

	
	
	
	
	
	

	
	

	
	

	
	
	
	
	
	
	

	
	

	
	

	
	

	

	

	

	

	

	

	

	
Development of environmental awareness

for the Kuka robot arm

M. (Mohamed) Issa

 BSc Report

C e
Ir. F.S. Farimani

Dr. F.J. Siepel
Dr.ir. F. van der Heijden

Ir. G.A. Folkertsma

August 2016
	

031RAM2016
Robotics and Mechatronics

EE-Math-CS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands	

ii Development of environmental awareness for the Kuka robotic arm

Abstract

The Murab (MRI and Ultrasound Robotic Assisted Biopsy) project mainly aims at improving the
precision of medical imaging by combining the results of MRI and US with the aid of robotic
precision. The project enhances the process of screening and testing of breast cancer, not only
with regard to precision, but also time consumption. This bachelor project is primarily related
to the topic of safety regarding Murab. The main focus is to detect obstacles in the robot arm’s
environment and use an obstacle avoidance algorithm to avoid them. Xbox 360 Kinect depth
sensor is used to get position information of objects in 3D space. Kuka LBR iiwa 14 R820 robot
arm is to be controlled through a PC using a pre-built library. Both the sensor and the manipu-
lator are integrated on ROS(C++). The designed system is tested and the results are analysed to
evaluate its reliability.

Mohamed Issa University of Twente

iii

Acknowledgements
I am thankful for the opportunity to do my bachelor assignment in RaM at the University of
Twente and for the support I received from the people at the department.

Mohamed Issa
Enschede, August 2016

Robotics and Mechatronics Mohamed Issa

iv Development of environmental awareness for the Kuka robotic arm

Contents

1 Introduction 1

1.1 Context . 1

1.2 Problem statement . 2

1.3 Project goal . 3

1.4 Plan of approach . 3

1.4.1 Requirements . 3

1.5 Organization of the report . 3

2 Background 4

2.1 Literature review . 4

2.1.1 Birth of medical robotics . 4

2.1.2 Industrial vs medical robotics . 4

2.1.3 Safety guidelines for medical robotics . 5

2.2 Related work . 8

3 Experimental setup 9

3.1 Hardware setup . 9

3.1.1 Kuka . 9

3.1.2 Kinect . 9

3.2 Software architecture . 12

3.3 Control interface . 13

4 Environmental awareness 15

4.1 Obstacle detection methods . 15

4.1.1 Body detection . 15

4.1.2 Depth-pixel detection . 15

5 Obstacle avoidance algorithm 18

5.1 Notation definitions . 18

5.2 Kinect to Kuka frame transformation . 18

5.3 Forward kinematics - Kuka arm . 20

5.3.1 Denavit-Hartenberg convention . 20

5.3.2 Translation and Rotation method . 21

5.4 Inverse kinematics - Kuka arm . 22

5.5 Avoidance algorithm . 24

6 Experiments and results 30

6.1 Obstacle detection and avoidance . 30

Mohamed Issa University of Twente

CONTENTS v

6.2 Control interface . 33

7 Conclusion and recommendations 36

7.1 Conclusion . 36

7.2 Recommendations . 36

A Appendix 1 37

A.1 control_iiwa_1.cpp . 37

A.2 imitate_iiwa.cpp . 39

A.3 Forward Kinematics - Denavit-Hartenberg Convention 44

A.4 Forward Kinematics - Translation and Rotation . 45

A.5 Homogeneous Transformation code . 46

A.6 Distance calculation code . 46

A.7 Position (1 obstacle) . 46

A.8 Position (2 obstacle) . 47

A.9 C++ code implemented . 48

Bibliography 49

Robotics and Mechatronics Mohamed Issa

vi Development of environmental awareness for the Kuka robotic arm

List of Figures

1.1 Breast model (UMM, 2016) . 1

1.2 Different imaging techniques. (a) Mammography (UMM, 2016). (b) Ultrasound
(kobe, 2015). (c) MRI (kobe, 2015). 2

2.1 Robot’s workspace surrounded by a cage . 4

2.2 Fault tree analysis (Kazanzides, 2009) . 8

3.1 Kuka LBR iiwa 14 R820 joints’ specifications. (Kuka, b) 9

3.2 Kuka’s safety configuration . 10

3.3 Inside Kinect (Chubb, 2010) . 10

3.4 Stereo Triangulation . 11

3.5 Accuracy and Precision. (A) Not accurate, not precise. (B) accurate, not precise.
(C) Not accurate, precise. (D) Accurate, precise (Streiner and Norman, 2006) . . . 12

3.6 ROS basic illustration . 12

3.7 Joints in Kinect skeleton . 13

3.8 Proposed system map . 14

3.9 ExtremeT M 3D Pro Logitech Joystick . 14

4.1 Kinect coordinate frame . 15

4.2 Kuka arm OpenCV model . 16

4.3 Ros to OpenCV via CvBridge . 16

5.1 Rotation from Kinect to Kuka coordinate frames . 18

5.2 Translation from Kinect to Kuka coordinate frames 19

5.3 Manipulator control approaches . 23

5.4 Top view illustration of model used for Inverse Kinematics. (a) Manipulator’s ori-
entation. (b) Respective model for orientation in (a). 24

5.5 Side view illustration of model used for Inverse Kinematics. (a) Manipulator’s ori-
entation. (b) Respective model for orientation in (a). 25

5.6 Distance between Point 1 and Point 2 . 25

5.7 Illustration of 1 obstacle avoidance method . 26

5.8 Choosing factor for cartesian command . 26

5.9 Illustration of 2 obstacles avoidance method . 27

5.10 A plot of the factor computed against the distance calculated 27

5.11 Body Detection . 28

5.12 Depth-pixel detection . 29

6.1 Experiment setup . 30

6.2 Body detection and obstacle avoidance in frames 30

Mohamed Issa University of Twente

LIST OF FIGURES vii

6.3 X-axis plots. (a)Right hand position in x-direction. (b)End effector position in
x-direction . 31

6.4 Y-axis plots. (a)Right hand position in y-direction. (b)End effector position in
y-direction . 31

6.5 Z-axis plots. (a)Right hand position in z-direction. (b)End effector position in
z-direction . 32

6.6 Joystick axes angles. (a)x-axis (b)y-axis (c)z-axis. 33

6.7 End effector X, Y and Z position. 34

6.8 Robot arm copying human’s arm. 34

6.9 Human arm controlling 4 of the manipulator’s joints 35

Robotics and Mechatronics Mohamed Issa

viii Development of environmental awareness for the Kuka robotic arm

List of Tables

2.1 Failure modes effects analysis sample (Kazanzides, 2009) 7

5.1 Table of Notation My Research . 18

5.2 Denavit-Hartenberg Parameters . 20

Mohamed Issa University of Twente

ix

Foreword

Reaching the ultimate, most secure and safe robotic environment would require adding
human-like senses to the robot. This offers constant monitoring of the aspects of the environ-
ment at real-time and reacting to all scenarios according to a predefined strategy. Think about
it! What if your system could hear? See? Think? Or even Talk to you? This is definitely where
science, technology and research are heading. In this project, the rock of vision was scratched,
striving to reach the goal of having an environment-aware robot.

Robotics and Mechatronics Mohamed Issa

x Development of environmental awareness for the Kuka robotic arm

Mohamed Issa University of Twente

1

1 Introduction

1.1 Context

It is necessary -for understanding this project completely- to give a glimpse of the Murab
project, the importance of safety for any medical procedure and to show how each part is corre-
lated with the other to give the best possible end-product. The Murab (MRI Ultrasound Robotic
Assisted Biopsy) project mainly aims at improving the precision of medical imaging by combin-
ing the results of MRI and US with the aid of robotic precision. The project will enhance the
process of screening and testing of breast cancer, not only with regard to precision, but also
time consumption.(Agreement, 2015) Like any other project, safety is considered a major as-
pect that has to be dealt with professionally. Not only for including a robotic arm, but also
for being a medical project that deals and constantly interacts with doctors and patients at all
times.

Breast cancer starts off from the breast cells and can be present on either the interiors of the
milk ducts or the tiny lobes that supply the milk as illustrated in Figure 1.1. Either way, a tumor
growing can be a benign or a malignant one. Benign tumors tend to be harmless and they don’t
replicate to other parts of the body. On the other hand, malignant tumors are cancerous and
can infect other parts of the body and grow into neighboring organs.(AmericanCancerSociety,
2014) Women and men -mostly women- have been victims of breast cancer since the earli-
est case discovered in ancient Egypt 1600 BC.(Brechon, 2013) Surprisingly, breast cancer is the
most prevailing cancer in the world for women. 25% of cancers in women in 2012 were breast
cancer with 1.7 million new cases discovered this year worldwide.(IARC, 2014) If these numbers
tell us something, it’s that the problem is definitely severe and that crucial steps and actions of
research must be taken as soon as possible.

Figure 1.1: Breast model (UMM, 2016)

Usually breast cancer awareness campaigns thrive for nothing more than seeing people being
able to identify if they see symptoms of breast cancer in their body. Breast lumps, breast and
nipple pain, swelling of the breast or just breast skin irritation might be a call to visit the doc-
tor for a check-up.(BREASTCANCER.ORG, 2014) As explained by Radiologist Dr. J. Veltman,
from ZGT hospital, usually after doctors examine the patients, they choose to go with one of
the imaging options either a mammography, US or MRI. If the reader is not familiar with the
appearance of any of those, refer to Figure 1.2. In US, if it’s visible, doctors can identify whether
the lump is a cyst or not. Cysts are harmless sacs containing fluid that grow in breast tissues

Robotics and Mechatronics Mohamed Issa

2 Development of environmental awareness for the Kuka robotic arm

and their removal is not crucial except if they are causing discomfort for the patient. If the lump
is not visible in US, further MRI is to be done for doctors to have a full image of the lump and
precisely have information on its position. It is often left for the last possible type of imaging to
go through as it is the most expensive and at the same time patients need to lay motionless for
a while in a closed machine which is quite uncomfortable for claustrophobics. After detecting
the lump and having a reliable image and an accurate position of it, radiologists would make a
breast biopsy either US or MRI guided according to the method used for image detecting. For
a comparison between both types of biopsies, it is as simple as that US guided biopsy is widely
available, low cost and it offers real time imaging of the needle. On the other hand, although
MRI screening in general offers a more clear and detailed image of captured part of the body,
MRI guided biopsy is not preferred because of its extremely high cost and the discomfort it
causes to the patients. That is mainly why doctors strive to target-US all the MRI screenings
to perform an US guided biopsy. Unfortunately, only 50% of those MRI screenings succeed in
being targeted on US leaving the other 50% with no option than performing an MRI guided
biopsy. Murab basically combines the best of MRI which is its extremely high precision and
sensitivity and the best of US which is its compatibleness and practicality. The image taken
from the MRI is blended and integrated with the US image in a computer-assisted image fu-
sion which is also more reliable than the user-dependent targeted US. MURAB uses a KUKA
robotic arm along with an US probe equipped with a needle as its end-effector. The needle is
to be positioned in front of the lesion using the image generated and the doctor is to insert it
for the biopsy to finally take place.

(a) (b) (c)

Figure 1.2: Different imaging techniques. (a) Mammography (UMM, 2016). (b) Ultrasound (kobe, 2015).
(c) MRI (kobe, 2015).

1.2 Problem statement

When robotic arms are mentioned, some keywords almost always pop up in one’s head. One of
those keywords is definitely safety, especially when the robotic arm is related to not only human
interaction but also medical procedures. Safety is quite a huge word that can never be looked
at from a single aspect. For the sake of this project, viewing safety will be discussed in rela-
tion to the Murab project in a way that the robot arm’s environment should be under constant
screening. The optimum way to reach -what we call- a safe working environment, is to make
the arm fully aware of its static and moving boundaries. Static boundaries are basically defined
by the positions and orientations for the arm that are and will always be off-limits. Meaning
that no matter what level the procedure is at and no matter where the doctor or the patient are
positioned relative to the arm, the static boundaries will always be constants and must always
be avoided. Static boundaries are briefly listed as the mechanical constraints for the robot arm
which basically defines its workspace. Not only that, but also if the environment of the robot
arm is known, any static, non-moving objects are considered to be static boundaries. On the

Mohamed Issa University of Twente

CHAPTER 1. INTRODUCTION 3

other hand, moving boundaries which will obviously be harder to track and prevent can be
listed as any changeable and unstable object that lies in the arm’s workspace. The doctor and
the patient will definitely be the first thing that comes to mind when dealing with unfixed ob-
jects, although eventually non-humans must be accountable as safety constraints as well.

1.3 Project goal

This project’s goal is summarized in two points. Firstly, a thorough study on safety guidelines
for medical robotics should be prepared. Secondly, there should exist a state where obstacles
around the arm are detected and the arm is controlled in a way to avoid these obstacles. In
other words, this second point can be simply stated as firstly detecting obstacles around the
arm and secondly avoiding them using an obstacle avoidance algorithm.

1.4 Plan of approach

To begin with, a camera or more precisely a vision sensor must be used to account for the in-
adequacy or lack of vision sensing in robots. A depth sensor would be extremely crucial as well
so as to accurately receive the position of the object detected relative to the sensor. Moreover,
controlling the robot arm using a stand-alone PC and integrating both the arm’s control with
the depth sensor information will make the safety system applicable.

1.4.1 Requirements

For any system to be constructed, the requirements of the end product should be listed and
thoroughly discussed.

1. Safety for medical robotics study.

2. Detecting obstacles in the arm’s environment.

3. Avoiding obstacles detected.

4. Xbox 360 Kinect sensor and Kuka robot arm were required to be used.

5. Clear descriptive Readme files for using the system.

1.5 Organization of the report

In chapter 2, there is a detailed literature study on safety for medical robots. Afterwards, in
chapter 3, the hardware and software used in the project are introduced to give the reader
enough background on what the project is made of. In chapter 4, two methods for environ-
mental awareness of the robot arm are proposed. Furthermore, chapter 5 focuses on methods
of avoiding the obstacles in the arm’s environment. Chapter 6 consists of the experiments, re-
sults and assessments of the system designed. Finally, chapter 7 will conclude the report and a
number of future recommendations will be mentioned.

Robotics and Mechatronics Mohamed Issa

4 Development of environmental awareness for the Kuka robotic arm

2 Background

2.1 Literature review

2.1.1 Birth of medical robotics

Surgical robotics have proved popularity only 10 years after it was first introduced in
1985.(Kazanzides, 2009; Gomes, 2011). The use of robots in surgery is highly controlled by
the da Vinci system of Intuitive Surgical (Sunnyvale, CA, USA),especially in minimally invasive
surgery,(Guthart and Salisbury Jr, 2000) although lots of other robotics manufacturers are
striving to enter the market.(Gomes, 2011)

2.1.2 Industrial vs medical robotics

The popularity of medical robotics is widely vital for several reasons. Geometric accuracy, force
precision and immunity against fatigue are main advantages of the machine over human in
general as seen by Duchemin et al.(Duchemin et al., 2004)

On the other hand, robots are not flawless, as they obviously lack having the ability to take
decisions or adapt to new environments.(Duchemin et al., 2004). Dealing with these draw-
backs for medical robotics as dealt with those of industrial robots is fundamentally impossi-
ble. In industrial robots, accidents mainly vary from collision accidents to crushing or trapping
of worker’s limbs or even mechanical part accidents in which certain links/motors mechani-
cally fail.(OSHA, 2002). Humans are usually safe against these kinds of hazards by managing
a workspace for the robot and disallowing entering this workspace during the robot’s opera-
tion as shown in Figure 2.1. Proof of effectiveness of such method lies simply in having many
industrial robot accidents occur only during programming, maintenance or adjustment and
not during operation.(OSHA, 2002). As far as direct contact with the robot during operation is
avoided, safety is maintained.

Figure 2.1: Robot’s workspace surrounded by a cage

Quite the contrary, medical robotics need more and more guidelines for operation as their main
working condition is directly contacting the patient at all times. Nevertheless, different sizes,
characteristics and position of the patients’ body highly affect the process. Sterilization of the
robot and its end-effector is a must at all times, in addition to the robot being highly mobile
for the need to transport it to or from an operating theater. Furthermore, there exists a variety

Mohamed Issa University of Twente

CHAPTER 2. BACKGROUND 5

of surgical robotic systems; passive (no actuators included), semi-active (actuators used as a
guide to surgeons) and active systems (fully-automatic actuated joints).(Duchemin et al., 2004).

For the sake of comparison, going back to industrial robotics, several sources of danger are fore-
seen to have the probability of happening. From simple human control/programming errors to
unauthorized access to the robot’s work envelope, and from internal mechanical faults to main
power system failures are thought to be expected hazards.(OSHA, 2002). Proposed approaches
to be considered for safeguarding include risk analysis as well as constant maintenance of the
robot. Moreover, having devices that alert the operator for errors/faults in the system is rec-
ommended. Operators in general are required to have passed a safety training before handling
direct contact with the robot. Finally, having safeguarding devices which basically limit and
control the motion of the robot in its working space, is favoured as well.(OSHA, 2002).

2.1.3 Safety guidelines for medical robotics

Shifting to the main topic -safety for medical robotics-, it has been argued that perfecting a
safe environment for a medical robot is not an effortless, doable thing. There has been quite
controversy in coming up with the regular safety guidelines for all medical robotics, due to the
reasons mentioned above. For the impossibility to mention all the debates/discussions, I will
refer to the most widely applicable and general to relate to Murab project.

Hardware design

To begin with, (Kazanzides et al., 2008) have argued that steps towards a safe medical robot
include sensing both internally and externally. Internal sensors include encoders mounted on
joints to measure the angle of rotation of links. On the other hand, external sensors would
be trying to perfect human senses. Force sensors and vision systems are believed to be quite
an optimal option. Moreover, geometric relationship between patient’s anatomy, robots and
sensors must be known at all times. Nevertheless, also (Wang et al., 2006) agrees that having a
powerful user-friendly user interface is an adequately crucial option. For instance (Kazanzides
et al., 2008) mention that foot pedals are one of the finest options for interacting with the robot
since it needs no sterilization, in addition to it not interfering with doctors’ hands.

Secondly, as advised by (Wang et al., 2006), a safe medical robotic system should be developed
by the integration of expertise of electrical, mechanical and software engineers, along with sur-
geons and physicians. In (Duchemin et al., 2004), Gilles Duchemin et al think highly of intrin-
sic safety as they judge it is best to limit the robot’s actuators’ power as needed in application
instead of referring to software threshold limits using programming. Moreover, mechanical
torque limiters can be added to joints and using high reduction gears can help limit the manip-
ulator’s velocity. Furthermore, for applications where a force is acted on a human being -like
most surgical applications-, it is necessary to use a mechanical system for detaching the end
effector in case of robot’s failure. Last but not least, in emergency stops, having reliable me-
chanical brakes for the joints is crucial. (Duchemin et al., 2004) still believe that it is not the
best option to go with at all times as robots shiver quite a bit when brakes are applied, so as an
substitute applying an equal force in the opposite direction tends to act as a gravity compen-
sator for the system.

Additionally, having redundant sensors in the system is an attractive approach to aid against
hazards caused by sensors’ failure, as seen in (Kazanzides et al., 2008; Kazanzides, 2009). Using
two parallel sensors and assuring that readings from both sensors fall in the same threshold
guarantees the system is operating correctly. Otherwise, if one of the sensors fails, then the
error between both readings will exceed the threshold. This approach works correctly as men-
tioned in (Kazanzides, 2009) when two parallel encoders placed on the joint which eliminates
single point of failure. Furthermore, Peter Kazanzides et al. argues that wrong implementation
of choosing the position of sensors might not eliminate single point of failure after all. More-

Robotics and Mechatronics Mohamed Issa

6 Development of environmental awareness for the Kuka robotic arm

over, using redundant tools might not be a wise choice as well. For instance, in a system of
parallel pneumatic tools, tracing of failure of one of them is impossible, since the system will
be working normally. On the contrast, Gilles Duchemin et al.(Duchemin et al., 2004) believe
that the use of redundancy in the system should be analyzed as it definitely increases the sys-
tem’s complexity and cost and it is inversely proportional to the system’s reliability.

Moreover, to be more directed towards Murab, mechanical details of the surgical robot arm
should include some necessities as seen by Gilles Duchemin et al.(Duchemin et al., 2004).
Firstly, all electric cables should be placed inside the core of the arm. Besides, having me-
chanical joint limits is preferable to have a well-known working space. All the links’ dimen-
sions should be known so that the “safe” surrounding of the robot could be precisely known.
Moreover, singularities of the wrist and shoulder must be avoided at all times. This is done
in the (Pierrot et al., 1999) Hippocrate project by stopping the motion of the robot when it
reaches a singularity, and the arm is moved away manually by the operator. Furthermore, Gilles
Duchemin et al.(Duchemin et al., 2004) think it is an absolute necessity to have a dead man
switch (DMS) in the system, which basically gives a signal to the robot allowing it to operate
as long as it is pushed. As soon as the DMS is released the robot comes to rest immediately.
Inspired by Peter Kazanzides et al.(Kazanzides et al., 2008), this can be used in the form of a
pedal to avoid sterilization problems.

Software design

Furthermore, Software requirements are absolutely tremendous and they should be. Regard-
less of the decrease in profitability due to its high cost, real time controllers are absolutely cru-
cial to the system as mentioned by Yulun Wang et al.(Wang et al., 2006). A quite detailed ap-
proach of building a reliable and powerful software is demonstrated in (Duchemin et al., 2004).
Gilles Duchemin et al. explain that the controller should prioritize tasks with security at the
top of the priority list. Not only a backup of the system is recommended, but actually hav-
ing a separate CPU for each “primitive function” is favoured. Additionally, adding redundant
joint position, velocity and torque limits, less than the mechanical limits would be beneficial.
It would increase the lifetime of the arm’s mechanical parts and would increase the safety of
the system.

Gilles Duchemin et al.(Duchemin et al., 2004; Kazanzides, 2009) see that having watchdog as a
part of implementing a safety loop allows constant check-up of the software’s working condi-
tion. The watchdog is an independent, external hardware device which disables power to the
main system’s actuators in case of processor’s failure detected.

Redundancy

As mentioned previously, having redundant sensors will check for system failure, so if the dif-
ference between the two readings -known as the error- exceeds a certain threshold, then a sys-
tem failure has took place. This calls for the control software to disable power reaching the
actuator, via a simple relay circuit. Peter Kazanzides et al.(Kazanzides et al., 2008) shows that
the maximum joint position that can be reached is the sum of the error maximum threshold,
the maximum joint velocity multiplied by the control period and the distance travelled by the
robot after power is turned off, due to inertial or external forces.(image). This equation shows
that limiting/decreasing the maximum velocity, limits/decreases the maximum joint position.
It is also recommended in (Kazanzides, 2009) to set the error threshold between the measured
position and the commanded position to be no less than the maximum incremental command
to the desired position. As a result, this threshold can reach a maximum which reduces the
safety effectiveness of the system. Therefore, another approach is to change the threshold ac-
cording to the status of operation the robot is in. For example, whether the robot is stagnant or
in motion with high or low velocity.

Mohamed Issa University of Twente

CHAPTER 2. BACKGROUND 7

Risk analysis

The system’s reaction to failures should be thoroughly studied and considered, since it is not
sensible to react to harmless sensor faults like extreme system power failures. Therefore sev-
eral safety analysis methods are proposed in (Kazanzides et al., 2008; Duchemin et al., 2004;
Kazanzides, 2009; Fei et al., 2001). The most popular method of analysis is the Failure Modes
Effects Analysis (FMEA), in which could be defined as an ascending form of analysis where pos-
sible failures of specific components of the system are studied and their effect on the system
generally is investigated.(Kazanzides et al., 2008)). This method is covered by (fme, 2006) and
is recommended in (Kazanzides et al., 2008; Duchemin et al., 2004; Kazanzides, 2009). A sam-
ple of the FMEA report is illustrated in table 2.1. Peter Kazanzides et al. in (Kazanzides et al.,
2008) also proposes a quantitative way of making analysis which adds criticality to the name of
the method making it Failure Modes Effects and Criticality Analysis (FMECA). This consists of
a Risk Priority Number (RPN) which is basically computed by the multiplication of the severity
(S), the occurrence (O) and the detectability (D) of the failure to take place. Inspired by the
Failure Care Taking in (Duchemin et al., 2004), the (RPN) can be used to identify the robot’s
suitable action to be taken according to the event that is to happen. For instance, whether the
robot should decelerate until it reaches total immobility, the robot’s motion should be paused
until some error is fixed by the operator or maybe even immediate power should be cut and
mechanical brakes applied.

Failure Mode Effect on
System

Cause Method of Control

Incorrect feedback Incorrect robot
motion

Encoder failure Redundant encoders with
software check

Uncontrolled motor
current

Incorrect robot
motion

Power
amplifier

failure

Tracking error software
check

Robot continues
previous motion

Incorrect robot
motion

Processor
failure

Watchdog to disable power

Table 2.1: Failure modes effects analysis sample (Kazanzides, 2009)

Another very popular approach for risk assessment is called Fault Tree Analysis (FTA), as stan-
dardized in which is roughly the opposite of FMEA or FMECA. It is standardized in (fta, 2006)
and is basically a descending form of analysis where the main system failure itself is traced to
the original faulty component that caused this failure. FTA is recommended to be illustrated
graphically and is mostly beneficial in analysing the crisis after happening. The corresponding
FTA to the sample FMEA shown previously is illustrated below in 2.2. Finally, Baowei Fei et al.
in (Fei et al., 2001) proposed a safety model than analyses the system for medical robots which
is called Hazard Identification and Safety Insurance Control (HISIC). It is argued that errors in
the system can occur due to human error or system error which can either be totally Hardware
errors, totally Software errors, Hardware errors generated by Software or Software errors gen-
erated by Hardware. System safety analysis or as mentioned in (Fei et al., 2001) Safety index is
estimated to be f(SW(PL), HW(PL)) where SW reflects the value of Software factor, HW reflects
the value of Hardware factor and PL reflects the value of policy factor. Besides recommend-
ing FTA as a praised safety analysis method, (Fei et al., 2001) managed to dig deep into some
identification methods for hazards to the system and also to define some approaches to limit,
monitor and control medical robotics in general.

Robotics and Mechatronics Mohamed Issa

8 Development of environmental awareness for the Kuka robotic arm

Patient
injury due
to robot
runaway

Feedback
failure

Encoder
failure

Encoder
check failure

Amplifier
failure

Amp
fails ’On’

Track
check fails

Undetected
processor

failure

Processor
failure

Watchdog
failure

O
R

A
N

D

A
N

D

A
N

D

Figure 2.2: Fault tree analysis (Kazanzides, 2009)

Future work overview

To end with, as analysed in (Gomes, 2011), tiny, low-priced, economical robots are defining
the future. Engineers and research are aiming at looking more towards designing micro and
nano devices which can be swallowed by the patient and afterwards identify and treat spe-
cific tissues. As concluded in (Kazanzides, 2009), the increase variety and diversity in medical
robots, as well as physical variations in human, both make it a close to impossible mission to
develop general safety guidelines for medical robots. Also, in (Kazanzides et al., 2008), Peter
Kazanzides et al. believe that as crucial as validating the system is, it is almost impossible to
do such thing, due to the fact that it is unobtainable to simulate real-life clinical conditions.
More than one perspective in the previous literature relied on the latest guidelines for safety
for medical robotics in Europe (ISO, 2012) which includes (EEC, 1993), (EEC, 1998) and (EEC,
1990). i.e. These include both FMEA and FTA analysis approaches.

2.2 Related work

Several previous work has tried to link depth sensors to robots in general. In (Kuhn and Hen-
rich, 2007), a depth sensor has been used to calculate the approximate distance between some
known and some unknown objects.(Biswas and Veloso, 2012; Maier et al., 2013; Chen et al.,
2014; Wang et al., 2014). Kinect has been used often in certain kinds of applications where
depth information is needed.(Jamaluddin, 2014). Furthermore, a thorough study has been im-
plemented to facilitate and test the use of Kinect with robotic systems (El-laithy et al., 2012).
Obstacle Avoidance is a crucial pillar of autonomous robotic control, as seen in (Seraji et al.,
1997; Zohaib et al., 2013), where more than one approach is studied. Collaborating Kinect with
robotic arms for applying collision avoidance has been implemented in (Vachálek et al., 2015;
Ueki et al., 2015). Moreover, Kuka is becoming a crucial member in the medical robotics field
these days.(Kuka, 2013). In (Ogrinc et al., 2011; Flacco et al., 2012; Comparetti, 2014), Kinect
and Kuka LWR 4+ were used together to perform obstacle avoidance for the manipulator. Al-
though many aspects of safety has been discussed in this chapter, I believe focusing on one
main requirement in this report is crucial for getting the most adequate results. Therefore, in
this report, obstacle avoidance mainly will be tested for Kuka iiwa 14 R820 model using Xbox
360 Kinect Sensor.

Mohamed Issa University of Twente

9

3 Experimental setup

3.1 Hardware setup

3.1.1 Kuka

To begin with, the robot arm manipulator used in the project was a KUKA LBR iiwa 14 R820.
LBR basically stands for "Leichtbauroboter" which means "lightweight robot" in German and
"iiwa" stands for "intelligent industrial work assistant". This light-weight robot weighs only
29.9 kg but offers payload up-to 14 kg. It is considered a redundant manipulator with 7 rota-
tional joints which form 7 axes. (Kuka, a,b). The dimensions, the workspace and speed and
torque figures for each joint of the manipulator are shown in Figure 3.1.

Range of Motion Maximum Torque Maximum Speed

Axis 7
(A7)

+/−175° 40N m 135°/s

Axis 6
(A6)

+/−120° 40N m 135°/s

Axis 5
(A5)

+/−170° 110N m 130°/s

Axis 4
(A4)

+/−120° 176N m 75°/s

Axis 3
(A3)

+/−170° 176N m 100°/s

Axis 2
(A2)

+/−120° 320N m 85°/s

Axis 1
(A1)

+/−170° 320N m 85°/s

Figure 3.1: Kuka LBR iiwa 14 R820 joints’ specifications. (Kuka, b)

Although the Kuka robot arm already has factory-set configurations installed(Kuka, a), further
safety configurations were made for several reasons. To begin with, safety configuration usu-
ally depends on the project’s environment, workspace and whether or not there will be direct
contact with human-beings. Moreover, having project-related safety configurations overwrites
the arm’s initial safety configurations so that they are never reached. Reaching the predefined
configuration’s limits automatically causes the arm’s joints to lock on its current position and
stops immediately. On the other hand, the response to reaching the project’s configuration’s
limits is totally controllable and was chosen to be immediate stop of the arm at its current po-
sition and pausing the program running. An example of Kuka’s safety configuration layout is
seen in 3.2.

3.1.2 Kinect

Kinect is a motion sensing device introduced by Microsoft primarily for Microsoft’s Xbox gam-
ing consoles late 2010.(Kinect, 2009) Later in 2012, another version of Kinect was introduced to
be Windows compatible. Although some of the specifications and technology used regarding
Kinect are available as referenced in the official Microsoft website, some information are not
entirely available. Thus, some information are referenced and gathered through the efforts of

Robotics and Mechatronics Mohamed Issa

10 Development of environmental awareness for the Kuka robotic arm

Figure 3.2: Kuka’s safety configuration

individuals through what is known as reverse engineering. Furthermore, a detailed overview of
the specifications of the Kinect Version1 model: 1414 which will be used in this project will be
introduced in the following section.

General Specifications

Kinect is basically a combination of not only a depth sensor but also an RGB camera. The RGB
camera outputs video of the three basic color components at a frame rate of up to 30 frames per
second. It offers resolution of 640 x 480 pixels at 30 frames per second, although it is mentioned
that its resolution can reach 1280 x 1024 pixel at much less frame rate of course.(Microsoft,
2012). More importantly, for depth sensing, Kinect contains an infrared projector along with
a monochrome CMOS sensor to get depth information using a technology that Primesense -
the producer of Kinect’s depth sensor- refer to as "light coding".(mirror2image, 2010) Depth
sensing is offered at a resolution of 640 x 480 at 30 frames per second as well. (Microsoft, 2012)

Figure 3.3: Inside Kinect (Chubb, 2010)

Mohamed Issa University of Twente

CHAPTER 3. EXPERIMENTAL SETUP 11

Depth Measurement

Depth measurement is the most related and most crucial topic to the project. The technology,
as mentioned before is called "light coding", uses an IR projector that projects what is known
as pseudo-random points of IR light to code the scene. The light returned is read using the
CMOS sensor which is distorted in a way that reflects the depth of objects in the scene. Fur-
thermore, for the depth of each pixel to be calculated, the distortion is used in a process known
as Stereo Triangulation as seen in 3.4. An image from the IR sensor is used along with another
image which is already known and hard-coded in the chip logic since the projected IR is a set
of pseudo-random points which is really similar to structured light. Finally, Stereo Triangu-
lation uses both images after calculating the horizontal offset to get the depth information of
the pixel measured. (mirror2image, 2010). The Kinect depth sensor limits depth information
values from 800mm to 4000mm. The angular field of view provided is 57° horizontally and 43°
vertically.(Microsoft, 2012)

Figure 3.4: Stereo Triangulation

Reliability assessment

According to (OpenNI and ROS, 2011), Kinect depth information are accurate to ±1mm. To
begin with, it is quite necessary to define some critical terms that are almost always linked to
safety measures. The following terms explained by (BIPM et al., 2008) will be used in testing the
results of the approaches introduced further in the report.

1. Accuracy: This term reflects how close the measured value is to the true value.

2. Precision: This term reflects how close the measured values from repeated measure-
ments on the same object under the same conditions are.

3. Verification: Supplying unbiased evidence that a certain item fulfils certain require-
ments.

4. Validation: Verifying that the certain requirements are sufficient for a proposed use.

5. Reliability: This term basically reflects the consistency of the positive performance of a
certain system.

Some publications like (Streiner and Norman, 2006) deal with accuracy and validations as syn-
onyms and precision and reliability as synonyms as well. For the sake of this report, accuracy
and precision will be dealing with measured test results and validation and reliability will be
linked with the system’s general evaluation and comparison to initial requirements. Reliability
will also be linked to system’s results’ consistency with multiple users.

Robotics and Mechatronics Mohamed Issa

12 Development of environmental awareness for the Kuka robotic arm

Figure 3.5: Accuracy and Precision. (A) Not accurate, not precise. (B) accurate, not precise. (C) Not
accurate, precise. (D) Accurate, precise (Streiner and Norman, 2006)

3.2 Software architecture

To begin with, all the software I have used are free and open-source with a license that allows
the user to publish the work for commercial purposes. It should be cross-platform as well, so as
not to find difficulty when integrating different parts of the project with other team members.
Operating system used in the whole project was Linux Ubuntu 14.04.4 LTS. All software/code
for low level implementation were written in C++ language except for mathematical simula-
tions where maxima language was used in WxMaxima.

ROS

The Robot Operating System, also known as ROS, is an open-source, meta-operating system
which offers a well-arranged communications platform. The basic idea behind ROS is its sim-
plicity. Any node can publish msgs to a topic, and on the other side any other node can subscribe
to any msgs on a topic.(Quigley et al., 2009). ROS was used along with its commands and ser-
vices, integrated with C++ language for all source and launch files. This is illustrated thoroughly
in the following Figure 3.6 where /joy_node is publishing to /joy and /iiwa/control/_iiwa/_1 is
subscribing to it.

Figure 3.6: ROS basic illustration

Kuka

Despite the availability of Kuka’s new user-friendly platform for controlling the iiwa
model(Kuka, a), we could not really make use of it in this project for more than one reason. To
begin with, it is java-based and only available on Windows operating system which basically
opposes two of the main rules for the project that all software/code be implemented in C++ on
Ubuntu only. Fortunately, an open-source, BSD licensed software stack, iiwa_stack was used
to implement the communication between ROS Packages and the Kuka controller.(Virga and
Esposito, 2015).

Mohamed Issa University of Twente

CHAPTER 3. EXPERIMENTAL SETUP 13

Kinect

Since the official SDK by Microsoft is only supported in Windows, an alternative had to be
found to be applicable in Linux. Fortunately, Primesense, the company behind manufacftur-
ing the depth sensors for Kinect, which has been acquired by Apple, was a founding member
of an open-source software project called OpenNI. OpenNI was basically responsible for read-
ing the sensor depth and RGB data from Kinect and sending them to my system. Furthermore,
Primesense’s motion tracking middleware "NITE", was quite crucial in the project for its ad-
vantageous gesture and skeleton tracking.(Mitchell, 2010)

Figure 3.7: Joints in Kinect skeleton

Obstacle detection and avoidance

To begin with, for detecting obstacles, the previously mentioned Kinect skeleton will be used
to detect humans. The depth sensor in Kinect will be used to compute the position of objects
in 3D space. For avoiding obstacles, a vector is generated from the end effector in the direction
opposite to the obstacle to move away from it. Later in the chapters to follow, these two topics
will be introduced in details.

Visualization of the system plan is illustrated in Figure 3.8 to familiarize the reader with pro-
posed implementation.

3.3 Control interface

As mentioned in 2, having a user-friendly, user interface is an inevitable option. Murab is a
medical project, directed mainly to the field where its first-hand users will be doctors. Mostly,
doctors do not have an engineering background, or even a slight coding capability. Neverthe-
less, it is not recommended nor logical to spend time writing commands for the robot arm to
move to a certain position in space when much more economical approaches exist. This could
also be useful in testing the system designed and running experiments in a more convenient
manner. To achieve this, the ExtremeT M 3D Pro Logitech Joystick3.9 is used to control the ma-
nipulator. For cartesian position control, 3 of the 6 axes of the joystick are used to control the
end effector in 3D space and a button is used to reset the arm to a pre-set position and orienta-

Robotics and Mechatronics Mohamed Issa

14 Development of environmental awareness for the Kuka robotic arm

Figure 3.8: Proposed system map

tion. For joint angle control, all available 6 axes of the joystick are used along with 2 buttons to
control the 7 joints present in the manipulator. For the complete C++ code written, refer to A.1.

Figure 3.9: ExtremeT M 3D Pro Logitech Joystick

Moreover, the Kinect skeleton illustrated in 3.7 is used to to make the arm imitate the user’s
arm by controlling 4 out of the 7 joints present in the manipulator. For the complete C++ code
written, refer to A.2.

Mohamed Issa University of Twente

15

4 Environmental awareness

4.1 Obstacle detection methods

In this chapter, I will go through one of the main tasks of this assignment. Obstacle detection is
implemented in two approaches. Later on in this report, experiments are carried out to evalu-
ate the reliability of each method.

4.1.1 Body detection

The following detection method is restricted to human detection only. Kinect’s OpenNI tracker
has the ability to recognize and track a human body. For visualization, a human skeleton is
drawn to fit the body tracked and is updated as the body is in motion. The skeleton tracks 15
body joints as seen in Figure 3.7.

kinect_listener is a tf listener file constructed to access the frame transformations of each joint.
The frame origin of each joint is relative to the opennidepthframe which is basically the kinect
frame shown in Figure 4.1. For full code, refer to A.9.

Figure 4.1: Kinect coordinate frame

4.1.2 Depth-pixel detection

The position vector of the manipulator’s joints will be used along with a distance to pixel algo-
rithm to build a model of the arm using OpenCV drawing functions. Furthermore, OpenCV will
use Kinect’s depth sensor to get the depth information of all the pixels in the captured image.
This is used along with a pixel to distance algorithm to get the position vector in 3D space of
all the pixels shown by Kinect. Finally, this will be a crucial input to the obstacle avoidance
method shown later in this section.

Manipulator model

To build a model for the arm, the pixel information of the joints should be known. Since only
the position information for the joints is calculated as illustrated in 5.3.2, a distance to pixel
approach was used. This approach depends primarily on the depth information of the object
in space. Furthermore, the following equations were used to compute the joints’ pixel position
i and j relative to Kinect.

i = ((x/(a · z))+320); j = ((−y/(a · z))+410) (4.1)

x, y and z refer to joint’s position on the X , Y and Z axes respectively relative to Kinect coordi-
nate frame. ’a’ is considered a parameter of adjustment that is equal to 0.00173667.
Since Pixel information of the arms’ joints are calculated, a model can be built using OpenCV’s
drawing functions. These functions include

Robotics and Mechatronics Mohamed Issa

16 Development of environmental awareness for the Kuka robotic arm

1. Drawing lines.

2. Drawing circles.

3. Drawing rectangles.

As seen in 4.2, the model was generated by drawing lines to match all joints together. Also, a
circle was drawn on each joint in a different color to show its position. Furthermore, a dark-
filled rectangle was positioned to cover the RGB image of the arm, in a way that the joints are
always positioned at its center.

Figure 4.2: Kuka arm OpenCV model

Pixel position vector

The next step is to figure the position information of the objects in the environment moni-
tored by Kinect. This is possible by getting the depth information of all the pixels -640×480-
surveilled. Afterwards, each pixel’s i and j can be used along with its respective depth to com-

pute its actual position vector
[
x y z

]T
.

Figure 4.3: Ros to OpenCV via CvBridge

Mohamed Issa University of Twente

CHAPTER 4. ENVIRONMENTAL AWARENESS 17

To get the depth information from Kinect’s depth sensor, cv_bridge must be used. This is a
package to communicate between ROS and OpenCV. Ros publishes depth information of type
known as sensor_msgs/Image, but unfortunately it is unreadable information. cv_bridge makes
a copy of this message and passes it on to OpenCV in cv::Mat format to be decoded. Afterwards,
it publishes it again to ROS as a matrix of size 640× 480 with the depth information needed.
This process is further illustrated in Figure 4.3. Since there now exists a matrix with depth
information for all pixels, next step is to get the position vector of each pixel in 3D space.

This approach is similar to that used in 4.1, however i and j are now inputs, and x and y are
required. Accordingly, they should be the subjects of the equation. This is illustrated as follows.

x = 2360−k; y = (i −320) ·a ·k; z =−(j −410) ·a ·k (4.2)

k is the depth measurement computed from Kinect’s depth sensor. Now that we have each
pixel’s position vector in 3D space, obstacle avoidance can be illustrated as shown in the final
part of this section.

Robotics and Mechatronics Mohamed Issa

18 Development of environmental awareness for the Kuka robotic arm

5 Obstacle avoidance algorithm

5.1 Notation definitions

Table 5.1: Table of Notation My Research

ΨK , Kinect coordinate system
ΨB , Kuka base coordinate system

H j
i , Homogeneous matrix from frame i to frame j .

R j
i , Rotation matrix from frame i to frame j .

d j
i , Translation matrix from frame i to frame j .

T n
0 , Transformation matrix from frame manipulator’s base frame to

frame n.
Ai , Homogeneous matrix from frame i −1 to frame i .

T j
i , Homogeneous transformation matrix from frame j to frame i .

5.2 Kinect to Kuka frame transformation

Since all the coordinates of the skeleton joints are relative to the Kinect Coordinate System(
ΨK

)
, a Homogeneous Matrix is calculated and applied to obtain the position vectors of the

skeleton joints with respect to the Manipulator Base Coordinate System
(
ΨB

)
. The Homoge-

neous Matrix combines both the rotation and translation operations in one 4×4 matrix. The
equation for the Homogeneous Matrix, H, is

H j
i =

R j
i d j

i

0 1

 (5.1)

In the following Figure 5.1, rotation from Kinect coordinate frame to Kuka coordinate frame
is shown. It starts with rotating the frame around the X-axis with an angle of −90° and then
rotating around the Z-axis with an angle of 90°.

Figure 5.1: Rotation from Kinect to Kuka coordinate frames

In the following figure 5.2, translation from Kinect coordinate frame to Kuka coordinate frame
is shown.

Mohamed Issa University of Twente

CHAPTER 5. OBSTACLE AVOIDANCE ALGORITHM 19

Figure 5.2: Translation from Kinect to Kuka coordinate frames

d j
i =

[
d j

ix
d j

i y
d j

iz

]T
(5.2)

where R j
i is the 3×3 rotation matrix from coordinate system i to coordinate system j , and d j

i
is the 3×1 translation matrix between them. Rotation, Transformation and resulting Homoge-
neous matrices are illustrated for our system in the following equation.

RB
K =

0 0 −1

−1 0 0

0 1 0

 dB
K =

2.34

0

0.8

 ⇒ H B
K =

0 0 −1 2.34

−1 0 0 0

0 1 0 0.8

0 0 0 1

 (5.3)

Position vectors are modified to comply with the dimensions of the Homogeneous Matrix.

PK =
[

xK yK zK 1
]T

PB =
[

xB yB zB 1
]T

(5.4)

If the position vector of a point PK is known in coordinate system
(
ΨK

)
, it can be represented

in coordinate system
(
ΨB

)
as PB using

PB = HK
B ·PK (5.5)

where HK
B is the Homogeneous Matrix from coordinate frame

(
ΨK

)
to coordinate frame

(
ΨB

)
.

This is illustrated in our system as follows

xB

yB

zB

1

=

0 0 −1 2.34

−1 0 0 0

0 1 0 0.8

0 0 0 1

xK

yK

zK

1

 (5.6)

Using WxMaxima, the computed matrix was simulated and tested, giving positive results. Fur-
thermore, for the C++ function used to transform the joints’ position vectors from one frame to
the other, refer to A.5.

Robotics and Mechatronics Mohamed Issa

20 Development of environmental awareness for the Kuka robotic arm

5.3 Forward kinematics - Kuka arm

5.3.1 Denavit-Hartenberg convention

The next topic tackled in this approach is the Forward Kinematics, which is basically the use
of kinematic equations with joint angles being the equations’ input, to calculate the position
vector of end-effector. The Denavit-Hartenberg was the method used for Forward Kinematics,
where coordinate axes for each joint should be chosen that the following 2 features are present:

1. Axis xi should be perpendicular to axis zi−1.

2. Axis xi should intersect axis zi−1.

After choosing the axes, it is necessary to measure a, α, d and θ. a is the distance between axes
zi and zi−1, α is the angle between axes zi and zi−1 in plane normal to xi , d is the distance
between the origin Oi−1 and the intersection of xi with zi−1 and finally θ is the angle between
xi and xi−1 in a plane normal to zi−1. The following table shows the Denavit-Hartenberg pa-
rameters measured for the Kuka robotic arm for each link i :

i a α d θi

1 0 π/2 360 θ1

2 0 -π/2 0 θ2

3 0 -π/2 420 θ3

4 0 π/2 0 θ4

5 0 π/2 400 θ5

6 0 -π/2 0 θ6

7 0 0 126 θ7

Table 5.2: Denavit-Hartenberg Parameters

Using the parameters above in the equation below, the homogeneous transformation for each
joint can be calculated.

Ai =

cosθi −sinθi cosαi sinθi sinαi ai cosθi

sinθi cosθi cosαi −cosθi sinαi ai sinθi

0 sinαi cosαi di

0 0 0 1

 (5.7)

Finally, to calculate the position of the end-effector, transformation matrices for the n links
should be multiplied all together.

T n
0 = A1 · · · An ⇒ T 7

0 = A1 A2 A3 A4 A5 A6 A7 =
R3x3 d3x1

0 1

 (5.8)

Mohamed Issa University of Twente

CHAPTER 5. OBSTACLE AVOIDANCE ALGORITHM 21

where d3x1 is the position matrix of the end-effector relative to the base of the manipulator.

d3x1 =
[

dx dy dz

]T
(5.9)

For a more detailed mathematical visualization of the matrices computed for the manipulator,
refer to A.3

5.3.2 Translation and Rotation method

As mentioned in 5.1, Homogeneous matrix H j
i consists of a Rotation matrix R j

i and a Transla-

tion matrix d j
i . On the contrary, Translation and Rotation matrices are calculated separately as

a transformation from each joint coordinate frame on the manipulator to the next. Translation
matrices are illustrated as follows.

di
i+1 =

1 0 0 xi
i+1

0 1 0 y i
i+1

0 0 1 zi
i+1

0 0 0 1

 (5.10)

xi
i+1, y i

i+1 and zi
i+1 are the offset values in the X , Y and Z directions respectively.

Furthermore, after translation is calculated from coordinate frame i to coordinate frame i +1,
frame i +1 is to be rotated to match the next joint coordinate frame, i +2. Encountered rota-
tions were limited to only either Yaw or Pitch rotations. Yaw rotations, R i+1

i+2 represent rotations
taking place about the Z −axi s by an angle ψ from coordinate frame i +1 to coordinate frame
i +2 as illustrated below.

R i+1
i+2 =

cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

 (5.11)

On the other hand, Pitch rotations, R i+1
i+2 represent rotations taking place about the Y −axi s by

an angle θ from coordinate frame i +1 to coordinate frame i +2. This is also illustrated below.

R i+1
i+2 =

cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (5.12)

For a 7 link manipulator, 7 Translation matrices and 8 Rotation matrices are multiplied together
to get the position vector of the end effector relative to the base of the robot arm. For the

Robotics and Mechatronics Mohamed Issa

22 Development of environmental awareness for the Kuka robotic arm

robot arm’s base being coordinate frame 0 and the end effector being coordinate frame 15, the
homogeneous transformation, T, is calculated as follows.

T0
15 = d0

1 R1
2 d2

3 R3
4 · · · d12

13 R13
14 d14

15 ⇒

nx sx ax dx

ny sy ay dy

nz sz az dz

0 0 0 1

 =
n s a d

0 0 0 1

 (5.13)

In the equation 5.13, n = [
nx ny nz

]T
, s = [

sx sy sz
]T

and a = [
ax ay az

]T
refers to

the direction of end effector’s X , Y and Z axes respectively as seen relative to the arm’s base
frame. More importantly, the position vector of the end effector relative to the arm’s base is
illustrated in the following equation.

d = [
dx dy dz

]T
(5.14)

Furthermore, the previous Translation and Rotation matrices can be used to calculate the posi-
tion vector of all joints of the manipulator. For an unambiguous illustration, equation 5.13 will
be modified to be only the result of multiplying 8 matrices instead of 15. This will be satisfied
by calculating T0

15 as follows.

T0
15 = T0

2 T2
4 T4

6 T6
8 T8

10 T10
12 T12

14 T14
15 , (5.15)

where Ti
j is calculated as follows.

Ti
i+2 = di

i+1 R i+1
i+2 ; Ti

i+1 = di
i+1 (5.16)

For a more detailed mathematical visualization of the matrices computed for the manipulator,
refer to A.4

For calculating the position vector of joint i , T 0
i∗2 should be computed as shown in 5.15.

i.e. joint 3 position vector is equal to d from 5.14 extracted from T 0
3∗2 = T 0

6 , where T 0
6 =

d0
1 R1

2 d2
3 R3

4 d4
5 R5

6 .

Finally, using the mathematical equations computed in this subsection, and only joint angles
as inputs, not only the end effector’s but all the joints’ position vectors can be calculated. This
will be quite useful for the approach and visualization shown in the rest of this section.

5.4 Inverse kinematics - Kuka arm

Position cartesian commands passed to the system can only be given to the end effector. This
means that all the joints of the manipulator can not be position controlled in 3D space but only
controlled through passing joint angles. Figure 5.3 further illustrates the problem.

As seen in the above figure, the black arrows show how cartesian commands can only be passed
to the end effector. On the other hand, the red arrows show how only joint angle commands
can be passed to each joint.

The method used to overcome this issue is computing the Inverse Kinematics. Inverse Kine-
matics is the opposite of Forwards Kinematics. It consists of a number of kinematic equations

Mohamed Issa University of Twente

CHAPTER 5. OBSTACLE AVOIDANCE ALGORITHM 23

Figure 5.3: Manipulator control approaches

where the input to these equations is the Position vector
[
xe f ye f ze f

]T
of the end effector

in 3D space relative to a certain coordinate frame. The output of these equations would be the
joint angles needed for the end effector to be at this position. Inverse Kinematics in general is
more difficult to compute than the Forward Kinematics, specially when the system examined
is a 7 DOF kinematically redundant manipulator. Kinematic redundancy of the manipulator
unfortunately results in inverse kinematics not working all the time. Nevertheless, sometimes
non-linearity of the equations requires high computation time which would need an extremely
powerful processor to calculate the joint angles. Luckily, several approaches to compensate for
the inverse kinematics’ complications for redundant manipulators have been tested previously.
As discussed in (Buss, 2004), some of these method are as follows.

1. Jacobian Transpose Method

2. Pseudoinverse Method

3. Damped Least Squares Method

Methods like Pseudoinverse and Damped Least Squares may be more accurate than the Jaco-
bian Transpose method. On the other hand, Jacobian Transpose has way faster computation
speed. Although this would have been suitable for our system, but Jacobian Transpose method
not only results in unexpected joint angles when the input is a point outside its workspace,
but also fails most of the time at singularities. As mentioned in (Mark W. Spong, 1989), near
singularities there will be either no or infinite solutions for the inverse kinematics problem.
Singularities are basically points within the manipulator’s workspace where two joints line up
turning them redundant.

Since our system is only interested in moving away from the obstacle, and not necessarily going
to a certain position in space, high reliability of the joint angles computed is not needed. The
approach suggested reduces the current 7-Link manipulator to a 4-Link model instead. This
will result in an easier to compute inverse kinematics, although it will result in having some
restrictions in the manipulator’s flexibility in comparison to the regular 7-Link manipulator.

Inverse Kinematics

Three equations are used to calculate 3 joint angles needed to for end effector to reach a certain
position in space. These equations are illustrated in 5.17, 5.18 and 5.19. Furthermore, to calcu-
late the joint angles needed for a certain joint to move in space to a certain position, an even

Robotics and Mechatronics Mohamed Issa

24 Development of environmental awareness for the Kuka robotic arm

reduced inverse kinematics can be calculated where the model of the system can be consisting
of 3 links instead of 4.

θ1 = atan2(Px ,Py)− π

2
(5.17)

θ3 = π

2
−atan2(D,

√
1−D2) (5.18)

θ2 =−
[

atan2(
√

Px
2 +Py

2,Pz)−atan2(a2 +a3 cosθ3,a3 sinθ3)

]
− π

2
(5.19)

Px , Py , and Pz refer to the end effector’s position coordinates and a2 and a3 refer to the manip-
ulator’s links’ length. They are all used to compute D which is calculated as shown in 5.20.

D = Px
2 +Py

2 +Pz
2 −a2

2 −a3
2

2a2a3
(5.20)

An illustration of the variables used in the previous description is shown in Figures 5.4 and 5.5.

(a) (b)

Figure 5.4: Top view illustration of model used for Inverse Kinematics. (a) Manipulator’s orientation. (b)
Respective model for orientation in (a).

5.5 Avoidance algorithm

It is assumed that there exists an invisible circular area around the arm’s end-effector. This
area, which will be called the safety area, is of radius 500 mm and the optimum goal will be for
the end-effector to drift away from any obstacle interfering with its safety area. 500 mm is a
random choice of radius and was only chosen for testing.

To begin with, as illustrated in A.6, method getDistance calculates the distance between 2
points in space. It will be used to get the geometric distance between joints in the human
skeleton and the manipulator’s end-effector.

This is done using a simple geometric concept where distance d between 2 points in space can
be illustrated as

d =
√

(x1 −x2)2 + (y1 − y2)2 + (z1 − z2)2 (5.21)

Mohamed Issa University of Twente

CHAPTER 5. OBSTACLE AVOIDANCE ALGORITHM 25

(a) (b)

Figure 5.5: Side view illustration of model used for Inverse Kinematics. (a) Manipulator’s orientation.
(b) Respective model for orientation in (a).

Figure 5.6: Distance between Point 1 and Point 2

where
[
x1 y1 z1

]T
is the position vector of point 1 and

[
x2 y2 z2

]T
is the position vector

of point 2 as shown in Figure 5.6.

The robot arm will be controlled in this approach using Cartesian position commands. By
passing Position and Orientation coordinates to manipulator’s end-effector, it can smoothly
move in space.

1 Obstacle

Regarding controlling the safety of the manipulator, if an object’s distance from the end-effector
is less than 500 mm, an equal vector is to be generated in the opposite direction to the obstacle.
This is illustrated thoroughly in Figure 5.7.

As seen in the preceding figure, the blue arrow shows the vector generated from the obstacle to
the arm’s end effector. The green arrow, on the other hand, reflects the vector generated in the
opposite direction to move the end effector towards.
Moreover, to choose exactly which point on the vector the end effector should move to, a factor
is to be computed according to how far the end effector is from the object. This factor is multi-
plied by the unit vector generated and the result is the position coordinates of the point in 3D
space. Following the A.6 function, the factor approach is included in A.7.

Robotics and Mechatronics Mohamed Issa

26 Development of environmental awareness for the Kuka robotic arm

Figure 5.7: Illustration of 1 obstacle avoidance method

For clarification, the following Flowchart 5.8 explains how the factor is chosen.

Start

getDistance()

myDistance1
> 0.5

myDistance1
>= 0.4

myDistance1
>= 0.3

myDistance1
>= 0.2

factor1 = 0.1 factor1 = 0.2 factor1 = 0.3 factor1 = 0.35

no

no no no

yes yes yes

yes

Figure 5.8: Choosing factor for cartesian command

2 Obstacles

For a more powerful safe environment, another algorithm was computed to dodge 2 obstacles
if they are both located in the safety area at the same time. This is illustrated graphically in the
following Figure 5.9.

As seen in Figure 5.9, the green vector generated is the resultant direction of the two red vectors
generated due to the two obstacles.
Following calculating the distance between the end effector and the obstacles, the code in A.8

Mohamed Issa University of Twente

CHAPTER 5. OBSTACLE AVOIDANCE ALGORITHM 27

Figure 5.9: Illustration of 2 obstacles avoidance method

illustrates the algorithm used to compute the position vector that should be passed to the end
effector.

Furthermore, the factor that is multiplied by the unit vector generated is computed in a slightly
different manner. The idea behind this factor is to choose a certain point in the direction of the
vector generated according to how near the obstacle is from the end effector. A snippet of the
code where the factor is computed, followed by a graph 5.10 showing how the relation between
the factor and the distance of the object are both illustrated as follows.

� �
i f (myDistance1 <= maxDistance1)
factor1 = ((maxDistance1 − myDistance1) / myDistance1) ;
else
factor1 = 0 ;� �

100 200 300 400 500
0

10

20

30

myDi st ance1

f
a

ct
o

r1

500−myDi st ance1
myDi st ance1

Figure 5.10: A plot of the factor computed against the distance calculated

Robotics and Mechatronics Mohamed Issa

28 Development of environmental awareness for the Kuka robotic arm

Recap

The subsequent Flowchart 5.11 recaps the steps followed in the aforementioned approach.

Start

Human Detection

Get homogeneous
transformation

for skeleton
joints position

Get end
effector position

If getDistance()
< MaxDistance

Get position
commands for end
effector; GetPose()

Send cartesian
commands to

Kuka controller

yes

no

Figure 5.11: Body Detection

Mohamed Issa University of Twente

CHAPTER 5. OBSTACLE AVOIDANCE ALGORITHM 29

The following Flowchart 5.12 shown gives a summary of the steps the second approach goes
through.

Start

Get end effector and
joints’ positions;

Forward Kinematics

Get DistancetoPixel

Update CV model

If getDistance()
< MaxDistance

Get position
commands for end
effector; GetPose()

Update CV model

Send cartesian
commands to

Kuka controller

yes

no

Figure 5.12: Depth-pixel detection

Robotics and Mechatronics Mohamed Issa

30 Development of environmental awareness for the Kuka robotic arm

6 Experiments and results

In the following chapter, the proposed implementations are tested, evaluated and analysed.
Each method experimented is mentioned and its results are discussed afterwards.

6.1 Obstacle detection and avoidance

To begin with, all the experiments took place in the RaM lab in the University of Twente. The
manipulator is placed in a 3.6 × 3.6 metre cage, with a height of 2.3 metre. The obstacle avoid-
ance approach is tested firstly along with the body detection method of awareness. Kinect is
placed at 2.34 metres away from the arm’s base as shown in Figure 6.1.

Figure 6.1: Experiment setup

Two individuals take part in this experiment, where one, who is to be called "A" can control
the system and check the results and the other, who is to be called (b) is actual part of the
avoidance implementation. After (b) is detected by Kinect, an arm motion is executed towards
the end effector from North-East to South-West, as seen by Kinect. The motion also included
shifting away from Kinect. The full motion is illustrated in the following Figure.6.6.

(1) (2) (3) (4) (5)

Figure 6.2: Body detection and obstacle avoidance in frames

Furthermore the positions of the end effector and the right hand joint of (b) are plotted. Unfor-
tunately, due to a software complication with ROS, the Time axis of the end effector’s position
in the experiments was not in synchronization with the Time axis of the right hand position.
Although this is a major deficiency in the result’s verification, response time of the obstacle
avoidance method was not the main focus here.

Mohamed Issa University of Twente

CHAPTER 6. EXPERIMENTS AND RESULTS 31

205 210 215 220
Time

0.4

0.5

0.6

0.7

0.8

0.9

rig
ht
_h
an

d/
x

/right_hand/x

(a)

7320 7325 7330 7335
Time

0.30

0.35

0.40

0.45

0.50

Ku
ka
/x

/iiwa/state/CartesianPose/pose/position/x

(b)

Figure 6.3: X-axis plots. (a)Right hand position in x-direction. (b)End effector position in x-direction

65 70 75 80
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

rig
ht
_h
an

d/
y

/right_hand/y

(a)

7135 7140 7145 7150 7155
Time

−0.4

−0.3

−0.2

−0.1

0.0

Ku
ka
/y

/iiwa/state/CartesianPose/pose/position/y

(b)

Figure 6.4: Y-axis plots. (a)Right hand position in y-direction. (b)End effector position in y-direction

Robotics and Mechatronics Mohamed Issa

32 Development of environmental awareness for the Kuka robotic arm

54 56 58 60 62 64 66
Time

0.6

0.7

0.8

0.9

1.0

rig
ht
_h
an

d/
z

/right_hand/z

(a)

7128 7130 7132 7134 7136 7138 7140 7142
Time

0.4

0.5

0.6

0.7

0.8

Ku
ka
/z

/iiwa/state/CartesianPose/pose/position/z

(b)

Figure 6.5: Z-axis plots. (a)Right hand position in z-direction. (b)End effector position in z-direction

It is quite impossible to identify the accuracy of the system developed due to the problem with
Time synchronization. Furthermore, it has been observed that the skeleton detected can some-
times be lost when not all the human body is visible to Kinect. On the other hand, results show
acceptable precision as the experiment was repeated more than 10 times and 90% of the plots
generated were similar. Moreover, three different individuals, with heights varying from 160,
180 and 190 metres have played the role of individual (b) in the experiment and the system
gave results similar to the plots above. This shows that the system is reliable and would give the
same results with physically different human beings.

Secondly, the obstacle avoidance approach is tested along with the depth-pixel detection
method. Results were not very promising as the obstacle position information published were
not accurate. This happens mainly due to the non-aligned RGB and depth images giving false
position vectors of the pixels captured. Another issue showed up as well, which was that the end
effector was detecting the manipulator’s body as an obstacle. This resulted in passing cartesian
space commands that forces the arm to inevitably lock, because it is like that the end effector
is trying to move away from the arm. On the contrary, when this approach was tested in plain
space with the actual arm not present, the built OpenCV model showed quite precise results
in avoiding obstacles. Although the RGB and the depth images need to be aligned for high
accuracy, the approach itself shows expected results in terms of detecting obstacles.

Unfortunately as a result to this method not working, the inverse kinematics could not be prac-
tically tested. Nevertheless, the 3 equations computed to calculate the 3 joint angles were tested
with the arm’s controller as a reference. The 3 angles are computed using the end effector carte-
sian position which is accessible at all times. Afterwards, the angles are checked with their re-
spective angles on the manipulator which are measured using accurate angle encoders. The
inverse kinematics returned similar results to the ones obtained from the arm’s controller.

Mohamed Issa University of Twente

CHAPTER 6. EXPERIMENTS AND RESULTS 33

6.2 Control interface

Using the joystick was an adequate approach and showed utter practicality when in use. Pass-
ing joint angles through the joystick returned accurate results and was seen to be a reliable
means of control when tested. It is unfortunately only used in limited environments where
joint angle control is necessary. On the other hand, cartesian space control using the joystick
did not return perfect results at all times. The arm’s controller failed to compute the inverse
kinematics due to a high unit step chosen at the beginning which was further improved after-
wards by limiting the unit step to a certain minimum. This unfortunately caused some lim-
itations in the maximum velocity reached by the manipulator. Controlling the end effector’s
cartesian position using the Logitech joystick was tested and results were plotted as follows.
The end effector was moved first along the x-axis then along the y-axis then along the z-axis.
This was followed by random motion in space then the reset button was pushed for the arm to
go to a pre-set position.

640 642 644 646 648 650
Time

−1.0

−0.5

0.0

0.5

1.0

ax
is
[x
]_
an

gl
e

/joy/axes[1]

(a)

20 21 22 23 24 25
Time

−1.0

−0.5

0.0

0.5

1.0

ax
is
[y
]_
an

gl
e

/joy/axes[0]

(b)

29 30 31 32 33
Time

−1.0

−0.5

0.0

0.5

1.0

ax
is
[z
]_
an

gl
e

/joy/axes[2]

(c)

Figure 6.6: Joystick axes angles. (a)x-axis (b)y-axis (c)z-axis.

Robotics and Mechatronics Mohamed Issa

34 Development of environmental awareness for the Kuka robotic arm

8120 8130 8140 8150 8160

0.0

0.2

0.4

0.6

0.8 /iiwa/state/CartesianPose/pose/position/x
/iiwa/state/CartesianPose/pose/position/y
/iiwa/state/CartesianPose/pose/position/z

Figure 6.7: End effector X, Y and Z position.

Arm imitation method of controlling the arm showed a number of imperfections. To begin
with, due to technical defects in Kinect, depth information showed unexpected fluctuations
which caused the joints’ positions to fluctuate wrongly. Using arm imitation, only 4 joints of the
manipulator were controlled which restricted the use of all 7 links. Finally, the imitate control
interface was developed and 4 joints of the manipulator are controlled by copying the motion
of a human arm. The joints controlled are illustrated in the Figures below.

(a) (b)

Figure 6.8: Robot arm copying human’s arm.

Mohamed Issa University of Twente

CHAPTER 6. EXPERIMENTS AND RESULTS 35

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.9: Human arm controlling 4 of the manipulator’s joints

Robotics and Mechatronics Mohamed Issa

36 Development of environmental awareness for the Kuka robotic arm

7 Conclusion and recommendations

7.1 Conclusion

An intensive literature review on safety guidelines needed for medical robotics was done. This
literature survey was used to ensure that having an obstacle avoidance system was quite crucial
for a medical robot to exist safely. A system was designed for detecting and avoiding obstacles
appearing in the arm’s environment. This included the use of Xbox 360 Kinect sensor along with
Kuka robot arm. A description on how to operate all the system’s proposed implementations
was composed. The first obstacle detection method works as expected but is limited to detect-
ing only human beings. The second obstacle detection method did not give the most promising
results due to calibration complications with Kinect. Obstacle avoidance method gave the ex-
pected precise results. It relies mainly on calculating the geometric distance between 2 points
in 3D space and then generating a vector in the opposite direction to the obstacle point and
sending commands to the end effector to move this way. An inverse kinematics approach was
attempted to not only have the end effector avoid obstacles but also the arm’s joints. Although
it could not be tested practically as the second obstacle detection method was not working, it
gave the expected results when tested separately. With a number of improvements in several
areas, it is believed that the performance of the designed system could be ameliorated.

7.2 Recommendations

To begin with, I believe using 2-4 depth sensors could highly support the validation of the de-
signed approach. Further software research on the topic real-time response is highly advisable.
A method for avoiding any number of obstacles could be tested, by adding all the vectors from
the end effector to the obstacles and then generating a vector in the opposite direction. This
was not implemented due to lack of time. Extensive tests on the depth sensor in use should
take place to assure the most accurate facilities are in use. Finally, the literature survey done
should be thoroughly looked into as it is basically made up of future work for safety measures
that should be taken in this kind of projects.

Mohamed Issa University of Twente

37

A Appendix 1

A.1 control_iiwa_1.cpp

� �
#include " ros / ros . h"
#include "iiwa_msgs/ JointPosi t ion . h"
#include "geometry_msgs/PoseStamped . h"
#include <std_msgs/ Float64 . h>
#include <sensor_msgs/ Joy . h>

using namespace std ;

iiwa_msgs : : JointPosi t ion current_joint_posit ion , command_joint_position ;
geometry_msgs : : PoseStamped current_cartesian_position , command_cartesian_position ;
std : : s t r i n g joint_posit ion_topic , cartesian_position_topic ,

,→ command_cartesian_position_topic , command_joint_position_topic ;
sensor_msgs : : Joy joy ; double x , y , z , j_1 , j_2 , j_3 , j_4 , j_5 , j_6 , j_7p , j_7n ,

,→ re set ; int control = 0 ;

double ros_rate = 3 0 . 0 ; bool isRobotConnected = true ;

void jointPosit ionCallback (const iiwa_msgs : : JointPosit ion& jp)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

current_joint_posit ion = jp ;
}

void cartesianPositionCallback (const geometry_msgs : : PoseStamped& ps)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

current_cartesian_position = ps ;
}

void joyst ickCal lback (const sensor_msgs : : Joy& j s)
{

joy = j s ;
j_1 = x = joy . axes [1] ;
j_2 = y = joy . axes [0] ;
j_3 = z = joy . axes [2] ;
j_4 = joy . axes [4] ;
j_5 = joy . axes [5] ;
j_6 = joy . axes [3] ;
j_7p = joy . buttons [1] ;
j_7n = joy . buttons [0] ;
re set = joy . buttons [1 1] ;

}

int main (int argc , char ** argv) {

ros : : i n i t (argc , argv , " control_iiwa_1 ") ;
ros : : NodeHandle nh("~") ;
ros : : AsyncSpinner spinner (1) ;
spinner . s t a r t () ;
nh . param(" joint_posi t ion_topic " , joint_posit ion_topic , std : : s t r i n g (" / iiwa /

,→ s t a t e / JointPosi t ion ")) ;

Robotics and Mechatronics Mohamed Issa

38 Development of environmental awareness for the Kuka robotic arm

nh . param(" cartesian_posit ion_topic " , cartesian_position_topic , std : : s t r i n g (
,→ " / iiwa / s t a t e / CartesianPose ")) ;

nh . param(" command_cartesian_position_topic " ,
,→ command_cartesian_position_topic , std : : s t r i n g (" / iiwa /command/
,→ CartesianPose ")) ;

nh . param(" command_joint_position_topic " , command_joint_position_topic , std
,→ : : s t r i n g (" / iiwa /command/ JointPosi t ion ")) ;

nh . param(" ros_rate " , ros_rate) ; / / 0.1 Hz = 10 seconds
ros : : Rate * loop_rate_ = new ros : : Rate (ros_rate) ;

/ / Subscribers and publishers
ros : : Subscriber sub_joint_position = nh . subscribe (joint_posit ion_topic , 1 ,

,→ jointPosit ionCallback) ;
ros : : Subscriber sub_cartesian_position = nh . subscribe (

,→ cartesian_position_topic , 1 , cartesianPositionCallback) ;
ros : : Subscriber sub_joystick = nh . subscribe (" / joy " , 1 , joyst ickCal lback) ;

ros : : Publisher pub_cartesian_command = nh . advertise <geometry_msgs : :
,→ PoseStamped>(command_cartesian_position_topic , 1) ;

ros : : Publisher pub_joint_command = nh . advertise <iiwa_msgs : : JointPosit ion >(
,→ command_joint_position_topic , 1) ;

while (ros : : ok ()) {
i f (isRobotConnected) {

i f (control == 0) {
cout << "PLEASE ENTER CONTROL MODE\n . \ n . \ n 1 for Cartesian control . \ n 2 for

,→ J o i n t control . \ n\n" ;
cin >> control ;
}
command_joint_position = current_joint_posit ion ; command_cartesian_position

,→ = current_cartesian_position ;

i f (control == 1) {
command_cartesian_position = current_cartesian_position ;
command_cartesian_position . pose . position . x += x / 50;
command_cartesian_position . pose . position . y += y / 50;
command_cartesian_position . pose . position . z += z / 50;
ROS_INFO("New Cartesian Position i s : [%3.3f , %3.3f , %3.3f , %3.3f , %3.3f ,

,→ %3.3f , %3.3 f] " ,
command_cartesian_position . pose . position . x ,
command_cartesian_position . pose . position . y ,
command_cartesian_position . pose . position . z ,
command_cartesian_position . pose . orientation . x ,
command_cartesian_position . pose . orientation . y ,
command_cartesian_position . pose . orientation . z ,
command_cartesian_position . pose . orientation .w) ;

pub_cartesian_command . publish (command_cartesian_position) ;

i f (re set > 0) {
command_joint_position . position . a1 = 0 ;
command_joint_position . position . a2 = 0.174533; / / 10 degrees
command_joint_position . position . a3 = 0 ;
command_joint_position . position . a4 = −1.39626; / /−80 degrees
command_joint_position . position . a5 = 0 ;
command_joint_position . position . a6 = 1.5708; / / 90 degrees
command_joint_position . position . a7 = 0 ;
pub_joint_command . publish (command_joint_position) ;
}
}
else i f (control == 2) {
command_joint_position = current_joint_posit ion ;

Mohamed Issa University of Twente

APPENDIX A. APPENDIX 1 39

command_joint_position . position . a1 += j_1 / 10;
command_joint_position . position . a2 += j_2 / 10;
command_joint_position . position . a3 += j_3 / 10;
command_joint_position . position . a4 += j_4 / 10;
command_joint_position . position . a5 += j_5 / 10;
command_joint_position . position . a6 += j_6 / 10;
command_joint_position . position . a7 += j_7p / 10;
command_joint_position . position . a7 −= j_7n / 10;
ROS_INFO(" Current J o i n t Position i s : [%3.3f , %3.3f , %3.3f , %3.3f , %3.3f ,

,→ %3.3f , %3.3 f] " ,
command_joint_position . position . a1 ,
command_joint_position . position . a2 ,
command_joint_position . position . a3 ,
command_joint_position . position . a4 ,
command_joint_position . position . a5 ,
command_joint_position . position . a6 ,
command_joint_position . position . a7) ;

pub_joint_command . publish (command_joint_position) ;
}
else {
cout << " . \ n . \ n . \ n . \ n" ;
ROS_WARN("YOU HAVE ENTERED A WRONG RESPONSE. ") ;
cout << " . \ n . \ n . \ n . \ n" ;
control = 0 ;
}

loop_rate_−>sleep () ;
}
else {

ROS_ERROR("Robot i s not connected . . . ") ;
ros : : Duration (1 . 0) . sleep () ; / / 5 seconds

}
}

std : : cerr <<" \n . \ n . \ n . \ n . \ n . \ n . \ nExiting control_iiwa_1 \n Please wait \n . \ n
,→ . \ n . \ n . \ n . "<<std : : endl ;

spinner . stop () ;
ros : : spin () ;
return 0 ;

} ;� �
A.2 imitate_iiwa.cpp

� �
#include " ros / ros . h"
#include "iiwa_msgs/ JointPosi t ion . h"
#include "geometry_msgs/PoseStamped . h"
#include <std_msgs/ Float64 . h>

iiwa_msgs : : JointPosi t ion current_joint_posit ion , command_joint_position ;
geometry_msgs : : PoseStamped current_cartesian_position , command_cartesian_position ;
std : : s t r i n g joint_posit ion_topic , cartesian_position_topic ,

,→ command_cartesian_position_topic , command_joint_position_topic ;
double le f t_elbow_rol l , left_elbow_pitch , left_elbow_yaw , l e f t _ s h o u l d e r _ r o l l ,

,→ left_shoulder_pitch , left_shoulder_yaw , right_elbow_roll , right_elbow_pitch
,→ , right_elbow_yaw , right_shoulder_rol l , right_shoulder_pitch ,
,→ right_shoulder_yaw ;

double left_elbow_angle , left_shoulder_angle , right_elbow_angle ,
,→ right_shoulder_angle , right_elbow_rotation , right_shoulder_rotation ;

double ros_rate = 1 . 0 ;

Robotics and Mechatronics Mohamed Issa

40 Development of environmental awareness for the Kuka robotic arm

bool isRobotConnected = false , use_right_hand = true , f i r s t = true ;

void jointPosit ionCallback (const iiwa_msgs : : JointPosit ion& jp)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

current_joint_posit ion = jp ;
}

void cartesianPositionCallback (const geometry_msgs : : PoseStamped& ps)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

current_cartesian_position = ps ;
}

void lef t_elbow_rol lCal lback (const std_msgs : : Float64& l e r)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

l e f t _ e l b o w _ r o l l = l e r . data ;
}

void left_elbow_pitchCallback (const std_msgs : : Float64& lep)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

left_elbow_pitch = lep . data ;
}

void left_elbow_yawCallback (const std_msgs : : Float64& ley)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

left_elbow_yaw = ley . data ;
}

void l e f t_s ho ul der _rol l Ca l l back (const std_msgs : : Float64& l s r)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

l e f t _ s h o u l d e r _ r o l l = l s r . data ;
}

void left_shoulder_pitchCallback (const std_msgs : : Float64& lsp)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

left_shoulder_pitch = lsp . data ;
}

void left_shoulder_yawCallback (const std_msgs : : Float64& l s y)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

left_shoulder_yaw = l s y . data ;
}

void right_elbow_rollCallback (const std_msgs : : Float64& rer)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

r ight_elbow_rol l = rer . data ;

Mohamed Issa University of Twente

APPENDIX A. APPENDIX 1 41

}

void right_elbow_pitchCallback (const std_msgs : : Float64& rep)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

right_elbow_pitch = rep . data ;
}

void right_elbow_yawCallback (const std_msgs : : Float64& rey)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

right_elbow_yaw = rey . data ;
}

void r ight_shoulder_rol lCal lback (const std_msgs : : Float64& r s r)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

r ight_shoulder_rol l = r s r . data ;
}

void right_shoulder_pitchCallback (const std_msgs : : Float64& rsp)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

right_shoulder_pitch = rsp . data ;
}

void right_shoulder_yawCallback (const std_msgs : : Float64& rsy)
{

i f (! isRobotConnected)
isRobotConnected = ! isRobotConnected ;

right_shoulder_yaw = rsy . data ;
}

int main (int argc , char ** argv) {
ros : : i n i t (argc , argv , " imitate ") ;
ros : : NodeHandle nh("~") ;
ros : : AsyncSpinner spinner (1) ;
spinner . s t a r t () ;
nh . param(" joint_posi t ion_topic " , joint_posit ion_topic , std : : s t r i n g (" / iiwa /

,→ s t a t e / JointPosi t ion ")) ;
nh . param(" cartesian_posit ion_topic " , cartesian_position_topic , std : : s t r i n g (

,→ " / iiwa / s t a t e / CartesianPose ")) ;
nh . param(" command_cartesian_position_topic " ,

,→ command_cartesian_position_topic , std : : s t r i n g (" / iiwa /command/
,→ CartesianPose ")) ;

nh . param(" command_joint_position_topic " , command_joint_position_topic , std
,→ : : s t r i n g (" / iiwa /command/ JointPosi t ion ")) ;

nh . param(" use_right_hand " , use_right_hand , true) ;
nh . param(" ros_rate " , ros_rate) ; / / 0.1 Hz = 10 seconds
ros : : Rate * loop_rate_ = new ros : : Rate (ros_rate) ;

/ / Subscribers and publishers
ros : : Subscriber sub_joint_position = nh . subscribe (joint_posit ion_topic , 1 ,

,→ jointPosit ionCallback) ;
ros : : Subscriber sub_cartesian_position = nh . subscribe (

,→ cartesian_position_topic , 1 , cartesianPositionCallback) ;
ros : : Subscriber left_elbow_rol l_sub = nh . subscribe (" / l e f t _ e l b o w _ r o l l " , 1 ,

,→ lef t_elbow_rol lCal lback) ;

Robotics and Mechatronics Mohamed Issa

42 Development of environmental awareness for the Kuka robotic arm

ros : : Subscriber left_elbow_pitch_sub = nh . subscribe (" / left_elbow_pitch " , 1 ,
,→ left_elbow_pitchCallback) ;

ros : : Subscriber left_elbow_yaw_sub = nh . subscribe (" / left_elbow_yaw " , 1 ,
,→ left_elbow_yawCallback) ;

ros : : Subscriber left_shoulder_rol l_sub = nh . subscribe (" / l e f t _ s h o u l d e r _ r o l l "
,→ , 1 , l e f t_sho ul der _rol l Cal l back) ;

ros : : Subscriber left_shoulder_pitch_sub = nh . subscribe (" /
,→ left_shoulder_pitch " , 1 , left_shoulder_pitchCallback) ;

ros : : Subscriber left_shoulder_yaw_sub = nh . subscribe (" / left_shoulder_yaw " ,
,→ 1 , left_shoulder_yawCallback) ;

ros : : Subscriber right_elbow_roll_sub = nh . subscribe (" / right_elbow_rol l " , 1 ,
,→ right_elbow_rollCallback) ;

ros : : Subscriber right_elbow_pitch_sub = nh . subscribe (" / right_elbow_pitch " ,
,→ 1 , right_elbow_pitchCallback) ;

ros : : Subscriber right_elbow_yaw_sub = nh . subscribe (" / right_elbow_yaw " , 1 ,
,→ right_elbow_yawCallback) ;

ros : : Subscriber right_shoulder_roll_sub = nh . subscribe (" /
,→ r ight_shoulder_rol l " , 1 , r ight_shoulder_rol lCal lback) ;

ros : : Subscriber right_shoulder_pitch_sub = nh . subscribe (" /
,→ right_shoulder_pitch " , 1 , right_shoulder_pitchCallback) ;

ros : : Subscriber right_shoulder_yaw_sub = nh . subscribe (" / right_shoulder_yaw "
,→ , 1 , right_shoulder_yawCallback) ;

ros : : Publisher pub_cartesian_command = nh . advertise <geometry_msgs : :
,→ PoseStamped>(command_cartesian_position_topic , 1) ;

ros : : Publisher pub_joint_command = nh . advertise <iiwa_msgs : : JointPosit ion >(
,→ command_joint_position_topic , 1) ;

while (ros : : ok ()) {
i f (isRobotConnected) {

command_joint_position = current_joint_posit ion ; command_cartesian_position =
,→ current_cartesian_posit ion ;

/ * i f (left_elbow_yaw >= 0)
left_elbow_angle = fabs (l e f t _ e l b o w _ r o l l) − 1.5708;
e l s e
left_elbow_angle = 1.5708 − fabs (l e f t _ e l b o w _ r o l l) ;
i f (left_elbow_angle > 1.13446)
left_elbow_angle = 1.13446;
command_joint_position . posit ion . a4 = left_elbow_angle ;
ROS_INFO(" angle i s : [%3.3 f] " , left_elbow_angle) ;
/ / pub_joint_command . publish (command_joint_position) ;

i f (l e f t _ s h o u l d e r _ r o l l >= 0)
lef t_shoulder_angle = 1.5708 − l e f t _ s h o u l d e r _ r o l l ;
e l s e
lef t_shoulder_angle = (−3 * 1.5708) − l e f t _ s h o u l d e r _ r o l l ;
i f (le f t_shoulder_angle < −1.74533)
lef t_shoulder_angle = −1.74533;
command_joint_position . posit ion . a2 = lef t_shoulder_angle ;
ROS_INFO(" angle i s : [%3.3 f , %3.3 f] " , l e f t _ s h o u l d e r _ r o l l , le f t_shoulder_angle) ;
pub_joint_command . publish (command_joint_position) ; * /
i f (f i r s t) {

loop_rate_−>sleep () ;
loop_rate_−>sleep () ;
loop_rate_−>sleep () ;
loop_rate_−>sleep () ;
loop_rate_−>sleep () ;
loop_rate_−>sleep () ;
loop_rate_−>sleep () ;
loop_rate_−>sleep () ;

Mohamed Issa University of Twente

APPENDIX A. APPENDIX 1 43

loop_rate_−>sleep () ;
loop_rate_−>sleep () ;
loop_rate_−>sleep () ;
loop_rate_−>sleep () ;
loop_rate_−>sleep () ;
loop_rate_−>sleep () ;
loop_rate_−>sleep () ;
loop_rate_−>sleep () ;

f i r s t = f a l s e ;
}

i f (right_elbow_yaw < 0)
right_elbow_angle = fabs (right_elbow_rol l) − 1.5708;
else
right_elbow_angle = 1.5708 − fabs (r ight_elbow_rol l) ;
i f (r ight_shoulder_rol l < 0)
right_shoulder_angle = fabs (r ight_shoulder_rol l) − 1.5708;
else
right_shoulder_angle = (3 * 1.5708) − fabs (r ight_shoulder_rol l) ;
right_elbow_rotation = fabs (right_elbow_yaw) − 1.5708;
right_shoulder_rotation = right_elbow_pitch ;
/ / r ight_shoulder_rotation = −(fabs (right_shoulder_yaw) − 1.5708) ;

i f (right_elbow_angle < −1.13446)
right_elbow_angle = −1.13446;
i f (right_elbow_angle > 1.13446)
right_elbow_angle = 1.13446;
i f (right_shoulder_angle > 1.74533)
right_shoulder_angle = 1.74533;
i f (right_shoulder_angle < −1.74533)
right_shoulder_angle = −1.74533;

command_joint_position . position . a4 = (right_elbow_angle + right_shoulder_angle) ;
ROS_INFO(" right_elbow_angle i s : [%3.3 f] " , (right_elbow_angle +

,→ right_shoulder_angle)) ;

command_joint_position . position . a2 = right_shoulder_angle ;
ROS_INFO(" right_shoulder_angle : [%3.3 f] " , right_shoulder_angle) ;

command_joint_position . position . a3 = right_elbow_rotation ;
ROS_INFO(" right_elbow_rotation i s : [%3.3 f] " , right_elbow_rotation) ;

command_joint_position . position . a1 = right_shoulder_rotation ;
ROS_INFO(" right_shoulder_rotation i s : [%3.3 f] " , r ight_shoulder_rotation) ;

pub_joint_command . publish (command_joint_position) ;

/ / ROS_INFO(" right_elbow_roll , pitch and yaw : [%3.3 f , %3.3 f , %3.3 f] " ,
,→ right_elbow_roll , right_elbow_pitch , right_elbow_yaw) ;

/ / ROS_INFO(" right_shoulder_rol l , pitch and yaw : [%3.3 f , %3.3 f , %3.3 f] " ,
,→ r ight_shoulder_rol l , right_shoulder_pitch , right_shoulder_yaw) ;

loop_rate_−>sleep () ;
}
else {

ROS_ERROR("Robot i s not connected . . . ") ;
ros : : Duration (5 . 0) . sleep () ; / / 5 seconds

}
}

std : : cerr <<"Stopping spinner . . . "<<std : : endl ;

Robotics and Mechatronics Mohamed Issa

44 Development of environmental awareness for the Kuka robotic arm

spinner . stop () ;

std : : cerr <<"Bye ! "<<std : : endl ;
ros : : spin () ;
return 0 ;

} ;� �
A.3 Forward Kinematics - Denavit-Hartenberg Convention

The following are the matrices calculated in 5.8 for A1 · · · A7.

A1 =

cosθ1 −sinθ1 cos −π
2 sinθ1 sin −π

2 0

sinθ1 cosθ1 cos −π
2 −cosθ1 sin −π

2 0

0 sin −π
2 cos −π

2 360

0 0 0 1

 ; A2 =

cosθ2 −sinθ2 cos π
2 sinθ2 sin π

2 0

sinθ2 cosθ2 cos π
2 −cosθ2 sin π

2 0

0 sin π
2 cos π

2 0

0 0 0 1

(A.1)

A3 =

cosθ3 −sinθ3 cos π
2 sinθ3 sin π

2 0

sinθ3 cosθ3 cos π
2 −cosθ3 sin π

2 0

0 sin π
2 cos π

2 420

0 0 0 1

 ; A4 =

cosθ4 −sinθ4 cos −π
2 sinθ4 sin −π

2 0

sinθ4 cosθ4 cos −π
2 −cosθ4 sin −π

2 0

0 sin −π
2 cos −π

2 0

0 0 0 1

(A.2)

A5 =

cosθ5 −sinθ5 cos −π
2 sinθ5 sin −π

2 0

sinθ5 cosθ5 cos −π
2 −cosθ5 sin −π

2 0

0 sin −π
2 cos −π

2 400

0 0 0 1

 ; A6 =

cosθ6 −sinθ6 cos π
2 sinθ6 sin π

2 0

sinθ6 cosθ6 cos π
2 −cosθ6 sin π

2 0

0 sin
π

2
cos

π

2
0

0 0 0 1

(A.3)

A7 =

cosθ7 −sinθ7 0 0

sinθ7 cosθ7 0 0

0 0 1 126

0 0 0 1

 (A.4)

Mohamed Issa University of Twente

APPENDIX A. APPENDIX 1 45

A.4 Forward Kinematics - Translation and Rotation

The following are the matrices calculated in 5.13 for d0
1 R1

2 d2
3 R3

4 · · · d12
13 R13

14 d14
15.

d0
1 =

1 0 0 0

0 1 0 0

0 0 1 147.5

0 0 0 1

 ⇔ R1
2 =

cosθ1 −sinθ1 0

sinθ1 cosθ1 0

0 0 1

 (A.5)

d2
3 =

1 0 0 0

0 1 0 0

0 0 1 212.5

0 0 0 1

 ⇔ R3
4 =

cosθ2 0 sinθ2

0 1 0

−sinθ2 0 cosθ2

 (A.6)

d4
5 =

1 0 0 0

0 1 0 0

0 0 1 194.5

0 0 0 1

 ⇔ R5
6 =

cosθ3 −sinθ3 0

sinθ3 cosθ3 0

0 0 1

 (A.7)

d6
7 =

1 0 0 0

0 1 0 0.5

0 0 1 225.5

0 0 0 1

 ⇔ R7
8 =

cosθ4 0 −sinθ4

0 1 0

sinθ4 0 cosθ4

 (A.8)

d8
9 =

1 0 0 0

0 1 0 −0.5

0 0 1 174.5

0 0 0 1

 ⇔ R9
10 =

cosθ5 −sinθ5 0

sinθ5 cosθ5 0

0 0 1

 (A.9)

d10
11 =

1 0 0 0

0 1 0 −60.7

0 0 1 225.5

0 0 0 1

 ⇔ R11
12 =

cosθ6 0 sinθ6

0 1 0

−sinθ6 0 cosθ6

 (A.10)

d12
13 =

1 0 0 0

0 1 0 60.7

0 0 1 71.1

0 0 0 1

 ⇔ R13
14 =

cosθ7 −sinθ7 0

sinθ7 cosθ7 0

0 0 1

 (A.11)

d14
15 =

1 0 0 0

0 1 0 0

0 0 1 54.9

0 0 0 1

 (A.12)

Robotics and Mechatronics Mohamed Issa

46 Development of environmental awareness for the Kuka robotic arm

A.5 Homogeneous Transformation code� �
geometry_msgs : : Point HT(double x , double y , double z) {
geometry_msgs : : Point newp; double sum; double temp [4] [1] ;
double ht [4] [4] ;
ht [0] [0] = 0 ; ht [0] [1] = 0 ; ht [0] [2] = −1; ht [0] [3] = 2 . 3 4 ;
ht [1] [0] = −1; ht [1] [1] = 0 ; ht [1] [2] = 0 ; ht [1] [3] = 0 ;
ht [2] [0] = 0 ; ht [2] [1] = 1 ; ht [2] [2] = 0 ; ht [2] [3] = 0 . 8 ;
ht [3] [0] = 0 ; ht [3] [1] = 0 ; ht [3] [2] = 0 ; ht [3] [3] = 1 ;
double oldp [4] [1] ;
oldp [0] [0] = x ;
oldp [1] [0] = y ;
oldp [2] [0] = z ;
oldp [3] [0] = 1 ;

for (int a = 0 ; a < 3 ; a++) {
for (int b = 0 ; b < 4 ; b++) {

sum += ht [a] [b] * oldp [b] [0] ;
}

temp[a] [0] = sum;
sum = 0 ;

}

newp. x = temp [0] [0] ;
newp. y = temp [1] [0] ;
newp. z = temp [2] [0] ;
return newp;
}� �

A.6 Distance calculation code� �
double getDistance (geometry_msgs : : Point one ,
geometry_msgs : : Point two) {

double x1 = one . x ; double y1 = one . y ; double z1 = one . z ;
double x2 = two . x ; double y2 = two . y ; double z2 = two . z ;

double xSqr = double (x1 − x2) * (x1 − x2) ;
double ySqr = double (y1 − y2) * (y1 − y2) ;
double zSqr = double (z1 − z2) * (z1 − z2) ;

double mySqr = xSqr + ySqr + zSqr ;
double myDistance = sqrt (mySqr) ;

return myDistance ;
}� �

A.7 Position (1 obstacle)� �
geometry_msgs : : Point getPose (geometry_msgs : : Point one ,
geometry_msgs : : PoseStamped two) {

i f (myDistance1 >= 0 . 4)
factor1 = 0 . 1 ;
else i f (myDistance1 >= 0 . 3)
factor1 = 0 . 2 ;
else i f (myDistance1 >= 0 . 2)
factor1 = 0 . 3 ;
else i f (myDistance1 >= 0 . 1)
factor1 = 0 . 3 5 ;

Mohamed Issa University of Twente

APPENDIX A. APPENDIX 1 47

double xNew1 = factor1 * ((x2 − x1)) ;
double yNew1 = factor1 * ((y2 − y1)) ;
double zNew1 = factor1 * ((z2 − z1)) ;

double xNew = x2 + (xNew1) ;
double yNew = y2 + (yNew1) ;
double zNew = z2 + (zNew1) ;

geometry_msgs : : Point pose ;
pose . x = xNew;
pose . y = yNew;
pose . z = zNew;

return pose ;
}� �

A.8 Position (2 obstacle)� �
geometry_msgs : : Point getPose (geometry_msgs : : Point one ,
geometry_msgs : : PoseStamped two , geometry_msgs : : Point three) {

double factor1 , factor2 ;

i f (myDistance1 >= 0 . 4)
factor1 = 0 . 1 ;
else i f (myDistance1 >= 0 . 3)
factor1 = 0 . 2 ;
else i f (myDistance1 >= 0 . 2)
factor1 = 0 . 3 ;
else i f (myDistance1 >= 0 . 1)
factor1 = 0 . 3 5 ;

i f (myDistance2 >= 0 . 4)
factor2 = 0 . 1 ;
else i f (myDistance2 >= 0 . 3)
factor2 = 0 . 2 ;
else i f (myDistance2 >= 0 . 2)
factor2 = 0 . 3 ;
else i f (myDistance2 >= 0 . 1)
factor2 = 0 . 3 5 ;

double xNew1 = factor1 * ((x2 − x1)) ;
double yNew1 = factor1 * ((y2 − y1)) ;
double zNew1 = factor1 * ((z2 − z1)) ;

double xNew2 = factor2 * ((x2 − x3)) ;
double yNew2 = factor2 * ((y2 − y3)) ;
double zNew2 = factor2 * ((z2 − z3)) ;

double xNew = x2 + ((xNew1 + xNew2) / 2) ;
double yNew = y2 + ((yNew1 + yNew2) / 2) ;
double zNew = z2 + ((zNew1 + zNew2) / 2) ;

geometry_msgs : : Point pose ;
pose . x = xNew;
pose . y = yNew;
pose . z = zNew;

return pose ;
}� �

Robotics and Mechatronics Mohamed Issa

48 Development of environmental awareness for the Kuka robotic arm

A.9 C++ code implemented

Please refer to this link https://hg.ram.ewi.utwente.nl/ for access to all the C++
code written in this bachelor thesis or refer to the usb stick attached with the report.
Also for more information or clarification needed regarding any part of this report, kindly con-
tact mohissa55@gmail.com.

Mohamed Issa University of Twente

https://hg.ram.ewi.utwente.nl/
mailto:mohissa55@gmail.com

49

Bibliography
(1990), Council Directive 90/385/EEC, Technical report, European Commission.
http://ec.europa.eu/growth/single-market/european-standards/
harmonised-standards/iv-diagnostic-medical-devices_en

(1993), Council Directive 93/42/EEC, Technical report, European Commission.
http://ec.europa.eu/growth/single-market/european-standards/
harmonised-standards/medical-devices/

(1998), Council Directive 98/79/EC, Technical report, European Commission.
http://ec.europa.eu/growth/single-market/european-standards/
harmonised-standards/iv-diagnostic-medical-devices_en

(2006), IEC 60812:2006.
https://webstore.iec.ch/publication/3571

(2006), IEC 61025:2006.
https://webstore.iec.ch/publication/4311

(2012), ISO 14971 - Medical devices – Application of risk management to medical devices,
Technical report, International Organisation for Standardisation.

Agreement, G. (2015), Murab proposal.

AmericanCancerSociety (2014), What is breast cancer?
http://www.cancer.org/cancer/breastcancer/detailedguide/
breast-cancer-what-is-breast-cancer

BIPM, I., I. IFCC, I. IUPAC and O. ISO (2008), The international vocabulary of
metrology—basic and general concepts and associated terms (VIM), 3rd edn. JCGM 200:
2012, JCGM (Joint Committee for Guides in Metrology).

Biswas, J. and M. Veloso (2012), Depth camera based indoor mobile robot localization and
navigation, in Robotics and Automation (ICRA), 2012 IEEE International Conference on, pp.
1697–1702, ISSN 1050-4729, doi:10.1109/ICRA.2012.6224766.

BREASTCANCER.ORG (2014), Symptoms of Breast Cancer.
http://www.breastcancer.org/symptoms/understand_bc/symptoms

Brechon, S. (2013), A Brief History of Breast Cancer.
http:
//www.maurerfoundation.org/a-brief-history-of-breast-cancer/

Buss, S. R. (2004), Introduction to inverse kinematics with jacobian transpose, pseudoinverse
and damped least squares methods, IEEE Journal of Robotics and Automation, vol. 17, p. 16.

Chen, C., W. Chai, S. Wang and H. Roth (2014), A single frame depth visual gyroscope and its
integration for robot navigation and mapping in structured indoor environments, in
Autonomous Robot Systems and Competitions (ICARSC), 2014 IEEE International Conference
on, pp. 73–78, doi:10.1109/ICARSC.2014.6849765.

Chubb, P. (2010), Kinect Teardown: Pleo, The Dinosaur Robot Similarities.

Comparetti, M. D. (2014), High level control of robot behavior in neurosurgery.

Duchemin, G., P. Poignet, E. Dombre and F. Pierrot (2004), Medically safe and sound, IEEE
robotics & automation magazine, vol. 11, pp. 46–55.

El-laithy, R. A., J. Huang and M. Yeh (2012), Study on the use of Microsoft Kinect for robotics
applications, in Position Location and Navigation Symposium (PLANS), 2012 IEEE/ION, pp.
1280–1288, ISSN 2153-358X, doi:10.1109/PLANS.2012.6236985.

Robotics and Mechatronics Mohamed Issa

http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/iv-diagnostic-medical-devices_en
http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/iv-diagnostic-medical-devices_en
http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/medical-devices/
http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/medical-devices/
http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/iv-diagnostic-medical-devices_en
http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/iv-diagnostic-medical-devices_en
https://webstore.iec.ch/publication/3571
https://webstore.iec.ch/publication/4311
http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-what-is-breast-cancer
http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-what-is-breast-cancer
http://www.breastcancer.org/symptoms/understand_bc/symptoms
http://www.maurerfoundation.org/a-brief-history-of-breast-cancer/
http://www.maurerfoundation.org/a-brief-history-of-breast-cancer/

50 Development of environmental awareness for the Kuka robotic arm

Fei, B., W. S. Ng, S. Chauhan and C. K. Kwoh (2001), The safety issues of medical robotics,
Reliability Engineering & System Safety, vol. 73, pp. 183–192.

Flacco, F., T. Kröger, A. D. Luca and O. Khatib (2012), A depth space approach to human-robot
collision avoidance, in Robotics and Automation (ICRA), 2012 IEEE International Conference
on, pp. 338–345, ISSN 1050-4729, doi:10.1109/ICRA.2012.6225245.

Gomes, P. (2011), Surgical robotics: Reviewing the past, analysing the present, imagining the
future, Robotics and Computer-Integrated Manufacturing, vol. 27, pp. 261–266.

Guthart, G. and J. K. Salisbury Jr (2000), The IntuitiveTM Telesurgery System: Overview and
Application., in ICRA, pp. 618–621.

IARC (2014), World Cancer Report 2014, World Health Organization.

Jamaluddin, A. (2014), 10 Creative And Innovative Uses Of Microsoft Kinect.
http://www.hongkiat.com/blog/innovative-uses-kinect/

Kazanzides, P. (2009), Safety design for medical robots, in 2009 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, pp. 7208–7211.

Kazanzides, P., G. Fichtinger, G. D. Hager, A. M. Okamura, L. L. Whitcomb and R. H. Taylor
(2008), Surgical and interventional robotics-core concepts, technology, and design
[Tutorial], IEEE Robotics & Automation Magazine, vol. 15, pp. 122–130.

Kinect (2009), E3 2009 : Microsoft at E3 Several Metric Tons of Press Releaseapalloza.
http://blog.seattlepi.com/digitaljoystick/2009/06/01/
e3-2009-microsoft-at-e3-several-metric-tons-of-press-releaseapalloza/

kobe, T. (2015), Unusual Cancers of Childhood Treatment, [Online; accessed August 12, 2016].
http://cancerinfo.tri-kobe.org/pdq/summary/english.jsp?Pdq_ID=
CDR0000062878

Kuhn, S. and D. Henrich (2007), Fast vision-based minimum distance determination between
known and unkown objects, in 2007 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 2186–2191, ISSN 2153-0858, doi:10.1109/IROS.2007.4399208.

Kuka (a), KUKA LBR iiwa 14 R820 Assembly Instructions.

Kuka (b), A revolution in robotics with a sensitive touch LBR iiwa.

Kuka (2013), KUKA receives order for about 360 medical robots from Siemens Healthcare.
http://www.kuka-robotics.com/en/pressevents/news/NN_20130613_
siemens_360_medical_robots.htm

Maier, D., C. Lutz and M. Bennewitz (2013), Integrated perception, mapping, and footstep
planning for humanoid navigation among 3D obstacles, in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2658–2664, ISSN 2153-0858,
doi:10.1109/IROS.2013.6696731.

Mark W. Spong, M. V. (1989), Robot Dynamics and Control, Wiley, ISBN 047161243X.

Microsoft (2012), Kinect Sensor.
https://msdn.microsoft.com/en-us/library/jj131033.aspx

mirror2image (2010), How Kinect depth sensor works – stereo triangulation?
https://mirror2image.wordpress.com/2010/11/30/
how-kinect-works-stereo-triangulation/

Mitchell, R. (2010), PrimeSense releases open source drivers, middleware that work with
Kinect.
https://www.engadget.com/2010/12/10/
primesense-releases-open-source-drivers-middleware-for-kinect/

Ogrinc, M., T. Petrič, N. Likar, A. Gams and A. Ude (2011), Control and collision avoidance for
two kuka lwr robots operated with the kinect sensor, in 20th International Workshop on

Mohamed Issa University of Twente

http://www.hongkiat.com/blog/innovative-uses-kinect/
http://blog.seattlepi.com/digitaljoystick/2009/06/01/e3-2009-microsoft-at-e3-several-metric-tons-of-press-releaseapalloza/
http://blog.seattlepi.com/digitaljoystick/2009/06/01/e3-2009-microsoft-at-e3-several-metric-tons-of-press-releaseapalloza/
http://cancerinfo.tri-kobe.org/pdq/summary/english.jsp?Pdq_ID=CDR0000062878
http://cancerinfo.tri-kobe.org/pdq/summary/english.jsp?Pdq_ID=CDR0000062878
http://www.kuka-robotics.com/en/pressevents/news/NN_20130613_siemens_360_medical_robots.htm
http://www.kuka-robotics.com/en/pressevents/news/NN_20130613_siemens_360_medical_robots.htm
https://msdn.microsoft.com/en-us/library/jj131033.aspx
https://mirror2image.wordpress.com/2010/11/30/how-kinect-works-stereo-triangulation/
https://mirror2image.wordpress.com/2010/11/30/how-kinect-works-stereo-triangulation/
https://www.engadget.com/2010/12/10/primesense-releases-open-source-drivers-middleware-for-kinect/
https://www.engadget.com/2010/12/10/primesense-releases-open-source-drivers-middleware-for-kinect/

Bibliography 51

Robotics in Alpe-Adria-Danube Region, pp. 173–178.

OpenNI and ROS (2011), Kinect Accuracy, [Online; accessed August 22, 2016].
http://wiki.ros.org/openni_kinect/kinect_accuracy

OSHA, O. S. . H. A. (2002), Industrial Robots and Robot System Safety.
https://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_4.html

Pierrot, F., E. Dombre, E. Dégoulange, L. Urbain, P. Caron, S. Boudet, J. Gariépy and J.-L.
Mégnien (1999), Hippocrate: a safe robot arm for medical applications with force feedback,
Medical Image Analysis, vol. 3, pp. 285–300.

Quigley, M., K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler and A. Y. Ng (2009),
ROS: an open-source Robot Operating System, in ICRA workshop on open source software,
volume 3, p. 5.

Seraji, H., B. Bon and R. Steele (1997), Experiments in real-time collision avoidance for
dexterous 7-DOF arms, in Robotics and Automation, 1997. Proceedings., 1997 IEEE
International Conference on, volume 1, pp. 569–574 vol.1, doi:10.1109/ROBOT.1997.620097.

Streiner, D. L. and G. R. Norman (2006), “Precision” and “Accuracy”: Two Terms That Are
Neither, Journal of Clinical Epidemiology, vol. 59, pp. 327 – 330, ISSN 0895-4356.

Ueki, S., T. Mouri and H. Kawasaki (2015), Collision avoidance method for hand-arm robot
using both structural model and 3D point cloud, in 2015 IEEE/SICE International
Symposium on System Integration (SII), pp. 193–198, doi:10.1109/SII.2015.7404977.

UMM (2016), Breast Cancer Treatment and Pregnancy, [Online; accessed August 12, 2016].
http://umm.edu/programs/cancer/healthinfo/overviews/
for-patients/breast-cancer-treatment-and-pregnancy

Vachálek, J., L. Čapucha, P. Krasňanský and F. Tóth (2015), Collision-free manipulation of a
robotic arm using the MS Windows Kinect 3D optical system, in Process Control (PC), 2015
20th International Conference on, pp. 96–106, doi:10.1109/PC.2015.7169945.

Virga, S. and M. Esposito (2015), ROS indigo metapackage with ROS packages to work with the
KUKA LBR IIWA R800/R820.
https://github.com/SalvoVirga/iiwa_stack

Wang, Y., S. E. Butner and A. Darzi (2006), The developing market for medical robotics,
PROCEEDINGS-IEEE, vol. 94, p. 1763.

Wang, Y. T., C. A. Shen and J. S. Yang (2014), Calibrated kinect sensors for robot simultaneous
localization and mapping, in Methods and Models in Automation and Robotics (MMAR),
2014 19th International Conference On, pp. 560–565, doi:10.1109/MMAR.2014.6957415.

Zohaib, M., M. Pasha, R. A. Riaz, N. Javaid, M. Ilahi and R. D. Khan (2013), Control Strategies
for Mobile Robot With Obstacle Avoidance, ArXiv e-prints.

Robotics and Mechatronics Mohamed Issa

http://wiki.ros.org/openni_kinect/kinect_accuracy
https://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_4.html
http://umm.edu/programs/cancer/healthinfo/overviews/for-patients/breast-cancer-treatment-and-pregnancy
http://umm.edu/programs/cancer/healthinfo/overviews/for-patients/breast-cancer-treatment-and-pregnancy
https://github.com/SalvoVirga/iiwa_stack

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Foreword
	1 Introduction
	1.1 Context
	1.2 Problem statement
	1.3 Project goal
	1.4 Plan of approach
	1.4.1 Requirements

	1.5 Organization of the report

	2 Background
	2.1 Literature review
	2.1.1 Birth of medical robotics
	2.1.2 Industrial vs medical robotics
	2.1.3 Safety guidelines for medical robotics

	2.2 Related work

	3 Experimental setup
	3.1 Hardware setup
	3.1.1 Kuka
	3.1.2 Kinect

	3.2 Software architecture
	3.3 Control interface

	4 Environmental awareness
	4.1 Obstacle detection methods
	4.1.1 Body detection
	4.1.2 Depth-pixel detection

	5 Obstacle avoidance algorithm
	5.1 Notation definitions
	5.2 Kinect to Kuka frame transformation
	5.3 Forward kinematics - Kuka arm
	5.3.1 Denavit-Hartenberg convention
	5.3.2 Translation and Rotation method

	5.4 Inverse kinematics - Kuka arm
	5.5 Avoidance algorithm

	6 Experiments and results
	6.1 Obstacle detection and avoidance
	6.2 Control interface

	7 Conclusion and recommendations
	7.1 Conclusion
	7.2 Recommendations

	A Appendix 1
	A.1 control_iiwa_1.cpp
	A.2 imitate_iiwa.cpp
	A.3 Forward Kinematics - Denavit-Hartenberg Convention
	A.4 Forward Kinematics - Translation and Rotation
	A.5 Homogeneous Transformation code
	A.6 Distance calculation code
	A.7 Position (1 obstacle)
	A.8 Position (2 obstacle)
	A.9 C++ code implemented

	Bibliography

