors can be added to a SLAM system
by doing external (outside the SLAM-algorithm) sensor fusion
as shown in [9]. Examples include the fusion of optical and
thermal cameras [10] or fusion of different odometry sensors
[11]. However, these approaches are limited to specific cases
of sensor fusion and do not focus on a generic interface.

3

Sensor-independent SLAM has been implemented by [12].
Here a Rao-Blackwellised Particle Filter (RB-PF) has been
used with the goal of developing a SLAM algorithm that is not
restricted to specific sensors or landmarks. This gives sensor
flexibility, albeit with a single algorithm and without the ability
to additional sensors. Similar results were obtained by [8]:
limited sensor modularity with a Kalman filter.
PRO SLAM [13] treats Graph SLAM from a programmer’s
perspective and presents a modular feature-based implemen-
tation of visual Graph SLAM. Sensor flexibility is achieved
to a certain extent by RTAB MAP [14] for it allows both
LIDAR and visual SLAM, whereas for the latter several
camera types are supported. However, other types of sensors
such as compasses and IMU sensors are not supported at the
moment. RTAB map is also solely based on graph SLAM.
The authors of [15] actually attempted to support two different
SLAM algorithms: the EKF and the RB-PF, but unfortunately
did not succeed in the implementation due to limitations of
the software tools used. Finally, [16] addresses the need for
reusable component-based SLAM and uses Software Product
Lines (SPLs) among other programming paradigms to create
a framework that supports two different algorithms, namely
the EKF and PF algorithms. Regarding sensor modularity,
this work supported replacing of sensors but did not facilitate
adding additional sensors to the SLAM-algorithm.
Both on the front of sensor modularity as well as regarding
algorithm modularity large steps have been made. However, a
SLAM framework that combines complete sensor modularity
with the ability to switch between SLAM algorithms, does
not exist yet. According to the authors a proper analysis of
the interfaces on a conceptual level is currently lacking. This
would clarify the possibilities and limitations of both existing
and future work in the field of modular SLAM.

III. ANAYLSIS OF MODULARITY IN SLAM
A SLAM system essentially consists of various sensors

that collect data and an algorithm that combines this data
and uses it to compute an estimated position and map. This
section analyses the type of information gathered by the
various sensors followed by an analysis of how the back-
end algorithms use this data. A functional flow diagram of
the system is presented in Figure 1. The categorization of
the various sensors and possible intermediate steps such as
Landmark extraction, data association and the idiothetic filter
are considered later.

Sensors
SLAM
algorithm

Map+pose
Observation Estimate

Fig. 1: Schematic view of the essence of a SLAM-system: multiple
sensors feed observations (z) into the SLAM-algorithm which com-
bines this data to come up with an estimate of the robot pose and
map.

A. Sensor types

Modern robots can be equipped with a vast range of sensors
that all provide different information about either the robot’s

state or its environment. At its core, a SLAM algorithm
combines internal and external sensor data to estimate a pose
and a map. In [16] the concepts of idiothetic and allothetic
sensors were introduced. Here, these definitions are reused and
extended. By analyzing the information provided by idiothetic
and allothetic sensors, a sensor categorization is developed.

1) Idiothetic sensors: are interoceptive sensors that esti-
mate the robot’s pose incrementally (x = [x, y, θ]ᵀ in case of a
2D planar robot). This is done with a motion model u = g(z),
where u is defined as the pose-change u = [∆x,∆y,∆θ]ᵀ and
z is the sensor’s observation. Examples of idiothetic sensors
include odometry information obtained by wheel encoders,
gyroscopes, IMUs etc. These sensors all have different motion
models and observations (z). The output, u, however, has the
same format: [∆x,∆y,∆θ]ᵀ. Pose estimation solely based on
idiothetic sensors is commonly known as dead-reckoning and
is known to suffer from drift due to the incremental nature of
the sensors [17].

2) Allothetic sensors: are exteroceptive sensors that use
features, landmarks or other properties of the outside world to
obtain an observation z. Two types of allothetic sensors exist,
relative and absolute allothetic sensors. Absolute allothetic
sensors measure absolute poses using the outside world
as a reference. Examples include a GPS and a compass.
The former uses satellites to obtain an absolute position
estimate and the latter measures an absolute orientation based
on the earth magnetic field. The practical difference with
relative sensors such as a laser-range finder is that the data
is presented in an absolute way: z = [x, y, θ]ᵀ although
technically it is still a relative measurement with respect to a
single fixed world frame. Because of the difference in data
format, a distinction between absolute and relative allothetic
sensors is made. All allothetic sensors are accompanied by a
measurement model: z = h(x) and its Jacobian.

Relative allothetic sensors form a second type of allothetic
sensors. A typical relative allothetic sensor is a laser-range
finder, which measures the relative distance of the features
around the robot and returns an array of relative distances
and directions. Examples of similar relative allothetic sensors
include sonars but also all sorts of RGB(-d) cameras that
can be used for feature detection. A problem with these
relative sensors is that they sometimes receive ambiguous
readings—environments may look similar. Depending on the
sensor these sensors there often rely on robust landmark
extraction and data association. Landmark extraction is the
process of obtaining detectable features from raw sensor
data. The output of the extractor is a list of landmark poses
and—depending on the type of sensor—possibly landmark
descriptors (for example BRIEF, SURF and SIFT). This is
followed by data association, where the detected features
are compared with previously seen features and receive
a landmark ID. Landmark extraction and data association
are only required for relative allothetic sensors. Once these
two steps have been done, the observation is a vector of
the relative positions (in polar coordinates, range r and
bearing θ) of landmarks lm and their corresponding ID:
z = [lm1r , lm1θ , lm1ID , ..., lmmr

, lmmθ
, lmmID

].

4

The power of SLAM is that allothetic sensors help correcting
for the drift of idiothetic sensors while the pose estimate
obtained with idiothetic sensors is used to solve the ambiguity
in allothetic readings. This results in a more accurate map
and pose estimate than the sensors could achieve individually.
Figure 2 shows a summary of the above described sensor
classification.

Sensor

Idiothetic
sensor

Allothetic
sensor

Incremental:
Odometry,
IMU u =

∆x
∆y
∆θ

Relative: Laser-
range, camera

z =

lm1r,θ,ID

...
lmmr,θ,ID

Absolute:
GPS, compass

z =

x
y
θ

Fig. 2: Categorization of SLAM related sensors along with several
examples.

B. SLAM Algorithms

Over the years, a wide range of SLAM algorithms have
been developed, ranging from filter based to graph-based
approaches. Naturally, many of these treat the data they
receive from sensors quite differently. This section analyzes
the way idiothetic and allothetic data are processed by SLAM
implementations from three different categories of SLAM al-
gorithms namely: Kalman Filter-based SLAM, Graph-SLAM
[18] and a Rao-Blackwellised Particle Filter. For the two filter
based approaches, FAST-SLAM 1.0 [6] and the Extended
Kalman Filter [19] where analyzed specifically as these have
formed the basis of many further optimizations. For graph-
based SLAM, the process of graph construction in general has
been analyzed. This analysis is aimed at the way the sensor
data is used by the algorithms with the goal of defining a
generic interface. For a detailed explanation of the algorithms
refer to [17], [19],[18],[6].

1) EKF SLAM: formulates the SLAM problem in a single
EKF and stores the robot pose and landmark positions in a
state vector X and corresponding covariance matrix P. In
the prediction step, idiothetic data is processed. This is done
with a motion model g, its Jacobian G and the motion model
covariance Cx:

Xt+1 = Xt + g(z) (1)
P = GᵀPG + Cx (2)

Allothetic data is used for the correction step. For this correc-
tion step, the algorithm requires the sensor model h(X), its
Jacobian H(X) and the measurement covariance Q. The fact
that the measurement model h(X) is a function of the state,

means that either the sensor has to be aware of the current
state, X, or the algorithm requires access to the measurement
function. The correction step can mathematically be described
as [17]:

y = z− h(X) (3)
K = PHᵀ(HPHᵀ + Qt) (4)

X = X + (Ky) (5)
P = (I−KH)P (6)

Where y is the innovation and K the Kalman gain. These
two steps show how the EKF algorithm uses idiothetic and
allothetic data separately and independently.

2) FAST SLAM 1.0: is an implementation of a Rao-
Blackwellised particle filter, which exploits the conditional
independence of individual landmarks by estimating the pose
and landmarks separately, thereby avoiding the high dimen-
sionality of the statevector which would otherwise lead to
extremely high numbers of particles being required. FAST
SLAM 1.0 uses particle-based Monte-Carlo localisation to
estimate the pose and an EKF for each landmark to esti-
mate the landmark’s position [6]. Each particle is a possible
representation of the pose vector and has M EKFs. Where
M corresponds to the number of landmarks. Similarly to the
Kalman filter, idiothetic data leads to a prediction: the paths
of the particles are extended by sampling a new pose for each
particle using the motion model and motion noise that together
form the proposal distribution p(xt|x[k]t−1, ut)

x
[k]
t ∼ p(xt|x[k]t−1, ut) (7)

Like for the EKF, besides the measurement, the motion model,
its Jacobian and the covariance are required. New allothetic
data leads to an update of the weight of the particles, based
on the observation zt. Here the EKFs are also updated. For a
derivation of the weight update refer to [6]. Finally, after the
weights and EKFs have been updated, the updated weights are
used to create a new set of particles.

3) Graph-based SLAM: formulates the problem as a graph
where the nodes (vertices) correspond to robot poses in
time and landmark positions. The edges between the nodes
correspond to measurements. These measurements are written
as a set of constraint equations that can be minimized by
various non linear solver algorithms. An illustration of a
graph-visualization is shown in figure 3. When an idiothetic
measurement is received, a new pose vertex is added to the
graph as well as a measurement with the relative position
and information matrix (the inverse of the covariance matrix).
Therefore the only information being required from the sensor
are the relative position and information matrix. For allothetic
measurements, edges are added in a similar way, the difference
is however that in the case of relative allothetic sensors
landmark vertices are only added in the case a landmark has
not been seen before.

C. Key principles that facilitate Modular SLAM

From the previous analysis the key insight follows that each
of the three categories of SLAM algorithms requires three

5

g1

lm1

lm2

lm3

u1

u2
u3

u4

z1

z2

z3
z4

z5

z6
z7

z8

Odometry
lm1

gps1
lm3

Fig. 3: Schematic view of the structure of a graph-based SLAM
problem. Pose nodes are created by odometry measurements, after
graph optimization these poses may change slightly. Measurement u4

indicates the edge corresponding to an additional idiothetic sensor.
Measurement z6, z7 show an additional allothetic sensor and an
absolute allothetic measurement is represented by z8.

aspects from the sensor: the measurement, a measurement
model and the uncertainty of the measurement. Depending
on the sensor and SLAM algorithm the format of this
information may vary slightly, as indicated in Table I. The
second important observation that can be made is the fact
that each of the three discussed algorithms treats idiothetic
and allothetic data differently and independently. Processing
of idiothetic data does not require allothetic data and vice
versa. These two insights will form the basis of the modular
framework design (Section IV).

Due to the separation of idiothetic and allothetic data,
it is possible to add additinal sensors to the SLAM algorithm.
Additional allothetic sensors are fairly straightforward to add
to each of the three back-ends. For a Kalman filter and Fast
SLAM (1.0) this involves an additional update step for each
sensor. New landmarks being observed by additional sensors
lead to augmentation of the covariance matrix and statevector.
Observations of landmarks do not affect each other directly.
The same holds for graph SLAM, where allothetic expansion
leads to additional nodes and vertices being added to the graph.

On the other hand, because of the incremental nature of
idiothetic sensors, idiothetic expansion is more complicated.
Kalman filter based approaches require a single prediction of
the robot pose. Therefore idiothetic sensors would have to
be merged outside the SLAM system for the EKF. A similar
problem arises for particle filters, although it may be possible
to keep a set of particles for each idiothetic sensor and to
merge after algorithm execution, based on the weighted sum
of both particle sets. For graph SLAM, idiothetic expansion is
possible, as this would consist of adding additional constraint
equations between previously created pose nodes. However,
this introduces an error because of time-synchronization and
would either require sensor data synchronization before the
idiothetic data is fed into the algorithm or accepting the error
this introduces.

IV. MODULAR FRAMEWORK DESIGN

A modular SLAM framework can consist of a back-end
and various sensors. The back-end contains the SLAM

Algorithm Measurement Model Uncertainty
EKF idio. Pose increment

u
Motion model
g(u), Jacobian
G()

Motion
covariance
Cx

EKF allo. Observation z Sensor model
h(x), Jacobian
H()

Sensor noise Q

Graph idio. Pose increment
u

Motion model
g(u)

Information ma-
trix Ω

Graph allo. Observation z Sensor model
h(x)

Information ma-
trix Ω

PF idio. Pose increment
u

Motion model
g(u), Jacobian
G()

Motion model
distribution

PF allo. Observation z Sensor model
h(x), Jacobian
H()

Sensor noise Q

TABLE I: Data being exchanged between the sensor and back-
ends for the three SLAM algorithms (‘idio.’ and ‘allo.’ stand for
respectively idiothetic and allothetic information).

algorithm and is responsible for the processing of incoming
sensor data and publication of the estimated pose and map.
The three analyzed algorithms process the idiothetic and
allothetic information (table I) differently as described in table
II. This can be done by implementing a back-end specific
processIdiothetic() and processAllothetic()
method that handle respectively idiothetic and allothetic data
according to table II. For example, EKF SLAM deals with
idiothetic data by executing the prediction step of the Kalman
filter. In order to do this, the back-end requires the pose
increment u, motion model g(u), Jacobian G() and motion
covariance Cx from the sensor. This is illustrated with the
UML sequence diagram in figure 4. The three back-ends
are realizations of an abstract base class, as shown by the
class diagram in figure 5. Besides this implementation of the
back-end, the information from table I has to be specified in
a sensor–back-end interface. Furthermore, the sensor analysis
pointed out that three different sensor types with different
observation formats exist (figure 2), that—depending on the
sensor type—may require additional processing steps (such
as landmark extraction or filtering). This ultimately results in
the software architecture depicted in figure 6.

Back-end process idiothetic() process allothetic()
EKF EKF prediction step: Relative: EKF-SLAM up-

date step of full state. Ab-
solute: update step of just
the pose.

Graph SLAM Add new pose node and
measurement of pose incre-
ment

Relative: add node and
edge if landmark is new,
otherwise add an edge. Ab-
solute sensor: always add a
node and edge based.

Particle Filter Update particle paths based
on motion model.

Update weights based on
sensor observation, update
step of landmark EKF’s,
resample.

TABLE II: Overview of the actions being performed based on new
idiothetic and allothetic sensor data.

6

Fig. 4: UML sequence diagram to illustrate the interface between an
idiothetic sensor and an EKF. processIdiothetic() triggers
the prediction step (table II), for which the measurement u, the Ja-
cobean and the covariance are required. This information is requested
from the sensor. A timer is used to publish the estimate at a constant
frequency. Allothetic data is handled in a similar way.

BackEndBase

+ idiotheticSensors : ArrayList<IdiotheticSensors>
+ allotheticSensors : ArrayList<AllotheticSensors>
+ extractor : LandmarkExtractor
+ associator : DataAssociator

+ processIdiotheticData(sensor)
+ processAllotheticData(sensor)
+ publishEstimate()

GraphBackEnd EKFBackEnd PFBackEnd

Fig. 5: Class diagram of the back-end classes. The BackEndBase
class is an abstract class, the three implemented back-ends form the
implementation.

A. Sensor–back-end interface

We chose to realize the actual sensor–back-end interface by
a range of accessor methods (i.e. getter functions) that make
the required information (i.e. the measurement, the uncertainty
information and the relevant models according to table I)
available to the back-end in the form of arrays. In the earlier
mentioned example of handling idiothetic data for an EKF, this
boils down to the methods get_u(), calc_g() calc_G()
and get_cov(). The dimensions of these arrays are dictated
by the fact that planar SLAM (SE2) is considered here. The
measurement (u or z) format depends on the type of sensor
and is either a relative pose increment, an absolute pose or
relative observation (see figure 2). The uncertainty information
is either presented as a covariance matrix in the sensor
domain, or in the case of graph SLAM, mapped to Cartesian
coordinates and presented in the Canonical information form.
Finally the models are the mathematical mappings between
robot-state, world-state and the predicted measurement.

Relative
allothetic
sensors

Landmark
extraction

Data-
Association

Absolute
allothetic
sensors

Idiothetic
sensors

SLAM-algorithm

Idiothetic
filter

Map+Pose

1. z 2. Lms

3. z

4. Old Lms, Ids5. Lms, Ids

6. u

7.

8. Estimate

Fig. 6: Architecture of the SLAM framework. Arrows 1,3 and 6
indicate the data obtained via the three sensor types (section: III-A).
Arrows 2 and 5 indicate landmark extraction and data association for
relative allothetic sensors. Data association may require information
on previously landmarks (arrow 4). The idiothetic filter may be
required in case multiple idiothetic sensors are being used (explained
in 3.C, arrow 7.) The final SLAM estimate is illustrated by arrow 8.

B. Landmark extraction and association

Depending on the sensor, relative allothetic sensors–for
instance an RGB(-d) camera)–may require landmark extraction
and data association before an associated list of landmarks
is obtained. Because sensors can share the same feature
extractor and association algorithm, it was chosen to make
these separate components instead of adding them to the
sensor class directly. Instead composition is used by the back-
end class to facilitate sharing of the landmark extractor and
data associator. Whether or not extraction and association are
required is known at the time of implementation of a sensor
and hence considered as a sensor property. The input of the
landmark extractor is the raw observation z, for example a
camera image. The output is a list of relative positions of the
landmarks present in the observation along with a descriptor
of the features. The data associator matches the features in
the current observation with the previously seen features,
either based on likelihood association or using the descriptive
features. The result that is used by the SLAM algorithm is a
list of relative landmark positions including an ID.

V. IMPLEMENTATION & DEMONSTRATION OF
MODULARITY

In order to demonstrate the modularity of the designed
framework, it has been implemented and several experiments
with different configurations have been simulated to
demonstrate the ability of the framework to add and replace
sensors as well as the usage of three different SLAM
algorithms.

The framework has been written in order to work with
ROS2 [20] and the sensor and back-end implementations
together form a single ROS-node. Simulations have been done
with CoppeliaSim [21] which also works with ROS and allows
testing of the SLAM framework with several built-in simulated
sensors. Several different sensors have been implemented to
demonstrate the desired sensor flexibility, these are shown in

7

Sensor type Implemented

Idiothetic Odometry (wheel encoder)
IMU

Allothetic, relative Simulated range-bearing sensor
fiducial markers (ArUco)

Allothetic, abosulte GPS (absolute x,y position)
Compass (absolute heading)

TABLE III: Overview of the sensors that have been implemented

table III. Figure 7 shows the results of several simulations
using the proposed SLAM framework. These demonstrate
proper functioning SLAM using three different back-ends
and various different sensor configurations.

VI. DISCUSSION

The presented analysis provides a clear structure of
the information that is exchanged by SLAM sensors
and algorithms: a measurement, a model and uncertainty
information. The results show that, by adhering to this
standardized structure, an interface is realized that allows a
modular SLAM framework capable of handling addition and
replacement of sensors and that can deal with three types of
SLAM algorithms.
The question is to which extend this structure contributes
towards a modular framework that allows sensor and
algorithm flexibility. Given that the interface of a sensor is
implemented via the required accessor methods that provide
access to the information shown in Table I, adding additional
sensors to the back-end involves nothing more than the
creation of a new sensor object and appending this sensor
to the list of either idiothetic or allothetic sensors that the
back-end contains. This locality of change required for
additional sensors indicates the modularity of the framework.
New algorithms can be implemented by creating a realization
of the abstract BackEndBase class.

The framework implements three SLAM algorithms, in
practice often only one is required, hence implementing
the interfaces for all of the sensors and algorithms is
often unnecessary. However, by still adhering to the
provided structure and implementing the required subset, a
flexible SLAM implementation is obtained. This modular
implementation allows sensors to be added and replaced with
minimal changes to the software.

Another aspect worth addressing is the extend to which
current modular SLAM implementations adhere to the
proposed interface. RT-SLAM [8] uses a slightly similar
interface for the EKF, where the sensor classes contain
information about the covariance and Jacobian of the sensors.
Regarding Graph-SLAM, ProSLAM [13] is also based on
G2O [18] and uses a similar method of graph construction, but
on a higher level. Instead of adding individual measurements
to the pose graph, ProSlam constructs a graph that consists
of smaller local maps where constraints between those local
maps are added upon loop-closure. However, this global pose
graph used by Pro-SLAM is only used to improve algorithmic

efficiency by merging local maps instead of adding every
single measurement to the pose graph and not with the goal
of facilitating additional sensors in mind. So on the level of
individual measurements a different interface is used.

Furthermore, [15] addresses the sensor–back-end interface
briefly as well and made the design choice to store sensor
specific information as the measurement model in the
back-end instead of within the sensor. The limiting effect
of this on the modularity is addressed and suggested as a
possible improvement. The different sensors that RTAB Map
[14] is capable of handling communicate with the back-end
through standardized ROS messages. From this it can be
deduced that the sensors contain the required models and
uncertainty information, similarly to the interface proposed
here. However, all sensor types that are supported by RTAB
Map supports are integrated in the framework differently and
not through a systematic approach.

The allothetic interface proposed by [16] consists of a
vector of associated range-bearing measurements–very similar
to the interface proposed here. However, that interface does
not provide any information on the measurement covariance
and sensor model, which means that this information has
to be implemented in the back-end, something which is not
desired from modularity perspective as it makes the back-end
sensor dependent.

VII. CONCLUSION

This work presents an analysis of the main components
of a SLAM system and their impact on the modularity
of SLAM with the goal of developing a modular SLAM
framework that enables sensor and back-end flexibility and by
doing so, decreasing the effort of developing SLAM for new
applications. The sensor analysis has identified three different
categories of sensors: idiothetic, relative allothetic and
absolute allothetic sensors. Each of these sensor categories
measures different information types and this information
therefore has to be handled differently. It has become clear that
SLAM approaches based on Kalman filters, Particle filters and
graph optimization all require three aspects from the sensor:
a measurement, a model and uncertainty information. This
property together with the fact that each of these algorithms
treat idiothetic and allothetic sensor data independently was
used to develop a modular framework. The structure allows
straightforward adding and replacing of various sensors and
works with these types of SLAM algorithms. By adhering to
the proposed structure and implementing the desired parts, a
flexible SLAM implementation can be obtained.The proposed
structure has been implemented and simulations demonstrate
the framework’s modularity.

Some combinations of algorithms and sensors can not
be implemented by the current implementation of the
framework. For instance, not all SLAM algorithms treat
idiothetic and allothetic data completely separately. An
example of this is the fact that FAST SLAM 2.0 uses both

8

−2 0 2 4 6

−6

−4

−2

0

2

x position [m]

y
po

si
tio

n
[m

]
EKF, PF & Graph SLAM

EKF
Graph
PF
True loc.

(a)

−2 0 2 4 6
−6

−4

−2

0

2

x position [m]

y
po

si
tio

n
[m

]

Graph SLAM: with ArUco markers

Est. loc.
True loc.
True ArUco
Est. lm.

(b)

−2 0 2 4 6

−4

−2

0

2

4

x position [m]

y
po

si
tio

n
[m

]

Graph SLAM: complete sensor lay-out

Est. loc.
True location
True lm
True ArUco
Est. lm.

(c)

Fig. 7: Simulation results demonstrating the framework’s modularity by showing proper functioning with various configurations. Figure (a):
three EKF, PF and graph SLAM with odometry and an (artificial) range-bearing sensor. Figure (b) and (c) demonstrate sensor flexibility.
Figure (b): Graph SLAM, odometry and visual SLAM (ArUco markers). Figure (c): Graph SLAM, all implemented sensors (table III).

idiothetic and allothetic information for the prediction step.
The effect of these improvements and possible solutions
require further investigation. On an implementation level, the
support for additional idiothetic sensors should be improved.
For filter based approaches this requires an additional form
of filtering or sensor fusion before idiothetic data is fed into
the back-end. For graph SLAM, time-synchronization of
idiothetic data has to be realized to allow constraints from
different sensors to be linked to two pose nodes. Finally, it
would be interesting to study the effect of facilitating scan-
matching in the framework, for this would allow improved
integration of sensors such as LIDAR.

REFERENCES

[1] H. Durrant-whyte and T. Bailey, “Simultaneous Localisation and Map-
ping (SLAM): Part I The Essential Algorithms,” pp. 1–9, 2006.

[2] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, I. Reid, and
J. J. Leonard, “Past , Present , and Future of Simultaneous Localization
And Mapping : Towards the Robust-Perception Age,” 2016.

[3] F. Kunz, D. Nuss, J. Wiest, H. Deusch, S. Reuter, F. Gritschneder,
A. Scheel, M. Stubler, M. Bach, P. Hatzelmann, C. Wild, and K. Di-
etmayer, “Autonomous driving at Ulm University: A modular, robust,
and sensor-independent fusion approach,” IEEE Intelligent Vehicles
Symposium, Proceedings, vol. 2015-Augus, no. Iv, pp. 666–673, 2015.

[4] A. Ravankar, A. Ravankar, Y. Kobayashi, and T. Emaru, “Autonomous
Mapping and Exploration with Unmanned Aerial Vehicles Using Low
Cost Sensors,” Proceedings, 2018.

[5] D. Scaradozzi, S. Zingaretti, and A. Ferrari, “Simultaneous localization
and mapping (SLAM) robotics techniques: a possible application in
surgery,” Shanghai Chest, 2018.

[6] M. Montemerlo, S. Thrun, D. Roller, and B. Wegbreit, “FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges,” in IJCAI International Joint
Conference on Artificial Intelligence, 2003, pp. 1151–1156.

[7] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based SLAM,” IEEE Intelligent Transportation Systems Mag-
azine, 2010.

[8] C. Roussillon, A. Gonzalez, J. Solà, J. M. Codol, N. Mansard,
S. Lacroix, and M. Devy, “RT-SLAM: A generic and real-time visual
SLAM implementation,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6962 LNCS, pp. 31–40, 2011.

[9] I. Toroslu, “Effective Sensor Fusion of a Mobile Robot for SLAM
Implementation,” pp. 76–81, 2018.

[10] M. Magnabosco and T. P. Breckon, “Cross-spectral visual simultaneous
localization and mapping (SLAM) with sensor handover,” Robotics
and Autonomous Systems, vol. 61, no. 2, pp. 195–208, 2013. [Online].
Available: http://dx.doi.org/10.1016/j.robot.2012.09.023

[11] Z. Zhang, S. Liu, G. Tsai, H. Hu, C.-c. Chu, and F. Zheng, “PIRVS: An
Advanced Visual-Inertial SLAM System with Flexible Sensor Fusion
and Hardware Co-Design,” 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1–7, 2018.

[12] C. Schroeter and H. M. Gross, “A sensor-independent approach to RBPF
SLAM - Map match SLAM applied to visual mapping,” 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS, pp.
2078–2083, 2008.

[13] D. Schlegel, M. Colosi, and G. Grisetti, “ProSLAM: Graph SLAM
from a programmer’s perspective,” Proceedings - IEEE International
Conference on Robotics and Automation, pp. 3833–3840, 2018.

[14] M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar and
visual simultaneous localization and mapping library for large-scale and
long-term online operation,” Journal of Field Robotics, vol. 36, no. 2,
pp. 416–446, 3 2019.

[15] M. Ristroph, “A Component-Oriented Approach to Simultaneous Local-
ization and Mapping,” pp. 1–14, 2008.

[16] M. A. Abdelhady, D. Dresscher, and J. F. Broenink, “Reuse-oriented
SLAM Framework using Software Product Lines.”

[17] S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45,
no. 3, pp. 52–57, 2002.

[18] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G2o: A general framework for graph optimization,” Proceedings - IEEE
International Conference on Robotics and Automation, no. June, pp.
3607–3613, 2011.

[19] H. F. Durrant-Whyte, “Uncertain Geometry in Robotics,” IEEE Journal
on Robotics and Automation, 1988.

[20] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, 2009.

[21] E. Rohmer, S. P. N. Singh, and M. Freese, “CoppeliaSim (formerly
V-REP): a Versatile and Scalable Robot Simulation Framework,” in
Proc. of The International Conference on Intelligent Robots and Systems
(IROS), 2013.

http://dx.doi.org/10.1016/j.robot.2012.09.023

Kalman-based SLAM

Jeroen Minnema

April 2020

1 Introduction

Kalman based SLAM techniques formed the first major branch of successful SLAM [1]. During the years
that followed, extensions and modifications were added to the basic Kalman estimator to improve robustness
and usability for SLAM systems with large amounts of landmarks. The goal of this appendix is to briefly
explain the version of the Kalman filter used in this project, namely SLAM based on the extended Kalman
Filter (EKF). Because this is something widely available in textbooks on robot navigation (such as [3]),
we keep this section brief and focus on advantages and drawbacks as well as on how improved versions of
the EKF would fit in the framework that has been developed. The reason the EKF was chosen is that it
is the most simple version of a SLAM algorithm that actually works. A short assessment to which extend
other Kalman-based SLAM techniques could be used by the developed SLAM framework is done in Section 4

The basic Kalman filter is a recursive Bayes filter that consists of a prediction and a correction step and
that assumes linear motion and sensor models as well as Gaussian noise. The Kalman filter has a wide
range of applications, specifically in the context of online feature based 2D SLAM the problem boils down
to solving:

p(xt,m|z1:t, u1:t) (1)

Where xt is the robot pose x = [x, y, θ]T , m is the map consisting of a vector of landmarks lmi that represent
the x and y coordinates of the observed landmarks: m = [lm1,x, lm1,y, ..., lmm,x, lmm,y]T . Furthermore u
is the control input (idiothetic information) and z the allothetic observation. In practice, the statevector is
defined as the pose and landmarks combined: xt = (x, y, θ, lm1,x, lm1,y, ..., lmm,x, lmm,y)T . This statevector
has a length equal to 3 + 2n where n is the number of visible landmarks. In addition, the covariance matrix
of the full statevector P is defined. This is wirtten as:

X =

[
x
m

]
(2)

P =

[
Σxx Σxm

Σmx Σmm

]
(3)

2 EKF SLAM

The extended Kalman filter consists of an additional linearization of the current estimate of the statevector
and covariance matrix. The prediction step predicts the motion of the robot using the motion model g(),
the Jacobian of the motion model G() and the covariance of the motion model Cx are used to propagate
the covariance matrix.

Xt+1 = Xt + g(u) (4)

P = GTPG + Cx (5)

Allothetic data is used for the update step. The measurement model h(x), its Jacobian H() and the
measurement covariance Q are used. The innovation y which consists of the difference between the calculated
and measured observation is calculated. Toggether with the Kalman Gain K, this is used to propagate the
statevector and the covariance matrix:

y = zt − h(X) (6)

K = PHT(HtPtH
T
t + Qt) (7)

X + X + (K · y) (8)

Pt = (I−KH)P (9)

APPENDIX A
BACKGROUND ON KALMAN-BASED SLAM

9

[2].

3 EKF SLAM advantages and drawbacks

The advantage of the EKF SLAM algorithm lies in its algorithmic simplicity. Furthermore, in the case of
linear models with Gaussian noise it can be mathematically proven that it is actually an optimal estimator.
However, there are severy disadvantages as well:

• The EKF can easily diverge if the non-linearities in the models are sufficiently large.

• The complexity of the algorithm and memory consumption are O(n2) where n is the number of
landmarks. Which makes it computiationally intractable for maps with large amounts of features.

• The EKF is limited to feature-based SLAM only.

• The EKF is very sensitive to faulty data associations, i.e. loop-closures and can’t recover from this
properly.

4 Other Kalman based SLAM filters

4.1 Unscented Kalman Filter (UKF)

The EKF linearizes via a Taylor expension, an improved way of doing this is the Unscented Transform [3],
which computes a set of so-called sigma points and transforms each of the points through the non-linear
function. Then a new Gaussian distribution is computed based on these transformed points. UKF SLAM has
two advantages compared to the EKF:It forms a better approximation for non-linear models. Furthermore,
no Jacobians are needed for the uncsented transformation. Although the UKF scales similarly as the EKF
(O(n2), it is slightly slower. Furthermore, the UKF is also restricted to Gaussian distributions.

4.2 The (Sparse) Extended Information Filter (S)EIF SLAM

Alternative to formulating the SLAM problem with moments (the statevector is often written as the mean µ),
it is possible to formulate the problem in the information form, also known as the canonical representation:
Ω = Σ−1, the information matrix is defined as the inverse of the covariance amtrix. Similarly the information
vector ζ is defined as ζ = Σ−1µ. Writing the problem in this alternative formulation allows so called
sparsification of the innovation matrix. Instead of updating the matrix for all landmarks that have been
seen, only ’active’ landmarks that have been seen in the recent history are tracked. As a consequence, the
SEIF SLAM algorithm has a linear complexity: O(n). SEIF SLAM also calculates the Jacobian of the
measurement and motion model, but does not require any additional information.

5 Conclusion

A brief overview of Kalman filter based SLAM approaches has been provided. An important conclusion is
that each of the three analyzed algorithms requires no other information other that the measurement itself,
its uncertainty, the measurement and motion models and their Jacobians. Table 1 gives an overview of the
analyzed Kalman-based SLAM approaches and compares these with the Rao-Backwelized particle filter and
GraphSLAM as well.

References

[1] Hugh F. Durrant-Whyte. Uncertain Geometry in Robotics. IEEE Journal on Robotics and Automation,
1988.

[2] Cyril Roussillon, Aurélien Gonzalez, Joan Solà, Jean Marie Codol, Nicolas Mansard, Simon Lacroix,
and Michel Devy. RT-SLAM: A generic and real-time visual SLAM implementation. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 6962 LNCS:31–40, 2011.

[3] Sebastian Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52–57, 2002.

10

Back-end KF EKF SEIF RB-PF GraphSLAM
Complexity n2 n2 Constant ∝ m log n ∝ Edges
Assumed
distribution

Gaussian Gaussian Gaussian Pose:Any
Landmarks:
Gause | pose

Gaussian (but
deals with out-
liers well)

Linearization All linear Once (down-
side: poor
scaling)

Once Not needed Relinearization
every iteration

Flexibility + Front-end
and Back-end
- feature based

like KF Like KF ++ multiple
hypotheses
parallel feature
& scan based

++ multi
modal option
to add con-
strains easily.
- grows with
trajectory

Large scale - - ++ constant
with n

+ log n - to ++ de-
pends on im-
plementation

Table 1: Overview of various SLAM algorithms.

11

Particle filter based SLAM

Jeroen Minnema

May 2020

1 Introduction

This document is the result of an analysis of particle filters with the goal of determining how particle
filters could be implemented in the framework developed during my master thesis. Initially the goal was
to implement the three major back-ends in the framework (EKF, Graph-based and particle filter based).
Because of time constraints the choice was made to limit the particle filter implementation to a theoretical
analysis. It was expected that, because the particle filter is still a probabilistic, filter based approach, the
interface would probably be somewhat similar to that of the EKF. Hence, graph-slam was considered to be
more interesting to investigate. During the exploration phase a brief analysis of the functioning was made,
presented in the project plan. Since then some changes were made in the framework and its interfaces. This
document was written to reflect on the impact of these design changes on the implementation of the PF
and will most likely be added as an appendix to the report/paper.

2 Basic principles of the particle filter for SLAM purposes

One of the major drawbacks of Kalman filter based SLAM techniques originates from the fact that they are
only capable of dealing with Gaussian distributions for the measurement and motion models. An approach
for dealing with arbitrary distributions has been the core motivation for particle filter localisation (and later
on mapping techniques). Arbitrary distributions can be represented by using multiple weighted samples
that represent the posterior. Mathematically the set χ consisting of J particles each representing a possible
robot state x associated with weight w and represented by the posterior p can be defined as follows:

χ = {〈xj], wj]〉}j=1,...J (1)

p(x) =
J∑

j=1

w[j]δx[j](x) (2)

The left plot in figure 1 shows how samples can be used to represent a Gaussian distribution. In practice
we want to represent arbitrary distributions, for instance the one f(x) shown in the middle plot, this is
the target distribution. The Gaussian proposal distribution g(x) can be used to draw samples from the
arbitrary target distribution f(x) by using the principle of importance sampling. Weights for the particles
are calculated based on how likely they are (i.e. how well they represent the distribution): w = f/g. This
principle is called importance sampling and forms the basis of the particle filter. The particle filter finds
the pose distribution by repeating the following three steps.

1. Sample the particles with a proposal distribution: x
[j]
t ∼ π(xt|..)

2. Update the importance weight of the particles: wt[j] =
target(x

[j]
t)

proposal(x
[j]
t)

3. Resample using the updated weights to create J new samples where each sample i is based on the

probability w
[i]
t .

2.1 Monte Carlo localization

Before addressing the full SLAM problem we first explain the core concept by introducing Monte Carlo
localization. Here allothetic information is used to improve the robot’s state estimate but the landmark’s
positions are not estimated (i.e. no map is being made). Each particle represents a possible robot state
(in our 2D case x, y, θ). The proposal distribution is the motion model, for instance the robot’s odometry

APPENDIX B
BACKGROUND ON PARTICLE FILTER-BASED SLAM

12

Figure 1: Caption

(ut). This is often called the prediction step, similarly to EKF-SLAM. Each particle is propagated during
this step according to the motion model. The sensor model is used to update the weights based on the
observation zt given the robot’s pose and the map m. Mathematically:

x
[j]
t ∼ p(xt|xt−1, ut) (3)

wt[j] =
target(x

[j]
t)

proposal(x
[j]
t)
∝ p(zt|xt,m) (4)

Where xt and xt−1 represent the robot’s pose at time t given control input ut. The concept of resampling
remains and boils down to replacing unlinkely samples by more likely ones, this effectively removes most of
the unlikely samples from the filter and is required in practice because a finite (and often limited) number
of samples can be used to limit computation costs.

2.2 SLAM using particle filters

Next, the localisation problem is extended to full SLAM, so this includes landmark estimation. Each particle
represents a single hypothesis of the state. So for feature-based (offline) SLAM this state vector is defined
as:

x = (x1:t,m1,x,m1,y, ...mM,x,mM,y)T (5)

In the case of many landmarks, this results in a highly dimensional state vector. The problem with this is
that defining the state-vector like this would require enormous amounts of particles to represent the likely
regions of possible state space. This is the reason that the step from Monte Carlo localisation –where the
statevector is of low dimensionality– towards full SLAM took a while [2]. Rao-Blackwellization is a practical
solution that has been widely used for SLAM [1]. The idea is to use the fact that once the robot’s pose
is known, mapping is straightforward because –given the poses– landmarks are conditionally independent,
i.e. landmark m1 does not depend on m2 . This dependency is used by factorizing the posteriors such that
the particle set is only used to model the robot’s path and not the landmarks as well. For each sample (i.e.
pose hypothesis) the corresponding map is computed in a later state of the algorithm. The core of this is
factorization of the SLAM posterior using Bayes’s theory:

p(x0:t,m1:M |z1:t, u1:t) = p(x0:t|z1:t, u1:t)p(m1:M |x0:t, z1:t) (6)

Rao-Blackwellized particle filters exploit the independency of thandmarks by estimating the robot’s pose
and landmark posteriors seperately. For example FAST-SLAM [3] estimates the pose using Monte Carlo
localisation and the landmarks using M 2-dimensional EKF’s. One for each landmark. The key steps of the
original FASTSLAM (1.0) algorithm are:

1. Extend the paths by sampling a new pose for each particle using the motion model based proposal

distribution: x
[k]
t ∼ p(xt|x[k]t−1, ut)

2. Update the particle weight based on the observation zt: w
[k] = |2πQ|− 1

2 exp{− 1
2 (zt − ẑ[k]t)}

3. Update the landmark belief, similarly to the update step of the EKF

4. Resample, similarly to Monte Carlo localization.

13

Here ẑ is the prediction of the measurement and Q is the measurement covariance matrix, which is updated
like for the EKF. The mathematical derivation of the importance sampling (weight update) is beyond the
scope of this appendix and can be found in [2] or [3]. Later algorithmic improvements have been made
which resulted in FastSLAM 2.0 which also uses the observation during the initial sampling phase. This will
turn out to be important for implementation in our framework. Implications of the FASTSLAM algorithm
are per-particle data association leading to increased robustness for faulty data associations. Compared to
the original EKF, FastSLAM is more capable of dealing with large amounts of landmarks. Furthermore,
the probabilistic approach is known for being capable of dealing with occupancy grids and sensors that are
based on scan-matching. Something the EKF cannot do.

3 Feasibility of implementing FAST SLAM within the framework

Now that the basic operating principles of Rao Backwelised particle filters have been explained, it is possible
to look at the key design choice made for the modular framework and how these would work in case of
implementing FAST SLAM. The following three have been considered to be important in this respect:

• Acting on an ’on-new-data’ basis.

• Handling Idiothetic and Allothetic sensor data separately.

• The ability to handle multiple sources of idiothetic and allothetic data.

3.1 Separating idiothetic and allothetic data

One of the observations that has been made for EKF and graph SLAM is that these algorithms treat idio-
thetic and allothetic data very differently. A Kalman filter does the prediction step with new idiothetic data
and the update step on new allothetic data. Similarly, graph SLAM adds pose nodes with idiothetic data
and (depending on the sensor) landmark nodes when new allothetic data is received. In principle the same
holds for Rao-Backwellized particle filters. Considering Fast-SLAM 1.0, this separation is visible as well.
Idiothetic data is only used for generating new samples based on the proposal function. Allothetic data is
used for updating the weights. The covariance matrix that is used for this is updated in the same way as
an EKF, hence it also doesn’t require any idiothetic data. Resampling does not require any data, hence
one could argue to put this function in a timed loop, similarly to optimizing the graph. This is probably a
suboptimal solution, as the allothetic information is only actually used by resampling. Hence it most likely
makes more sense to resample the data every time the weights are updated.

The only potential issue that’s visible is the fact that an improved version of Fast-SLAM (Fast-SLAM
2.0) actually uses the allothetic observations for the proposal distribution. This would require some form of
idiothetic and allothetic synchronization and is most likely not a dealbreaker for our framework but would
require some additional effort. Perhaps simply using the last allothetic data available would work out fine.
This has to be tested before any further conclusions can be drawn.

3.2 Acting on an ’on new data’ basis

In practice it is very likely that the frequencies of idiothetic and allothetic data do not match. Hence the
algorithm should be capable of dealing with repeated messages of the same information type. Studying
FastSLAM 1.0 implementations shows that this most likely will not be an issue. Animations show that
odometry propagation decreases the certainty of the robot’s belief. New allothetic information and re-
sampling decreases the pose uncertainty. This appears to be working very similarly to graph and EKF
SLAM.

3.3 Multiple idiothetic and allothetic sources

Based on the previous sections, it is expected that this should not be a problem as well. This follows more
or less implicitly from being capable of acting on arrival of new data and allowing multiple consecutive
idiothetic or allothetic messages to be processed.

In addition to this, the per-particle data association is a big advantage for implementation of different
sensor types such as bearing/range only data association. Typically a range only observation results in a
multimodal probability distribution. Something which the Particle filter is very good at (CITATION).

14

4 Conclusion

This document explained the key concepts of the particle filter and analyzed how it could be implemented
in the existing framework. Although one can only be sure after succesful implementation, based on a brief
study it should be possible to fit a Rao Backwellized particle filter based on FastSLAM 1.0 in the existing
framework. This would probably boil down to:

• On new idiothetic data: Propagate samples using the (motion model based) proposal distribution.

• On new allothetic data: Update the weight based on the observations and the updated landmark
belief. Followed by resampling using the weights just found.

• Every X seconds (in a timed-loop). Publish the current estimate.

No major potential issues were identified, although upgrading to FastSLAM 2.0 would require some syn-
chronization of idiothetic and allothetic data in order to be able to perform the prediction step. Advantages
of the Particle filter include: increased robustness for faulty data association, improved results compared to
the EKF-based approach, the ability to produce occupancy grid maps and a first step towards supporting
scan-based SLAM solutions. Therefore adding FastSLAM 1.0 is considered to be a very useful step that
should be executed if the time budget allows.

References

[1] Hugh Durrant-whyte and Tim Bailey. Simultaneous Localisation and Mapping (SLAM): Part I The
Essential Algorithms. pages 1–9, 2006.

[2] Sebastian Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52–57, 2002.

[3] Sebastian Thrun, Michael Montemerlo, Daphne Koller, Ben Wegbreit, Juan Nieto, and Eduardo Nebot.
Fastslam: An efficient solution to the simultaneous localization and mapping problem with unknown
data association. Journal of Machine Learning Research, 4(3):380–407, 2004.

15

Graph-based SLAM

Jeroen Minnema

April 2020

1 Introduction

Whereas EKF and PF SLAM are filter based approaches, graph-based methods approach the SLAM problem
differently. A pose graph is used to represent the problem and every node in the grap corresponds to either a
robot pose or a landmark position. The edges between these nodes correspond to spatial constraints between
them. The idea of graph SLAM is first to build this graph and then to find a node configuration that minimizes
the error introduced by the constraints. For this a nonlinear solver is used, for example algorithms like Gauss-
Newton or Marquardt Levenberg. As the focus of this assignment is on analyzing and improving on the
modularity of the back-end and not on the algorithm and mathematics themselves, the reader is referred to
either [1] or [2] for the complete mathematical formulation of the graph SLAM problem.

2 Building the graph

Idiothetic measurements correspond to new pose nodes. Using the motion model g(), the pose increment
u = [∆x,∆y,∆θ]T is calculated. This is added to the previous pose to create a new node at the location x+ u.
The measured pose increment u is added as a constraint, i.e. edge. Furthermore, the canonical representation
of the uncertainty (i.e. the inverse of the covariance matrix) of the motion is added to the edge. This concludes
an idiothetic measurement for graph SLAM.

If a new landmark, for instance lm1, is observed, this landmark is added as a node to the graph as well.
The initial location of the node is usually the current belief of the robot pose plus the relative observation z.
The edge is initialized with the measurement z and the covariance Q. If the same landmark is seen from another
position, simply another edge is added to this landmark. This set of motion and measurement constraints can
then be optimized results in slightly altered locations (beliefs) of the pose and landmark nodes. Figure 1 illus-
trates this process of building the graph. Next, adding additional allothetic sensors to the graph is considered.

lm1

lm2

u1

u2

u3

z1
z2

z3
z4

z5

Opt. pose

Odometry
lm1

Figure 1: Schematic view of the structure of a graph-based SLAM problem. Pose nodes are created by odometry
measurements, after graph optimization these poses may change slightly.

This is illustrated with figure 2. Adding an additional relative allothetic sensor that observes different landmark
types (such as lm3 is trivial, as long as it leads to similarly formulated constraint equations. Absolute allothetic
sensors, such as an absolute position measurement made by a GPS sensor, are slightly more interesting: a new
node at the measured position is created for every measurement. As this location should (in theory) be identical

APPENDIX C
BACKGROUND ON PARTICLE FILTER-BASED SLAM

16

to the previous pose node that has been estimated with the odometry sensor, the corresponding edge (i.e. the
error) is set to zero. For a GPS sensor the uncertainty could be set according to the HDOP of the sensor (its
internally reported uncertainty estiamte). An additional idiothetic sensor simply results in additional constraint

lm1

lm2

lm3

gps1

u1

u2

u3

z1
z2

z3
z4

z5

z6
z7

z8

Optimized pose

Odometry

Figure 2: Showing how an additional idiothetic sensor can be modeled: by adding an additional constraint
equation that is mapped to the relevant nodes.

equations being added to the graph, as u4 in figure 3 shows. However, this assumes that the measurements of
the idiothetic sensor have been time-synchronized first. Finally, additional idiothetic and allothetic sensors are

lm1

lm2

u1

u2

u3
u4

z1
z2

z3
z4

z5

Optimized pose

Odometry

Figure 3: Showing how an additional idiothetic sensor can be modeled: by adding an additional constraint
equation that is mapped to the relevant nodes.

combined in figure 4.

3 Remarks

Some interesting differences between graph SLAM and filter based approaches have been found:

• Compared to filter based approaches, graph SLAM is capable of handling multiple idiothetic sensors, as
long as time-synchronization takes place.

• No pose uncertainty information is obtained by optimizing the graph. Something which is achieved with
the Kalman-based approaches.

• Graph SLAM is a form of offline SLAM, i.e. the entire pose graph is being optimized at once, compared
to EKF and PF SLAM that do online SLAM where only the most recent pose is being optimized.

4 Conclusion

Also for graph SLAM, idiothetic and allothetic data is handled separately and independently. The three different
sensor types are added to the graph differently although the data that’s exchanged is the same, i.e. pose and
uncertainty information.

17

g1

lm1

lm2

lm3

u1

u2
u3

u4

z1

z2

z3
z4

z5

z6
z7

z8

Odometry
lm1

gps1

lm3

Figure 4: Schematic view of the structure of a graph-based SLAM problem. Pose nodes are created by odometry
measurements, after graph optimization these poses may change slightly. Measurement u4 indicates the edge
corresponding to an additional idiothetic sensor. Measurement z6, z7 show an additional allothetic sensor and
an absolute allothetic measurement is represented by z8.

References

[1] Giorgio Grisetti, Rainer Kummerle, Cyrill Stachniss, and Wolfram Burgard. A tutorial on graph-based
SLAM. IEEE Intelligent Transportation Systems Magazine, 2010.

[2] Sebastian Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52–57, 2002.

18

Framework Design

Jeroen Minnema

April 2020

1 Introduction
This appendix explains and motivates the key design choices and interfaces of the framework
developed during this assignment and serves as additional material next to the paper and
documented code. The structure of this appendix is as follows: first the structure of a SLAM
system is derived. The result of this is a functional flow diagram indicating the components
present in the SLAM system. Next, the interface between the various sensors and the back-end
is explained in more detail. Section 3 describes each of the individual components. Finally,
in order to provide a modular interface with either simulation software or robotic platforms,
ROS [1] was chosen to provide a flexible interface. Section 4 explains the integration of the
framework in ROS.

1.1 Structure
At its core a SLAM system combines observations from various sensors (z) and uses this to
estimate the robot pose and evnironment around the robot. This is schematically illustrated
with Figure 1.

Sensors
SLAM
algorithm

Map+pose
z Estimate

Figure 1: Schematic view of the essence of a SLAM-system: multiple sensors feed observations
z into the SLAM-algorithm which combines this data to come up with an estimate of the robot
pose and map.

As explained in the paper, sensors can be divided into three categories: idiothetic sensors
that measure the robots pose incrementally, relative allothetic sensors that use the outside world
relative to the robot to provide information and absolute allothetic sensors that use external
references to obtain an absolute position estimate. This categorization is illustrated by Figure
2. Based on this sensor categorization, we can derive the structure of the SLAM framework.
Figure 2 shows that three different sensors produce observations in different data formats. In
addition to this, relative allothetic sensors may require further processing steps that consists
of landmark extraction and data association. Furthermore, idiothetic expansion requires a
single estimate in order to work with filter based back-ends. Therefore some kind of sensor
fusion or filtering is required outside the back-end algorithm in these cases. These additional

APPENDIX D
FRAMEWORK DESIGN

19

Sensor

Idiothetic
sensor

Allothetic
sensor

Incremental:
Odometry,
IMU

u =

∆x
∆y
∆θ

Relative: Laser-
range, camera

z =

lm1r,θ,ID

...
lmmr,θ,ID

Absolute:
GPS,
compass

z =

x
y
θ

Figure 2: Categorization of SLAM related sensors along with several examples.

components result in the functional flow diagram shown in Figure 3. Note that the idiothetic
filter has not been implemented in this work, for sensor fusion or filtering is considered to be a
known technology that is not necessarily relevant to assess the feasibility of a modular SLAM
framework. The numbers in the figure correspond to the following information being send:

1. Relative allothetic observation, can either be a raw observation (an image, laser scan
etc.) or a list of relative landmark observations that may or may not contain an ID:
[lm1θ, lm1r, lm1ID, ...lmmθ, lmmr, lmmID]T

2. List of landmarks and feature descriptors

3. Absolute allothetic observation z: measurement of the robot’s state vector [x, y, θ]T

4. List of associated landmarks (with id)

5. Previously seen landmarks, Ids

6. Idiothetic observation(s) u = [∆x,∆y,∆θ]T

7. Single idiothetic, incremental pose update u: [∆x,∆y,∆θ]T

8. Slam estimate: state vector: [x, y, θ, lm1x, lm1y, lm1id, ...lmnx, lmny, lmnid]
T

2 Sensor–back-end interface
A SLAM back-end that consists of sensors and the SLAM algorithm has been developed. The
core of this contribution is formed by designing a sensor–back-end interface that allows adding
additional sensors and using different SLAM algorithms. In the analysis in the paper on the
way idiothetic and allothetic information are being used by the various SLAM algorithms it
was concluded that Idiothetic and allothetic data are used separately and independently. This
means that an idiothetic measurement can be handled repeatedly without an intermediate

20

Relative
allothetic
sensors

Landmark
extraction

Data-
Association

Absolute
allothetic
sensors

Idiothetic
sensors

SLAM-algorithm

Idiothetic
filter

Map+Pose

1. z 2. Lms

3. z

4. Old Lms, Ids5. Lms, Ids

6. u

7.

8. Estimate

Figure 3: Architecture of the SLAM framework. Arrows 1,3 and 6 indicate the data obtained
via the three sensor types. Arrows 2 and 5 indicate landmark extraction and data association for
relative allothetic sensors. Data association may require information on previously landmarks
(arrow 4). The idiothetic filter may be required in case multiple idiothetic sensors are being
used (explained in 3.C, arrow 7.) The final SLAM estimate is illustrated by arrow 8.

allothetic measurement. The result of this analysis can be summarized in two tables: Table 1
shows the information that is required for the three algorithms to handle respectively idiothetic
and allothetic data. Table 2 shows the respective actions that are involved in these steps.

Algorithm Measurement Model Uncertainty
EKF idio. Pose increment u Motion model g(u),

Jacobian G()
Motion covariance Cx

EKF allo. Observation z Sensor model h(x),
Jacobian H()

Sensor noise Q

Graph idio. Pose increment u Motion model
observation

Information matrix Ω

Graph allo. Observation z Sensor model
observation

Information matrix Ω

PF idio. Pose increment u Motion model g(u),
Jacobian G()

Motion model
distribution

PF allo. Observation z Sensor model h(x),
Jacobian H()

Sensor noise Q

Table 1: Data being exchanged between the sensor and back-ends for the three SLAM
algorithms (‘idio.’ and ‘allo.’ stand for respectively idiothetic and allothetic information).

The observation of the independence between idiothetic and allothetic data is also very
useful considering the goal of adding multiple sensors. Something which inevitably leads
to repeated measurements of a specific sensor. Because of this, it was chosen to make the
back-end act on an “on-new-data" basis. In practice this means that when a sensor receives
data, it triggers respectively a processIdiotheticData () or processAllotheticData () function
in the back-end. These functions are back-end specific and consist of the actions described

21

Back-end process_idiothetic() process_allothetic()
EKF EKF prediction step: Relative: EKF-SLAM update step of

full state. Absolute: update step of
just the pose.

Graph SLAM Add new pose node and
measurement of pose increment

Relative: add node and edge if
landmark is new, otherwise add an
edge. Absolute sensor: always add
a node and edge based.

Particle Filter Update particle paths based on
motion model.

Update weights based on sensor
observation, update step of landmark
EKF’s, resample.

Table 2: Overview of the actions being done based on new idiothetic and allothetic data.

in table 2. In order perform these actions, sensor specific information is required, such as
the measurement, the uncertainty and possibly the Jacobian. The information that is being
exchanged is shown in Table 1.

For the relation between the back-end and the sensors, it was chosen to use composition
as this makes adding new sensors as simple as creating a new object of the type of the sensor
to be added and to add this to a list of either idiothetic or allothetic sensors that is stored in
the back-end. Similarly, Figure 5 shows the sequence diagram of processing an allothetic

measurementCallback()

get_Cov()
calc_G()

calc_g()
get_u()

processIdiothetic()

publishEstimate()

Robot: idioSensor1:IdotheticSensor EKFBackEnd: Map:

SLAMNode

ROStimer
[1Hz]

EKFPredict()

Figure 4: Sequence diagram to show the interaction between idiothetic sensors and the back-
end, in this case an EKF back-end. processIdiothetic() triggers the prediction step of
the Kalman filter, for which the measurement u, the Jacobian and the covariance are required
from the sensor.

measurement for an EKF back-end. Here the allothetic measurement triggers the update step
of the EKF.

22

measurementCallback()

calc_h()

get_Cov_()

calc_H()

get_z()
processAllothetic()

PublishEstimate()

Robot: AlloSensor1:AllotheticSensor backEnd: Map:

SLAMNode

ROStimer
[1Hz]

EKFUpdate()

Figure 5: Sequence diagram to show the interaction between Allothetic sensors and the back-
end, in this case the EKF back-end.

2.1 Resulting interface
The complete resulting sensor–back-end interface that is required to implement each of the
three back-ends follows from Table 1 and 2 and consists of the following parts:

1. The sensor observation: allothetic sensors: z, idiothetic sensors: u, according to the data
format as specified in Figure 2

2. Sensor models: allothetic sensor: h(), idiothetic sensor g()

3. Measurement uncertainty: Represented as covariance Cx or information (inverse of
covariance) Ω

4. Jacobians of the measurement or motion models, respectively H() and G()

This data is made available through respective getter functions, such as get_u(), get_z(),
calc_g() etc. These return the measurements, models or uncertainties relevant to the SLAM
algorithm in the form of arrays. The dimensions of these arrays are dictated by the sensor type
(see Figure 2) and the fact that planar SLAM is considered. Furthermore, if the sensor has n
outputs (for example two in the case of an odometry sensor based on two wheels), consequently
the covariance matrix is an nXn matrix and the Jacobian G() has n rows. The UML-sequence
diagram, Figure 4 provides an example for handling idiothetic data for the EKF. The interface
is standardized using abstract parent classes for the sensors as well as the back-ends. Child that
form realizations of these abstract classes have been created.

2.1.1 Interface class diagram

The concept of abstract parent classes and realizations in child classes has been used
to ensure reusable and interchangeable components in the framework. For the back-end

23

this boils down to a class with a list of idiothetic and allothetic sensors and (optionally,
depending on the allothetic sensors) an extractor and data associator. The implementation of
the processIdiotheticData() and processAllotheticData() depend on the
SLAM algorithm that is implemented. Figure 11 illustrates this structure. A similar structure
of an abstract base class and realization in the child class has been used for allothetic and
idiothetic sensors. Section 3 provides a more detailed explanation of both the back-end and
sensor components.

BackEndBase

+ idiotheticSensors : ArrayList<IdiotheticSensors>
+ allotheticSensors : ArrayList<AllotheticSensors>
+ extractor : LandmarkExtractor
+ associator : DataAssociator

+ processIdiotheticData(sensor)
+ processAllotheticData(sensor)
+ publishEstimate()

GraphBackEnd EKFBackEnd PFBackEnd

IdiotheticBase

+ _backEnd : SlamBackEnd

+ _measurementCallback()
+getSE2Estimate(xest)
+getMeasurementCovariance()
+getMeasurementSE2Information()
+calc_H()

Odometry Gyroscope RangeBearingCamera GPS

AllotheticBase

+ _backEnd : SlamBackEnd
+ _IsAbsoluteSensor

+ _measurementCallback()
+getSE2Estimate(xest)
+getMeasurementCovariance()
+getMeasurementSE2Information()
+calculate_h()
+calc_H()

Figure 6: Class diagram of the back-end classes. The BackEndBase class is an abstract class,
the three implemented back-ends form the implementation.

24

3 Detailed component description

3.1 Idiothetic sensors
Because every idiothetic sensor has to provide the same information to the back-end, it was
chosen to use an abstract idiothetic base class, methods such as the motion model are sensor
specific and hence implemented in the child classes. The resulting class-diagram is shown in
Figure 7. As can be read in the paper, adding additional idiothetic sensors is more complicated
than adding multiple allothetic sensors, for filter based approaches fundamentally require a
single pose estimate and graph-SLAM requires a form of time synchronization. This is
currently solved by mapping additional idiothetic sources to the pose nodes that have been
generated by a sensor that is defined as the "primary" idiothetic sensor. Ideally some form of
time synchronization would take place, but the proposed solution works in order to show the
proof-of-concept of adding additional idiothetic sensors to graph based SLAM.

IdiotheticBase

+ _backEnd : SlamBackEnd
+ _IsPrimarySensor

+ _measurementCallback() : void
+getSE2Estimate(xest) : [x, y, θ]T

+getMeasurementCovariance(): Cov matrix
+getMeasurementSE2Information(): Inf matrix
+calc_Jac(): G

IdiotheticSensor

+ _backEnd : SlamBackEnd
+ _IsPrimarySensor

+ _measurementCallback() : void
+getSE2Estimate(xest): [x, y, θ]T

+getMeasurementCovariance(): Cov matrix
+getMeasurementSE2Information(): Inf matrix
+calc_Jac(): G

Figure 7: Class diagram of the idiothetic sensor classes. The base class contains abstract
methods that and every idiothetic sensor (odometry, gyroscope) implements these and thus
forms a realization of the IdiotheticBase class.

25

3.2 Allothetic sensors
For allothetic sensors, a similar construction with an abstract parent-class has been used. This
results in the following class diagram, Figure 8.

AllotheticBase

+ _backEnd : SlamBackEnd
+ _IsAbsoluteSensor

+ _measurementCallback() : void
+getSE2Estimate(xest) : [x, y, θ]T

+getMeasurementCovariance(): Cov matrix
+getMeasurementSE2Information(): 1/Cov
+calculate_zp(): zp
+calc_Jac(): H

AllotheticSensor

ˆ+ _backEnd : SlamBackEnd
ˆ+ _IsAbsoluteSensor

+ get_z(): z
+ _measurementCallback() : void
+getSE2Estimate(xest): [x, y, θ]T

+getMeasurementCovariance(): Cov matrix
+getMeasurementSE2Information(): 1/Cov
+calculate_zp(): zp
+calc_Jac(): H

Figure 8: Schematic view of the Allothetic sensor classes to show how an allothetic, other
sensors share the same methods but have their own implementations of for instance the Jacobian
sensor model.

26

3.3 SLAM back-ends
As has been explained before, composition is used for the idiothetic and allothetic sensors, the
landmark extractor and the data association class: various sensors can be added to the list of
idiothetic and allothetic sensors as well as a feature extractor and association. This leads to the
class diagram shown in Figure 9, an example of a sensor layout is presented in Figure 10.

SLAMNode

SlamBackEnd

Odometry Gyroscope GPS Camera Compass

LandmarkExtractor DataAssociator

Figure 9: Class diagram of the SLAMNode with an example of a possible sensor configuration.

Also for the back-ends an abstract base class has been used as the majority of the
methods are similar across the three back-ends and therefore overridden in the child-classes.
This leads to the class diagram shown in Figure 11. Each of the three back-ends has its
own implementation of the methods processIdiotheticData () and processAllotheticData () ,
the implementation of these function corresponds with the parts of the SLAM algorithm
corresponding to Table 1.

27

SLAMNode

SlamBackEnd

+ idiotheticSensors : ArrayList<IdiotheticSensors>
+ allotheticSensors : ArrayList<AllotheticSensors>
+ extractor : LandmarkExtractor
+ associator : DataAssociator

+ processIdiotheticData(sensor)
+ processAllotheticData(sensor)

IdiotheticSensors* AllotheticSensors*

LandmarkExtractor DataAssociator

Figure 10: Class diagram of the SLAMNode. Note that in practice any of the
three supported back-ends can be chosen for the SLAMBackEnd: EKFSlamBackEnd,
GraphSlamBackEnd or PFSlamBackEnd
as well as any combination of (multiple) idiothetic and allothetic sensors.

28

B
ac

kE
nd

B
as

e

+
id

io
th

et
ic

Se
ns

or
s

:A
rr

ay
L

is
t<

Id
io

th
et

ic
Se

ns
or

s>
+

al
lo

th
et

ic
Se

ns
or

s
:A

rr
ay

L
is

t<
A

llo
th

et
ic

Se
ns

or
s>

+
es

tim
at

eP
ub

lis
he

r:
rc

lp
y.

Pu
bl

is
he

r
+

ex
tr

ac
to

r:
L

an
dm

ar
kE

xt
ra

ct
or

+
as

so
ci

at
or

:D
at

aA
ss

oc
ia

to
r

+
pr

oc
es

sI
di

ot
he

tic
D

at
a(

se
ns

or
)

+
pr

oc
es

sA
llo

th
et

ic
D

at
a(

se
ns

or
)

+
pu

bl
is

hE
st

im
at

e(
)

G
ra

ph
Sl

am
B

ac
kE

nd

ex
tr

ac
to

r:
L

an
dm

ar
kE

xt
ra

ct
or

+
as

so
ci

at
or

:D
at

aA
ss

oc
ia

to
r

+
id

io
th

et
ic

Se
ns

or
s

:[
Id

io
th

et
ic

Se
ns

or
s]

+
al

lo
th

et
ic

Se
ns

or
s

:[
A

llo
th

et
ic

Se
ns

or
s]

+
so

lv
er

:g
2o

.B
lo

ck
So

lv
er

SE
2

+
pr

oc
es

sI
di

ot
he

tic
D

at
a(

se
ns

or
)

+
pr

oc
es

sA
llo

th
et

ic
D

at
a(

se
ns

or
)

+
pu

bl
is

hE
st

im
at

e(
)

E
K

FS
la

m
B

ac
kE

nd

+
ex

tr
ac

to
r:

L
an

dm
ar

kE
xt

ra
ct

or
+

as
so

ci
at

or
:D

at
aA

ss
oc

ia
to

r
+

id
io

th
et

ic
Se

ns
or

s
:[

Id
io

th
et

ic
Se

ns
or

s]
+

al
lo

th
et

ic
Se

ns
or

s
:[

A
llo

th
et

ic
Se

ns
or

s]

+
pr

oc
es

sI
di

ot
he

tic
D

at
a(

se
ns

or
)

+
pr

oc
es

sA
llo

th
et

ic
D

at
a(

se
ns

or
)

+
pu

bl
is

hE
st

im
at

e(
)

+
E

K
Fp

re
di

ct
io

nS
te

p(
):

vo
id

+
E

K
FU

pd
at

eS
te

p(
)

PF
Sl

am
B

ac
kE

nd

+
ex

tr
ac

to
r:

L
an

dm
ar

kE
xt

ra
ct

or
+

as
so

ci
at

or
:D

at
aA

ss
oc

ia
to

r
+

id
io

th
et

ic
Se

ns
or

s
:[

Id
io

th
et

ic
Se

ns
or

s]
+

al
lo

th
et

ic
Se

ns
or

s
:[

A
llo

th
et

ic
Se

ns
or

s]

+
pr

oc
es

sI
di

ot
he

tic
D

at
a(

se
ns

or
)

+
pr

oc
es

sA
llo

th
et

ic
D

at
a(

se
ns

or
)

+
pu

bl
is

hE
st

im
at

e(
)

+
C

om
pu

te
W

ei
gh

t(
):

vo
id

+
R

es
am

pl
e(

)

Fi
gu

re
11

:C
la

ss
di

ag
ra

m
of

th
e

ba
ck

-e
nd

cl
as

s,
sh

ow
in

g
ho

w
th

e
co

re
m

et
ho

ds
ar

e
be

in
g

sh
ar

ed
am

on
g

th
e

th
re

e
di

ff
er

en
tb

ac
k-

en
ds

.E
ac

h
ba

ck
-e

nd
ha

s
its

ow
n

im
pl

em
en

ta
tio

n
of

th
es

e
m

et
ho

ds
,a

nd
po

ss
ib

ly
so

m
e

ad
di

tio
na

lm
em

be
rs

or
m

et
ho

ds
.

29

3.4 Landmark extraction & Data association
Landmark extraction (and data association) are optional steps that may be required for relative
allothetic sensors. These steps involve the extraction of suitable landmarks froma raw sensor
observation such as a camera image or laser scan followed by data association which is the
process of matching the currently observed features with the previously observed once based
on either the similarity of their appearance or the likelihood of finding the feature at that
specific location. Or a combination of both. Because potentially the same association or
extraction algorithm can be used by various sensors, it was chosen to include these as separate
components in the back-end instead of integrating these steps in the sensor code.

Whether or not association and extraction are required is known at time of implementation of
the sensor in the framework and hence a sensor property. By calling the allothetic sensor’s
method requiresExtraction () within the processing of allothetic data, it is determined
whether or not these steps are required.

3.4.1 Note regarding implementation

The implementation of extraction and association consists of a proof-of-concept using AruCO
Markers. These are fiducial markers designed for robust and easy detection of features. The
implementation of the OPENCV library has been used. The markers are detected in the
extractor using the OPENCV library and compared with the dictionary of possible markers
in the data associator. In a realistic environment, the associator continuously adds the detected
features to its own dictionary of previously seen landmarks. Here the dictionary is dictated by
the library and constant.

3.5 Architecture
The resulting class diagram of the architecture of the SLAM-node is shown in Figure 12. That
is, without the additional supporting classes (for instance, a sensor simulator or the map node
responsible for plotting the results).

4 ROS integration
As explained in the paper, the software makes use of Coppelia Sim [2] and ROS [1]. The
framework that has been explained until now forms a single ROS node, the SLAMNode.
This node connects to various other nodes that represent the robot, its sensors and the map.
This interface is realized in the form of a publish-subscribe structure with ROS-topics. The
communication diagram shown in Figure 13 gives an overview of the different ROS-nodes and
how they interact. The core of the algorithm, i.e. the back-end and sensor implementations
are contained within the SLAMNode. The sensors either suscribe to the topics created by the
robot, or in case of a relative beacon sensor that’s simulated, to an allotheticSimulator node. The
output of the SLAM node, i.e. the estiamte of the pose and map, is send to the MapNode which
facilitates plotting. Each back-end has its own node, so the software has a EKFBackEndNode,
a GraphSLAMBackEndNode and a ParticleFilterBackEndNode. The numbers in Figure 13
correspond to the following messages:

30

SLAMNode

BackEndBase

GraphBackEnd EKFBackEnd PFBackEnd

IdiotheticBase AllotheticBase

Odometry Gyroscope Camera GPS Compass RangeBearing

LandmarkExtractor DataAssociator

Figure 12: Class diagram of the SLAMNode showing the implemented architecture.

1. StartMsg. Used to start the simulation in CoppeliaSim automatically. Type:
std_msgs/Bool

2. TruePosMsg. True robot position, used for comparing estimate and true trajectory. Type
geometry_msgs/2DPose

3. SensorMsgs. Messages of the various sensors being used by the robot. Type (depends
on sensor, see list below or for a detailed description, refer to appendix X which contains
sensor specific documentation).

4. AllotheticMeasurementMsg. Simulated allothetic data, list of relative range-bearing
measurements. Type: custom_msgs/AllotheticMeasurement

5. TrueLandmarksMsg. Coordinates of true landmarks. Type: custom_msgs/Landmarks

6. TruePosMsg. True robot pose. Type: geometry_msgs/2DPose

7. EstimateMsg. Estimated robot pose and landmark locations. Type:
custom_msgs/Estimate

4.1 ROS nodes
Each of the ROS nodes is the framework is briefly discussed below.

31

StartNode

Coppelia Robotics

GroundThruthNode

SLAMNode

AllotheticSimulator

MapNode

1. StartMsg

2. TruePosMsg

5. LandmarksMsg

6. TruePosMsg
7. EstimateMsg

3. SensorMsg

4. AllotheticSensorMsg

Figure 13: Overview of the different ROS-nodes that have been used for the program. Except
from Coppelia Robotics (green), every block in this block-diagram is a separate ROS-node.
Note that the SLAMNode consists of the back-end and several sensor objects (the exact number
of which depends on the SLAM implementation). All of the data that enters the back-end goes
through the sensor classes. In case landmark extraction and data association are present as well,
the back-end has instances of these objects as well.

StartSim (ROS-node)
Input: -
Function: Allows starting of the simulator from Python by publishing on the StartSim topic.
Output: Bool StartSim ROS-message.

Allothetic Simulator(ROS-node)
Input: True landmark location, true robot pose, sensor uncertainty (Simulation parameter)
Function: Simulates a set of range-bearing measurements by using the true landmark and
robot pose to calculate the relative range-bearing. Measurement noise is added to these
measurements.
Output: Observation z (in this case this includes the landmark ID as we assume known
association), this is implemented in the custom ROS AllotheticSensorMessage.

Ground Thruth (ROS-node)
Input: True Robot position and yaw-angle
Function: Keeps track of the true robot pose (actually maps the orientation to [0, 2π]) and
generates the true landmark locations.
Output: True Robot pose, True Landmarks

Map (ROS-node)
Input: Current (online-) Estimate, True pose.
Function: Stores the full estimated and true trajectories (this might change or become more
important for offline SLAM) and plots these as well as the current covariance ellipse.
Output: Plot of the result (possibly in the future the map publishes the estimate?).

32

Back-End (ROS-nod
Input: Sensor data via sensors (attributes of the back-end class). This includes data coming
directly from Coppelia Sim and simulated data, such as the artificial AllotheticSimulator .
Function: Core of the SLAM algorithm that acts on an "on-new-data" basis.
Output: Estimate of the pose and landmarks, this is a custom ROS Estimate message.

4.2 ROS messages
Besides standard ROS messages (Float32, Point, Pose, Bool), the following custom messages
have been defined to facilitate the framework. Note that for compatibility reasons, the back-
end should also publish a ROS Pose message –that could be used by for instance path planning
software– besides the currently used custom Estimate() message, although this is currently not
being used.

RangeBearingLandmark(ROS-message)
Float32 Bearing
Float32 Heading
Int Id

RangeBearingLandmarks(ROS-message)
RangeBearingLandmark[] list

Estimate(ROS-message)
Pose x
RangeBearingLandmarks landmarks
Float32 Cx11
Float32 Cx12
Float32 Cx21
Float32 Cx22
The latter four being the four entries of the x-y covariance matrix of the state vector.

References
[1] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob

Wheeler, and Andrew Y Ng. ROS: an open-source Robot Operating System. In ICRA
workshop on open source software, 2009.

[2] E. Rohmer, S. P. N. Singh, and M. Freese. CoppeliaSim (formerly V-REP): a Versatile
and Scalable Robot Simulation Framework. In Proc. of The International Conference on
Intelligent Robots and Systems (IROS), 2013.

33

Mathematical sensor Description

Jeroen Minnema

April 2020

1 Introduction

The purpose of this document is to provide some clear documentation on the sensors that have
been implemented in the framework, especially regarding the mathematical models used, i.e.
the measurement model and its Jacobian.

2 Odometry

Sensor type: Idiothetic
Measures: changes in angular position since the previous measurement for both the left and
right motor, resp: ∆αl and ∆αr.
ROS-topic: coppelia leftWheelSpeed, coppelia rightWheelSpeed

Measurement function g() Given the diameter d and distance between the two motors L
first the distance traveled by the left and right motor are calculated:

∆Sl = dπ
∆αl
2π

(1)

∆Sr = dπ
∆αr
2π

(2)

(3)

By assuming that the motion is relatively small and hence that the angular arc traveled by
the robot has approximately the same length as the straight distance, we obtain after some
manipulations1:

∆S =
∆Sl + ∆Sr

2
(4)

dθ =
∆Sr −∆Sl

L
(5)

∆x = ∆S cos (θ + 0.5 ∗∆θ) (6)

∆y = ∆S sin (θ + 0.5 ∗∆θ) (7)

u =

∆x
∆y
∆θ

 (8)

1https://www.cs.princeton.edu/courses/archive/fall11/cos495/COS495-Lecture5-Odometry.pdf

APPENDIX E
MATHEMATICAL SENSOR DESCRIPTION

34

Jacobian The Jacobian is calculated as follows:

G =

∂∆x
∂x

∂∆x
∂y

∂∆x
∂θ

∂∆y
∂x

∂∆y
∂y

∂∆y
∂θ

∂∆θ
∂x

∂∆θ
∂y

∂∆θ
∂θ

 =

0 0 −∆S sin (θ + 0.5 ∗∆θ)
0 0 ∆S cos (θ + 0.5∆θ)
0 0 0

 (9)

Remarks

3 Gyroscope

Sensor type: Idiothetic
Measures:
ROS-topic: coppelia gyroData

Measurement function

Remarks Because no additional idiothetic sensors were implemented for EKF and PF SLAM,
the Jacobian wasn’t implemented.

4 Range-bearing sensor

Sensor type: Relative allothetic
Measures: z, a relative allothetic observation, i.e. a vector of relative range bearings and–
depending on the sensor–IDs (r, θ: z = [lm1,θ, lm1,r, lm1,ID...lmm,theta, lmm,r, lmm,ID]T), how-
ever for the measurement function and its Jacobian, an individual observation of landmark i is
considered: zi = [ri, θi]
ROS-topic: slam allotheticMeasurement

Measurement function

Remarks

4.1 ArUco camera

Sensor type: Relative allothetic
Measures:
ROS-topic: coppelia camera

Measurement function The measurement function h() is designed for the observation of
an individual landmark and is used for reconstruction, i.e. based on the current believe of the

35

landmark lmi and robot statevector xrobot.

δ =

[
δx
δy

]
=

[
lmi,x − xrobot

lmi,y − yrobot

]
(10)

q = δT δ (11)

zi =

[√
q

atan2(δy, δx)− θrobot

]
(12)

Remarks Besides the feature extraction and data association, the AruCo marker is actually
just a range-bearing sensor, hence the measurement model is the same.

Jacobian Note that for the EKF and Particle filter, the Jacobian of the full statevector–the
robot pose and all landmarks that have been observed at that point in time–is calculated.
However, for all landmarks except for lmi this results in zeros, so here we consider the low-
dimensional Jacobian lowH i which consists of the partial derivatives over (x, y, θ, lmi,x, lmi,y)
by applying the chain rule this results in:

H =
[
∂h
∂x

∂h
∂m

]
=

1

q

[
−√qδx −√qδy 0

√
qδx

√
qδy

δy −δx −q −δy δx

]
(13)

5 GPS

Sensor type: Absolute allothetic
Measures: Absolute robot position z = [x, y]
ROS-topic: coppelia truePosition

Measurement function

z =

[
xrobot

yrobot

]
(14)

Jacobian

H =

[
1 0 0 0 0
0 1 0 0 0

]
(15)

Remarks Noise is added to the true position in order to get a realistic measurement. For
a real GPS added to a robot, it would make sense to use the GPS’s own accuracy estima-
tion, mainly the dilution of precision, HDOP/VDOP2 information instead of estimating the
covariance manually.

6 Compass

Sensor type: Absolute allothetic
Measures: Absolute heading z = [θ]
ROS-topic: slam trueRobotTheta

2https://en.wikipedia.org/wiki/Dilution_of_precision_(navigation)

36

Measurement function

z =
[
θ
]

(16)

Jacobian

H =
[
0 0 1 0 0

]
(17)

Remarks Noise is added to the true orientation in order to simulate a realistic measurement.
In reality, if one would be aware of the standard deviation of the earth magnetic field at the
operating location, this could be included in the measurement model.

37

Simulation Environment

Jeroen Minnema

April 2020

1 Introduction

The goal of this appendix is to provide some details on the simulation environment. The
initial role of the simulation software was mainly as a development and testing tool as the goal
was to perform the final tests on a real world robotic platform. However, unfortunately due
to the COVID-19 situation during spring 2020, physical experiments were no longer possible,
therefore the simulations form the prime results of this paper and showcase the functioning
of the modular SLAM framework. First, the simulation environment and the connection with
the SLAM framework is explained. Furthermore, a brief tutorial on how to run the demo
runs is provided. Hints on compiling and installing the required software are provided on the
RaM gitlab page, where the software is currently located https://git.ram.eemcs.utwente.

nl/minnemaj/msc_slam.

2 Simulation environment

As explained in the paper, ROS is used together with CoppeliaSim. CoppeliaSim contains a
simulation environment of a robot that’s navigating through a building and contains a basic anti
collision algorithm such that upon starting the simulation the robot will explore the environment
automatically. This robot is based on the example robot in the CoppeliaSim tutorials and is
equipped with various (artificial) sensors, listed in table 1. These sensors publish their data on
ROS topics on which the SLAM Node is subscribed.

3 Running the Demo simulation runs

The most convenient way of running the demo examples is by running one of the ROS launch
files that directly start all relevant nodes and start the simulation. Assuming one has cloned
the Git repository of this project. Open CoppeliaSim by navigating to the installation directory
and executing coppeliaSim.sh. Open the scene named ”DemoScene.ttt”. Open a terminal and
navigate to the main directory: \slam ws. Run the following commands:

Sensor type Implemented

Idiothetic
Odometry (wheel encoder)
IMU (Gyroscope)

Allothetic, relative
Simulated range-bearing sensor
Aruco based range-bearing

Allothetic, abosulte
GPS (absolute x,y position)
Compass (absolute heading)

Table 1: Overview of the sensors that have been implemented

APPENDIX F
SIMULATION ENVIRONMENT

38

Figure 1: Screenshot of the CoppeliaSim environment

co l con bu i ld
. i n s t a l l / setup . bash
ros2 launch slam framework launchGraphSim . launch . py

This launches the graph SLAM back-end. Alternatively, for the other two back-ends, launch
the other two launch files: launchPFSim.launch.py and launchEKFSim.launch.py.

3.1 Changing the sensor configuration

If one desires to change the sensor configuration, this can be done by creating a sensor of the
desired type in the init () function of the back-end and adding it to the list of sensors.
Figure 2 provides a code snippet on how to do this. The README files on Git provide further
details. Please note that any software changes do require the software to be rebuild before
launching the simulation. This is done with colcon build while being in the root directory of
the repository.

Figure 2: Code snippet to illustrate how additional sensors can be added to change the sensor
configuration

39

ArUco marker fiducial detection

Jeroen Minnema

April 2020

1 Introduction

This section elaborates on how AruCo markers have been used for this project and explains
how the calibration process has been done and could be redone if different cameras (or a real
robot) would be used in the future. Fiducial markers were chosen because they form as they
provide a means of using visual SLAM with limited implementation time because a robust and
efficient off-the-shelf extraction and association algorithm can be used. Another advantage of
fiducial markers is that they were likely to work both in simulation and in practice. ArUco
markers are fiducial markers that can be automatically generated and can be reliably detected.
Furthermore an easy to use interface is provided by the OpenCV ArUco library 1. An example
of an ArUco marker is provided in figure 1

Figure 1: Example of an ArUco marker

2 Calibration with CoppeliaSim

In order to be able to estimate the distance of the detected markers, the camera parameters
and the true size of the image have to be known. CoppeliaSim does not clearly provide the
exact camera properties, but fortunately OpenCV provides algorithms to facilitate camera
calibration with a CharUco Chessboard image. This requires a set of images of the chessboard
made by orienting the camera at various angles. This was done by building a calibration scene in
CoppeliaSim, figure 2 shows this. The calibration scripts that are located in the /aruco tests/
directory are documented and explain the details of the calibration. The resulting accuracy
was not investigated in great detail but measurements appeared to be within 0.1m of the true
distance, which was considered to be acceptable for the required purpose.

1http://www.uco.es/investiga/grupos/ava/node/26

APPENDIX G
ARUCO MARKERS

40

Figure 2: ArUco calibration with CoppeliaSim, the Camera is moving along the purple line
to provide images from different viewing angles. The images are saved and read by a python
script that performs the calibration and obtains the camera parameters.

41

	Introduction
	Related work
	Anaylsis of Modularity in SLAM
	Sensor types
	Idiothetic sensors
	Allothetic sensors

	SLAM Algorithms
	EKF SLAM
	FAST SLAM 1.0
	Graph-based SLAM

	Key principles that facilitate Modular SLAM

	Modular framework design
	Sensor–back-end interface
	Landmark extraction and association

	Implementation & Demonstration of modularity
	Discussion
	Conclusion
	References
	Appendix A: Background on Kalman-based SLAM
	Appendix B: Background on Particle filter-based SLAM
	Appendix C: Background on Particle filter-based SLAM
	Appendix D: Framework Design
	Appendix E: Mathematical sensor description
	Appendix F: Simulation environment
	Appendix G: ArUco Markers

